LegalizeDAG.cpp revision 14648468011c92a4210f8118721d58c25043daf8
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SelectionDAG::Legalize method.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Analysis/DebugInfo.h"
15#include "llvm/CodeGen/Analysis.h"
16#include "llvm/CodeGen/MachineFunction.h"
17#include "llvm/CodeGen/MachineJumpTableInfo.h"
18#include "llvm/CodeGen/SelectionDAG.h"
19#include "llvm/Target/TargetFrameLowering.h"
20#include "llvm/Target/TargetLowering.h"
21#include "llvm/Target/TargetData.h"
22#include "llvm/Target/TargetMachine.h"
23#include "llvm/CallingConv.h"
24#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/LLVMContext.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/Support/ErrorHandling.h"
29#include "llvm/Support/MathExtras.h"
30#include "llvm/Support/raw_ostream.h"
31#include "llvm/ADT/DenseMap.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/SmallPtrSet.h"
34using namespace llvm;
35
36//===----------------------------------------------------------------------===//
37/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
38/// hacks on it until the target machine can handle it.  This involves
39/// eliminating value sizes the machine cannot handle (promoting small sizes to
40/// large sizes or splitting up large values into small values) as well as
41/// eliminating operations the machine cannot handle.
42///
43/// This code also does a small amount of optimization and recognition of idioms
44/// as part of its processing.  For example, if a target does not support a
45/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
46/// will attempt merge setcc and brc instructions into brcc's.
47///
48namespace {
49class SelectionDAGLegalize {
50  const TargetMachine &TM;
51  const TargetLowering &TLI;
52  SelectionDAG &DAG;
53
54  // Libcall insertion helpers.
55
56  /// LastCALLSEQ - This keeps track of the CALLSEQ_END node that has been
57  /// legalized.  We use this to ensure that calls are properly serialized
58  /// against each other, including inserted libcalls.
59  SmallVector<SDValue, 8> LastCALLSEQ;
60
61  /// LegalizedNodes - For nodes that are of legal width, and that have more
62  /// than one use, this map indicates what regularized operand to use.  This
63  /// allows us to avoid legalizing the same thing more than once.
64  DenseMap<SDValue, SDValue> LegalizedNodes;
65
66  void AddLegalizedOperand(SDValue From, SDValue To) {
67    LegalizedNodes.insert(std::make_pair(From, To));
68    // If someone requests legalization of the new node, return itself.
69    if (From != To)
70      LegalizedNodes.insert(std::make_pair(To, To));
71
72    // Transfer SDDbgValues.
73    DAG.TransferDbgValues(From, To);
74  }
75
76public:
77  explicit SelectionDAGLegalize(SelectionDAG &DAG);
78
79  void LegalizeDAG();
80
81private:
82  /// LegalizeOp - Return a legal replacement for the given operation, with
83  /// all legal operands.
84  SDValue LegalizeOp(SDValue O);
85
86  SDValue OptimizeFloatStore(StoreSDNode *ST);
87
88  /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
89  /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
90  /// is necessary to spill the vector being inserted into to memory, perform
91  /// the insert there, and then read the result back.
92  SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
93                                         SDValue Idx, DebugLoc dl);
94  SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
95                                  SDValue Idx, DebugLoc dl);
96
97  /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
98  /// performs the same shuffe in terms of order or result bytes, but on a type
99  /// whose vector element type is narrower than the original shuffle type.
100  /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
101  SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl,
102                                     SDValue N1, SDValue N2,
103                                     SmallVectorImpl<int> &Mask) const;
104
105  bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
106                                    SmallPtrSet<SDNode*, 32> &NodesLeadingTo);
107
108  void LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
109                             DebugLoc dl);
110
111  SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
112  SDValue ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, const SDValue *Ops,
113                        unsigned NumOps, bool isSigned, DebugLoc dl);
114
115  std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC,
116                                                 SDNode *Node, bool isSigned);
117  SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
118                          RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
119                          RTLIB::Libcall Call_PPCF128);
120  SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
121                           RTLIB::Libcall Call_I8,
122                           RTLIB::Libcall Call_I16,
123                           RTLIB::Libcall Call_I32,
124                           RTLIB::Libcall Call_I64,
125                           RTLIB::Libcall Call_I128);
126  void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
127
128  SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, DebugLoc dl);
129  SDValue ExpandBUILD_VECTOR(SDNode *Node);
130  SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
131  void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
132                                SmallVectorImpl<SDValue> &Results);
133  SDValue ExpandFCOPYSIGN(SDNode *Node);
134  SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT,
135                               DebugLoc dl);
136  SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned,
137                                DebugLoc dl);
138  SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned,
139                                DebugLoc dl);
140
141  SDValue ExpandBSWAP(SDValue Op, DebugLoc dl);
142  SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl);
143
144  SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
145  SDValue ExpandInsertToVectorThroughStack(SDValue Op);
146  SDValue ExpandVectorBuildThroughStack(SDNode* Node);
147
148  std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node);
149
150  void ExpandNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
151  void PromoteNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
152
153  SDValue getLastCALLSEQ() { return LastCALLSEQ.back();  }
154  void setLastCALLSEQ(const SDValue s) { LastCALLSEQ.back() = s; }
155  void pushLastCALLSEQ(SDValue s) {
156    LastCALLSEQ.push_back(s);
157  }
158  void popLastCALLSEQ() {
159    LastCALLSEQ.pop_back();
160  }
161};
162}
163
164/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
165/// performs the same shuffe in terms of order or result bytes, but on a type
166/// whose vector element type is narrower than the original shuffle type.
167/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
168SDValue
169SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT,  DebugLoc dl,
170                                                 SDValue N1, SDValue N2,
171                                             SmallVectorImpl<int> &Mask) const {
172  unsigned NumMaskElts = VT.getVectorNumElements();
173  unsigned NumDestElts = NVT.getVectorNumElements();
174  unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
175
176  assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
177
178  if (NumEltsGrowth == 1)
179    return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
180
181  SmallVector<int, 8> NewMask;
182  for (unsigned i = 0; i != NumMaskElts; ++i) {
183    int Idx = Mask[i];
184    for (unsigned j = 0; j != NumEltsGrowth; ++j) {
185      if (Idx < 0)
186        NewMask.push_back(-1);
187      else
188        NewMask.push_back(Idx * NumEltsGrowth + j);
189    }
190  }
191  assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
192  assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
193  return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
194}
195
196SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag)
197  : TM(dag.getTarget()), TLI(dag.getTargetLoweringInfo()),
198    DAG(dag) {
199}
200
201void SelectionDAGLegalize::LegalizeDAG() {
202  pushLastCALLSEQ(DAG.getEntryNode());
203
204  // The legalize process is inherently a bottom-up recursive process (users
205  // legalize their uses before themselves).  Given infinite stack space, we
206  // could just start legalizing on the root and traverse the whole graph.  In
207  // practice however, this causes us to run out of stack space on large basic
208  // blocks.  To avoid this problem, compute an ordering of the nodes where each
209  // node is only legalized after all of its operands are legalized.
210  DAG.AssignTopologicalOrder();
211  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
212       E = prior(DAG.allnodes_end()); I != llvm::next(E); ++I)
213    LegalizeOp(SDValue(I, 0));
214
215  // Finally, it's possible the root changed.  Get the new root.
216  SDValue OldRoot = DAG.getRoot();
217  assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
218  DAG.setRoot(LegalizedNodes[OldRoot]);
219
220  LegalizedNodes.clear();
221
222  // Remove dead nodes now.
223  DAG.RemoveDeadNodes();
224}
225
226
227/// FindCallEndFromCallStart - Given a chained node that is part of a call
228/// sequence, find the CALLSEQ_END node that terminates the call sequence.
229static SDNode *FindCallEndFromCallStart(SDNode *Node, int depth = 0) {
230  int next_depth = depth;
231  if (Node->getOpcode() == ISD::CALLSEQ_START)
232    next_depth = depth + 1;
233  if (Node->getOpcode() == ISD::CALLSEQ_END) {
234    assert(depth > 0 && "negative depth!");
235    if (depth == 1)
236      return Node;
237    else
238      next_depth = depth - 1;
239  }
240  if (Node->use_empty())
241    return 0;   // No CallSeqEnd
242
243  // The chain is usually at the end.
244  SDValue TheChain(Node, Node->getNumValues()-1);
245  if (TheChain.getValueType() != MVT::Other) {
246    // Sometimes it's at the beginning.
247    TheChain = SDValue(Node, 0);
248    if (TheChain.getValueType() != MVT::Other) {
249      // Otherwise, hunt for it.
250      for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i)
251        if (Node->getValueType(i) == MVT::Other) {
252          TheChain = SDValue(Node, i);
253          break;
254        }
255
256      // Otherwise, we walked into a node without a chain.
257      if (TheChain.getValueType() != MVT::Other)
258        return 0;
259    }
260  }
261
262  for (SDNode::use_iterator UI = Node->use_begin(),
263       E = Node->use_end(); UI != E; ++UI) {
264
265    // Make sure to only follow users of our token chain.
266    SDNode *User = *UI;
267    for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
268      if (User->getOperand(i) == TheChain)
269        if (SDNode *Result = FindCallEndFromCallStart(User, next_depth))
270          return Result;
271  }
272  return 0;
273}
274
275/// FindCallStartFromCallEnd - Given a chained node that is part of a call
276/// sequence, find the CALLSEQ_START node that initiates the call sequence.
277static SDNode *FindCallStartFromCallEnd(SDNode *Node) {
278  int nested = 0;
279  assert(Node && "Didn't find callseq_start for a call??");
280  while (Node->getOpcode() != ISD::CALLSEQ_START || nested) {
281    Node = Node->getOperand(0).getNode();
282    assert(Node->getOperand(0).getValueType() == MVT::Other &&
283           "Node doesn't have a token chain argument!");
284    switch (Node->getOpcode()) {
285    default:
286      break;
287    case ISD::CALLSEQ_START:
288      if (!nested)
289        return Node;
290      Node = Node->getOperand(0).getNode();
291      nested--;
292      break;
293    case ISD::CALLSEQ_END:
294      nested++;
295      break;
296    }
297  }
298  return (Node->getOpcode() == ISD::CALLSEQ_START) ? Node : 0;
299}
300
301/// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to
302/// see if any uses can reach Dest.  If no dest operands can get to dest,
303/// legalize them, legalize ourself, and return false, otherwise, return true.
304///
305/// Keep track of the nodes we fine that actually do lead to Dest in
306/// NodesLeadingTo.  This avoids retraversing them exponential number of times.
307///
308bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
309                                     SmallPtrSet<SDNode*, 32> &NodesLeadingTo) {
310  if (N == Dest) return true;  // N certainly leads to Dest :)
311
312  // If we've already processed this node and it does lead to Dest, there is no
313  // need to reprocess it.
314  if (NodesLeadingTo.count(N)) return true;
315
316  // If the first result of this node has been already legalized, then it cannot
317  // reach N.
318  if (LegalizedNodes.count(SDValue(N, 0))) return false;
319
320  // Okay, this node has not already been legalized.  Check and legalize all
321  // operands.  If none lead to Dest, then we can legalize this node.
322  bool OperandsLeadToDest = false;
323  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
324    OperandsLeadToDest |=     // If an operand leads to Dest, so do we.
325      LegalizeAllNodesNotLeadingTo(N->getOperand(i).getNode(), Dest,
326                                   NodesLeadingTo);
327
328  if (OperandsLeadToDest) {
329    NodesLeadingTo.insert(N);
330    return true;
331  }
332
333  // Okay, this node looks safe, legalize it and return false.
334  LegalizeOp(SDValue(N, 0));
335  return false;
336}
337
338/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
339/// a load from the constant pool.
340static SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP,
341                                SelectionDAG &DAG, const TargetLowering &TLI) {
342  bool Extend = false;
343  DebugLoc dl = CFP->getDebugLoc();
344
345  // If a FP immediate is precise when represented as a float and if the
346  // target can do an extending load from float to double, we put it into
347  // the constant pool as a float, even if it's is statically typed as a
348  // double.  This shrinks FP constants and canonicalizes them for targets where
349  // an FP extending load is the same cost as a normal load (such as on the x87
350  // fp stack or PPC FP unit).
351  EVT VT = CFP->getValueType(0);
352  ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
353  if (!UseCP) {
354    assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
355    return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(),
356                           (VT == MVT::f64) ? MVT::i64 : MVT::i32);
357  }
358
359  EVT OrigVT = VT;
360  EVT SVT = VT;
361  while (SVT != MVT::f32) {
362    SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
363    if (ConstantFPSDNode::isValueValidForType(SVT, CFP->getValueAPF()) &&
364        // Only do this if the target has a native EXTLOAD instruction from
365        // smaller type.
366        TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
367        TLI.ShouldShrinkFPConstant(OrigVT)) {
368      Type *SType = SVT.getTypeForEVT(*DAG.getContext());
369      LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
370      VT = SVT;
371      Extend = true;
372    }
373  }
374
375  SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
376  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
377  if (Extend)
378    return DAG.getExtLoad(ISD::EXTLOAD, dl, OrigVT,
379                          DAG.getEntryNode(),
380                          CPIdx, MachinePointerInfo::getConstantPool(),
381                          VT, false, false, Alignment);
382  return DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
383                     MachinePointerInfo::getConstantPool(), false, false,
384                     Alignment);
385}
386
387/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
388static
389SDValue ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
390                             const TargetLowering &TLI) {
391  SDValue Chain = ST->getChain();
392  SDValue Ptr = ST->getBasePtr();
393  SDValue Val = ST->getValue();
394  EVT VT = Val.getValueType();
395  int Alignment = ST->getAlignment();
396  DebugLoc dl = ST->getDebugLoc();
397  if (ST->getMemoryVT().isFloatingPoint() ||
398      ST->getMemoryVT().isVector()) {
399    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
400    if (TLI.isTypeLegal(intVT)) {
401      // Expand to a bitconvert of the value to the integer type of the
402      // same size, then a (misaligned) int store.
403      // FIXME: Does not handle truncating floating point stores!
404      SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
405      return DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
406                          ST->isVolatile(), ST->isNonTemporal(), Alignment);
407    }
408    // Do a (aligned) store to a stack slot, then copy from the stack slot
409    // to the final destination using (unaligned) integer loads and stores.
410    EVT StoredVT = ST->getMemoryVT();
411    EVT RegVT =
412      TLI.getRegisterType(*DAG.getContext(),
413                          EVT::getIntegerVT(*DAG.getContext(),
414                                            StoredVT.getSizeInBits()));
415    unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
416    unsigned RegBytes = RegVT.getSizeInBits() / 8;
417    unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
418
419    // Make sure the stack slot is also aligned for the register type.
420    SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
421
422    // Perform the original store, only redirected to the stack slot.
423    SDValue Store = DAG.getTruncStore(Chain, dl,
424                                      Val, StackPtr, MachinePointerInfo(),
425                                      StoredVT, false, false, 0);
426    SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
427    SmallVector<SDValue, 8> Stores;
428    unsigned Offset = 0;
429
430    // Do all but one copies using the full register width.
431    for (unsigned i = 1; i < NumRegs; i++) {
432      // Load one integer register's worth from the stack slot.
433      SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr,
434                                 MachinePointerInfo(),
435                                 false, false, 0);
436      // Store it to the final location.  Remember the store.
437      Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
438                                  ST->getPointerInfo().getWithOffset(Offset),
439                                    ST->isVolatile(), ST->isNonTemporal(),
440                                    MinAlign(ST->getAlignment(), Offset)));
441      // Increment the pointers.
442      Offset += RegBytes;
443      StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
444                             Increment);
445      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
446    }
447
448    // The last store may be partial.  Do a truncating store.  On big-endian
449    // machines this requires an extending load from the stack slot to ensure
450    // that the bits are in the right place.
451    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
452                                  8 * (StoredBytes - Offset));
453
454    // Load from the stack slot.
455    SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
456                                  MachinePointerInfo(),
457                                  MemVT, false, false, 0);
458
459    Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
460                                       ST->getPointerInfo()
461                                         .getWithOffset(Offset),
462                                       MemVT, ST->isVolatile(),
463                                       ST->isNonTemporal(),
464                                       MinAlign(ST->getAlignment(), Offset)));
465    // The order of the stores doesn't matter - say it with a TokenFactor.
466    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
467                       Stores.size());
468  }
469  assert(ST->getMemoryVT().isInteger() &&
470         !ST->getMemoryVT().isVector() &&
471         "Unaligned store of unknown type.");
472  // Get the half-size VT
473  EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
474  int NumBits = NewStoredVT.getSizeInBits();
475  int IncrementSize = NumBits / 8;
476
477  // Divide the stored value in two parts.
478  SDValue ShiftAmount = DAG.getConstant(NumBits,
479                                      TLI.getShiftAmountTy(Val.getValueType()));
480  SDValue Lo = Val;
481  SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
482
483  // Store the two parts
484  SDValue Store1, Store2;
485  Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
486                             ST->getPointerInfo(), NewStoredVT,
487                             ST->isVolatile(), ST->isNonTemporal(), Alignment);
488  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
489                    DAG.getConstant(IncrementSize, TLI.getPointerTy()));
490  Alignment = MinAlign(Alignment, IncrementSize);
491  Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
492                             ST->getPointerInfo().getWithOffset(IncrementSize),
493                             NewStoredVT, ST->isVolatile(), ST->isNonTemporal(),
494                             Alignment);
495
496  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
497}
498
499/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
500static
501SDValue ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
502                            const TargetLowering &TLI) {
503  SDValue Chain = LD->getChain();
504  SDValue Ptr = LD->getBasePtr();
505  EVT VT = LD->getValueType(0);
506  EVT LoadedVT = LD->getMemoryVT();
507  DebugLoc dl = LD->getDebugLoc();
508  if (VT.isFloatingPoint() || VT.isVector()) {
509    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
510    if (TLI.isTypeLegal(intVT)) {
511      // Expand to a (misaligned) integer load of the same size,
512      // then bitconvert to floating point or vector.
513      SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getPointerInfo(),
514                                    LD->isVolatile(),
515                                    LD->isNonTemporal(), LD->getAlignment());
516      SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
517      if (VT.isFloatingPoint() && LoadedVT != VT)
518        Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result);
519
520      SDValue Ops[] = { Result, Chain };
521      return DAG.getMergeValues(Ops, 2, dl);
522    }
523
524    // Copy the value to a (aligned) stack slot using (unaligned) integer
525    // loads and stores, then do a (aligned) load from the stack slot.
526    EVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT);
527    unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
528    unsigned RegBytes = RegVT.getSizeInBits() / 8;
529    unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
530
531    // Make sure the stack slot is also aligned for the register type.
532    SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
533
534    SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
535    SmallVector<SDValue, 8> Stores;
536    SDValue StackPtr = StackBase;
537    unsigned Offset = 0;
538
539    // Do all but one copies using the full register width.
540    for (unsigned i = 1; i < NumRegs; i++) {
541      // Load one integer register's worth from the original location.
542      SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr,
543                                 LD->getPointerInfo().getWithOffset(Offset),
544                                 LD->isVolatile(), LD->isNonTemporal(),
545                                 MinAlign(LD->getAlignment(), Offset));
546      // Follow the load with a store to the stack slot.  Remember the store.
547      Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
548                                    MachinePointerInfo(), false, false, 0));
549      // Increment the pointers.
550      Offset += RegBytes;
551      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
552      StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
553                             Increment);
554    }
555
556    // The last copy may be partial.  Do an extending load.
557    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
558                                  8 * (LoadedBytes - Offset));
559    SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
560                                  LD->getPointerInfo().getWithOffset(Offset),
561                                  MemVT, LD->isVolatile(),
562                                  LD->isNonTemporal(),
563                                  MinAlign(LD->getAlignment(), Offset));
564    // Follow the load with a store to the stack slot.  Remember the store.
565    // On big-endian machines this requires a truncating store to ensure
566    // that the bits end up in the right place.
567    Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
568                                       MachinePointerInfo(), MemVT,
569                                       false, false, 0));
570
571    // The order of the stores doesn't matter - say it with a TokenFactor.
572    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
573                             Stores.size());
574
575    // Finally, perform the original load only redirected to the stack slot.
576    Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
577                          MachinePointerInfo(), LoadedVT, false, false, 0);
578
579    // Callers expect a MERGE_VALUES node.
580    SDValue Ops[] = { Load, TF };
581    return DAG.getMergeValues(Ops, 2, dl);
582  }
583  assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
584         "Unaligned load of unsupported type.");
585
586  // Compute the new VT that is half the size of the old one.  This is an
587  // integer MVT.
588  unsigned NumBits = LoadedVT.getSizeInBits();
589  EVT NewLoadedVT;
590  NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
591  NumBits >>= 1;
592
593  unsigned Alignment = LD->getAlignment();
594  unsigned IncrementSize = NumBits / 8;
595  ISD::LoadExtType HiExtType = LD->getExtensionType();
596
597  // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
598  if (HiExtType == ISD::NON_EXTLOAD)
599    HiExtType = ISD::ZEXTLOAD;
600
601  // Load the value in two parts
602  SDValue Lo, Hi;
603  if (TLI.isLittleEndian()) {
604    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
605                        NewLoadedVT, LD->isVolatile(),
606                        LD->isNonTemporal(), Alignment);
607    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
608                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
609    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
610                        LD->getPointerInfo().getWithOffset(IncrementSize),
611                        NewLoadedVT, LD->isVolatile(),
612                        LD->isNonTemporal(), MinAlign(Alignment,IncrementSize));
613  } else {
614    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
615                        NewLoadedVT, LD->isVolatile(),
616                        LD->isNonTemporal(), Alignment);
617    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
618                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
619    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
620                        LD->getPointerInfo().getWithOffset(IncrementSize),
621                        NewLoadedVT, LD->isVolatile(),
622                        LD->isNonTemporal(), MinAlign(Alignment,IncrementSize));
623  }
624
625  // aggregate the two parts
626  SDValue ShiftAmount = DAG.getConstant(NumBits,
627                                       TLI.getShiftAmountTy(Hi.getValueType()));
628  SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
629  Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
630
631  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
632                             Hi.getValue(1));
633
634  SDValue Ops[] = { Result, TF };
635  return DAG.getMergeValues(Ops, 2, dl);
636}
637
638/// PerformInsertVectorEltInMemory - Some target cannot handle a variable
639/// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
640/// is necessary to spill the vector being inserted into to memory, perform
641/// the insert there, and then read the result back.
642SDValue SelectionDAGLegalize::
643PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
644                               DebugLoc dl) {
645  SDValue Tmp1 = Vec;
646  SDValue Tmp2 = Val;
647  SDValue Tmp3 = Idx;
648
649  // If the target doesn't support this, we have to spill the input vector
650  // to a temporary stack slot, update the element, then reload it.  This is
651  // badness.  We could also load the value into a vector register (either
652  // with a "move to register" or "extload into register" instruction, then
653  // permute it into place, if the idx is a constant and if the idx is
654  // supported by the target.
655  EVT VT    = Tmp1.getValueType();
656  EVT EltVT = VT.getVectorElementType();
657  EVT IdxVT = Tmp3.getValueType();
658  EVT PtrVT = TLI.getPointerTy();
659  SDValue StackPtr = DAG.CreateStackTemporary(VT);
660
661  int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
662
663  // Store the vector.
664  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr,
665                            MachinePointerInfo::getFixedStack(SPFI),
666                            false, false, 0);
667
668  // Truncate or zero extend offset to target pointer type.
669  unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
670  Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3);
671  // Add the offset to the index.
672  unsigned EltSize = EltVT.getSizeInBits()/8;
673  Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
674  SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
675  // Store the scalar value.
676  Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT,
677                         false, false, 0);
678  // Load the updated vector.
679  return DAG.getLoad(VT, dl, Ch, StackPtr,
680                     MachinePointerInfo::getFixedStack(SPFI), false, false, 0);
681}
682
683
684SDValue SelectionDAGLegalize::
685ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) {
686  if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
687    // SCALAR_TO_VECTOR requires that the type of the value being inserted
688    // match the element type of the vector being created, except for
689    // integers in which case the inserted value can be over width.
690    EVT EltVT = Vec.getValueType().getVectorElementType();
691    if (Val.getValueType() == EltVT ||
692        (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
693      SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
694                                  Vec.getValueType(), Val);
695
696      unsigned NumElts = Vec.getValueType().getVectorNumElements();
697      // We generate a shuffle of InVec and ScVec, so the shuffle mask
698      // should be 0,1,2,3,4,5... with the appropriate element replaced with
699      // elt 0 of the RHS.
700      SmallVector<int, 8> ShufOps;
701      for (unsigned i = 0; i != NumElts; ++i)
702        ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
703
704      return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
705                                  &ShufOps[0]);
706    }
707  }
708  return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
709}
710
711SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
712  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
713  // FIXME: We shouldn't do this for TargetConstantFP's.
714  // FIXME: move this to the DAG Combiner!  Note that we can't regress due
715  // to phase ordering between legalized code and the dag combiner.  This
716  // probably means that we need to integrate dag combiner and legalizer
717  // together.
718  // We generally can't do this one for long doubles.
719  SDValue Tmp1 = ST->getChain();
720  SDValue Tmp2 = ST->getBasePtr();
721  SDValue Tmp3;
722  unsigned Alignment = ST->getAlignment();
723  bool isVolatile = ST->isVolatile();
724  bool isNonTemporal = ST->isNonTemporal();
725  DebugLoc dl = ST->getDebugLoc();
726  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
727    if (CFP->getValueType(0) == MVT::f32 &&
728        TLI.isTypeLegal(MVT::i32)) {
729      Tmp3 = DAG.getConstant(CFP->getValueAPF().
730                                      bitcastToAPInt().zextOrTrunc(32),
731                              MVT::i32);
732      return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
733                          isVolatile, isNonTemporal, Alignment);
734    }
735
736    if (CFP->getValueType(0) == MVT::f64) {
737      // If this target supports 64-bit registers, do a single 64-bit store.
738      if (TLI.isTypeLegal(MVT::i64)) {
739        Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
740                                  zextOrTrunc(64), MVT::i64);
741        return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
742                            isVolatile, isNonTemporal, Alignment);
743      }
744
745      if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) {
746        // Otherwise, if the target supports 32-bit registers, use 2 32-bit
747        // stores.  If the target supports neither 32- nor 64-bits, this
748        // xform is certainly not worth it.
749        const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt();
750        SDValue Lo = DAG.getConstant(IntVal.trunc(32), MVT::i32);
751        SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32);
752        if (TLI.isBigEndian()) std::swap(Lo, Hi);
753
754        Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getPointerInfo(), isVolatile,
755                          isNonTemporal, Alignment);
756        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
757                            DAG.getIntPtrConstant(4));
758        Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2,
759                          ST->getPointerInfo().getWithOffset(4),
760                          isVolatile, isNonTemporal, MinAlign(Alignment, 4U));
761
762        return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
763      }
764    }
765  }
766  return SDValue(0, 0);
767}
768
769/// LegalizeOp - Return a legal replacement for the given operation, with
770/// all legal operands.
771SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
772  if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
773    return Op;
774
775  SDNode *Node = Op.getNode();
776  DebugLoc dl = Node->getDebugLoc();
777
778  for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
779    assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) ==
780             TargetLowering::TypeLegal &&
781           "Unexpected illegal type!");
782
783  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
784    assert((TLI.getTypeAction(*DAG.getContext(),
785                              Node->getOperand(i).getValueType()) ==
786              TargetLowering::TypeLegal ||
787            Node->getOperand(i).getOpcode() == ISD::TargetConstant) &&
788           "Unexpected illegal type!");
789
790  // Note that LegalizeOp may be reentered even from single-use nodes, which
791  // means that we always must cache transformed nodes.
792  DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
793  if (I != LegalizedNodes.end()) return I->second;
794
795  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
796  SDValue Result = Op;
797  bool isCustom = false;
798
799  // Figure out the correct action; the way to query this varies by opcode
800  TargetLowering::LegalizeAction Action = TargetLowering::Legal;
801  bool SimpleFinishLegalizing = true;
802  switch (Node->getOpcode()) {
803  case ISD::INTRINSIC_W_CHAIN:
804  case ISD::INTRINSIC_WO_CHAIN:
805  case ISD::INTRINSIC_VOID:
806  case ISD::VAARG:
807  case ISD::STACKSAVE:
808    Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
809    break;
810  case ISD::SINT_TO_FP:
811  case ISD::UINT_TO_FP:
812  case ISD::EXTRACT_VECTOR_ELT:
813    Action = TLI.getOperationAction(Node->getOpcode(),
814                                    Node->getOperand(0).getValueType());
815    break;
816  case ISD::FP_ROUND_INREG:
817  case ISD::SIGN_EXTEND_INREG: {
818    EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
819    Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
820    break;
821  }
822  case ISD::SELECT_CC:
823  case ISD::SETCC:
824  case ISD::BR_CC: {
825    unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
826                         Node->getOpcode() == ISD::SETCC ? 2 : 1;
827    unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
828    EVT OpVT = Node->getOperand(CompareOperand).getValueType();
829    ISD::CondCode CCCode =
830        cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
831    Action = TLI.getCondCodeAction(CCCode, OpVT);
832    if (Action == TargetLowering::Legal) {
833      if (Node->getOpcode() == ISD::SELECT_CC)
834        Action = TLI.getOperationAction(Node->getOpcode(),
835                                        Node->getValueType(0));
836      else
837        Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
838    }
839    break;
840  }
841  case ISD::LOAD:
842  case ISD::STORE:
843    // FIXME: Model these properly.  LOAD and STORE are complicated, and
844    // STORE expects the unlegalized operand in some cases.
845    SimpleFinishLegalizing = false;
846    break;
847  case ISD::CALLSEQ_START:
848  case ISD::CALLSEQ_END:
849    // FIXME: This shouldn't be necessary.  These nodes have special properties
850    // dealing with the recursive nature of legalization.  Removing this
851    // special case should be done as part of making LegalizeDAG non-recursive.
852    SimpleFinishLegalizing = false;
853    break;
854  case ISD::EXTRACT_ELEMENT:
855  case ISD::FLT_ROUNDS_:
856  case ISD::SADDO:
857  case ISD::SSUBO:
858  case ISD::UADDO:
859  case ISD::USUBO:
860  case ISD::SMULO:
861  case ISD::UMULO:
862  case ISD::FPOWI:
863  case ISD::MERGE_VALUES:
864  case ISD::EH_RETURN:
865  case ISD::FRAME_TO_ARGS_OFFSET:
866  case ISD::EH_SJLJ_SETJMP:
867  case ISD::EH_SJLJ_LONGJMP:
868  case ISD::EH_SJLJ_DISPATCHSETUP:
869    // These operations lie about being legal: when they claim to be legal,
870    // they should actually be expanded.
871    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
872    if (Action == TargetLowering::Legal)
873      Action = TargetLowering::Expand;
874    break;
875  case ISD::TRAMPOLINE:
876  case ISD::FRAMEADDR:
877  case ISD::RETURNADDR:
878    // These operations lie about being legal: when they claim to be legal,
879    // they should actually be custom-lowered.
880    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
881    if (Action == TargetLowering::Legal)
882      Action = TargetLowering::Custom;
883    break;
884  case ISD::BUILD_VECTOR:
885    // A weird case: legalization for BUILD_VECTOR never legalizes the
886    // operands!
887    // FIXME: This really sucks... changing it isn't semantically incorrect,
888    // but it massively pessimizes the code for floating-point BUILD_VECTORs
889    // because ConstantFP operands get legalized into constant pool loads
890    // before the BUILD_VECTOR code can see them.  It doesn't usually bite,
891    // though, because BUILD_VECTORS usually get lowered into other nodes
892    // which get legalized properly.
893    SimpleFinishLegalizing = false;
894    break;
895  default:
896    if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
897      Action = TargetLowering::Legal;
898    } else {
899      Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
900    }
901    break;
902  }
903
904  if (SimpleFinishLegalizing) {
905    SmallVector<SDValue, 8> Ops, ResultVals;
906    for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
907      Ops.push_back(LegalizeOp(Node->getOperand(i)));
908    switch (Node->getOpcode()) {
909    default: break;
910    case ISD::BR:
911    case ISD::BRIND:
912    case ISD::BR_JT:
913    case ISD::BR_CC:
914    case ISD::BRCOND:
915      assert(LastCALLSEQ.size() == 1 && "branch inside CALLSEQ_BEGIN/END?");
916      // Branches tweak the chain to include LastCALLSEQ
917      Ops[0] = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ops[0],
918                           getLastCALLSEQ());
919      Ops[0] = LegalizeOp(Ops[0]);
920      setLastCALLSEQ(DAG.getEntryNode());
921      break;
922    case ISD::SHL:
923    case ISD::SRL:
924    case ISD::SRA:
925    case ISD::ROTL:
926    case ISD::ROTR:
927      // Legalizing shifts/rotates requires adjusting the shift amount
928      // to the appropriate width.
929      if (!Ops[1].getValueType().isVector())
930        Ops[1] = LegalizeOp(DAG.getShiftAmountOperand(Ops[0].getValueType(),
931                                                      Ops[1]));
932      break;
933    case ISD::SRL_PARTS:
934    case ISD::SRA_PARTS:
935    case ISD::SHL_PARTS:
936      // Legalizing shifts/rotates requires adjusting the shift amount
937      // to the appropriate width.
938      if (!Ops[2].getValueType().isVector())
939        Ops[2] = LegalizeOp(DAG.getShiftAmountOperand(Ops[0].getValueType(),
940                                                      Ops[2]));
941      break;
942    }
943
944    Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), Ops.data(),
945                                            Ops.size()), 0);
946    switch (Action) {
947    case TargetLowering::Legal:
948      for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
949        ResultVals.push_back(Result.getValue(i));
950      break;
951    case TargetLowering::Custom:
952      // FIXME: The handling for custom lowering with multiple results is
953      // a complete mess.
954      Tmp1 = TLI.LowerOperation(Result, DAG);
955      if (Tmp1.getNode()) {
956        for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
957          if (e == 1)
958            ResultVals.push_back(Tmp1);
959          else
960            ResultVals.push_back(Tmp1.getValue(i));
961        }
962        break;
963      }
964
965      // FALL THROUGH
966    case TargetLowering::Expand:
967      ExpandNode(Result.getNode(), ResultVals);
968      break;
969    case TargetLowering::Promote:
970      PromoteNode(Result.getNode(), ResultVals);
971      break;
972    }
973    if (!ResultVals.empty()) {
974      for (unsigned i = 0, e = ResultVals.size(); i != e; ++i) {
975        if (ResultVals[i] != SDValue(Node, i))
976          ResultVals[i] = LegalizeOp(ResultVals[i]);
977        AddLegalizedOperand(SDValue(Node, i), ResultVals[i]);
978      }
979      return ResultVals[Op.getResNo()];
980    }
981  }
982
983  switch (Node->getOpcode()) {
984  default:
985#ifndef NDEBUG
986    dbgs() << "NODE: ";
987    Node->dump( &DAG);
988    dbgs() << "\n";
989#endif
990    assert(0 && "Do not know how to legalize this operator!");
991
992  case ISD::BUILD_VECTOR:
993    switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) {
994    default: assert(0 && "This action is not supported yet!");
995    case TargetLowering::Custom:
996      Tmp3 = TLI.LowerOperation(Result, DAG);
997      if (Tmp3.getNode()) {
998        Result = Tmp3;
999        break;
1000      }
1001      // FALLTHROUGH
1002    case TargetLowering::Expand:
1003      Result = ExpandBUILD_VECTOR(Result.getNode());
1004      break;
1005    }
1006    break;
1007  case ISD::CALLSEQ_START: {
1008    SDNode *CallEnd = FindCallEndFromCallStart(Node);
1009    assert(CallEnd && "didn't find CALLSEQ_END!");
1010
1011    // Recursively Legalize all of the inputs of the call end that do not lead
1012    // to this call start.  This ensures that any libcalls that need be inserted
1013    // are inserted *before* the CALLSEQ_START.
1014    {SmallPtrSet<SDNode*, 32> NodesLeadingTo;
1015    for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i)
1016      LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).getNode(), Node,
1017                                   NodesLeadingTo);
1018    }
1019
1020    // Now that we have legalized all of the inputs (which may have inserted
1021    // libcalls), create the new CALLSEQ_START node.
1022    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1023
1024    // Merge in the last call to ensure that this call starts after the last
1025    // call ended.
1026    if (getLastCALLSEQ().getOpcode() != ISD::EntryToken) {
1027      Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1028                         Tmp1, getLastCALLSEQ());
1029      Tmp1 = LegalizeOp(Tmp1);
1030    }
1031
1032    // Do not try to legalize the target-specific arguments (#1+).
1033    if (Tmp1 != Node->getOperand(0)) {
1034      SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1035      Ops[0] = Tmp1;
1036      Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), &Ops[0],
1037                                              Ops.size()), Result.getResNo());
1038    }
1039
1040    // Remember that the CALLSEQ_START is legalized.
1041    AddLegalizedOperand(Op.getValue(0), Result);
1042    if (Node->getNumValues() == 2)    // If this has a flag result, remember it.
1043      AddLegalizedOperand(Op.getValue(1), Result.getValue(1));
1044
1045    // Now that the callseq_start and all of the non-call nodes above this call
1046    // sequence have been legalized, legalize the call itself.  During this
1047    // process, no libcalls can/will be inserted, guaranteeing that no calls
1048    // can overlap.
1049    // Note that we are selecting this call!
1050    setLastCALLSEQ(SDValue(CallEnd, 0));
1051
1052    // Legalize the call, starting from the CALLSEQ_END.
1053    LegalizeOp(getLastCALLSEQ());
1054    return Result;
1055  }
1056  case ISD::CALLSEQ_END:
1057    {
1058      SDNode *myCALLSEQ_BEGIN = FindCallStartFromCallEnd(Node);
1059
1060      // If the CALLSEQ_START node hasn't been legalized first, legalize it.
1061      // This will cause this node to be legalized as well as handling libcalls
1062      // right.
1063      if (getLastCALLSEQ().getNode() != Node) {
1064        LegalizeOp(SDValue(myCALLSEQ_BEGIN, 0));
1065        DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
1066        assert(I != LegalizedNodes.end() &&
1067               "Legalizing the call start should have legalized this node!");
1068        return I->second;
1069      }
1070
1071      pushLastCALLSEQ(SDValue(myCALLSEQ_BEGIN, 0));
1072    }
1073
1074    // Otherwise, the call start has been legalized and everything is going
1075    // according to plan.  Just legalize ourselves normally here.
1076    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1077    // Do not try to legalize the target-specific arguments (#1+), except for
1078    // an optional flag input.
1079    if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Glue){
1080      if (Tmp1 != Node->getOperand(0)) {
1081        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1082        Ops[0] = Tmp1;
1083        Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1084                                                &Ops[0], Ops.size()),
1085                         Result.getResNo());
1086      }
1087    } else {
1088      Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1));
1089      if (Tmp1 != Node->getOperand(0) ||
1090          Tmp2 != Node->getOperand(Node->getNumOperands()-1)) {
1091        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1092        Ops[0] = Tmp1;
1093        Ops.back() = Tmp2;
1094        Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1095                                                &Ops[0], Ops.size()),
1096                         Result.getResNo());
1097      }
1098    }
1099    // This finishes up call legalization.
1100    popLastCALLSEQ();
1101
1102    // If the CALLSEQ_END node has a flag, remember that we legalized it.
1103    AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0));
1104    if (Node->getNumValues() == 2)
1105      AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1));
1106    return Result.getValue(Op.getResNo());
1107  case ISD::LOAD: {
1108    LoadSDNode *LD = cast<LoadSDNode>(Node);
1109    Tmp1 = LegalizeOp(LD->getChain());   // Legalize the chain.
1110    Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer.
1111
1112    ISD::LoadExtType ExtType = LD->getExtensionType();
1113    if (ExtType == ISD::NON_EXTLOAD) {
1114      EVT VT = Node->getValueType(0);
1115      Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1116                                              Tmp1, Tmp2, LD->getOffset()),
1117                       Result.getResNo());
1118      Tmp3 = Result.getValue(0);
1119      Tmp4 = Result.getValue(1);
1120
1121      switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
1122      default: assert(0 && "This action is not supported yet!");
1123      case TargetLowering::Legal:
1124        // If this is an unaligned load and the target doesn't support it,
1125        // expand it.
1126        if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1127          Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1128          unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1129          if (LD->getAlignment() < ABIAlignment){
1130            Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
1131                                         DAG, TLI);
1132            Tmp3 = Result.getOperand(0);
1133            Tmp4 = Result.getOperand(1);
1134            Tmp3 = LegalizeOp(Tmp3);
1135            Tmp4 = LegalizeOp(Tmp4);
1136          }
1137        }
1138        break;
1139      case TargetLowering::Custom:
1140        Tmp1 = TLI.LowerOperation(Tmp3, DAG);
1141        if (Tmp1.getNode()) {
1142          Tmp3 = LegalizeOp(Tmp1);
1143          Tmp4 = LegalizeOp(Tmp1.getValue(1));
1144        }
1145        break;
1146      case TargetLowering::Promote: {
1147        // Only promote a load of vector type to another.
1148        assert(VT.isVector() && "Cannot promote this load!");
1149        // Change base type to a different vector type.
1150        EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
1151
1152        Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getPointerInfo(),
1153                           LD->isVolatile(), LD->isNonTemporal(),
1154                           LD->getAlignment());
1155        Tmp3 = LegalizeOp(DAG.getNode(ISD::BITCAST, dl, VT, Tmp1));
1156        Tmp4 = LegalizeOp(Tmp1.getValue(1));
1157        break;
1158      }
1159      }
1160      // Since loads produce two values, make sure to remember that we
1161      // legalized both of them.
1162      AddLegalizedOperand(SDValue(Node, 0), Tmp3);
1163      AddLegalizedOperand(SDValue(Node, 1), Tmp4);
1164      return Op.getResNo() ? Tmp4 : Tmp3;
1165    }
1166
1167    EVT SrcVT = LD->getMemoryVT();
1168    unsigned SrcWidth = SrcVT.getSizeInBits();
1169    unsigned Alignment = LD->getAlignment();
1170    bool isVolatile = LD->isVolatile();
1171    bool isNonTemporal = LD->isNonTemporal();
1172
1173    if (SrcWidth != SrcVT.getStoreSizeInBits() &&
1174        // Some targets pretend to have an i1 loading operation, and actually
1175        // load an i8.  This trick is correct for ZEXTLOAD because the top 7
1176        // bits are guaranteed to be zero; it helps the optimizers understand
1177        // that these bits are zero.  It is also useful for EXTLOAD, since it
1178        // tells the optimizers that those bits are undefined.  It would be
1179        // nice to have an effective generic way of getting these benefits...
1180        // Until such a way is found, don't insist on promoting i1 here.
1181        (SrcVT != MVT::i1 ||
1182         TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
1183      // Promote to a byte-sized load if not loading an integral number of
1184      // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
1185      unsigned NewWidth = SrcVT.getStoreSizeInBits();
1186      EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
1187      SDValue Ch;
1188
1189      // The extra bits are guaranteed to be zero, since we stored them that
1190      // way.  A zext load from NVT thus automatically gives zext from SrcVT.
1191
1192      ISD::LoadExtType NewExtType =
1193        ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
1194
1195      Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
1196                              Tmp1, Tmp2, LD->getPointerInfo(),
1197                              NVT, isVolatile, isNonTemporal, Alignment);
1198
1199      Ch = Result.getValue(1); // The chain.
1200
1201      if (ExtType == ISD::SEXTLOAD)
1202        // Having the top bits zero doesn't help when sign extending.
1203        Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1204                             Result.getValueType(),
1205                             Result, DAG.getValueType(SrcVT));
1206      else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
1207        // All the top bits are guaranteed to be zero - inform the optimizers.
1208        Result = DAG.getNode(ISD::AssertZext, dl,
1209                             Result.getValueType(), Result,
1210                             DAG.getValueType(SrcVT));
1211
1212      Tmp1 = LegalizeOp(Result);
1213      Tmp2 = LegalizeOp(Ch);
1214    } else if (SrcWidth & (SrcWidth - 1)) {
1215      // If not loading a power-of-2 number of bits, expand as two loads.
1216      assert(!SrcVT.isVector() && "Unsupported extload!");
1217      unsigned RoundWidth = 1 << Log2_32(SrcWidth);
1218      assert(RoundWidth < SrcWidth);
1219      unsigned ExtraWidth = SrcWidth - RoundWidth;
1220      assert(ExtraWidth < RoundWidth);
1221      assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1222             "Load size not an integral number of bytes!");
1223      EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1224      EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1225      SDValue Lo, Hi, Ch;
1226      unsigned IncrementSize;
1227
1228      if (TLI.isLittleEndian()) {
1229        // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
1230        // Load the bottom RoundWidth bits.
1231        Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0),
1232                            Tmp1, Tmp2,
1233                            LD->getPointerInfo(), RoundVT, isVolatile,
1234                            isNonTemporal, Alignment);
1235
1236        // Load the remaining ExtraWidth bits.
1237        IncrementSize = RoundWidth / 8;
1238        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1239                           DAG.getIntPtrConstant(IncrementSize));
1240        Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1241                            LD->getPointerInfo().getWithOffset(IncrementSize),
1242                            ExtraVT, isVolatile, isNonTemporal,
1243                            MinAlign(Alignment, IncrementSize));
1244
1245        // Build a factor node to remember that this load is independent of
1246        // the other one.
1247        Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1248                         Hi.getValue(1));
1249
1250        // Move the top bits to the right place.
1251        Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1252                         DAG.getConstant(RoundWidth,
1253                                      TLI.getShiftAmountTy(Hi.getValueType())));
1254
1255        // Join the hi and lo parts.
1256        Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1257      } else {
1258        // Big endian - avoid unaligned loads.
1259        // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
1260        // Load the top RoundWidth bits.
1261        Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1262                            LD->getPointerInfo(), RoundVT, isVolatile,
1263                            isNonTemporal, Alignment);
1264
1265        // Load the remaining ExtraWidth bits.
1266        IncrementSize = RoundWidth / 8;
1267        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1268                           DAG.getIntPtrConstant(IncrementSize));
1269        Lo = DAG.getExtLoad(ISD::ZEXTLOAD,
1270                            dl, Node->getValueType(0), Tmp1, Tmp2,
1271                            LD->getPointerInfo().getWithOffset(IncrementSize),
1272                            ExtraVT, isVolatile, isNonTemporal,
1273                            MinAlign(Alignment, IncrementSize));
1274
1275        // Build a factor node to remember that this load is independent of
1276        // the other one.
1277        Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1278                         Hi.getValue(1));
1279
1280        // Move the top bits to the right place.
1281        Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1282                         DAG.getConstant(ExtraWidth,
1283                                      TLI.getShiftAmountTy(Hi.getValueType())));
1284
1285        // Join the hi and lo parts.
1286        Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1287      }
1288
1289      Tmp1 = LegalizeOp(Result);
1290      Tmp2 = LegalizeOp(Ch);
1291    } else {
1292      switch (TLI.getLoadExtAction(ExtType, SrcVT)) {
1293      default: assert(0 && "This action is not supported yet!");
1294      case TargetLowering::Custom:
1295        isCustom = true;
1296        // FALLTHROUGH
1297      case TargetLowering::Legal:
1298        Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1299                                                Tmp1, Tmp2, LD->getOffset()),
1300                         Result.getResNo());
1301        Tmp1 = Result.getValue(0);
1302        Tmp2 = Result.getValue(1);
1303
1304        if (isCustom) {
1305          Tmp3 = TLI.LowerOperation(Result, DAG);
1306          if (Tmp3.getNode()) {
1307            Tmp1 = LegalizeOp(Tmp3);
1308            Tmp2 = LegalizeOp(Tmp3.getValue(1));
1309          }
1310        } else {
1311          // If this is an unaligned load and the target doesn't support it,
1312          // expand it.
1313          if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1314            Type *Ty =
1315              LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1316            unsigned ABIAlignment =
1317              TLI.getTargetData()->getABITypeAlignment(Ty);
1318            if (LD->getAlignment() < ABIAlignment){
1319              Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
1320                                           DAG, TLI);
1321              Tmp1 = Result.getOperand(0);
1322              Tmp2 = Result.getOperand(1);
1323              Tmp1 = LegalizeOp(Tmp1);
1324              Tmp2 = LegalizeOp(Tmp2);
1325            }
1326          }
1327        }
1328        break;
1329      case TargetLowering::Expand:
1330        if (!TLI.isLoadExtLegal(ISD::EXTLOAD, SrcVT) && TLI.isTypeLegal(SrcVT)) {
1331          SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2,
1332                                     LD->getPointerInfo(),
1333                                     LD->isVolatile(), LD->isNonTemporal(),
1334                                     LD->getAlignment());
1335          unsigned ExtendOp;
1336          switch (ExtType) {
1337          case ISD::EXTLOAD:
1338            ExtendOp = (SrcVT.isFloatingPoint() ?
1339                        ISD::FP_EXTEND : ISD::ANY_EXTEND);
1340            break;
1341          case ISD::SEXTLOAD: ExtendOp = ISD::SIGN_EXTEND; break;
1342          case ISD::ZEXTLOAD: ExtendOp = ISD::ZERO_EXTEND; break;
1343          default: llvm_unreachable("Unexpected extend load type!");
1344          }
1345          Result = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load);
1346          Tmp1 = LegalizeOp(Result);  // Relegalize new nodes.
1347          Tmp2 = LegalizeOp(Load.getValue(1));
1348          break;
1349        }
1350
1351        // If this is a promoted vector load, and the vector element types are
1352        // legal, then scalarize it.
1353        if (ExtType == ISD::EXTLOAD && SrcVT.isVector() &&
1354          TLI.isTypeLegal(Node->getValueType(0).getScalarType())) {
1355          SmallVector<SDValue, 8> LoadVals;
1356          SmallVector<SDValue, 8> LoadChains;
1357          unsigned NumElem = SrcVT.getVectorNumElements();
1358          unsigned Stride = SrcVT.getScalarType().getSizeInBits()/8;
1359
1360          for (unsigned Idx=0; Idx<NumElem; Idx++) {
1361            Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1362                                DAG.getIntPtrConstant(Stride));
1363            SDValue ScalarLoad = DAG.getExtLoad(ISD::EXTLOAD, dl,
1364                  Node->getValueType(0).getScalarType(),
1365                  Tmp1, Tmp2, LD->getPointerInfo().getWithOffset(Idx * Stride),
1366                  SrcVT.getScalarType(),
1367                  LD->isVolatile(), LD->isNonTemporal(),
1368                  LD->getAlignment());
1369
1370            LoadVals.push_back(ScalarLoad.getValue(0));
1371            LoadChains.push_back(ScalarLoad.getValue(1));
1372          }
1373          Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1374            &LoadChains[0], LoadChains.size());
1375          SDValue ValRes = DAG.getNode(ISD::BUILD_VECTOR, dl,
1376            Node->getValueType(0), &LoadVals[0], LoadVals.size());
1377
1378          Tmp1 = LegalizeOp(ValRes);  // Relegalize new nodes.
1379          Tmp2 = LegalizeOp(Result.getValue(0));  // Relegalize new nodes.
1380          break;
1381        }
1382
1383        // If this is a promoted vector load, and the vector element types are
1384        // illegal, create the promoted vector from bitcasted segments.
1385        if (ExtType == ISD::EXTLOAD && SrcVT.isVector()) {
1386          EVT MemElemTy = Node->getValueType(0).getScalarType();
1387          EVT SrcSclrTy = SrcVT.getScalarType();
1388          unsigned SizeRatio =
1389            (MemElemTy.getSizeInBits() / SrcSclrTy.getSizeInBits());
1390
1391          SmallVector<SDValue, 8> LoadVals;
1392          SmallVector<SDValue, 8> LoadChains;
1393          unsigned NumElem = SrcVT.getVectorNumElements();
1394          unsigned Stride = SrcVT.getScalarType().getSizeInBits()/8;
1395
1396          for (unsigned Idx=0; Idx<NumElem; Idx++) {
1397            Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1398                                DAG.getIntPtrConstant(Stride));
1399            SDValue ScalarLoad = DAG.getExtLoad(ISD::EXTLOAD, dl,
1400                  SrcVT.getScalarType(),
1401                  Tmp1, Tmp2, LD->getPointerInfo().getWithOffset(Idx * Stride),
1402                  SrcVT.getScalarType(),
1403                  LD->isVolatile(), LD->isNonTemporal(),
1404                  LD->getAlignment());
1405            if (TLI.isBigEndian()) {
1406              // MSB (which is garbage, comes first)
1407              LoadVals.push_back(ScalarLoad.getValue(0));
1408              for (unsigned i = 0; i<SizeRatio-1; ++i)
1409                LoadVals.push_back(DAG.getUNDEF(SrcVT.getScalarType()));
1410            } else {
1411              // LSB (which is data, comes first)
1412              for (unsigned i = 0; i<SizeRatio-1; ++i)
1413                LoadVals.push_back(DAG.getUNDEF(SrcVT.getScalarType()));
1414              LoadVals.push_back(ScalarLoad.getValue(0));
1415            }
1416            LoadChains.push_back(ScalarLoad.getValue(1));
1417          }
1418
1419          Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1420            &LoadChains[0], LoadChains.size());
1421          EVT TempWideVector = EVT::getVectorVT(*DAG.getContext(),
1422            SrcVT.getScalarType(), NumElem*SizeRatio);
1423          SDValue ValRes = DAG.getNode(ISD::BUILD_VECTOR, dl,
1424            TempWideVector, &LoadVals[0], LoadVals.size());
1425
1426          // Cast to the correct type
1427          ValRes = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), ValRes);
1428
1429          Tmp1 = LegalizeOp(ValRes);  // Relegalize new nodes.
1430          Tmp2 = LegalizeOp(Result.getValue(0));  // Relegalize new nodes.
1431          break;
1432
1433        }
1434
1435        // FIXME: This does not work for vectors on most targets.  Sign- and
1436        // zero-extend operations are currently folded into extending loads,
1437        // whether they are legal or not, and then we end up here without any
1438        // support for legalizing them.
1439        assert(ExtType != ISD::EXTLOAD &&
1440               "EXTLOAD should always be supported!");
1441        // Turn the unsupported load into an EXTLOAD followed by an explicit
1442        // zero/sign extend inreg.
1443        Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0),
1444                                Tmp1, Tmp2, LD->getPointerInfo(), SrcVT,
1445                                LD->isVolatile(), LD->isNonTemporal(),
1446                                LD->getAlignment());
1447        SDValue ValRes;
1448        if (ExtType == ISD::SEXTLOAD)
1449          ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1450                               Result.getValueType(),
1451                               Result, DAG.getValueType(SrcVT));
1452        else
1453          ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType());
1454        Tmp1 = LegalizeOp(ValRes);  // Relegalize new nodes.
1455        Tmp2 = LegalizeOp(Result.getValue(1));  // Relegalize new nodes.
1456        break;
1457      }
1458    }
1459
1460    // Since loads produce two values, make sure to remember that we legalized
1461    // both of them.
1462    AddLegalizedOperand(SDValue(Node, 0), Tmp1);
1463    AddLegalizedOperand(SDValue(Node, 1), Tmp2);
1464    return Op.getResNo() ? Tmp2 : Tmp1;
1465  }
1466  case ISD::STORE: {
1467    StoreSDNode *ST = cast<StoreSDNode>(Node);
1468    Tmp1 = LegalizeOp(ST->getChain());    // Legalize the chain.
1469    Tmp2 = LegalizeOp(ST->getBasePtr());  // Legalize the pointer.
1470    unsigned Alignment = ST->getAlignment();
1471    bool isVolatile = ST->isVolatile();
1472    bool isNonTemporal = ST->isNonTemporal();
1473
1474    if (!ST->isTruncatingStore()) {
1475      if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
1476        Result = SDValue(OptStore, 0);
1477        break;
1478      }
1479
1480      {
1481        Tmp3 = LegalizeOp(ST->getValue());
1482        Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1483                                                Tmp1, Tmp3, Tmp2,
1484                                                ST->getOffset()),
1485                         Result.getResNo());
1486
1487        EVT VT = Tmp3.getValueType();
1488        switch (TLI.getOperationAction(ISD::STORE, VT)) {
1489        default: assert(0 && "This action is not supported yet!");
1490        case TargetLowering::Legal:
1491          // If this is an unaligned store and the target doesn't support it,
1492          // expand it.
1493          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1494            Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1495            unsigned ABIAlignment= TLI.getTargetData()->getABITypeAlignment(Ty);
1496            if (ST->getAlignment() < ABIAlignment)
1497              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()),
1498                                            DAG, TLI);
1499          }
1500          break;
1501        case TargetLowering::Custom:
1502          Tmp1 = TLI.LowerOperation(Result, DAG);
1503          if (Tmp1.getNode()) Result = Tmp1;
1504          break;
1505        case TargetLowering::Promote:
1506          assert(VT.isVector() && "Unknown legal promote case!");
1507          Tmp3 = DAG.getNode(ISD::BITCAST, dl,
1508                             TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3);
1509          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2,
1510                                ST->getPointerInfo(), isVolatile,
1511                                isNonTemporal, Alignment);
1512          break;
1513        }
1514        break;
1515      }
1516    } else {
1517      Tmp3 = LegalizeOp(ST->getValue());
1518
1519      EVT StVT = ST->getMemoryVT();
1520      unsigned StWidth = StVT.getSizeInBits();
1521
1522      if (StWidth != StVT.getStoreSizeInBits()) {
1523        // Promote to a byte-sized store with upper bits zero if not
1524        // storing an integral number of bytes.  For example, promote
1525        // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
1526        EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
1527                                    StVT.getStoreSizeInBits());
1528        Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT);
1529        Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
1530                                   NVT, isVolatile, isNonTemporal, Alignment);
1531      } else if (StWidth & (StWidth - 1)) {
1532        // If not storing a power-of-2 number of bits, expand as two stores.
1533        assert(!StVT.isVector() && "Unsupported truncstore!");
1534        unsigned RoundWidth = 1 << Log2_32(StWidth);
1535        assert(RoundWidth < StWidth);
1536        unsigned ExtraWidth = StWidth - RoundWidth;
1537        assert(ExtraWidth < RoundWidth);
1538        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1539               "Store size not an integral number of bytes!");
1540        EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1541        EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1542        SDValue Lo, Hi;
1543        unsigned IncrementSize;
1544
1545        if (TLI.isLittleEndian()) {
1546          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
1547          // Store the bottom RoundWidth bits.
1548          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
1549                                 RoundVT,
1550                                 isVolatile, isNonTemporal, Alignment);
1551
1552          // Store the remaining ExtraWidth bits.
1553          IncrementSize = RoundWidth / 8;
1554          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1555                             DAG.getIntPtrConstant(IncrementSize));
1556          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1557                           DAG.getConstant(RoundWidth,
1558                                    TLI.getShiftAmountTy(Tmp3.getValueType())));
1559          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2,
1560                             ST->getPointerInfo().getWithOffset(IncrementSize),
1561                                 ExtraVT, isVolatile, isNonTemporal,
1562                                 MinAlign(Alignment, IncrementSize));
1563        } else {
1564          // Big endian - avoid unaligned stores.
1565          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
1566          // Store the top RoundWidth bits.
1567          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1568                           DAG.getConstant(ExtraWidth,
1569                                    TLI.getShiftAmountTy(Tmp3.getValueType())));
1570          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getPointerInfo(),
1571                                 RoundVT, isVolatile, isNonTemporal, Alignment);
1572
1573          // Store the remaining ExtraWidth bits.
1574          IncrementSize = RoundWidth / 8;
1575          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1576                             DAG.getIntPtrConstant(IncrementSize));
1577          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2,
1578                              ST->getPointerInfo().getWithOffset(IncrementSize),
1579                                 ExtraVT, isVolatile, isNonTemporal,
1580                                 MinAlign(Alignment, IncrementSize));
1581        }
1582
1583        // The order of the stores doesn't matter.
1584        Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
1585      } else {
1586        if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() ||
1587            Tmp2 != ST->getBasePtr())
1588          Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1589                                                  Tmp1, Tmp3, Tmp2,
1590                                                  ST->getOffset()),
1591                           Result.getResNo());
1592
1593        switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
1594        default: assert(0 && "This action is not supported yet!");
1595        case TargetLowering::Legal:
1596          // If this is an unaligned store and the target doesn't support it,
1597          // expand it.
1598          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1599            Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1600            unsigned ABIAlignment= TLI.getTargetData()->getABITypeAlignment(Ty);
1601            if (ST->getAlignment() < ABIAlignment)
1602              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()),
1603                                            DAG, TLI);
1604          }
1605          break;
1606        case TargetLowering::Custom:
1607          Result = TLI.LowerOperation(Result, DAG);
1608          break;
1609        case TargetLowering::Expand:
1610
1611          EVT WideScalarVT = Tmp3.getValueType().getScalarType();
1612          EVT NarrowScalarVT = StVT.getScalarType();
1613
1614          // The Store type is illegal, must scalarize the vector store.
1615          SmallVector<SDValue, 8> Stores;
1616          bool ScalarLegal = TLI.isTypeLegal(WideScalarVT);
1617          if (!TLI.isTypeLegal(StVT) && StVT.isVector() && ScalarLegal) {
1618            unsigned NumElem = StVT.getVectorNumElements();
1619
1620            unsigned ScalarSize = StVT.getScalarType().getSizeInBits();
1621            // Round odd types to the next pow of two.
1622            if (!isPowerOf2_32(ScalarSize))
1623              ScalarSize = NextPowerOf2(ScalarSize);
1624            // Types smaller than 8 bits are promoted to 8 bits.
1625            ScalarSize = std::max<unsigned>(ScalarSize, 8);
1626            // Store stride
1627            unsigned Stride = ScalarSize/8;
1628            assert(isPowerOf2_32(Stride) && "Stride must be a power of two");
1629
1630            for (unsigned Idx=0; Idx<NumElem; Idx++) {
1631              SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
1632                                       WideScalarVT, Tmp3, DAG.getIntPtrConstant(Idx));
1633
1634
1635              EVT NVT = EVT::getIntegerVT(*DAG.getContext(), ScalarSize);
1636
1637              Ex = DAG.getNode(ISD::TRUNCATE, dl, NVT, Ex);
1638              Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1639                                 DAG.getIntPtrConstant(Stride));
1640              SDValue Store = DAG.getStore(Tmp1, dl, Ex, Tmp2,
1641                                           ST->getPointerInfo().getWithOffset(Idx*Stride),
1642                                           isVolatile, isNonTemporal, Alignment);
1643              Stores.push_back(Store);
1644            }
1645            Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1646                                 &Stores[0], Stores.size());
1647            break;
1648          }
1649
1650          // The Store type is illegal, must scalarize the vector store.
1651          // However, the scalar type is illegal. Must bitcast the result
1652          // and store it in smaller parts.
1653          if (!TLI.isTypeLegal(StVT) && StVT.isVector()) {
1654            unsigned WideNumElem = StVT.getVectorNumElements();
1655            unsigned Stride = NarrowScalarVT.getSizeInBits()/8;
1656
1657            unsigned SizeRatio =
1658              (WideScalarVT.getSizeInBits() / NarrowScalarVT.getSizeInBits());
1659
1660            EVT CastValueVT = EVT::getVectorVT(*DAG.getContext(), NarrowScalarVT,
1661                                               SizeRatio*WideNumElem);
1662
1663            // Cast the wide elem vector to wider vec with smaller elem type.
1664            // Example <2 x i64> -> <4 x i32>
1665            Tmp3 = DAG.getNode(ISD::BITCAST, dl, CastValueVT, Tmp3);
1666
1667            for (unsigned Idx=0; Idx<WideNumElem*SizeRatio; Idx++) {
1668              // Extract elment i
1669              SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
1670                                       NarrowScalarVT, Tmp3, DAG.getIntPtrConstant(Idx));
1671              // bump pointer.
1672              Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1673                                 DAG.getIntPtrConstant(Stride));
1674
1675              // Store if, this element is:
1676              //  - First element on big endian, or
1677              //  - Last element on little endian
1678              if (( TLI.isBigEndian() && (Idx%SizeRatio == 0)) ||
1679                  ((!TLI.isBigEndian() && (Idx%SizeRatio == SizeRatio-1)))) {
1680                SDValue Store = DAG.getStore(Tmp1, dl, Ex, Tmp2,
1681                                             ST->getPointerInfo().getWithOffset(Idx*Stride),
1682                                             isVolatile, isNonTemporal, Alignment);
1683                Stores.push_back(Store);
1684              }
1685            }
1686            Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1687                                 &Stores[0], Stores.size());
1688            break;
1689          }
1690
1691
1692          // TRUNCSTORE:i16 i32 -> STORE i16
1693          assert(TLI.isTypeLegal(StVT) && "Do not know how to expand this store!");
1694          Tmp3 = DAG.getNode(ISD::TRUNCATE, dl, StVT, Tmp3);
1695          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
1696                                isVolatile, isNonTemporal, Alignment);
1697          break;
1698        }
1699      }
1700    }
1701    break;
1702  }
1703  }
1704  assert(Result.getValueType() == Op.getValueType() &&
1705         "Bad legalization!");
1706
1707  // Make sure that the generated code is itself legal.
1708  if (Result != Op)
1709    Result = LegalizeOp(Result);
1710
1711  // Note that LegalizeOp may be reentered even from single-use nodes, which
1712  // means that we always must cache transformed nodes.
1713  AddLegalizedOperand(Op, Result);
1714  return Result;
1715}
1716
1717SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1718  SDValue Vec = Op.getOperand(0);
1719  SDValue Idx = Op.getOperand(1);
1720  DebugLoc dl = Op.getDebugLoc();
1721  // Store the value to a temporary stack slot, then LOAD the returned part.
1722  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1723  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
1724                            MachinePointerInfo(), false, false, 0);
1725
1726  // Add the offset to the index.
1727  unsigned EltSize =
1728      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1729  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1730                    DAG.getConstant(EltSize, Idx.getValueType()));
1731
1732  if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1733    Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1734  else
1735    Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1736
1737  StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
1738
1739  if (Op.getValueType().isVector())
1740    return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr,MachinePointerInfo(),
1741                       false, false, 0);
1742  return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
1743                        MachinePointerInfo(),
1744                        Vec.getValueType().getVectorElementType(),
1745                        false, false, 0);
1746}
1747
1748SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) {
1749  assert(Op.getValueType().isVector() && "Non-vector insert subvector!");
1750
1751  SDValue Vec  = Op.getOperand(0);
1752  SDValue Part = Op.getOperand(1);
1753  SDValue Idx  = Op.getOperand(2);
1754  DebugLoc dl  = Op.getDebugLoc();
1755
1756  // Store the value to a temporary stack slot, then LOAD the returned part.
1757
1758  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1759  int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1760  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI);
1761
1762  // First store the whole vector.
1763  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo,
1764                            false, false, 0);
1765
1766  // Then store the inserted part.
1767
1768  // Add the offset to the index.
1769  unsigned EltSize =
1770      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1771
1772  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1773                    DAG.getConstant(EltSize, Idx.getValueType()));
1774
1775  if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1776    Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1777  else
1778    Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1779
1780  SDValue SubStackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx,
1781                                    StackPtr);
1782
1783  // Store the subvector.
1784  Ch = DAG.getStore(DAG.getEntryNode(), dl, Part, SubStackPtr,
1785                    MachinePointerInfo(), false, false, 0);
1786
1787  // Finally, load the updated vector.
1788  return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo,
1789                     false, false, 0);
1790}
1791
1792SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1793  // We can't handle this case efficiently.  Allocate a sufficiently
1794  // aligned object on the stack, store each element into it, then load
1795  // the result as a vector.
1796  // Create the stack frame object.
1797  EVT VT = Node->getValueType(0);
1798  EVT EltVT = VT.getVectorElementType();
1799  DebugLoc dl = Node->getDebugLoc();
1800  SDValue FIPtr = DAG.CreateStackTemporary(VT);
1801  int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1802  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI);
1803
1804  // Emit a store of each element to the stack slot.
1805  SmallVector<SDValue, 8> Stores;
1806  unsigned TypeByteSize = EltVT.getSizeInBits() / 8;
1807  // Store (in the right endianness) the elements to memory.
1808  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1809    // Ignore undef elements.
1810    if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1811
1812    unsigned Offset = TypeByteSize*i;
1813
1814    SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType());
1815    Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
1816
1817    // If the destination vector element type is narrower than the source
1818    // element type, only store the bits necessary.
1819    if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) {
1820      Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
1821                                         Node->getOperand(i), Idx,
1822                                         PtrInfo.getWithOffset(Offset),
1823                                         EltVT, false, false, 0));
1824    } else
1825      Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl,
1826                                    Node->getOperand(i), Idx,
1827                                    PtrInfo.getWithOffset(Offset),
1828                                    false, false, 0));
1829  }
1830
1831  SDValue StoreChain;
1832  if (!Stores.empty())    // Not all undef elements?
1833    StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1834                             &Stores[0], Stores.size());
1835  else
1836    StoreChain = DAG.getEntryNode();
1837
1838  // Result is a load from the stack slot.
1839  return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo, false, false, 0);
1840}
1841
1842SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) {
1843  DebugLoc dl = Node->getDebugLoc();
1844  SDValue Tmp1 = Node->getOperand(0);
1845  SDValue Tmp2 = Node->getOperand(1);
1846
1847  // Get the sign bit of the RHS.  First obtain a value that has the same
1848  // sign as the sign bit, i.e. negative if and only if the sign bit is 1.
1849  SDValue SignBit;
1850  EVT FloatVT = Tmp2.getValueType();
1851  EVT IVT = EVT::getIntegerVT(*DAG.getContext(), FloatVT.getSizeInBits());
1852  if (TLI.isTypeLegal(IVT)) {
1853    // Convert to an integer with the same sign bit.
1854    SignBit = DAG.getNode(ISD::BITCAST, dl, IVT, Tmp2);
1855  } else {
1856    // Store the float to memory, then load the sign part out as an integer.
1857    MVT LoadTy = TLI.getPointerTy();
1858    // First create a temporary that is aligned for both the load and store.
1859    SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
1860    // Then store the float to it.
1861    SDValue Ch =
1862      DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StackPtr, MachinePointerInfo(),
1863                   false, false, 0);
1864    if (TLI.isBigEndian()) {
1865      assert(FloatVT.isByteSized() && "Unsupported floating point type!");
1866      // Load out a legal integer with the same sign bit as the float.
1867      SignBit = DAG.getLoad(LoadTy, dl, Ch, StackPtr, MachinePointerInfo(),
1868                            false, false, 0);
1869    } else { // Little endian
1870      SDValue LoadPtr = StackPtr;
1871      // The float may be wider than the integer we are going to load.  Advance
1872      // the pointer so that the loaded integer will contain the sign bit.
1873      unsigned Strides = (FloatVT.getSizeInBits()-1)/LoadTy.getSizeInBits();
1874      unsigned ByteOffset = (Strides * LoadTy.getSizeInBits()) / 8;
1875      LoadPtr = DAG.getNode(ISD::ADD, dl, LoadPtr.getValueType(),
1876                            LoadPtr, DAG.getIntPtrConstant(ByteOffset));
1877      // Load a legal integer containing the sign bit.
1878      SignBit = DAG.getLoad(LoadTy, dl, Ch, LoadPtr, MachinePointerInfo(),
1879                            false, false, 0);
1880      // Move the sign bit to the top bit of the loaded integer.
1881      unsigned BitShift = LoadTy.getSizeInBits() -
1882        (FloatVT.getSizeInBits() - 8 * ByteOffset);
1883      assert(BitShift < LoadTy.getSizeInBits() && "Pointer advanced wrong?");
1884      if (BitShift)
1885        SignBit = DAG.getNode(ISD::SHL, dl, LoadTy, SignBit,
1886                              DAG.getConstant(BitShift,
1887                                 TLI.getShiftAmountTy(SignBit.getValueType())));
1888    }
1889  }
1890  // Now get the sign bit proper, by seeing whether the value is negative.
1891  SignBit = DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()),
1892                         SignBit, DAG.getConstant(0, SignBit.getValueType()),
1893                         ISD::SETLT);
1894  // Get the absolute value of the result.
1895  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1);
1896  // Select between the nabs and abs value based on the sign bit of
1897  // the input.
1898  return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit,
1899                     DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal),
1900                     AbsVal);
1901}
1902
1903void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1904                                           SmallVectorImpl<SDValue> &Results) {
1905  unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1906  assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1907          " not tell us which reg is the stack pointer!");
1908  DebugLoc dl = Node->getDebugLoc();
1909  EVT VT = Node->getValueType(0);
1910  SDValue Tmp1 = SDValue(Node, 0);
1911  SDValue Tmp2 = SDValue(Node, 1);
1912  SDValue Tmp3 = Node->getOperand(2);
1913  SDValue Chain = Tmp1.getOperand(0);
1914
1915  // Chain the dynamic stack allocation so that it doesn't modify the stack
1916  // pointer when other instructions are using the stack.
1917  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
1918
1919  SDValue Size  = Tmp2.getOperand(1);
1920  SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1921  Chain = SP.getValue(1);
1922  unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1923  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
1924  if (Align > StackAlign)
1925    SP = DAG.getNode(ISD::AND, dl, VT, SP,
1926                      DAG.getConstant(-(uint64_t)Align, VT));
1927  Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size);       // Value
1928  Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain
1929
1930  Tmp2 = DAG.getCALLSEQ_END(Chain,  DAG.getIntPtrConstant(0, true),
1931                            DAG.getIntPtrConstant(0, true), SDValue());
1932
1933  Results.push_back(Tmp1);
1934  Results.push_back(Tmp2);
1935}
1936
1937/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
1938/// condition code CC on the current target. This routine expands SETCC with
1939/// illegal condition code into AND / OR of multiple SETCC values.
1940void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT,
1941                                                 SDValue &LHS, SDValue &RHS,
1942                                                 SDValue &CC,
1943                                                 DebugLoc dl) {
1944  EVT OpVT = LHS.getValueType();
1945  ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1946  switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1947  default: assert(0 && "Unknown condition code action!");
1948  case TargetLowering::Legal:
1949    // Nothing to do.
1950    break;
1951  case TargetLowering::Expand: {
1952    ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1953    unsigned Opc = 0;
1954    switch (CCCode) {
1955    default: assert(0 && "Don't know how to expand this condition!");
1956    case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1957    case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1958    case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1959    case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1960    case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1961    case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1962    case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1963    case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1964    case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1965    case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1966    case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1967    case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1968    // FIXME: Implement more expansions.
1969    }
1970
1971    SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1972    SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
1973    LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1974    RHS = SDValue();
1975    CC  = SDValue();
1976    break;
1977  }
1978  }
1979}
1980
1981/// EmitStackConvert - Emit a store/load combination to the stack.  This stores
1982/// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
1983/// a load from the stack slot to DestVT, extending it if needed.
1984/// The resultant code need not be legal.
1985SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
1986                                               EVT SlotVT,
1987                                               EVT DestVT,
1988                                               DebugLoc dl) {
1989  // Create the stack frame object.
1990  unsigned SrcAlign =
1991    TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType().
1992                                              getTypeForEVT(*DAG.getContext()));
1993  SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1994
1995  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1996  int SPFI = StackPtrFI->getIndex();
1997  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(SPFI);
1998
1999  unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
2000  unsigned SlotSize = SlotVT.getSizeInBits();
2001  unsigned DestSize = DestVT.getSizeInBits();
2002  Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
2003  unsigned DestAlign = TLI.getTargetData()->getPrefTypeAlignment(DestType);
2004
2005  // Emit a store to the stack slot.  Use a truncstore if the input value is
2006  // later than DestVT.
2007  SDValue Store;
2008
2009  if (SrcSize > SlotSize)
2010    Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
2011                              PtrInfo, SlotVT, false, false, SrcAlign);
2012  else {
2013    assert(SrcSize == SlotSize && "Invalid store");
2014    Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
2015                         PtrInfo, false, false, SrcAlign);
2016  }
2017
2018  // Result is a load from the stack slot.
2019  if (SlotSize == DestSize)
2020    return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo,
2021                       false, false, DestAlign);
2022
2023  assert(SlotSize < DestSize && "Unknown extension!");
2024  return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr,
2025                        PtrInfo, SlotVT, false, false, DestAlign);
2026}
2027
2028SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
2029  DebugLoc dl = Node->getDebugLoc();
2030  // Create a vector sized/aligned stack slot, store the value to element #0,
2031  // then load the whole vector back out.
2032  SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
2033
2034  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
2035  int SPFI = StackPtrFI->getIndex();
2036
2037  SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0),
2038                                 StackPtr,
2039                                 MachinePointerInfo::getFixedStack(SPFI),
2040                                 Node->getValueType(0).getVectorElementType(),
2041                                 false, false, 0);
2042  return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr,
2043                     MachinePointerInfo::getFixedStack(SPFI),
2044                     false, false, 0);
2045}
2046
2047
2048/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
2049/// support the operation, but do support the resultant vector type.
2050SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
2051  unsigned NumElems = Node->getNumOperands();
2052  SDValue Value1, Value2;
2053  DebugLoc dl = Node->getDebugLoc();
2054  EVT VT = Node->getValueType(0);
2055  EVT OpVT = Node->getOperand(0).getValueType();
2056  EVT EltVT = VT.getVectorElementType();
2057
2058  // If the only non-undef value is the low element, turn this into a
2059  // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
2060  bool isOnlyLowElement = true;
2061  bool MoreThanTwoValues = false;
2062  bool isConstant = true;
2063  for (unsigned i = 0; i < NumElems; ++i) {
2064    SDValue V = Node->getOperand(i);
2065    if (V.getOpcode() == ISD::UNDEF)
2066      continue;
2067    if (i > 0)
2068      isOnlyLowElement = false;
2069    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
2070      isConstant = false;
2071
2072    if (!Value1.getNode()) {
2073      Value1 = V;
2074    } else if (!Value2.getNode()) {
2075      if (V != Value1)
2076        Value2 = V;
2077    } else if (V != Value1 && V != Value2) {
2078      MoreThanTwoValues = true;
2079    }
2080  }
2081
2082  if (!Value1.getNode())
2083    return DAG.getUNDEF(VT);
2084
2085  if (isOnlyLowElement)
2086    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
2087
2088  // If all elements are constants, create a load from the constant pool.
2089  if (isConstant) {
2090    std::vector<Constant*> CV;
2091    for (unsigned i = 0, e = NumElems; i != e; ++i) {
2092      if (ConstantFPSDNode *V =
2093          dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
2094        CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
2095      } else if (ConstantSDNode *V =
2096                 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
2097        if (OpVT==EltVT)
2098          CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
2099        else {
2100          // If OpVT and EltVT don't match, EltVT is not legal and the
2101          // element values have been promoted/truncated earlier.  Undo this;
2102          // we don't want a v16i8 to become a v16i32 for example.
2103          const ConstantInt *CI = V->getConstantIntValue();
2104          CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
2105                                        CI->getZExtValue()));
2106        }
2107      } else {
2108        assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
2109        Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
2110        CV.push_back(UndefValue::get(OpNTy));
2111      }
2112    }
2113    Constant *CP = ConstantVector::get(CV);
2114    SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
2115    unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2116    return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
2117                       MachinePointerInfo::getConstantPool(),
2118                       false, false, Alignment);
2119  }
2120
2121  if (!MoreThanTwoValues) {
2122    SmallVector<int, 8> ShuffleVec(NumElems, -1);
2123    for (unsigned i = 0; i < NumElems; ++i) {
2124      SDValue V = Node->getOperand(i);
2125      if (V.getOpcode() == ISD::UNDEF)
2126        continue;
2127      ShuffleVec[i] = V == Value1 ? 0 : NumElems;
2128    }
2129    if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
2130      // Get the splatted value into the low element of a vector register.
2131      SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
2132      SDValue Vec2;
2133      if (Value2.getNode())
2134        Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
2135      else
2136        Vec2 = DAG.getUNDEF(VT);
2137
2138      // Return shuffle(LowValVec, undef, <0,0,0,0>)
2139      return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
2140    }
2141  }
2142
2143  // Otherwise, we can't handle this case efficiently.
2144  return ExpandVectorBuildThroughStack(Node);
2145}
2146
2147// ExpandLibCall - Expand a node into a call to a libcall.  If the result value
2148// does not fit into a register, return the lo part and set the hi part to the
2149// by-reg argument.  If it does fit into a single register, return the result
2150// and leave the Hi part unset.
2151SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
2152                                            bool isSigned) {
2153  // The input chain to this libcall is the entry node of the function.
2154  // Legalizing the call will automatically add the previous call to the
2155  // dependence.
2156  SDValue InChain = DAG.getEntryNode();
2157
2158  TargetLowering::ArgListTy Args;
2159  TargetLowering::ArgListEntry Entry;
2160  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
2161    EVT ArgVT = Node->getOperand(i).getValueType();
2162    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2163    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
2164    Entry.isSExt = isSigned;
2165    Entry.isZExt = !isSigned;
2166    Args.push_back(Entry);
2167  }
2168  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2169                                         TLI.getPointerTy());
2170
2171  // Splice the libcall in wherever FindInputOutputChains tells us to.
2172  Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
2173
2174  // isTailCall may be true since the callee does not reference caller stack
2175  // frame. Check if it's in the right position.
2176  bool isTailCall = isInTailCallPosition(DAG, Node, TLI);
2177  std::pair<SDValue, SDValue> CallInfo =
2178    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
2179                    0, TLI.getLibcallCallingConv(LC), isTailCall,
2180                    /*isReturnValueUsed=*/true,
2181                    Callee, Args, DAG, Node->getDebugLoc());
2182
2183  if (!CallInfo.second.getNode())
2184    // It's a tailcall, return the chain (which is the DAG root).
2185    return DAG.getRoot();
2186
2187  // Legalize the call sequence, starting with the chain.  This will advance
2188  // the LastCALLSEQ to the legalized version of the CALLSEQ_END node that
2189  // was added by LowerCallTo (guaranteeing proper serialization of calls).
2190  LegalizeOp(CallInfo.second);
2191  return CallInfo.first;
2192}
2193
2194/// ExpandLibCall - Generate a libcall taking the given operands as arguments
2195/// and returning a result of type RetVT.
2196SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, EVT RetVT,
2197                                            const SDValue *Ops, unsigned NumOps,
2198                                            bool isSigned, DebugLoc dl) {
2199  TargetLowering::ArgListTy Args;
2200  Args.reserve(NumOps);
2201
2202  TargetLowering::ArgListEntry Entry;
2203  for (unsigned i = 0; i != NumOps; ++i) {
2204    Entry.Node = Ops[i];
2205    Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
2206    Entry.isSExt = isSigned;
2207    Entry.isZExt = !isSigned;
2208    Args.push_back(Entry);
2209  }
2210  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2211                                         TLI.getPointerTy());
2212
2213  Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2214  std::pair<SDValue,SDValue> CallInfo =
2215  TLI.LowerCallTo(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false,
2216                  false, 0, TLI.getLibcallCallingConv(LC), false,
2217                  /*isReturnValueUsed=*/true,
2218                  Callee, Args, DAG, dl);
2219
2220  // Legalize the call sequence, starting with the chain.  This will advance
2221  // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
2222  // was added by LowerCallTo (guaranteeing proper serialization of calls).
2223  LegalizeOp(CallInfo.second);
2224
2225  return CallInfo.first;
2226}
2227
2228// ExpandChainLibCall - Expand a node into a call to a libcall. Similar to
2229// ExpandLibCall except that the first operand is the in-chain.
2230std::pair<SDValue, SDValue>
2231SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC,
2232                                         SDNode *Node,
2233                                         bool isSigned) {
2234  SDValue InChain = Node->getOperand(0);
2235
2236  TargetLowering::ArgListTy Args;
2237  TargetLowering::ArgListEntry Entry;
2238  for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) {
2239    EVT ArgVT = Node->getOperand(i).getValueType();
2240    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2241    Entry.Node = Node->getOperand(i);
2242    Entry.Ty = ArgTy;
2243    Entry.isSExt = isSigned;
2244    Entry.isZExt = !isSigned;
2245    Args.push_back(Entry);
2246  }
2247  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2248                                         TLI.getPointerTy());
2249
2250  // Splice the libcall in wherever FindInputOutputChains tells us to.
2251  Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
2252  std::pair<SDValue, SDValue> CallInfo =
2253    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
2254                    0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false,
2255                    /*isReturnValueUsed=*/true,
2256                    Callee, Args, DAG, Node->getDebugLoc());
2257
2258  // Legalize the call sequence, starting with the chain.  This will advance
2259  // the LastCALLSEQ to the legalized version of the CALLSEQ_END node that
2260  // was added by LowerCallTo (guaranteeing proper serialization of calls).
2261  LegalizeOp(CallInfo.second);
2262  return CallInfo;
2263}
2264
2265SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
2266                                              RTLIB::Libcall Call_F32,
2267                                              RTLIB::Libcall Call_F64,
2268                                              RTLIB::Libcall Call_F80,
2269                                              RTLIB::Libcall Call_PPCF128) {
2270  RTLIB::Libcall LC;
2271  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
2272  default: assert(0 && "Unexpected request for libcall!");
2273  case MVT::f32: LC = Call_F32; break;
2274  case MVT::f64: LC = Call_F64; break;
2275  case MVT::f80: LC = Call_F80; break;
2276  case MVT::ppcf128: LC = Call_PPCF128; break;
2277  }
2278  return ExpandLibCall(LC, Node, false);
2279}
2280
2281SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
2282                                               RTLIB::Libcall Call_I8,
2283                                               RTLIB::Libcall Call_I16,
2284                                               RTLIB::Libcall Call_I32,
2285                                               RTLIB::Libcall Call_I64,
2286                                               RTLIB::Libcall Call_I128) {
2287  RTLIB::Libcall LC;
2288  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
2289  default: assert(0 && "Unexpected request for libcall!");
2290  case MVT::i8:   LC = Call_I8; break;
2291  case MVT::i16:  LC = Call_I16; break;
2292  case MVT::i32:  LC = Call_I32; break;
2293  case MVT::i64:  LC = Call_I64; break;
2294  case MVT::i128: LC = Call_I128; break;
2295  }
2296  return ExpandLibCall(LC, Node, isSigned);
2297}
2298
2299/// isDivRemLibcallAvailable - Return true if divmod libcall is available.
2300static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned,
2301                                     const TargetLowering &TLI) {
2302  RTLIB::Libcall LC;
2303  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
2304  default: assert(0 && "Unexpected request for libcall!");
2305  case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
2306  case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
2307  case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
2308  case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
2309  case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
2310  }
2311
2312  return TLI.getLibcallName(LC) != 0;
2313}
2314
2315/// UseDivRem - Only issue divrem libcall if both quotient and remainder are
2316/// needed.
2317static bool UseDivRem(SDNode *Node, bool isSigned, bool isDIV) {
2318  unsigned OtherOpcode = 0;
2319  if (isSigned)
2320    OtherOpcode = isDIV ? ISD::SREM : ISD::SDIV;
2321  else
2322    OtherOpcode = isDIV ? ISD::UREM : ISD::UDIV;
2323
2324  SDValue Op0 = Node->getOperand(0);
2325  SDValue Op1 = Node->getOperand(1);
2326  for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
2327         UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
2328    SDNode *User = *UI;
2329    if (User == Node)
2330      continue;
2331    if (User->getOpcode() == OtherOpcode &&
2332        User->getOperand(0) == Op0 &&
2333        User->getOperand(1) == Op1)
2334      return true;
2335  }
2336  return false;
2337}
2338
2339/// ExpandDivRemLibCall - Issue libcalls to __{u}divmod to compute div / rem
2340/// pairs.
2341void
2342SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node,
2343                                          SmallVectorImpl<SDValue> &Results) {
2344  unsigned Opcode = Node->getOpcode();
2345  bool isSigned = Opcode == ISD::SDIVREM;
2346
2347  RTLIB::Libcall LC;
2348  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
2349  default: assert(0 && "Unexpected request for libcall!");
2350  case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
2351  case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
2352  case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
2353  case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
2354  case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
2355  }
2356
2357  // The input chain to this libcall is the entry node of the function.
2358  // Legalizing the call will automatically add the previous call to the
2359  // dependence.
2360  SDValue InChain = DAG.getEntryNode();
2361
2362  EVT RetVT = Node->getValueType(0);
2363  Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2364
2365  TargetLowering::ArgListTy Args;
2366  TargetLowering::ArgListEntry Entry;
2367  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
2368    EVT ArgVT = Node->getOperand(i).getValueType();
2369    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2370    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
2371    Entry.isSExt = isSigned;
2372    Entry.isZExt = !isSigned;
2373    Args.push_back(Entry);
2374  }
2375
2376  // Also pass the return address of the remainder.
2377  SDValue FIPtr = DAG.CreateStackTemporary(RetVT);
2378  Entry.Node = FIPtr;
2379  Entry.Ty = RetTy->getPointerTo();
2380  Entry.isSExt = isSigned;
2381  Entry.isZExt = !isSigned;
2382  Args.push_back(Entry);
2383
2384  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2385                                         TLI.getPointerTy());
2386
2387  // Splice the libcall in wherever FindInputOutputChains tells us to.
2388  DebugLoc dl = Node->getDebugLoc();
2389  std::pair<SDValue, SDValue> CallInfo =
2390    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
2391                    0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false,
2392                    /*isReturnValueUsed=*/true, Callee, Args, DAG, dl);
2393
2394  // Legalize the call sequence, starting with the chain.  This will advance
2395  // the LastCALLSEQ to the legalized version of the CALLSEQ_END node that
2396  // was added by LowerCallTo (guaranteeing proper serialization of calls).
2397  LegalizeOp(CallInfo.second);
2398
2399  // Remainder is loaded back from the stack frame.
2400  SDValue Rem = DAG.getLoad(RetVT, dl, getLastCALLSEQ(), FIPtr,
2401                            MachinePointerInfo(), false, false, 0);
2402  Results.push_back(CallInfo.first);
2403  Results.push_back(Rem);
2404}
2405
2406/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
2407/// INT_TO_FP operation of the specified operand when the target requests that
2408/// we expand it.  At this point, we know that the result and operand types are
2409/// legal for the target.
2410SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
2411                                                   SDValue Op0,
2412                                                   EVT DestVT,
2413                                                   DebugLoc dl) {
2414  if (Op0.getValueType() == MVT::i32) {
2415    // simple 32-bit [signed|unsigned] integer to float/double expansion
2416
2417    // Get the stack frame index of a 8 byte buffer.
2418    SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
2419
2420    // word offset constant for Hi/Lo address computation
2421    SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy());
2422    // set up Hi and Lo (into buffer) address based on endian
2423    SDValue Hi = StackSlot;
2424    SDValue Lo = DAG.getNode(ISD::ADD, dl,
2425                             TLI.getPointerTy(), StackSlot, WordOff);
2426    if (TLI.isLittleEndian())
2427      std::swap(Hi, Lo);
2428
2429    // if signed map to unsigned space
2430    SDValue Op0Mapped;
2431    if (isSigned) {
2432      // constant used to invert sign bit (signed to unsigned mapping)
2433      SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32);
2434      Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
2435    } else {
2436      Op0Mapped = Op0;
2437    }
2438    // store the lo of the constructed double - based on integer input
2439    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
2440                                  Op0Mapped, Lo, MachinePointerInfo(),
2441                                  false, false, 0);
2442    // initial hi portion of constructed double
2443    SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
2444    // store the hi of the constructed double - biased exponent
2445    SDValue Store2 = DAG.getStore(Store1, dl, InitialHi, Hi,
2446                                  MachinePointerInfo(),
2447                                  false, false, 0);
2448    // load the constructed double
2449    SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot,
2450                               MachinePointerInfo(), false, false, 0);
2451    // FP constant to bias correct the final result
2452    SDValue Bias = DAG.getConstantFP(isSigned ?
2453                                     BitsToDouble(0x4330000080000000ULL) :
2454                                     BitsToDouble(0x4330000000000000ULL),
2455                                     MVT::f64);
2456    // subtract the bias
2457    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2458    // final result
2459    SDValue Result;
2460    // handle final rounding
2461    if (DestVT == MVT::f64) {
2462      // do nothing
2463      Result = Sub;
2464    } else if (DestVT.bitsLT(MVT::f64)) {
2465      Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
2466                           DAG.getIntPtrConstant(0));
2467    } else if (DestVT.bitsGT(MVT::f64)) {
2468      Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
2469    }
2470    return Result;
2471  }
2472  assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2473  // Code below here assumes !isSigned without checking again.
2474
2475  // Implementation of unsigned i64 to f64 following the algorithm in
2476  // __floatundidf in compiler_rt. This implementation has the advantage
2477  // of performing rounding correctly, both in the default rounding mode
2478  // and in all alternate rounding modes.
2479  // TODO: Generalize this for use with other types.
2480  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) {
2481    SDValue TwoP52 =
2482      DAG.getConstant(UINT64_C(0x4330000000000000), MVT::i64);
2483    SDValue TwoP84PlusTwoP52 =
2484      DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), MVT::f64);
2485    SDValue TwoP84 =
2486      DAG.getConstant(UINT64_C(0x4530000000000000), MVT::i64);
2487
2488    SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32);
2489    SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0,
2490                             DAG.getConstant(32, MVT::i64));
2491    SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52);
2492    SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84);
2493    SDValue LoFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, LoOr);
2494    SDValue HiFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, HiOr);
2495    SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt,
2496                                TwoP84PlusTwoP52);
2497    return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub);
2498  }
2499
2500  // Implementation of unsigned i64 to f32.
2501  // TODO: Generalize this for use with other types.
2502  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) {
2503    // For unsigned conversions, convert them to signed conversions using the
2504    // algorithm from the x86_64 __floatundidf in compiler_rt.
2505    if (!isSigned) {
2506      SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Op0);
2507
2508      SDValue ShiftConst =
2509          DAG.getConstant(1, TLI.getShiftAmountTy(Op0.getValueType()));
2510      SDValue Shr = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, ShiftConst);
2511      SDValue AndConst = DAG.getConstant(1, MVT::i64);
2512      SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, AndConst);
2513      SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, Shr);
2514
2515      SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Or);
2516      SDValue Slow = DAG.getNode(ISD::FADD, dl, MVT::f32, SignCvt, SignCvt);
2517
2518      // TODO: This really should be implemented using a branch rather than a
2519      // select.  We happen to get lucky and machinesink does the right
2520      // thing most of the time.  This would be a good candidate for a
2521      //pseudo-op, or, even better, for whole-function isel.
2522      SDValue SignBitTest = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2523        Op0, DAG.getConstant(0, MVT::i64), ISD::SETLT);
2524      return DAG.getNode(ISD::SELECT, dl, MVT::f32, SignBitTest, Slow, Fast);
2525    }
2526
2527    // Otherwise, implement the fully general conversion.
2528
2529    SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2530         DAG.getConstant(UINT64_C(0xfffffffffffff800), MVT::i64));
2531    SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And,
2532         DAG.getConstant(UINT64_C(0x800), MVT::i64));
2533    SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2534         DAG.getConstant(UINT64_C(0x7ff), MVT::i64));
2535    SDValue Ne = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2536                   And2, DAG.getConstant(UINT64_C(0), MVT::i64), ISD::SETNE);
2537    SDValue Sel = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ne, Or, Op0);
2538    SDValue Ge = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2539                   Op0, DAG.getConstant(UINT64_C(0x0020000000000000), MVT::i64),
2540                   ISD::SETUGE);
2541    SDValue Sel2 = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ge, Sel, Op0);
2542    EVT SHVT = TLI.getShiftAmountTy(Sel2.getValueType());
2543
2544    SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2,
2545                             DAG.getConstant(32, SHVT));
2546    SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh);
2547    SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc);
2548    SDValue TwoP32 =
2549      DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), MVT::f64);
2550    SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt);
2551    SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2);
2552    SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo);
2553    SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2);
2554    return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd,
2555                       DAG.getIntPtrConstant(0));
2556  }
2557
2558  SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2559
2560  SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()),
2561                                 Op0, DAG.getConstant(0, Op0.getValueType()),
2562                                 ISD::SETLT);
2563  SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
2564  SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(),
2565                                    SignSet, Four, Zero);
2566
2567  // If the sign bit of the integer is set, the large number will be treated
2568  // as a negative number.  To counteract this, the dynamic code adds an
2569  // offset depending on the data type.
2570  uint64_t FF;
2571  switch (Op0.getValueType().getSimpleVT().SimpleTy) {
2572  default: assert(0 && "Unsupported integer type!");
2573  case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
2574  case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
2575  case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
2576  case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
2577  }
2578  if (TLI.isLittleEndian()) FF <<= 32;
2579  Constant *FudgeFactor = ConstantInt::get(
2580                                       Type::getInt64Ty(*DAG.getContext()), FF);
2581
2582  SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
2583  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2584  CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset);
2585  Alignment = std::min(Alignment, 4u);
2586  SDValue FudgeInReg;
2587  if (DestVT == MVT::f32)
2588    FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2589                             MachinePointerInfo::getConstantPool(),
2590                             false, false, Alignment);
2591  else {
2592    FudgeInReg =
2593      LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT,
2594                                DAG.getEntryNode(), CPIdx,
2595                                MachinePointerInfo::getConstantPool(),
2596                                MVT::f32, false, false, Alignment));
2597  }
2598
2599  return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2600}
2601
2602/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
2603/// *INT_TO_FP operation of the specified operand when the target requests that
2604/// we promote it.  At this point, we know that the result and operand types are
2605/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2606/// operation that takes a larger input.
2607SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
2608                                                    EVT DestVT,
2609                                                    bool isSigned,
2610                                                    DebugLoc dl) {
2611  // First step, figure out the appropriate *INT_TO_FP operation to use.
2612  EVT NewInTy = LegalOp.getValueType();
2613
2614  unsigned OpToUse = 0;
2615
2616  // Scan for the appropriate larger type to use.
2617  while (1) {
2618    NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2619    assert(NewInTy.isInteger() && "Ran out of possibilities!");
2620
2621    // If the target supports SINT_TO_FP of this type, use it.
2622    if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2623      OpToUse = ISD::SINT_TO_FP;
2624      break;
2625    }
2626    if (isSigned) continue;
2627
2628    // If the target supports UINT_TO_FP of this type, use it.
2629    if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2630      OpToUse = ISD::UINT_TO_FP;
2631      break;
2632    }
2633
2634    // Otherwise, try a larger type.
2635  }
2636
2637  // Okay, we found the operation and type to use.  Zero extend our input to the
2638  // desired type then run the operation on it.
2639  return DAG.getNode(OpToUse, dl, DestVT,
2640                     DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2641                                 dl, NewInTy, LegalOp));
2642}
2643
2644/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
2645/// FP_TO_*INT operation of the specified operand when the target requests that
2646/// we promote it.  At this point, we know that the result and operand types are
2647/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2648/// operation that returns a larger result.
2649SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
2650                                                    EVT DestVT,
2651                                                    bool isSigned,
2652                                                    DebugLoc dl) {
2653  // First step, figure out the appropriate FP_TO*INT operation to use.
2654  EVT NewOutTy = DestVT;
2655
2656  unsigned OpToUse = 0;
2657
2658  // Scan for the appropriate larger type to use.
2659  while (1) {
2660    NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2661    assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2662
2663    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2664      OpToUse = ISD::FP_TO_SINT;
2665      break;
2666    }
2667
2668    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
2669      OpToUse = ISD::FP_TO_UINT;
2670      break;
2671    }
2672
2673    // Otherwise, try a larger type.
2674  }
2675
2676
2677  // Okay, we found the operation and type to use.
2678  SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2679
2680  // Truncate the result of the extended FP_TO_*INT operation to the desired
2681  // size.
2682  return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2683}
2684
2685/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
2686///
2687SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) {
2688  EVT VT = Op.getValueType();
2689  EVT SHVT = TLI.getShiftAmountTy(VT);
2690  SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2691  switch (VT.getSimpleVT().SimpleTy) {
2692  default: assert(0 && "Unhandled Expand type in BSWAP!");
2693  case MVT::i16:
2694    Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2695    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2696    return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2697  case MVT::i32:
2698    Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2699    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2700    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2701    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2702    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
2703    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT));
2704    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2705    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2706    return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2707  case MVT::i64:
2708    Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT));
2709    Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT));
2710    Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2711    Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2712    Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2713    Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2714    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT));
2715    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT));
2716    Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
2717    Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
2718    Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
2719    Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
2720    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
2721    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
2722    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2723    Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2724    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2725    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2726    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2727    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2728    return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2729  }
2730}
2731
2732/// SplatByte - Distribute ByteVal over NumBits bits.
2733// FIXME: Move this helper to a common place.
2734static APInt SplatByte(unsigned NumBits, uint8_t ByteVal) {
2735  APInt Val = APInt(NumBits, ByteVal);
2736  unsigned Shift = 8;
2737  for (unsigned i = NumBits; i > 8; i >>= 1) {
2738    Val = (Val << Shift) | Val;
2739    Shift <<= 1;
2740  }
2741  return Val;
2742}
2743
2744/// ExpandBitCount - Expand the specified bitcount instruction into operations.
2745///
2746SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
2747                                             DebugLoc dl) {
2748  switch (Opc) {
2749  default: assert(0 && "Cannot expand this yet!");
2750  case ISD::CTPOP: {
2751    EVT VT = Op.getValueType();
2752    EVT ShVT = TLI.getShiftAmountTy(VT);
2753    unsigned Len = VT.getSizeInBits();
2754
2755    assert(VT.isInteger() && Len <= 128 && Len % 8 == 0 &&
2756           "CTPOP not implemented for this type.");
2757
2758    // This is the "best" algorithm from
2759    // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
2760
2761    SDValue Mask55 = DAG.getConstant(SplatByte(Len, 0x55), VT);
2762    SDValue Mask33 = DAG.getConstant(SplatByte(Len, 0x33), VT);
2763    SDValue Mask0F = DAG.getConstant(SplatByte(Len, 0x0F), VT);
2764    SDValue Mask01 = DAG.getConstant(SplatByte(Len, 0x01), VT);
2765
2766    // v = v - ((v >> 1) & 0x55555555...)
2767    Op = DAG.getNode(ISD::SUB, dl, VT, Op,
2768                     DAG.getNode(ISD::AND, dl, VT,
2769                                 DAG.getNode(ISD::SRL, dl, VT, Op,
2770                                             DAG.getConstant(1, ShVT)),
2771                                 Mask55));
2772    // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
2773    Op = DAG.getNode(ISD::ADD, dl, VT,
2774                     DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
2775                     DAG.getNode(ISD::AND, dl, VT,
2776                                 DAG.getNode(ISD::SRL, dl, VT, Op,
2777                                             DAG.getConstant(2, ShVT)),
2778                                 Mask33));
2779    // v = (v + (v >> 4)) & 0x0F0F0F0F...
2780    Op = DAG.getNode(ISD::AND, dl, VT,
2781                     DAG.getNode(ISD::ADD, dl, VT, Op,
2782                                 DAG.getNode(ISD::SRL, dl, VT, Op,
2783                                             DAG.getConstant(4, ShVT))),
2784                     Mask0F);
2785    // v = (v * 0x01010101...) >> (Len - 8)
2786    Op = DAG.getNode(ISD::SRL, dl, VT,
2787                     DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
2788                     DAG.getConstant(Len - 8, ShVT));
2789
2790    return Op;
2791  }
2792  case ISD::CTLZ: {
2793    // for now, we do this:
2794    // x = x | (x >> 1);
2795    // x = x | (x >> 2);
2796    // ...
2797    // x = x | (x >>16);
2798    // x = x | (x >>32); // for 64-bit input
2799    // return popcount(~x);
2800    //
2801    // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
2802    EVT VT = Op.getValueType();
2803    EVT ShVT = TLI.getShiftAmountTy(VT);
2804    unsigned len = VT.getSizeInBits();
2805    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2806      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2807      Op = DAG.getNode(ISD::OR, dl, VT, Op,
2808                       DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
2809    }
2810    Op = DAG.getNOT(dl, Op, VT);
2811    return DAG.getNode(ISD::CTPOP, dl, VT, Op);
2812  }
2813  case ISD::CTTZ: {
2814    // for now, we use: { return popcount(~x & (x - 1)); }
2815    // unless the target has ctlz but not ctpop, in which case we use:
2816    // { return 32 - nlz(~x & (x-1)); }
2817    // see also http://www.hackersdelight.org/HDcode/ntz.cc
2818    EVT VT = Op.getValueType();
2819    SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
2820                               DAG.getNOT(dl, Op, VT),
2821                               DAG.getNode(ISD::SUB, dl, VT, Op,
2822                                           DAG.getConstant(1, VT)));
2823    // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
2824    if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
2825        TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
2826      return DAG.getNode(ISD::SUB, dl, VT,
2827                         DAG.getConstant(VT.getSizeInBits(), VT),
2828                         DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
2829    return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
2830  }
2831  }
2832}
2833
2834std::pair <SDValue, SDValue> SelectionDAGLegalize::ExpandAtomic(SDNode *Node) {
2835  unsigned Opc = Node->getOpcode();
2836  MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
2837  RTLIB::Libcall LC;
2838
2839  switch (Opc) {
2840  default:
2841    llvm_unreachable("Unhandled atomic intrinsic Expand!");
2842    break;
2843  case ISD::ATOMIC_SWAP:
2844    switch (VT.SimpleTy) {
2845    default: llvm_unreachable("Unexpected value type for atomic!");
2846    case MVT::i8:  LC = RTLIB::SYNC_LOCK_TEST_AND_SET_1; break;
2847    case MVT::i16: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_2; break;
2848    case MVT::i32: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_4; break;
2849    case MVT::i64: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_8; break;
2850    }
2851    break;
2852  case ISD::ATOMIC_CMP_SWAP:
2853    switch (VT.SimpleTy) {
2854    default: llvm_unreachable("Unexpected value type for atomic!");
2855    case MVT::i8:  LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1; break;
2856    case MVT::i16: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2; break;
2857    case MVT::i32: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4; break;
2858    case MVT::i64: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8; break;
2859    }
2860    break;
2861  case ISD::ATOMIC_LOAD_ADD:
2862    switch (VT.SimpleTy) {
2863    default: llvm_unreachable("Unexpected value type for atomic!");
2864    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_ADD_1; break;
2865    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_ADD_2; break;
2866    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_ADD_4; break;
2867    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_ADD_8; break;
2868    }
2869    break;
2870  case ISD::ATOMIC_LOAD_SUB:
2871    switch (VT.SimpleTy) {
2872    default: llvm_unreachable("Unexpected value type for atomic!");
2873    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_SUB_1; break;
2874    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_SUB_2; break;
2875    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_SUB_4; break;
2876    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_SUB_8; break;
2877    }
2878    break;
2879  case ISD::ATOMIC_LOAD_AND:
2880    switch (VT.SimpleTy) {
2881    default: llvm_unreachable("Unexpected value type for atomic!");
2882    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_AND_1; break;
2883    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_AND_2; break;
2884    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_AND_4; break;
2885    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_AND_8; break;
2886    }
2887    break;
2888  case ISD::ATOMIC_LOAD_OR:
2889    switch (VT.SimpleTy) {
2890    default: llvm_unreachable("Unexpected value type for atomic!");
2891    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_OR_1; break;
2892    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_OR_2; break;
2893    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_OR_4; break;
2894    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_OR_8; break;
2895    }
2896    break;
2897  case ISD::ATOMIC_LOAD_XOR:
2898    switch (VT.SimpleTy) {
2899    default: llvm_unreachable("Unexpected value type for atomic!");
2900    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_XOR_1; break;
2901    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_XOR_2; break;
2902    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_XOR_4; break;
2903    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_XOR_8; break;
2904    }
2905    break;
2906  case ISD::ATOMIC_LOAD_NAND:
2907    switch (VT.SimpleTy) {
2908    default: llvm_unreachable("Unexpected value type for atomic!");
2909    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_NAND_1; break;
2910    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_NAND_2; break;
2911    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_NAND_4; break;
2912    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_NAND_8; break;
2913    }
2914    break;
2915  }
2916
2917  return ExpandChainLibCall(LC, Node, false);
2918}
2919
2920void SelectionDAGLegalize::ExpandNode(SDNode *Node,
2921                                      SmallVectorImpl<SDValue> &Results) {
2922  DebugLoc dl = Node->getDebugLoc();
2923  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2924  switch (Node->getOpcode()) {
2925  case ISD::CTPOP:
2926  case ISD::CTLZ:
2927  case ISD::CTTZ:
2928    Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
2929    Results.push_back(Tmp1);
2930    break;
2931  case ISD::BSWAP:
2932    Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2933    break;
2934  case ISD::FRAMEADDR:
2935  case ISD::RETURNADDR:
2936  case ISD::FRAME_TO_ARGS_OFFSET:
2937    Results.push_back(DAG.getConstant(0, Node->getValueType(0)));
2938    break;
2939  case ISD::FLT_ROUNDS_:
2940    Results.push_back(DAG.getConstant(1, Node->getValueType(0)));
2941    break;
2942  case ISD::EH_RETURN:
2943  case ISD::EH_LABEL:
2944  case ISD::PREFETCH:
2945  case ISD::VAEND:
2946  case ISD::EH_SJLJ_LONGJMP:
2947  case ISD::EH_SJLJ_DISPATCHSETUP:
2948    // If the target didn't expand these, there's nothing to do, so just
2949    // preserve the chain and be done.
2950    Results.push_back(Node->getOperand(0));
2951    break;
2952  case ISD::EH_SJLJ_SETJMP:
2953    // If the target didn't expand this, just return 'zero' and preserve the
2954    // chain.
2955    Results.push_back(DAG.getConstant(0, MVT::i32));
2956    Results.push_back(Node->getOperand(0));
2957    break;
2958  case ISD::ATOMIC_FENCE:
2959  case ISD::MEMBARRIER: {
2960    // If the target didn't lower this, lower it to '__sync_synchronize()' call
2961    // FIXME: handle "fence singlethread" more efficiently.
2962    TargetLowering::ArgListTy Args;
2963    std::pair<SDValue, SDValue> CallResult =
2964      TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()),
2965                      false, false, false, false, 0, CallingConv::C,
2966                      /*isTailCall=*/false,
2967                      /*isReturnValueUsed=*/true,
2968                      DAG.getExternalSymbol("__sync_synchronize",
2969                                            TLI.getPointerTy()),
2970                      Args, DAG, dl);
2971    Results.push_back(CallResult.second);
2972    break;
2973  }
2974  // By default, atomic intrinsics are marked Legal and lowered. Targets
2975  // which don't support them directly, however, may want libcalls, in which
2976  // case they mark them Expand, and we get here.
2977  case ISD::ATOMIC_SWAP:
2978  case ISD::ATOMIC_LOAD_ADD:
2979  case ISD::ATOMIC_LOAD_SUB:
2980  case ISD::ATOMIC_LOAD_AND:
2981  case ISD::ATOMIC_LOAD_OR:
2982  case ISD::ATOMIC_LOAD_XOR:
2983  case ISD::ATOMIC_LOAD_NAND:
2984  case ISD::ATOMIC_LOAD_MIN:
2985  case ISD::ATOMIC_LOAD_MAX:
2986  case ISD::ATOMIC_LOAD_UMIN:
2987  case ISD::ATOMIC_LOAD_UMAX:
2988  case ISD::ATOMIC_CMP_SWAP: {
2989    std::pair<SDValue, SDValue> Tmp = ExpandAtomic(Node);
2990    Results.push_back(Tmp.first);
2991    Results.push_back(Tmp.second);
2992    break;
2993  }
2994  case ISD::DYNAMIC_STACKALLOC:
2995    ExpandDYNAMIC_STACKALLOC(Node, Results);
2996    break;
2997  case ISD::MERGE_VALUES:
2998    for (unsigned i = 0; i < Node->getNumValues(); i++)
2999      Results.push_back(Node->getOperand(i));
3000    break;
3001  case ISD::UNDEF: {
3002    EVT VT = Node->getValueType(0);
3003    if (VT.isInteger())
3004      Results.push_back(DAG.getConstant(0, VT));
3005    else {
3006      assert(VT.isFloatingPoint() && "Unknown value type!");
3007      Results.push_back(DAG.getConstantFP(0, VT));
3008    }
3009    break;
3010  }
3011  case ISD::TRAP: {
3012    // If this operation is not supported, lower it to 'abort()' call
3013    TargetLowering::ArgListTy Args;
3014    std::pair<SDValue, SDValue> CallResult =
3015      TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()),
3016                      false, false, false, false, 0, CallingConv::C,
3017                      /*isTailCall=*/false,
3018                      /*isReturnValueUsed=*/true,
3019                      DAG.getExternalSymbol("abort", TLI.getPointerTy()),
3020                      Args, DAG, dl);
3021    Results.push_back(CallResult.second);
3022    break;
3023  }
3024  case ISD::FP_ROUND:
3025  case ISD::BITCAST:
3026    Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
3027                            Node->getValueType(0), dl);
3028    Results.push_back(Tmp1);
3029    break;
3030  case ISD::FP_EXTEND:
3031    Tmp1 = EmitStackConvert(Node->getOperand(0),
3032                            Node->getOperand(0).getValueType(),
3033                            Node->getValueType(0), dl);
3034    Results.push_back(Tmp1);
3035    break;
3036  case ISD::SIGN_EXTEND_INREG: {
3037    // NOTE: we could fall back on load/store here too for targets without
3038    // SAR.  However, it is doubtful that any exist.
3039    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
3040    EVT VT = Node->getValueType(0);
3041    EVT ShiftAmountTy = TLI.getShiftAmountTy(VT);
3042    if (VT.isVector())
3043      ShiftAmountTy = VT;
3044    unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
3045                        ExtraVT.getScalarType().getSizeInBits();
3046    SDValue ShiftCst = DAG.getConstant(BitsDiff, ShiftAmountTy);
3047    Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
3048                       Node->getOperand(0), ShiftCst);
3049    Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
3050    Results.push_back(Tmp1);
3051    break;
3052  }
3053  case ISD::FP_ROUND_INREG: {
3054    // The only way we can lower this is to turn it into a TRUNCSTORE,
3055    // EXTLOAD pair, targeting a temporary location (a stack slot).
3056
3057    // NOTE: there is a choice here between constantly creating new stack
3058    // slots and always reusing the same one.  We currently always create
3059    // new ones, as reuse may inhibit scheduling.
3060    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
3061    Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
3062                            Node->getValueType(0), dl);
3063    Results.push_back(Tmp1);
3064    break;
3065  }
3066  case ISD::SINT_TO_FP:
3067  case ISD::UINT_TO_FP:
3068    Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
3069                                Node->getOperand(0), Node->getValueType(0), dl);
3070    Results.push_back(Tmp1);
3071    break;
3072  case ISD::FP_TO_UINT: {
3073    SDValue True, False;
3074    EVT VT =  Node->getOperand(0).getValueType();
3075    EVT NVT = Node->getValueType(0);
3076    APFloat apf(APInt::getNullValue(VT.getSizeInBits()));
3077    APInt x = APInt::getSignBit(NVT.getSizeInBits());
3078    (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
3079    Tmp1 = DAG.getConstantFP(apf, VT);
3080    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT),
3081                        Node->getOperand(0),
3082                        Tmp1, ISD::SETLT);
3083    True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
3084    False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
3085                        DAG.getNode(ISD::FSUB, dl, VT,
3086                                    Node->getOperand(0), Tmp1));
3087    False = DAG.getNode(ISD::XOR, dl, NVT, False,
3088                        DAG.getConstant(x, NVT));
3089    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False);
3090    Results.push_back(Tmp1);
3091    break;
3092  }
3093  case ISD::VAARG: {
3094    const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
3095    EVT VT = Node->getValueType(0);
3096    Tmp1 = Node->getOperand(0);
3097    Tmp2 = Node->getOperand(1);
3098    unsigned Align = Node->getConstantOperandVal(3);
3099
3100    SDValue VAListLoad = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2,
3101                                     MachinePointerInfo(V), false, false, 0);
3102    SDValue VAList = VAListLoad;
3103
3104    if (Align > TLI.getMinStackArgumentAlignment()) {
3105      assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
3106
3107      VAList = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
3108                           DAG.getConstant(Align - 1,
3109                                           TLI.getPointerTy()));
3110
3111      VAList = DAG.getNode(ISD::AND, dl, TLI.getPointerTy(), VAList,
3112                           DAG.getConstant(-(int64_t)Align,
3113                                           TLI.getPointerTy()));
3114    }
3115
3116    // Increment the pointer, VAList, to the next vaarg
3117    Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
3118                       DAG.getConstant(TLI.getTargetData()->
3119                          getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())),
3120                                       TLI.getPointerTy()));
3121    // Store the incremented VAList to the legalized pointer
3122    Tmp3 = DAG.getStore(VAListLoad.getValue(1), dl, Tmp3, Tmp2,
3123                        MachinePointerInfo(V), false, false, 0);
3124    // Load the actual argument out of the pointer VAList
3125    Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, MachinePointerInfo(),
3126                                  false, false, 0));
3127    Results.push_back(Results[0].getValue(1));
3128    break;
3129  }
3130  case ISD::VACOPY: {
3131    // This defaults to loading a pointer from the input and storing it to the
3132    // output, returning the chain.
3133    const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
3134    const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
3135    Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0),
3136                       Node->getOperand(2), MachinePointerInfo(VS),
3137                       false, false, 0);
3138    Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
3139                        MachinePointerInfo(VD), false, false, 0);
3140    Results.push_back(Tmp1);
3141    break;
3142  }
3143  case ISD::EXTRACT_VECTOR_ELT:
3144    if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
3145      // This must be an access of the only element.  Return it.
3146      Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0),
3147                         Node->getOperand(0));
3148    else
3149      Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
3150    Results.push_back(Tmp1);
3151    break;
3152  case ISD::EXTRACT_SUBVECTOR:
3153    Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
3154    break;
3155  case ISD::INSERT_SUBVECTOR:
3156    Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0)));
3157    break;
3158  case ISD::CONCAT_VECTORS: {
3159    Results.push_back(ExpandVectorBuildThroughStack(Node));
3160    break;
3161  }
3162  case ISD::SCALAR_TO_VECTOR:
3163    Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
3164    break;
3165  case ISD::INSERT_VECTOR_ELT:
3166    Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
3167                                              Node->getOperand(1),
3168                                              Node->getOperand(2), dl));
3169    break;
3170  case ISD::VECTOR_SHUFFLE: {
3171    SmallVector<int, 8> Mask;
3172    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
3173
3174    EVT VT = Node->getValueType(0);
3175    EVT EltVT = VT.getVectorElementType();
3176    if (!TLI.isTypeLegal(EltVT))
3177      EltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT);
3178    unsigned NumElems = VT.getVectorNumElements();
3179    SmallVector<SDValue, 8> Ops;
3180    for (unsigned i = 0; i != NumElems; ++i) {
3181      if (Mask[i] < 0) {
3182        Ops.push_back(DAG.getUNDEF(EltVT));
3183        continue;
3184      }
3185      unsigned Idx = Mask[i];
3186      if (Idx < NumElems)
3187        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
3188                                  Node->getOperand(0),
3189                                  DAG.getIntPtrConstant(Idx)));
3190      else
3191        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
3192                                  Node->getOperand(1),
3193                                  DAG.getIntPtrConstant(Idx - NumElems)));
3194    }
3195    Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size());
3196    Results.push_back(Tmp1);
3197    break;
3198  }
3199  case ISD::EXTRACT_ELEMENT: {
3200    EVT OpTy = Node->getOperand(0).getValueType();
3201    if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
3202      // 1 -> Hi
3203      Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
3204                         DAG.getConstant(OpTy.getSizeInBits()/2,
3205                    TLI.getShiftAmountTy(Node->getOperand(0).getValueType())));
3206      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
3207    } else {
3208      // 0 -> Lo
3209      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
3210                         Node->getOperand(0));
3211    }
3212    Results.push_back(Tmp1);
3213    break;
3214  }
3215  case ISD::STACKSAVE:
3216    // Expand to CopyFromReg if the target set
3217    // StackPointerRegisterToSaveRestore.
3218    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
3219      Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
3220                                           Node->getValueType(0)));
3221      Results.push_back(Results[0].getValue(1));
3222    } else {
3223      Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
3224      Results.push_back(Node->getOperand(0));
3225    }
3226    break;
3227  case ISD::STACKRESTORE:
3228    // Expand to CopyToReg if the target set
3229    // StackPointerRegisterToSaveRestore.
3230    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
3231      Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
3232                                         Node->getOperand(1)));
3233    } else {
3234      Results.push_back(Node->getOperand(0));
3235    }
3236    break;
3237  case ISD::FCOPYSIGN:
3238    Results.push_back(ExpandFCOPYSIGN(Node));
3239    break;
3240  case ISD::FNEG:
3241    // Expand Y = FNEG(X) ->  Y = SUB -0.0, X
3242    Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0));
3243    Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
3244                       Node->getOperand(0));
3245    Results.push_back(Tmp1);
3246    break;
3247  case ISD::FABS: {
3248    // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
3249    EVT VT = Node->getValueType(0);
3250    Tmp1 = Node->getOperand(0);
3251    Tmp2 = DAG.getConstantFP(0.0, VT);
3252    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
3253                        Tmp1, Tmp2, ISD::SETUGT);
3254    Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1);
3255    Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3);
3256    Results.push_back(Tmp1);
3257    break;
3258  }
3259  case ISD::FSQRT:
3260    Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
3261                                      RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128));
3262    break;
3263  case ISD::FSIN:
3264    Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
3265                                      RTLIB::SIN_F80, RTLIB::SIN_PPCF128));
3266    break;
3267  case ISD::FCOS:
3268    Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
3269                                      RTLIB::COS_F80, RTLIB::COS_PPCF128));
3270    break;
3271  case ISD::FLOG:
3272    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
3273                                      RTLIB::LOG_F80, RTLIB::LOG_PPCF128));
3274    break;
3275  case ISD::FLOG2:
3276    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
3277                                      RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128));
3278    break;
3279  case ISD::FLOG10:
3280    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
3281                                      RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128));
3282    break;
3283  case ISD::FEXP:
3284    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
3285                                      RTLIB::EXP_F80, RTLIB::EXP_PPCF128));
3286    break;
3287  case ISD::FEXP2:
3288    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
3289                                      RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128));
3290    break;
3291  case ISD::FTRUNC:
3292    Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
3293                                      RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128));
3294    break;
3295  case ISD::FFLOOR:
3296    Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
3297                                      RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128));
3298    break;
3299  case ISD::FCEIL:
3300    Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
3301                                      RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128));
3302    break;
3303  case ISD::FRINT:
3304    Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
3305                                      RTLIB::RINT_F80, RTLIB::RINT_PPCF128));
3306    break;
3307  case ISD::FNEARBYINT:
3308    Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
3309                                      RTLIB::NEARBYINT_F64,
3310                                      RTLIB::NEARBYINT_F80,
3311                                      RTLIB::NEARBYINT_PPCF128));
3312    break;
3313  case ISD::FPOWI:
3314    Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
3315                                      RTLIB::POWI_F80, RTLIB::POWI_PPCF128));
3316    break;
3317  case ISD::FPOW:
3318    Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
3319                                      RTLIB::POW_F80, RTLIB::POW_PPCF128));
3320    break;
3321  case ISD::FDIV:
3322    Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
3323                                      RTLIB::DIV_F80, RTLIB::DIV_PPCF128));
3324    break;
3325  case ISD::FREM:
3326    Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
3327                                      RTLIB::REM_F80, RTLIB::REM_PPCF128));
3328    break;
3329  case ISD::FMA:
3330    Results.push_back(ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64,
3331                                      RTLIB::FMA_F80, RTLIB::FMA_PPCF128));
3332    break;
3333  case ISD::FP16_TO_FP32:
3334    Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
3335    break;
3336  case ISD::FP32_TO_FP16:
3337    Results.push_back(ExpandLibCall(RTLIB::FPROUND_F32_F16, Node, false));
3338    break;
3339  case ISD::ConstantFP: {
3340    ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
3341    // Check to see if this FP immediate is already legal.
3342    // If this is a legal constant, turn it into a TargetConstantFP node.
3343    if (TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0)))
3344      Results.push_back(SDValue(Node, 0));
3345    else
3346      Results.push_back(ExpandConstantFP(CFP, true, DAG, TLI));
3347    break;
3348  }
3349  case ISD::EHSELECTION: {
3350    unsigned Reg = TLI.getExceptionSelectorRegister();
3351    assert(Reg && "Can't expand to unknown register!");
3352    Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg,
3353                                         Node->getValueType(0)));
3354    Results.push_back(Results[0].getValue(1));
3355    break;
3356  }
3357  case ISD::EXCEPTIONADDR: {
3358    unsigned Reg = TLI.getExceptionAddressRegister();
3359    assert(Reg && "Can't expand to unknown register!");
3360    Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg,
3361                                         Node->getValueType(0)));
3362    Results.push_back(Results[0].getValue(1));
3363    break;
3364  }
3365  case ISD::SUB: {
3366    EVT VT = Node->getValueType(0);
3367    assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
3368           TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
3369           "Don't know how to expand this subtraction!");
3370    Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
3371               DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT));
3372    Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp2, DAG.getConstant(1, VT));
3373    Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
3374    break;
3375  }
3376  case ISD::UREM:
3377  case ISD::SREM: {
3378    EVT VT = Node->getValueType(0);
3379    SDVTList VTs = DAG.getVTList(VT, VT);
3380    bool isSigned = Node->getOpcode() == ISD::SREM;
3381    unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
3382    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3383    Tmp2 = Node->getOperand(0);
3384    Tmp3 = Node->getOperand(1);
3385    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) ||
3386        (isDivRemLibcallAvailable(Node, isSigned, TLI) &&
3387         UseDivRem(Node, isSigned, false))) {
3388      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
3389    } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
3390      // X % Y -> X-X/Y*Y
3391      Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
3392      Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
3393      Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
3394    } else if (isSigned)
3395      Tmp1 = ExpandIntLibCall(Node, true,
3396                              RTLIB::SREM_I8,
3397                              RTLIB::SREM_I16, RTLIB::SREM_I32,
3398                              RTLIB::SREM_I64, RTLIB::SREM_I128);
3399    else
3400      Tmp1 = ExpandIntLibCall(Node, false,
3401                              RTLIB::UREM_I8,
3402                              RTLIB::UREM_I16, RTLIB::UREM_I32,
3403                              RTLIB::UREM_I64, RTLIB::UREM_I128);
3404    Results.push_back(Tmp1);
3405    break;
3406  }
3407  case ISD::UDIV:
3408  case ISD::SDIV: {
3409    bool isSigned = Node->getOpcode() == ISD::SDIV;
3410    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3411    EVT VT = Node->getValueType(0);
3412    SDVTList VTs = DAG.getVTList(VT, VT);
3413    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) ||
3414        (isDivRemLibcallAvailable(Node, isSigned, TLI) &&
3415         UseDivRem(Node, isSigned, true)))
3416      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
3417                         Node->getOperand(1));
3418    else if (isSigned)
3419      Tmp1 = ExpandIntLibCall(Node, true,
3420                              RTLIB::SDIV_I8,
3421                              RTLIB::SDIV_I16, RTLIB::SDIV_I32,
3422                              RTLIB::SDIV_I64, RTLIB::SDIV_I128);
3423    else
3424      Tmp1 = ExpandIntLibCall(Node, false,
3425                              RTLIB::UDIV_I8,
3426                              RTLIB::UDIV_I16, RTLIB::UDIV_I32,
3427                              RTLIB::UDIV_I64, RTLIB::UDIV_I128);
3428    Results.push_back(Tmp1);
3429    break;
3430  }
3431  case ISD::MULHU:
3432  case ISD::MULHS: {
3433    unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
3434                                                              ISD::SMUL_LOHI;
3435    EVT VT = Node->getValueType(0);
3436    SDVTList VTs = DAG.getVTList(VT, VT);
3437    assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
3438           "If this wasn't legal, it shouldn't have been created!");
3439    Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
3440                       Node->getOperand(1));
3441    Results.push_back(Tmp1.getValue(1));
3442    break;
3443  }
3444  case ISD::SDIVREM:
3445  case ISD::UDIVREM:
3446    // Expand into divrem libcall
3447    ExpandDivRemLibCall(Node, Results);
3448    break;
3449  case ISD::MUL: {
3450    EVT VT = Node->getValueType(0);
3451    SDVTList VTs = DAG.getVTList(VT, VT);
3452    // See if multiply or divide can be lowered using two-result operations.
3453    // We just need the low half of the multiply; try both the signed
3454    // and unsigned forms. If the target supports both SMUL_LOHI and
3455    // UMUL_LOHI, form a preference by checking which forms of plain
3456    // MULH it supports.
3457    bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
3458    bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
3459    bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
3460    bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
3461    unsigned OpToUse = 0;
3462    if (HasSMUL_LOHI && !HasMULHS) {
3463      OpToUse = ISD::SMUL_LOHI;
3464    } else if (HasUMUL_LOHI && !HasMULHU) {
3465      OpToUse = ISD::UMUL_LOHI;
3466    } else if (HasSMUL_LOHI) {
3467      OpToUse = ISD::SMUL_LOHI;
3468    } else if (HasUMUL_LOHI) {
3469      OpToUse = ISD::UMUL_LOHI;
3470    }
3471    if (OpToUse) {
3472      Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
3473                                    Node->getOperand(1)));
3474      break;
3475    }
3476    Tmp1 = ExpandIntLibCall(Node, false,
3477                            RTLIB::MUL_I8,
3478                            RTLIB::MUL_I16, RTLIB::MUL_I32,
3479                            RTLIB::MUL_I64, RTLIB::MUL_I128);
3480    Results.push_back(Tmp1);
3481    break;
3482  }
3483  case ISD::SADDO:
3484  case ISD::SSUBO: {
3485    SDValue LHS = Node->getOperand(0);
3486    SDValue RHS = Node->getOperand(1);
3487    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
3488                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3489                              LHS, RHS);
3490    Results.push_back(Sum);
3491    EVT OType = Node->getValueType(1);
3492
3493    SDValue Zero = DAG.getConstant(0, LHS.getValueType());
3494
3495    //   LHSSign -> LHS >= 0
3496    //   RHSSign -> RHS >= 0
3497    //   SumSign -> Sum >= 0
3498    //
3499    //   Add:
3500    //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
3501    //   Sub:
3502    //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
3503    //
3504    SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
3505    SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
3506    SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
3507                                      Node->getOpcode() == ISD::SADDO ?
3508                                      ISD::SETEQ : ISD::SETNE);
3509
3510    SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
3511    SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
3512
3513    SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
3514    Results.push_back(Cmp);
3515    break;
3516  }
3517  case ISD::UADDO:
3518  case ISD::USUBO: {
3519    SDValue LHS = Node->getOperand(0);
3520    SDValue RHS = Node->getOperand(1);
3521    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
3522                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3523                              LHS, RHS);
3524    Results.push_back(Sum);
3525    Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS,
3526                                   Node->getOpcode () == ISD::UADDO ?
3527                                   ISD::SETULT : ISD::SETUGT));
3528    break;
3529  }
3530  case ISD::UMULO:
3531  case ISD::SMULO: {
3532    EVT VT = Node->getValueType(0);
3533    EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
3534    SDValue LHS = Node->getOperand(0);
3535    SDValue RHS = Node->getOperand(1);
3536    SDValue BottomHalf;
3537    SDValue TopHalf;
3538    static const unsigned Ops[2][3] =
3539        { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
3540          { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
3541    bool isSigned = Node->getOpcode() == ISD::SMULO;
3542    if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
3543      BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
3544      TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
3545    } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
3546      BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
3547                               RHS);
3548      TopHalf = BottomHalf.getValue(1);
3549    } else if (TLI.isTypeLegal(EVT::getIntegerVT(*DAG.getContext(),
3550                                                 VT.getSizeInBits() * 2))) {
3551      LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
3552      RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
3553      Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
3554      BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3555                               DAG.getIntPtrConstant(0));
3556      TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3557                            DAG.getIntPtrConstant(1));
3558    } else {
3559      // We can fall back to a libcall with an illegal type for the MUL if we
3560      // have a libcall big enough.
3561      // Also, we can fall back to a division in some cases, but that's a big
3562      // performance hit in the general case.
3563      RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
3564      if (WideVT == MVT::i16)
3565        LC = RTLIB::MUL_I16;
3566      else if (WideVT == MVT::i32)
3567        LC = RTLIB::MUL_I32;
3568      else if (WideVT == MVT::i64)
3569        LC = RTLIB::MUL_I64;
3570      else if (WideVT == MVT::i128)
3571        LC = RTLIB::MUL_I128;
3572      assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
3573
3574      // The high part is obtained by SRA'ing all but one of the bits of low
3575      // part.
3576      unsigned LoSize = VT.getSizeInBits();
3577      SDValue HiLHS = DAG.getNode(ISD::SRA, dl, VT, RHS,
3578                                DAG.getConstant(LoSize-1, TLI.getPointerTy()));
3579      SDValue HiRHS = DAG.getNode(ISD::SRA, dl, VT, LHS,
3580                                DAG.getConstant(LoSize-1, TLI.getPointerTy()));
3581
3582      // Here we're passing the 2 arguments explicitly as 4 arguments that are
3583      // pre-lowered to the correct types. This all depends upon WideVT not
3584      // being a legal type for the architecture and thus has to be split to
3585      // two arguments.
3586      SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
3587      SDValue Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl);
3588      BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret,
3589                               DAG.getIntPtrConstant(0));
3590      TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret,
3591                            DAG.getIntPtrConstant(1));
3592    }
3593
3594    if (isSigned) {
3595      Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1,
3596                             TLI.getShiftAmountTy(BottomHalf.getValueType()));
3597      Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1);
3598      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1,
3599                             ISD::SETNE);
3600    } else {
3601      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf,
3602                             DAG.getConstant(0, VT), ISD::SETNE);
3603    }
3604    Results.push_back(BottomHalf);
3605    Results.push_back(TopHalf);
3606    break;
3607  }
3608  case ISD::BUILD_PAIR: {
3609    EVT PairTy = Node->getValueType(0);
3610    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
3611    Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
3612    Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
3613                       DAG.getConstant(PairTy.getSizeInBits()/2,
3614                                       TLI.getShiftAmountTy(PairTy)));
3615    Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
3616    break;
3617  }
3618  case ISD::SELECT:
3619    Tmp1 = Node->getOperand(0);
3620    Tmp2 = Node->getOperand(1);
3621    Tmp3 = Node->getOperand(2);
3622    if (Tmp1.getOpcode() == ISD::SETCC) {
3623      Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
3624                             Tmp2, Tmp3,
3625                             cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
3626    } else {
3627      Tmp1 = DAG.getSelectCC(dl, Tmp1,
3628                             DAG.getConstant(0, Tmp1.getValueType()),
3629                             Tmp2, Tmp3, ISD::SETNE);
3630    }
3631    Results.push_back(Tmp1);
3632    break;
3633  case ISD::BR_JT: {
3634    SDValue Chain = Node->getOperand(0);
3635    SDValue Table = Node->getOperand(1);
3636    SDValue Index = Node->getOperand(2);
3637
3638    EVT PTy = TLI.getPointerTy();
3639
3640    const TargetData &TD = *TLI.getTargetData();
3641    unsigned EntrySize =
3642      DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
3643
3644    Index = DAG.getNode(ISD::MUL, dl, PTy,
3645                        Index, DAG.getConstant(EntrySize, PTy));
3646    SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
3647
3648    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
3649    SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr,
3650                                MachinePointerInfo::getJumpTable(), MemVT,
3651                                false, false, 0);
3652    Addr = LD;
3653    if (TM.getRelocationModel() == Reloc::PIC_) {
3654      // For PIC, the sequence is:
3655      // BRIND(load(Jumptable + index) + RelocBase)
3656      // RelocBase can be JumpTable, GOT or some sort of global base.
3657      Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
3658                          TLI.getPICJumpTableRelocBase(Table, DAG));
3659    }
3660    Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
3661    Results.push_back(Tmp1);
3662    break;
3663  }
3664  case ISD::BRCOND:
3665    // Expand brcond's setcc into its constituent parts and create a BR_CC
3666    // Node.
3667    Tmp1 = Node->getOperand(0);
3668    Tmp2 = Node->getOperand(1);
3669    if (Tmp2.getOpcode() == ISD::SETCC) {
3670      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
3671                         Tmp1, Tmp2.getOperand(2),
3672                         Tmp2.getOperand(0), Tmp2.getOperand(1),
3673                         Node->getOperand(2));
3674    } else {
3675      // We test only the i1 bit.  Skip the AND if UNDEF.
3676      Tmp3 = (Tmp2.getOpcode() == ISD::UNDEF) ? Tmp2 :
3677        DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2,
3678                    DAG.getConstant(1, Tmp2.getValueType()));
3679      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
3680                         DAG.getCondCode(ISD::SETNE), Tmp3,
3681                         DAG.getConstant(0, Tmp3.getValueType()),
3682                         Node->getOperand(2));
3683    }
3684    Results.push_back(Tmp1);
3685    break;
3686  case ISD::SETCC: {
3687    Tmp1 = Node->getOperand(0);
3688    Tmp2 = Node->getOperand(1);
3689    Tmp3 = Node->getOperand(2);
3690    LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl);
3691
3692    // If we expanded the SETCC into an AND/OR, return the new node
3693    if (Tmp2.getNode() == 0) {
3694      Results.push_back(Tmp1);
3695      break;
3696    }
3697
3698    // Otherwise, SETCC for the given comparison type must be completely
3699    // illegal; expand it into a SELECT_CC.
3700    EVT VT = Node->getValueType(0);
3701    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
3702                       DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3);
3703    Results.push_back(Tmp1);
3704    break;
3705  }
3706  case ISD::SELECT_CC: {
3707    Tmp1 = Node->getOperand(0);   // LHS
3708    Tmp2 = Node->getOperand(1);   // RHS
3709    Tmp3 = Node->getOperand(2);   // True
3710    Tmp4 = Node->getOperand(3);   // False
3711    SDValue CC = Node->getOperand(4);
3712
3713    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()),
3714                          Tmp1, Tmp2, CC, dl);
3715
3716    assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!");
3717    Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
3718    CC = DAG.getCondCode(ISD::SETNE);
3719    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2,
3720                       Tmp3, Tmp4, CC);
3721    Results.push_back(Tmp1);
3722    break;
3723  }
3724  case ISD::BR_CC: {
3725    Tmp1 = Node->getOperand(0);              // Chain
3726    Tmp2 = Node->getOperand(2);              // LHS
3727    Tmp3 = Node->getOperand(3);              // RHS
3728    Tmp4 = Node->getOperand(1);              // CC
3729
3730    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()),
3731                          Tmp2, Tmp3, Tmp4, dl);
3732    assert(LastCALLSEQ.size() == 1 && "branch inside CALLSEQ_BEGIN/END?");
3733    setLastCALLSEQ(DAG.getEntryNode());
3734
3735    assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!");
3736    Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
3737    Tmp4 = DAG.getCondCode(ISD::SETNE);
3738    Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2,
3739                       Tmp3, Node->getOperand(4));
3740    Results.push_back(Tmp1);
3741    break;
3742  }
3743  case ISD::GLOBAL_OFFSET_TABLE:
3744  case ISD::GlobalAddress:
3745  case ISD::GlobalTLSAddress:
3746  case ISD::ExternalSymbol:
3747  case ISD::ConstantPool:
3748  case ISD::JumpTable:
3749  case ISD::INTRINSIC_W_CHAIN:
3750  case ISD::INTRINSIC_WO_CHAIN:
3751  case ISD::INTRINSIC_VOID:
3752    // FIXME: Custom lowering for these operations shouldn't return null!
3753    for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
3754      Results.push_back(SDValue(Node, i));
3755    break;
3756  }
3757}
3758void SelectionDAGLegalize::PromoteNode(SDNode *Node,
3759                                       SmallVectorImpl<SDValue> &Results) {
3760  EVT OVT = Node->getValueType(0);
3761  if (Node->getOpcode() == ISD::UINT_TO_FP ||
3762      Node->getOpcode() == ISD::SINT_TO_FP ||
3763      Node->getOpcode() == ISD::SETCC) {
3764    OVT = Node->getOperand(0).getValueType();
3765  }
3766  EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
3767  DebugLoc dl = Node->getDebugLoc();
3768  SDValue Tmp1, Tmp2, Tmp3;
3769  switch (Node->getOpcode()) {
3770  case ISD::CTTZ:
3771  case ISD::CTLZ:
3772  case ISD::CTPOP:
3773    // Zero extend the argument.
3774    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3775    // Perform the larger operation.
3776    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
3777    if (Node->getOpcode() == ISD::CTTZ) {
3778      //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT)
3779      Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT),
3780                          Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT),
3781                          ISD::SETEQ);
3782      Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2,
3783                          DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1);
3784    } else if (Node->getOpcode() == ISD::CTLZ) {
3785      // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
3786      Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
3787                          DAG.getConstant(NVT.getSizeInBits() -
3788                                          OVT.getSizeInBits(), NVT));
3789    }
3790    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
3791    break;
3792  case ISD::BSWAP: {
3793    unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
3794    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3795    Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
3796    Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
3797                          DAG.getConstant(DiffBits, TLI.getShiftAmountTy(NVT)));
3798    Results.push_back(Tmp1);
3799    break;
3800  }
3801  case ISD::FP_TO_UINT:
3802  case ISD::FP_TO_SINT:
3803    Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
3804                                 Node->getOpcode() == ISD::FP_TO_SINT, dl);
3805    Results.push_back(Tmp1);
3806    break;
3807  case ISD::UINT_TO_FP:
3808  case ISD::SINT_TO_FP:
3809    Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
3810                                 Node->getOpcode() == ISD::SINT_TO_FP, dl);
3811    Results.push_back(Tmp1);
3812    break;
3813  case ISD::AND:
3814  case ISD::OR:
3815  case ISD::XOR: {
3816    unsigned ExtOp, TruncOp;
3817    if (OVT.isVector()) {
3818      ExtOp   = ISD::BITCAST;
3819      TruncOp = ISD::BITCAST;
3820    } else {
3821      assert(OVT.isInteger() && "Cannot promote logic operation");
3822      ExtOp   = ISD::ANY_EXTEND;
3823      TruncOp = ISD::TRUNCATE;
3824    }
3825    // Promote each of the values to the new type.
3826    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3827    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3828    // Perform the larger operation, then convert back
3829    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3830    Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
3831    break;
3832  }
3833  case ISD::SELECT: {
3834    unsigned ExtOp, TruncOp;
3835    if (Node->getValueType(0).isVector()) {
3836      ExtOp   = ISD::BITCAST;
3837      TruncOp = ISD::BITCAST;
3838    } else if (Node->getValueType(0).isInteger()) {
3839      ExtOp   = ISD::ANY_EXTEND;
3840      TruncOp = ISD::TRUNCATE;
3841    } else {
3842      ExtOp   = ISD::FP_EXTEND;
3843      TruncOp = ISD::FP_ROUND;
3844    }
3845    Tmp1 = Node->getOperand(0);
3846    // Promote each of the values to the new type.
3847    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3848    Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
3849    // Perform the larger operation, then round down.
3850    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3);
3851    if (TruncOp != ISD::FP_ROUND)
3852      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
3853    else
3854      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
3855                         DAG.getIntPtrConstant(0));
3856    Results.push_back(Tmp1);
3857    break;
3858  }
3859  case ISD::VECTOR_SHUFFLE: {
3860    SmallVector<int, 8> Mask;
3861    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
3862
3863    // Cast the two input vectors.
3864    Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0));
3865    Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1));
3866
3867    // Convert the shuffle mask to the right # elements.
3868    Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
3869    Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1);
3870    Results.push_back(Tmp1);
3871    break;
3872  }
3873  case ISD::SETCC: {
3874    unsigned ExtOp = ISD::FP_EXTEND;
3875    if (NVT.isInteger()) {
3876      ISD::CondCode CCCode =
3877        cast<CondCodeSDNode>(Node->getOperand(2))->get();
3878      ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3879    }
3880    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3881    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3882    Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3883                                  Tmp1, Tmp2, Node->getOperand(2)));
3884    break;
3885  }
3886  }
3887}
3888
3889// SelectionDAG::Legalize - This is the entry point for the file.
3890//
3891void SelectionDAG::Legalize() {
3892  /// run - This is the main entry point to this class.
3893  ///
3894  SelectionDAGLegalize(*this).LegalizeDAG();
3895}
3896