LegalizeDAG.cpp revision 155615d7dc4e4fbfd3b7273720a76356468edf46
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the SelectionDAG::Legalize method. 11// 12//===----------------------------------------------------------------------===// 13 14#include "llvm/CodeGen/SelectionDAG.h" 15#include "llvm/ADT/SmallPtrSet.h" 16#include "llvm/ADT/SmallVector.h" 17#include "llvm/ADT/Triple.h" 18#include "llvm/CodeGen/Analysis.h" 19#include "llvm/CodeGen/MachineFunction.h" 20#include "llvm/CodeGen/MachineJumpTableInfo.h" 21#include "llvm/DebugInfo.h" 22#include "llvm/IR/CallingConv.h" 23#include "llvm/IR/Constants.h" 24#include "llvm/IR/DataLayout.h" 25#include "llvm/IR/DerivedTypes.h" 26#include "llvm/IR/Function.h" 27#include "llvm/IR/LLVMContext.h" 28#include "llvm/Support/Debug.h" 29#include "llvm/Support/ErrorHandling.h" 30#include "llvm/Support/MathExtras.h" 31#include "llvm/Support/raw_ostream.h" 32#include "llvm/Target/TargetFrameLowering.h" 33#include "llvm/Target/TargetLowering.h" 34#include "llvm/Target/TargetMachine.h" 35using namespace llvm; 36 37//===----------------------------------------------------------------------===// 38/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and 39/// hacks on it until the target machine can handle it. This involves 40/// eliminating value sizes the machine cannot handle (promoting small sizes to 41/// large sizes or splitting up large values into small values) as well as 42/// eliminating operations the machine cannot handle. 43/// 44/// This code also does a small amount of optimization and recognition of idioms 45/// as part of its processing. For example, if a target does not support a 46/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this 47/// will attempt merge setcc and brc instructions into brcc's. 48/// 49namespace { 50class SelectionDAGLegalize : public SelectionDAG::DAGUpdateListener { 51 const TargetMachine &TM; 52 const TargetLowering &TLI; 53 SelectionDAG &DAG; 54 55 /// LegalizePosition - The iterator for walking through the node list. 56 SelectionDAG::allnodes_iterator LegalizePosition; 57 58 /// LegalizedNodes - The set of nodes which have already been legalized. 59 SmallPtrSet<SDNode *, 16> LegalizedNodes; 60 61 EVT getSetCCResultType(EVT VT) const { 62 return TLI.getSetCCResultType(*DAG.getContext(), VT); 63 } 64 65 // Libcall insertion helpers. 66 67public: 68 explicit SelectionDAGLegalize(SelectionDAG &DAG); 69 70 void LegalizeDAG(); 71 72private: 73 /// LegalizeOp - Legalizes the given operation. 74 void LegalizeOp(SDNode *Node); 75 76 SDValue OptimizeFloatStore(StoreSDNode *ST); 77 78 void LegalizeLoadOps(SDNode *Node); 79 void LegalizeStoreOps(SDNode *Node); 80 81 /// PerformInsertVectorEltInMemory - Some target cannot handle a variable 82 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 83 /// is necessary to spill the vector being inserted into to memory, perform 84 /// the insert there, and then read the result back. 85 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, 86 SDValue Idx, SDLoc dl); 87 SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, 88 SDValue Idx, SDLoc dl); 89 90 /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which 91 /// performs the same shuffe in terms of order or result bytes, but on a type 92 /// whose vector element type is narrower than the original shuffle type. 93 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 94 SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, SDLoc dl, 95 SDValue N1, SDValue N2, 96 ArrayRef<int> Mask) const; 97 98 void LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, 99 SDLoc dl); 100 101 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned); 102 SDValue ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, const SDValue *Ops, 103 unsigned NumOps, bool isSigned, SDLoc dl); 104 105 std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC, 106 SDNode *Node, bool isSigned); 107 SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32, 108 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, 109 RTLIB::Libcall Call_F128, 110 RTLIB::Libcall Call_PPCF128); 111 SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, 112 RTLIB::Libcall Call_I8, 113 RTLIB::Libcall Call_I16, 114 RTLIB::Libcall Call_I32, 115 RTLIB::Libcall Call_I64, 116 RTLIB::Libcall Call_I128); 117 void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 118 void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 119 120 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, SDLoc dl); 121 SDValue ExpandBUILD_VECTOR(SDNode *Node); 122 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); 123 void ExpandDYNAMIC_STACKALLOC(SDNode *Node, 124 SmallVectorImpl<SDValue> &Results); 125 SDValue ExpandFCOPYSIGN(SDNode *Node); 126 SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT, 127 SDLoc dl); 128 SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned, 129 SDLoc dl); 130 SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned, 131 SDLoc dl); 132 133 SDValue ExpandBSWAP(SDValue Op, SDLoc dl); 134 SDValue ExpandBitCount(unsigned Opc, SDValue Op, SDLoc dl); 135 136 SDValue ExpandExtractFromVectorThroughStack(SDValue Op); 137 SDValue ExpandInsertToVectorThroughStack(SDValue Op); 138 SDValue ExpandVectorBuildThroughStack(SDNode* Node); 139 140 SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP); 141 142 std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node); 143 144 void ExpandNode(SDNode *Node); 145 void PromoteNode(SDNode *Node); 146 147 void ForgetNode(SDNode *N) { 148 LegalizedNodes.erase(N); 149 if (LegalizePosition == SelectionDAG::allnodes_iterator(N)) 150 ++LegalizePosition; 151 } 152 153public: 154 // DAGUpdateListener implementation. 155 virtual void NodeDeleted(SDNode *N, SDNode *E) { 156 ForgetNode(N); 157 } 158 virtual void NodeUpdated(SDNode *N) {} 159 160 // Node replacement helpers 161 void ReplacedNode(SDNode *N) { 162 if (N->use_empty()) { 163 DAG.RemoveDeadNode(N); 164 } else { 165 ForgetNode(N); 166 } 167 } 168 void ReplaceNode(SDNode *Old, SDNode *New) { 169 DAG.ReplaceAllUsesWith(Old, New); 170 ReplacedNode(Old); 171 } 172 void ReplaceNode(SDValue Old, SDValue New) { 173 DAG.ReplaceAllUsesWith(Old, New); 174 ReplacedNode(Old.getNode()); 175 } 176 void ReplaceNode(SDNode *Old, const SDValue *New) { 177 DAG.ReplaceAllUsesWith(Old, New); 178 ReplacedNode(Old); 179 } 180}; 181} 182 183/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which 184/// performs the same shuffe in terms of order or result bytes, but on a type 185/// whose vector element type is narrower than the original shuffle type. 186/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 187SDValue 188SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT, SDLoc dl, 189 SDValue N1, SDValue N2, 190 ArrayRef<int> Mask) const { 191 unsigned NumMaskElts = VT.getVectorNumElements(); 192 unsigned NumDestElts = NVT.getVectorNumElements(); 193 unsigned NumEltsGrowth = NumDestElts / NumMaskElts; 194 195 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); 196 197 if (NumEltsGrowth == 1) 198 return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]); 199 200 SmallVector<int, 8> NewMask; 201 for (unsigned i = 0; i != NumMaskElts; ++i) { 202 int Idx = Mask[i]; 203 for (unsigned j = 0; j != NumEltsGrowth; ++j) { 204 if (Idx < 0) 205 NewMask.push_back(-1); 206 else 207 NewMask.push_back(Idx * NumEltsGrowth + j); 208 } 209 } 210 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?"); 211 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?"); 212 return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]); 213} 214 215SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag) 216 : SelectionDAG::DAGUpdateListener(dag), 217 TM(dag.getTarget()), TLI(dag.getTargetLoweringInfo()), 218 DAG(dag) { 219} 220 221void SelectionDAGLegalize::LegalizeDAG() { 222 DAG.AssignTopologicalOrder(); 223 224 // Visit all the nodes. We start in topological order, so that we see 225 // nodes with their original operands intact. Legalization can produce 226 // new nodes which may themselves need to be legalized. Iterate until all 227 // nodes have been legalized. 228 for (;;) { 229 bool AnyLegalized = false; 230 for (LegalizePosition = DAG.allnodes_end(); 231 LegalizePosition != DAG.allnodes_begin(); ) { 232 --LegalizePosition; 233 234 SDNode *N = LegalizePosition; 235 if (LegalizedNodes.insert(N)) { 236 AnyLegalized = true; 237 LegalizeOp(N); 238 } 239 } 240 if (!AnyLegalized) 241 break; 242 243 } 244 245 // Remove dead nodes now. 246 DAG.RemoveDeadNodes(); 247} 248 249/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or 250/// a load from the constant pool. 251SDValue 252SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) { 253 bool Extend = false; 254 SDLoc dl(CFP); 255 256 // If a FP immediate is precise when represented as a float and if the 257 // target can do an extending load from float to double, we put it into 258 // the constant pool as a float, even if it's is statically typed as a 259 // double. This shrinks FP constants and canonicalizes them for targets where 260 // an FP extending load is the same cost as a normal load (such as on the x87 261 // fp stack or PPC FP unit). 262 EVT VT = CFP->getValueType(0); 263 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue()); 264 if (!UseCP) { 265 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion"); 266 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), 267 (VT == MVT::f64) ? MVT::i64 : MVT::i32); 268 } 269 270 EVT OrigVT = VT; 271 EVT SVT = VT; 272 while (SVT != MVT::f32) { 273 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1); 274 if (ConstantFPSDNode::isValueValidForType(SVT, CFP->getValueAPF()) && 275 // Only do this if the target has a native EXTLOAD instruction from 276 // smaller type. 277 TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) && 278 TLI.ShouldShrinkFPConstant(OrigVT)) { 279 Type *SType = SVT.getTypeForEVT(*DAG.getContext()); 280 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType)); 281 VT = SVT; 282 Extend = true; 283 } 284 } 285 286 SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy()); 287 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 288 if (Extend) { 289 SDValue Result = 290 DAG.getExtLoad(ISD::EXTLOAD, dl, OrigVT, 291 DAG.getEntryNode(), 292 CPIdx, MachinePointerInfo::getConstantPool(), 293 VT, false, false, Alignment); 294 return Result; 295 } 296 SDValue Result = 297 DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx, 298 MachinePointerInfo::getConstantPool(), false, false, false, 299 Alignment); 300 return Result; 301} 302 303/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores. 304static void ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG, 305 const TargetLowering &TLI, 306 SelectionDAGLegalize *DAGLegalize) { 307 assert(ST->getAddressingMode() == ISD::UNINDEXED && 308 "unaligned indexed stores not implemented!"); 309 SDValue Chain = ST->getChain(); 310 SDValue Ptr = ST->getBasePtr(); 311 SDValue Val = ST->getValue(); 312 EVT VT = Val.getValueType(); 313 int Alignment = ST->getAlignment(); 314 SDLoc dl(ST); 315 if (ST->getMemoryVT().isFloatingPoint() || 316 ST->getMemoryVT().isVector()) { 317 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 318 if (TLI.isTypeLegal(intVT)) { 319 // Expand to a bitconvert of the value to the integer type of the 320 // same size, then a (misaligned) int store. 321 // FIXME: Does not handle truncating floating point stores! 322 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 323 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 324 ST->isVolatile(), ST->isNonTemporal(), Alignment); 325 DAGLegalize->ReplaceNode(SDValue(ST, 0), Result); 326 return; 327 } 328 // Do a (aligned) store to a stack slot, then copy from the stack slot 329 // to the final destination using (unaligned) integer loads and stores. 330 EVT StoredVT = ST->getMemoryVT(); 331 MVT RegVT = 332 TLI.getRegisterType(*DAG.getContext(), 333 EVT::getIntegerVT(*DAG.getContext(), 334 StoredVT.getSizeInBits())); 335 unsigned StoredBytes = StoredVT.getSizeInBits() / 8; 336 unsigned RegBytes = RegVT.getSizeInBits() / 8; 337 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 338 339 // Make sure the stack slot is also aligned for the register type. 340 SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT); 341 342 // Perform the original store, only redirected to the stack slot. 343 SDValue Store = DAG.getTruncStore(Chain, dl, 344 Val, StackPtr, MachinePointerInfo(), 345 StoredVT, false, false, 0); 346 SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy()); 347 SmallVector<SDValue, 8> Stores; 348 unsigned Offset = 0; 349 350 // Do all but one copies using the full register width. 351 for (unsigned i = 1; i < NumRegs; i++) { 352 // Load one integer register's worth from the stack slot. 353 SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr, 354 MachinePointerInfo(), 355 false, false, false, 0); 356 // Store it to the final location. Remember the store. 357 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 358 ST->getPointerInfo().getWithOffset(Offset), 359 ST->isVolatile(), ST->isNonTemporal(), 360 MinAlign(ST->getAlignment(), Offset))); 361 // Increment the pointers. 362 Offset += RegBytes; 363 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr, 364 Increment); 365 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 366 } 367 368 // The last store may be partial. Do a truncating store. On big-endian 369 // machines this requires an extending load from the stack slot to ensure 370 // that the bits are in the right place. 371 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 372 8 * (StoredBytes - Offset)); 373 374 // Load from the stack slot. 375 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 376 MachinePointerInfo(), 377 MemVT, false, false, 0); 378 379 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 380 ST->getPointerInfo() 381 .getWithOffset(Offset), 382 MemVT, ST->isVolatile(), 383 ST->isNonTemporal(), 384 MinAlign(ST->getAlignment(), Offset))); 385 // The order of the stores doesn't matter - say it with a TokenFactor. 386 SDValue Result = 387 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0], 388 Stores.size()); 389 DAGLegalize->ReplaceNode(SDValue(ST, 0), Result); 390 return; 391 } 392 assert(ST->getMemoryVT().isInteger() && 393 !ST->getMemoryVT().isVector() && 394 "Unaligned store of unknown type."); 395 // Get the half-size VT 396 EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext()); 397 int NumBits = NewStoredVT.getSizeInBits(); 398 int IncrementSize = NumBits / 8; 399 400 // Divide the stored value in two parts. 401 SDValue ShiftAmount = DAG.getConstant(NumBits, 402 TLI.getShiftAmountTy(Val.getValueType())); 403 SDValue Lo = Val; 404 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 405 406 // Store the two parts 407 SDValue Store1, Store2; 408 Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr, 409 ST->getPointerInfo(), NewStoredVT, 410 ST->isVolatile(), ST->isNonTemporal(), Alignment); 411 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 412 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 413 Alignment = MinAlign(Alignment, IncrementSize); 414 Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr, 415 ST->getPointerInfo().getWithOffset(IncrementSize), 416 NewStoredVT, ST->isVolatile(), ST->isNonTemporal(), 417 Alignment); 418 419 SDValue Result = 420 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 421 DAGLegalize->ReplaceNode(SDValue(ST, 0), Result); 422} 423 424/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads. 425static void 426ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG, 427 const TargetLowering &TLI, 428 SDValue &ValResult, SDValue &ChainResult) { 429 assert(LD->getAddressingMode() == ISD::UNINDEXED && 430 "unaligned indexed loads not implemented!"); 431 SDValue Chain = LD->getChain(); 432 SDValue Ptr = LD->getBasePtr(); 433 EVT VT = LD->getValueType(0); 434 EVT LoadedVT = LD->getMemoryVT(); 435 SDLoc dl(LD); 436 if (VT.isFloatingPoint() || VT.isVector()) { 437 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 438 if (TLI.isTypeLegal(intVT) && TLI.isTypeLegal(LoadedVT)) { 439 // Expand to a (misaligned) integer load of the same size, 440 // then bitconvert to floating point or vector. 441 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getPointerInfo(), 442 LD->isVolatile(), 443 LD->isNonTemporal(), 444 LD->isInvariant(), LD->getAlignment()); 445 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 446 if (LoadedVT != VT) 447 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 448 ISD::ANY_EXTEND, dl, VT, Result); 449 450 ValResult = Result; 451 ChainResult = Chain; 452 return; 453 } 454 455 // Copy the value to a (aligned) stack slot using (unaligned) integer 456 // loads and stores, then do a (aligned) load from the stack slot. 457 MVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT); 458 unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8; 459 unsigned RegBytes = RegVT.getSizeInBits() / 8; 460 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 461 462 // Make sure the stack slot is also aligned for the register type. 463 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 464 465 SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy()); 466 SmallVector<SDValue, 8> Stores; 467 SDValue StackPtr = StackBase; 468 unsigned Offset = 0; 469 470 // Do all but one copies using the full register width. 471 for (unsigned i = 1; i < NumRegs; i++) { 472 // Load one integer register's worth from the original location. 473 SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr, 474 LD->getPointerInfo().getWithOffset(Offset), 475 LD->isVolatile(), LD->isNonTemporal(), 476 LD->isInvariant(), 477 MinAlign(LD->getAlignment(), Offset)); 478 // Follow the load with a store to the stack slot. Remember the store. 479 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr, 480 MachinePointerInfo(), false, false, 0)); 481 // Increment the pointers. 482 Offset += RegBytes; 483 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 484 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr, 485 Increment); 486 } 487 488 // The last copy may be partial. Do an extending load. 489 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 490 8 * (LoadedBytes - Offset)); 491 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 492 LD->getPointerInfo().getWithOffset(Offset), 493 MemVT, LD->isVolatile(), 494 LD->isNonTemporal(), 495 MinAlign(LD->getAlignment(), Offset)); 496 // Follow the load with a store to the stack slot. Remember the store. 497 // On big-endian machines this requires a truncating store to ensure 498 // that the bits end up in the right place. 499 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr, 500 MachinePointerInfo(), MemVT, 501 false, false, 0)); 502 503 // The order of the stores doesn't matter - say it with a TokenFactor. 504 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0], 505 Stores.size()); 506 507 // Finally, perform the original load only redirected to the stack slot. 508 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 509 MachinePointerInfo(), LoadedVT, false, false, 0); 510 511 // Callers expect a MERGE_VALUES node. 512 ValResult = Load; 513 ChainResult = TF; 514 return; 515 } 516 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 517 "Unaligned load of unsupported type."); 518 519 // Compute the new VT that is half the size of the old one. This is an 520 // integer MVT. 521 unsigned NumBits = LoadedVT.getSizeInBits(); 522 EVT NewLoadedVT; 523 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 524 NumBits >>= 1; 525 526 unsigned Alignment = LD->getAlignment(); 527 unsigned IncrementSize = NumBits / 8; 528 ISD::LoadExtType HiExtType = LD->getExtensionType(); 529 530 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 531 if (HiExtType == ISD::NON_EXTLOAD) 532 HiExtType = ISD::ZEXTLOAD; 533 534 // Load the value in two parts 535 SDValue Lo, Hi; 536 if (TLI.isLittleEndian()) { 537 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 538 NewLoadedVT, LD->isVolatile(), 539 LD->isNonTemporal(), Alignment); 540 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 541 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 542 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 543 LD->getPointerInfo().getWithOffset(IncrementSize), 544 NewLoadedVT, LD->isVolatile(), 545 LD->isNonTemporal(), MinAlign(Alignment,IncrementSize)); 546 } else { 547 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 548 NewLoadedVT, LD->isVolatile(), 549 LD->isNonTemporal(), Alignment); 550 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 551 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 552 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 553 LD->getPointerInfo().getWithOffset(IncrementSize), 554 NewLoadedVT, LD->isVolatile(), 555 LD->isNonTemporal(), MinAlign(Alignment,IncrementSize)); 556 } 557 558 // aggregate the two parts 559 SDValue ShiftAmount = DAG.getConstant(NumBits, 560 TLI.getShiftAmountTy(Hi.getValueType())); 561 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 562 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 563 564 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 565 Hi.getValue(1)); 566 567 ValResult = Result; 568 ChainResult = TF; 569} 570 571/// PerformInsertVectorEltInMemory - Some target cannot handle a variable 572/// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 573/// is necessary to spill the vector being inserted into to memory, perform 574/// the insert there, and then read the result back. 575SDValue SelectionDAGLegalize:: 576PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx, 577 SDLoc dl) { 578 SDValue Tmp1 = Vec; 579 SDValue Tmp2 = Val; 580 SDValue Tmp3 = Idx; 581 582 // If the target doesn't support this, we have to spill the input vector 583 // to a temporary stack slot, update the element, then reload it. This is 584 // badness. We could also load the value into a vector register (either 585 // with a "move to register" or "extload into register" instruction, then 586 // permute it into place, if the idx is a constant and if the idx is 587 // supported by the target. 588 EVT VT = Tmp1.getValueType(); 589 EVT EltVT = VT.getVectorElementType(); 590 EVT IdxVT = Tmp3.getValueType(); 591 EVT PtrVT = TLI.getPointerTy(); 592 SDValue StackPtr = DAG.CreateStackTemporary(VT); 593 594 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 595 596 // Store the vector. 597 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr, 598 MachinePointerInfo::getFixedStack(SPFI), 599 false, false, 0); 600 601 // Truncate or zero extend offset to target pointer type. 602 unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND; 603 Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3); 604 // Add the offset to the index. 605 unsigned EltSize = EltVT.getSizeInBits()/8; 606 Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT)); 607 SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr); 608 // Store the scalar value. 609 Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT, 610 false, false, 0); 611 // Load the updated vector. 612 return DAG.getLoad(VT, dl, Ch, StackPtr, 613 MachinePointerInfo::getFixedStack(SPFI), false, false, 614 false, 0); 615} 616 617 618SDValue SelectionDAGLegalize:: 619ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, SDLoc dl) { 620 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) { 621 // SCALAR_TO_VECTOR requires that the type of the value being inserted 622 // match the element type of the vector being created, except for 623 // integers in which case the inserted value can be over width. 624 EVT EltVT = Vec.getValueType().getVectorElementType(); 625 if (Val.getValueType() == EltVT || 626 (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) { 627 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, 628 Vec.getValueType(), Val); 629 630 unsigned NumElts = Vec.getValueType().getVectorNumElements(); 631 // We generate a shuffle of InVec and ScVec, so the shuffle mask 632 // should be 0,1,2,3,4,5... with the appropriate element replaced with 633 // elt 0 of the RHS. 634 SmallVector<int, 8> ShufOps; 635 for (unsigned i = 0; i != NumElts; ++i) 636 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts); 637 638 return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, 639 &ShufOps[0]); 640 } 641 } 642 return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl); 643} 644 645SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) { 646 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 647 // FIXME: We shouldn't do this for TargetConstantFP's. 648 // FIXME: move this to the DAG Combiner! Note that we can't regress due 649 // to phase ordering between legalized code and the dag combiner. This 650 // probably means that we need to integrate dag combiner and legalizer 651 // together. 652 // We generally can't do this one for long doubles. 653 SDValue Chain = ST->getChain(); 654 SDValue Ptr = ST->getBasePtr(); 655 unsigned Alignment = ST->getAlignment(); 656 bool isVolatile = ST->isVolatile(); 657 bool isNonTemporal = ST->isNonTemporal(); 658 SDLoc dl(ST); 659 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) { 660 if (CFP->getValueType(0) == MVT::f32 && 661 TLI.isTypeLegal(MVT::i32)) { 662 SDValue Con = DAG.getConstant(CFP->getValueAPF(). 663 bitcastToAPInt().zextOrTrunc(32), 664 MVT::i32); 665 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 666 isVolatile, isNonTemporal, Alignment); 667 } 668 669 if (CFP->getValueType(0) == MVT::f64) { 670 // If this target supports 64-bit registers, do a single 64-bit store. 671 if (TLI.isTypeLegal(MVT::i64)) { 672 SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 673 zextOrTrunc(64), MVT::i64); 674 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 675 isVolatile, isNonTemporal, Alignment); 676 } 677 678 if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) { 679 // Otherwise, if the target supports 32-bit registers, use 2 32-bit 680 // stores. If the target supports neither 32- nor 64-bits, this 681 // xform is certainly not worth it. 682 const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt(); 683 SDValue Lo = DAG.getConstant(IntVal.trunc(32), MVT::i32); 684 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32); 685 if (TLI.isBigEndian()) std::swap(Lo, Hi); 686 687 Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), isVolatile, 688 isNonTemporal, Alignment); 689 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 690 DAG.getIntPtrConstant(4)); 691 Hi = DAG.getStore(Chain, dl, Hi, Ptr, 692 ST->getPointerInfo().getWithOffset(4), 693 isVolatile, isNonTemporal, MinAlign(Alignment, 4U)); 694 695 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 696 } 697 } 698 } 699 return SDValue(0, 0); 700} 701 702void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) { 703 StoreSDNode *ST = cast<StoreSDNode>(Node); 704 SDValue Chain = ST->getChain(); 705 SDValue Ptr = ST->getBasePtr(); 706 SDLoc dl(Node); 707 708 unsigned Alignment = ST->getAlignment(); 709 bool isVolatile = ST->isVolatile(); 710 bool isNonTemporal = ST->isNonTemporal(); 711 712 if (!ST->isTruncatingStore()) { 713 if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) { 714 ReplaceNode(ST, OptStore); 715 return; 716 } 717 718 { 719 SDValue Value = ST->getValue(); 720 MVT VT = Value.getSimpleValueType(); 721 switch (TLI.getOperationAction(ISD::STORE, VT)) { 722 default: llvm_unreachable("This action is not supported yet!"); 723 case TargetLowering::Legal: 724 // If this is an unaligned store and the target doesn't support it, 725 // expand it. 726 if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) { 727 Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext()); 728 unsigned ABIAlignment= TLI.getDataLayout()->getABITypeAlignment(Ty); 729 if (ST->getAlignment() < ABIAlignment) 730 ExpandUnalignedStore(cast<StoreSDNode>(Node), 731 DAG, TLI, this); 732 } 733 break; 734 case TargetLowering::Custom: { 735 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 736 if (Res.getNode()) 737 ReplaceNode(SDValue(Node, 0), Res); 738 return; 739 } 740 case TargetLowering::Promote: { 741 MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT); 742 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 743 "Can only promote stores to same size type"); 744 Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value); 745 SDValue Result = 746 DAG.getStore(Chain, dl, Value, Ptr, 747 ST->getPointerInfo(), isVolatile, 748 isNonTemporal, Alignment); 749 ReplaceNode(SDValue(Node, 0), Result); 750 break; 751 } 752 } 753 return; 754 } 755 } else { 756 SDValue Value = ST->getValue(); 757 758 EVT StVT = ST->getMemoryVT(); 759 unsigned StWidth = StVT.getSizeInBits(); 760 761 if (StWidth != StVT.getStoreSizeInBits()) { 762 // Promote to a byte-sized store with upper bits zero if not 763 // storing an integral number of bytes. For example, promote 764 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 765 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), 766 StVT.getStoreSizeInBits()); 767 Value = DAG.getZeroExtendInReg(Value, dl, StVT); 768 SDValue Result = 769 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 770 NVT, isVolatile, isNonTemporal, Alignment); 771 ReplaceNode(SDValue(Node, 0), Result); 772 } else if (StWidth & (StWidth - 1)) { 773 // If not storing a power-of-2 number of bits, expand as two stores. 774 assert(!StVT.isVector() && "Unsupported truncstore!"); 775 unsigned RoundWidth = 1 << Log2_32(StWidth); 776 assert(RoundWidth < StWidth); 777 unsigned ExtraWidth = StWidth - RoundWidth; 778 assert(ExtraWidth < RoundWidth); 779 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 780 "Store size not an integral number of bytes!"); 781 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 782 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 783 SDValue Lo, Hi; 784 unsigned IncrementSize; 785 786 if (TLI.isLittleEndian()) { 787 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) 788 // Store the bottom RoundWidth bits. 789 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 790 RoundVT, 791 isVolatile, isNonTemporal, Alignment); 792 793 // Store the remaining ExtraWidth bits. 794 IncrementSize = RoundWidth / 8; 795 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 796 DAG.getIntPtrConstant(IncrementSize)); 797 Hi = DAG.getNode(ISD::SRL, dl, Value.getValueType(), Value, 798 DAG.getConstant(RoundWidth, 799 TLI.getShiftAmountTy(Value.getValueType()))); 800 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, 801 ST->getPointerInfo().getWithOffset(IncrementSize), 802 ExtraVT, isVolatile, isNonTemporal, 803 MinAlign(Alignment, IncrementSize)); 804 } else { 805 // Big endian - avoid unaligned stores. 806 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X 807 // Store the top RoundWidth bits. 808 Hi = DAG.getNode(ISD::SRL, dl, Value.getValueType(), Value, 809 DAG.getConstant(ExtraWidth, 810 TLI.getShiftAmountTy(Value.getValueType()))); 811 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(), 812 RoundVT, isVolatile, isNonTemporal, Alignment); 813 814 // Store the remaining ExtraWidth bits. 815 IncrementSize = RoundWidth / 8; 816 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 817 DAG.getIntPtrConstant(IncrementSize)); 818 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, 819 ST->getPointerInfo().getWithOffset(IncrementSize), 820 ExtraVT, isVolatile, isNonTemporal, 821 MinAlign(Alignment, IncrementSize)); 822 } 823 824 // The order of the stores doesn't matter. 825 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 826 ReplaceNode(SDValue(Node, 0), Result); 827 } else { 828 switch (TLI.getTruncStoreAction(ST->getValue().getSimpleValueType(), 829 StVT.getSimpleVT())) { 830 default: llvm_unreachable("This action is not supported yet!"); 831 case TargetLowering::Legal: 832 // If this is an unaligned store and the target doesn't support it, 833 // expand it. 834 if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) { 835 Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext()); 836 unsigned ABIAlignment= TLI.getDataLayout()->getABITypeAlignment(Ty); 837 if (ST->getAlignment() < ABIAlignment) 838 ExpandUnalignedStore(cast<StoreSDNode>(Node), DAG, TLI, this); 839 } 840 break; 841 case TargetLowering::Custom: { 842 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 843 if (Res.getNode()) 844 ReplaceNode(SDValue(Node, 0), Res); 845 return; 846 } 847 case TargetLowering::Expand: 848 assert(!StVT.isVector() && 849 "Vector Stores are handled in LegalizeVectorOps"); 850 851 // TRUNCSTORE:i16 i32 -> STORE i16 852 assert(TLI.isTypeLegal(StVT) && 853 "Do not know how to expand this store!"); 854 Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value); 855 SDValue Result = 856 DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 857 isVolatile, isNonTemporal, Alignment); 858 ReplaceNode(SDValue(Node, 0), Result); 859 break; 860 } 861 } 862 } 863} 864 865void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) { 866 LoadSDNode *LD = cast<LoadSDNode>(Node); 867 SDValue Chain = LD->getChain(); // The chain. 868 SDValue Ptr = LD->getBasePtr(); // The base pointer. 869 SDValue Value; // The value returned by the load op. 870 SDLoc dl(Node); 871 872 ISD::LoadExtType ExtType = LD->getExtensionType(); 873 if (ExtType == ISD::NON_EXTLOAD) { 874 MVT VT = Node->getSimpleValueType(0); 875 SDValue RVal = SDValue(Node, 0); 876 SDValue RChain = SDValue(Node, 1); 877 878 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 879 default: llvm_unreachable("This action is not supported yet!"); 880 case TargetLowering::Legal: 881 // If this is an unaligned load and the target doesn't support it, 882 // expand it. 883 if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) { 884 Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext()); 885 unsigned ABIAlignment = 886 TLI.getDataLayout()->getABITypeAlignment(Ty); 887 if (LD->getAlignment() < ABIAlignment){ 888 ExpandUnalignedLoad(cast<LoadSDNode>(Node), DAG, TLI, RVal, RChain); 889 } 890 } 891 break; 892 case TargetLowering::Custom: { 893 SDValue Res = TLI.LowerOperation(RVal, DAG); 894 if (Res.getNode()) { 895 RVal = Res; 896 RChain = Res.getValue(1); 897 } 898 break; 899 } 900 case TargetLowering::Promote: { 901 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 902 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 903 "Can only promote loads to same size type"); 904 905 SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getPointerInfo(), 906 LD->isVolatile(), LD->isNonTemporal(), 907 LD->isInvariant(), LD->getAlignment()); 908 RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res); 909 RChain = Res.getValue(1); 910 break; 911 } 912 } 913 if (RChain.getNode() != Node) { 914 assert(RVal.getNode() != Node && "Load must be completely replaced"); 915 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal); 916 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain); 917 ReplacedNode(Node); 918 } 919 return; 920 } 921 922 EVT SrcVT = LD->getMemoryVT(); 923 unsigned SrcWidth = SrcVT.getSizeInBits(); 924 unsigned Alignment = LD->getAlignment(); 925 bool isVolatile = LD->isVolatile(); 926 bool isNonTemporal = LD->isNonTemporal(); 927 928 if (SrcWidth != SrcVT.getStoreSizeInBits() && 929 // Some targets pretend to have an i1 loading operation, and actually 930 // load an i8. This trick is correct for ZEXTLOAD because the top 7 931 // bits are guaranteed to be zero; it helps the optimizers understand 932 // that these bits are zero. It is also useful for EXTLOAD, since it 933 // tells the optimizers that those bits are undefined. It would be 934 // nice to have an effective generic way of getting these benefits... 935 // Until such a way is found, don't insist on promoting i1 here. 936 (SrcVT != MVT::i1 || 937 TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) { 938 // Promote to a byte-sized load if not loading an integral number of 939 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 940 unsigned NewWidth = SrcVT.getStoreSizeInBits(); 941 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth); 942 SDValue Ch; 943 944 // The extra bits are guaranteed to be zero, since we stored them that 945 // way. A zext load from NVT thus automatically gives zext from SrcVT. 946 947 ISD::LoadExtType NewExtType = 948 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; 949 950 SDValue Result = 951 DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), 952 Chain, Ptr, LD->getPointerInfo(), 953 NVT, isVolatile, isNonTemporal, Alignment); 954 955 Ch = Result.getValue(1); // The chain. 956 957 if (ExtType == ISD::SEXTLOAD) 958 // Having the top bits zero doesn't help when sign extending. 959 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 960 Result.getValueType(), 961 Result, DAG.getValueType(SrcVT)); 962 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) 963 // All the top bits are guaranteed to be zero - inform the optimizers. 964 Result = DAG.getNode(ISD::AssertZext, dl, 965 Result.getValueType(), Result, 966 DAG.getValueType(SrcVT)); 967 968 Value = Result; 969 Chain = Ch; 970 } else if (SrcWidth & (SrcWidth - 1)) { 971 // If not loading a power-of-2 number of bits, expand as two loads. 972 assert(!SrcVT.isVector() && "Unsupported extload!"); 973 unsigned RoundWidth = 1 << Log2_32(SrcWidth); 974 assert(RoundWidth < SrcWidth); 975 unsigned ExtraWidth = SrcWidth - RoundWidth; 976 assert(ExtraWidth < RoundWidth); 977 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 978 "Load size not an integral number of bytes!"); 979 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 980 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 981 SDValue Lo, Hi, Ch; 982 unsigned IncrementSize; 983 984 if (TLI.isLittleEndian()) { 985 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) 986 // Load the bottom RoundWidth bits. 987 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), 988 Chain, Ptr, 989 LD->getPointerInfo(), RoundVT, isVolatile, 990 isNonTemporal, Alignment); 991 992 // Load the remaining ExtraWidth bits. 993 IncrementSize = RoundWidth / 8; 994 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 995 DAG.getIntPtrConstant(IncrementSize)); 996 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 997 LD->getPointerInfo().getWithOffset(IncrementSize), 998 ExtraVT, isVolatile, isNonTemporal, 999 MinAlign(Alignment, IncrementSize)); 1000 1001 // Build a factor node to remember that this load is independent of 1002 // the other one. 1003 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 1004 Hi.getValue(1)); 1005 1006 // Move the top bits to the right place. 1007 Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi, 1008 DAG.getConstant(RoundWidth, 1009 TLI.getShiftAmountTy(Hi.getValueType()))); 1010 1011 // Join the hi and lo parts. 1012 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 1013 } else { 1014 // Big endian - avoid unaligned loads. 1015 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 1016 // Load the top RoundWidth bits. 1017 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 1018 LD->getPointerInfo(), RoundVT, isVolatile, 1019 isNonTemporal, Alignment); 1020 1021 // Load the remaining ExtraWidth bits. 1022 IncrementSize = RoundWidth / 8; 1023 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 1024 DAG.getIntPtrConstant(IncrementSize)); 1025 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, 1026 dl, Node->getValueType(0), Chain, Ptr, 1027 LD->getPointerInfo().getWithOffset(IncrementSize), 1028 ExtraVT, isVolatile, isNonTemporal, 1029 MinAlign(Alignment, IncrementSize)); 1030 1031 // Build a factor node to remember that this load is independent of 1032 // the other one. 1033 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 1034 Hi.getValue(1)); 1035 1036 // Move the top bits to the right place. 1037 Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi, 1038 DAG.getConstant(ExtraWidth, 1039 TLI.getShiftAmountTy(Hi.getValueType()))); 1040 1041 // Join the hi and lo parts. 1042 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 1043 } 1044 1045 Chain = Ch; 1046 } else { 1047 bool isCustom = false; 1048 switch (TLI.getLoadExtAction(ExtType, SrcVT.getSimpleVT())) { 1049 default: llvm_unreachable("This action is not supported yet!"); 1050 case TargetLowering::Custom: 1051 isCustom = true; 1052 // FALLTHROUGH 1053 case TargetLowering::Legal: { 1054 Value = SDValue(Node, 0); 1055 Chain = SDValue(Node, 1); 1056 1057 if (isCustom) { 1058 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 1059 if (Res.getNode()) { 1060 Value = Res; 1061 Chain = Res.getValue(1); 1062 } 1063 } else { 1064 // If this is an unaligned load and the target doesn't support it, 1065 // expand it. 1066 if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) { 1067 Type *Ty = 1068 LD->getMemoryVT().getTypeForEVT(*DAG.getContext()); 1069 unsigned ABIAlignment = 1070 TLI.getDataLayout()->getABITypeAlignment(Ty); 1071 if (LD->getAlignment() < ABIAlignment){ 1072 ExpandUnalignedLoad(cast<LoadSDNode>(Node), 1073 DAG, TLI, Value, Chain); 1074 } 1075 } 1076 } 1077 break; 1078 } 1079 case TargetLowering::Expand: 1080 if (!TLI.isLoadExtLegal(ISD::EXTLOAD, SrcVT) && TLI.isTypeLegal(SrcVT)) { 1081 SDValue Load = DAG.getLoad(SrcVT, dl, Chain, Ptr, 1082 LD->getPointerInfo(), 1083 LD->isVolatile(), LD->isNonTemporal(), 1084 LD->isInvariant(), LD->getAlignment()); 1085 unsigned ExtendOp; 1086 switch (ExtType) { 1087 case ISD::EXTLOAD: 1088 ExtendOp = (SrcVT.isFloatingPoint() ? 1089 ISD::FP_EXTEND : ISD::ANY_EXTEND); 1090 break; 1091 case ISD::SEXTLOAD: ExtendOp = ISD::SIGN_EXTEND; break; 1092 case ISD::ZEXTLOAD: ExtendOp = ISD::ZERO_EXTEND; break; 1093 default: llvm_unreachable("Unexpected extend load type!"); 1094 } 1095 Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load); 1096 Chain = Load.getValue(1); 1097 break; 1098 } 1099 1100 assert(!SrcVT.isVector() && 1101 "Vector Loads are handled in LegalizeVectorOps"); 1102 1103 // FIXME: This does not work for vectors on most targets. Sign- and 1104 // zero-extend operations are currently folded into extending loads, 1105 // whether they are legal or not, and then we end up here without any 1106 // support for legalizing them. 1107 assert(ExtType != ISD::EXTLOAD && 1108 "EXTLOAD should always be supported!"); 1109 // Turn the unsupported load into an EXTLOAD followed by an explicit 1110 // zero/sign extend inreg. 1111 SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0), 1112 Chain, Ptr, LD->getPointerInfo(), SrcVT, 1113 LD->isVolatile(), LD->isNonTemporal(), 1114 LD->getAlignment()); 1115 SDValue ValRes; 1116 if (ExtType == ISD::SEXTLOAD) 1117 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 1118 Result.getValueType(), 1119 Result, DAG.getValueType(SrcVT)); 1120 else 1121 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType()); 1122 Value = ValRes; 1123 Chain = Result.getValue(1); 1124 break; 1125 } 1126 } 1127 1128 // Since loads produce two values, make sure to remember that we legalized 1129 // both of them. 1130 if (Chain.getNode() != Node) { 1131 assert(Value.getNode() != Node && "Load must be completely replaced"); 1132 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value); 1133 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 1134 ReplacedNode(Node); 1135 } 1136} 1137 1138/// LegalizeOp - Return a legal replacement for the given operation, with 1139/// all legal operands. 1140void SelectionDAGLegalize::LegalizeOp(SDNode *Node) { 1141 if (Node->getOpcode() == ISD::TargetConstant) // Allow illegal target nodes. 1142 return; 1143 1144 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 1145 assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) == 1146 TargetLowering::TypeLegal && 1147 "Unexpected illegal type!"); 1148 1149 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 1150 assert((TLI.getTypeAction(*DAG.getContext(), 1151 Node->getOperand(i).getValueType()) == 1152 TargetLowering::TypeLegal || 1153 Node->getOperand(i).getOpcode() == ISD::TargetConstant) && 1154 "Unexpected illegal type!"); 1155 1156 // Figure out the correct action; the way to query this varies by opcode 1157 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 1158 bool SimpleFinishLegalizing = true; 1159 switch (Node->getOpcode()) { 1160 case ISD::INTRINSIC_W_CHAIN: 1161 case ISD::INTRINSIC_WO_CHAIN: 1162 case ISD::INTRINSIC_VOID: 1163 case ISD::STACKSAVE: 1164 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 1165 break; 1166 case ISD::VAARG: 1167 Action = TLI.getOperationAction(Node->getOpcode(), 1168 Node->getValueType(0)); 1169 if (Action != TargetLowering::Promote) 1170 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 1171 break; 1172 case ISD::SINT_TO_FP: 1173 case ISD::UINT_TO_FP: 1174 case ISD::EXTRACT_VECTOR_ELT: 1175 Action = TLI.getOperationAction(Node->getOpcode(), 1176 Node->getOperand(0).getValueType()); 1177 break; 1178 case ISD::FP_ROUND_INREG: 1179 case ISD::SIGN_EXTEND_INREG: { 1180 EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 1181 Action = TLI.getOperationAction(Node->getOpcode(), InnerType); 1182 break; 1183 } 1184 case ISD::ATOMIC_STORE: { 1185 Action = TLI.getOperationAction(Node->getOpcode(), 1186 Node->getOperand(2).getValueType()); 1187 break; 1188 } 1189 case ISD::SELECT_CC: 1190 case ISD::SETCC: 1191 case ISD::BR_CC: { 1192 unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 : 1193 Node->getOpcode() == ISD::SETCC ? 2 : 1; 1194 unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0; 1195 MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType(); 1196 ISD::CondCode CCCode = 1197 cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get(); 1198 Action = TLI.getCondCodeAction(CCCode, OpVT); 1199 if (Action == TargetLowering::Legal) { 1200 if (Node->getOpcode() == ISD::SELECT_CC) 1201 Action = TLI.getOperationAction(Node->getOpcode(), 1202 Node->getValueType(0)); 1203 else 1204 Action = TLI.getOperationAction(Node->getOpcode(), OpVT); 1205 } 1206 break; 1207 } 1208 case ISD::LOAD: 1209 case ISD::STORE: 1210 // FIXME: Model these properly. LOAD and STORE are complicated, and 1211 // STORE expects the unlegalized operand in some cases. 1212 SimpleFinishLegalizing = false; 1213 break; 1214 case ISD::CALLSEQ_START: 1215 case ISD::CALLSEQ_END: 1216 // FIXME: This shouldn't be necessary. These nodes have special properties 1217 // dealing with the recursive nature of legalization. Removing this 1218 // special case should be done as part of making LegalizeDAG non-recursive. 1219 SimpleFinishLegalizing = false; 1220 break; 1221 case ISD::EXTRACT_ELEMENT: 1222 case ISD::FLT_ROUNDS_: 1223 case ISD::SADDO: 1224 case ISD::SSUBO: 1225 case ISD::UADDO: 1226 case ISD::USUBO: 1227 case ISD::SMULO: 1228 case ISD::UMULO: 1229 case ISD::FPOWI: 1230 case ISD::MERGE_VALUES: 1231 case ISD::EH_RETURN: 1232 case ISD::FRAME_TO_ARGS_OFFSET: 1233 case ISD::EH_SJLJ_SETJMP: 1234 case ISD::EH_SJLJ_LONGJMP: 1235 // These operations lie about being legal: when they claim to be legal, 1236 // they should actually be expanded. 1237 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1238 if (Action == TargetLowering::Legal) 1239 Action = TargetLowering::Expand; 1240 break; 1241 case ISD::INIT_TRAMPOLINE: 1242 case ISD::ADJUST_TRAMPOLINE: 1243 case ISD::FRAMEADDR: 1244 case ISD::RETURNADDR: 1245 // These operations lie about being legal: when they claim to be legal, 1246 // they should actually be custom-lowered. 1247 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1248 if (Action == TargetLowering::Legal) 1249 Action = TargetLowering::Custom; 1250 break; 1251 case ISD::DEBUGTRAP: 1252 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1253 if (Action == TargetLowering::Expand) { 1254 // replace ISD::DEBUGTRAP with ISD::TRAP 1255 SDValue NewVal; 1256 NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(), 1257 Node->getOperand(0)); 1258 ReplaceNode(Node, NewVal.getNode()); 1259 LegalizeOp(NewVal.getNode()); 1260 return; 1261 } 1262 break; 1263 1264 default: 1265 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { 1266 Action = TargetLowering::Legal; 1267 } else { 1268 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1269 } 1270 break; 1271 } 1272 1273 if (SimpleFinishLegalizing) { 1274 SDNode *NewNode = Node; 1275 switch (Node->getOpcode()) { 1276 default: break; 1277 case ISD::SHL: 1278 case ISD::SRL: 1279 case ISD::SRA: 1280 case ISD::ROTL: 1281 case ISD::ROTR: 1282 // Legalizing shifts/rotates requires adjusting the shift amount 1283 // to the appropriate width. 1284 if (!Node->getOperand(1).getValueType().isVector()) { 1285 SDValue SAO = 1286 DAG.getShiftAmountOperand(Node->getOperand(0).getValueType(), 1287 Node->getOperand(1)); 1288 HandleSDNode Handle(SAO); 1289 LegalizeOp(SAO.getNode()); 1290 NewNode = DAG.UpdateNodeOperands(Node, Node->getOperand(0), 1291 Handle.getValue()); 1292 } 1293 break; 1294 case ISD::SRL_PARTS: 1295 case ISD::SRA_PARTS: 1296 case ISD::SHL_PARTS: 1297 // Legalizing shifts/rotates requires adjusting the shift amount 1298 // to the appropriate width. 1299 if (!Node->getOperand(2).getValueType().isVector()) { 1300 SDValue SAO = 1301 DAG.getShiftAmountOperand(Node->getOperand(0).getValueType(), 1302 Node->getOperand(2)); 1303 HandleSDNode Handle(SAO); 1304 LegalizeOp(SAO.getNode()); 1305 NewNode = DAG.UpdateNodeOperands(Node, Node->getOperand(0), 1306 Node->getOperand(1), 1307 Handle.getValue()); 1308 } 1309 break; 1310 } 1311 1312 if (NewNode != Node) { 1313 DAG.ReplaceAllUsesWith(Node, NewNode); 1314 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 1315 DAG.TransferDbgValues(SDValue(Node, i), SDValue(NewNode, i)); 1316 ReplacedNode(Node); 1317 Node = NewNode; 1318 } 1319 switch (Action) { 1320 case TargetLowering::Legal: 1321 return; 1322 case TargetLowering::Custom: { 1323 // FIXME: The handling for custom lowering with multiple results is 1324 // a complete mess. 1325 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 1326 if (Res.getNode()) { 1327 SmallVector<SDValue, 8> ResultVals; 1328 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) { 1329 if (e == 1) 1330 ResultVals.push_back(Res); 1331 else 1332 ResultVals.push_back(Res.getValue(i)); 1333 } 1334 if (Res.getNode() != Node || Res.getResNo() != 0) { 1335 DAG.ReplaceAllUsesWith(Node, ResultVals.data()); 1336 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 1337 DAG.TransferDbgValues(SDValue(Node, i), ResultVals[i]); 1338 ReplacedNode(Node); 1339 } 1340 return; 1341 } 1342 } 1343 // FALL THROUGH 1344 case TargetLowering::Expand: 1345 ExpandNode(Node); 1346 return; 1347 case TargetLowering::Promote: 1348 PromoteNode(Node); 1349 return; 1350 } 1351 } 1352 1353 switch (Node->getOpcode()) { 1354 default: 1355#ifndef NDEBUG 1356 dbgs() << "NODE: "; 1357 Node->dump( &DAG); 1358 dbgs() << "\n"; 1359#endif 1360 llvm_unreachable("Do not know how to legalize this operator!"); 1361 1362 case ISD::CALLSEQ_START: 1363 case ISD::CALLSEQ_END: 1364 break; 1365 case ISD::LOAD: { 1366 return LegalizeLoadOps(Node); 1367 } 1368 case ISD::STORE: { 1369 return LegalizeStoreOps(Node); 1370 } 1371 } 1372} 1373 1374SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) { 1375 SDValue Vec = Op.getOperand(0); 1376 SDValue Idx = Op.getOperand(1); 1377 SDLoc dl(Op); 1378 // Store the value to a temporary stack slot, then LOAD the returned part. 1379 SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType()); 1380 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, 1381 MachinePointerInfo(), false, false, 0); 1382 1383 // Add the offset to the index. 1384 unsigned EltSize = 1385 Vec.getValueType().getVectorElementType().getSizeInBits()/8; 1386 Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx, 1387 DAG.getConstant(EltSize, Idx.getValueType())); 1388 1389 if (Idx.getValueType().bitsGT(TLI.getPointerTy())) 1390 Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx); 1391 else 1392 Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx); 1393 1394 StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr); 1395 1396 if (Op.getValueType().isVector()) 1397 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr,MachinePointerInfo(), 1398 false, false, false, 0); 1399 return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr, 1400 MachinePointerInfo(), 1401 Vec.getValueType().getVectorElementType(), 1402 false, false, 0); 1403} 1404 1405SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) { 1406 assert(Op.getValueType().isVector() && "Non-vector insert subvector!"); 1407 1408 SDValue Vec = Op.getOperand(0); 1409 SDValue Part = Op.getOperand(1); 1410 SDValue Idx = Op.getOperand(2); 1411 SDLoc dl(Op); 1412 1413 // Store the value to a temporary stack slot, then LOAD the returned part. 1414 1415 SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType()); 1416 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1417 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI); 1418 1419 // First store the whole vector. 1420 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo, 1421 false, false, 0); 1422 1423 // Then store the inserted part. 1424 1425 // Add the offset to the index. 1426 unsigned EltSize = 1427 Vec.getValueType().getVectorElementType().getSizeInBits()/8; 1428 1429 Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx, 1430 DAG.getConstant(EltSize, Idx.getValueType())); 1431 1432 if (Idx.getValueType().bitsGT(TLI.getPointerTy())) 1433 Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx); 1434 else 1435 Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx); 1436 1437 SDValue SubStackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, 1438 StackPtr); 1439 1440 // Store the subvector. 1441 Ch = DAG.getStore(DAG.getEntryNode(), dl, Part, SubStackPtr, 1442 MachinePointerInfo(), false, false, 0); 1443 1444 // Finally, load the updated vector. 1445 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo, 1446 false, false, false, 0); 1447} 1448 1449SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) { 1450 // We can't handle this case efficiently. Allocate a sufficiently 1451 // aligned object on the stack, store each element into it, then load 1452 // the result as a vector. 1453 // Create the stack frame object. 1454 EVT VT = Node->getValueType(0); 1455 EVT EltVT = VT.getVectorElementType(); 1456 SDLoc dl(Node); 1457 SDValue FIPtr = DAG.CreateStackTemporary(VT); 1458 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex(); 1459 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI); 1460 1461 // Emit a store of each element to the stack slot. 1462 SmallVector<SDValue, 8> Stores; 1463 unsigned TypeByteSize = EltVT.getSizeInBits() / 8; 1464 // Store (in the right endianness) the elements to memory. 1465 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 1466 // Ignore undef elements. 1467 if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue; 1468 1469 unsigned Offset = TypeByteSize*i; 1470 1471 SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType()); 1472 Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx); 1473 1474 // If the destination vector element type is narrower than the source 1475 // element type, only store the bits necessary. 1476 if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) { 1477 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, 1478 Node->getOperand(i), Idx, 1479 PtrInfo.getWithOffset(Offset), 1480 EltVT, false, false, 0)); 1481 } else 1482 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, 1483 Node->getOperand(i), Idx, 1484 PtrInfo.getWithOffset(Offset), 1485 false, false, 0)); 1486 } 1487 1488 SDValue StoreChain; 1489 if (!Stores.empty()) // Not all undef elements? 1490 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 1491 &Stores[0], Stores.size()); 1492 else 1493 StoreChain = DAG.getEntryNode(); 1494 1495 // Result is a load from the stack slot. 1496 return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo, 1497 false, false, false, 0); 1498} 1499 1500SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) { 1501 SDLoc dl(Node); 1502 SDValue Tmp1 = Node->getOperand(0); 1503 SDValue Tmp2 = Node->getOperand(1); 1504 1505 // Get the sign bit of the RHS. First obtain a value that has the same 1506 // sign as the sign bit, i.e. negative if and only if the sign bit is 1. 1507 SDValue SignBit; 1508 EVT FloatVT = Tmp2.getValueType(); 1509 EVT IVT = EVT::getIntegerVT(*DAG.getContext(), FloatVT.getSizeInBits()); 1510 if (TLI.isTypeLegal(IVT)) { 1511 // Convert to an integer with the same sign bit. 1512 SignBit = DAG.getNode(ISD::BITCAST, dl, IVT, Tmp2); 1513 } else { 1514 // Store the float to memory, then load the sign part out as an integer. 1515 MVT LoadTy = TLI.getPointerTy(); 1516 // First create a temporary that is aligned for both the load and store. 1517 SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy); 1518 // Then store the float to it. 1519 SDValue Ch = 1520 DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StackPtr, MachinePointerInfo(), 1521 false, false, 0); 1522 if (TLI.isBigEndian()) { 1523 assert(FloatVT.isByteSized() && "Unsupported floating point type!"); 1524 // Load out a legal integer with the same sign bit as the float. 1525 SignBit = DAG.getLoad(LoadTy, dl, Ch, StackPtr, MachinePointerInfo(), 1526 false, false, false, 0); 1527 } else { // Little endian 1528 SDValue LoadPtr = StackPtr; 1529 // The float may be wider than the integer we are going to load. Advance 1530 // the pointer so that the loaded integer will contain the sign bit. 1531 unsigned Strides = (FloatVT.getSizeInBits()-1)/LoadTy.getSizeInBits(); 1532 unsigned ByteOffset = (Strides * LoadTy.getSizeInBits()) / 8; 1533 LoadPtr = DAG.getNode(ISD::ADD, dl, LoadPtr.getValueType(), 1534 LoadPtr, DAG.getIntPtrConstant(ByteOffset)); 1535 // Load a legal integer containing the sign bit. 1536 SignBit = DAG.getLoad(LoadTy, dl, Ch, LoadPtr, MachinePointerInfo(), 1537 false, false, false, 0); 1538 // Move the sign bit to the top bit of the loaded integer. 1539 unsigned BitShift = LoadTy.getSizeInBits() - 1540 (FloatVT.getSizeInBits() - 8 * ByteOffset); 1541 assert(BitShift < LoadTy.getSizeInBits() && "Pointer advanced wrong?"); 1542 if (BitShift) 1543 SignBit = DAG.getNode(ISD::SHL, dl, LoadTy, SignBit, 1544 DAG.getConstant(BitShift, 1545 TLI.getShiftAmountTy(SignBit.getValueType()))); 1546 } 1547 } 1548 // Now get the sign bit proper, by seeing whether the value is negative. 1549 SignBit = DAG.getSetCC(dl, getSetCCResultType(SignBit.getValueType()), 1550 SignBit, DAG.getConstant(0, SignBit.getValueType()), 1551 ISD::SETLT); 1552 // Get the absolute value of the result. 1553 SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1); 1554 // Select between the nabs and abs value based on the sign bit of 1555 // the input. 1556 return DAG.getSelect(dl, AbsVal.getValueType(), SignBit, 1557 DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal), 1558 AbsVal); 1559} 1560 1561void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node, 1562 SmallVectorImpl<SDValue> &Results) { 1563 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1564 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" 1565 " not tell us which reg is the stack pointer!"); 1566 SDLoc dl(Node); 1567 EVT VT = Node->getValueType(0); 1568 SDValue Tmp1 = SDValue(Node, 0); 1569 SDValue Tmp2 = SDValue(Node, 1); 1570 SDValue Tmp3 = Node->getOperand(2); 1571 SDValue Chain = Tmp1.getOperand(0); 1572 1573 // Chain the dynamic stack allocation so that it doesn't modify the stack 1574 // pointer when other instructions are using the stack. 1575 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true), 1576 SDLoc(Node)); 1577 1578 SDValue Size = Tmp2.getOperand(1); 1579 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 1580 Chain = SP.getValue(1); 1581 unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue(); 1582 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); 1583 if (Align > StackAlign) 1584 SP = DAG.getNode(ISD::AND, dl, VT, SP, 1585 DAG.getConstant(-(uint64_t)Align, VT)); 1586 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value 1587 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain 1588 1589 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, true), 1590 DAG.getIntPtrConstant(0, true), SDValue(), 1591 SDLoc(Node)); 1592 1593 Results.push_back(Tmp1); 1594 Results.push_back(Tmp2); 1595} 1596 1597/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and 1598/// condition code CC on the current target. This routine expands SETCC with 1599/// illegal condition code into AND / OR of multiple SETCC values. 1600void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT, 1601 SDValue &LHS, SDValue &RHS, 1602 SDValue &CC, 1603 SDLoc dl) { 1604 MVT OpVT = LHS.getSimpleValueType(); 1605 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 1606 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 1607 default: llvm_unreachable("Unknown condition code action!"); 1608 case TargetLowering::Legal: 1609 // Nothing to do. 1610 break; 1611 case TargetLowering::Expand: { 1612 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 1613 ISD::CondCode InvCC = ISD::SETCC_INVALID; 1614 unsigned Opc = 0; 1615 switch (CCCode) { 1616 default: llvm_unreachable("Don't know how to expand this condition!"); 1617 case ISD::SETO: 1618 assert(TLI.getCondCodeAction(ISD::SETOEQ, OpVT) 1619 == TargetLowering::Legal 1620 && "If SETO is expanded, SETOEQ must be legal!"); 1621 CC1 = ISD::SETOEQ; CC2 = ISD::SETOEQ; Opc = ISD::AND; break; 1622 case ISD::SETUO: 1623 assert(TLI.getCondCodeAction(ISD::SETUNE, OpVT) 1624 == TargetLowering::Legal 1625 && "If SETUO is expanded, SETUNE must be legal!"); 1626 CC1 = ISD::SETUNE; CC2 = ISD::SETUNE; Opc = ISD::OR; break; 1627 case ISD::SETOEQ: 1628 case ISD::SETOGT: 1629 case ISD::SETOGE: 1630 case ISD::SETOLT: 1631 case ISD::SETOLE: 1632 case ISD::SETONE: 1633 case ISD::SETUEQ: 1634 case ISD::SETUNE: 1635 case ISD::SETUGT: 1636 case ISD::SETUGE: 1637 case ISD::SETULT: 1638 case ISD::SETULE: 1639 // If we are floating point, assign and break, otherwise fall through. 1640 if (!OpVT.isInteger()) { 1641 // We can use the 4th bit to tell if we are the unordered 1642 // or ordered version of the opcode. 1643 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 1644 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 1645 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 1646 break; 1647 } 1648 // Fallthrough if we are unsigned integer. 1649 case ISD::SETLE: 1650 case ISD::SETGT: 1651 case ISD::SETGE: 1652 case ISD::SETLT: 1653 case ISD::SETNE: 1654 case ISD::SETEQ: 1655 InvCC = ISD::getSetCCSwappedOperands(CCCode); 1656 if (TLI.getCondCodeAction(InvCC, OpVT) == TargetLowering::Expand) { 1657 // We only support using the inverted operation and not a 1658 // different manner of supporting expanding these cases. 1659 llvm_unreachable("Don't know how to expand this condition!"); 1660 } 1661 LHS = DAG.getSetCC(dl, VT, RHS, LHS, InvCC); 1662 RHS = SDValue(); 1663 CC = SDValue(); 1664 return; 1665 } 1666 1667 SDValue SetCC1, SetCC2; 1668 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 1669 // If we aren't the ordered or unorder operation, 1670 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 1671 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1); 1672 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2); 1673 } else { 1674 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 1675 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1); 1676 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2); 1677 } 1678 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 1679 RHS = SDValue(); 1680 CC = SDValue(); 1681 break; 1682 } 1683 } 1684} 1685 1686/// EmitStackConvert - Emit a store/load combination to the stack. This stores 1687/// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does 1688/// a load from the stack slot to DestVT, extending it if needed. 1689/// The resultant code need not be legal. 1690SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, 1691 EVT SlotVT, 1692 EVT DestVT, 1693 SDLoc dl) { 1694 // Create the stack frame object. 1695 unsigned SrcAlign = 1696 TLI.getDataLayout()->getPrefTypeAlignment(SrcOp.getValueType(). 1697 getTypeForEVT(*DAG.getContext())); 1698 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign); 1699 1700 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); 1701 int SPFI = StackPtrFI->getIndex(); 1702 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(SPFI); 1703 1704 unsigned SrcSize = SrcOp.getValueType().getSizeInBits(); 1705 unsigned SlotSize = SlotVT.getSizeInBits(); 1706 unsigned DestSize = DestVT.getSizeInBits(); 1707 Type *DestType = DestVT.getTypeForEVT(*DAG.getContext()); 1708 unsigned DestAlign = TLI.getDataLayout()->getPrefTypeAlignment(DestType); 1709 1710 // Emit a store to the stack slot. Use a truncstore if the input value is 1711 // later than DestVT. 1712 SDValue Store; 1713 1714 if (SrcSize > SlotSize) 1715 Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, 1716 PtrInfo, SlotVT, false, false, SrcAlign); 1717 else { 1718 assert(SrcSize == SlotSize && "Invalid store"); 1719 Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, 1720 PtrInfo, false, false, SrcAlign); 1721 } 1722 1723 // Result is a load from the stack slot. 1724 if (SlotSize == DestSize) 1725 return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, 1726 false, false, false, DestAlign); 1727 1728 assert(SlotSize < DestSize && "Unknown extension!"); 1729 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, 1730 PtrInfo, SlotVT, false, false, DestAlign); 1731} 1732 1733SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { 1734 SDLoc dl(Node); 1735 // Create a vector sized/aligned stack slot, store the value to element #0, 1736 // then load the whole vector back out. 1737 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); 1738 1739 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); 1740 int SPFI = StackPtrFI->getIndex(); 1741 1742 SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0), 1743 StackPtr, 1744 MachinePointerInfo::getFixedStack(SPFI), 1745 Node->getValueType(0).getVectorElementType(), 1746 false, false, 0); 1747 return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr, 1748 MachinePointerInfo::getFixedStack(SPFI), 1749 false, false, false, 0); 1750} 1751 1752 1753/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't 1754/// support the operation, but do support the resultant vector type. 1755SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { 1756 unsigned NumElems = Node->getNumOperands(); 1757 SDValue Value1, Value2; 1758 SDLoc dl(Node); 1759 EVT VT = Node->getValueType(0); 1760 EVT OpVT = Node->getOperand(0).getValueType(); 1761 EVT EltVT = VT.getVectorElementType(); 1762 1763 // If the only non-undef value is the low element, turn this into a 1764 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. 1765 bool isOnlyLowElement = true; 1766 bool MoreThanTwoValues = false; 1767 bool isConstant = true; 1768 for (unsigned i = 0; i < NumElems; ++i) { 1769 SDValue V = Node->getOperand(i); 1770 if (V.getOpcode() == ISD::UNDEF) 1771 continue; 1772 if (i > 0) 1773 isOnlyLowElement = false; 1774 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) 1775 isConstant = false; 1776 1777 if (!Value1.getNode()) { 1778 Value1 = V; 1779 } else if (!Value2.getNode()) { 1780 if (V != Value1) 1781 Value2 = V; 1782 } else if (V != Value1 && V != Value2) { 1783 MoreThanTwoValues = true; 1784 } 1785 } 1786 1787 if (!Value1.getNode()) 1788 return DAG.getUNDEF(VT); 1789 1790 if (isOnlyLowElement) 1791 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0)); 1792 1793 // If all elements are constants, create a load from the constant pool. 1794 if (isConstant) { 1795 SmallVector<Constant*, 16> CV; 1796 for (unsigned i = 0, e = NumElems; i != e; ++i) { 1797 if (ConstantFPSDNode *V = 1798 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { 1799 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue())); 1800 } else if (ConstantSDNode *V = 1801 dyn_cast<ConstantSDNode>(Node->getOperand(i))) { 1802 if (OpVT==EltVT) 1803 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue())); 1804 else { 1805 // If OpVT and EltVT don't match, EltVT is not legal and the 1806 // element values have been promoted/truncated earlier. Undo this; 1807 // we don't want a v16i8 to become a v16i32 for example. 1808 const ConstantInt *CI = V->getConstantIntValue(); 1809 CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()), 1810 CI->getZExtValue())); 1811 } 1812 } else { 1813 assert(Node->getOperand(i).getOpcode() == ISD::UNDEF); 1814 Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext()); 1815 CV.push_back(UndefValue::get(OpNTy)); 1816 } 1817 } 1818 Constant *CP = ConstantVector::get(CV); 1819 SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy()); 1820 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 1821 return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx, 1822 MachinePointerInfo::getConstantPool(), 1823 false, false, false, Alignment); 1824 } 1825 1826 if (!MoreThanTwoValues) { 1827 SmallVector<int, 8> ShuffleVec(NumElems, -1); 1828 for (unsigned i = 0; i < NumElems; ++i) { 1829 SDValue V = Node->getOperand(i); 1830 if (V.getOpcode() == ISD::UNDEF) 1831 continue; 1832 ShuffleVec[i] = V == Value1 ? 0 : NumElems; 1833 } 1834 if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) { 1835 // Get the splatted value into the low element of a vector register. 1836 SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1); 1837 SDValue Vec2; 1838 if (Value2.getNode()) 1839 Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2); 1840 else 1841 Vec2 = DAG.getUNDEF(VT); 1842 1843 // Return shuffle(LowValVec, undef, <0,0,0,0>) 1844 return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data()); 1845 } 1846 } 1847 1848 // Otherwise, we can't handle this case efficiently. 1849 return ExpandVectorBuildThroughStack(Node); 1850} 1851 1852// ExpandLibCall - Expand a node into a call to a libcall. If the result value 1853// does not fit into a register, return the lo part and set the hi part to the 1854// by-reg argument. If it does fit into a single register, return the result 1855// and leave the Hi part unset. 1856SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, 1857 bool isSigned) { 1858 TargetLowering::ArgListTy Args; 1859 TargetLowering::ArgListEntry Entry; 1860 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 1861 EVT ArgVT = Node->getOperand(i).getValueType(); 1862 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 1863 Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy; 1864 Entry.isSExt = isSigned; 1865 Entry.isZExt = !isSigned; 1866 Args.push_back(Entry); 1867 } 1868 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 1869 TLI.getPointerTy()); 1870 1871 Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext()); 1872 1873 // By default, the input chain to this libcall is the entry node of the 1874 // function. If the libcall is going to be emitted as a tail call then 1875 // TLI.isUsedByReturnOnly will change it to the right chain if the return 1876 // node which is being folded has a non-entry input chain. 1877 SDValue InChain = DAG.getEntryNode(); 1878 1879 // isTailCall may be true since the callee does not reference caller stack 1880 // frame. Check if it's in the right position. 1881 SDValue TCChain = InChain; 1882 bool isTailCall = TLI.isInTailCallPosition(DAG, Node, TCChain); 1883 if (isTailCall) 1884 InChain = TCChain; 1885 1886 TargetLowering:: 1887 CallLoweringInfo CLI(InChain, RetTy, isSigned, !isSigned, false, false, 1888 0, TLI.getLibcallCallingConv(LC), isTailCall, 1889 /*doesNotReturn=*/false, /*isReturnValueUsed=*/true, 1890 Callee, Args, DAG, SDLoc(Node)); 1891 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 1892 1893 1894 if (!CallInfo.second.getNode()) 1895 // It's a tailcall, return the chain (which is the DAG root). 1896 return DAG.getRoot(); 1897 1898 return CallInfo.first; 1899} 1900 1901/// ExpandLibCall - Generate a libcall taking the given operands as arguments 1902/// and returning a result of type RetVT. 1903SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, 1904 const SDValue *Ops, unsigned NumOps, 1905 bool isSigned, SDLoc dl) { 1906 TargetLowering::ArgListTy Args; 1907 Args.reserve(NumOps); 1908 1909 TargetLowering::ArgListEntry Entry; 1910 for (unsigned i = 0; i != NumOps; ++i) { 1911 Entry.Node = Ops[i]; 1912 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 1913 Entry.isSExt = isSigned; 1914 Entry.isZExt = !isSigned; 1915 Args.push_back(Entry); 1916 } 1917 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 1918 TLI.getPointerTy()); 1919 1920 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 1921 TargetLowering:: 1922 CallLoweringInfo CLI(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false, 1923 false, 0, TLI.getLibcallCallingConv(LC), 1924 /*isTailCall=*/false, 1925 /*doesNotReturn=*/false, /*isReturnValueUsed=*/true, 1926 Callee, Args, DAG, dl); 1927 std::pair<SDValue,SDValue> CallInfo = TLI.LowerCallTo(CLI); 1928 1929 return CallInfo.first; 1930} 1931 1932// ExpandChainLibCall - Expand a node into a call to a libcall. Similar to 1933// ExpandLibCall except that the first operand is the in-chain. 1934std::pair<SDValue, SDValue> 1935SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC, 1936 SDNode *Node, 1937 bool isSigned) { 1938 SDValue InChain = Node->getOperand(0); 1939 1940 TargetLowering::ArgListTy Args; 1941 TargetLowering::ArgListEntry Entry; 1942 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) { 1943 EVT ArgVT = Node->getOperand(i).getValueType(); 1944 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 1945 Entry.Node = Node->getOperand(i); 1946 Entry.Ty = ArgTy; 1947 Entry.isSExt = isSigned; 1948 Entry.isZExt = !isSigned; 1949 Args.push_back(Entry); 1950 } 1951 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 1952 TLI.getPointerTy()); 1953 1954 Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext()); 1955 TargetLowering:: 1956 CallLoweringInfo CLI(InChain, RetTy, isSigned, !isSigned, false, false, 1957 0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false, 1958 /*doesNotReturn=*/false, /*isReturnValueUsed=*/true, 1959 Callee, Args, DAG, SDLoc(Node)); 1960 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 1961 1962 return CallInfo; 1963} 1964 1965SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, 1966 RTLIB::Libcall Call_F32, 1967 RTLIB::Libcall Call_F64, 1968 RTLIB::Libcall Call_F80, 1969 RTLIB::Libcall Call_F128, 1970 RTLIB::Libcall Call_PPCF128) { 1971 RTLIB::Libcall LC; 1972 switch (Node->getValueType(0).getSimpleVT().SimpleTy) { 1973 default: llvm_unreachable("Unexpected request for libcall!"); 1974 case MVT::f32: LC = Call_F32; break; 1975 case MVT::f64: LC = Call_F64; break; 1976 case MVT::f80: LC = Call_F80; break; 1977 case MVT::f128: LC = Call_F128; break; 1978 case MVT::ppcf128: LC = Call_PPCF128; break; 1979 } 1980 return ExpandLibCall(LC, Node, false); 1981} 1982 1983SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned, 1984 RTLIB::Libcall Call_I8, 1985 RTLIB::Libcall Call_I16, 1986 RTLIB::Libcall Call_I32, 1987 RTLIB::Libcall Call_I64, 1988 RTLIB::Libcall Call_I128) { 1989 RTLIB::Libcall LC; 1990 switch (Node->getValueType(0).getSimpleVT().SimpleTy) { 1991 default: llvm_unreachable("Unexpected request for libcall!"); 1992 case MVT::i8: LC = Call_I8; break; 1993 case MVT::i16: LC = Call_I16; break; 1994 case MVT::i32: LC = Call_I32; break; 1995 case MVT::i64: LC = Call_I64; break; 1996 case MVT::i128: LC = Call_I128; break; 1997 } 1998 return ExpandLibCall(LC, Node, isSigned); 1999} 2000 2001/// isDivRemLibcallAvailable - Return true if divmod libcall is available. 2002static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned, 2003 const TargetLowering &TLI) { 2004 RTLIB::Libcall LC; 2005 switch (Node->getValueType(0).getSimpleVT().SimpleTy) { 2006 default: llvm_unreachable("Unexpected request for libcall!"); 2007 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 2008 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 2009 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 2010 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 2011 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 2012 } 2013 2014 return TLI.getLibcallName(LC) != 0; 2015} 2016 2017/// useDivRem - Only issue divrem libcall if both quotient and remainder are 2018/// needed. 2019static bool useDivRem(SDNode *Node, bool isSigned, bool isDIV) { 2020 // The other use might have been replaced with a divrem already. 2021 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 2022 unsigned OtherOpcode = 0; 2023 if (isSigned) 2024 OtherOpcode = isDIV ? ISD::SREM : ISD::SDIV; 2025 else 2026 OtherOpcode = isDIV ? ISD::UREM : ISD::UDIV; 2027 2028 SDValue Op0 = Node->getOperand(0); 2029 SDValue Op1 = Node->getOperand(1); 2030 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), 2031 UE = Op0.getNode()->use_end(); UI != UE; ++UI) { 2032 SDNode *User = *UI; 2033 if (User == Node) 2034 continue; 2035 if ((User->getOpcode() == OtherOpcode || User->getOpcode() == DivRemOpc) && 2036 User->getOperand(0) == Op0 && 2037 User->getOperand(1) == Op1) 2038 return true; 2039 } 2040 return false; 2041} 2042 2043/// ExpandDivRemLibCall - Issue libcalls to __{u}divmod to compute div / rem 2044/// pairs. 2045void 2046SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node, 2047 SmallVectorImpl<SDValue> &Results) { 2048 unsigned Opcode = Node->getOpcode(); 2049 bool isSigned = Opcode == ISD::SDIVREM; 2050 2051 RTLIB::Libcall LC; 2052 switch (Node->getValueType(0).getSimpleVT().SimpleTy) { 2053 default: llvm_unreachable("Unexpected request for libcall!"); 2054 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 2055 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 2056 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 2057 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 2058 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 2059 } 2060 2061 // The input chain to this libcall is the entry node of the function. 2062 // Legalizing the call will automatically add the previous call to the 2063 // dependence. 2064 SDValue InChain = DAG.getEntryNode(); 2065 2066 EVT RetVT = Node->getValueType(0); 2067 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2068 2069 TargetLowering::ArgListTy Args; 2070 TargetLowering::ArgListEntry Entry; 2071 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 2072 EVT ArgVT = Node->getOperand(i).getValueType(); 2073 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2074 Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy; 2075 Entry.isSExt = isSigned; 2076 Entry.isZExt = !isSigned; 2077 Args.push_back(Entry); 2078 } 2079 2080 // Also pass the return address of the remainder. 2081 SDValue FIPtr = DAG.CreateStackTemporary(RetVT); 2082 Entry.Node = FIPtr; 2083 Entry.Ty = RetTy->getPointerTo(); 2084 Entry.isSExt = isSigned; 2085 Entry.isZExt = !isSigned; 2086 Args.push_back(Entry); 2087 2088 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2089 TLI.getPointerTy()); 2090 2091 SDLoc dl(Node); 2092 TargetLowering:: 2093 CallLoweringInfo CLI(InChain, RetTy, isSigned, !isSigned, false, false, 2094 0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false, 2095 /*doesNotReturn=*/false, /*isReturnValueUsed=*/true, 2096 Callee, Args, DAG, dl); 2097 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2098 2099 // Remainder is loaded back from the stack frame. 2100 SDValue Rem = DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, 2101 MachinePointerInfo(), false, false, false, 0); 2102 Results.push_back(CallInfo.first); 2103 Results.push_back(Rem); 2104} 2105 2106/// isSinCosLibcallAvailable - Return true if sincos libcall is available. 2107static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) { 2108 RTLIB::Libcall LC; 2109 switch (Node->getValueType(0).getSimpleVT().SimpleTy) { 2110 default: llvm_unreachable("Unexpected request for libcall!"); 2111 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2112 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2113 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2114 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2115 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2116 } 2117 return TLI.getLibcallName(LC) != 0; 2118} 2119 2120/// canCombineSinCosLibcall - Return true if sincos libcall is available and 2121/// can be used to combine sin and cos. 2122static bool canCombineSinCosLibcall(SDNode *Node, const TargetLowering &TLI, 2123 const TargetMachine &TM) { 2124 if (!isSinCosLibcallAvailable(Node, TLI)) 2125 return false; 2126 // GNU sin/cos functions set errno while sincos does not. Therefore 2127 // combining sin and cos is only safe if unsafe-fpmath is enabled. 2128 bool isGNU = Triple(TM.getTargetTriple()).getEnvironment() == Triple::GNU; 2129 if (isGNU && !TM.Options.UnsafeFPMath) 2130 return false; 2131 return true; 2132} 2133 2134/// useSinCos - Only issue sincos libcall if both sin and cos are 2135/// needed. 2136static bool useSinCos(SDNode *Node) { 2137 unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN 2138 ? ISD::FCOS : ISD::FSIN; 2139 2140 SDValue Op0 = Node->getOperand(0); 2141 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), 2142 UE = Op0.getNode()->use_end(); UI != UE; ++UI) { 2143 SDNode *User = *UI; 2144 if (User == Node) 2145 continue; 2146 // The other user might have been turned into sincos already. 2147 if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS) 2148 return true; 2149 } 2150 return false; 2151} 2152 2153/// ExpandSinCosLibCall - Issue libcalls to sincos to compute sin / cos 2154/// pairs. 2155void 2156SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node, 2157 SmallVectorImpl<SDValue> &Results) { 2158 RTLIB::Libcall LC; 2159 switch (Node->getValueType(0).getSimpleVT().SimpleTy) { 2160 default: llvm_unreachable("Unexpected request for libcall!"); 2161 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2162 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2163 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2164 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2165 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2166 } 2167 2168 // The input chain to this libcall is the entry node of the function. 2169 // Legalizing the call will automatically add the previous call to the 2170 // dependence. 2171 SDValue InChain = DAG.getEntryNode(); 2172 2173 EVT RetVT = Node->getValueType(0); 2174 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2175 2176 TargetLowering::ArgListTy Args; 2177 TargetLowering::ArgListEntry Entry; 2178 2179 // Pass the argument. 2180 Entry.Node = Node->getOperand(0); 2181 Entry.Ty = RetTy; 2182 Entry.isSExt = false; 2183 Entry.isZExt = false; 2184 Args.push_back(Entry); 2185 2186 // Pass the return address of sin. 2187 SDValue SinPtr = DAG.CreateStackTemporary(RetVT); 2188 Entry.Node = SinPtr; 2189 Entry.Ty = RetTy->getPointerTo(); 2190 Entry.isSExt = false; 2191 Entry.isZExt = false; 2192 Args.push_back(Entry); 2193 2194 // Also pass the return address of the cos. 2195 SDValue CosPtr = DAG.CreateStackTemporary(RetVT); 2196 Entry.Node = CosPtr; 2197 Entry.Ty = RetTy->getPointerTo(); 2198 Entry.isSExt = false; 2199 Entry.isZExt = false; 2200 Args.push_back(Entry); 2201 2202 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2203 TLI.getPointerTy()); 2204 2205 SDLoc dl(Node); 2206 TargetLowering:: 2207 CallLoweringInfo CLI(InChain, Type::getVoidTy(*DAG.getContext()), 2208 false, false, false, false, 2209 0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false, 2210 /*doesNotReturn=*/false, /*isReturnValueUsed=*/true, 2211 Callee, Args, DAG, dl); 2212 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2213 2214 Results.push_back(DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, 2215 MachinePointerInfo(), false, false, false, 0)); 2216 Results.push_back(DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, 2217 MachinePointerInfo(), false, false, false, 0)); 2218} 2219 2220/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a 2221/// INT_TO_FP operation of the specified operand when the target requests that 2222/// we expand it. At this point, we know that the result and operand types are 2223/// legal for the target. 2224SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned, 2225 SDValue Op0, 2226 EVT DestVT, 2227 SDLoc dl) { 2228 if (Op0.getValueType() == MVT::i32 && TLI.isTypeLegal(MVT::f64)) { 2229 // simple 32-bit [signed|unsigned] integer to float/double expansion 2230 2231 // Get the stack frame index of a 8 byte buffer. 2232 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); 2233 2234 // word offset constant for Hi/Lo address computation 2235 SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy()); 2236 // set up Hi and Lo (into buffer) address based on endian 2237 SDValue Hi = StackSlot; 2238 SDValue Lo = DAG.getNode(ISD::ADD, dl, 2239 TLI.getPointerTy(), StackSlot, WordOff); 2240 if (TLI.isLittleEndian()) 2241 std::swap(Hi, Lo); 2242 2243 // if signed map to unsigned space 2244 SDValue Op0Mapped; 2245 if (isSigned) { 2246 // constant used to invert sign bit (signed to unsigned mapping) 2247 SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32); 2248 Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit); 2249 } else { 2250 Op0Mapped = Op0; 2251 } 2252 // store the lo of the constructed double - based on integer input 2253 SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, 2254 Op0Mapped, Lo, MachinePointerInfo(), 2255 false, false, 0); 2256 // initial hi portion of constructed double 2257 SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32); 2258 // store the hi of the constructed double - biased exponent 2259 SDValue Store2 = DAG.getStore(Store1, dl, InitialHi, Hi, 2260 MachinePointerInfo(), 2261 false, false, 0); 2262 // load the constructed double 2263 SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot, 2264 MachinePointerInfo(), false, false, false, 0); 2265 // FP constant to bias correct the final result 2266 SDValue Bias = DAG.getConstantFP(isSigned ? 2267 BitsToDouble(0x4330000080000000ULL) : 2268 BitsToDouble(0x4330000000000000ULL), 2269 MVT::f64); 2270 // subtract the bias 2271 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias); 2272 // final result 2273 SDValue Result; 2274 // handle final rounding 2275 if (DestVT == MVT::f64) { 2276 // do nothing 2277 Result = Sub; 2278 } else if (DestVT.bitsLT(MVT::f64)) { 2279 Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub, 2280 DAG.getIntPtrConstant(0)); 2281 } else if (DestVT.bitsGT(MVT::f64)) { 2282 Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub); 2283 } 2284 return Result; 2285 } 2286 assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet"); 2287 // Code below here assumes !isSigned without checking again. 2288 2289 // Implementation of unsigned i64 to f64 following the algorithm in 2290 // __floatundidf in compiler_rt. This implementation has the advantage 2291 // of performing rounding correctly, both in the default rounding mode 2292 // and in all alternate rounding modes. 2293 // TODO: Generalize this for use with other types. 2294 if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) { 2295 SDValue TwoP52 = 2296 DAG.getConstant(UINT64_C(0x4330000000000000), MVT::i64); 2297 SDValue TwoP84PlusTwoP52 = 2298 DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), MVT::f64); 2299 SDValue TwoP84 = 2300 DAG.getConstant(UINT64_C(0x4530000000000000), MVT::i64); 2301 2302 SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32); 2303 SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, 2304 DAG.getConstant(32, MVT::i64)); 2305 SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52); 2306 SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84); 2307 SDValue LoFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, LoOr); 2308 SDValue HiFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, HiOr); 2309 SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt, 2310 TwoP84PlusTwoP52); 2311 return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub); 2312 } 2313 2314 // Implementation of unsigned i64 to f32. 2315 // TODO: Generalize this for use with other types. 2316 if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) { 2317 // For unsigned conversions, convert them to signed conversions using the 2318 // algorithm from the x86_64 __floatundidf in compiler_rt. 2319 if (!isSigned) { 2320 SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Op0); 2321 2322 SDValue ShiftConst = 2323 DAG.getConstant(1, TLI.getShiftAmountTy(Op0.getValueType())); 2324 SDValue Shr = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, ShiftConst); 2325 SDValue AndConst = DAG.getConstant(1, MVT::i64); 2326 SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, AndConst); 2327 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, Shr); 2328 2329 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Or); 2330 SDValue Slow = DAG.getNode(ISD::FADD, dl, MVT::f32, SignCvt, SignCvt); 2331 2332 // TODO: This really should be implemented using a branch rather than a 2333 // select. We happen to get lucky and machinesink does the right 2334 // thing most of the time. This would be a good candidate for a 2335 //pseudo-op, or, even better, for whole-function isel. 2336 SDValue SignBitTest = DAG.getSetCC(dl, getSetCCResultType(MVT::i64), 2337 Op0, DAG.getConstant(0, MVT::i64), ISD::SETLT); 2338 return DAG.getSelect(dl, MVT::f32, SignBitTest, Slow, Fast); 2339 } 2340 2341 // Otherwise, implement the fully general conversion. 2342 2343 SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, 2344 DAG.getConstant(UINT64_C(0xfffffffffffff800), MVT::i64)); 2345 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, 2346 DAG.getConstant(UINT64_C(0x800), MVT::i64)); 2347 SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, 2348 DAG.getConstant(UINT64_C(0x7ff), MVT::i64)); 2349 SDValue Ne = DAG.getSetCC(dl, getSetCCResultType(MVT::i64), 2350 And2, DAG.getConstant(UINT64_C(0), MVT::i64), ISD::SETNE); 2351 SDValue Sel = DAG.getSelect(dl, MVT::i64, Ne, Or, Op0); 2352 SDValue Ge = DAG.getSetCC(dl, getSetCCResultType(MVT::i64), 2353 Op0, DAG.getConstant(UINT64_C(0x0020000000000000), MVT::i64), 2354 ISD::SETUGE); 2355 SDValue Sel2 = DAG.getSelect(dl, MVT::i64, Ge, Sel, Op0); 2356 EVT SHVT = TLI.getShiftAmountTy(Sel2.getValueType()); 2357 2358 SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2, 2359 DAG.getConstant(32, SHVT)); 2360 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh); 2361 SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc); 2362 SDValue TwoP32 = 2363 DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), MVT::f64); 2364 SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt); 2365 SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2); 2366 SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo); 2367 SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2); 2368 return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd, 2369 DAG.getIntPtrConstant(0)); 2370 } 2371 2372 SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2373 2374 SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(Op0.getValueType()), 2375 Op0, DAG.getConstant(0, Op0.getValueType()), 2376 ISD::SETLT); 2377 SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4); 2378 SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(), 2379 SignSet, Four, Zero); 2380 2381 // If the sign bit of the integer is set, the large number will be treated 2382 // as a negative number. To counteract this, the dynamic code adds an 2383 // offset depending on the data type. 2384 uint64_t FF; 2385 switch (Op0.getValueType().getSimpleVT().SimpleTy) { 2386 default: llvm_unreachable("Unsupported integer type!"); 2387 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) 2388 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) 2389 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) 2390 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) 2391 } 2392 if (TLI.isLittleEndian()) FF <<= 32; 2393 Constant *FudgeFactor = ConstantInt::get( 2394 Type::getInt64Ty(*DAG.getContext()), FF); 2395 2396 SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy()); 2397 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 2398 CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset); 2399 Alignment = std::min(Alignment, 4u); 2400 SDValue FudgeInReg; 2401 if (DestVT == MVT::f32) 2402 FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx, 2403 MachinePointerInfo::getConstantPool(), 2404 false, false, false, Alignment); 2405 else { 2406 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, 2407 DAG.getEntryNode(), CPIdx, 2408 MachinePointerInfo::getConstantPool(), 2409 MVT::f32, false, false, Alignment); 2410 HandleSDNode Handle(Load); 2411 LegalizeOp(Load.getNode()); 2412 FudgeInReg = Handle.getValue(); 2413 } 2414 2415 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg); 2416} 2417 2418/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a 2419/// *INT_TO_FP operation of the specified operand when the target requests that 2420/// we promote it. At this point, we know that the result and operand types are 2421/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP 2422/// operation that takes a larger input. 2423SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp, 2424 EVT DestVT, 2425 bool isSigned, 2426 SDLoc dl) { 2427 // First step, figure out the appropriate *INT_TO_FP operation to use. 2428 EVT NewInTy = LegalOp.getValueType(); 2429 2430 unsigned OpToUse = 0; 2431 2432 // Scan for the appropriate larger type to use. 2433 while (1) { 2434 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1); 2435 assert(NewInTy.isInteger() && "Ran out of possibilities!"); 2436 2437 // If the target supports SINT_TO_FP of this type, use it. 2438 if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) { 2439 OpToUse = ISD::SINT_TO_FP; 2440 break; 2441 } 2442 if (isSigned) continue; 2443 2444 // If the target supports UINT_TO_FP of this type, use it. 2445 if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) { 2446 OpToUse = ISD::UINT_TO_FP; 2447 break; 2448 } 2449 2450 // Otherwise, try a larger type. 2451 } 2452 2453 // Okay, we found the operation and type to use. Zero extend our input to the 2454 // desired type then run the operation on it. 2455 return DAG.getNode(OpToUse, dl, DestVT, 2456 DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2457 dl, NewInTy, LegalOp)); 2458} 2459 2460/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a 2461/// FP_TO_*INT operation of the specified operand when the target requests that 2462/// we promote it. At this point, we know that the result and operand types are 2463/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT 2464/// operation that returns a larger result. 2465SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp, 2466 EVT DestVT, 2467 bool isSigned, 2468 SDLoc dl) { 2469 // First step, figure out the appropriate FP_TO*INT operation to use. 2470 EVT NewOutTy = DestVT; 2471 2472 unsigned OpToUse = 0; 2473 2474 // Scan for the appropriate larger type to use. 2475 while (1) { 2476 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1); 2477 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 2478 2479 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) { 2480 OpToUse = ISD::FP_TO_SINT; 2481 break; 2482 } 2483 2484 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) { 2485 OpToUse = ISD::FP_TO_UINT; 2486 break; 2487 } 2488 2489 // Otherwise, try a larger type. 2490 } 2491 2492 2493 // Okay, we found the operation and type to use. 2494 SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp); 2495 2496 // Truncate the result of the extended FP_TO_*INT operation to the desired 2497 // size. 2498 return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation); 2499} 2500 2501/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation. 2502/// 2503SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, SDLoc dl) { 2504 EVT VT = Op.getValueType(); 2505 EVT SHVT = TLI.getShiftAmountTy(VT); 2506 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 2507 switch (VT.getSimpleVT().SimpleTy) { 2508 default: llvm_unreachable("Unhandled Expand type in BSWAP!"); 2509 case MVT::i16: 2510 Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2511 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2512 return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); 2513 case MVT::i32: 2514 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT)); 2515 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2516 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2517 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT)); 2518 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT)); 2519 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT)); 2520 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2521 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2522 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2523 case MVT::i64: 2524 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT)); 2525 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT)); 2526 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT)); 2527 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2528 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2529 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT)); 2530 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT)); 2531 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT)); 2532 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT)); 2533 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT)); 2534 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT)); 2535 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT)); 2536 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT)); 2537 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT)); 2538 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 2539 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 2540 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2541 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2542 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 2543 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2544 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 2545 } 2546} 2547 2548/// ExpandBitCount - Expand the specified bitcount instruction into operations. 2549/// 2550SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op, 2551 SDLoc dl) { 2552 switch (Opc) { 2553 default: llvm_unreachable("Cannot expand this yet!"); 2554 case ISD::CTPOP: { 2555 EVT VT = Op.getValueType(); 2556 EVT ShVT = TLI.getShiftAmountTy(VT); 2557 unsigned Len = VT.getSizeInBits(); 2558 2559 assert(VT.isInteger() && Len <= 128 && Len % 8 == 0 && 2560 "CTPOP not implemented for this type."); 2561 2562 // This is the "best" algorithm from 2563 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 2564 2565 SDValue Mask55 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), VT); 2566 SDValue Mask33 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), VT); 2567 SDValue Mask0F = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), VT); 2568 SDValue Mask01 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), VT); 2569 2570 // v = v - ((v >> 1) & 0x55555555...) 2571 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 2572 DAG.getNode(ISD::AND, dl, VT, 2573 DAG.getNode(ISD::SRL, dl, VT, Op, 2574 DAG.getConstant(1, ShVT)), 2575 Mask55)); 2576 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 2577 Op = DAG.getNode(ISD::ADD, dl, VT, 2578 DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 2579 DAG.getNode(ISD::AND, dl, VT, 2580 DAG.getNode(ISD::SRL, dl, VT, Op, 2581 DAG.getConstant(2, ShVT)), 2582 Mask33)); 2583 // v = (v + (v >> 4)) & 0x0F0F0F0F... 2584 Op = DAG.getNode(ISD::AND, dl, VT, 2585 DAG.getNode(ISD::ADD, dl, VT, Op, 2586 DAG.getNode(ISD::SRL, dl, VT, Op, 2587 DAG.getConstant(4, ShVT))), 2588 Mask0F); 2589 // v = (v * 0x01010101...) >> (Len - 8) 2590 Op = DAG.getNode(ISD::SRL, dl, VT, 2591 DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 2592 DAG.getConstant(Len - 8, ShVT)); 2593 2594 return Op; 2595 } 2596 case ISD::CTLZ_ZERO_UNDEF: 2597 // This trivially expands to CTLZ. 2598 return DAG.getNode(ISD::CTLZ, dl, Op.getValueType(), Op); 2599 case ISD::CTLZ: { 2600 // for now, we do this: 2601 // x = x | (x >> 1); 2602 // x = x | (x >> 2); 2603 // ... 2604 // x = x | (x >>16); 2605 // x = x | (x >>32); // for 64-bit input 2606 // return popcount(~x); 2607 // 2608 // but see also: http://www.hackersdelight.org/HDcode/nlz.cc 2609 EVT VT = Op.getValueType(); 2610 EVT ShVT = TLI.getShiftAmountTy(VT); 2611 unsigned len = VT.getSizeInBits(); 2612 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) { 2613 SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT); 2614 Op = DAG.getNode(ISD::OR, dl, VT, Op, 2615 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3)); 2616 } 2617 Op = DAG.getNOT(dl, Op, VT); 2618 return DAG.getNode(ISD::CTPOP, dl, VT, Op); 2619 } 2620 case ISD::CTTZ_ZERO_UNDEF: 2621 // This trivially expands to CTTZ. 2622 return DAG.getNode(ISD::CTTZ, dl, Op.getValueType(), Op); 2623 case ISD::CTTZ: { 2624 // for now, we use: { return popcount(~x & (x - 1)); } 2625 // unless the target has ctlz but not ctpop, in which case we use: 2626 // { return 32 - nlz(~x & (x-1)); } 2627 // see also http://www.hackersdelight.org/HDcode/ntz.cc 2628 EVT VT = Op.getValueType(); 2629 SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT, 2630 DAG.getNOT(dl, Op, VT), 2631 DAG.getNode(ISD::SUB, dl, VT, Op, 2632 DAG.getConstant(1, VT))); 2633 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 2634 if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) && 2635 TLI.isOperationLegalOrCustom(ISD::CTLZ, VT)) 2636 return DAG.getNode(ISD::SUB, dl, VT, 2637 DAG.getConstant(VT.getSizeInBits(), VT), 2638 DAG.getNode(ISD::CTLZ, dl, VT, Tmp3)); 2639 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3); 2640 } 2641 } 2642} 2643 2644std::pair <SDValue, SDValue> SelectionDAGLegalize::ExpandAtomic(SDNode *Node) { 2645 unsigned Opc = Node->getOpcode(); 2646 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT(); 2647 RTLIB::Libcall LC; 2648 2649 switch (Opc) { 2650 default: 2651 llvm_unreachable("Unhandled atomic intrinsic Expand!"); 2652 case ISD::ATOMIC_SWAP: 2653 switch (VT.SimpleTy) { 2654 default: llvm_unreachable("Unexpected value type for atomic!"); 2655 case MVT::i8: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_1; break; 2656 case MVT::i16: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_2; break; 2657 case MVT::i32: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_4; break; 2658 case MVT::i64: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_8; break; 2659 } 2660 break; 2661 case ISD::ATOMIC_CMP_SWAP: 2662 switch (VT.SimpleTy) { 2663 default: llvm_unreachable("Unexpected value type for atomic!"); 2664 case MVT::i8: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1; break; 2665 case MVT::i16: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2; break; 2666 case MVT::i32: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4; break; 2667 case MVT::i64: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8; break; 2668 } 2669 break; 2670 case ISD::ATOMIC_LOAD_ADD: 2671 switch (VT.SimpleTy) { 2672 default: llvm_unreachable("Unexpected value type for atomic!"); 2673 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_ADD_1; break; 2674 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_ADD_2; break; 2675 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_ADD_4; break; 2676 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_ADD_8; break; 2677 } 2678 break; 2679 case ISD::ATOMIC_LOAD_SUB: 2680 switch (VT.SimpleTy) { 2681 default: llvm_unreachable("Unexpected value type for atomic!"); 2682 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_SUB_1; break; 2683 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_SUB_2; break; 2684 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_SUB_4; break; 2685 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_SUB_8; break; 2686 } 2687 break; 2688 case ISD::ATOMIC_LOAD_AND: 2689 switch (VT.SimpleTy) { 2690 default: llvm_unreachable("Unexpected value type for atomic!"); 2691 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_AND_1; break; 2692 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_AND_2; break; 2693 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_AND_4; break; 2694 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_AND_8; break; 2695 } 2696 break; 2697 case ISD::ATOMIC_LOAD_OR: 2698 switch (VT.SimpleTy) { 2699 default: llvm_unreachable("Unexpected value type for atomic!"); 2700 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_OR_1; break; 2701 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_OR_2; break; 2702 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_OR_4; break; 2703 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_OR_8; break; 2704 } 2705 break; 2706 case ISD::ATOMIC_LOAD_XOR: 2707 switch (VT.SimpleTy) { 2708 default: llvm_unreachable("Unexpected value type for atomic!"); 2709 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_XOR_1; break; 2710 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_XOR_2; break; 2711 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_XOR_4; break; 2712 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_XOR_8; break; 2713 } 2714 break; 2715 case ISD::ATOMIC_LOAD_NAND: 2716 switch (VT.SimpleTy) { 2717 default: llvm_unreachable("Unexpected value type for atomic!"); 2718 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_NAND_1; break; 2719 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_NAND_2; break; 2720 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_NAND_4; break; 2721 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_NAND_8; break; 2722 } 2723 break; 2724 } 2725 2726 return ExpandChainLibCall(LC, Node, false); 2727} 2728 2729void SelectionDAGLegalize::ExpandNode(SDNode *Node) { 2730 SmallVector<SDValue, 8> Results; 2731 SDLoc dl(Node); 2732 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 2733 switch (Node->getOpcode()) { 2734 case ISD::CTPOP: 2735 case ISD::CTLZ: 2736 case ISD::CTLZ_ZERO_UNDEF: 2737 case ISD::CTTZ: 2738 case ISD::CTTZ_ZERO_UNDEF: 2739 Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl); 2740 Results.push_back(Tmp1); 2741 break; 2742 case ISD::BSWAP: 2743 Results.push_back(ExpandBSWAP(Node->getOperand(0), dl)); 2744 break; 2745 case ISD::FRAMEADDR: 2746 case ISD::RETURNADDR: 2747 case ISD::FRAME_TO_ARGS_OFFSET: 2748 Results.push_back(DAG.getConstant(0, Node->getValueType(0))); 2749 break; 2750 case ISD::FLT_ROUNDS_: 2751 Results.push_back(DAG.getConstant(1, Node->getValueType(0))); 2752 break; 2753 case ISD::EH_RETURN: 2754 case ISD::EH_LABEL: 2755 case ISD::PREFETCH: 2756 case ISD::VAEND: 2757 case ISD::EH_SJLJ_LONGJMP: 2758 // If the target didn't expand these, there's nothing to do, so just 2759 // preserve the chain and be done. 2760 Results.push_back(Node->getOperand(0)); 2761 break; 2762 case ISD::EH_SJLJ_SETJMP: 2763 // If the target didn't expand this, just return 'zero' and preserve the 2764 // chain. 2765 Results.push_back(DAG.getConstant(0, MVT::i32)); 2766 Results.push_back(Node->getOperand(0)); 2767 break; 2768 case ISD::ATOMIC_FENCE: { 2769 // If the target didn't lower this, lower it to '__sync_synchronize()' call 2770 // FIXME: handle "fence singlethread" more efficiently. 2771 TargetLowering::ArgListTy Args; 2772 TargetLowering:: 2773 CallLoweringInfo CLI(Node->getOperand(0), 2774 Type::getVoidTy(*DAG.getContext()), 2775 false, false, false, false, 0, CallingConv::C, 2776 /*isTailCall=*/false, 2777 /*doesNotReturn=*/false, /*isReturnValueUsed=*/true, 2778 DAG.getExternalSymbol("__sync_synchronize", 2779 TLI.getPointerTy()), 2780 Args, DAG, dl); 2781 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 2782 2783 Results.push_back(CallResult.second); 2784 break; 2785 } 2786 case ISD::ATOMIC_LOAD: { 2787 // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP. 2788 SDValue Zero = DAG.getConstant(0, Node->getValueType(0)); 2789 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, 2790 cast<AtomicSDNode>(Node)->getMemoryVT(), 2791 Node->getOperand(0), 2792 Node->getOperand(1), Zero, Zero, 2793 cast<AtomicSDNode>(Node)->getMemOperand(), 2794 cast<AtomicSDNode>(Node)->getOrdering(), 2795 cast<AtomicSDNode>(Node)->getSynchScope()); 2796 Results.push_back(Swap.getValue(0)); 2797 Results.push_back(Swap.getValue(1)); 2798 break; 2799 } 2800 case ISD::ATOMIC_STORE: { 2801 // There is no libcall for atomic store; fake it with ATOMIC_SWAP. 2802 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl, 2803 cast<AtomicSDNode>(Node)->getMemoryVT(), 2804 Node->getOperand(0), 2805 Node->getOperand(1), Node->getOperand(2), 2806 cast<AtomicSDNode>(Node)->getMemOperand(), 2807 cast<AtomicSDNode>(Node)->getOrdering(), 2808 cast<AtomicSDNode>(Node)->getSynchScope()); 2809 Results.push_back(Swap.getValue(1)); 2810 break; 2811 } 2812 // By default, atomic intrinsics are marked Legal and lowered. Targets 2813 // which don't support them directly, however, may want libcalls, in which 2814 // case they mark them Expand, and we get here. 2815 case ISD::ATOMIC_SWAP: 2816 case ISD::ATOMIC_LOAD_ADD: 2817 case ISD::ATOMIC_LOAD_SUB: 2818 case ISD::ATOMIC_LOAD_AND: 2819 case ISD::ATOMIC_LOAD_OR: 2820 case ISD::ATOMIC_LOAD_XOR: 2821 case ISD::ATOMIC_LOAD_NAND: 2822 case ISD::ATOMIC_LOAD_MIN: 2823 case ISD::ATOMIC_LOAD_MAX: 2824 case ISD::ATOMIC_LOAD_UMIN: 2825 case ISD::ATOMIC_LOAD_UMAX: 2826 case ISD::ATOMIC_CMP_SWAP: { 2827 std::pair<SDValue, SDValue> Tmp = ExpandAtomic(Node); 2828 Results.push_back(Tmp.first); 2829 Results.push_back(Tmp.second); 2830 break; 2831 } 2832 case ISD::DYNAMIC_STACKALLOC: 2833 ExpandDYNAMIC_STACKALLOC(Node, Results); 2834 break; 2835 case ISD::MERGE_VALUES: 2836 for (unsigned i = 0; i < Node->getNumValues(); i++) 2837 Results.push_back(Node->getOperand(i)); 2838 break; 2839 case ISD::UNDEF: { 2840 EVT VT = Node->getValueType(0); 2841 if (VT.isInteger()) 2842 Results.push_back(DAG.getConstant(0, VT)); 2843 else { 2844 assert(VT.isFloatingPoint() && "Unknown value type!"); 2845 Results.push_back(DAG.getConstantFP(0, VT)); 2846 } 2847 break; 2848 } 2849 case ISD::TRAP: { 2850 // If this operation is not supported, lower it to 'abort()' call 2851 TargetLowering::ArgListTy Args; 2852 TargetLowering:: 2853 CallLoweringInfo CLI(Node->getOperand(0), 2854 Type::getVoidTy(*DAG.getContext()), 2855 false, false, false, false, 0, CallingConv::C, 2856 /*isTailCall=*/false, 2857 /*doesNotReturn=*/false, /*isReturnValueUsed=*/true, 2858 DAG.getExternalSymbol("abort", TLI.getPointerTy()), 2859 Args, DAG, dl); 2860 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 2861 2862 Results.push_back(CallResult.second); 2863 break; 2864 } 2865 case ISD::FP_ROUND: 2866 case ISD::BITCAST: 2867 Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 2868 Node->getValueType(0), dl); 2869 Results.push_back(Tmp1); 2870 break; 2871 case ISD::FP_EXTEND: 2872 Tmp1 = EmitStackConvert(Node->getOperand(0), 2873 Node->getOperand(0).getValueType(), 2874 Node->getValueType(0), dl); 2875 Results.push_back(Tmp1); 2876 break; 2877 case ISD::SIGN_EXTEND_INREG: { 2878 // NOTE: we could fall back on load/store here too for targets without 2879 // SAR. However, it is doubtful that any exist. 2880 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 2881 EVT VT = Node->getValueType(0); 2882 EVT ShiftAmountTy = TLI.getShiftAmountTy(VT); 2883 if (VT.isVector()) 2884 ShiftAmountTy = VT; 2885 unsigned BitsDiff = VT.getScalarType().getSizeInBits() - 2886 ExtraVT.getScalarType().getSizeInBits(); 2887 SDValue ShiftCst = DAG.getConstant(BitsDiff, ShiftAmountTy); 2888 Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0), 2889 Node->getOperand(0), ShiftCst); 2890 Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst); 2891 Results.push_back(Tmp1); 2892 break; 2893 } 2894 case ISD::FP_ROUND_INREG: { 2895 // The only way we can lower this is to turn it into a TRUNCSTORE, 2896 // EXTLOAD pair, targeting a temporary location (a stack slot). 2897 2898 // NOTE: there is a choice here between constantly creating new stack 2899 // slots and always reusing the same one. We currently always create 2900 // new ones, as reuse may inhibit scheduling. 2901 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 2902 Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT, 2903 Node->getValueType(0), dl); 2904 Results.push_back(Tmp1); 2905 break; 2906 } 2907 case ISD::SINT_TO_FP: 2908 case ISD::UINT_TO_FP: 2909 Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP, 2910 Node->getOperand(0), Node->getValueType(0), dl); 2911 Results.push_back(Tmp1); 2912 break; 2913 case ISD::FP_TO_UINT: { 2914 SDValue True, False; 2915 EVT VT = Node->getOperand(0).getValueType(); 2916 EVT NVT = Node->getValueType(0); 2917 APFloat apf(DAG.EVTToAPFloatSemantics(VT), 2918 APInt::getNullValue(VT.getSizeInBits())); 2919 APInt x = APInt::getSignBit(NVT.getSizeInBits()); 2920 (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven); 2921 Tmp1 = DAG.getConstantFP(apf, VT); 2922 Tmp2 = DAG.getSetCC(dl, getSetCCResultType(VT), 2923 Node->getOperand(0), 2924 Tmp1, ISD::SETLT); 2925 True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0)); 2926 False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, 2927 DAG.getNode(ISD::FSUB, dl, VT, 2928 Node->getOperand(0), Tmp1)); 2929 False = DAG.getNode(ISD::XOR, dl, NVT, False, 2930 DAG.getConstant(x, NVT)); 2931 Tmp1 = DAG.getSelect(dl, NVT, Tmp2, True, False); 2932 Results.push_back(Tmp1); 2933 break; 2934 } 2935 case ISD::VAARG: { 2936 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2937 EVT VT = Node->getValueType(0); 2938 Tmp1 = Node->getOperand(0); 2939 Tmp2 = Node->getOperand(1); 2940 unsigned Align = Node->getConstantOperandVal(3); 2941 2942 SDValue VAListLoad = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2, 2943 MachinePointerInfo(V), 2944 false, false, false, 0); 2945 SDValue VAList = VAListLoad; 2946 2947 if (Align > TLI.getMinStackArgumentAlignment()) { 2948 assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2"); 2949 2950 VAList = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList, 2951 DAG.getConstant(Align - 1, 2952 TLI.getPointerTy())); 2953 2954 VAList = DAG.getNode(ISD::AND, dl, TLI.getPointerTy(), VAList, 2955 DAG.getConstant(-(int64_t)Align, 2956 TLI.getPointerTy())); 2957 } 2958 2959 // Increment the pointer, VAList, to the next vaarg 2960 Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList, 2961 DAG.getConstant(TLI.getDataLayout()-> 2962 getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())), 2963 TLI.getPointerTy())); 2964 // Store the incremented VAList to the legalized pointer 2965 Tmp3 = DAG.getStore(VAListLoad.getValue(1), dl, Tmp3, Tmp2, 2966 MachinePointerInfo(V), false, false, 0); 2967 // Load the actual argument out of the pointer VAList 2968 Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, MachinePointerInfo(), 2969 false, false, false, 0)); 2970 Results.push_back(Results[0].getValue(1)); 2971 break; 2972 } 2973 case ISD::VACOPY: { 2974 // This defaults to loading a pointer from the input and storing it to the 2975 // output, returning the chain. 2976 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 2977 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 2978 Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0), 2979 Node->getOperand(2), MachinePointerInfo(VS), 2980 false, false, false, 0); 2981 Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 2982 MachinePointerInfo(VD), false, false, 0); 2983 Results.push_back(Tmp1); 2984 break; 2985 } 2986 case ISD::EXTRACT_VECTOR_ELT: 2987 if (Node->getOperand(0).getValueType().getVectorNumElements() == 1) 2988 // This must be an access of the only element. Return it. 2989 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), 2990 Node->getOperand(0)); 2991 else 2992 Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0)); 2993 Results.push_back(Tmp1); 2994 break; 2995 case ISD::EXTRACT_SUBVECTOR: 2996 Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0))); 2997 break; 2998 case ISD::INSERT_SUBVECTOR: 2999 Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0))); 3000 break; 3001 case ISD::CONCAT_VECTORS: { 3002 Results.push_back(ExpandVectorBuildThroughStack(Node)); 3003 break; 3004 } 3005 case ISD::SCALAR_TO_VECTOR: 3006 Results.push_back(ExpandSCALAR_TO_VECTOR(Node)); 3007 break; 3008 case ISD::INSERT_VECTOR_ELT: 3009 Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0), 3010 Node->getOperand(1), 3011 Node->getOperand(2), dl)); 3012 break; 3013 case ISD::VECTOR_SHUFFLE: { 3014 SmallVector<int, 32> NewMask; 3015 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 3016 3017 EVT VT = Node->getValueType(0); 3018 EVT EltVT = VT.getVectorElementType(); 3019 SDValue Op0 = Node->getOperand(0); 3020 SDValue Op1 = Node->getOperand(1); 3021 if (!TLI.isTypeLegal(EltVT)) { 3022 3023 EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT); 3024 3025 // BUILD_VECTOR operands are allowed to be wider than the element type. 3026 // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept it 3027 if (NewEltVT.bitsLT(EltVT)) { 3028 3029 // Convert shuffle node. 3030 // If original node was v4i64 and the new EltVT is i32, 3031 // cast operands to v8i32 and re-build the mask. 3032 3033 // Calculate new VT, the size of the new VT should be equal to original. 3034 EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltVT, 3035 VT.getSizeInBits()/NewEltVT.getSizeInBits()); 3036 assert(NewVT.bitsEq(VT)); 3037 3038 // cast operands to new VT 3039 Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0); 3040 Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1); 3041 3042 // Convert the shuffle mask 3043 unsigned int factor = NewVT.getVectorNumElements()/VT.getVectorNumElements(); 3044 3045 // EltVT gets smaller 3046 assert(factor > 0); 3047 3048 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { 3049 if (Mask[i] < 0) { 3050 for (unsigned fi = 0; fi < factor; ++fi) 3051 NewMask.push_back(Mask[i]); 3052 } 3053 else { 3054 for (unsigned fi = 0; fi < factor; ++fi) 3055 NewMask.push_back(Mask[i]*factor+fi); 3056 } 3057 } 3058 Mask = NewMask; 3059 VT = NewVT; 3060 } 3061 EltVT = NewEltVT; 3062 } 3063 unsigned NumElems = VT.getVectorNumElements(); 3064 SmallVector<SDValue, 16> Ops; 3065 for (unsigned i = 0; i != NumElems; ++i) { 3066 if (Mask[i] < 0) { 3067 Ops.push_back(DAG.getUNDEF(EltVT)); 3068 continue; 3069 } 3070 unsigned Idx = Mask[i]; 3071 if (Idx < NumElems) 3072 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, 3073 Op0, 3074 DAG.getIntPtrConstant(Idx))); 3075 else 3076 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, 3077 Op1, 3078 DAG.getIntPtrConstant(Idx - NumElems))); 3079 } 3080 3081 Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size()); 3082 // We may have changed the BUILD_VECTOR type. Cast it back to the Node type. 3083 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1); 3084 Results.push_back(Tmp1); 3085 break; 3086 } 3087 case ISD::EXTRACT_ELEMENT: { 3088 EVT OpTy = Node->getOperand(0).getValueType(); 3089 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { 3090 // 1 -> Hi 3091 Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0), 3092 DAG.getConstant(OpTy.getSizeInBits()/2, 3093 TLI.getShiftAmountTy(Node->getOperand(0).getValueType()))); 3094 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1); 3095 } else { 3096 // 0 -> Lo 3097 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), 3098 Node->getOperand(0)); 3099 } 3100 Results.push_back(Tmp1); 3101 break; 3102 } 3103 case ISD::STACKSAVE: 3104 // Expand to CopyFromReg if the target set 3105 // StackPointerRegisterToSaveRestore. 3106 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 3107 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP, 3108 Node->getValueType(0))); 3109 Results.push_back(Results[0].getValue(1)); 3110 } else { 3111 Results.push_back(DAG.getUNDEF(Node->getValueType(0))); 3112 Results.push_back(Node->getOperand(0)); 3113 } 3114 break; 3115 case ISD::STACKRESTORE: 3116 // Expand to CopyToReg if the target set 3117 // StackPointerRegisterToSaveRestore. 3118 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 3119 Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP, 3120 Node->getOperand(1))); 3121 } else { 3122 Results.push_back(Node->getOperand(0)); 3123 } 3124 break; 3125 case ISD::FCOPYSIGN: 3126 Results.push_back(ExpandFCOPYSIGN(Node)); 3127 break; 3128 case ISD::FNEG: 3129 // Expand Y = FNEG(X) -> Y = SUB -0.0, X 3130 Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0)); 3131 Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1, 3132 Node->getOperand(0)); 3133 Results.push_back(Tmp1); 3134 break; 3135 case ISD::FABS: { 3136 // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X). 3137 EVT VT = Node->getValueType(0); 3138 Tmp1 = Node->getOperand(0); 3139 Tmp2 = DAG.getConstantFP(0.0, VT); 3140 Tmp2 = DAG.getSetCC(dl, getSetCCResultType(Tmp1.getValueType()), 3141 Tmp1, Tmp2, ISD::SETUGT); 3142 Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1); 3143 Tmp1 = DAG.getSelect(dl, VT, Tmp2, Tmp1, Tmp3); 3144 Results.push_back(Tmp1); 3145 break; 3146 } 3147 case ISD::FSQRT: 3148 Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 3149 RTLIB::SQRT_F80, RTLIB::SQRT_F128, 3150 RTLIB::SQRT_PPCF128)); 3151 break; 3152 case ISD::FSIN: 3153 case ISD::FCOS: { 3154 EVT VT = Node->getValueType(0); 3155 bool isSIN = Node->getOpcode() == ISD::FSIN; 3156 // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin / 3157 // fcos which share the same operand and both are used. 3158 if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) || 3159 canCombineSinCosLibcall(Node, TLI, TM)) 3160 && useSinCos(Node)) { 3161 SDVTList VTs = DAG.getVTList(VT, VT); 3162 Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0)); 3163 if (!isSIN) 3164 Tmp1 = Tmp1.getValue(1); 3165 Results.push_back(Tmp1); 3166 } else if (isSIN) { 3167 Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64, 3168 RTLIB::SIN_F80, RTLIB::SIN_F128, 3169 RTLIB::SIN_PPCF128)); 3170 } else { 3171 Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64, 3172 RTLIB::COS_F80, RTLIB::COS_F128, 3173 RTLIB::COS_PPCF128)); 3174 } 3175 break; 3176 } 3177 case ISD::FSINCOS: 3178 // Expand into sincos libcall. 3179 ExpandSinCosLibCall(Node, Results); 3180 break; 3181 case ISD::FLOG: 3182 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, 3183 RTLIB::LOG_F80, RTLIB::LOG_F128, 3184 RTLIB::LOG_PPCF128)); 3185 break; 3186 case ISD::FLOG2: 3187 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, 3188 RTLIB::LOG2_F80, RTLIB::LOG2_F128, 3189 RTLIB::LOG2_PPCF128)); 3190 break; 3191 case ISD::FLOG10: 3192 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, 3193 RTLIB::LOG10_F80, RTLIB::LOG10_F128, 3194 RTLIB::LOG10_PPCF128)); 3195 break; 3196 case ISD::FEXP: 3197 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, 3198 RTLIB::EXP_F80, RTLIB::EXP_F128, 3199 RTLIB::EXP_PPCF128)); 3200 break; 3201 case ISD::FEXP2: 3202 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, 3203 RTLIB::EXP2_F80, RTLIB::EXP2_F128, 3204 RTLIB::EXP2_PPCF128)); 3205 break; 3206 case ISD::FTRUNC: 3207 Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, 3208 RTLIB::TRUNC_F80, RTLIB::TRUNC_F128, 3209 RTLIB::TRUNC_PPCF128)); 3210 break; 3211 case ISD::FFLOOR: 3212 Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, 3213 RTLIB::FLOOR_F80, RTLIB::FLOOR_F128, 3214 RTLIB::FLOOR_PPCF128)); 3215 break; 3216 case ISD::FCEIL: 3217 Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64, 3218 RTLIB::CEIL_F80, RTLIB::CEIL_F128, 3219 RTLIB::CEIL_PPCF128)); 3220 break; 3221 case ISD::FRINT: 3222 Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64, 3223 RTLIB::RINT_F80, RTLIB::RINT_F128, 3224 RTLIB::RINT_PPCF128)); 3225 break; 3226 case ISD::FNEARBYINT: 3227 Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32, 3228 RTLIB::NEARBYINT_F64, 3229 RTLIB::NEARBYINT_F80, 3230 RTLIB::NEARBYINT_F128, 3231 RTLIB::NEARBYINT_PPCF128)); 3232 break; 3233 case ISD::FPOWI: 3234 Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64, 3235 RTLIB::POWI_F80, RTLIB::POWI_F128, 3236 RTLIB::POWI_PPCF128)); 3237 break; 3238 case ISD::FPOW: 3239 Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, 3240 RTLIB::POW_F80, RTLIB::POW_F128, 3241 RTLIB::POW_PPCF128)); 3242 break; 3243 case ISD::FDIV: 3244 Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64, 3245 RTLIB::DIV_F80, RTLIB::DIV_F128, 3246 RTLIB::DIV_PPCF128)); 3247 break; 3248 case ISD::FREM: 3249 Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64, 3250 RTLIB::REM_F80, RTLIB::REM_F128, 3251 RTLIB::REM_PPCF128)); 3252 break; 3253 case ISD::FMA: 3254 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64, 3255 RTLIB::FMA_F80, RTLIB::FMA_F128, 3256 RTLIB::FMA_PPCF128)); 3257 break; 3258 case ISD::FP16_TO_FP32: 3259 Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false)); 3260 break; 3261 case ISD::FP32_TO_FP16: 3262 Results.push_back(ExpandLibCall(RTLIB::FPROUND_F32_F16, Node, false)); 3263 break; 3264 case ISD::ConstantFP: { 3265 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 3266 // Check to see if this FP immediate is already legal. 3267 // If this is a legal constant, turn it into a TargetConstantFP node. 3268 if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0))) 3269 Results.push_back(ExpandConstantFP(CFP, true)); 3270 break; 3271 } 3272 case ISD::FSUB: { 3273 EVT VT = Node->getValueType(0); 3274 assert(TLI.isOperationLegalOrCustom(ISD::FADD, VT) && 3275 TLI.isOperationLegalOrCustom(ISD::FNEG, VT) && 3276 "Don't know how to expand this FP subtraction!"); 3277 Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1)); 3278 Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1); 3279 Results.push_back(Tmp1); 3280 break; 3281 } 3282 case ISD::SUB: { 3283 EVT VT = Node->getValueType(0); 3284 assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 3285 TLI.isOperationLegalOrCustom(ISD::XOR, VT) && 3286 "Don't know how to expand this subtraction!"); 3287 Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1), 3288 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT)); 3289 Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, VT)); 3290 Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1)); 3291 break; 3292 } 3293 case ISD::UREM: 3294 case ISD::SREM: { 3295 EVT VT = Node->getValueType(0); 3296 bool isSigned = Node->getOpcode() == ISD::SREM; 3297 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 3298 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3299 Tmp2 = Node->getOperand(0); 3300 Tmp3 = Node->getOperand(1); 3301 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) || 3302 (isDivRemLibcallAvailable(Node, isSigned, TLI) && 3303 // If div is legal, it's better to do the normal expansion 3304 !TLI.isOperationLegalOrCustom(DivOpc, Node->getValueType(0)) && 3305 useDivRem(Node, isSigned, false))) { 3306 SDVTList VTs = DAG.getVTList(VT, VT); 3307 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1); 3308 } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) { 3309 // X % Y -> X-X/Y*Y 3310 Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3); 3311 Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3); 3312 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1); 3313 } else if (isSigned) 3314 Tmp1 = ExpandIntLibCall(Node, true, 3315 RTLIB::SREM_I8, 3316 RTLIB::SREM_I16, RTLIB::SREM_I32, 3317 RTLIB::SREM_I64, RTLIB::SREM_I128); 3318 else 3319 Tmp1 = ExpandIntLibCall(Node, false, 3320 RTLIB::UREM_I8, 3321 RTLIB::UREM_I16, RTLIB::UREM_I32, 3322 RTLIB::UREM_I64, RTLIB::UREM_I128); 3323 Results.push_back(Tmp1); 3324 break; 3325 } 3326 case ISD::UDIV: 3327 case ISD::SDIV: { 3328 bool isSigned = Node->getOpcode() == ISD::SDIV; 3329 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3330 EVT VT = Node->getValueType(0); 3331 SDVTList VTs = DAG.getVTList(VT, VT); 3332 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) || 3333 (isDivRemLibcallAvailable(Node, isSigned, TLI) && 3334 useDivRem(Node, isSigned, true))) 3335 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0), 3336 Node->getOperand(1)); 3337 else if (isSigned) 3338 Tmp1 = ExpandIntLibCall(Node, true, 3339 RTLIB::SDIV_I8, 3340 RTLIB::SDIV_I16, RTLIB::SDIV_I32, 3341 RTLIB::SDIV_I64, RTLIB::SDIV_I128); 3342 else 3343 Tmp1 = ExpandIntLibCall(Node, false, 3344 RTLIB::UDIV_I8, 3345 RTLIB::UDIV_I16, RTLIB::UDIV_I32, 3346 RTLIB::UDIV_I64, RTLIB::UDIV_I128); 3347 Results.push_back(Tmp1); 3348 break; 3349 } 3350 case ISD::MULHU: 3351 case ISD::MULHS: { 3352 unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : 3353 ISD::SMUL_LOHI; 3354 EVT VT = Node->getValueType(0); 3355 SDVTList VTs = DAG.getVTList(VT, VT); 3356 assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) && 3357 "If this wasn't legal, it shouldn't have been created!"); 3358 Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0), 3359 Node->getOperand(1)); 3360 Results.push_back(Tmp1.getValue(1)); 3361 break; 3362 } 3363 case ISD::SDIVREM: 3364 case ISD::UDIVREM: 3365 // Expand into divrem libcall 3366 ExpandDivRemLibCall(Node, Results); 3367 break; 3368 case ISD::MUL: { 3369 EVT VT = Node->getValueType(0); 3370 SDVTList VTs = DAG.getVTList(VT, VT); 3371 // See if multiply or divide can be lowered using two-result operations. 3372 // We just need the low half of the multiply; try both the signed 3373 // and unsigned forms. If the target supports both SMUL_LOHI and 3374 // UMUL_LOHI, form a preference by checking which forms of plain 3375 // MULH it supports. 3376 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT); 3377 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT); 3378 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT); 3379 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT); 3380 unsigned OpToUse = 0; 3381 if (HasSMUL_LOHI && !HasMULHS) { 3382 OpToUse = ISD::SMUL_LOHI; 3383 } else if (HasUMUL_LOHI && !HasMULHU) { 3384 OpToUse = ISD::UMUL_LOHI; 3385 } else if (HasSMUL_LOHI) { 3386 OpToUse = ISD::SMUL_LOHI; 3387 } else if (HasUMUL_LOHI) { 3388 OpToUse = ISD::UMUL_LOHI; 3389 } 3390 if (OpToUse) { 3391 Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0), 3392 Node->getOperand(1))); 3393 break; 3394 } 3395 Tmp1 = ExpandIntLibCall(Node, false, 3396 RTLIB::MUL_I8, 3397 RTLIB::MUL_I16, RTLIB::MUL_I32, 3398 RTLIB::MUL_I64, RTLIB::MUL_I128); 3399 Results.push_back(Tmp1); 3400 break; 3401 } 3402 case ISD::SADDO: 3403 case ISD::SSUBO: { 3404 SDValue LHS = Node->getOperand(0); 3405 SDValue RHS = Node->getOperand(1); 3406 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ? 3407 ISD::ADD : ISD::SUB, dl, LHS.getValueType(), 3408 LHS, RHS); 3409 Results.push_back(Sum); 3410 EVT OType = Node->getValueType(1); 3411 3412 SDValue Zero = DAG.getConstant(0, LHS.getValueType()); 3413 3414 // LHSSign -> LHS >= 0 3415 // RHSSign -> RHS >= 0 3416 // SumSign -> Sum >= 0 3417 // 3418 // Add: 3419 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign) 3420 // Sub: 3421 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign) 3422 // 3423 SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE); 3424 SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE); 3425 SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign, 3426 Node->getOpcode() == ISD::SADDO ? 3427 ISD::SETEQ : ISD::SETNE); 3428 3429 SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE); 3430 SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE); 3431 3432 SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE); 3433 Results.push_back(Cmp); 3434 break; 3435 } 3436 case ISD::UADDO: 3437 case ISD::USUBO: { 3438 SDValue LHS = Node->getOperand(0); 3439 SDValue RHS = Node->getOperand(1); 3440 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ? 3441 ISD::ADD : ISD::SUB, dl, LHS.getValueType(), 3442 LHS, RHS); 3443 Results.push_back(Sum); 3444 Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS, 3445 Node->getOpcode () == ISD::UADDO ? 3446 ISD::SETULT : ISD::SETUGT)); 3447 break; 3448 } 3449 case ISD::UMULO: 3450 case ISD::SMULO: { 3451 EVT VT = Node->getValueType(0); 3452 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2); 3453 SDValue LHS = Node->getOperand(0); 3454 SDValue RHS = Node->getOperand(1); 3455 SDValue BottomHalf; 3456 SDValue TopHalf; 3457 static const unsigned Ops[2][3] = 3458 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 3459 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 3460 bool isSigned = Node->getOpcode() == ISD::SMULO; 3461 if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 3462 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 3463 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 3464 } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 3465 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 3466 RHS); 3467 TopHalf = BottomHalf.getValue(1); 3468 } else if (TLI.isTypeLegal(EVT::getIntegerVT(*DAG.getContext(), 3469 VT.getSizeInBits() * 2))) { 3470 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 3471 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 3472 Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 3473 BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1, 3474 DAG.getIntPtrConstant(0)); 3475 TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1, 3476 DAG.getIntPtrConstant(1)); 3477 } else { 3478 // We can fall back to a libcall with an illegal type for the MUL if we 3479 // have a libcall big enough. 3480 // Also, we can fall back to a division in some cases, but that's a big 3481 // performance hit in the general case. 3482 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 3483 if (WideVT == MVT::i16) 3484 LC = RTLIB::MUL_I16; 3485 else if (WideVT == MVT::i32) 3486 LC = RTLIB::MUL_I32; 3487 else if (WideVT == MVT::i64) 3488 LC = RTLIB::MUL_I64; 3489 else if (WideVT == MVT::i128) 3490 LC = RTLIB::MUL_I128; 3491 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 3492 3493 // The high part is obtained by SRA'ing all but one of the bits of low 3494 // part. 3495 unsigned LoSize = VT.getSizeInBits(); 3496 SDValue HiLHS = DAG.getNode(ISD::SRA, dl, VT, RHS, 3497 DAG.getConstant(LoSize-1, TLI.getPointerTy())); 3498 SDValue HiRHS = DAG.getNode(ISD::SRA, dl, VT, LHS, 3499 DAG.getConstant(LoSize-1, TLI.getPointerTy())); 3500 3501 // Here we're passing the 2 arguments explicitly as 4 arguments that are 3502 // pre-lowered to the correct types. This all depends upon WideVT not 3503 // being a legal type for the architecture and thus has to be split to 3504 // two arguments. 3505 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 3506 SDValue Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl); 3507 BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret, 3508 DAG.getIntPtrConstant(0)); 3509 TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret, 3510 DAG.getIntPtrConstant(1)); 3511 // Ret is a node with an illegal type. Because such things are not 3512 // generally permitted during this phase of legalization, delete the 3513 // node. The above EXTRACT_ELEMENT nodes should have been folded. 3514 DAG.DeleteNode(Ret.getNode()); 3515 } 3516 3517 if (isSigned) { 3518 Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1, 3519 TLI.getShiftAmountTy(BottomHalf.getValueType())); 3520 Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1); 3521 TopHalf = DAG.getSetCC(dl, getSetCCResultType(VT), TopHalf, Tmp1, 3522 ISD::SETNE); 3523 } else { 3524 TopHalf = DAG.getSetCC(dl, getSetCCResultType(VT), TopHalf, 3525 DAG.getConstant(0, VT), ISD::SETNE); 3526 } 3527 Results.push_back(BottomHalf); 3528 Results.push_back(TopHalf); 3529 break; 3530 } 3531 case ISD::BUILD_PAIR: { 3532 EVT PairTy = Node->getValueType(0); 3533 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0)); 3534 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1)); 3535 Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2, 3536 DAG.getConstant(PairTy.getSizeInBits()/2, 3537 TLI.getShiftAmountTy(PairTy))); 3538 Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2)); 3539 break; 3540 } 3541 case ISD::SELECT: 3542 Tmp1 = Node->getOperand(0); 3543 Tmp2 = Node->getOperand(1); 3544 Tmp3 = Node->getOperand(2); 3545 if (Tmp1.getOpcode() == ISD::SETCC) { 3546 Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1), 3547 Tmp2, Tmp3, 3548 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); 3549 } else { 3550 Tmp1 = DAG.getSelectCC(dl, Tmp1, 3551 DAG.getConstant(0, Tmp1.getValueType()), 3552 Tmp2, Tmp3, ISD::SETNE); 3553 } 3554 Results.push_back(Tmp1); 3555 break; 3556 case ISD::BR_JT: { 3557 SDValue Chain = Node->getOperand(0); 3558 SDValue Table = Node->getOperand(1); 3559 SDValue Index = Node->getOperand(2); 3560 3561 EVT PTy = TLI.getPointerTy(); 3562 3563 const DataLayout &TD = *TLI.getDataLayout(); 3564 unsigned EntrySize = 3565 DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD); 3566 3567 Index = DAG.getNode(ISD::MUL, dl, PTy, 3568 Index, DAG.getConstant(EntrySize, PTy)); 3569 SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table); 3570 3571 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8); 3572 SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr, 3573 MachinePointerInfo::getJumpTable(), MemVT, 3574 false, false, 0); 3575 Addr = LD; 3576 if (TM.getRelocationModel() == Reloc::PIC_) { 3577 // For PIC, the sequence is: 3578 // BRIND(load(Jumptable + index) + RelocBase) 3579 // RelocBase can be JumpTable, GOT or some sort of global base. 3580 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, 3581 TLI.getPICJumpTableRelocBase(Table, DAG)); 3582 } 3583 Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr); 3584 Results.push_back(Tmp1); 3585 break; 3586 } 3587 case ISD::BRCOND: 3588 // Expand brcond's setcc into its constituent parts and create a BR_CC 3589 // Node. 3590 Tmp1 = Node->getOperand(0); 3591 Tmp2 = Node->getOperand(1); 3592 if (Tmp2.getOpcode() == ISD::SETCC) { 3593 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, 3594 Tmp1, Tmp2.getOperand(2), 3595 Tmp2.getOperand(0), Tmp2.getOperand(1), 3596 Node->getOperand(2)); 3597 } else { 3598 // We test only the i1 bit. Skip the AND if UNDEF. 3599 Tmp3 = (Tmp2.getOpcode() == ISD::UNDEF) ? Tmp2 : 3600 DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2, 3601 DAG.getConstant(1, Tmp2.getValueType())); 3602 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, 3603 DAG.getCondCode(ISD::SETNE), Tmp3, 3604 DAG.getConstant(0, Tmp3.getValueType()), 3605 Node->getOperand(2)); 3606 } 3607 Results.push_back(Tmp1); 3608 break; 3609 case ISD::SETCC: { 3610 Tmp1 = Node->getOperand(0); 3611 Tmp2 = Node->getOperand(1); 3612 Tmp3 = Node->getOperand(2); 3613 LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl); 3614 3615 // If we expanded the SETCC into an AND/OR, return the new node 3616 if (Tmp2.getNode() == 0) { 3617 Results.push_back(Tmp1); 3618 break; 3619 } 3620 3621 // Otherwise, SETCC for the given comparison type must be completely 3622 // illegal; expand it into a SELECT_CC. 3623 EVT VT = Node->getValueType(0); 3624 int TrueValue; 3625 switch (TLI.getBooleanContents(VT.isVector())) { 3626 case TargetLowering::ZeroOrOneBooleanContent: 3627 case TargetLowering::UndefinedBooleanContent: 3628 TrueValue = 1; 3629 break; 3630 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3631 TrueValue = -1; 3632 break; 3633 } 3634 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2, 3635 DAG.getConstant(TrueValue, VT), DAG.getConstant(0, VT), 3636 Tmp3); 3637 Results.push_back(Tmp1); 3638 break; 3639 } 3640 case ISD::SELECT_CC: { 3641 Tmp1 = Node->getOperand(0); // LHS 3642 Tmp2 = Node->getOperand(1); // RHS 3643 Tmp3 = Node->getOperand(2); // True 3644 Tmp4 = Node->getOperand(3); // False 3645 SDValue CC = Node->getOperand(4); 3646 3647 LegalizeSetCCCondCode(getSetCCResultType(Tmp1.getValueType()), 3648 Tmp1, Tmp2, CC, dl); 3649 3650 assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!"); 3651 Tmp2 = DAG.getConstant(0, Tmp1.getValueType()); 3652 CC = DAG.getCondCode(ISD::SETNE); 3653 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2, 3654 Tmp3, Tmp4, CC); 3655 Results.push_back(Tmp1); 3656 break; 3657 } 3658 case ISD::BR_CC: { 3659 Tmp1 = Node->getOperand(0); // Chain 3660 Tmp2 = Node->getOperand(2); // LHS 3661 Tmp3 = Node->getOperand(3); // RHS 3662 Tmp4 = Node->getOperand(1); // CC 3663 3664 LegalizeSetCCCondCode(getSetCCResultType(Tmp2.getValueType()), 3665 Tmp2, Tmp3, Tmp4, dl); 3666 3667 assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!"); 3668 Tmp3 = DAG.getConstant(0, Tmp2.getValueType()); 3669 Tmp4 = DAG.getCondCode(ISD::SETNE); 3670 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2, 3671 Tmp3, Node->getOperand(4)); 3672 Results.push_back(Tmp1); 3673 break; 3674 } 3675 case ISD::BUILD_VECTOR: 3676 Results.push_back(ExpandBUILD_VECTOR(Node)); 3677 break; 3678 case ISD::SRA: 3679 case ISD::SRL: 3680 case ISD::SHL: { 3681 // Scalarize vector SRA/SRL/SHL. 3682 EVT VT = Node->getValueType(0); 3683 assert(VT.isVector() && "Unable to legalize non-vector shift"); 3684 assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal"); 3685 unsigned NumElem = VT.getVectorNumElements(); 3686 3687 SmallVector<SDValue, 8> Scalars; 3688 for (unsigned Idx = 0; Idx < NumElem; Idx++) { 3689 SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 3690 VT.getScalarType(), 3691 Node->getOperand(0), DAG.getIntPtrConstant(Idx)); 3692 SDValue Sh = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 3693 VT.getScalarType(), 3694 Node->getOperand(1), DAG.getIntPtrConstant(Idx)); 3695 Scalars.push_back(DAG.getNode(Node->getOpcode(), dl, 3696 VT.getScalarType(), Ex, Sh)); 3697 } 3698 SDValue Result = 3699 DAG.getNode(ISD::BUILD_VECTOR, dl, Node->getValueType(0), 3700 &Scalars[0], Scalars.size()); 3701 ReplaceNode(SDValue(Node, 0), Result); 3702 break; 3703 } 3704 case ISD::GLOBAL_OFFSET_TABLE: 3705 case ISD::GlobalAddress: 3706 case ISD::GlobalTLSAddress: 3707 case ISD::ExternalSymbol: 3708 case ISD::ConstantPool: 3709 case ISD::JumpTable: 3710 case ISD::INTRINSIC_W_CHAIN: 3711 case ISD::INTRINSIC_WO_CHAIN: 3712 case ISD::INTRINSIC_VOID: 3713 // FIXME: Custom lowering for these operations shouldn't return null! 3714 break; 3715 } 3716 3717 // Replace the original node with the legalized result. 3718 if (!Results.empty()) 3719 ReplaceNode(Node, Results.data()); 3720} 3721 3722void SelectionDAGLegalize::PromoteNode(SDNode *Node) { 3723 SmallVector<SDValue, 8> Results; 3724 MVT OVT = Node->getSimpleValueType(0); 3725 if (Node->getOpcode() == ISD::UINT_TO_FP || 3726 Node->getOpcode() == ISD::SINT_TO_FP || 3727 Node->getOpcode() == ISD::SETCC) { 3728 OVT = Node->getOperand(0).getSimpleValueType(); 3729 } 3730 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 3731 SDLoc dl(Node); 3732 SDValue Tmp1, Tmp2, Tmp3; 3733 switch (Node->getOpcode()) { 3734 case ISD::CTTZ: 3735 case ISD::CTTZ_ZERO_UNDEF: 3736 case ISD::CTLZ: 3737 case ISD::CTLZ_ZERO_UNDEF: 3738 case ISD::CTPOP: 3739 // Zero extend the argument. 3740 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 3741 // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is 3742 // already the correct result. 3743 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 3744 if (Node->getOpcode() == ISD::CTTZ) { 3745 // FIXME: This should set a bit in the zero extended value instead. 3746 Tmp2 = DAG.getSetCC(dl, getSetCCResultType(NVT), 3747 Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT), 3748 ISD::SETEQ); 3749 Tmp1 = DAG.getSelect(dl, NVT, Tmp2, 3750 DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1); 3751 } else if (Node->getOpcode() == ISD::CTLZ || 3752 Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) { 3753 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 3754 Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, 3755 DAG.getConstant(NVT.getSizeInBits() - 3756 OVT.getSizeInBits(), NVT)); 3757 } 3758 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 3759 break; 3760 case ISD::BSWAP: { 3761 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); 3762 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 3763 Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1); 3764 Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1, 3765 DAG.getConstant(DiffBits, TLI.getShiftAmountTy(NVT))); 3766 Results.push_back(Tmp1); 3767 break; 3768 } 3769 case ISD::FP_TO_UINT: 3770 case ISD::FP_TO_SINT: 3771 Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0), 3772 Node->getOpcode() == ISD::FP_TO_SINT, dl); 3773 Results.push_back(Tmp1); 3774 break; 3775 case ISD::UINT_TO_FP: 3776 case ISD::SINT_TO_FP: 3777 Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0), 3778 Node->getOpcode() == ISD::SINT_TO_FP, dl); 3779 Results.push_back(Tmp1); 3780 break; 3781 case ISD::VAARG: { 3782 SDValue Chain = Node->getOperand(0); // Get the chain. 3783 SDValue Ptr = Node->getOperand(1); // Get the pointer. 3784 3785 unsigned TruncOp; 3786 if (OVT.isVector()) { 3787 TruncOp = ISD::BITCAST; 3788 } else { 3789 assert(OVT.isInteger() 3790 && "VAARG promotion is supported only for vectors or integer types"); 3791 TruncOp = ISD::TRUNCATE; 3792 } 3793 3794 // Perform the larger operation, then convert back 3795 Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2), 3796 Node->getConstantOperandVal(3)); 3797 Chain = Tmp1.getValue(1); 3798 3799 Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1); 3800 3801 // Modified the chain result - switch anything that used the old chain to 3802 // use the new one. 3803 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2); 3804 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 3805 ReplacedNode(Node); 3806 break; 3807 } 3808 case ISD::AND: 3809 case ISD::OR: 3810 case ISD::XOR: { 3811 unsigned ExtOp, TruncOp; 3812 if (OVT.isVector()) { 3813 ExtOp = ISD::BITCAST; 3814 TruncOp = ISD::BITCAST; 3815 } else { 3816 assert(OVT.isInteger() && "Cannot promote logic operation"); 3817 ExtOp = ISD::ANY_EXTEND; 3818 TruncOp = ISD::TRUNCATE; 3819 } 3820 // Promote each of the values to the new type. 3821 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 3822 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 3823 // Perform the larger operation, then convert back 3824 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 3825 Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1)); 3826 break; 3827 } 3828 case ISD::SELECT: { 3829 unsigned ExtOp, TruncOp; 3830 if (Node->getValueType(0).isVector()) { 3831 ExtOp = ISD::BITCAST; 3832 TruncOp = ISD::BITCAST; 3833 } else if (Node->getValueType(0).isInteger()) { 3834 ExtOp = ISD::ANY_EXTEND; 3835 TruncOp = ISD::TRUNCATE; 3836 } else { 3837 ExtOp = ISD::FP_EXTEND; 3838 TruncOp = ISD::FP_ROUND; 3839 } 3840 Tmp1 = Node->getOperand(0); 3841 // Promote each of the values to the new type. 3842 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 3843 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 3844 // Perform the larger operation, then round down. 3845 Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3); 3846 if (TruncOp != ISD::FP_ROUND) 3847 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1); 3848 else 3849 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1, 3850 DAG.getIntPtrConstant(0)); 3851 Results.push_back(Tmp1); 3852 break; 3853 } 3854 case ISD::VECTOR_SHUFFLE: { 3855 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 3856 3857 // Cast the two input vectors. 3858 Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0)); 3859 Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1)); 3860 3861 // Convert the shuffle mask to the right # elements. 3862 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask); 3863 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1); 3864 Results.push_back(Tmp1); 3865 break; 3866 } 3867 case ISD::SETCC: { 3868 unsigned ExtOp = ISD::FP_EXTEND; 3869 if (NVT.isInteger()) { 3870 ISD::CondCode CCCode = 3871 cast<CondCodeSDNode>(Node->getOperand(2))->get(); 3872 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 3873 } 3874 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 3875 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 3876 Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), 3877 Tmp1, Tmp2, Node->getOperand(2))); 3878 break; 3879 } 3880 case ISD::FDIV: 3881 case ISD::FREM: 3882 case ISD::FPOW: { 3883 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 3884 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 3885 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 3886 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 3887 Tmp3, DAG.getIntPtrConstant(0))); 3888 break; 3889 } 3890 case ISD::FLOG2: 3891 case ISD::FEXP2: 3892 case ISD::FLOG: 3893 case ISD::FEXP: { 3894 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 3895 Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 3896 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 3897 Tmp2, DAG.getIntPtrConstant(0))); 3898 break; 3899 } 3900 } 3901 3902 // Replace the original node with the legalized result. 3903 if (!Results.empty()) 3904 ReplaceNode(Node, Results.data()); 3905} 3906 3907// SelectionDAG::Legalize - This is the entry point for the file. 3908// 3909void SelectionDAG::Legalize() { 3910 /// run - This is the main entry point to this class. 3911 /// 3912 SelectionDAGLegalize(*this).LegalizeDAG(); 3913} 3914