LegalizeDAG.cpp revision 14648468011c92a4210f8118721d58c25043daf8
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the SelectionDAG::Legalize method. 11// 12//===----------------------------------------------------------------------===// 13 14#include "llvm/Analysis/DebugInfo.h" 15#include "llvm/CodeGen/Analysis.h" 16#include "llvm/CodeGen/MachineFunction.h" 17#include "llvm/CodeGen/MachineJumpTableInfo.h" 18#include "llvm/CodeGen/SelectionDAG.h" 19#include "llvm/Target/TargetFrameLowering.h" 20#include "llvm/Target/TargetLowering.h" 21#include "llvm/Target/TargetData.h" 22#include "llvm/Target/TargetMachine.h" 23#include "llvm/CallingConv.h" 24#include "llvm/Constants.h" 25#include "llvm/DerivedTypes.h" 26#include "llvm/LLVMContext.h" 27#include "llvm/Support/Debug.h" 28#include "llvm/Support/ErrorHandling.h" 29#include "llvm/Support/MathExtras.h" 30#include "llvm/Support/raw_ostream.h" 31#include "llvm/ADT/DenseMap.h" 32#include "llvm/ADT/SmallVector.h" 33#include "llvm/ADT/SmallPtrSet.h" 34using namespace llvm; 35 36//===----------------------------------------------------------------------===// 37/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and 38/// hacks on it until the target machine can handle it. This involves 39/// eliminating value sizes the machine cannot handle (promoting small sizes to 40/// large sizes or splitting up large values into small values) as well as 41/// eliminating operations the machine cannot handle. 42/// 43/// This code also does a small amount of optimization and recognition of idioms 44/// as part of its processing. For example, if a target does not support a 45/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this 46/// will attempt merge setcc and brc instructions into brcc's. 47/// 48namespace { 49class SelectionDAGLegalize { 50 const TargetMachine &TM; 51 const TargetLowering &TLI; 52 SelectionDAG &DAG; 53 54 // Libcall insertion helpers. 55 56 /// LastCALLSEQ - This keeps track of the CALLSEQ_END node that has been 57 /// legalized. We use this to ensure that calls are properly serialized 58 /// against each other, including inserted libcalls. 59 SmallVector<SDValue, 8> LastCALLSEQ; 60 61 /// LegalizedNodes - For nodes that are of legal width, and that have more 62 /// than one use, this map indicates what regularized operand to use. This 63 /// allows us to avoid legalizing the same thing more than once. 64 DenseMap<SDValue, SDValue> LegalizedNodes; 65 66 void AddLegalizedOperand(SDValue From, SDValue To) { 67 LegalizedNodes.insert(std::make_pair(From, To)); 68 // If someone requests legalization of the new node, return itself. 69 if (From != To) 70 LegalizedNodes.insert(std::make_pair(To, To)); 71 72 // Transfer SDDbgValues. 73 DAG.TransferDbgValues(From, To); 74 } 75 76public: 77 explicit SelectionDAGLegalize(SelectionDAG &DAG); 78 79 void LegalizeDAG(); 80 81private: 82 /// LegalizeOp - Return a legal replacement for the given operation, with 83 /// all legal operands. 84 SDValue LegalizeOp(SDValue O); 85 86 SDValue OptimizeFloatStore(StoreSDNode *ST); 87 88 /// PerformInsertVectorEltInMemory - Some target cannot handle a variable 89 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 90 /// is necessary to spill the vector being inserted into to memory, perform 91 /// the insert there, and then read the result back. 92 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, 93 SDValue Idx, DebugLoc dl); 94 SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, 95 SDValue Idx, DebugLoc dl); 96 97 /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which 98 /// performs the same shuffe in terms of order or result bytes, but on a type 99 /// whose vector element type is narrower than the original shuffle type. 100 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 101 SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl, 102 SDValue N1, SDValue N2, 103 SmallVectorImpl<int> &Mask) const; 104 105 bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest, 106 SmallPtrSet<SDNode*, 32> &NodesLeadingTo); 107 108 void LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, 109 DebugLoc dl); 110 111 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned); 112 SDValue ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, const SDValue *Ops, 113 unsigned NumOps, bool isSigned, DebugLoc dl); 114 115 std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC, 116 SDNode *Node, bool isSigned); 117 SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32, 118 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, 119 RTLIB::Libcall Call_PPCF128); 120 SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, 121 RTLIB::Libcall Call_I8, 122 RTLIB::Libcall Call_I16, 123 RTLIB::Libcall Call_I32, 124 RTLIB::Libcall Call_I64, 125 RTLIB::Libcall Call_I128); 126 void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 127 128 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, DebugLoc dl); 129 SDValue ExpandBUILD_VECTOR(SDNode *Node); 130 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); 131 void ExpandDYNAMIC_STACKALLOC(SDNode *Node, 132 SmallVectorImpl<SDValue> &Results); 133 SDValue ExpandFCOPYSIGN(SDNode *Node); 134 SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT, 135 DebugLoc dl); 136 SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned, 137 DebugLoc dl); 138 SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned, 139 DebugLoc dl); 140 141 SDValue ExpandBSWAP(SDValue Op, DebugLoc dl); 142 SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl); 143 144 SDValue ExpandExtractFromVectorThroughStack(SDValue Op); 145 SDValue ExpandInsertToVectorThroughStack(SDValue Op); 146 SDValue ExpandVectorBuildThroughStack(SDNode* Node); 147 148 std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node); 149 150 void ExpandNode(SDNode *Node, SmallVectorImpl<SDValue> &Results); 151 void PromoteNode(SDNode *Node, SmallVectorImpl<SDValue> &Results); 152 153 SDValue getLastCALLSEQ() { return LastCALLSEQ.back(); } 154 void setLastCALLSEQ(const SDValue s) { LastCALLSEQ.back() = s; } 155 void pushLastCALLSEQ(SDValue s) { 156 LastCALLSEQ.push_back(s); 157 } 158 void popLastCALLSEQ() { 159 LastCALLSEQ.pop_back(); 160 } 161}; 162} 163 164/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which 165/// performs the same shuffe in terms of order or result bytes, but on a type 166/// whose vector element type is narrower than the original shuffle type. 167/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 168SDValue 169SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl, 170 SDValue N1, SDValue N2, 171 SmallVectorImpl<int> &Mask) const { 172 unsigned NumMaskElts = VT.getVectorNumElements(); 173 unsigned NumDestElts = NVT.getVectorNumElements(); 174 unsigned NumEltsGrowth = NumDestElts / NumMaskElts; 175 176 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); 177 178 if (NumEltsGrowth == 1) 179 return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]); 180 181 SmallVector<int, 8> NewMask; 182 for (unsigned i = 0; i != NumMaskElts; ++i) { 183 int Idx = Mask[i]; 184 for (unsigned j = 0; j != NumEltsGrowth; ++j) { 185 if (Idx < 0) 186 NewMask.push_back(-1); 187 else 188 NewMask.push_back(Idx * NumEltsGrowth + j); 189 } 190 } 191 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?"); 192 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?"); 193 return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]); 194} 195 196SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag) 197 : TM(dag.getTarget()), TLI(dag.getTargetLoweringInfo()), 198 DAG(dag) { 199} 200 201void SelectionDAGLegalize::LegalizeDAG() { 202 pushLastCALLSEQ(DAG.getEntryNode()); 203 204 // The legalize process is inherently a bottom-up recursive process (users 205 // legalize their uses before themselves). Given infinite stack space, we 206 // could just start legalizing on the root and traverse the whole graph. In 207 // practice however, this causes us to run out of stack space on large basic 208 // blocks. To avoid this problem, compute an ordering of the nodes where each 209 // node is only legalized after all of its operands are legalized. 210 DAG.AssignTopologicalOrder(); 211 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 212 E = prior(DAG.allnodes_end()); I != llvm::next(E); ++I) 213 LegalizeOp(SDValue(I, 0)); 214 215 // Finally, it's possible the root changed. Get the new root. 216 SDValue OldRoot = DAG.getRoot(); 217 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 218 DAG.setRoot(LegalizedNodes[OldRoot]); 219 220 LegalizedNodes.clear(); 221 222 // Remove dead nodes now. 223 DAG.RemoveDeadNodes(); 224} 225 226 227/// FindCallEndFromCallStart - Given a chained node that is part of a call 228/// sequence, find the CALLSEQ_END node that terminates the call sequence. 229static SDNode *FindCallEndFromCallStart(SDNode *Node, int depth = 0) { 230 int next_depth = depth; 231 if (Node->getOpcode() == ISD::CALLSEQ_START) 232 next_depth = depth + 1; 233 if (Node->getOpcode() == ISD::CALLSEQ_END) { 234 assert(depth > 0 && "negative depth!"); 235 if (depth == 1) 236 return Node; 237 else 238 next_depth = depth - 1; 239 } 240 if (Node->use_empty()) 241 return 0; // No CallSeqEnd 242 243 // The chain is usually at the end. 244 SDValue TheChain(Node, Node->getNumValues()-1); 245 if (TheChain.getValueType() != MVT::Other) { 246 // Sometimes it's at the beginning. 247 TheChain = SDValue(Node, 0); 248 if (TheChain.getValueType() != MVT::Other) { 249 // Otherwise, hunt for it. 250 for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i) 251 if (Node->getValueType(i) == MVT::Other) { 252 TheChain = SDValue(Node, i); 253 break; 254 } 255 256 // Otherwise, we walked into a node without a chain. 257 if (TheChain.getValueType() != MVT::Other) 258 return 0; 259 } 260 } 261 262 for (SDNode::use_iterator UI = Node->use_begin(), 263 E = Node->use_end(); UI != E; ++UI) { 264 265 // Make sure to only follow users of our token chain. 266 SDNode *User = *UI; 267 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) 268 if (User->getOperand(i) == TheChain) 269 if (SDNode *Result = FindCallEndFromCallStart(User, next_depth)) 270 return Result; 271 } 272 return 0; 273} 274 275/// FindCallStartFromCallEnd - Given a chained node that is part of a call 276/// sequence, find the CALLSEQ_START node that initiates the call sequence. 277static SDNode *FindCallStartFromCallEnd(SDNode *Node) { 278 int nested = 0; 279 assert(Node && "Didn't find callseq_start for a call??"); 280 while (Node->getOpcode() != ISD::CALLSEQ_START || nested) { 281 Node = Node->getOperand(0).getNode(); 282 assert(Node->getOperand(0).getValueType() == MVT::Other && 283 "Node doesn't have a token chain argument!"); 284 switch (Node->getOpcode()) { 285 default: 286 break; 287 case ISD::CALLSEQ_START: 288 if (!nested) 289 return Node; 290 Node = Node->getOperand(0).getNode(); 291 nested--; 292 break; 293 case ISD::CALLSEQ_END: 294 nested++; 295 break; 296 } 297 } 298 return (Node->getOpcode() == ISD::CALLSEQ_START) ? Node : 0; 299} 300 301/// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to 302/// see if any uses can reach Dest. If no dest operands can get to dest, 303/// legalize them, legalize ourself, and return false, otherwise, return true. 304/// 305/// Keep track of the nodes we fine that actually do lead to Dest in 306/// NodesLeadingTo. This avoids retraversing them exponential number of times. 307/// 308bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest, 309 SmallPtrSet<SDNode*, 32> &NodesLeadingTo) { 310 if (N == Dest) return true; // N certainly leads to Dest :) 311 312 // If we've already processed this node and it does lead to Dest, there is no 313 // need to reprocess it. 314 if (NodesLeadingTo.count(N)) return true; 315 316 // If the first result of this node has been already legalized, then it cannot 317 // reach N. 318 if (LegalizedNodes.count(SDValue(N, 0))) return false; 319 320 // Okay, this node has not already been legalized. Check and legalize all 321 // operands. If none lead to Dest, then we can legalize this node. 322 bool OperandsLeadToDest = false; 323 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) 324 OperandsLeadToDest |= // If an operand leads to Dest, so do we. 325 LegalizeAllNodesNotLeadingTo(N->getOperand(i).getNode(), Dest, 326 NodesLeadingTo); 327 328 if (OperandsLeadToDest) { 329 NodesLeadingTo.insert(N); 330 return true; 331 } 332 333 // Okay, this node looks safe, legalize it and return false. 334 LegalizeOp(SDValue(N, 0)); 335 return false; 336} 337 338/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or 339/// a load from the constant pool. 340static SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP, 341 SelectionDAG &DAG, const TargetLowering &TLI) { 342 bool Extend = false; 343 DebugLoc dl = CFP->getDebugLoc(); 344 345 // If a FP immediate is precise when represented as a float and if the 346 // target can do an extending load from float to double, we put it into 347 // the constant pool as a float, even if it's is statically typed as a 348 // double. This shrinks FP constants and canonicalizes them for targets where 349 // an FP extending load is the same cost as a normal load (such as on the x87 350 // fp stack or PPC FP unit). 351 EVT VT = CFP->getValueType(0); 352 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue()); 353 if (!UseCP) { 354 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion"); 355 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), 356 (VT == MVT::f64) ? MVT::i64 : MVT::i32); 357 } 358 359 EVT OrigVT = VT; 360 EVT SVT = VT; 361 while (SVT != MVT::f32) { 362 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1); 363 if (ConstantFPSDNode::isValueValidForType(SVT, CFP->getValueAPF()) && 364 // Only do this if the target has a native EXTLOAD instruction from 365 // smaller type. 366 TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) && 367 TLI.ShouldShrinkFPConstant(OrigVT)) { 368 Type *SType = SVT.getTypeForEVT(*DAG.getContext()); 369 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType)); 370 VT = SVT; 371 Extend = true; 372 } 373 } 374 375 SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy()); 376 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 377 if (Extend) 378 return DAG.getExtLoad(ISD::EXTLOAD, dl, OrigVT, 379 DAG.getEntryNode(), 380 CPIdx, MachinePointerInfo::getConstantPool(), 381 VT, false, false, Alignment); 382 return DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx, 383 MachinePointerInfo::getConstantPool(), false, false, 384 Alignment); 385} 386 387/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores. 388static 389SDValue ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG, 390 const TargetLowering &TLI) { 391 SDValue Chain = ST->getChain(); 392 SDValue Ptr = ST->getBasePtr(); 393 SDValue Val = ST->getValue(); 394 EVT VT = Val.getValueType(); 395 int Alignment = ST->getAlignment(); 396 DebugLoc dl = ST->getDebugLoc(); 397 if (ST->getMemoryVT().isFloatingPoint() || 398 ST->getMemoryVT().isVector()) { 399 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 400 if (TLI.isTypeLegal(intVT)) { 401 // Expand to a bitconvert of the value to the integer type of the 402 // same size, then a (misaligned) int store. 403 // FIXME: Does not handle truncating floating point stores! 404 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 405 return DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 406 ST->isVolatile(), ST->isNonTemporal(), Alignment); 407 } 408 // Do a (aligned) store to a stack slot, then copy from the stack slot 409 // to the final destination using (unaligned) integer loads and stores. 410 EVT StoredVT = ST->getMemoryVT(); 411 EVT RegVT = 412 TLI.getRegisterType(*DAG.getContext(), 413 EVT::getIntegerVT(*DAG.getContext(), 414 StoredVT.getSizeInBits())); 415 unsigned StoredBytes = StoredVT.getSizeInBits() / 8; 416 unsigned RegBytes = RegVT.getSizeInBits() / 8; 417 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 418 419 // Make sure the stack slot is also aligned for the register type. 420 SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT); 421 422 // Perform the original store, only redirected to the stack slot. 423 SDValue Store = DAG.getTruncStore(Chain, dl, 424 Val, StackPtr, MachinePointerInfo(), 425 StoredVT, false, false, 0); 426 SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy()); 427 SmallVector<SDValue, 8> Stores; 428 unsigned Offset = 0; 429 430 // Do all but one copies using the full register width. 431 for (unsigned i = 1; i < NumRegs; i++) { 432 // Load one integer register's worth from the stack slot. 433 SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr, 434 MachinePointerInfo(), 435 false, false, 0); 436 // Store it to the final location. Remember the store. 437 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 438 ST->getPointerInfo().getWithOffset(Offset), 439 ST->isVolatile(), ST->isNonTemporal(), 440 MinAlign(ST->getAlignment(), Offset))); 441 // Increment the pointers. 442 Offset += RegBytes; 443 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr, 444 Increment); 445 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 446 } 447 448 // The last store may be partial. Do a truncating store. On big-endian 449 // machines this requires an extending load from the stack slot to ensure 450 // that the bits are in the right place. 451 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 452 8 * (StoredBytes - Offset)); 453 454 // Load from the stack slot. 455 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 456 MachinePointerInfo(), 457 MemVT, false, false, 0); 458 459 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 460 ST->getPointerInfo() 461 .getWithOffset(Offset), 462 MemVT, ST->isVolatile(), 463 ST->isNonTemporal(), 464 MinAlign(ST->getAlignment(), Offset))); 465 // The order of the stores doesn't matter - say it with a TokenFactor. 466 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0], 467 Stores.size()); 468 } 469 assert(ST->getMemoryVT().isInteger() && 470 !ST->getMemoryVT().isVector() && 471 "Unaligned store of unknown type."); 472 // Get the half-size VT 473 EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext()); 474 int NumBits = NewStoredVT.getSizeInBits(); 475 int IncrementSize = NumBits / 8; 476 477 // Divide the stored value in two parts. 478 SDValue ShiftAmount = DAG.getConstant(NumBits, 479 TLI.getShiftAmountTy(Val.getValueType())); 480 SDValue Lo = Val; 481 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 482 483 // Store the two parts 484 SDValue Store1, Store2; 485 Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr, 486 ST->getPointerInfo(), NewStoredVT, 487 ST->isVolatile(), ST->isNonTemporal(), Alignment); 488 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 489 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 490 Alignment = MinAlign(Alignment, IncrementSize); 491 Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr, 492 ST->getPointerInfo().getWithOffset(IncrementSize), 493 NewStoredVT, ST->isVolatile(), ST->isNonTemporal(), 494 Alignment); 495 496 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 497} 498 499/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads. 500static 501SDValue ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG, 502 const TargetLowering &TLI) { 503 SDValue Chain = LD->getChain(); 504 SDValue Ptr = LD->getBasePtr(); 505 EVT VT = LD->getValueType(0); 506 EVT LoadedVT = LD->getMemoryVT(); 507 DebugLoc dl = LD->getDebugLoc(); 508 if (VT.isFloatingPoint() || VT.isVector()) { 509 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 510 if (TLI.isTypeLegal(intVT)) { 511 // Expand to a (misaligned) integer load of the same size, 512 // then bitconvert to floating point or vector. 513 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getPointerInfo(), 514 LD->isVolatile(), 515 LD->isNonTemporal(), LD->getAlignment()); 516 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 517 if (VT.isFloatingPoint() && LoadedVT != VT) 518 Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result); 519 520 SDValue Ops[] = { Result, Chain }; 521 return DAG.getMergeValues(Ops, 2, dl); 522 } 523 524 // Copy the value to a (aligned) stack slot using (unaligned) integer 525 // loads and stores, then do a (aligned) load from the stack slot. 526 EVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT); 527 unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8; 528 unsigned RegBytes = RegVT.getSizeInBits() / 8; 529 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 530 531 // Make sure the stack slot is also aligned for the register type. 532 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 533 534 SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy()); 535 SmallVector<SDValue, 8> Stores; 536 SDValue StackPtr = StackBase; 537 unsigned Offset = 0; 538 539 // Do all but one copies using the full register width. 540 for (unsigned i = 1; i < NumRegs; i++) { 541 // Load one integer register's worth from the original location. 542 SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr, 543 LD->getPointerInfo().getWithOffset(Offset), 544 LD->isVolatile(), LD->isNonTemporal(), 545 MinAlign(LD->getAlignment(), Offset)); 546 // Follow the load with a store to the stack slot. Remember the store. 547 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr, 548 MachinePointerInfo(), false, false, 0)); 549 // Increment the pointers. 550 Offset += RegBytes; 551 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 552 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr, 553 Increment); 554 } 555 556 // The last copy may be partial. Do an extending load. 557 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 558 8 * (LoadedBytes - Offset)); 559 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 560 LD->getPointerInfo().getWithOffset(Offset), 561 MemVT, LD->isVolatile(), 562 LD->isNonTemporal(), 563 MinAlign(LD->getAlignment(), Offset)); 564 // Follow the load with a store to the stack slot. Remember the store. 565 // On big-endian machines this requires a truncating store to ensure 566 // that the bits end up in the right place. 567 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr, 568 MachinePointerInfo(), MemVT, 569 false, false, 0)); 570 571 // The order of the stores doesn't matter - say it with a TokenFactor. 572 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0], 573 Stores.size()); 574 575 // Finally, perform the original load only redirected to the stack slot. 576 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 577 MachinePointerInfo(), LoadedVT, false, false, 0); 578 579 // Callers expect a MERGE_VALUES node. 580 SDValue Ops[] = { Load, TF }; 581 return DAG.getMergeValues(Ops, 2, dl); 582 } 583 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 584 "Unaligned load of unsupported type."); 585 586 // Compute the new VT that is half the size of the old one. This is an 587 // integer MVT. 588 unsigned NumBits = LoadedVT.getSizeInBits(); 589 EVT NewLoadedVT; 590 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 591 NumBits >>= 1; 592 593 unsigned Alignment = LD->getAlignment(); 594 unsigned IncrementSize = NumBits / 8; 595 ISD::LoadExtType HiExtType = LD->getExtensionType(); 596 597 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 598 if (HiExtType == ISD::NON_EXTLOAD) 599 HiExtType = ISD::ZEXTLOAD; 600 601 // Load the value in two parts 602 SDValue Lo, Hi; 603 if (TLI.isLittleEndian()) { 604 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 605 NewLoadedVT, LD->isVolatile(), 606 LD->isNonTemporal(), Alignment); 607 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 608 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 609 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 610 LD->getPointerInfo().getWithOffset(IncrementSize), 611 NewLoadedVT, LD->isVolatile(), 612 LD->isNonTemporal(), MinAlign(Alignment,IncrementSize)); 613 } else { 614 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 615 NewLoadedVT, LD->isVolatile(), 616 LD->isNonTemporal(), Alignment); 617 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 618 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 619 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 620 LD->getPointerInfo().getWithOffset(IncrementSize), 621 NewLoadedVT, LD->isVolatile(), 622 LD->isNonTemporal(), MinAlign(Alignment,IncrementSize)); 623 } 624 625 // aggregate the two parts 626 SDValue ShiftAmount = DAG.getConstant(NumBits, 627 TLI.getShiftAmountTy(Hi.getValueType())); 628 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 629 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 630 631 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 632 Hi.getValue(1)); 633 634 SDValue Ops[] = { Result, TF }; 635 return DAG.getMergeValues(Ops, 2, dl); 636} 637 638/// PerformInsertVectorEltInMemory - Some target cannot handle a variable 639/// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 640/// is necessary to spill the vector being inserted into to memory, perform 641/// the insert there, and then read the result back. 642SDValue SelectionDAGLegalize:: 643PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx, 644 DebugLoc dl) { 645 SDValue Tmp1 = Vec; 646 SDValue Tmp2 = Val; 647 SDValue Tmp3 = Idx; 648 649 // If the target doesn't support this, we have to spill the input vector 650 // to a temporary stack slot, update the element, then reload it. This is 651 // badness. We could also load the value into a vector register (either 652 // with a "move to register" or "extload into register" instruction, then 653 // permute it into place, if the idx is a constant and if the idx is 654 // supported by the target. 655 EVT VT = Tmp1.getValueType(); 656 EVT EltVT = VT.getVectorElementType(); 657 EVT IdxVT = Tmp3.getValueType(); 658 EVT PtrVT = TLI.getPointerTy(); 659 SDValue StackPtr = DAG.CreateStackTemporary(VT); 660 661 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 662 663 // Store the vector. 664 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr, 665 MachinePointerInfo::getFixedStack(SPFI), 666 false, false, 0); 667 668 // Truncate or zero extend offset to target pointer type. 669 unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND; 670 Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3); 671 // Add the offset to the index. 672 unsigned EltSize = EltVT.getSizeInBits()/8; 673 Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT)); 674 SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr); 675 // Store the scalar value. 676 Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT, 677 false, false, 0); 678 // Load the updated vector. 679 return DAG.getLoad(VT, dl, Ch, StackPtr, 680 MachinePointerInfo::getFixedStack(SPFI), false, false, 0); 681} 682 683 684SDValue SelectionDAGLegalize:: 685ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) { 686 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) { 687 // SCALAR_TO_VECTOR requires that the type of the value being inserted 688 // match the element type of the vector being created, except for 689 // integers in which case the inserted value can be over width. 690 EVT EltVT = Vec.getValueType().getVectorElementType(); 691 if (Val.getValueType() == EltVT || 692 (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) { 693 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, 694 Vec.getValueType(), Val); 695 696 unsigned NumElts = Vec.getValueType().getVectorNumElements(); 697 // We generate a shuffle of InVec and ScVec, so the shuffle mask 698 // should be 0,1,2,3,4,5... with the appropriate element replaced with 699 // elt 0 of the RHS. 700 SmallVector<int, 8> ShufOps; 701 for (unsigned i = 0; i != NumElts; ++i) 702 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts); 703 704 return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, 705 &ShufOps[0]); 706 } 707 } 708 return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl); 709} 710 711SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) { 712 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 713 // FIXME: We shouldn't do this for TargetConstantFP's. 714 // FIXME: move this to the DAG Combiner! Note that we can't regress due 715 // to phase ordering between legalized code and the dag combiner. This 716 // probably means that we need to integrate dag combiner and legalizer 717 // together. 718 // We generally can't do this one for long doubles. 719 SDValue Tmp1 = ST->getChain(); 720 SDValue Tmp2 = ST->getBasePtr(); 721 SDValue Tmp3; 722 unsigned Alignment = ST->getAlignment(); 723 bool isVolatile = ST->isVolatile(); 724 bool isNonTemporal = ST->isNonTemporal(); 725 DebugLoc dl = ST->getDebugLoc(); 726 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) { 727 if (CFP->getValueType(0) == MVT::f32 && 728 TLI.isTypeLegal(MVT::i32)) { 729 Tmp3 = DAG.getConstant(CFP->getValueAPF(). 730 bitcastToAPInt().zextOrTrunc(32), 731 MVT::i32); 732 return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(), 733 isVolatile, isNonTemporal, Alignment); 734 } 735 736 if (CFP->getValueType(0) == MVT::f64) { 737 // If this target supports 64-bit registers, do a single 64-bit store. 738 if (TLI.isTypeLegal(MVT::i64)) { 739 Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 740 zextOrTrunc(64), MVT::i64); 741 return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(), 742 isVolatile, isNonTemporal, Alignment); 743 } 744 745 if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) { 746 // Otherwise, if the target supports 32-bit registers, use 2 32-bit 747 // stores. If the target supports neither 32- nor 64-bits, this 748 // xform is certainly not worth it. 749 const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt(); 750 SDValue Lo = DAG.getConstant(IntVal.trunc(32), MVT::i32); 751 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32); 752 if (TLI.isBigEndian()) std::swap(Lo, Hi); 753 754 Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getPointerInfo(), isVolatile, 755 isNonTemporal, Alignment); 756 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, 757 DAG.getIntPtrConstant(4)); 758 Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2, 759 ST->getPointerInfo().getWithOffset(4), 760 isVolatile, isNonTemporal, MinAlign(Alignment, 4U)); 761 762 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 763 } 764 } 765 } 766 return SDValue(0, 0); 767} 768 769/// LegalizeOp - Return a legal replacement for the given operation, with 770/// all legal operands. 771SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) { 772 if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes. 773 return Op; 774 775 SDNode *Node = Op.getNode(); 776 DebugLoc dl = Node->getDebugLoc(); 777 778 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 779 assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) == 780 TargetLowering::TypeLegal && 781 "Unexpected illegal type!"); 782 783 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 784 assert((TLI.getTypeAction(*DAG.getContext(), 785 Node->getOperand(i).getValueType()) == 786 TargetLowering::TypeLegal || 787 Node->getOperand(i).getOpcode() == ISD::TargetConstant) && 788 "Unexpected illegal type!"); 789 790 // Note that LegalizeOp may be reentered even from single-use nodes, which 791 // means that we always must cache transformed nodes. 792 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); 793 if (I != LegalizedNodes.end()) return I->second; 794 795 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 796 SDValue Result = Op; 797 bool isCustom = false; 798 799 // Figure out the correct action; the way to query this varies by opcode 800 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 801 bool SimpleFinishLegalizing = true; 802 switch (Node->getOpcode()) { 803 case ISD::INTRINSIC_W_CHAIN: 804 case ISD::INTRINSIC_WO_CHAIN: 805 case ISD::INTRINSIC_VOID: 806 case ISD::VAARG: 807 case ISD::STACKSAVE: 808 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 809 break; 810 case ISD::SINT_TO_FP: 811 case ISD::UINT_TO_FP: 812 case ISD::EXTRACT_VECTOR_ELT: 813 Action = TLI.getOperationAction(Node->getOpcode(), 814 Node->getOperand(0).getValueType()); 815 break; 816 case ISD::FP_ROUND_INREG: 817 case ISD::SIGN_EXTEND_INREG: { 818 EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 819 Action = TLI.getOperationAction(Node->getOpcode(), InnerType); 820 break; 821 } 822 case ISD::SELECT_CC: 823 case ISD::SETCC: 824 case ISD::BR_CC: { 825 unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 : 826 Node->getOpcode() == ISD::SETCC ? 2 : 1; 827 unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0; 828 EVT OpVT = Node->getOperand(CompareOperand).getValueType(); 829 ISD::CondCode CCCode = 830 cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get(); 831 Action = TLI.getCondCodeAction(CCCode, OpVT); 832 if (Action == TargetLowering::Legal) { 833 if (Node->getOpcode() == ISD::SELECT_CC) 834 Action = TLI.getOperationAction(Node->getOpcode(), 835 Node->getValueType(0)); 836 else 837 Action = TLI.getOperationAction(Node->getOpcode(), OpVT); 838 } 839 break; 840 } 841 case ISD::LOAD: 842 case ISD::STORE: 843 // FIXME: Model these properly. LOAD and STORE are complicated, and 844 // STORE expects the unlegalized operand in some cases. 845 SimpleFinishLegalizing = false; 846 break; 847 case ISD::CALLSEQ_START: 848 case ISD::CALLSEQ_END: 849 // FIXME: This shouldn't be necessary. These nodes have special properties 850 // dealing with the recursive nature of legalization. Removing this 851 // special case should be done as part of making LegalizeDAG non-recursive. 852 SimpleFinishLegalizing = false; 853 break; 854 case ISD::EXTRACT_ELEMENT: 855 case ISD::FLT_ROUNDS_: 856 case ISD::SADDO: 857 case ISD::SSUBO: 858 case ISD::UADDO: 859 case ISD::USUBO: 860 case ISD::SMULO: 861 case ISD::UMULO: 862 case ISD::FPOWI: 863 case ISD::MERGE_VALUES: 864 case ISD::EH_RETURN: 865 case ISD::FRAME_TO_ARGS_OFFSET: 866 case ISD::EH_SJLJ_SETJMP: 867 case ISD::EH_SJLJ_LONGJMP: 868 case ISD::EH_SJLJ_DISPATCHSETUP: 869 // These operations lie about being legal: when they claim to be legal, 870 // they should actually be expanded. 871 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 872 if (Action == TargetLowering::Legal) 873 Action = TargetLowering::Expand; 874 break; 875 case ISD::TRAMPOLINE: 876 case ISD::FRAMEADDR: 877 case ISD::RETURNADDR: 878 // These operations lie about being legal: when they claim to be legal, 879 // they should actually be custom-lowered. 880 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 881 if (Action == TargetLowering::Legal) 882 Action = TargetLowering::Custom; 883 break; 884 case ISD::BUILD_VECTOR: 885 // A weird case: legalization for BUILD_VECTOR never legalizes the 886 // operands! 887 // FIXME: This really sucks... changing it isn't semantically incorrect, 888 // but it massively pessimizes the code for floating-point BUILD_VECTORs 889 // because ConstantFP operands get legalized into constant pool loads 890 // before the BUILD_VECTOR code can see them. It doesn't usually bite, 891 // though, because BUILD_VECTORS usually get lowered into other nodes 892 // which get legalized properly. 893 SimpleFinishLegalizing = false; 894 break; 895 default: 896 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { 897 Action = TargetLowering::Legal; 898 } else { 899 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 900 } 901 break; 902 } 903 904 if (SimpleFinishLegalizing) { 905 SmallVector<SDValue, 8> Ops, ResultVals; 906 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 907 Ops.push_back(LegalizeOp(Node->getOperand(i))); 908 switch (Node->getOpcode()) { 909 default: break; 910 case ISD::BR: 911 case ISD::BRIND: 912 case ISD::BR_JT: 913 case ISD::BR_CC: 914 case ISD::BRCOND: 915 assert(LastCALLSEQ.size() == 1 && "branch inside CALLSEQ_BEGIN/END?"); 916 // Branches tweak the chain to include LastCALLSEQ 917 Ops[0] = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ops[0], 918 getLastCALLSEQ()); 919 Ops[0] = LegalizeOp(Ops[0]); 920 setLastCALLSEQ(DAG.getEntryNode()); 921 break; 922 case ISD::SHL: 923 case ISD::SRL: 924 case ISD::SRA: 925 case ISD::ROTL: 926 case ISD::ROTR: 927 // Legalizing shifts/rotates requires adjusting the shift amount 928 // to the appropriate width. 929 if (!Ops[1].getValueType().isVector()) 930 Ops[1] = LegalizeOp(DAG.getShiftAmountOperand(Ops[0].getValueType(), 931 Ops[1])); 932 break; 933 case ISD::SRL_PARTS: 934 case ISD::SRA_PARTS: 935 case ISD::SHL_PARTS: 936 // Legalizing shifts/rotates requires adjusting the shift amount 937 // to the appropriate width. 938 if (!Ops[2].getValueType().isVector()) 939 Ops[2] = LegalizeOp(DAG.getShiftAmountOperand(Ops[0].getValueType(), 940 Ops[2])); 941 break; 942 } 943 944 Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), Ops.data(), 945 Ops.size()), 0); 946 switch (Action) { 947 case TargetLowering::Legal: 948 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 949 ResultVals.push_back(Result.getValue(i)); 950 break; 951 case TargetLowering::Custom: 952 // FIXME: The handling for custom lowering with multiple results is 953 // a complete mess. 954 Tmp1 = TLI.LowerOperation(Result, DAG); 955 if (Tmp1.getNode()) { 956 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) { 957 if (e == 1) 958 ResultVals.push_back(Tmp1); 959 else 960 ResultVals.push_back(Tmp1.getValue(i)); 961 } 962 break; 963 } 964 965 // FALL THROUGH 966 case TargetLowering::Expand: 967 ExpandNode(Result.getNode(), ResultVals); 968 break; 969 case TargetLowering::Promote: 970 PromoteNode(Result.getNode(), ResultVals); 971 break; 972 } 973 if (!ResultVals.empty()) { 974 for (unsigned i = 0, e = ResultVals.size(); i != e; ++i) { 975 if (ResultVals[i] != SDValue(Node, i)) 976 ResultVals[i] = LegalizeOp(ResultVals[i]); 977 AddLegalizedOperand(SDValue(Node, i), ResultVals[i]); 978 } 979 return ResultVals[Op.getResNo()]; 980 } 981 } 982 983 switch (Node->getOpcode()) { 984 default: 985#ifndef NDEBUG 986 dbgs() << "NODE: "; 987 Node->dump( &DAG); 988 dbgs() << "\n"; 989#endif 990 assert(0 && "Do not know how to legalize this operator!"); 991 992 case ISD::BUILD_VECTOR: 993 switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) { 994 default: assert(0 && "This action is not supported yet!"); 995 case TargetLowering::Custom: 996 Tmp3 = TLI.LowerOperation(Result, DAG); 997 if (Tmp3.getNode()) { 998 Result = Tmp3; 999 break; 1000 } 1001 // FALLTHROUGH 1002 case TargetLowering::Expand: 1003 Result = ExpandBUILD_VECTOR(Result.getNode()); 1004 break; 1005 } 1006 break; 1007 case ISD::CALLSEQ_START: { 1008 SDNode *CallEnd = FindCallEndFromCallStart(Node); 1009 assert(CallEnd && "didn't find CALLSEQ_END!"); 1010 1011 // Recursively Legalize all of the inputs of the call end that do not lead 1012 // to this call start. This ensures that any libcalls that need be inserted 1013 // are inserted *before* the CALLSEQ_START. 1014 {SmallPtrSet<SDNode*, 32> NodesLeadingTo; 1015 for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i) 1016 LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).getNode(), Node, 1017 NodesLeadingTo); 1018 } 1019 1020 // Now that we have legalized all of the inputs (which may have inserted 1021 // libcalls), create the new CALLSEQ_START node. 1022 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1023 1024 // Merge in the last call to ensure that this call starts after the last 1025 // call ended. 1026 if (getLastCALLSEQ().getOpcode() != ISD::EntryToken) { 1027 Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 1028 Tmp1, getLastCALLSEQ()); 1029 Tmp1 = LegalizeOp(Tmp1); 1030 } 1031 1032 // Do not try to legalize the target-specific arguments (#1+). 1033 if (Tmp1 != Node->getOperand(0)) { 1034 SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end()); 1035 Ops[0] = Tmp1; 1036 Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), &Ops[0], 1037 Ops.size()), Result.getResNo()); 1038 } 1039 1040 // Remember that the CALLSEQ_START is legalized. 1041 AddLegalizedOperand(Op.getValue(0), Result); 1042 if (Node->getNumValues() == 2) // If this has a flag result, remember it. 1043 AddLegalizedOperand(Op.getValue(1), Result.getValue(1)); 1044 1045 // Now that the callseq_start and all of the non-call nodes above this call 1046 // sequence have been legalized, legalize the call itself. During this 1047 // process, no libcalls can/will be inserted, guaranteeing that no calls 1048 // can overlap. 1049 // Note that we are selecting this call! 1050 setLastCALLSEQ(SDValue(CallEnd, 0)); 1051 1052 // Legalize the call, starting from the CALLSEQ_END. 1053 LegalizeOp(getLastCALLSEQ()); 1054 return Result; 1055 } 1056 case ISD::CALLSEQ_END: 1057 { 1058 SDNode *myCALLSEQ_BEGIN = FindCallStartFromCallEnd(Node); 1059 1060 // If the CALLSEQ_START node hasn't been legalized first, legalize it. 1061 // This will cause this node to be legalized as well as handling libcalls 1062 // right. 1063 if (getLastCALLSEQ().getNode() != Node) { 1064 LegalizeOp(SDValue(myCALLSEQ_BEGIN, 0)); 1065 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); 1066 assert(I != LegalizedNodes.end() && 1067 "Legalizing the call start should have legalized this node!"); 1068 return I->second; 1069 } 1070 1071 pushLastCALLSEQ(SDValue(myCALLSEQ_BEGIN, 0)); 1072 } 1073 1074 // Otherwise, the call start has been legalized and everything is going 1075 // according to plan. Just legalize ourselves normally here. 1076 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1077 // Do not try to legalize the target-specific arguments (#1+), except for 1078 // an optional flag input. 1079 if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Glue){ 1080 if (Tmp1 != Node->getOperand(0)) { 1081 SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end()); 1082 Ops[0] = Tmp1; 1083 Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), 1084 &Ops[0], Ops.size()), 1085 Result.getResNo()); 1086 } 1087 } else { 1088 Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1)); 1089 if (Tmp1 != Node->getOperand(0) || 1090 Tmp2 != Node->getOperand(Node->getNumOperands()-1)) { 1091 SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end()); 1092 Ops[0] = Tmp1; 1093 Ops.back() = Tmp2; 1094 Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), 1095 &Ops[0], Ops.size()), 1096 Result.getResNo()); 1097 } 1098 } 1099 // This finishes up call legalization. 1100 popLastCALLSEQ(); 1101 1102 // If the CALLSEQ_END node has a flag, remember that we legalized it. 1103 AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0)); 1104 if (Node->getNumValues() == 2) 1105 AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1)); 1106 return Result.getValue(Op.getResNo()); 1107 case ISD::LOAD: { 1108 LoadSDNode *LD = cast<LoadSDNode>(Node); 1109 Tmp1 = LegalizeOp(LD->getChain()); // Legalize the chain. 1110 Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer. 1111 1112 ISD::LoadExtType ExtType = LD->getExtensionType(); 1113 if (ExtType == ISD::NON_EXTLOAD) { 1114 EVT VT = Node->getValueType(0); 1115 Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), 1116 Tmp1, Tmp2, LD->getOffset()), 1117 Result.getResNo()); 1118 Tmp3 = Result.getValue(0); 1119 Tmp4 = Result.getValue(1); 1120 1121 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 1122 default: assert(0 && "This action is not supported yet!"); 1123 case TargetLowering::Legal: 1124 // If this is an unaligned load and the target doesn't support it, 1125 // expand it. 1126 if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) { 1127 Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext()); 1128 unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty); 1129 if (LD->getAlignment() < ABIAlignment){ 1130 Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()), 1131 DAG, TLI); 1132 Tmp3 = Result.getOperand(0); 1133 Tmp4 = Result.getOperand(1); 1134 Tmp3 = LegalizeOp(Tmp3); 1135 Tmp4 = LegalizeOp(Tmp4); 1136 } 1137 } 1138 break; 1139 case TargetLowering::Custom: 1140 Tmp1 = TLI.LowerOperation(Tmp3, DAG); 1141 if (Tmp1.getNode()) { 1142 Tmp3 = LegalizeOp(Tmp1); 1143 Tmp4 = LegalizeOp(Tmp1.getValue(1)); 1144 } 1145 break; 1146 case TargetLowering::Promote: { 1147 // Only promote a load of vector type to another. 1148 assert(VT.isVector() && "Cannot promote this load!"); 1149 // Change base type to a different vector type. 1150 EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 1151 1152 Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getPointerInfo(), 1153 LD->isVolatile(), LD->isNonTemporal(), 1154 LD->getAlignment()); 1155 Tmp3 = LegalizeOp(DAG.getNode(ISD::BITCAST, dl, VT, Tmp1)); 1156 Tmp4 = LegalizeOp(Tmp1.getValue(1)); 1157 break; 1158 } 1159 } 1160 // Since loads produce two values, make sure to remember that we 1161 // legalized both of them. 1162 AddLegalizedOperand(SDValue(Node, 0), Tmp3); 1163 AddLegalizedOperand(SDValue(Node, 1), Tmp4); 1164 return Op.getResNo() ? Tmp4 : Tmp3; 1165 } 1166 1167 EVT SrcVT = LD->getMemoryVT(); 1168 unsigned SrcWidth = SrcVT.getSizeInBits(); 1169 unsigned Alignment = LD->getAlignment(); 1170 bool isVolatile = LD->isVolatile(); 1171 bool isNonTemporal = LD->isNonTemporal(); 1172 1173 if (SrcWidth != SrcVT.getStoreSizeInBits() && 1174 // Some targets pretend to have an i1 loading operation, and actually 1175 // load an i8. This trick is correct for ZEXTLOAD because the top 7 1176 // bits are guaranteed to be zero; it helps the optimizers understand 1177 // that these bits are zero. It is also useful for EXTLOAD, since it 1178 // tells the optimizers that those bits are undefined. It would be 1179 // nice to have an effective generic way of getting these benefits... 1180 // Until such a way is found, don't insist on promoting i1 here. 1181 (SrcVT != MVT::i1 || 1182 TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) { 1183 // Promote to a byte-sized load if not loading an integral number of 1184 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 1185 unsigned NewWidth = SrcVT.getStoreSizeInBits(); 1186 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth); 1187 SDValue Ch; 1188 1189 // The extra bits are guaranteed to be zero, since we stored them that 1190 // way. A zext load from NVT thus automatically gives zext from SrcVT. 1191 1192 ISD::LoadExtType NewExtType = 1193 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; 1194 1195 Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), 1196 Tmp1, Tmp2, LD->getPointerInfo(), 1197 NVT, isVolatile, isNonTemporal, Alignment); 1198 1199 Ch = Result.getValue(1); // The chain. 1200 1201 if (ExtType == ISD::SEXTLOAD) 1202 // Having the top bits zero doesn't help when sign extending. 1203 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 1204 Result.getValueType(), 1205 Result, DAG.getValueType(SrcVT)); 1206 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) 1207 // All the top bits are guaranteed to be zero - inform the optimizers. 1208 Result = DAG.getNode(ISD::AssertZext, dl, 1209 Result.getValueType(), Result, 1210 DAG.getValueType(SrcVT)); 1211 1212 Tmp1 = LegalizeOp(Result); 1213 Tmp2 = LegalizeOp(Ch); 1214 } else if (SrcWidth & (SrcWidth - 1)) { 1215 // If not loading a power-of-2 number of bits, expand as two loads. 1216 assert(!SrcVT.isVector() && "Unsupported extload!"); 1217 unsigned RoundWidth = 1 << Log2_32(SrcWidth); 1218 assert(RoundWidth < SrcWidth); 1219 unsigned ExtraWidth = SrcWidth - RoundWidth; 1220 assert(ExtraWidth < RoundWidth); 1221 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 1222 "Load size not an integral number of bytes!"); 1223 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 1224 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 1225 SDValue Lo, Hi, Ch; 1226 unsigned IncrementSize; 1227 1228 if (TLI.isLittleEndian()) { 1229 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) 1230 // Load the bottom RoundWidth bits. 1231 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), 1232 Tmp1, Tmp2, 1233 LD->getPointerInfo(), RoundVT, isVolatile, 1234 isNonTemporal, Alignment); 1235 1236 // Load the remaining ExtraWidth bits. 1237 IncrementSize = RoundWidth / 8; 1238 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, 1239 DAG.getIntPtrConstant(IncrementSize)); 1240 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2, 1241 LD->getPointerInfo().getWithOffset(IncrementSize), 1242 ExtraVT, isVolatile, isNonTemporal, 1243 MinAlign(Alignment, IncrementSize)); 1244 1245 // Build a factor node to remember that this load is independent of 1246 // the other one. 1247 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 1248 Hi.getValue(1)); 1249 1250 // Move the top bits to the right place. 1251 Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi, 1252 DAG.getConstant(RoundWidth, 1253 TLI.getShiftAmountTy(Hi.getValueType()))); 1254 1255 // Join the hi and lo parts. 1256 Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 1257 } else { 1258 // Big endian - avoid unaligned loads. 1259 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 1260 // Load the top RoundWidth bits. 1261 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2, 1262 LD->getPointerInfo(), RoundVT, isVolatile, 1263 isNonTemporal, Alignment); 1264 1265 // Load the remaining ExtraWidth bits. 1266 IncrementSize = RoundWidth / 8; 1267 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, 1268 DAG.getIntPtrConstant(IncrementSize)); 1269 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, 1270 dl, Node->getValueType(0), Tmp1, Tmp2, 1271 LD->getPointerInfo().getWithOffset(IncrementSize), 1272 ExtraVT, isVolatile, isNonTemporal, 1273 MinAlign(Alignment, IncrementSize)); 1274 1275 // Build a factor node to remember that this load is independent of 1276 // the other one. 1277 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 1278 Hi.getValue(1)); 1279 1280 // Move the top bits to the right place. 1281 Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi, 1282 DAG.getConstant(ExtraWidth, 1283 TLI.getShiftAmountTy(Hi.getValueType()))); 1284 1285 // Join the hi and lo parts. 1286 Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 1287 } 1288 1289 Tmp1 = LegalizeOp(Result); 1290 Tmp2 = LegalizeOp(Ch); 1291 } else { 1292 switch (TLI.getLoadExtAction(ExtType, SrcVT)) { 1293 default: assert(0 && "This action is not supported yet!"); 1294 case TargetLowering::Custom: 1295 isCustom = true; 1296 // FALLTHROUGH 1297 case TargetLowering::Legal: 1298 Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), 1299 Tmp1, Tmp2, LD->getOffset()), 1300 Result.getResNo()); 1301 Tmp1 = Result.getValue(0); 1302 Tmp2 = Result.getValue(1); 1303 1304 if (isCustom) { 1305 Tmp3 = TLI.LowerOperation(Result, DAG); 1306 if (Tmp3.getNode()) { 1307 Tmp1 = LegalizeOp(Tmp3); 1308 Tmp2 = LegalizeOp(Tmp3.getValue(1)); 1309 } 1310 } else { 1311 // If this is an unaligned load and the target doesn't support it, 1312 // expand it. 1313 if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) { 1314 Type *Ty = 1315 LD->getMemoryVT().getTypeForEVT(*DAG.getContext()); 1316 unsigned ABIAlignment = 1317 TLI.getTargetData()->getABITypeAlignment(Ty); 1318 if (LD->getAlignment() < ABIAlignment){ 1319 Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()), 1320 DAG, TLI); 1321 Tmp1 = Result.getOperand(0); 1322 Tmp2 = Result.getOperand(1); 1323 Tmp1 = LegalizeOp(Tmp1); 1324 Tmp2 = LegalizeOp(Tmp2); 1325 } 1326 } 1327 } 1328 break; 1329 case TargetLowering::Expand: 1330 if (!TLI.isLoadExtLegal(ISD::EXTLOAD, SrcVT) && TLI.isTypeLegal(SrcVT)) { 1331 SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2, 1332 LD->getPointerInfo(), 1333 LD->isVolatile(), LD->isNonTemporal(), 1334 LD->getAlignment()); 1335 unsigned ExtendOp; 1336 switch (ExtType) { 1337 case ISD::EXTLOAD: 1338 ExtendOp = (SrcVT.isFloatingPoint() ? 1339 ISD::FP_EXTEND : ISD::ANY_EXTEND); 1340 break; 1341 case ISD::SEXTLOAD: ExtendOp = ISD::SIGN_EXTEND; break; 1342 case ISD::ZEXTLOAD: ExtendOp = ISD::ZERO_EXTEND; break; 1343 default: llvm_unreachable("Unexpected extend load type!"); 1344 } 1345 Result = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load); 1346 Tmp1 = LegalizeOp(Result); // Relegalize new nodes. 1347 Tmp2 = LegalizeOp(Load.getValue(1)); 1348 break; 1349 } 1350 1351 // If this is a promoted vector load, and the vector element types are 1352 // legal, then scalarize it. 1353 if (ExtType == ISD::EXTLOAD && SrcVT.isVector() && 1354 TLI.isTypeLegal(Node->getValueType(0).getScalarType())) { 1355 SmallVector<SDValue, 8> LoadVals; 1356 SmallVector<SDValue, 8> LoadChains; 1357 unsigned NumElem = SrcVT.getVectorNumElements(); 1358 unsigned Stride = SrcVT.getScalarType().getSizeInBits()/8; 1359 1360 for (unsigned Idx=0; Idx<NumElem; Idx++) { 1361 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, 1362 DAG.getIntPtrConstant(Stride)); 1363 SDValue ScalarLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, 1364 Node->getValueType(0).getScalarType(), 1365 Tmp1, Tmp2, LD->getPointerInfo().getWithOffset(Idx * Stride), 1366 SrcVT.getScalarType(), 1367 LD->isVolatile(), LD->isNonTemporal(), 1368 LD->getAlignment()); 1369 1370 LoadVals.push_back(ScalarLoad.getValue(0)); 1371 LoadChains.push_back(ScalarLoad.getValue(1)); 1372 } 1373 Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 1374 &LoadChains[0], LoadChains.size()); 1375 SDValue ValRes = DAG.getNode(ISD::BUILD_VECTOR, dl, 1376 Node->getValueType(0), &LoadVals[0], LoadVals.size()); 1377 1378 Tmp1 = LegalizeOp(ValRes); // Relegalize new nodes. 1379 Tmp2 = LegalizeOp(Result.getValue(0)); // Relegalize new nodes. 1380 break; 1381 } 1382 1383 // If this is a promoted vector load, and the vector element types are 1384 // illegal, create the promoted vector from bitcasted segments. 1385 if (ExtType == ISD::EXTLOAD && SrcVT.isVector()) { 1386 EVT MemElemTy = Node->getValueType(0).getScalarType(); 1387 EVT SrcSclrTy = SrcVT.getScalarType(); 1388 unsigned SizeRatio = 1389 (MemElemTy.getSizeInBits() / SrcSclrTy.getSizeInBits()); 1390 1391 SmallVector<SDValue, 8> LoadVals; 1392 SmallVector<SDValue, 8> LoadChains; 1393 unsigned NumElem = SrcVT.getVectorNumElements(); 1394 unsigned Stride = SrcVT.getScalarType().getSizeInBits()/8; 1395 1396 for (unsigned Idx=0; Idx<NumElem; Idx++) { 1397 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, 1398 DAG.getIntPtrConstant(Stride)); 1399 SDValue ScalarLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, 1400 SrcVT.getScalarType(), 1401 Tmp1, Tmp2, LD->getPointerInfo().getWithOffset(Idx * Stride), 1402 SrcVT.getScalarType(), 1403 LD->isVolatile(), LD->isNonTemporal(), 1404 LD->getAlignment()); 1405 if (TLI.isBigEndian()) { 1406 // MSB (which is garbage, comes first) 1407 LoadVals.push_back(ScalarLoad.getValue(0)); 1408 for (unsigned i = 0; i<SizeRatio-1; ++i) 1409 LoadVals.push_back(DAG.getUNDEF(SrcVT.getScalarType())); 1410 } else { 1411 // LSB (which is data, comes first) 1412 for (unsigned i = 0; i<SizeRatio-1; ++i) 1413 LoadVals.push_back(DAG.getUNDEF(SrcVT.getScalarType())); 1414 LoadVals.push_back(ScalarLoad.getValue(0)); 1415 } 1416 LoadChains.push_back(ScalarLoad.getValue(1)); 1417 } 1418 1419 Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 1420 &LoadChains[0], LoadChains.size()); 1421 EVT TempWideVector = EVT::getVectorVT(*DAG.getContext(), 1422 SrcVT.getScalarType(), NumElem*SizeRatio); 1423 SDValue ValRes = DAG.getNode(ISD::BUILD_VECTOR, dl, 1424 TempWideVector, &LoadVals[0], LoadVals.size()); 1425 1426 // Cast to the correct type 1427 ValRes = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), ValRes); 1428 1429 Tmp1 = LegalizeOp(ValRes); // Relegalize new nodes. 1430 Tmp2 = LegalizeOp(Result.getValue(0)); // Relegalize new nodes. 1431 break; 1432 1433 } 1434 1435 // FIXME: This does not work for vectors on most targets. Sign- and 1436 // zero-extend operations are currently folded into extending loads, 1437 // whether they are legal or not, and then we end up here without any 1438 // support for legalizing them. 1439 assert(ExtType != ISD::EXTLOAD && 1440 "EXTLOAD should always be supported!"); 1441 // Turn the unsupported load into an EXTLOAD followed by an explicit 1442 // zero/sign extend inreg. 1443 Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0), 1444 Tmp1, Tmp2, LD->getPointerInfo(), SrcVT, 1445 LD->isVolatile(), LD->isNonTemporal(), 1446 LD->getAlignment()); 1447 SDValue ValRes; 1448 if (ExtType == ISD::SEXTLOAD) 1449 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 1450 Result.getValueType(), 1451 Result, DAG.getValueType(SrcVT)); 1452 else 1453 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType()); 1454 Tmp1 = LegalizeOp(ValRes); // Relegalize new nodes. 1455 Tmp2 = LegalizeOp(Result.getValue(1)); // Relegalize new nodes. 1456 break; 1457 } 1458 } 1459 1460 // Since loads produce two values, make sure to remember that we legalized 1461 // both of them. 1462 AddLegalizedOperand(SDValue(Node, 0), Tmp1); 1463 AddLegalizedOperand(SDValue(Node, 1), Tmp2); 1464 return Op.getResNo() ? Tmp2 : Tmp1; 1465 } 1466 case ISD::STORE: { 1467 StoreSDNode *ST = cast<StoreSDNode>(Node); 1468 Tmp1 = LegalizeOp(ST->getChain()); // Legalize the chain. 1469 Tmp2 = LegalizeOp(ST->getBasePtr()); // Legalize the pointer. 1470 unsigned Alignment = ST->getAlignment(); 1471 bool isVolatile = ST->isVolatile(); 1472 bool isNonTemporal = ST->isNonTemporal(); 1473 1474 if (!ST->isTruncatingStore()) { 1475 if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) { 1476 Result = SDValue(OptStore, 0); 1477 break; 1478 } 1479 1480 { 1481 Tmp3 = LegalizeOp(ST->getValue()); 1482 Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), 1483 Tmp1, Tmp3, Tmp2, 1484 ST->getOffset()), 1485 Result.getResNo()); 1486 1487 EVT VT = Tmp3.getValueType(); 1488 switch (TLI.getOperationAction(ISD::STORE, VT)) { 1489 default: assert(0 && "This action is not supported yet!"); 1490 case TargetLowering::Legal: 1491 // If this is an unaligned store and the target doesn't support it, 1492 // expand it. 1493 if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) { 1494 Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext()); 1495 unsigned ABIAlignment= TLI.getTargetData()->getABITypeAlignment(Ty); 1496 if (ST->getAlignment() < ABIAlignment) 1497 Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()), 1498 DAG, TLI); 1499 } 1500 break; 1501 case TargetLowering::Custom: 1502 Tmp1 = TLI.LowerOperation(Result, DAG); 1503 if (Tmp1.getNode()) Result = Tmp1; 1504 break; 1505 case TargetLowering::Promote: 1506 assert(VT.isVector() && "Unknown legal promote case!"); 1507 Tmp3 = DAG.getNode(ISD::BITCAST, dl, 1508 TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3); 1509 Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, 1510 ST->getPointerInfo(), isVolatile, 1511 isNonTemporal, Alignment); 1512 break; 1513 } 1514 break; 1515 } 1516 } else { 1517 Tmp3 = LegalizeOp(ST->getValue()); 1518 1519 EVT StVT = ST->getMemoryVT(); 1520 unsigned StWidth = StVT.getSizeInBits(); 1521 1522 if (StWidth != StVT.getStoreSizeInBits()) { 1523 // Promote to a byte-sized store with upper bits zero if not 1524 // storing an integral number of bytes. For example, promote 1525 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 1526 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), 1527 StVT.getStoreSizeInBits()); 1528 Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT); 1529 Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(), 1530 NVT, isVolatile, isNonTemporal, Alignment); 1531 } else if (StWidth & (StWidth - 1)) { 1532 // If not storing a power-of-2 number of bits, expand as two stores. 1533 assert(!StVT.isVector() && "Unsupported truncstore!"); 1534 unsigned RoundWidth = 1 << Log2_32(StWidth); 1535 assert(RoundWidth < StWidth); 1536 unsigned ExtraWidth = StWidth - RoundWidth; 1537 assert(ExtraWidth < RoundWidth); 1538 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 1539 "Store size not an integral number of bytes!"); 1540 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 1541 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 1542 SDValue Lo, Hi; 1543 unsigned IncrementSize; 1544 1545 if (TLI.isLittleEndian()) { 1546 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) 1547 // Store the bottom RoundWidth bits. 1548 Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(), 1549 RoundVT, 1550 isVolatile, isNonTemporal, Alignment); 1551 1552 // Store the remaining ExtraWidth bits. 1553 IncrementSize = RoundWidth / 8; 1554 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, 1555 DAG.getIntPtrConstant(IncrementSize)); 1556 Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3, 1557 DAG.getConstant(RoundWidth, 1558 TLI.getShiftAmountTy(Tmp3.getValueType()))); 1559 Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, 1560 ST->getPointerInfo().getWithOffset(IncrementSize), 1561 ExtraVT, isVolatile, isNonTemporal, 1562 MinAlign(Alignment, IncrementSize)); 1563 } else { 1564 // Big endian - avoid unaligned stores. 1565 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X 1566 // Store the top RoundWidth bits. 1567 Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3, 1568 DAG.getConstant(ExtraWidth, 1569 TLI.getShiftAmountTy(Tmp3.getValueType()))); 1570 Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getPointerInfo(), 1571 RoundVT, isVolatile, isNonTemporal, Alignment); 1572 1573 // Store the remaining ExtraWidth bits. 1574 IncrementSize = RoundWidth / 8; 1575 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, 1576 DAG.getIntPtrConstant(IncrementSize)); 1577 Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, 1578 ST->getPointerInfo().getWithOffset(IncrementSize), 1579 ExtraVT, isVolatile, isNonTemporal, 1580 MinAlign(Alignment, IncrementSize)); 1581 } 1582 1583 // The order of the stores doesn't matter. 1584 Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 1585 } else { 1586 if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() || 1587 Tmp2 != ST->getBasePtr()) 1588 Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), 1589 Tmp1, Tmp3, Tmp2, 1590 ST->getOffset()), 1591 Result.getResNo()); 1592 1593 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { 1594 default: assert(0 && "This action is not supported yet!"); 1595 case TargetLowering::Legal: 1596 // If this is an unaligned store and the target doesn't support it, 1597 // expand it. 1598 if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) { 1599 Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext()); 1600 unsigned ABIAlignment= TLI.getTargetData()->getABITypeAlignment(Ty); 1601 if (ST->getAlignment() < ABIAlignment) 1602 Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()), 1603 DAG, TLI); 1604 } 1605 break; 1606 case TargetLowering::Custom: 1607 Result = TLI.LowerOperation(Result, DAG); 1608 break; 1609 case TargetLowering::Expand: 1610 1611 EVT WideScalarVT = Tmp3.getValueType().getScalarType(); 1612 EVT NarrowScalarVT = StVT.getScalarType(); 1613 1614 // The Store type is illegal, must scalarize the vector store. 1615 SmallVector<SDValue, 8> Stores; 1616 bool ScalarLegal = TLI.isTypeLegal(WideScalarVT); 1617 if (!TLI.isTypeLegal(StVT) && StVT.isVector() && ScalarLegal) { 1618 unsigned NumElem = StVT.getVectorNumElements(); 1619 1620 unsigned ScalarSize = StVT.getScalarType().getSizeInBits(); 1621 // Round odd types to the next pow of two. 1622 if (!isPowerOf2_32(ScalarSize)) 1623 ScalarSize = NextPowerOf2(ScalarSize); 1624 // Types smaller than 8 bits are promoted to 8 bits. 1625 ScalarSize = std::max<unsigned>(ScalarSize, 8); 1626 // Store stride 1627 unsigned Stride = ScalarSize/8; 1628 assert(isPowerOf2_32(Stride) && "Stride must be a power of two"); 1629 1630 for (unsigned Idx=0; Idx<NumElem; Idx++) { 1631 SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 1632 WideScalarVT, Tmp3, DAG.getIntPtrConstant(Idx)); 1633 1634 1635 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), ScalarSize); 1636 1637 Ex = DAG.getNode(ISD::TRUNCATE, dl, NVT, Ex); 1638 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, 1639 DAG.getIntPtrConstant(Stride)); 1640 SDValue Store = DAG.getStore(Tmp1, dl, Ex, Tmp2, 1641 ST->getPointerInfo().getWithOffset(Idx*Stride), 1642 isVolatile, isNonTemporal, Alignment); 1643 Stores.push_back(Store); 1644 } 1645 Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 1646 &Stores[0], Stores.size()); 1647 break; 1648 } 1649 1650 // The Store type is illegal, must scalarize the vector store. 1651 // However, the scalar type is illegal. Must bitcast the result 1652 // and store it in smaller parts. 1653 if (!TLI.isTypeLegal(StVT) && StVT.isVector()) { 1654 unsigned WideNumElem = StVT.getVectorNumElements(); 1655 unsigned Stride = NarrowScalarVT.getSizeInBits()/8; 1656 1657 unsigned SizeRatio = 1658 (WideScalarVT.getSizeInBits() / NarrowScalarVT.getSizeInBits()); 1659 1660 EVT CastValueVT = EVT::getVectorVT(*DAG.getContext(), NarrowScalarVT, 1661 SizeRatio*WideNumElem); 1662 1663 // Cast the wide elem vector to wider vec with smaller elem type. 1664 // Example <2 x i64> -> <4 x i32> 1665 Tmp3 = DAG.getNode(ISD::BITCAST, dl, CastValueVT, Tmp3); 1666 1667 for (unsigned Idx=0; Idx<WideNumElem*SizeRatio; Idx++) { 1668 // Extract elment i 1669 SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 1670 NarrowScalarVT, Tmp3, DAG.getIntPtrConstant(Idx)); 1671 // bump pointer. 1672 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, 1673 DAG.getIntPtrConstant(Stride)); 1674 1675 // Store if, this element is: 1676 // - First element on big endian, or 1677 // - Last element on little endian 1678 if (( TLI.isBigEndian() && (Idx%SizeRatio == 0)) || 1679 ((!TLI.isBigEndian() && (Idx%SizeRatio == SizeRatio-1)))) { 1680 SDValue Store = DAG.getStore(Tmp1, dl, Ex, Tmp2, 1681 ST->getPointerInfo().getWithOffset(Idx*Stride), 1682 isVolatile, isNonTemporal, Alignment); 1683 Stores.push_back(Store); 1684 } 1685 } 1686 Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 1687 &Stores[0], Stores.size()); 1688 break; 1689 } 1690 1691 1692 // TRUNCSTORE:i16 i32 -> STORE i16 1693 assert(TLI.isTypeLegal(StVT) && "Do not know how to expand this store!"); 1694 Tmp3 = DAG.getNode(ISD::TRUNCATE, dl, StVT, Tmp3); 1695 Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(), 1696 isVolatile, isNonTemporal, Alignment); 1697 break; 1698 } 1699 } 1700 } 1701 break; 1702 } 1703 } 1704 assert(Result.getValueType() == Op.getValueType() && 1705 "Bad legalization!"); 1706 1707 // Make sure that the generated code is itself legal. 1708 if (Result != Op) 1709 Result = LegalizeOp(Result); 1710 1711 // Note that LegalizeOp may be reentered even from single-use nodes, which 1712 // means that we always must cache transformed nodes. 1713 AddLegalizedOperand(Op, Result); 1714 return Result; 1715} 1716 1717SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) { 1718 SDValue Vec = Op.getOperand(0); 1719 SDValue Idx = Op.getOperand(1); 1720 DebugLoc dl = Op.getDebugLoc(); 1721 // Store the value to a temporary stack slot, then LOAD the returned part. 1722 SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType()); 1723 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, 1724 MachinePointerInfo(), false, false, 0); 1725 1726 // Add the offset to the index. 1727 unsigned EltSize = 1728 Vec.getValueType().getVectorElementType().getSizeInBits()/8; 1729 Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx, 1730 DAG.getConstant(EltSize, Idx.getValueType())); 1731 1732 if (Idx.getValueType().bitsGT(TLI.getPointerTy())) 1733 Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx); 1734 else 1735 Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx); 1736 1737 StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr); 1738 1739 if (Op.getValueType().isVector()) 1740 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr,MachinePointerInfo(), 1741 false, false, 0); 1742 return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr, 1743 MachinePointerInfo(), 1744 Vec.getValueType().getVectorElementType(), 1745 false, false, 0); 1746} 1747 1748SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) { 1749 assert(Op.getValueType().isVector() && "Non-vector insert subvector!"); 1750 1751 SDValue Vec = Op.getOperand(0); 1752 SDValue Part = Op.getOperand(1); 1753 SDValue Idx = Op.getOperand(2); 1754 DebugLoc dl = Op.getDebugLoc(); 1755 1756 // Store the value to a temporary stack slot, then LOAD the returned part. 1757 1758 SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType()); 1759 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1760 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI); 1761 1762 // First store the whole vector. 1763 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo, 1764 false, false, 0); 1765 1766 // Then store the inserted part. 1767 1768 // Add the offset to the index. 1769 unsigned EltSize = 1770 Vec.getValueType().getVectorElementType().getSizeInBits()/8; 1771 1772 Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx, 1773 DAG.getConstant(EltSize, Idx.getValueType())); 1774 1775 if (Idx.getValueType().bitsGT(TLI.getPointerTy())) 1776 Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx); 1777 else 1778 Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx); 1779 1780 SDValue SubStackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, 1781 StackPtr); 1782 1783 // Store the subvector. 1784 Ch = DAG.getStore(DAG.getEntryNode(), dl, Part, SubStackPtr, 1785 MachinePointerInfo(), false, false, 0); 1786 1787 // Finally, load the updated vector. 1788 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo, 1789 false, false, 0); 1790} 1791 1792SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) { 1793 // We can't handle this case efficiently. Allocate a sufficiently 1794 // aligned object on the stack, store each element into it, then load 1795 // the result as a vector. 1796 // Create the stack frame object. 1797 EVT VT = Node->getValueType(0); 1798 EVT EltVT = VT.getVectorElementType(); 1799 DebugLoc dl = Node->getDebugLoc(); 1800 SDValue FIPtr = DAG.CreateStackTemporary(VT); 1801 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex(); 1802 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI); 1803 1804 // Emit a store of each element to the stack slot. 1805 SmallVector<SDValue, 8> Stores; 1806 unsigned TypeByteSize = EltVT.getSizeInBits() / 8; 1807 // Store (in the right endianness) the elements to memory. 1808 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 1809 // Ignore undef elements. 1810 if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue; 1811 1812 unsigned Offset = TypeByteSize*i; 1813 1814 SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType()); 1815 Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx); 1816 1817 // If the destination vector element type is narrower than the source 1818 // element type, only store the bits necessary. 1819 if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) { 1820 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, 1821 Node->getOperand(i), Idx, 1822 PtrInfo.getWithOffset(Offset), 1823 EltVT, false, false, 0)); 1824 } else 1825 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, 1826 Node->getOperand(i), Idx, 1827 PtrInfo.getWithOffset(Offset), 1828 false, false, 0)); 1829 } 1830 1831 SDValue StoreChain; 1832 if (!Stores.empty()) // Not all undef elements? 1833 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 1834 &Stores[0], Stores.size()); 1835 else 1836 StoreChain = DAG.getEntryNode(); 1837 1838 // Result is a load from the stack slot. 1839 return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo, false, false, 0); 1840} 1841 1842SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) { 1843 DebugLoc dl = Node->getDebugLoc(); 1844 SDValue Tmp1 = Node->getOperand(0); 1845 SDValue Tmp2 = Node->getOperand(1); 1846 1847 // Get the sign bit of the RHS. First obtain a value that has the same 1848 // sign as the sign bit, i.e. negative if and only if the sign bit is 1. 1849 SDValue SignBit; 1850 EVT FloatVT = Tmp2.getValueType(); 1851 EVT IVT = EVT::getIntegerVT(*DAG.getContext(), FloatVT.getSizeInBits()); 1852 if (TLI.isTypeLegal(IVT)) { 1853 // Convert to an integer with the same sign bit. 1854 SignBit = DAG.getNode(ISD::BITCAST, dl, IVT, Tmp2); 1855 } else { 1856 // Store the float to memory, then load the sign part out as an integer. 1857 MVT LoadTy = TLI.getPointerTy(); 1858 // First create a temporary that is aligned for both the load and store. 1859 SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy); 1860 // Then store the float to it. 1861 SDValue Ch = 1862 DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StackPtr, MachinePointerInfo(), 1863 false, false, 0); 1864 if (TLI.isBigEndian()) { 1865 assert(FloatVT.isByteSized() && "Unsupported floating point type!"); 1866 // Load out a legal integer with the same sign bit as the float. 1867 SignBit = DAG.getLoad(LoadTy, dl, Ch, StackPtr, MachinePointerInfo(), 1868 false, false, 0); 1869 } else { // Little endian 1870 SDValue LoadPtr = StackPtr; 1871 // The float may be wider than the integer we are going to load. Advance 1872 // the pointer so that the loaded integer will contain the sign bit. 1873 unsigned Strides = (FloatVT.getSizeInBits()-1)/LoadTy.getSizeInBits(); 1874 unsigned ByteOffset = (Strides * LoadTy.getSizeInBits()) / 8; 1875 LoadPtr = DAG.getNode(ISD::ADD, dl, LoadPtr.getValueType(), 1876 LoadPtr, DAG.getIntPtrConstant(ByteOffset)); 1877 // Load a legal integer containing the sign bit. 1878 SignBit = DAG.getLoad(LoadTy, dl, Ch, LoadPtr, MachinePointerInfo(), 1879 false, false, 0); 1880 // Move the sign bit to the top bit of the loaded integer. 1881 unsigned BitShift = LoadTy.getSizeInBits() - 1882 (FloatVT.getSizeInBits() - 8 * ByteOffset); 1883 assert(BitShift < LoadTy.getSizeInBits() && "Pointer advanced wrong?"); 1884 if (BitShift) 1885 SignBit = DAG.getNode(ISD::SHL, dl, LoadTy, SignBit, 1886 DAG.getConstant(BitShift, 1887 TLI.getShiftAmountTy(SignBit.getValueType()))); 1888 } 1889 } 1890 // Now get the sign bit proper, by seeing whether the value is negative. 1891 SignBit = DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()), 1892 SignBit, DAG.getConstant(0, SignBit.getValueType()), 1893 ISD::SETLT); 1894 // Get the absolute value of the result. 1895 SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1); 1896 // Select between the nabs and abs value based on the sign bit of 1897 // the input. 1898 return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit, 1899 DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal), 1900 AbsVal); 1901} 1902 1903void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node, 1904 SmallVectorImpl<SDValue> &Results) { 1905 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1906 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" 1907 " not tell us which reg is the stack pointer!"); 1908 DebugLoc dl = Node->getDebugLoc(); 1909 EVT VT = Node->getValueType(0); 1910 SDValue Tmp1 = SDValue(Node, 0); 1911 SDValue Tmp2 = SDValue(Node, 1); 1912 SDValue Tmp3 = Node->getOperand(2); 1913 SDValue Chain = Tmp1.getOperand(0); 1914 1915 // Chain the dynamic stack allocation so that it doesn't modify the stack 1916 // pointer when other instructions are using the stack. 1917 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true)); 1918 1919 SDValue Size = Tmp2.getOperand(1); 1920 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 1921 Chain = SP.getValue(1); 1922 unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue(); 1923 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); 1924 if (Align > StackAlign) 1925 SP = DAG.getNode(ISD::AND, dl, VT, SP, 1926 DAG.getConstant(-(uint64_t)Align, VT)); 1927 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value 1928 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain 1929 1930 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, true), 1931 DAG.getIntPtrConstant(0, true), SDValue()); 1932 1933 Results.push_back(Tmp1); 1934 Results.push_back(Tmp2); 1935} 1936 1937/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and 1938/// condition code CC on the current target. This routine expands SETCC with 1939/// illegal condition code into AND / OR of multiple SETCC values. 1940void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT, 1941 SDValue &LHS, SDValue &RHS, 1942 SDValue &CC, 1943 DebugLoc dl) { 1944 EVT OpVT = LHS.getValueType(); 1945 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 1946 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 1947 default: assert(0 && "Unknown condition code action!"); 1948 case TargetLowering::Legal: 1949 // Nothing to do. 1950 break; 1951 case TargetLowering::Expand: { 1952 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 1953 unsigned Opc = 0; 1954 switch (CCCode) { 1955 default: assert(0 && "Don't know how to expand this condition!"); 1956 case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO; Opc = ISD::AND; break; 1957 case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO; Opc = ISD::AND; break; 1958 case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO; Opc = ISD::AND; break; 1959 case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO; Opc = ISD::AND; break; 1960 case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO; Opc = ISD::AND; break; 1961 case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO; Opc = ISD::AND; break; 1962 case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR; break; 1963 case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR; break; 1964 case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR; break; 1965 case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR; break; 1966 case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR; break; 1967 case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR; break; 1968 // FIXME: Implement more expansions. 1969 } 1970 1971 SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1); 1972 SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2); 1973 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 1974 RHS = SDValue(); 1975 CC = SDValue(); 1976 break; 1977 } 1978 } 1979} 1980 1981/// EmitStackConvert - Emit a store/load combination to the stack. This stores 1982/// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does 1983/// a load from the stack slot to DestVT, extending it if needed. 1984/// The resultant code need not be legal. 1985SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, 1986 EVT SlotVT, 1987 EVT DestVT, 1988 DebugLoc dl) { 1989 // Create the stack frame object. 1990 unsigned SrcAlign = 1991 TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType(). 1992 getTypeForEVT(*DAG.getContext())); 1993 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign); 1994 1995 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); 1996 int SPFI = StackPtrFI->getIndex(); 1997 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(SPFI); 1998 1999 unsigned SrcSize = SrcOp.getValueType().getSizeInBits(); 2000 unsigned SlotSize = SlotVT.getSizeInBits(); 2001 unsigned DestSize = DestVT.getSizeInBits(); 2002 Type *DestType = DestVT.getTypeForEVT(*DAG.getContext()); 2003 unsigned DestAlign = TLI.getTargetData()->getPrefTypeAlignment(DestType); 2004 2005 // Emit a store to the stack slot. Use a truncstore if the input value is 2006 // later than DestVT. 2007 SDValue Store; 2008 2009 if (SrcSize > SlotSize) 2010 Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, 2011 PtrInfo, SlotVT, false, false, SrcAlign); 2012 else { 2013 assert(SrcSize == SlotSize && "Invalid store"); 2014 Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, 2015 PtrInfo, false, false, SrcAlign); 2016 } 2017 2018 // Result is a load from the stack slot. 2019 if (SlotSize == DestSize) 2020 return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, 2021 false, false, DestAlign); 2022 2023 assert(SlotSize < DestSize && "Unknown extension!"); 2024 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, 2025 PtrInfo, SlotVT, false, false, DestAlign); 2026} 2027 2028SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { 2029 DebugLoc dl = Node->getDebugLoc(); 2030 // Create a vector sized/aligned stack slot, store the value to element #0, 2031 // then load the whole vector back out. 2032 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); 2033 2034 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); 2035 int SPFI = StackPtrFI->getIndex(); 2036 2037 SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0), 2038 StackPtr, 2039 MachinePointerInfo::getFixedStack(SPFI), 2040 Node->getValueType(0).getVectorElementType(), 2041 false, false, 0); 2042 return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr, 2043 MachinePointerInfo::getFixedStack(SPFI), 2044 false, false, 0); 2045} 2046 2047 2048/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't 2049/// support the operation, but do support the resultant vector type. 2050SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { 2051 unsigned NumElems = Node->getNumOperands(); 2052 SDValue Value1, Value2; 2053 DebugLoc dl = Node->getDebugLoc(); 2054 EVT VT = Node->getValueType(0); 2055 EVT OpVT = Node->getOperand(0).getValueType(); 2056 EVT EltVT = VT.getVectorElementType(); 2057 2058 // If the only non-undef value is the low element, turn this into a 2059 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. 2060 bool isOnlyLowElement = true; 2061 bool MoreThanTwoValues = false; 2062 bool isConstant = true; 2063 for (unsigned i = 0; i < NumElems; ++i) { 2064 SDValue V = Node->getOperand(i); 2065 if (V.getOpcode() == ISD::UNDEF) 2066 continue; 2067 if (i > 0) 2068 isOnlyLowElement = false; 2069 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) 2070 isConstant = false; 2071 2072 if (!Value1.getNode()) { 2073 Value1 = V; 2074 } else if (!Value2.getNode()) { 2075 if (V != Value1) 2076 Value2 = V; 2077 } else if (V != Value1 && V != Value2) { 2078 MoreThanTwoValues = true; 2079 } 2080 } 2081 2082 if (!Value1.getNode()) 2083 return DAG.getUNDEF(VT); 2084 2085 if (isOnlyLowElement) 2086 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0)); 2087 2088 // If all elements are constants, create a load from the constant pool. 2089 if (isConstant) { 2090 std::vector<Constant*> CV; 2091 for (unsigned i = 0, e = NumElems; i != e; ++i) { 2092 if (ConstantFPSDNode *V = 2093 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { 2094 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue())); 2095 } else if (ConstantSDNode *V = 2096 dyn_cast<ConstantSDNode>(Node->getOperand(i))) { 2097 if (OpVT==EltVT) 2098 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue())); 2099 else { 2100 // If OpVT and EltVT don't match, EltVT is not legal and the 2101 // element values have been promoted/truncated earlier. Undo this; 2102 // we don't want a v16i8 to become a v16i32 for example. 2103 const ConstantInt *CI = V->getConstantIntValue(); 2104 CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()), 2105 CI->getZExtValue())); 2106 } 2107 } else { 2108 assert(Node->getOperand(i).getOpcode() == ISD::UNDEF); 2109 Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext()); 2110 CV.push_back(UndefValue::get(OpNTy)); 2111 } 2112 } 2113 Constant *CP = ConstantVector::get(CV); 2114 SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy()); 2115 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 2116 return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx, 2117 MachinePointerInfo::getConstantPool(), 2118 false, false, Alignment); 2119 } 2120 2121 if (!MoreThanTwoValues) { 2122 SmallVector<int, 8> ShuffleVec(NumElems, -1); 2123 for (unsigned i = 0; i < NumElems; ++i) { 2124 SDValue V = Node->getOperand(i); 2125 if (V.getOpcode() == ISD::UNDEF) 2126 continue; 2127 ShuffleVec[i] = V == Value1 ? 0 : NumElems; 2128 } 2129 if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) { 2130 // Get the splatted value into the low element of a vector register. 2131 SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1); 2132 SDValue Vec2; 2133 if (Value2.getNode()) 2134 Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2); 2135 else 2136 Vec2 = DAG.getUNDEF(VT); 2137 2138 // Return shuffle(LowValVec, undef, <0,0,0,0>) 2139 return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data()); 2140 } 2141 } 2142 2143 // Otherwise, we can't handle this case efficiently. 2144 return ExpandVectorBuildThroughStack(Node); 2145} 2146 2147// ExpandLibCall - Expand a node into a call to a libcall. If the result value 2148// does not fit into a register, return the lo part and set the hi part to the 2149// by-reg argument. If it does fit into a single register, return the result 2150// and leave the Hi part unset. 2151SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, 2152 bool isSigned) { 2153 // The input chain to this libcall is the entry node of the function. 2154 // Legalizing the call will automatically add the previous call to the 2155 // dependence. 2156 SDValue InChain = DAG.getEntryNode(); 2157 2158 TargetLowering::ArgListTy Args; 2159 TargetLowering::ArgListEntry Entry; 2160 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 2161 EVT ArgVT = Node->getOperand(i).getValueType(); 2162 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2163 Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy; 2164 Entry.isSExt = isSigned; 2165 Entry.isZExt = !isSigned; 2166 Args.push_back(Entry); 2167 } 2168 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2169 TLI.getPointerTy()); 2170 2171 // Splice the libcall in wherever FindInputOutputChains tells us to. 2172 Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext()); 2173 2174 // isTailCall may be true since the callee does not reference caller stack 2175 // frame. Check if it's in the right position. 2176 bool isTailCall = isInTailCallPosition(DAG, Node, TLI); 2177 std::pair<SDValue, SDValue> CallInfo = 2178 TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false, 2179 0, TLI.getLibcallCallingConv(LC), isTailCall, 2180 /*isReturnValueUsed=*/true, 2181 Callee, Args, DAG, Node->getDebugLoc()); 2182 2183 if (!CallInfo.second.getNode()) 2184 // It's a tailcall, return the chain (which is the DAG root). 2185 return DAG.getRoot(); 2186 2187 // Legalize the call sequence, starting with the chain. This will advance 2188 // the LastCALLSEQ to the legalized version of the CALLSEQ_END node that 2189 // was added by LowerCallTo (guaranteeing proper serialization of calls). 2190 LegalizeOp(CallInfo.second); 2191 return CallInfo.first; 2192} 2193 2194/// ExpandLibCall - Generate a libcall taking the given operands as arguments 2195/// and returning a result of type RetVT. 2196SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, 2197 const SDValue *Ops, unsigned NumOps, 2198 bool isSigned, DebugLoc dl) { 2199 TargetLowering::ArgListTy Args; 2200 Args.reserve(NumOps); 2201 2202 TargetLowering::ArgListEntry Entry; 2203 for (unsigned i = 0; i != NumOps; ++i) { 2204 Entry.Node = Ops[i]; 2205 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 2206 Entry.isSExt = isSigned; 2207 Entry.isZExt = !isSigned; 2208 Args.push_back(Entry); 2209 } 2210 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2211 TLI.getPointerTy()); 2212 2213 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2214 std::pair<SDValue,SDValue> CallInfo = 2215 TLI.LowerCallTo(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false, 2216 false, 0, TLI.getLibcallCallingConv(LC), false, 2217 /*isReturnValueUsed=*/true, 2218 Callee, Args, DAG, dl); 2219 2220 // Legalize the call sequence, starting with the chain. This will advance 2221 // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that 2222 // was added by LowerCallTo (guaranteeing proper serialization of calls). 2223 LegalizeOp(CallInfo.second); 2224 2225 return CallInfo.first; 2226} 2227 2228// ExpandChainLibCall - Expand a node into a call to a libcall. Similar to 2229// ExpandLibCall except that the first operand is the in-chain. 2230std::pair<SDValue, SDValue> 2231SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC, 2232 SDNode *Node, 2233 bool isSigned) { 2234 SDValue InChain = Node->getOperand(0); 2235 2236 TargetLowering::ArgListTy Args; 2237 TargetLowering::ArgListEntry Entry; 2238 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) { 2239 EVT ArgVT = Node->getOperand(i).getValueType(); 2240 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2241 Entry.Node = Node->getOperand(i); 2242 Entry.Ty = ArgTy; 2243 Entry.isSExt = isSigned; 2244 Entry.isZExt = !isSigned; 2245 Args.push_back(Entry); 2246 } 2247 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2248 TLI.getPointerTy()); 2249 2250 // Splice the libcall in wherever FindInputOutputChains tells us to. 2251 Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext()); 2252 std::pair<SDValue, SDValue> CallInfo = 2253 TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false, 2254 0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false, 2255 /*isReturnValueUsed=*/true, 2256 Callee, Args, DAG, Node->getDebugLoc()); 2257 2258 // Legalize the call sequence, starting with the chain. This will advance 2259 // the LastCALLSEQ to the legalized version of the CALLSEQ_END node that 2260 // was added by LowerCallTo (guaranteeing proper serialization of calls). 2261 LegalizeOp(CallInfo.second); 2262 return CallInfo; 2263} 2264 2265SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, 2266 RTLIB::Libcall Call_F32, 2267 RTLIB::Libcall Call_F64, 2268 RTLIB::Libcall Call_F80, 2269 RTLIB::Libcall Call_PPCF128) { 2270 RTLIB::Libcall LC; 2271 switch (Node->getValueType(0).getSimpleVT().SimpleTy) { 2272 default: assert(0 && "Unexpected request for libcall!"); 2273 case MVT::f32: LC = Call_F32; break; 2274 case MVT::f64: LC = Call_F64; break; 2275 case MVT::f80: LC = Call_F80; break; 2276 case MVT::ppcf128: LC = Call_PPCF128; break; 2277 } 2278 return ExpandLibCall(LC, Node, false); 2279} 2280 2281SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned, 2282 RTLIB::Libcall Call_I8, 2283 RTLIB::Libcall Call_I16, 2284 RTLIB::Libcall Call_I32, 2285 RTLIB::Libcall Call_I64, 2286 RTLIB::Libcall Call_I128) { 2287 RTLIB::Libcall LC; 2288 switch (Node->getValueType(0).getSimpleVT().SimpleTy) { 2289 default: assert(0 && "Unexpected request for libcall!"); 2290 case MVT::i8: LC = Call_I8; break; 2291 case MVT::i16: LC = Call_I16; break; 2292 case MVT::i32: LC = Call_I32; break; 2293 case MVT::i64: LC = Call_I64; break; 2294 case MVT::i128: LC = Call_I128; break; 2295 } 2296 return ExpandLibCall(LC, Node, isSigned); 2297} 2298 2299/// isDivRemLibcallAvailable - Return true if divmod libcall is available. 2300static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned, 2301 const TargetLowering &TLI) { 2302 RTLIB::Libcall LC; 2303 switch (Node->getValueType(0).getSimpleVT().SimpleTy) { 2304 default: assert(0 && "Unexpected request for libcall!"); 2305 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 2306 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 2307 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 2308 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 2309 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 2310 } 2311 2312 return TLI.getLibcallName(LC) != 0; 2313} 2314 2315/// UseDivRem - Only issue divrem libcall if both quotient and remainder are 2316/// needed. 2317static bool UseDivRem(SDNode *Node, bool isSigned, bool isDIV) { 2318 unsigned OtherOpcode = 0; 2319 if (isSigned) 2320 OtherOpcode = isDIV ? ISD::SREM : ISD::SDIV; 2321 else 2322 OtherOpcode = isDIV ? ISD::UREM : ISD::UDIV; 2323 2324 SDValue Op0 = Node->getOperand(0); 2325 SDValue Op1 = Node->getOperand(1); 2326 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), 2327 UE = Op0.getNode()->use_end(); UI != UE; ++UI) { 2328 SDNode *User = *UI; 2329 if (User == Node) 2330 continue; 2331 if (User->getOpcode() == OtherOpcode && 2332 User->getOperand(0) == Op0 && 2333 User->getOperand(1) == Op1) 2334 return true; 2335 } 2336 return false; 2337} 2338 2339/// ExpandDivRemLibCall - Issue libcalls to __{u}divmod to compute div / rem 2340/// pairs. 2341void 2342SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node, 2343 SmallVectorImpl<SDValue> &Results) { 2344 unsigned Opcode = Node->getOpcode(); 2345 bool isSigned = Opcode == ISD::SDIVREM; 2346 2347 RTLIB::Libcall LC; 2348 switch (Node->getValueType(0).getSimpleVT().SimpleTy) { 2349 default: assert(0 && "Unexpected request for libcall!"); 2350 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 2351 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 2352 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 2353 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 2354 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 2355 } 2356 2357 // The input chain to this libcall is the entry node of the function. 2358 // Legalizing the call will automatically add the previous call to the 2359 // dependence. 2360 SDValue InChain = DAG.getEntryNode(); 2361 2362 EVT RetVT = Node->getValueType(0); 2363 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2364 2365 TargetLowering::ArgListTy Args; 2366 TargetLowering::ArgListEntry Entry; 2367 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 2368 EVT ArgVT = Node->getOperand(i).getValueType(); 2369 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2370 Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy; 2371 Entry.isSExt = isSigned; 2372 Entry.isZExt = !isSigned; 2373 Args.push_back(Entry); 2374 } 2375 2376 // Also pass the return address of the remainder. 2377 SDValue FIPtr = DAG.CreateStackTemporary(RetVT); 2378 Entry.Node = FIPtr; 2379 Entry.Ty = RetTy->getPointerTo(); 2380 Entry.isSExt = isSigned; 2381 Entry.isZExt = !isSigned; 2382 Args.push_back(Entry); 2383 2384 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2385 TLI.getPointerTy()); 2386 2387 // Splice the libcall in wherever FindInputOutputChains tells us to. 2388 DebugLoc dl = Node->getDebugLoc(); 2389 std::pair<SDValue, SDValue> CallInfo = 2390 TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false, 2391 0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false, 2392 /*isReturnValueUsed=*/true, Callee, Args, DAG, dl); 2393 2394 // Legalize the call sequence, starting with the chain. This will advance 2395 // the LastCALLSEQ to the legalized version of the CALLSEQ_END node that 2396 // was added by LowerCallTo (guaranteeing proper serialization of calls). 2397 LegalizeOp(CallInfo.second); 2398 2399 // Remainder is loaded back from the stack frame. 2400 SDValue Rem = DAG.getLoad(RetVT, dl, getLastCALLSEQ(), FIPtr, 2401 MachinePointerInfo(), false, false, 0); 2402 Results.push_back(CallInfo.first); 2403 Results.push_back(Rem); 2404} 2405 2406/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a 2407/// INT_TO_FP operation of the specified operand when the target requests that 2408/// we expand it. At this point, we know that the result and operand types are 2409/// legal for the target. 2410SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned, 2411 SDValue Op0, 2412 EVT DestVT, 2413 DebugLoc dl) { 2414 if (Op0.getValueType() == MVT::i32) { 2415 // simple 32-bit [signed|unsigned] integer to float/double expansion 2416 2417 // Get the stack frame index of a 8 byte buffer. 2418 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); 2419 2420 // word offset constant for Hi/Lo address computation 2421 SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy()); 2422 // set up Hi and Lo (into buffer) address based on endian 2423 SDValue Hi = StackSlot; 2424 SDValue Lo = DAG.getNode(ISD::ADD, dl, 2425 TLI.getPointerTy(), StackSlot, WordOff); 2426 if (TLI.isLittleEndian()) 2427 std::swap(Hi, Lo); 2428 2429 // if signed map to unsigned space 2430 SDValue Op0Mapped; 2431 if (isSigned) { 2432 // constant used to invert sign bit (signed to unsigned mapping) 2433 SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32); 2434 Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit); 2435 } else { 2436 Op0Mapped = Op0; 2437 } 2438 // store the lo of the constructed double - based on integer input 2439 SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, 2440 Op0Mapped, Lo, MachinePointerInfo(), 2441 false, false, 0); 2442 // initial hi portion of constructed double 2443 SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32); 2444 // store the hi of the constructed double - biased exponent 2445 SDValue Store2 = DAG.getStore(Store1, dl, InitialHi, Hi, 2446 MachinePointerInfo(), 2447 false, false, 0); 2448 // load the constructed double 2449 SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot, 2450 MachinePointerInfo(), false, false, 0); 2451 // FP constant to bias correct the final result 2452 SDValue Bias = DAG.getConstantFP(isSigned ? 2453 BitsToDouble(0x4330000080000000ULL) : 2454 BitsToDouble(0x4330000000000000ULL), 2455 MVT::f64); 2456 // subtract the bias 2457 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias); 2458 // final result 2459 SDValue Result; 2460 // handle final rounding 2461 if (DestVT == MVT::f64) { 2462 // do nothing 2463 Result = Sub; 2464 } else if (DestVT.bitsLT(MVT::f64)) { 2465 Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub, 2466 DAG.getIntPtrConstant(0)); 2467 } else if (DestVT.bitsGT(MVT::f64)) { 2468 Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub); 2469 } 2470 return Result; 2471 } 2472 assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet"); 2473 // Code below here assumes !isSigned without checking again. 2474 2475 // Implementation of unsigned i64 to f64 following the algorithm in 2476 // __floatundidf in compiler_rt. This implementation has the advantage 2477 // of performing rounding correctly, both in the default rounding mode 2478 // and in all alternate rounding modes. 2479 // TODO: Generalize this for use with other types. 2480 if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) { 2481 SDValue TwoP52 = 2482 DAG.getConstant(UINT64_C(0x4330000000000000), MVT::i64); 2483 SDValue TwoP84PlusTwoP52 = 2484 DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), MVT::f64); 2485 SDValue TwoP84 = 2486 DAG.getConstant(UINT64_C(0x4530000000000000), MVT::i64); 2487 2488 SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32); 2489 SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, 2490 DAG.getConstant(32, MVT::i64)); 2491 SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52); 2492 SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84); 2493 SDValue LoFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, LoOr); 2494 SDValue HiFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, HiOr); 2495 SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt, 2496 TwoP84PlusTwoP52); 2497 return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub); 2498 } 2499 2500 // Implementation of unsigned i64 to f32. 2501 // TODO: Generalize this for use with other types. 2502 if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) { 2503 // For unsigned conversions, convert them to signed conversions using the 2504 // algorithm from the x86_64 __floatundidf in compiler_rt. 2505 if (!isSigned) { 2506 SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Op0); 2507 2508 SDValue ShiftConst = 2509 DAG.getConstant(1, TLI.getShiftAmountTy(Op0.getValueType())); 2510 SDValue Shr = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, ShiftConst); 2511 SDValue AndConst = DAG.getConstant(1, MVT::i64); 2512 SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, AndConst); 2513 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, Shr); 2514 2515 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Or); 2516 SDValue Slow = DAG.getNode(ISD::FADD, dl, MVT::f32, SignCvt, SignCvt); 2517 2518 // TODO: This really should be implemented using a branch rather than a 2519 // select. We happen to get lucky and machinesink does the right 2520 // thing most of the time. This would be a good candidate for a 2521 //pseudo-op, or, even better, for whole-function isel. 2522 SDValue SignBitTest = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64), 2523 Op0, DAG.getConstant(0, MVT::i64), ISD::SETLT); 2524 return DAG.getNode(ISD::SELECT, dl, MVT::f32, SignBitTest, Slow, Fast); 2525 } 2526 2527 // Otherwise, implement the fully general conversion. 2528 2529 SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, 2530 DAG.getConstant(UINT64_C(0xfffffffffffff800), MVT::i64)); 2531 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, 2532 DAG.getConstant(UINT64_C(0x800), MVT::i64)); 2533 SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, 2534 DAG.getConstant(UINT64_C(0x7ff), MVT::i64)); 2535 SDValue Ne = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64), 2536 And2, DAG.getConstant(UINT64_C(0), MVT::i64), ISD::SETNE); 2537 SDValue Sel = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ne, Or, Op0); 2538 SDValue Ge = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64), 2539 Op0, DAG.getConstant(UINT64_C(0x0020000000000000), MVT::i64), 2540 ISD::SETUGE); 2541 SDValue Sel2 = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ge, Sel, Op0); 2542 EVT SHVT = TLI.getShiftAmountTy(Sel2.getValueType()); 2543 2544 SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2, 2545 DAG.getConstant(32, SHVT)); 2546 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh); 2547 SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc); 2548 SDValue TwoP32 = 2549 DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), MVT::f64); 2550 SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt); 2551 SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2); 2552 SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo); 2553 SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2); 2554 return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd, 2555 DAG.getIntPtrConstant(0)); 2556 } 2557 2558 SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2559 2560 SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()), 2561 Op0, DAG.getConstant(0, Op0.getValueType()), 2562 ISD::SETLT); 2563 SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4); 2564 SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), 2565 SignSet, Four, Zero); 2566 2567 // If the sign bit of the integer is set, the large number will be treated 2568 // as a negative number. To counteract this, the dynamic code adds an 2569 // offset depending on the data type. 2570 uint64_t FF; 2571 switch (Op0.getValueType().getSimpleVT().SimpleTy) { 2572 default: assert(0 && "Unsupported integer type!"); 2573 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) 2574 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) 2575 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) 2576 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) 2577 } 2578 if (TLI.isLittleEndian()) FF <<= 32; 2579 Constant *FudgeFactor = ConstantInt::get( 2580 Type::getInt64Ty(*DAG.getContext()), FF); 2581 2582 SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy()); 2583 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 2584 CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset); 2585 Alignment = std::min(Alignment, 4u); 2586 SDValue FudgeInReg; 2587 if (DestVT == MVT::f32) 2588 FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx, 2589 MachinePointerInfo::getConstantPool(), 2590 false, false, Alignment); 2591 else { 2592 FudgeInReg = 2593 LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, 2594 DAG.getEntryNode(), CPIdx, 2595 MachinePointerInfo::getConstantPool(), 2596 MVT::f32, false, false, Alignment)); 2597 } 2598 2599 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg); 2600} 2601 2602/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a 2603/// *INT_TO_FP operation of the specified operand when the target requests that 2604/// we promote it. At this point, we know that the result and operand types are 2605/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP 2606/// operation that takes a larger input. 2607SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp, 2608 EVT DestVT, 2609 bool isSigned, 2610 DebugLoc dl) { 2611 // First step, figure out the appropriate *INT_TO_FP operation to use. 2612 EVT NewInTy = LegalOp.getValueType(); 2613 2614 unsigned OpToUse = 0; 2615 2616 // Scan for the appropriate larger type to use. 2617 while (1) { 2618 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1); 2619 assert(NewInTy.isInteger() && "Ran out of possibilities!"); 2620 2621 // If the target supports SINT_TO_FP of this type, use it. 2622 if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) { 2623 OpToUse = ISD::SINT_TO_FP; 2624 break; 2625 } 2626 if (isSigned) continue; 2627 2628 // If the target supports UINT_TO_FP of this type, use it. 2629 if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) { 2630 OpToUse = ISD::UINT_TO_FP; 2631 break; 2632 } 2633 2634 // Otherwise, try a larger type. 2635 } 2636 2637 // Okay, we found the operation and type to use. Zero extend our input to the 2638 // desired type then run the operation on it. 2639 return DAG.getNode(OpToUse, dl, DestVT, 2640 DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2641 dl, NewInTy, LegalOp)); 2642} 2643 2644/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a 2645/// FP_TO_*INT operation of the specified operand when the target requests that 2646/// we promote it. At this point, we know that the result and operand types are 2647/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT 2648/// operation that returns a larger result. 2649SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp, 2650 EVT DestVT, 2651 bool isSigned, 2652 DebugLoc dl) { 2653 // First step, figure out the appropriate FP_TO*INT operation to use. 2654 EVT NewOutTy = DestVT; 2655 2656 unsigned OpToUse = 0; 2657 2658 // Scan for the appropriate larger type to use. 2659 while (1) { 2660 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1); 2661 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 2662 2663 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) { 2664 OpToUse = ISD::FP_TO_SINT; 2665 break; 2666 } 2667 2668 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) { 2669 OpToUse = ISD::FP_TO_UINT; 2670 break; 2671 } 2672 2673 // Otherwise, try a larger type. 2674 } 2675 2676 2677 // Okay, we found the operation and type to use. 2678 SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp); 2679 2680 // Truncate the result of the extended FP_TO_*INT operation to the desired 2681 // size. 2682 return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation); 2683} 2684 2685/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation. 2686/// 2687SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) { 2688 EVT VT = Op.getValueType(); 2689 EVT SHVT = TLI.getShiftAmountTy(VT); 2690 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 2691 switch (VT.getSimpleVT().SimpleTy) { 2692 default: assert(0 && "Unhandled Expand type in BSWAP!"); 2693 case MVT::i16: 2694 Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2695 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2696 return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); 2697 case MVT::i32: 2698 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT)); 2699 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2700 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2701 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT)); 2702 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT)); 2703 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT)); 2704 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2705 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2706 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2707 case MVT::i64: 2708 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT)); 2709 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT)); 2710 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT)); 2711 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2712 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2713 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT)); 2714 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT)); 2715 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT)); 2716 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT)); 2717 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT)); 2718 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT)); 2719 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT)); 2720 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT)); 2721 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT)); 2722 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 2723 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 2724 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2725 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2726 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 2727 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2728 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 2729 } 2730} 2731 2732/// SplatByte - Distribute ByteVal over NumBits bits. 2733// FIXME: Move this helper to a common place. 2734static APInt SplatByte(unsigned NumBits, uint8_t ByteVal) { 2735 APInt Val = APInt(NumBits, ByteVal); 2736 unsigned Shift = 8; 2737 for (unsigned i = NumBits; i > 8; i >>= 1) { 2738 Val = (Val << Shift) | Val; 2739 Shift <<= 1; 2740 } 2741 return Val; 2742} 2743 2744/// ExpandBitCount - Expand the specified bitcount instruction into operations. 2745/// 2746SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op, 2747 DebugLoc dl) { 2748 switch (Opc) { 2749 default: assert(0 && "Cannot expand this yet!"); 2750 case ISD::CTPOP: { 2751 EVT VT = Op.getValueType(); 2752 EVT ShVT = TLI.getShiftAmountTy(VT); 2753 unsigned Len = VT.getSizeInBits(); 2754 2755 assert(VT.isInteger() && Len <= 128 && Len % 8 == 0 && 2756 "CTPOP not implemented for this type."); 2757 2758 // This is the "best" algorithm from 2759 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 2760 2761 SDValue Mask55 = DAG.getConstant(SplatByte(Len, 0x55), VT); 2762 SDValue Mask33 = DAG.getConstant(SplatByte(Len, 0x33), VT); 2763 SDValue Mask0F = DAG.getConstant(SplatByte(Len, 0x0F), VT); 2764 SDValue Mask01 = DAG.getConstant(SplatByte(Len, 0x01), VT); 2765 2766 // v = v - ((v >> 1) & 0x55555555...) 2767 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 2768 DAG.getNode(ISD::AND, dl, VT, 2769 DAG.getNode(ISD::SRL, dl, VT, Op, 2770 DAG.getConstant(1, ShVT)), 2771 Mask55)); 2772 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 2773 Op = DAG.getNode(ISD::ADD, dl, VT, 2774 DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 2775 DAG.getNode(ISD::AND, dl, VT, 2776 DAG.getNode(ISD::SRL, dl, VT, Op, 2777 DAG.getConstant(2, ShVT)), 2778 Mask33)); 2779 // v = (v + (v >> 4)) & 0x0F0F0F0F... 2780 Op = DAG.getNode(ISD::AND, dl, VT, 2781 DAG.getNode(ISD::ADD, dl, VT, Op, 2782 DAG.getNode(ISD::SRL, dl, VT, Op, 2783 DAG.getConstant(4, ShVT))), 2784 Mask0F); 2785 // v = (v * 0x01010101...) >> (Len - 8) 2786 Op = DAG.getNode(ISD::SRL, dl, VT, 2787 DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 2788 DAG.getConstant(Len - 8, ShVT)); 2789 2790 return Op; 2791 } 2792 case ISD::CTLZ: { 2793 // for now, we do this: 2794 // x = x | (x >> 1); 2795 // x = x | (x >> 2); 2796 // ... 2797 // x = x | (x >>16); 2798 // x = x | (x >>32); // for 64-bit input 2799 // return popcount(~x); 2800 // 2801 // but see also: http://www.hackersdelight.org/HDcode/nlz.cc 2802 EVT VT = Op.getValueType(); 2803 EVT ShVT = TLI.getShiftAmountTy(VT); 2804 unsigned len = VT.getSizeInBits(); 2805 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) { 2806 SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT); 2807 Op = DAG.getNode(ISD::OR, dl, VT, Op, 2808 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3)); 2809 } 2810 Op = DAG.getNOT(dl, Op, VT); 2811 return DAG.getNode(ISD::CTPOP, dl, VT, Op); 2812 } 2813 case ISD::CTTZ: { 2814 // for now, we use: { return popcount(~x & (x - 1)); } 2815 // unless the target has ctlz but not ctpop, in which case we use: 2816 // { return 32 - nlz(~x & (x-1)); } 2817 // see also http://www.hackersdelight.org/HDcode/ntz.cc 2818 EVT VT = Op.getValueType(); 2819 SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT, 2820 DAG.getNOT(dl, Op, VT), 2821 DAG.getNode(ISD::SUB, dl, VT, Op, 2822 DAG.getConstant(1, VT))); 2823 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 2824 if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) && 2825 TLI.isOperationLegalOrCustom(ISD::CTLZ, VT)) 2826 return DAG.getNode(ISD::SUB, dl, VT, 2827 DAG.getConstant(VT.getSizeInBits(), VT), 2828 DAG.getNode(ISD::CTLZ, dl, VT, Tmp3)); 2829 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3); 2830 } 2831 } 2832} 2833 2834std::pair <SDValue, SDValue> SelectionDAGLegalize::ExpandAtomic(SDNode *Node) { 2835 unsigned Opc = Node->getOpcode(); 2836 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT(); 2837 RTLIB::Libcall LC; 2838 2839 switch (Opc) { 2840 default: 2841 llvm_unreachable("Unhandled atomic intrinsic Expand!"); 2842 break; 2843 case ISD::ATOMIC_SWAP: 2844 switch (VT.SimpleTy) { 2845 default: llvm_unreachable("Unexpected value type for atomic!"); 2846 case MVT::i8: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_1; break; 2847 case MVT::i16: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_2; break; 2848 case MVT::i32: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_4; break; 2849 case MVT::i64: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_8; break; 2850 } 2851 break; 2852 case ISD::ATOMIC_CMP_SWAP: 2853 switch (VT.SimpleTy) { 2854 default: llvm_unreachable("Unexpected value type for atomic!"); 2855 case MVT::i8: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1; break; 2856 case MVT::i16: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2; break; 2857 case MVT::i32: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4; break; 2858 case MVT::i64: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8; break; 2859 } 2860 break; 2861 case ISD::ATOMIC_LOAD_ADD: 2862 switch (VT.SimpleTy) { 2863 default: llvm_unreachable("Unexpected value type for atomic!"); 2864 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_ADD_1; break; 2865 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_ADD_2; break; 2866 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_ADD_4; break; 2867 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_ADD_8; break; 2868 } 2869 break; 2870 case ISD::ATOMIC_LOAD_SUB: 2871 switch (VT.SimpleTy) { 2872 default: llvm_unreachable("Unexpected value type for atomic!"); 2873 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_SUB_1; break; 2874 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_SUB_2; break; 2875 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_SUB_4; break; 2876 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_SUB_8; break; 2877 } 2878 break; 2879 case ISD::ATOMIC_LOAD_AND: 2880 switch (VT.SimpleTy) { 2881 default: llvm_unreachable("Unexpected value type for atomic!"); 2882 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_AND_1; break; 2883 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_AND_2; break; 2884 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_AND_4; break; 2885 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_AND_8; break; 2886 } 2887 break; 2888 case ISD::ATOMIC_LOAD_OR: 2889 switch (VT.SimpleTy) { 2890 default: llvm_unreachable("Unexpected value type for atomic!"); 2891 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_OR_1; break; 2892 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_OR_2; break; 2893 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_OR_4; break; 2894 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_OR_8; break; 2895 } 2896 break; 2897 case ISD::ATOMIC_LOAD_XOR: 2898 switch (VT.SimpleTy) { 2899 default: llvm_unreachable("Unexpected value type for atomic!"); 2900 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_XOR_1; break; 2901 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_XOR_2; break; 2902 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_XOR_4; break; 2903 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_XOR_8; break; 2904 } 2905 break; 2906 case ISD::ATOMIC_LOAD_NAND: 2907 switch (VT.SimpleTy) { 2908 default: llvm_unreachable("Unexpected value type for atomic!"); 2909 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_NAND_1; break; 2910 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_NAND_2; break; 2911 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_NAND_4; break; 2912 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_NAND_8; break; 2913 } 2914 break; 2915 } 2916 2917 return ExpandChainLibCall(LC, Node, false); 2918} 2919 2920void SelectionDAGLegalize::ExpandNode(SDNode *Node, 2921 SmallVectorImpl<SDValue> &Results) { 2922 DebugLoc dl = Node->getDebugLoc(); 2923 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 2924 switch (Node->getOpcode()) { 2925 case ISD::CTPOP: 2926 case ISD::CTLZ: 2927 case ISD::CTTZ: 2928 Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl); 2929 Results.push_back(Tmp1); 2930 break; 2931 case ISD::BSWAP: 2932 Results.push_back(ExpandBSWAP(Node->getOperand(0), dl)); 2933 break; 2934 case ISD::FRAMEADDR: 2935 case ISD::RETURNADDR: 2936 case ISD::FRAME_TO_ARGS_OFFSET: 2937 Results.push_back(DAG.getConstant(0, Node->getValueType(0))); 2938 break; 2939 case ISD::FLT_ROUNDS_: 2940 Results.push_back(DAG.getConstant(1, Node->getValueType(0))); 2941 break; 2942 case ISD::EH_RETURN: 2943 case ISD::EH_LABEL: 2944 case ISD::PREFETCH: 2945 case ISD::VAEND: 2946 case ISD::EH_SJLJ_LONGJMP: 2947 case ISD::EH_SJLJ_DISPATCHSETUP: 2948 // If the target didn't expand these, there's nothing to do, so just 2949 // preserve the chain and be done. 2950 Results.push_back(Node->getOperand(0)); 2951 break; 2952 case ISD::EH_SJLJ_SETJMP: 2953 // If the target didn't expand this, just return 'zero' and preserve the 2954 // chain. 2955 Results.push_back(DAG.getConstant(0, MVT::i32)); 2956 Results.push_back(Node->getOperand(0)); 2957 break; 2958 case ISD::ATOMIC_FENCE: 2959 case ISD::MEMBARRIER: { 2960 // If the target didn't lower this, lower it to '__sync_synchronize()' call 2961 // FIXME: handle "fence singlethread" more efficiently. 2962 TargetLowering::ArgListTy Args; 2963 std::pair<SDValue, SDValue> CallResult = 2964 TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()), 2965 false, false, false, false, 0, CallingConv::C, 2966 /*isTailCall=*/false, 2967 /*isReturnValueUsed=*/true, 2968 DAG.getExternalSymbol("__sync_synchronize", 2969 TLI.getPointerTy()), 2970 Args, DAG, dl); 2971 Results.push_back(CallResult.second); 2972 break; 2973 } 2974 // By default, atomic intrinsics are marked Legal and lowered. Targets 2975 // which don't support them directly, however, may want libcalls, in which 2976 // case they mark them Expand, and we get here. 2977 case ISD::ATOMIC_SWAP: 2978 case ISD::ATOMIC_LOAD_ADD: 2979 case ISD::ATOMIC_LOAD_SUB: 2980 case ISD::ATOMIC_LOAD_AND: 2981 case ISD::ATOMIC_LOAD_OR: 2982 case ISD::ATOMIC_LOAD_XOR: 2983 case ISD::ATOMIC_LOAD_NAND: 2984 case ISD::ATOMIC_LOAD_MIN: 2985 case ISD::ATOMIC_LOAD_MAX: 2986 case ISD::ATOMIC_LOAD_UMIN: 2987 case ISD::ATOMIC_LOAD_UMAX: 2988 case ISD::ATOMIC_CMP_SWAP: { 2989 std::pair<SDValue, SDValue> Tmp = ExpandAtomic(Node); 2990 Results.push_back(Tmp.first); 2991 Results.push_back(Tmp.second); 2992 break; 2993 } 2994 case ISD::DYNAMIC_STACKALLOC: 2995 ExpandDYNAMIC_STACKALLOC(Node, Results); 2996 break; 2997 case ISD::MERGE_VALUES: 2998 for (unsigned i = 0; i < Node->getNumValues(); i++) 2999 Results.push_back(Node->getOperand(i)); 3000 break; 3001 case ISD::UNDEF: { 3002 EVT VT = Node->getValueType(0); 3003 if (VT.isInteger()) 3004 Results.push_back(DAG.getConstant(0, VT)); 3005 else { 3006 assert(VT.isFloatingPoint() && "Unknown value type!"); 3007 Results.push_back(DAG.getConstantFP(0, VT)); 3008 } 3009 break; 3010 } 3011 case ISD::TRAP: { 3012 // If this operation is not supported, lower it to 'abort()' call 3013 TargetLowering::ArgListTy Args; 3014 std::pair<SDValue, SDValue> CallResult = 3015 TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()), 3016 false, false, false, false, 0, CallingConv::C, 3017 /*isTailCall=*/false, 3018 /*isReturnValueUsed=*/true, 3019 DAG.getExternalSymbol("abort", TLI.getPointerTy()), 3020 Args, DAG, dl); 3021 Results.push_back(CallResult.second); 3022 break; 3023 } 3024 case ISD::FP_ROUND: 3025 case ISD::BITCAST: 3026 Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 3027 Node->getValueType(0), dl); 3028 Results.push_back(Tmp1); 3029 break; 3030 case ISD::FP_EXTEND: 3031 Tmp1 = EmitStackConvert(Node->getOperand(0), 3032 Node->getOperand(0).getValueType(), 3033 Node->getValueType(0), dl); 3034 Results.push_back(Tmp1); 3035 break; 3036 case ISD::SIGN_EXTEND_INREG: { 3037 // NOTE: we could fall back on load/store here too for targets without 3038 // SAR. However, it is doubtful that any exist. 3039 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 3040 EVT VT = Node->getValueType(0); 3041 EVT ShiftAmountTy = TLI.getShiftAmountTy(VT); 3042 if (VT.isVector()) 3043 ShiftAmountTy = VT; 3044 unsigned BitsDiff = VT.getScalarType().getSizeInBits() - 3045 ExtraVT.getScalarType().getSizeInBits(); 3046 SDValue ShiftCst = DAG.getConstant(BitsDiff, ShiftAmountTy); 3047 Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0), 3048 Node->getOperand(0), ShiftCst); 3049 Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst); 3050 Results.push_back(Tmp1); 3051 break; 3052 } 3053 case ISD::FP_ROUND_INREG: { 3054 // The only way we can lower this is to turn it into a TRUNCSTORE, 3055 // EXTLOAD pair, targeting a temporary location (a stack slot). 3056 3057 // NOTE: there is a choice here between constantly creating new stack 3058 // slots and always reusing the same one. We currently always create 3059 // new ones, as reuse may inhibit scheduling. 3060 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 3061 Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT, 3062 Node->getValueType(0), dl); 3063 Results.push_back(Tmp1); 3064 break; 3065 } 3066 case ISD::SINT_TO_FP: 3067 case ISD::UINT_TO_FP: 3068 Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP, 3069 Node->getOperand(0), Node->getValueType(0), dl); 3070 Results.push_back(Tmp1); 3071 break; 3072 case ISD::FP_TO_UINT: { 3073 SDValue True, False; 3074 EVT VT = Node->getOperand(0).getValueType(); 3075 EVT NVT = Node->getValueType(0); 3076 APFloat apf(APInt::getNullValue(VT.getSizeInBits())); 3077 APInt x = APInt::getSignBit(NVT.getSizeInBits()); 3078 (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven); 3079 Tmp1 = DAG.getConstantFP(apf, VT); 3080 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), 3081 Node->getOperand(0), 3082 Tmp1, ISD::SETLT); 3083 True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0)); 3084 False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, 3085 DAG.getNode(ISD::FSUB, dl, VT, 3086 Node->getOperand(0), Tmp1)); 3087 False = DAG.getNode(ISD::XOR, dl, NVT, False, 3088 DAG.getConstant(x, NVT)); 3089 Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False); 3090 Results.push_back(Tmp1); 3091 break; 3092 } 3093 case ISD::VAARG: { 3094 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 3095 EVT VT = Node->getValueType(0); 3096 Tmp1 = Node->getOperand(0); 3097 Tmp2 = Node->getOperand(1); 3098 unsigned Align = Node->getConstantOperandVal(3); 3099 3100 SDValue VAListLoad = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2, 3101 MachinePointerInfo(V), false, false, 0); 3102 SDValue VAList = VAListLoad; 3103 3104 if (Align > TLI.getMinStackArgumentAlignment()) { 3105 assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2"); 3106 3107 VAList = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList, 3108 DAG.getConstant(Align - 1, 3109 TLI.getPointerTy())); 3110 3111 VAList = DAG.getNode(ISD::AND, dl, TLI.getPointerTy(), VAList, 3112 DAG.getConstant(-(int64_t)Align, 3113 TLI.getPointerTy())); 3114 } 3115 3116 // Increment the pointer, VAList, to the next vaarg 3117 Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList, 3118 DAG.getConstant(TLI.getTargetData()-> 3119 getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())), 3120 TLI.getPointerTy())); 3121 // Store the incremented VAList to the legalized pointer 3122 Tmp3 = DAG.getStore(VAListLoad.getValue(1), dl, Tmp3, Tmp2, 3123 MachinePointerInfo(V), false, false, 0); 3124 // Load the actual argument out of the pointer VAList 3125 Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, MachinePointerInfo(), 3126 false, false, 0)); 3127 Results.push_back(Results[0].getValue(1)); 3128 break; 3129 } 3130 case ISD::VACOPY: { 3131 // This defaults to loading a pointer from the input and storing it to the 3132 // output, returning the chain. 3133 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 3134 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 3135 Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0), 3136 Node->getOperand(2), MachinePointerInfo(VS), 3137 false, false, 0); 3138 Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 3139 MachinePointerInfo(VD), false, false, 0); 3140 Results.push_back(Tmp1); 3141 break; 3142 } 3143 case ISD::EXTRACT_VECTOR_ELT: 3144 if (Node->getOperand(0).getValueType().getVectorNumElements() == 1) 3145 // This must be an access of the only element. Return it. 3146 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), 3147 Node->getOperand(0)); 3148 else 3149 Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0)); 3150 Results.push_back(Tmp1); 3151 break; 3152 case ISD::EXTRACT_SUBVECTOR: 3153 Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0))); 3154 break; 3155 case ISD::INSERT_SUBVECTOR: 3156 Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0))); 3157 break; 3158 case ISD::CONCAT_VECTORS: { 3159 Results.push_back(ExpandVectorBuildThroughStack(Node)); 3160 break; 3161 } 3162 case ISD::SCALAR_TO_VECTOR: 3163 Results.push_back(ExpandSCALAR_TO_VECTOR(Node)); 3164 break; 3165 case ISD::INSERT_VECTOR_ELT: 3166 Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0), 3167 Node->getOperand(1), 3168 Node->getOperand(2), dl)); 3169 break; 3170 case ISD::VECTOR_SHUFFLE: { 3171 SmallVector<int, 8> Mask; 3172 cast<ShuffleVectorSDNode>(Node)->getMask(Mask); 3173 3174 EVT VT = Node->getValueType(0); 3175 EVT EltVT = VT.getVectorElementType(); 3176 if (!TLI.isTypeLegal(EltVT)) 3177 EltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT); 3178 unsigned NumElems = VT.getVectorNumElements(); 3179 SmallVector<SDValue, 8> Ops; 3180 for (unsigned i = 0; i != NumElems; ++i) { 3181 if (Mask[i] < 0) { 3182 Ops.push_back(DAG.getUNDEF(EltVT)); 3183 continue; 3184 } 3185 unsigned Idx = Mask[i]; 3186 if (Idx < NumElems) 3187 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, 3188 Node->getOperand(0), 3189 DAG.getIntPtrConstant(Idx))); 3190 else 3191 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, 3192 Node->getOperand(1), 3193 DAG.getIntPtrConstant(Idx - NumElems))); 3194 } 3195 Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size()); 3196 Results.push_back(Tmp1); 3197 break; 3198 } 3199 case ISD::EXTRACT_ELEMENT: { 3200 EVT OpTy = Node->getOperand(0).getValueType(); 3201 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { 3202 // 1 -> Hi 3203 Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0), 3204 DAG.getConstant(OpTy.getSizeInBits()/2, 3205 TLI.getShiftAmountTy(Node->getOperand(0).getValueType()))); 3206 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1); 3207 } else { 3208 // 0 -> Lo 3209 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), 3210 Node->getOperand(0)); 3211 } 3212 Results.push_back(Tmp1); 3213 break; 3214 } 3215 case ISD::STACKSAVE: 3216 // Expand to CopyFromReg if the target set 3217 // StackPointerRegisterToSaveRestore. 3218 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 3219 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP, 3220 Node->getValueType(0))); 3221 Results.push_back(Results[0].getValue(1)); 3222 } else { 3223 Results.push_back(DAG.getUNDEF(Node->getValueType(0))); 3224 Results.push_back(Node->getOperand(0)); 3225 } 3226 break; 3227 case ISD::STACKRESTORE: 3228 // Expand to CopyToReg if the target set 3229 // StackPointerRegisterToSaveRestore. 3230 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 3231 Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP, 3232 Node->getOperand(1))); 3233 } else { 3234 Results.push_back(Node->getOperand(0)); 3235 } 3236 break; 3237 case ISD::FCOPYSIGN: 3238 Results.push_back(ExpandFCOPYSIGN(Node)); 3239 break; 3240 case ISD::FNEG: 3241 // Expand Y = FNEG(X) -> Y = SUB -0.0, X 3242 Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0)); 3243 Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1, 3244 Node->getOperand(0)); 3245 Results.push_back(Tmp1); 3246 break; 3247 case ISD::FABS: { 3248 // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X). 3249 EVT VT = Node->getValueType(0); 3250 Tmp1 = Node->getOperand(0); 3251 Tmp2 = DAG.getConstantFP(0.0, VT); 3252 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()), 3253 Tmp1, Tmp2, ISD::SETUGT); 3254 Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1); 3255 Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3); 3256 Results.push_back(Tmp1); 3257 break; 3258 } 3259 case ISD::FSQRT: 3260 Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 3261 RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128)); 3262 break; 3263 case ISD::FSIN: 3264 Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64, 3265 RTLIB::SIN_F80, RTLIB::SIN_PPCF128)); 3266 break; 3267 case ISD::FCOS: 3268 Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64, 3269 RTLIB::COS_F80, RTLIB::COS_PPCF128)); 3270 break; 3271 case ISD::FLOG: 3272 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, 3273 RTLIB::LOG_F80, RTLIB::LOG_PPCF128)); 3274 break; 3275 case ISD::FLOG2: 3276 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, 3277 RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128)); 3278 break; 3279 case ISD::FLOG10: 3280 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, 3281 RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128)); 3282 break; 3283 case ISD::FEXP: 3284 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, 3285 RTLIB::EXP_F80, RTLIB::EXP_PPCF128)); 3286 break; 3287 case ISD::FEXP2: 3288 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, 3289 RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128)); 3290 break; 3291 case ISD::FTRUNC: 3292 Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, 3293 RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128)); 3294 break; 3295 case ISD::FFLOOR: 3296 Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, 3297 RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128)); 3298 break; 3299 case ISD::FCEIL: 3300 Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64, 3301 RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128)); 3302 break; 3303 case ISD::FRINT: 3304 Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64, 3305 RTLIB::RINT_F80, RTLIB::RINT_PPCF128)); 3306 break; 3307 case ISD::FNEARBYINT: 3308 Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32, 3309 RTLIB::NEARBYINT_F64, 3310 RTLIB::NEARBYINT_F80, 3311 RTLIB::NEARBYINT_PPCF128)); 3312 break; 3313 case ISD::FPOWI: 3314 Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64, 3315 RTLIB::POWI_F80, RTLIB::POWI_PPCF128)); 3316 break; 3317 case ISD::FPOW: 3318 Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, 3319 RTLIB::POW_F80, RTLIB::POW_PPCF128)); 3320 break; 3321 case ISD::FDIV: 3322 Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64, 3323 RTLIB::DIV_F80, RTLIB::DIV_PPCF128)); 3324 break; 3325 case ISD::FREM: 3326 Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64, 3327 RTLIB::REM_F80, RTLIB::REM_PPCF128)); 3328 break; 3329 case ISD::FMA: 3330 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64, 3331 RTLIB::FMA_F80, RTLIB::FMA_PPCF128)); 3332 break; 3333 case ISD::FP16_TO_FP32: 3334 Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false)); 3335 break; 3336 case ISD::FP32_TO_FP16: 3337 Results.push_back(ExpandLibCall(RTLIB::FPROUND_F32_F16, Node, false)); 3338 break; 3339 case ISD::ConstantFP: { 3340 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 3341 // Check to see if this FP immediate is already legal. 3342 // If this is a legal constant, turn it into a TargetConstantFP node. 3343 if (TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0))) 3344 Results.push_back(SDValue(Node, 0)); 3345 else 3346 Results.push_back(ExpandConstantFP(CFP, true, DAG, TLI)); 3347 break; 3348 } 3349 case ISD::EHSELECTION: { 3350 unsigned Reg = TLI.getExceptionSelectorRegister(); 3351 assert(Reg && "Can't expand to unknown register!"); 3352 Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg, 3353 Node->getValueType(0))); 3354 Results.push_back(Results[0].getValue(1)); 3355 break; 3356 } 3357 case ISD::EXCEPTIONADDR: { 3358 unsigned Reg = TLI.getExceptionAddressRegister(); 3359 assert(Reg && "Can't expand to unknown register!"); 3360 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg, 3361 Node->getValueType(0))); 3362 Results.push_back(Results[0].getValue(1)); 3363 break; 3364 } 3365 case ISD::SUB: { 3366 EVT VT = Node->getValueType(0); 3367 assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 3368 TLI.isOperationLegalOrCustom(ISD::XOR, VT) && 3369 "Don't know how to expand this subtraction!"); 3370 Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1), 3371 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT)); 3372 Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp2, DAG.getConstant(1, VT)); 3373 Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1)); 3374 break; 3375 } 3376 case ISD::UREM: 3377 case ISD::SREM: { 3378 EVT VT = Node->getValueType(0); 3379 SDVTList VTs = DAG.getVTList(VT, VT); 3380 bool isSigned = Node->getOpcode() == ISD::SREM; 3381 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 3382 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3383 Tmp2 = Node->getOperand(0); 3384 Tmp3 = Node->getOperand(1); 3385 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) || 3386 (isDivRemLibcallAvailable(Node, isSigned, TLI) && 3387 UseDivRem(Node, isSigned, false))) { 3388 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1); 3389 } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) { 3390 // X % Y -> X-X/Y*Y 3391 Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3); 3392 Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3); 3393 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1); 3394 } else if (isSigned) 3395 Tmp1 = ExpandIntLibCall(Node, true, 3396 RTLIB::SREM_I8, 3397 RTLIB::SREM_I16, RTLIB::SREM_I32, 3398 RTLIB::SREM_I64, RTLIB::SREM_I128); 3399 else 3400 Tmp1 = ExpandIntLibCall(Node, false, 3401 RTLIB::UREM_I8, 3402 RTLIB::UREM_I16, RTLIB::UREM_I32, 3403 RTLIB::UREM_I64, RTLIB::UREM_I128); 3404 Results.push_back(Tmp1); 3405 break; 3406 } 3407 case ISD::UDIV: 3408 case ISD::SDIV: { 3409 bool isSigned = Node->getOpcode() == ISD::SDIV; 3410 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3411 EVT VT = Node->getValueType(0); 3412 SDVTList VTs = DAG.getVTList(VT, VT); 3413 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) || 3414 (isDivRemLibcallAvailable(Node, isSigned, TLI) && 3415 UseDivRem(Node, isSigned, true))) 3416 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0), 3417 Node->getOperand(1)); 3418 else if (isSigned) 3419 Tmp1 = ExpandIntLibCall(Node, true, 3420 RTLIB::SDIV_I8, 3421 RTLIB::SDIV_I16, RTLIB::SDIV_I32, 3422 RTLIB::SDIV_I64, RTLIB::SDIV_I128); 3423 else 3424 Tmp1 = ExpandIntLibCall(Node, false, 3425 RTLIB::UDIV_I8, 3426 RTLIB::UDIV_I16, RTLIB::UDIV_I32, 3427 RTLIB::UDIV_I64, RTLIB::UDIV_I128); 3428 Results.push_back(Tmp1); 3429 break; 3430 } 3431 case ISD::MULHU: 3432 case ISD::MULHS: { 3433 unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : 3434 ISD::SMUL_LOHI; 3435 EVT VT = Node->getValueType(0); 3436 SDVTList VTs = DAG.getVTList(VT, VT); 3437 assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) && 3438 "If this wasn't legal, it shouldn't have been created!"); 3439 Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0), 3440 Node->getOperand(1)); 3441 Results.push_back(Tmp1.getValue(1)); 3442 break; 3443 } 3444 case ISD::SDIVREM: 3445 case ISD::UDIVREM: 3446 // Expand into divrem libcall 3447 ExpandDivRemLibCall(Node, Results); 3448 break; 3449 case ISD::MUL: { 3450 EVT VT = Node->getValueType(0); 3451 SDVTList VTs = DAG.getVTList(VT, VT); 3452 // See if multiply or divide can be lowered using two-result operations. 3453 // We just need the low half of the multiply; try both the signed 3454 // and unsigned forms. If the target supports both SMUL_LOHI and 3455 // UMUL_LOHI, form a preference by checking which forms of plain 3456 // MULH it supports. 3457 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT); 3458 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT); 3459 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT); 3460 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT); 3461 unsigned OpToUse = 0; 3462 if (HasSMUL_LOHI && !HasMULHS) { 3463 OpToUse = ISD::SMUL_LOHI; 3464 } else if (HasUMUL_LOHI && !HasMULHU) { 3465 OpToUse = ISD::UMUL_LOHI; 3466 } else if (HasSMUL_LOHI) { 3467 OpToUse = ISD::SMUL_LOHI; 3468 } else if (HasUMUL_LOHI) { 3469 OpToUse = ISD::UMUL_LOHI; 3470 } 3471 if (OpToUse) { 3472 Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0), 3473 Node->getOperand(1))); 3474 break; 3475 } 3476 Tmp1 = ExpandIntLibCall(Node, false, 3477 RTLIB::MUL_I8, 3478 RTLIB::MUL_I16, RTLIB::MUL_I32, 3479 RTLIB::MUL_I64, RTLIB::MUL_I128); 3480 Results.push_back(Tmp1); 3481 break; 3482 } 3483 case ISD::SADDO: 3484 case ISD::SSUBO: { 3485 SDValue LHS = Node->getOperand(0); 3486 SDValue RHS = Node->getOperand(1); 3487 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ? 3488 ISD::ADD : ISD::SUB, dl, LHS.getValueType(), 3489 LHS, RHS); 3490 Results.push_back(Sum); 3491 EVT OType = Node->getValueType(1); 3492 3493 SDValue Zero = DAG.getConstant(0, LHS.getValueType()); 3494 3495 // LHSSign -> LHS >= 0 3496 // RHSSign -> RHS >= 0 3497 // SumSign -> Sum >= 0 3498 // 3499 // Add: 3500 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign) 3501 // Sub: 3502 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign) 3503 // 3504 SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE); 3505 SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE); 3506 SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign, 3507 Node->getOpcode() == ISD::SADDO ? 3508 ISD::SETEQ : ISD::SETNE); 3509 3510 SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE); 3511 SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE); 3512 3513 SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE); 3514 Results.push_back(Cmp); 3515 break; 3516 } 3517 case ISD::UADDO: 3518 case ISD::USUBO: { 3519 SDValue LHS = Node->getOperand(0); 3520 SDValue RHS = Node->getOperand(1); 3521 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ? 3522 ISD::ADD : ISD::SUB, dl, LHS.getValueType(), 3523 LHS, RHS); 3524 Results.push_back(Sum); 3525 Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS, 3526 Node->getOpcode () == ISD::UADDO ? 3527 ISD::SETULT : ISD::SETUGT)); 3528 break; 3529 } 3530 case ISD::UMULO: 3531 case ISD::SMULO: { 3532 EVT VT = Node->getValueType(0); 3533 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2); 3534 SDValue LHS = Node->getOperand(0); 3535 SDValue RHS = Node->getOperand(1); 3536 SDValue BottomHalf; 3537 SDValue TopHalf; 3538 static const unsigned Ops[2][3] = 3539 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 3540 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 3541 bool isSigned = Node->getOpcode() == ISD::SMULO; 3542 if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 3543 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 3544 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 3545 } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 3546 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 3547 RHS); 3548 TopHalf = BottomHalf.getValue(1); 3549 } else if (TLI.isTypeLegal(EVT::getIntegerVT(*DAG.getContext(), 3550 VT.getSizeInBits() * 2))) { 3551 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 3552 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 3553 Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 3554 BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1, 3555 DAG.getIntPtrConstant(0)); 3556 TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1, 3557 DAG.getIntPtrConstant(1)); 3558 } else { 3559 // We can fall back to a libcall with an illegal type for the MUL if we 3560 // have a libcall big enough. 3561 // Also, we can fall back to a division in some cases, but that's a big 3562 // performance hit in the general case. 3563 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 3564 if (WideVT == MVT::i16) 3565 LC = RTLIB::MUL_I16; 3566 else if (WideVT == MVT::i32) 3567 LC = RTLIB::MUL_I32; 3568 else if (WideVT == MVT::i64) 3569 LC = RTLIB::MUL_I64; 3570 else if (WideVT == MVT::i128) 3571 LC = RTLIB::MUL_I128; 3572 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 3573 3574 // The high part is obtained by SRA'ing all but one of the bits of low 3575 // part. 3576 unsigned LoSize = VT.getSizeInBits(); 3577 SDValue HiLHS = DAG.getNode(ISD::SRA, dl, VT, RHS, 3578 DAG.getConstant(LoSize-1, TLI.getPointerTy())); 3579 SDValue HiRHS = DAG.getNode(ISD::SRA, dl, VT, LHS, 3580 DAG.getConstant(LoSize-1, TLI.getPointerTy())); 3581 3582 // Here we're passing the 2 arguments explicitly as 4 arguments that are 3583 // pre-lowered to the correct types. This all depends upon WideVT not 3584 // being a legal type for the architecture and thus has to be split to 3585 // two arguments. 3586 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 3587 SDValue Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl); 3588 BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret, 3589 DAG.getIntPtrConstant(0)); 3590 TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret, 3591 DAG.getIntPtrConstant(1)); 3592 } 3593 3594 if (isSigned) { 3595 Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1, 3596 TLI.getShiftAmountTy(BottomHalf.getValueType())); 3597 Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1); 3598 TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1, 3599 ISD::SETNE); 3600 } else { 3601 TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, 3602 DAG.getConstant(0, VT), ISD::SETNE); 3603 } 3604 Results.push_back(BottomHalf); 3605 Results.push_back(TopHalf); 3606 break; 3607 } 3608 case ISD::BUILD_PAIR: { 3609 EVT PairTy = Node->getValueType(0); 3610 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0)); 3611 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1)); 3612 Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2, 3613 DAG.getConstant(PairTy.getSizeInBits()/2, 3614 TLI.getShiftAmountTy(PairTy))); 3615 Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2)); 3616 break; 3617 } 3618 case ISD::SELECT: 3619 Tmp1 = Node->getOperand(0); 3620 Tmp2 = Node->getOperand(1); 3621 Tmp3 = Node->getOperand(2); 3622 if (Tmp1.getOpcode() == ISD::SETCC) { 3623 Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1), 3624 Tmp2, Tmp3, 3625 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); 3626 } else { 3627 Tmp1 = DAG.getSelectCC(dl, Tmp1, 3628 DAG.getConstant(0, Tmp1.getValueType()), 3629 Tmp2, Tmp3, ISD::SETNE); 3630 } 3631 Results.push_back(Tmp1); 3632 break; 3633 case ISD::BR_JT: { 3634 SDValue Chain = Node->getOperand(0); 3635 SDValue Table = Node->getOperand(1); 3636 SDValue Index = Node->getOperand(2); 3637 3638 EVT PTy = TLI.getPointerTy(); 3639 3640 const TargetData &TD = *TLI.getTargetData(); 3641 unsigned EntrySize = 3642 DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD); 3643 3644 Index = DAG.getNode(ISD::MUL, dl, PTy, 3645 Index, DAG.getConstant(EntrySize, PTy)); 3646 SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table); 3647 3648 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8); 3649 SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr, 3650 MachinePointerInfo::getJumpTable(), MemVT, 3651 false, false, 0); 3652 Addr = LD; 3653 if (TM.getRelocationModel() == Reloc::PIC_) { 3654 // For PIC, the sequence is: 3655 // BRIND(load(Jumptable + index) + RelocBase) 3656 // RelocBase can be JumpTable, GOT or some sort of global base. 3657 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, 3658 TLI.getPICJumpTableRelocBase(Table, DAG)); 3659 } 3660 Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr); 3661 Results.push_back(Tmp1); 3662 break; 3663 } 3664 case ISD::BRCOND: 3665 // Expand brcond's setcc into its constituent parts and create a BR_CC 3666 // Node. 3667 Tmp1 = Node->getOperand(0); 3668 Tmp2 = Node->getOperand(1); 3669 if (Tmp2.getOpcode() == ISD::SETCC) { 3670 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, 3671 Tmp1, Tmp2.getOperand(2), 3672 Tmp2.getOperand(0), Tmp2.getOperand(1), 3673 Node->getOperand(2)); 3674 } else { 3675 // We test only the i1 bit. Skip the AND if UNDEF. 3676 Tmp3 = (Tmp2.getOpcode() == ISD::UNDEF) ? Tmp2 : 3677 DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2, 3678 DAG.getConstant(1, Tmp2.getValueType())); 3679 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, 3680 DAG.getCondCode(ISD::SETNE), Tmp3, 3681 DAG.getConstant(0, Tmp3.getValueType()), 3682 Node->getOperand(2)); 3683 } 3684 Results.push_back(Tmp1); 3685 break; 3686 case ISD::SETCC: { 3687 Tmp1 = Node->getOperand(0); 3688 Tmp2 = Node->getOperand(1); 3689 Tmp3 = Node->getOperand(2); 3690 LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl); 3691 3692 // If we expanded the SETCC into an AND/OR, return the new node 3693 if (Tmp2.getNode() == 0) { 3694 Results.push_back(Tmp1); 3695 break; 3696 } 3697 3698 // Otherwise, SETCC for the given comparison type must be completely 3699 // illegal; expand it into a SELECT_CC. 3700 EVT VT = Node->getValueType(0); 3701 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2, 3702 DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3); 3703 Results.push_back(Tmp1); 3704 break; 3705 } 3706 case ISD::SELECT_CC: { 3707 Tmp1 = Node->getOperand(0); // LHS 3708 Tmp2 = Node->getOperand(1); // RHS 3709 Tmp3 = Node->getOperand(2); // True 3710 Tmp4 = Node->getOperand(3); // False 3711 SDValue CC = Node->getOperand(4); 3712 3713 LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()), 3714 Tmp1, Tmp2, CC, dl); 3715 3716 assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!"); 3717 Tmp2 = DAG.getConstant(0, Tmp1.getValueType()); 3718 CC = DAG.getCondCode(ISD::SETNE); 3719 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2, 3720 Tmp3, Tmp4, CC); 3721 Results.push_back(Tmp1); 3722 break; 3723 } 3724 case ISD::BR_CC: { 3725 Tmp1 = Node->getOperand(0); // Chain 3726 Tmp2 = Node->getOperand(2); // LHS 3727 Tmp3 = Node->getOperand(3); // RHS 3728 Tmp4 = Node->getOperand(1); // CC 3729 3730 LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()), 3731 Tmp2, Tmp3, Tmp4, dl); 3732 assert(LastCALLSEQ.size() == 1 && "branch inside CALLSEQ_BEGIN/END?"); 3733 setLastCALLSEQ(DAG.getEntryNode()); 3734 3735 assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!"); 3736 Tmp3 = DAG.getConstant(0, Tmp2.getValueType()); 3737 Tmp4 = DAG.getCondCode(ISD::SETNE); 3738 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2, 3739 Tmp3, Node->getOperand(4)); 3740 Results.push_back(Tmp1); 3741 break; 3742 } 3743 case ISD::GLOBAL_OFFSET_TABLE: 3744 case ISD::GlobalAddress: 3745 case ISD::GlobalTLSAddress: 3746 case ISD::ExternalSymbol: 3747 case ISD::ConstantPool: 3748 case ISD::JumpTable: 3749 case ISD::INTRINSIC_W_CHAIN: 3750 case ISD::INTRINSIC_WO_CHAIN: 3751 case ISD::INTRINSIC_VOID: 3752 // FIXME: Custom lowering for these operations shouldn't return null! 3753 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 3754 Results.push_back(SDValue(Node, i)); 3755 break; 3756 } 3757} 3758void SelectionDAGLegalize::PromoteNode(SDNode *Node, 3759 SmallVectorImpl<SDValue> &Results) { 3760 EVT OVT = Node->getValueType(0); 3761 if (Node->getOpcode() == ISD::UINT_TO_FP || 3762 Node->getOpcode() == ISD::SINT_TO_FP || 3763 Node->getOpcode() == ISD::SETCC) { 3764 OVT = Node->getOperand(0).getValueType(); 3765 } 3766 EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 3767 DebugLoc dl = Node->getDebugLoc(); 3768 SDValue Tmp1, Tmp2, Tmp3; 3769 switch (Node->getOpcode()) { 3770 case ISD::CTTZ: 3771 case ISD::CTLZ: 3772 case ISD::CTPOP: 3773 // Zero extend the argument. 3774 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 3775 // Perform the larger operation. 3776 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 3777 if (Node->getOpcode() == ISD::CTTZ) { 3778 //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT) 3779 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT), 3780 Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT), 3781 ISD::SETEQ); 3782 Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, 3783 DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1); 3784 } else if (Node->getOpcode() == ISD::CTLZ) { 3785 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 3786 Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, 3787 DAG.getConstant(NVT.getSizeInBits() - 3788 OVT.getSizeInBits(), NVT)); 3789 } 3790 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 3791 break; 3792 case ISD::BSWAP: { 3793 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); 3794 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 3795 Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1); 3796 Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1, 3797 DAG.getConstant(DiffBits, TLI.getShiftAmountTy(NVT))); 3798 Results.push_back(Tmp1); 3799 break; 3800 } 3801 case ISD::FP_TO_UINT: 3802 case ISD::FP_TO_SINT: 3803 Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0), 3804 Node->getOpcode() == ISD::FP_TO_SINT, dl); 3805 Results.push_back(Tmp1); 3806 break; 3807 case ISD::UINT_TO_FP: 3808 case ISD::SINT_TO_FP: 3809 Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0), 3810 Node->getOpcode() == ISD::SINT_TO_FP, dl); 3811 Results.push_back(Tmp1); 3812 break; 3813 case ISD::AND: 3814 case ISD::OR: 3815 case ISD::XOR: { 3816 unsigned ExtOp, TruncOp; 3817 if (OVT.isVector()) { 3818 ExtOp = ISD::BITCAST; 3819 TruncOp = ISD::BITCAST; 3820 } else { 3821 assert(OVT.isInteger() && "Cannot promote logic operation"); 3822 ExtOp = ISD::ANY_EXTEND; 3823 TruncOp = ISD::TRUNCATE; 3824 } 3825 // Promote each of the values to the new type. 3826 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 3827 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 3828 // Perform the larger operation, then convert back 3829 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 3830 Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1)); 3831 break; 3832 } 3833 case ISD::SELECT: { 3834 unsigned ExtOp, TruncOp; 3835 if (Node->getValueType(0).isVector()) { 3836 ExtOp = ISD::BITCAST; 3837 TruncOp = ISD::BITCAST; 3838 } else if (Node->getValueType(0).isInteger()) { 3839 ExtOp = ISD::ANY_EXTEND; 3840 TruncOp = ISD::TRUNCATE; 3841 } else { 3842 ExtOp = ISD::FP_EXTEND; 3843 TruncOp = ISD::FP_ROUND; 3844 } 3845 Tmp1 = Node->getOperand(0); 3846 // Promote each of the values to the new type. 3847 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 3848 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 3849 // Perform the larger operation, then round down. 3850 Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3); 3851 if (TruncOp != ISD::FP_ROUND) 3852 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1); 3853 else 3854 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1, 3855 DAG.getIntPtrConstant(0)); 3856 Results.push_back(Tmp1); 3857 break; 3858 } 3859 case ISD::VECTOR_SHUFFLE: { 3860 SmallVector<int, 8> Mask; 3861 cast<ShuffleVectorSDNode>(Node)->getMask(Mask); 3862 3863 // Cast the two input vectors. 3864 Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0)); 3865 Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1)); 3866 3867 // Convert the shuffle mask to the right # elements. 3868 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask); 3869 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1); 3870 Results.push_back(Tmp1); 3871 break; 3872 } 3873 case ISD::SETCC: { 3874 unsigned ExtOp = ISD::FP_EXTEND; 3875 if (NVT.isInteger()) { 3876 ISD::CondCode CCCode = 3877 cast<CondCodeSDNode>(Node->getOperand(2))->get(); 3878 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 3879 } 3880 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 3881 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 3882 Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), 3883 Tmp1, Tmp2, Node->getOperand(2))); 3884 break; 3885 } 3886 } 3887} 3888 3889// SelectionDAG::Legalize - This is the entry point for the file. 3890// 3891void SelectionDAG::Legalize() { 3892 /// run - This is the main entry point to this class. 3893 /// 3894 SelectionDAGLegalize(*this).LegalizeDAG(); 3895} 3896