LegalizeDAG.cpp revision 2d916231ff503b995bf3b65a338c9bf0d84ee7c7
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the SelectionDAG::Legalize method. 11// 12//===----------------------------------------------------------------------===// 13 14#include "llvm/CodeGen/SelectionDAG.h" 15#include "llvm/ADT/DenseMap.h" 16#include "llvm/ADT/SmallPtrSet.h" 17#include "llvm/ADT/SmallVector.h" 18#include "llvm/CallingConv.h" 19#include "llvm/CodeGen/Analysis.h" 20#include "llvm/CodeGen/MachineFunction.h" 21#include "llvm/CodeGen/MachineJumpTableInfo.h" 22#include "llvm/Constants.h" 23#include "llvm/DataLayout.h" 24#include "llvm/DebugInfo.h" 25#include "llvm/DerivedTypes.h" 26#include "llvm/LLVMContext.h" 27#include "llvm/Support/Debug.h" 28#include "llvm/Support/ErrorHandling.h" 29#include "llvm/Support/MathExtras.h" 30#include "llvm/Support/raw_ostream.h" 31#include "llvm/Target/TargetFrameLowering.h" 32#include "llvm/Target/TargetLowering.h" 33#include "llvm/Target/TargetMachine.h" 34using namespace llvm; 35 36//===----------------------------------------------------------------------===// 37/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and 38/// hacks on it until the target machine can handle it. This involves 39/// eliminating value sizes the machine cannot handle (promoting small sizes to 40/// large sizes or splitting up large values into small values) as well as 41/// eliminating operations the machine cannot handle. 42/// 43/// This code also does a small amount of optimization and recognition of idioms 44/// as part of its processing. For example, if a target does not support a 45/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this 46/// will attempt merge setcc and brc instructions into brcc's. 47/// 48namespace { 49class SelectionDAGLegalize : public SelectionDAG::DAGUpdateListener { 50 const TargetMachine &TM; 51 const TargetLowering &TLI; 52 SelectionDAG &DAG; 53 54 /// LegalizePosition - The iterator for walking through the node list. 55 SelectionDAG::allnodes_iterator LegalizePosition; 56 57 /// LegalizedNodes - The set of nodes which have already been legalized. 58 SmallPtrSet<SDNode *, 16> LegalizedNodes; 59 60 // Libcall insertion helpers. 61 62public: 63 explicit SelectionDAGLegalize(SelectionDAG &DAG); 64 65 void LegalizeDAG(); 66 67private: 68 /// LegalizeOp - Legalizes the given operation. 69 void LegalizeOp(SDNode *Node); 70 71 SDValue OptimizeFloatStore(StoreSDNode *ST); 72 73 void LegalizeLoadOps(SDNode *Node); 74 void LegalizeStoreOps(SDNode *Node); 75 76 /// PerformInsertVectorEltInMemory - Some target cannot handle a variable 77 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 78 /// is necessary to spill the vector being inserted into to memory, perform 79 /// the insert there, and then read the result back. 80 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, 81 SDValue Idx, DebugLoc dl); 82 SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, 83 SDValue Idx, DebugLoc dl); 84 85 /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which 86 /// performs the same shuffe in terms of order or result bytes, but on a type 87 /// whose vector element type is narrower than the original shuffle type. 88 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 89 SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl, 90 SDValue N1, SDValue N2, 91 ArrayRef<int> Mask) const; 92 93 void LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, 94 DebugLoc dl); 95 96 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned); 97 SDValue ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, const SDValue *Ops, 98 unsigned NumOps, bool isSigned, DebugLoc dl); 99 100 std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC, 101 SDNode *Node, bool isSigned); 102 SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32, 103 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, 104 RTLIB::Libcall Call_PPCF128); 105 SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, 106 RTLIB::Libcall Call_I8, 107 RTLIB::Libcall Call_I16, 108 RTLIB::Libcall Call_I32, 109 RTLIB::Libcall Call_I64, 110 RTLIB::Libcall Call_I128); 111 void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 112 113 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, DebugLoc dl); 114 SDValue ExpandBUILD_VECTOR(SDNode *Node); 115 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); 116 void ExpandDYNAMIC_STACKALLOC(SDNode *Node, 117 SmallVectorImpl<SDValue> &Results); 118 SDValue ExpandFCOPYSIGN(SDNode *Node); 119 SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT, 120 DebugLoc dl); 121 SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned, 122 DebugLoc dl); 123 SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned, 124 DebugLoc dl); 125 126 SDValue ExpandBSWAP(SDValue Op, DebugLoc dl); 127 SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl); 128 129 SDValue ExpandExtractFromVectorThroughStack(SDValue Op); 130 SDValue ExpandInsertToVectorThroughStack(SDValue Op); 131 SDValue ExpandVectorBuildThroughStack(SDNode* Node); 132 133 SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP); 134 135 std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node); 136 137 void ExpandNode(SDNode *Node); 138 void PromoteNode(SDNode *Node); 139 140 void ForgetNode(SDNode *N) { 141 LegalizedNodes.erase(N); 142 if (LegalizePosition == SelectionDAG::allnodes_iterator(N)) 143 ++LegalizePosition; 144 } 145 146public: 147 // DAGUpdateListener implementation. 148 virtual void NodeDeleted(SDNode *N, SDNode *E) { 149 ForgetNode(N); 150 } 151 virtual void NodeUpdated(SDNode *N) {} 152 153 // Node replacement helpers 154 void ReplacedNode(SDNode *N) { 155 if (N->use_empty()) { 156 DAG.RemoveDeadNode(N); 157 } else { 158 ForgetNode(N); 159 } 160 } 161 void ReplaceNode(SDNode *Old, SDNode *New) { 162 DAG.ReplaceAllUsesWith(Old, New); 163 ReplacedNode(Old); 164 } 165 void ReplaceNode(SDValue Old, SDValue New) { 166 DAG.ReplaceAllUsesWith(Old, New); 167 ReplacedNode(Old.getNode()); 168 } 169 void ReplaceNode(SDNode *Old, const SDValue *New) { 170 DAG.ReplaceAllUsesWith(Old, New); 171 ReplacedNode(Old); 172 } 173}; 174} 175 176/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which 177/// performs the same shuffe in terms of order or result bytes, but on a type 178/// whose vector element type is narrower than the original shuffle type. 179/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 180SDValue 181SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl, 182 SDValue N1, SDValue N2, 183 ArrayRef<int> Mask) const { 184 unsigned NumMaskElts = VT.getVectorNumElements(); 185 unsigned NumDestElts = NVT.getVectorNumElements(); 186 unsigned NumEltsGrowth = NumDestElts / NumMaskElts; 187 188 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); 189 190 if (NumEltsGrowth == 1) 191 return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]); 192 193 SmallVector<int, 8> NewMask; 194 for (unsigned i = 0; i != NumMaskElts; ++i) { 195 int Idx = Mask[i]; 196 for (unsigned j = 0; j != NumEltsGrowth; ++j) { 197 if (Idx < 0) 198 NewMask.push_back(-1); 199 else 200 NewMask.push_back(Idx * NumEltsGrowth + j); 201 } 202 } 203 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?"); 204 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?"); 205 return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]); 206} 207 208SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag) 209 : SelectionDAG::DAGUpdateListener(dag), 210 TM(dag.getTarget()), TLI(dag.getTargetLoweringInfo()), 211 DAG(dag) { 212} 213 214void SelectionDAGLegalize::LegalizeDAG() { 215 DAG.AssignTopologicalOrder(); 216 217 // Visit all the nodes. We start in topological order, so that we see 218 // nodes with their original operands intact. Legalization can produce 219 // new nodes which may themselves need to be legalized. Iterate until all 220 // nodes have been legalized. 221 for (;;) { 222 bool AnyLegalized = false; 223 for (LegalizePosition = DAG.allnodes_end(); 224 LegalizePosition != DAG.allnodes_begin(); ) { 225 --LegalizePosition; 226 227 SDNode *N = LegalizePosition; 228 if (LegalizedNodes.insert(N)) { 229 AnyLegalized = true; 230 LegalizeOp(N); 231 } 232 } 233 if (!AnyLegalized) 234 break; 235 236 } 237 238 // Remove dead nodes now. 239 DAG.RemoveDeadNodes(); 240} 241 242/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or 243/// a load from the constant pool. 244SDValue 245SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) { 246 bool Extend = false; 247 DebugLoc dl = CFP->getDebugLoc(); 248 249 // If a FP immediate is precise when represented as a float and if the 250 // target can do an extending load from float to double, we put it into 251 // the constant pool as a float, even if it's is statically typed as a 252 // double. This shrinks FP constants and canonicalizes them for targets where 253 // an FP extending load is the same cost as a normal load (such as on the x87 254 // fp stack or PPC FP unit). 255 EVT VT = CFP->getValueType(0); 256 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue()); 257 if (!UseCP) { 258 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion"); 259 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), 260 (VT == MVT::f64) ? MVT::i64 : MVT::i32); 261 } 262 263 EVT OrigVT = VT; 264 EVT SVT = VT; 265 while (SVT != MVT::f32) { 266 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1); 267 if (ConstantFPSDNode::isValueValidForType(SVT, CFP->getValueAPF()) && 268 // Only do this if the target has a native EXTLOAD instruction from 269 // smaller type. 270 TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) && 271 TLI.ShouldShrinkFPConstant(OrigVT)) { 272 Type *SType = SVT.getTypeForEVT(*DAG.getContext()); 273 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType)); 274 VT = SVT; 275 Extend = true; 276 } 277 } 278 279 SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy()); 280 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 281 if (Extend) { 282 SDValue Result = 283 DAG.getExtLoad(ISD::EXTLOAD, dl, OrigVT, 284 DAG.getEntryNode(), 285 CPIdx, MachinePointerInfo::getConstantPool(), 286 VT, false, false, Alignment); 287 return Result; 288 } 289 SDValue Result = 290 DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx, 291 MachinePointerInfo::getConstantPool(), false, false, false, 292 Alignment); 293 return Result; 294} 295 296/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores. 297static void ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG, 298 const TargetLowering &TLI, 299 SelectionDAGLegalize *DAGLegalize) { 300 assert(ST->getAddressingMode() == ISD::UNINDEXED && 301 "unaligned indexed stores not implemented!"); 302 SDValue Chain = ST->getChain(); 303 SDValue Ptr = ST->getBasePtr(); 304 SDValue Val = ST->getValue(); 305 EVT VT = Val.getValueType(); 306 int Alignment = ST->getAlignment(); 307 DebugLoc dl = ST->getDebugLoc(); 308 if (ST->getMemoryVT().isFloatingPoint() || 309 ST->getMemoryVT().isVector()) { 310 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 311 if (TLI.isTypeLegal(intVT)) { 312 // Expand to a bitconvert of the value to the integer type of the 313 // same size, then a (misaligned) int store. 314 // FIXME: Does not handle truncating floating point stores! 315 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 316 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 317 ST->isVolatile(), ST->isNonTemporal(), Alignment); 318 DAGLegalize->ReplaceNode(SDValue(ST, 0), Result); 319 return; 320 } 321 // Do a (aligned) store to a stack slot, then copy from the stack slot 322 // to the final destination using (unaligned) integer loads and stores. 323 EVT StoredVT = ST->getMemoryVT(); 324 MVT RegVT = 325 TLI.getRegisterType(*DAG.getContext(), 326 EVT::getIntegerVT(*DAG.getContext(), 327 StoredVT.getSizeInBits())); 328 unsigned StoredBytes = StoredVT.getSizeInBits() / 8; 329 unsigned RegBytes = RegVT.getSizeInBits() / 8; 330 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 331 332 // Make sure the stack slot is also aligned for the register type. 333 SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT); 334 335 // Perform the original store, only redirected to the stack slot. 336 SDValue Store = DAG.getTruncStore(Chain, dl, 337 Val, StackPtr, MachinePointerInfo(), 338 StoredVT, false, false, 0); 339 SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy()); 340 SmallVector<SDValue, 8> Stores; 341 unsigned Offset = 0; 342 343 // Do all but one copies using the full register width. 344 for (unsigned i = 1; i < NumRegs; i++) { 345 // Load one integer register's worth from the stack slot. 346 SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr, 347 MachinePointerInfo(), 348 false, false, false, 0); 349 // Store it to the final location. Remember the store. 350 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 351 ST->getPointerInfo().getWithOffset(Offset), 352 ST->isVolatile(), ST->isNonTemporal(), 353 MinAlign(ST->getAlignment(), Offset))); 354 // Increment the pointers. 355 Offset += RegBytes; 356 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr, 357 Increment); 358 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 359 } 360 361 // The last store may be partial. Do a truncating store. On big-endian 362 // machines this requires an extending load from the stack slot to ensure 363 // that the bits are in the right place. 364 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 365 8 * (StoredBytes - Offset)); 366 367 // Load from the stack slot. 368 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 369 MachinePointerInfo(), 370 MemVT, false, false, 0); 371 372 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 373 ST->getPointerInfo() 374 .getWithOffset(Offset), 375 MemVT, ST->isVolatile(), 376 ST->isNonTemporal(), 377 MinAlign(ST->getAlignment(), Offset))); 378 // The order of the stores doesn't matter - say it with a TokenFactor. 379 SDValue Result = 380 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0], 381 Stores.size()); 382 DAGLegalize->ReplaceNode(SDValue(ST, 0), Result); 383 return; 384 } 385 assert(ST->getMemoryVT().isInteger() && 386 !ST->getMemoryVT().isVector() && 387 "Unaligned store of unknown type."); 388 // Get the half-size VT 389 EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext()); 390 int NumBits = NewStoredVT.getSizeInBits(); 391 int IncrementSize = NumBits / 8; 392 393 // Divide the stored value in two parts. 394 SDValue ShiftAmount = DAG.getConstant(NumBits, 395 TLI.getShiftAmountTy(Val.getValueType())); 396 SDValue Lo = Val; 397 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 398 399 // Store the two parts 400 SDValue Store1, Store2; 401 Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr, 402 ST->getPointerInfo(), NewStoredVT, 403 ST->isVolatile(), ST->isNonTemporal(), Alignment); 404 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 405 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 406 Alignment = MinAlign(Alignment, IncrementSize); 407 Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr, 408 ST->getPointerInfo().getWithOffset(IncrementSize), 409 NewStoredVT, ST->isVolatile(), ST->isNonTemporal(), 410 Alignment); 411 412 SDValue Result = 413 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 414 DAGLegalize->ReplaceNode(SDValue(ST, 0), Result); 415} 416 417/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads. 418static void 419ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG, 420 const TargetLowering &TLI, 421 SDValue &ValResult, SDValue &ChainResult) { 422 assert(LD->getAddressingMode() == ISD::UNINDEXED && 423 "unaligned indexed loads not implemented!"); 424 SDValue Chain = LD->getChain(); 425 SDValue Ptr = LD->getBasePtr(); 426 EVT VT = LD->getValueType(0); 427 EVT LoadedVT = LD->getMemoryVT(); 428 DebugLoc dl = LD->getDebugLoc(); 429 if (VT.isFloatingPoint() || VT.isVector()) { 430 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 431 if (TLI.isTypeLegal(intVT) && TLI.isTypeLegal(LoadedVT)) { 432 // Expand to a (misaligned) integer load of the same size, 433 // then bitconvert to floating point or vector. 434 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getPointerInfo(), 435 LD->isVolatile(), 436 LD->isNonTemporal(), 437 LD->isInvariant(), LD->getAlignment()); 438 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 439 if (LoadedVT != VT) 440 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 441 ISD::ANY_EXTEND, dl, VT, Result); 442 443 ValResult = Result; 444 ChainResult = Chain; 445 return; 446 } 447 448 // Copy the value to a (aligned) stack slot using (unaligned) integer 449 // loads and stores, then do a (aligned) load from the stack slot. 450 MVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT); 451 unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8; 452 unsigned RegBytes = RegVT.getSizeInBits() / 8; 453 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 454 455 // Make sure the stack slot is also aligned for the register type. 456 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 457 458 SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy()); 459 SmallVector<SDValue, 8> Stores; 460 SDValue StackPtr = StackBase; 461 unsigned Offset = 0; 462 463 // Do all but one copies using the full register width. 464 for (unsigned i = 1; i < NumRegs; i++) { 465 // Load one integer register's worth from the original location. 466 SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr, 467 LD->getPointerInfo().getWithOffset(Offset), 468 LD->isVolatile(), LD->isNonTemporal(), 469 LD->isInvariant(), 470 MinAlign(LD->getAlignment(), Offset)); 471 // Follow the load with a store to the stack slot. Remember the store. 472 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr, 473 MachinePointerInfo(), false, false, 0)); 474 // Increment the pointers. 475 Offset += RegBytes; 476 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 477 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr, 478 Increment); 479 } 480 481 // The last copy may be partial. Do an extending load. 482 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 483 8 * (LoadedBytes - Offset)); 484 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 485 LD->getPointerInfo().getWithOffset(Offset), 486 MemVT, LD->isVolatile(), 487 LD->isNonTemporal(), 488 MinAlign(LD->getAlignment(), Offset)); 489 // Follow the load with a store to the stack slot. Remember the store. 490 // On big-endian machines this requires a truncating store to ensure 491 // that the bits end up in the right place. 492 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr, 493 MachinePointerInfo(), MemVT, 494 false, false, 0)); 495 496 // The order of the stores doesn't matter - say it with a TokenFactor. 497 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0], 498 Stores.size()); 499 500 // Finally, perform the original load only redirected to the stack slot. 501 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 502 MachinePointerInfo(), LoadedVT, false, false, 0); 503 504 // Callers expect a MERGE_VALUES node. 505 ValResult = Load; 506 ChainResult = TF; 507 return; 508 } 509 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 510 "Unaligned load of unsupported type."); 511 512 // Compute the new VT that is half the size of the old one. This is an 513 // integer MVT. 514 unsigned NumBits = LoadedVT.getSizeInBits(); 515 EVT NewLoadedVT; 516 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 517 NumBits >>= 1; 518 519 unsigned Alignment = LD->getAlignment(); 520 unsigned IncrementSize = NumBits / 8; 521 ISD::LoadExtType HiExtType = LD->getExtensionType(); 522 523 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 524 if (HiExtType == ISD::NON_EXTLOAD) 525 HiExtType = ISD::ZEXTLOAD; 526 527 // Load the value in two parts 528 SDValue Lo, Hi; 529 if (TLI.isLittleEndian()) { 530 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 531 NewLoadedVT, LD->isVolatile(), 532 LD->isNonTemporal(), Alignment); 533 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 534 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 535 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 536 LD->getPointerInfo().getWithOffset(IncrementSize), 537 NewLoadedVT, LD->isVolatile(), 538 LD->isNonTemporal(), MinAlign(Alignment,IncrementSize)); 539 } else { 540 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 541 NewLoadedVT, LD->isVolatile(), 542 LD->isNonTemporal(), Alignment); 543 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 544 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 545 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 546 LD->getPointerInfo().getWithOffset(IncrementSize), 547 NewLoadedVT, LD->isVolatile(), 548 LD->isNonTemporal(), MinAlign(Alignment,IncrementSize)); 549 } 550 551 // aggregate the two parts 552 SDValue ShiftAmount = DAG.getConstant(NumBits, 553 TLI.getShiftAmountTy(Hi.getValueType())); 554 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 555 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 556 557 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 558 Hi.getValue(1)); 559 560 ValResult = Result; 561 ChainResult = TF; 562} 563 564/// PerformInsertVectorEltInMemory - Some target cannot handle a variable 565/// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 566/// is necessary to spill the vector being inserted into to memory, perform 567/// the insert there, and then read the result back. 568SDValue SelectionDAGLegalize:: 569PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx, 570 DebugLoc dl) { 571 SDValue Tmp1 = Vec; 572 SDValue Tmp2 = Val; 573 SDValue Tmp3 = Idx; 574 575 // If the target doesn't support this, we have to spill the input vector 576 // to a temporary stack slot, update the element, then reload it. This is 577 // badness. We could also load the value into a vector register (either 578 // with a "move to register" or "extload into register" instruction, then 579 // permute it into place, if the idx is a constant and if the idx is 580 // supported by the target. 581 EVT VT = Tmp1.getValueType(); 582 EVT EltVT = VT.getVectorElementType(); 583 EVT IdxVT = Tmp3.getValueType(); 584 EVT PtrVT = TLI.getPointerTy(); 585 SDValue StackPtr = DAG.CreateStackTemporary(VT); 586 587 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 588 589 // Store the vector. 590 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr, 591 MachinePointerInfo::getFixedStack(SPFI), 592 false, false, 0); 593 594 // Truncate or zero extend offset to target pointer type. 595 unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND; 596 Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3); 597 // Add the offset to the index. 598 unsigned EltSize = EltVT.getSizeInBits()/8; 599 Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT)); 600 SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr); 601 // Store the scalar value. 602 Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT, 603 false, false, 0); 604 // Load the updated vector. 605 return DAG.getLoad(VT, dl, Ch, StackPtr, 606 MachinePointerInfo::getFixedStack(SPFI), false, false, 607 false, 0); 608} 609 610 611SDValue SelectionDAGLegalize:: 612ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) { 613 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) { 614 // SCALAR_TO_VECTOR requires that the type of the value being inserted 615 // match the element type of the vector being created, except for 616 // integers in which case the inserted value can be over width. 617 EVT EltVT = Vec.getValueType().getVectorElementType(); 618 if (Val.getValueType() == EltVT || 619 (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) { 620 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, 621 Vec.getValueType(), Val); 622 623 unsigned NumElts = Vec.getValueType().getVectorNumElements(); 624 // We generate a shuffle of InVec and ScVec, so the shuffle mask 625 // should be 0,1,2,3,4,5... with the appropriate element replaced with 626 // elt 0 of the RHS. 627 SmallVector<int, 8> ShufOps; 628 for (unsigned i = 0; i != NumElts; ++i) 629 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts); 630 631 return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, 632 &ShufOps[0]); 633 } 634 } 635 return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl); 636} 637 638SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) { 639 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 640 // FIXME: We shouldn't do this for TargetConstantFP's. 641 // FIXME: move this to the DAG Combiner! Note that we can't regress due 642 // to phase ordering between legalized code and the dag combiner. This 643 // probably means that we need to integrate dag combiner and legalizer 644 // together. 645 // We generally can't do this one for long doubles. 646 SDValue Chain = ST->getChain(); 647 SDValue Ptr = ST->getBasePtr(); 648 unsigned Alignment = ST->getAlignment(); 649 bool isVolatile = ST->isVolatile(); 650 bool isNonTemporal = ST->isNonTemporal(); 651 DebugLoc dl = ST->getDebugLoc(); 652 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) { 653 if (CFP->getValueType(0) == MVT::f32 && 654 TLI.isTypeLegal(MVT::i32)) { 655 SDValue Con = DAG.getConstant(CFP->getValueAPF(). 656 bitcastToAPInt().zextOrTrunc(32), 657 MVT::i32); 658 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 659 isVolatile, isNonTemporal, Alignment); 660 } 661 662 if (CFP->getValueType(0) == MVT::f64) { 663 // If this target supports 64-bit registers, do a single 64-bit store. 664 if (TLI.isTypeLegal(MVT::i64)) { 665 SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 666 zextOrTrunc(64), MVT::i64); 667 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 668 isVolatile, isNonTemporal, Alignment); 669 } 670 671 if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) { 672 // Otherwise, if the target supports 32-bit registers, use 2 32-bit 673 // stores. If the target supports neither 32- nor 64-bits, this 674 // xform is certainly not worth it. 675 const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt(); 676 SDValue Lo = DAG.getConstant(IntVal.trunc(32), MVT::i32); 677 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32); 678 if (TLI.isBigEndian()) std::swap(Lo, Hi); 679 680 Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), isVolatile, 681 isNonTemporal, Alignment); 682 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 683 DAG.getIntPtrConstant(4)); 684 Hi = DAG.getStore(Chain, dl, Hi, Ptr, 685 ST->getPointerInfo().getWithOffset(4), 686 isVolatile, isNonTemporal, MinAlign(Alignment, 4U)); 687 688 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 689 } 690 } 691 } 692 return SDValue(0, 0); 693} 694 695void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) { 696 StoreSDNode *ST = cast<StoreSDNode>(Node); 697 SDValue Chain = ST->getChain(); 698 SDValue Ptr = ST->getBasePtr(); 699 DebugLoc dl = Node->getDebugLoc(); 700 701 unsigned Alignment = ST->getAlignment(); 702 bool isVolatile = ST->isVolatile(); 703 bool isNonTemporal = ST->isNonTemporal(); 704 705 if (!ST->isTruncatingStore()) { 706 if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) { 707 ReplaceNode(ST, OptStore); 708 return; 709 } 710 711 { 712 SDValue Value = ST->getValue(); 713 MVT VT = Value.getSimpleValueType(); 714 switch (TLI.getOperationAction(ISD::STORE, VT)) { 715 default: llvm_unreachable("This action is not supported yet!"); 716 case TargetLowering::Legal: 717 // If this is an unaligned store and the target doesn't support it, 718 // expand it. 719 if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) { 720 Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext()); 721 unsigned ABIAlignment= TLI.getDataLayout()->getABITypeAlignment(Ty); 722 if (ST->getAlignment() < ABIAlignment) 723 ExpandUnalignedStore(cast<StoreSDNode>(Node), 724 DAG, TLI, this); 725 } 726 break; 727 case TargetLowering::Custom: { 728 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 729 if (Res.getNode()) 730 ReplaceNode(SDValue(Node, 0), Res); 731 return; 732 } 733 case TargetLowering::Promote: { 734 EVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT); 735 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 736 "Can only promote stores to same size type"); 737 Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value); 738 SDValue Result = 739 DAG.getStore(Chain, dl, Value, Ptr, 740 ST->getPointerInfo(), isVolatile, 741 isNonTemporal, Alignment); 742 ReplaceNode(SDValue(Node, 0), Result); 743 break; 744 } 745 } 746 return; 747 } 748 } else { 749 SDValue Value = ST->getValue(); 750 751 EVT StVT = ST->getMemoryVT(); 752 unsigned StWidth = StVT.getSizeInBits(); 753 754 if (StWidth != StVT.getStoreSizeInBits()) { 755 // Promote to a byte-sized store with upper bits zero if not 756 // storing an integral number of bytes. For example, promote 757 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 758 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), 759 StVT.getStoreSizeInBits()); 760 Value = DAG.getZeroExtendInReg(Value, dl, StVT); 761 SDValue Result = 762 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 763 NVT, isVolatile, isNonTemporal, Alignment); 764 ReplaceNode(SDValue(Node, 0), Result); 765 } else if (StWidth & (StWidth - 1)) { 766 // If not storing a power-of-2 number of bits, expand as two stores. 767 assert(!StVT.isVector() && "Unsupported truncstore!"); 768 unsigned RoundWidth = 1 << Log2_32(StWidth); 769 assert(RoundWidth < StWidth); 770 unsigned ExtraWidth = StWidth - RoundWidth; 771 assert(ExtraWidth < RoundWidth); 772 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 773 "Store size not an integral number of bytes!"); 774 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 775 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 776 SDValue Lo, Hi; 777 unsigned IncrementSize; 778 779 if (TLI.isLittleEndian()) { 780 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) 781 // Store the bottom RoundWidth bits. 782 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 783 RoundVT, 784 isVolatile, isNonTemporal, Alignment); 785 786 // Store the remaining ExtraWidth bits. 787 IncrementSize = RoundWidth / 8; 788 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 789 DAG.getIntPtrConstant(IncrementSize)); 790 Hi = DAG.getNode(ISD::SRL, dl, Value.getValueType(), Value, 791 DAG.getConstant(RoundWidth, 792 TLI.getShiftAmountTy(Value.getValueType()))); 793 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, 794 ST->getPointerInfo().getWithOffset(IncrementSize), 795 ExtraVT, isVolatile, isNonTemporal, 796 MinAlign(Alignment, IncrementSize)); 797 } else { 798 // Big endian - avoid unaligned stores. 799 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X 800 // Store the top RoundWidth bits. 801 Hi = DAG.getNode(ISD::SRL, dl, Value.getValueType(), Value, 802 DAG.getConstant(ExtraWidth, 803 TLI.getShiftAmountTy(Value.getValueType()))); 804 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(), 805 RoundVT, isVolatile, isNonTemporal, Alignment); 806 807 // Store the remaining ExtraWidth bits. 808 IncrementSize = RoundWidth / 8; 809 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 810 DAG.getIntPtrConstant(IncrementSize)); 811 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, 812 ST->getPointerInfo().getWithOffset(IncrementSize), 813 ExtraVT, isVolatile, isNonTemporal, 814 MinAlign(Alignment, IncrementSize)); 815 } 816 817 // The order of the stores doesn't matter. 818 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 819 ReplaceNode(SDValue(Node, 0), Result); 820 } else { 821 switch (TLI.getTruncStoreAction(ST->getValue().getSimpleValueType(), 822 StVT.getSimpleVT())) { 823 default: llvm_unreachable("This action is not supported yet!"); 824 case TargetLowering::Legal: 825 // If this is an unaligned store and the target doesn't support it, 826 // expand it. 827 if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) { 828 Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext()); 829 unsigned ABIAlignment= TLI.getDataLayout()->getABITypeAlignment(Ty); 830 if (ST->getAlignment() < ABIAlignment) 831 ExpandUnalignedStore(cast<StoreSDNode>(Node), DAG, TLI, this); 832 } 833 break; 834 case TargetLowering::Custom: { 835 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 836 if (Res.getNode()) 837 ReplaceNode(SDValue(Node, 0), Res); 838 return; 839 } 840 case TargetLowering::Expand: 841 assert(!StVT.isVector() && 842 "Vector Stores are handled in LegalizeVectorOps"); 843 844 // TRUNCSTORE:i16 i32 -> STORE i16 845 assert(TLI.isTypeLegal(StVT) && 846 "Do not know how to expand this store!"); 847 Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value); 848 SDValue Result = 849 DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 850 isVolatile, isNonTemporal, Alignment); 851 ReplaceNode(SDValue(Node, 0), Result); 852 break; 853 } 854 } 855 } 856} 857 858void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) { 859 LoadSDNode *LD = cast<LoadSDNode>(Node); 860 SDValue Chain = LD->getChain(); // The chain. 861 SDValue Ptr = LD->getBasePtr(); // The base pointer. 862 SDValue Value; // The value returned by the load op. 863 DebugLoc dl = Node->getDebugLoc(); 864 865 ISD::LoadExtType ExtType = LD->getExtensionType(); 866 if (ExtType == ISD::NON_EXTLOAD) { 867 MVT VT = Node->getSimpleValueType(0); 868 SDValue RVal = SDValue(Node, 0); 869 SDValue RChain = SDValue(Node, 1); 870 871 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 872 default: llvm_unreachable("This action is not supported yet!"); 873 case TargetLowering::Legal: 874 // If this is an unaligned load and the target doesn't support it, 875 // expand it. 876 if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) { 877 Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext()); 878 unsigned ABIAlignment = 879 TLI.getDataLayout()->getABITypeAlignment(Ty); 880 if (LD->getAlignment() < ABIAlignment){ 881 ExpandUnalignedLoad(cast<LoadSDNode>(Node), DAG, TLI, RVal, RChain); 882 } 883 } 884 break; 885 case TargetLowering::Custom: { 886 SDValue Res = TLI.LowerOperation(RVal, DAG); 887 if (Res.getNode()) { 888 RVal = Res; 889 RChain = Res.getValue(1); 890 } 891 break; 892 } 893 case TargetLowering::Promote: { 894 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 895 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 896 "Can only promote loads to same size type"); 897 898 SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getPointerInfo(), 899 LD->isVolatile(), LD->isNonTemporal(), 900 LD->isInvariant(), LD->getAlignment()); 901 RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res); 902 RChain = Res.getValue(1); 903 break; 904 } 905 } 906 if (RChain.getNode() != Node) { 907 assert(RVal.getNode() != Node && "Load must be completely replaced"); 908 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal); 909 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain); 910 ReplacedNode(Node); 911 } 912 return; 913 } 914 915 EVT SrcVT = LD->getMemoryVT(); 916 unsigned SrcWidth = SrcVT.getSizeInBits(); 917 unsigned Alignment = LD->getAlignment(); 918 bool isVolatile = LD->isVolatile(); 919 bool isNonTemporal = LD->isNonTemporal(); 920 921 if (SrcWidth != SrcVT.getStoreSizeInBits() && 922 // Some targets pretend to have an i1 loading operation, and actually 923 // load an i8. This trick is correct for ZEXTLOAD because the top 7 924 // bits are guaranteed to be zero; it helps the optimizers understand 925 // that these bits are zero. It is also useful for EXTLOAD, since it 926 // tells the optimizers that those bits are undefined. It would be 927 // nice to have an effective generic way of getting these benefits... 928 // Until such a way is found, don't insist on promoting i1 here. 929 (SrcVT != MVT::i1 || 930 TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) { 931 // Promote to a byte-sized load if not loading an integral number of 932 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 933 unsigned NewWidth = SrcVT.getStoreSizeInBits(); 934 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth); 935 SDValue Ch; 936 937 // The extra bits are guaranteed to be zero, since we stored them that 938 // way. A zext load from NVT thus automatically gives zext from SrcVT. 939 940 ISD::LoadExtType NewExtType = 941 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; 942 943 SDValue Result = 944 DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), 945 Chain, Ptr, LD->getPointerInfo(), 946 NVT, isVolatile, isNonTemporal, Alignment); 947 948 Ch = Result.getValue(1); // The chain. 949 950 if (ExtType == ISD::SEXTLOAD) 951 // Having the top bits zero doesn't help when sign extending. 952 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 953 Result.getValueType(), 954 Result, DAG.getValueType(SrcVT)); 955 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) 956 // All the top bits are guaranteed to be zero - inform the optimizers. 957 Result = DAG.getNode(ISD::AssertZext, dl, 958 Result.getValueType(), Result, 959 DAG.getValueType(SrcVT)); 960 961 Value = Result; 962 Chain = Ch; 963 } else if (SrcWidth & (SrcWidth - 1)) { 964 // If not loading a power-of-2 number of bits, expand as two loads. 965 assert(!SrcVT.isVector() && "Unsupported extload!"); 966 unsigned RoundWidth = 1 << Log2_32(SrcWidth); 967 assert(RoundWidth < SrcWidth); 968 unsigned ExtraWidth = SrcWidth - RoundWidth; 969 assert(ExtraWidth < RoundWidth); 970 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 971 "Load size not an integral number of bytes!"); 972 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 973 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 974 SDValue Lo, Hi, Ch; 975 unsigned IncrementSize; 976 977 if (TLI.isLittleEndian()) { 978 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) 979 // Load the bottom RoundWidth bits. 980 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), 981 Chain, Ptr, 982 LD->getPointerInfo(), RoundVT, isVolatile, 983 isNonTemporal, Alignment); 984 985 // Load the remaining ExtraWidth bits. 986 IncrementSize = RoundWidth / 8; 987 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 988 DAG.getIntPtrConstant(IncrementSize)); 989 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 990 LD->getPointerInfo().getWithOffset(IncrementSize), 991 ExtraVT, isVolatile, isNonTemporal, 992 MinAlign(Alignment, IncrementSize)); 993 994 // Build a factor node to remember that this load is independent of 995 // the other one. 996 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 997 Hi.getValue(1)); 998 999 // Move the top bits to the right place. 1000 Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi, 1001 DAG.getConstant(RoundWidth, 1002 TLI.getShiftAmountTy(Hi.getValueType()))); 1003 1004 // Join the hi and lo parts. 1005 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 1006 } else { 1007 // Big endian - avoid unaligned loads. 1008 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 1009 // Load the top RoundWidth bits. 1010 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 1011 LD->getPointerInfo(), RoundVT, isVolatile, 1012 isNonTemporal, Alignment); 1013 1014 // Load the remaining ExtraWidth bits. 1015 IncrementSize = RoundWidth / 8; 1016 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 1017 DAG.getIntPtrConstant(IncrementSize)); 1018 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, 1019 dl, Node->getValueType(0), Chain, Ptr, 1020 LD->getPointerInfo().getWithOffset(IncrementSize), 1021 ExtraVT, isVolatile, isNonTemporal, 1022 MinAlign(Alignment, IncrementSize)); 1023 1024 // Build a factor node to remember that this load is independent of 1025 // the other one. 1026 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 1027 Hi.getValue(1)); 1028 1029 // Move the top bits to the right place. 1030 Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi, 1031 DAG.getConstant(ExtraWidth, 1032 TLI.getShiftAmountTy(Hi.getValueType()))); 1033 1034 // Join the hi and lo parts. 1035 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 1036 } 1037 1038 Chain = Ch; 1039 } else { 1040 bool isCustom = false; 1041 switch (TLI.getLoadExtAction(ExtType, SrcVT.getSimpleVT())) { 1042 default: llvm_unreachable("This action is not supported yet!"); 1043 case TargetLowering::Custom: 1044 isCustom = true; 1045 // FALLTHROUGH 1046 case TargetLowering::Legal: { 1047 Value = SDValue(Node, 0); 1048 Chain = SDValue(Node, 1); 1049 1050 if (isCustom) { 1051 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 1052 if (Res.getNode()) { 1053 Value = Res; 1054 Chain = Res.getValue(1); 1055 } 1056 } else { 1057 // If this is an unaligned load and the target doesn't support it, 1058 // expand it. 1059 if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) { 1060 Type *Ty = 1061 LD->getMemoryVT().getTypeForEVT(*DAG.getContext()); 1062 unsigned ABIAlignment = 1063 TLI.getDataLayout()->getABITypeAlignment(Ty); 1064 if (LD->getAlignment() < ABIAlignment){ 1065 ExpandUnalignedLoad(cast<LoadSDNode>(Node), 1066 DAG, TLI, Value, Chain); 1067 } 1068 } 1069 } 1070 break; 1071 } 1072 case TargetLowering::Expand: 1073 if (!TLI.isLoadExtLegal(ISD::EXTLOAD, SrcVT) && TLI.isTypeLegal(SrcVT)) { 1074 SDValue Load = DAG.getLoad(SrcVT, dl, Chain, Ptr, 1075 LD->getPointerInfo(), 1076 LD->isVolatile(), LD->isNonTemporal(), 1077 LD->isInvariant(), LD->getAlignment()); 1078 unsigned ExtendOp; 1079 switch (ExtType) { 1080 case ISD::EXTLOAD: 1081 ExtendOp = (SrcVT.isFloatingPoint() ? 1082 ISD::FP_EXTEND : ISD::ANY_EXTEND); 1083 break; 1084 case ISD::SEXTLOAD: ExtendOp = ISD::SIGN_EXTEND; break; 1085 case ISD::ZEXTLOAD: ExtendOp = ISD::ZERO_EXTEND; break; 1086 default: llvm_unreachable("Unexpected extend load type!"); 1087 } 1088 Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load); 1089 Chain = Load.getValue(1); 1090 break; 1091 } 1092 1093 assert(!SrcVT.isVector() && 1094 "Vector Loads are handled in LegalizeVectorOps"); 1095 1096 // FIXME: This does not work for vectors on most targets. Sign- and 1097 // zero-extend operations are currently folded into extending loads, 1098 // whether they are legal or not, and then we end up here without any 1099 // support for legalizing them. 1100 assert(ExtType != ISD::EXTLOAD && 1101 "EXTLOAD should always be supported!"); 1102 // Turn the unsupported load into an EXTLOAD followed by an explicit 1103 // zero/sign extend inreg. 1104 SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0), 1105 Chain, Ptr, LD->getPointerInfo(), SrcVT, 1106 LD->isVolatile(), LD->isNonTemporal(), 1107 LD->getAlignment()); 1108 SDValue ValRes; 1109 if (ExtType == ISD::SEXTLOAD) 1110 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 1111 Result.getValueType(), 1112 Result, DAG.getValueType(SrcVT)); 1113 else 1114 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType()); 1115 Value = ValRes; 1116 Chain = Result.getValue(1); 1117 break; 1118 } 1119 } 1120 1121 // Since loads produce two values, make sure to remember that we legalized 1122 // both of them. 1123 if (Chain.getNode() != Node) { 1124 assert(Value.getNode() != Node && "Load must be completely replaced"); 1125 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value); 1126 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 1127 ReplacedNode(Node); 1128 } 1129} 1130 1131/// LegalizeOp - Return a legal replacement for the given operation, with 1132/// all legal operands. 1133void SelectionDAGLegalize::LegalizeOp(SDNode *Node) { 1134 if (Node->getOpcode() == ISD::TargetConstant) // Allow illegal target nodes. 1135 return; 1136 1137 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 1138 assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) == 1139 TargetLowering::TypeLegal && 1140 "Unexpected illegal type!"); 1141 1142 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 1143 assert((TLI.getTypeAction(*DAG.getContext(), 1144 Node->getOperand(i).getValueType()) == 1145 TargetLowering::TypeLegal || 1146 Node->getOperand(i).getOpcode() == ISD::TargetConstant) && 1147 "Unexpected illegal type!"); 1148 1149 // Figure out the correct action; the way to query this varies by opcode 1150 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 1151 bool SimpleFinishLegalizing = true; 1152 switch (Node->getOpcode()) { 1153 case ISD::INTRINSIC_W_CHAIN: 1154 case ISD::INTRINSIC_WO_CHAIN: 1155 case ISD::INTRINSIC_VOID: 1156 case ISD::STACKSAVE: 1157 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 1158 break; 1159 case ISD::VAARG: 1160 Action = TLI.getOperationAction(Node->getOpcode(), 1161 Node->getValueType(0)); 1162 if (Action != TargetLowering::Promote) 1163 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 1164 break; 1165 case ISD::SINT_TO_FP: 1166 case ISD::UINT_TO_FP: 1167 case ISD::EXTRACT_VECTOR_ELT: 1168 Action = TLI.getOperationAction(Node->getOpcode(), 1169 Node->getOperand(0).getValueType()); 1170 break; 1171 case ISD::FP_ROUND_INREG: 1172 case ISD::SIGN_EXTEND_INREG: { 1173 EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 1174 Action = TLI.getOperationAction(Node->getOpcode(), InnerType); 1175 break; 1176 } 1177 case ISD::ATOMIC_STORE: { 1178 Action = TLI.getOperationAction(Node->getOpcode(), 1179 Node->getOperand(2).getValueType()); 1180 break; 1181 } 1182 case ISD::SELECT_CC: 1183 case ISD::SETCC: 1184 case ISD::BR_CC: { 1185 unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 : 1186 Node->getOpcode() == ISD::SETCC ? 2 : 1; 1187 unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0; 1188 MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType(); 1189 ISD::CondCode CCCode = 1190 cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get(); 1191 Action = TLI.getCondCodeAction(CCCode, OpVT); 1192 if (Action == TargetLowering::Legal) { 1193 if (Node->getOpcode() == ISD::SELECT_CC) 1194 Action = TLI.getOperationAction(Node->getOpcode(), 1195 Node->getValueType(0)); 1196 else 1197 Action = TLI.getOperationAction(Node->getOpcode(), OpVT); 1198 } 1199 break; 1200 } 1201 case ISD::LOAD: 1202 case ISD::STORE: 1203 // FIXME: Model these properly. LOAD and STORE are complicated, and 1204 // STORE expects the unlegalized operand in some cases. 1205 SimpleFinishLegalizing = false; 1206 break; 1207 case ISD::CALLSEQ_START: 1208 case ISD::CALLSEQ_END: 1209 // FIXME: This shouldn't be necessary. These nodes have special properties 1210 // dealing with the recursive nature of legalization. Removing this 1211 // special case should be done as part of making LegalizeDAG non-recursive. 1212 SimpleFinishLegalizing = false; 1213 break; 1214 case ISD::EXTRACT_ELEMENT: 1215 case ISD::FLT_ROUNDS_: 1216 case ISD::SADDO: 1217 case ISD::SSUBO: 1218 case ISD::UADDO: 1219 case ISD::USUBO: 1220 case ISD::SMULO: 1221 case ISD::UMULO: 1222 case ISD::FPOWI: 1223 case ISD::MERGE_VALUES: 1224 case ISD::EH_RETURN: 1225 case ISD::FRAME_TO_ARGS_OFFSET: 1226 case ISD::EH_SJLJ_SETJMP: 1227 case ISD::EH_SJLJ_LONGJMP: 1228 // These operations lie about being legal: when they claim to be legal, 1229 // they should actually be expanded. 1230 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1231 if (Action == TargetLowering::Legal) 1232 Action = TargetLowering::Expand; 1233 break; 1234 case ISD::INIT_TRAMPOLINE: 1235 case ISD::ADJUST_TRAMPOLINE: 1236 case ISD::FRAMEADDR: 1237 case ISD::RETURNADDR: 1238 // These operations lie about being legal: when they claim to be legal, 1239 // they should actually be custom-lowered. 1240 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1241 if (Action == TargetLowering::Legal) 1242 Action = TargetLowering::Custom; 1243 break; 1244 case ISD::DEBUGTRAP: 1245 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1246 if (Action == TargetLowering::Expand) { 1247 // replace ISD::DEBUGTRAP with ISD::TRAP 1248 SDValue NewVal; 1249 NewVal = DAG.getNode(ISD::TRAP, Node->getDebugLoc(), Node->getVTList(), 1250 Node->getOperand(0)); 1251 ReplaceNode(Node, NewVal.getNode()); 1252 LegalizeOp(NewVal.getNode()); 1253 return; 1254 } 1255 break; 1256 1257 default: 1258 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { 1259 Action = TargetLowering::Legal; 1260 } else { 1261 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1262 } 1263 break; 1264 } 1265 1266 if (SimpleFinishLegalizing) { 1267 SDNode *NewNode = Node; 1268 switch (Node->getOpcode()) { 1269 default: break; 1270 case ISD::SHL: 1271 case ISD::SRL: 1272 case ISD::SRA: 1273 case ISD::ROTL: 1274 case ISD::ROTR: 1275 // Legalizing shifts/rotates requires adjusting the shift amount 1276 // to the appropriate width. 1277 if (!Node->getOperand(1).getValueType().isVector()) { 1278 SDValue SAO = 1279 DAG.getShiftAmountOperand(Node->getOperand(0).getValueType(), 1280 Node->getOperand(1)); 1281 HandleSDNode Handle(SAO); 1282 LegalizeOp(SAO.getNode()); 1283 NewNode = DAG.UpdateNodeOperands(Node, Node->getOperand(0), 1284 Handle.getValue()); 1285 } 1286 break; 1287 case ISD::SRL_PARTS: 1288 case ISD::SRA_PARTS: 1289 case ISD::SHL_PARTS: 1290 // Legalizing shifts/rotates requires adjusting the shift amount 1291 // to the appropriate width. 1292 if (!Node->getOperand(2).getValueType().isVector()) { 1293 SDValue SAO = 1294 DAG.getShiftAmountOperand(Node->getOperand(0).getValueType(), 1295 Node->getOperand(2)); 1296 HandleSDNode Handle(SAO); 1297 LegalizeOp(SAO.getNode()); 1298 NewNode = DAG.UpdateNodeOperands(Node, Node->getOperand(0), 1299 Node->getOperand(1), 1300 Handle.getValue()); 1301 } 1302 break; 1303 } 1304 1305 if (NewNode != Node) { 1306 DAG.ReplaceAllUsesWith(Node, NewNode); 1307 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 1308 DAG.TransferDbgValues(SDValue(Node, i), SDValue(NewNode, i)); 1309 ReplacedNode(Node); 1310 Node = NewNode; 1311 } 1312 switch (Action) { 1313 case TargetLowering::Legal: 1314 return; 1315 case TargetLowering::Custom: { 1316 // FIXME: The handling for custom lowering with multiple results is 1317 // a complete mess. 1318 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 1319 if (Res.getNode()) { 1320 SmallVector<SDValue, 8> ResultVals; 1321 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) { 1322 if (e == 1) 1323 ResultVals.push_back(Res); 1324 else 1325 ResultVals.push_back(Res.getValue(i)); 1326 } 1327 if (Res.getNode() != Node || Res.getResNo() != 0) { 1328 DAG.ReplaceAllUsesWith(Node, ResultVals.data()); 1329 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 1330 DAG.TransferDbgValues(SDValue(Node, i), ResultVals[i]); 1331 ReplacedNode(Node); 1332 } 1333 return; 1334 } 1335 } 1336 // FALL THROUGH 1337 case TargetLowering::Expand: 1338 ExpandNode(Node); 1339 return; 1340 case TargetLowering::Promote: 1341 PromoteNode(Node); 1342 return; 1343 } 1344 } 1345 1346 switch (Node->getOpcode()) { 1347 default: 1348#ifndef NDEBUG 1349 dbgs() << "NODE: "; 1350 Node->dump( &DAG); 1351 dbgs() << "\n"; 1352#endif 1353 llvm_unreachable("Do not know how to legalize this operator!"); 1354 1355 case ISD::CALLSEQ_START: 1356 case ISD::CALLSEQ_END: 1357 break; 1358 case ISD::LOAD: { 1359 return LegalizeLoadOps(Node); 1360 } 1361 case ISD::STORE: { 1362 return LegalizeStoreOps(Node); 1363 } 1364 } 1365} 1366 1367SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) { 1368 SDValue Vec = Op.getOperand(0); 1369 SDValue Idx = Op.getOperand(1); 1370 DebugLoc dl = Op.getDebugLoc(); 1371 // Store the value to a temporary stack slot, then LOAD the returned part. 1372 SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType()); 1373 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, 1374 MachinePointerInfo(), false, false, 0); 1375 1376 // Add the offset to the index. 1377 unsigned EltSize = 1378 Vec.getValueType().getVectorElementType().getSizeInBits()/8; 1379 Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx, 1380 DAG.getConstant(EltSize, Idx.getValueType())); 1381 1382 if (Idx.getValueType().bitsGT(TLI.getPointerTy())) 1383 Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx); 1384 else 1385 Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx); 1386 1387 StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr); 1388 1389 if (Op.getValueType().isVector()) 1390 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr,MachinePointerInfo(), 1391 false, false, false, 0); 1392 return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr, 1393 MachinePointerInfo(), 1394 Vec.getValueType().getVectorElementType(), 1395 false, false, 0); 1396} 1397 1398SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) { 1399 assert(Op.getValueType().isVector() && "Non-vector insert subvector!"); 1400 1401 SDValue Vec = Op.getOperand(0); 1402 SDValue Part = Op.getOperand(1); 1403 SDValue Idx = Op.getOperand(2); 1404 DebugLoc dl = Op.getDebugLoc(); 1405 1406 // Store the value to a temporary stack slot, then LOAD the returned part. 1407 1408 SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType()); 1409 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1410 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI); 1411 1412 // First store the whole vector. 1413 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo, 1414 false, false, 0); 1415 1416 // Then store the inserted part. 1417 1418 // Add the offset to the index. 1419 unsigned EltSize = 1420 Vec.getValueType().getVectorElementType().getSizeInBits()/8; 1421 1422 Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx, 1423 DAG.getConstant(EltSize, Idx.getValueType())); 1424 1425 if (Idx.getValueType().bitsGT(TLI.getPointerTy())) 1426 Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx); 1427 else 1428 Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx); 1429 1430 SDValue SubStackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, 1431 StackPtr); 1432 1433 // Store the subvector. 1434 Ch = DAG.getStore(DAG.getEntryNode(), dl, Part, SubStackPtr, 1435 MachinePointerInfo(), false, false, 0); 1436 1437 // Finally, load the updated vector. 1438 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo, 1439 false, false, false, 0); 1440} 1441 1442SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) { 1443 // We can't handle this case efficiently. Allocate a sufficiently 1444 // aligned object on the stack, store each element into it, then load 1445 // the result as a vector. 1446 // Create the stack frame object. 1447 EVT VT = Node->getValueType(0); 1448 EVT EltVT = VT.getVectorElementType(); 1449 DebugLoc dl = Node->getDebugLoc(); 1450 SDValue FIPtr = DAG.CreateStackTemporary(VT); 1451 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex(); 1452 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI); 1453 1454 // Emit a store of each element to the stack slot. 1455 SmallVector<SDValue, 8> Stores; 1456 unsigned TypeByteSize = EltVT.getSizeInBits() / 8; 1457 // Store (in the right endianness) the elements to memory. 1458 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 1459 // Ignore undef elements. 1460 if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue; 1461 1462 unsigned Offset = TypeByteSize*i; 1463 1464 SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType()); 1465 Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx); 1466 1467 // If the destination vector element type is narrower than the source 1468 // element type, only store the bits necessary. 1469 if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) { 1470 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, 1471 Node->getOperand(i), Idx, 1472 PtrInfo.getWithOffset(Offset), 1473 EltVT, false, false, 0)); 1474 } else 1475 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, 1476 Node->getOperand(i), Idx, 1477 PtrInfo.getWithOffset(Offset), 1478 false, false, 0)); 1479 } 1480 1481 SDValue StoreChain; 1482 if (!Stores.empty()) // Not all undef elements? 1483 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 1484 &Stores[0], Stores.size()); 1485 else 1486 StoreChain = DAG.getEntryNode(); 1487 1488 // Result is a load from the stack slot. 1489 return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo, 1490 false, false, false, 0); 1491} 1492 1493SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) { 1494 DebugLoc dl = Node->getDebugLoc(); 1495 SDValue Tmp1 = Node->getOperand(0); 1496 SDValue Tmp2 = Node->getOperand(1); 1497 1498 // Get the sign bit of the RHS. First obtain a value that has the same 1499 // sign as the sign bit, i.e. negative if and only if the sign bit is 1. 1500 SDValue SignBit; 1501 EVT FloatVT = Tmp2.getValueType(); 1502 EVT IVT = EVT::getIntegerVT(*DAG.getContext(), FloatVT.getSizeInBits()); 1503 if (TLI.isTypeLegal(IVT)) { 1504 // Convert to an integer with the same sign bit. 1505 SignBit = DAG.getNode(ISD::BITCAST, dl, IVT, Tmp2); 1506 } else { 1507 // Store the float to memory, then load the sign part out as an integer. 1508 MVT LoadTy = TLI.getPointerTy(); 1509 // First create a temporary that is aligned for both the load and store. 1510 SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy); 1511 // Then store the float to it. 1512 SDValue Ch = 1513 DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StackPtr, MachinePointerInfo(), 1514 false, false, 0); 1515 if (TLI.isBigEndian()) { 1516 assert(FloatVT.isByteSized() && "Unsupported floating point type!"); 1517 // Load out a legal integer with the same sign bit as the float. 1518 SignBit = DAG.getLoad(LoadTy, dl, Ch, StackPtr, MachinePointerInfo(), 1519 false, false, false, 0); 1520 } else { // Little endian 1521 SDValue LoadPtr = StackPtr; 1522 // The float may be wider than the integer we are going to load. Advance 1523 // the pointer so that the loaded integer will contain the sign bit. 1524 unsigned Strides = (FloatVT.getSizeInBits()-1)/LoadTy.getSizeInBits(); 1525 unsigned ByteOffset = (Strides * LoadTy.getSizeInBits()) / 8; 1526 LoadPtr = DAG.getNode(ISD::ADD, dl, LoadPtr.getValueType(), 1527 LoadPtr, DAG.getIntPtrConstant(ByteOffset)); 1528 // Load a legal integer containing the sign bit. 1529 SignBit = DAG.getLoad(LoadTy, dl, Ch, LoadPtr, MachinePointerInfo(), 1530 false, false, false, 0); 1531 // Move the sign bit to the top bit of the loaded integer. 1532 unsigned BitShift = LoadTy.getSizeInBits() - 1533 (FloatVT.getSizeInBits() - 8 * ByteOffset); 1534 assert(BitShift < LoadTy.getSizeInBits() && "Pointer advanced wrong?"); 1535 if (BitShift) 1536 SignBit = DAG.getNode(ISD::SHL, dl, LoadTy, SignBit, 1537 DAG.getConstant(BitShift, 1538 TLI.getShiftAmountTy(SignBit.getValueType()))); 1539 } 1540 } 1541 // Now get the sign bit proper, by seeing whether the value is negative. 1542 SignBit = DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()), 1543 SignBit, DAG.getConstant(0, SignBit.getValueType()), 1544 ISD::SETLT); 1545 // Get the absolute value of the result. 1546 SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1); 1547 // Select between the nabs and abs value based on the sign bit of 1548 // the input. 1549 return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit, 1550 DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal), 1551 AbsVal); 1552} 1553 1554void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node, 1555 SmallVectorImpl<SDValue> &Results) { 1556 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1557 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" 1558 " not tell us which reg is the stack pointer!"); 1559 DebugLoc dl = Node->getDebugLoc(); 1560 EVT VT = Node->getValueType(0); 1561 SDValue Tmp1 = SDValue(Node, 0); 1562 SDValue Tmp2 = SDValue(Node, 1); 1563 SDValue Tmp3 = Node->getOperand(2); 1564 SDValue Chain = Tmp1.getOperand(0); 1565 1566 // Chain the dynamic stack allocation so that it doesn't modify the stack 1567 // pointer when other instructions are using the stack. 1568 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true)); 1569 1570 SDValue Size = Tmp2.getOperand(1); 1571 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 1572 Chain = SP.getValue(1); 1573 unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue(); 1574 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); 1575 if (Align > StackAlign) 1576 SP = DAG.getNode(ISD::AND, dl, VT, SP, 1577 DAG.getConstant(-(uint64_t)Align, VT)); 1578 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value 1579 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain 1580 1581 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, true), 1582 DAG.getIntPtrConstant(0, true), SDValue()); 1583 1584 Results.push_back(Tmp1); 1585 Results.push_back(Tmp2); 1586} 1587 1588/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and 1589/// condition code CC on the current target. This routine expands SETCC with 1590/// illegal condition code into AND / OR of multiple SETCC values. 1591void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT, 1592 SDValue &LHS, SDValue &RHS, 1593 SDValue &CC, 1594 DebugLoc dl) { 1595 MVT OpVT = LHS.getSimpleValueType(); 1596 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 1597 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 1598 default: llvm_unreachable("Unknown condition code action!"); 1599 case TargetLowering::Legal: 1600 // Nothing to do. 1601 break; 1602 case TargetLowering::Expand: { 1603 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 1604 ISD::CondCode InvCC = ISD::SETCC_INVALID; 1605 unsigned Opc = 0; 1606 switch (CCCode) { 1607 default: llvm_unreachable("Don't know how to expand this condition!"); 1608 case ISD::SETO: 1609 assert(TLI.getCondCodeAction(ISD::SETOEQ, OpVT) 1610 == TargetLowering::Legal 1611 && "If SETO is expanded, SETOEQ must be legal!"); 1612 CC1 = ISD::SETOEQ; CC2 = ISD::SETOEQ; Opc = ISD::AND; break; 1613 case ISD::SETUO: 1614 assert(TLI.getCondCodeAction(ISD::SETUNE, OpVT) 1615 == TargetLowering::Legal 1616 && "If SETUO is expanded, SETUNE must be legal!"); 1617 CC1 = ISD::SETUNE; CC2 = ISD::SETUNE; Opc = ISD::OR; break; 1618 case ISD::SETOEQ: 1619 case ISD::SETOGT: 1620 case ISD::SETOGE: 1621 case ISD::SETOLT: 1622 case ISD::SETOLE: 1623 case ISD::SETONE: 1624 case ISD::SETUEQ: 1625 case ISD::SETUNE: 1626 case ISD::SETUGT: 1627 case ISD::SETUGE: 1628 case ISD::SETULT: 1629 case ISD::SETULE: 1630 // If we are floating point, assign and break, otherwise fall through. 1631 if (!OpVT.isInteger()) { 1632 // We can use the 4th bit to tell if we are the unordered 1633 // or ordered version of the opcode. 1634 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 1635 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 1636 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 1637 break; 1638 } 1639 // Fallthrough if we are unsigned integer. 1640 case ISD::SETLE: 1641 case ISD::SETGT: 1642 case ISD::SETGE: 1643 case ISD::SETLT: 1644 case ISD::SETNE: 1645 case ISD::SETEQ: 1646 InvCC = ISD::getSetCCSwappedOperands(CCCode); 1647 if (TLI.getCondCodeAction(InvCC, OpVT) == TargetLowering::Expand) { 1648 // We only support using the inverted operation and not a 1649 // different manner of supporting expanding these cases. 1650 llvm_unreachable("Don't know how to expand this condition!"); 1651 } 1652 LHS = DAG.getSetCC(dl, VT, RHS, LHS, InvCC); 1653 RHS = SDValue(); 1654 CC = SDValue(); 1655 return; 1656 } 1657 1658 SDValue SetCC1, SetCC2; 1659 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 1660 // If we aren't the ordered or unorder operation, 1661 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 1662 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1); 1663 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2); 1664 } else { 1665 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 1666 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1); 1667 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2); 1668 } 1669 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 1670 RHS = SDValue(); 1671 CC = SDValue(); 1672 break; 1673 } 1674 } 1675} 1676 1677/// EmitStackConvert - Emit a store/load combination to the stack. This stores 1678/// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does 1679/// a load from the stack slot to DestVT, extending it if needed. 1680/// The resultant code need not be legal. 1681SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, 1682 EVT SlotVT, 1683 EVT DestVT, 1684 DebugLoc dl) { 1685 // Create the stack frame object. 1686 unsigned SrcAlign = 1687 TLI.getDataLayout()->getPrefTypeAlignment(SrcOp.getValueType(). 1688 getTypeForEVT(*DAG.getContext())); 1689 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign); 1690 1691 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); 1692 int SPFI = StackPtrFI->getIndex(); 1693 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(SPFI); 1694 1695 unsigned SrcSize = SrcOp.getValueType().getSizeInBits(); 1696 unsigned SlotSize = SlotVT.getSizeInBits(); 1697 unsigned DestSize = DestVT.getSizeInBits(); 1698 Type *DestType = DestVT.getTypeForEVT(*DAG.getContext()); 1699 unsigned DestAlign = TLI.getDataLayout()->getPrefTypeAlignment(DestType); 1700 1701 // Emit a store to the stack slot. Use a truncstore if the input value is 1702 // later than DestVT. 1703 SDValue Store; 1704 1705 if (SrcSize > SlotSize) 1706 Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, 1707 PtrInfo, SlotVT, false, false, SrcAlign); 1708 else { 1709 assert(SrcSize == SlotSize && "Invalid store"); 1710 Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, 1711 PtrInfo, false, false, SrcAlign); 1712 } 1713 1714 // Result is a load from the stack slot. 1715 if (SlotSize == DestSize) 1716 return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, 1717 false, false, false, DestAlign); 1718 1719 assert(SlotSize < DestSize && "Unknown extension!"); 1720 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, 1721 PtrInfo, SlotVT, false, false, DestAlign); 1722} 1723 1724SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { 1725 DebugLoc dl = Node->getDebugLoc(); 1726 // Create a vector sized/aligned stack slot, store the value to element #0, 1727 // then load the whole vector back out. 1728 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); 1729 1730 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); 1731 int SPFI = StackPtrFI->getIndex(); 1732 1733 SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0), 1734 StackPtr, 1735 MachinePointerInfo::getFixedStack(SPFI), 1736 Node->getValueType(0).getVectorElementType(), 1737 false, false, 0); 1738 return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr, 1739 MachinePointerInfo::getFixedStack(SPFI), 1740 false, false, false, 0); 1741} 1742 1743 1744/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't 1745/// support the operation, but do support the resultant vector type. 1746SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { 1747 unsigned NumElems = Node->getNumOperands(); 1748 SDValue Value1, Value2; 1749 DebugLoc dl = Node->getDebugLoc(); 1750 EVT VT = Node->getValueType(0); 1751 EVT OpVT = Node->getOperand(0).getValueType(); 1752 EVT EltVT = VT.getVectorElementType(); 1753 1754 // If the only non-undef value is the low element, turn this into a 1755 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. 1756 bool isOnlyLowElement = true; 1757 bool MoreThanTwoValues = false; 1758 bool isConstant = true; 1759 for (unsigned i = 0; i < NumElems; ++i) { 1760 SDValue V = Node->getOperand(i); 1761 if (V.getOpcode() == ISD::UNDEF) 1762 continue; 1763 if (i > 0) 1764 isOnlyLowElement = false; 1765 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) 1766 isConstant = false; 1767 1768 if (!Value1.getNode()) { 1769 Value1 = V; 1770 } else if (!Value2.getNode()) { 1771 if (V != Value1) 1772 Value2 = V; 1773 } else if (V != Value1 && V != Value2) { 1774 MoreThanTwoValues = true; 1775 } 1776 } 1777 1778 if (!Value1.getNode()) 1779 return DAG.getUNDEF(VT); 1780 1781 if (isOnlyLowElement) 1782 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0)); 1783 1784 // If all elements are constants, create a load from the constant pool. 1785 if (isConstant) { 1786 SmallVector<Constant*, 16> CV; 1787 for (unsigned i = 0, e = NumElems; i != e; ++i) { 1788 if (ConstantFPSDNode *V = 1789 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { 1790 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue())); 1791 } else if (ConstantSDNode *V = 1792 dyn_cast<ConstantSDNode>(Node->getOperand(i))) { 1793 if (OpVT==EltVT) 1794 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue())); 1795 else { 1796 // If OpVT and EltVT don't match, EltVT is not legal and the 1797 // element values have been promoted/truncated earlier. Undo this; 1798 // we don't want a v16i8 to become a v16i32 for example. 1799 const ConstantInt *CI = V->getConstantIntValue(); 1800 CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()), 1801 CI->getZExtValue())); 1802 } 1803 } else { 1804 assert(Node->getOperand(i).getOpcode() == ISD::UNDEF); 1805 Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext()); 1806 CV.push_back(UndefValue::get(OpNTy)); 1807 } 1808 } 1809 Constant *CP = ConstantVector::get(CV); 1810 SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy()); 1811 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 1812 return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx, 1813 MachinePointerInfo::getConstantPool(), 1814 false, false, false, Alignment); 1815 } 1816 1817 if (!MoreThanTwoValues) { 1818 SmallVector<int, 8> ShuffleVec(NumElems, -1); 1819 for (unsigned i = 0; i < NumElems; ++i) { 1820 SDValue V = Node->getOperand(i); 1821 if (V.getOpcode() == ISD::UNDEF) 1822 continue; 1823 ShuffleVec[i] = V == Value1 ? 0 : NumElems; 1824 } 1825 if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) { 1826 // Get the splatted value into the low element of a vector register. 1827 SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1); 1828 SDValue Vec2; 1829 if (Value2.getNode()) 1830 Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2); 1831 else 1832 Vec2 = DAG.getUNDEF(VT); 1833 1834 // Return shuffle(LowValVec, undef, <0,0,0,0>) 1835 return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data()); 1836 } 1837 } 1838 1839 // Otherwise, we can't handle this case efficiently. 1840 return ExpandVectorBuildThroughStack(Node); 1841} 1842 1843// ExpandLibCall - Expand a node into a call to a libcall. If the result value 1844// does not fit into a register, return the lo part and set the hi part to the 1845// by-reg argument. If it does fit into a single register, return the result 1846// and leave the Hi part unset. 1847SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, 1848 bool isSigned) { 1849 TargetLowering::ArgListTy Args; 1850 TargetLowering::ArgListEntry Entry; 1851 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 1852 EVT ArgVT = Node->getOperand(i).getValueType(); 1853 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 1854 Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy; 1855 Entry.isSExt = isSigned; 1856 Entry.isZExt = !isSigned; 1857 Args.push_back(Entry); 1858 } 1859 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 1860 TLI.getPointerTy()); 1861 1862 Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext()); 1863 1864 // By default, the input chain to this libcall is the entry node of the 1865 // function. If the libcall is going to be emitted as a tail call then 1866 // TLI.isUsedByReturnOnly will change it to the right chain if the return 1867 // node which is being folded has a non-entry input chain. 1868 SDValue InChain = DAG.getEntryNode(); 1869 1870 // isTailCall may be true since the callee does not reference caller stack 1871 // frame. Check if it's in the right position. 1872 SDValue TCChain = InChain; 1873 bool isTailCall = isInTailCallPosition(DAG, Node, TCChain, TLI); 1874 if (isTailCall) 1875 InChain = TCChain; 1876 1877 TargetLowering:: 1878 CallLoweringInfo CLI(InChain, RetTy, isSigned, !isSigned, false, false, 1879 0, TLI.getLibcallCallingConv(LC), isTailCall, 1880 /*doesNotReturn=*/false, /*isReturnValueUsed=*/true, 1881 Callee, Args, DAG, Node->getDebugLoc()); 1882 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 1883 1884 1885 if (!CallInfo.second.getNode()) 1886 // It's a tailcall, return the chain (which is the DAG root). 1887 return DAG.getRoot(); 1888 1889 return CallInfo.first; 1890} 1891 1892/// ExpandLibCall - Generate a libcall taking the given operands as arguments 1893/// and returning a result of type RetVT. 1894SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, 1895 const SDValue *Ops, unsigned NumOps, 1896 bool isSigned, DebugLoc dl) { 1897 TargetLowering::ArgListTy Args; 1898 Args.reserve(NumOps); 1899 1900 TargetLowering::ArgListEntry Entry; 1901 for (unsigned i = 0; i != NumOps; ++i) { 1902 Entry.Node = Ops[i]; 1903 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 1904 Entry.isSExt = isSigned; 1905 Entry.isZExt = !isSigned; 1906 Args.push_back(Entry); 1907 } 1908 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 1909 TLI.getPointerTy()); 1910 1911 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 1912 TargetLowering:: 1913 CallLoweringInfo CLI(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false, 1914 false, 0, TLI.getLibcallCallingConv(LC), 1915 /*isTailCall=*/false, 1916 /*doesNotReturn=*/false, /*isReturnValueUsed=*/true, 1917 Callee, Args, DAG, dl); 1918 std::pair<SDValue,SDValue> CallInfo = TLI.LowerCallTo(CLI); 1919 1920 return CallInfo.first; 1921} 1922 1923// ExpandChainLibCall - Expand a node into a call to a libcall. Similar to 1924// ExpandLibCall except that the first operand is the in-chain. 1925std::pair<SDValue, SDValue> 1926SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC, 1927 SDNode *Node, 1928 bool isSigned) { 1929 SDValue InChain = Node->getOperand(0); 1930 1931 TargetLowering::ArgListTy Args; 1932 TargetLowering::ArgListEntry Entry; 1933 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) { 1934 EVT ArgVT = Node->getOperand(i).getValueType(); 1935 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 1936 Entry.Node = Node->getOperand(i); 1937 Entry.Ty = ArgTy; 1938 Entry.isSExt = isSigned; 1939 Entry.isZExt = !isSigned; 1940 Args.push_back(Entry); 1941 } 1942 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 1943 TLI.getPointerTy()); 1944 1945 Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext()); 1946 TargetLowering:: 1947 CallLoweringInfo CLI(InChain, RetTy, isSigned, !isSigned, false, false, 1948 0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false, 1949 /*doesNotReturn=*/false, /*isReturnValueUsed=*/true, 1950 Callee, Args, DAG, Node->getDebugLoc()); 1951 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 1952 1953 return CallInfo; 1954} 1955 1956SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, 1957 RTLIB::Libcall Call_F32, 1958 RTLIB::Libcall Call_F64, 1959 RTLIB::Libcall Call_F80, 1960 RTLIB::Libcall Call_PPCF128) { 1961 RTLIB::Libcall LC; 1962 switch (Node->getValueType(0).getSimpleVT().SimpleTy) { 1963 default: llvm_unreachable("Unexpected request for libcall!"); 1964 case MVT::f32: LC = Call_F32; break; 1965 case MVT::f64: LC = Call_F64; break; 1966 case MVT::f80: LC = Call_F80; break; 1967 case MVT::ppcf128: LC = Call_PPCF128; break; 1968 } 1969 return ExpandLibCall(LC, Node, false); 1970} 1971 1972SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned, 1973 RTLIB::Libcall Call_I8, 1974 RTLIB::Libcall Call_I16, 1975 RTLIB::Libcall Call_I32, 1976 RTLIB::Libcall Call_I64, 1977 RTLIB::Libcall Call_I128) { 1978 RTLIB::Libcall LC; 1979 switch (Node->getValueType(0).getSimpleVT().SimpleTy) { 1980 default: llvm_unreachable("Unexpected request for libcall!"); 1981 case MVT::i8: LC = Call_I8; break; 1982 case MVT::i16: LC = Call_I16; break; 1983 case MVT::i32: LC = Call_I32; break; 1984 case MVT::i64: LC = Call_I64; break; 1985 case MVT::i128: LC = Call_I128; break; 1986 } 1987 return ExpandLibCall(LC, Node, isSigned); 1988} 1989 1990/// isDivRemLibcallAvailable - Return true if divmod libcall is available. 1991static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned, 1992 const TargetLowering &TLI) { 1993 RTLIB::Libcall LC; 1994 switch (Node->getValueType(0).getSimpleVT().SimpleTy) { 1995 default: llvm_unreachable("Unexpected request for libcall!"); 1996 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 1997 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 1998 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 1999 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 2000 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 2001 } 2002 2003 return TLI.getLibcallName(LC) != 0; 2004} 2005 2006/// useDivRem - Only issue divrem libcall if both quotient and remainder are 2007/// needed. 2008static bool useDivRem(SDNode *Node, bool isSigned, bool isDIV) { 2009 // The other use might have been replaced with a divrem already. 2010 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 2011 unsigned OtherOpcode = 0; 2012 if (isSigned) 2013 OtherOpcode = isDIV ? ISD::SREM : ISD::SDIV; 2014 else 2015 OtherOpcode = isDIV ? ISD::UREM : ISD::UDIV; 2016 2017 SDValue Op0 = Node->getOperand(0); 2018 SDValue Op1 = Node->getOperand(1); 2019 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), 2020 UE = Op0.getNode()->use_end(); UI != UE; ++UI) { 2021 SDNode *User = *UI; 2022 if (User == Node) 2023 continue; 2024 if ((User->getOpcode() == OtherOpcode || User->getOpcode() == DivRemOpc) && 2025 User->getOperand(0) == Op0 && 2026 User->getOperand(1) == Op1) 2027 return true; 2028 } 2029 return false; 2030} 2031 2032/// ExpandDivRemLibCall - Issue libcalls to __{u}divmod to compute div / rem 2033/// pairs. 2034void 2035SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node, 2036 SmallVectorImpl<SDValue> &Results) { 2037 unsigned Opcode = Node->getOpcode(); 2038 bool isSigned = Opcode == ISD::SDIVREM; 2039 2040 RTLIB::Libcall LC; 2041 switch (Node->getValueType(0).getSimpleVT().SimpleTy) { 2042 default: llvm_unreachable("Unexpected request for libcall!"); 2043 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 2044 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 2045 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 2046 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 2047 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 2048 } 2049 2050 // The input chain to this libcall is the entry node of the function. 2051 // Legalizing the call will automatically add the previous call to the 2052 // dependence. 2053 SDValue InChain = DAG.getEntryNode(); 2054 2055 EVT RetVT = Node->getValueType(0); 2056 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2057 2058 TargetLowering::ArgListTy Args; 2059 TargetLowering::ArgListEntry Entry; 2060 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 2061 EVT ArgVT = Node->getOperand(i).getValueType(); 2062 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2063 Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy; 2064 Entry.isSExt = isSigned; 2065 Entry.isZExt = !isSigned; 2066 Args.push_back(Entry); 2067 } 2068 2069 // Also pass the return address of the remainder. 2070 SDValue FIPtr = DAG.CreateStackTemporary(RetVT); 2071 Entry.Node = FIPtr; 2072 Entry.Ty = RetTy->getPointerTo(); 2073 Entry.isSExt = isSigned; 2074 Entry.isZExt = !isSigned; 2075 Args.push_back(Entry); 2076 2077 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2078 TLI.getPointerTy()); 2079 2080 DebugLoc dl = Node->getDebugLoc(); 2081 TargetLowering:: 2082 CallLoweringInfo CLI(InChain, RetTy, isSigned, !isSigned, false, false, 2083 0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false, 2084 /*doesNotReturn=*/false, /*isReturnValueUsed=*/true, 2085 Callee, Args, DAG, dl); 2086 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2087 2088 // Remainder is loaded back from the stack frame. 2089 SDValue Rem = DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, 2090 MachinePointerInfo(), false, false, false, 0); 2091 Results.push_back(CallInfo.first); 2092 Results.push_back(Rem); 2093} 2094 2095/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a 2096/// INT_TO_FP operation of the specified operand when the target requests that 2097/// we expand it. At this point, we know that the result and operand types are 2098/// legal for the target. 2099SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned, 2100 SDValue Op0, 2101 EVT DestVT, 2102 DebugLoc dl) { 2103 if (Op0.getValueType() == MVT::i32 && TLI.isTypeLegal(MVT::f64)) { 2104 // simple 32-bit [signed|unsigned] integer to float/double expansion 2105 2106 // Get the stack frame index of a 8 byte buffer. 2107 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); 2108 2109 // word offset constant for Hi/Lo address computation 2110 SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy()); 2111 // set up Hi and Lo (into buffer) address based on endian 2112 SDValue Hi = StackSlot; 2113 SDValue Lo = DAG.getNode(ISD::ADD, dl, 2114 TLI.getPointerTy(), StackSlot, WordOff); 2115 if (TLI.isLittleEndian()) 2116 std::swap(Hi, Lo); 2117 2118 // if signed map to unsigned space 2119 SDValue Op0Mapped; 2120 if (isSigned) { 2121 // constant used to invert sign bit (signed to unsigned mapping) 2122 SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32); 2123 Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit); 2124 } else { 2125 Op0Mapped = Op0; 2126 } 2127 // store the lo of the constructed double - based on integer input 2128 SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, 2129 Op0Mapped, Lo, MachinePointerInfo(), 2130 false, false, 0); 2131 // initial hi portion of constructed double 2132 SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32); 2133 // store the hi of the constructed double - biased exponent 2134 SDValue Store2 = DAG.getStore(Store1, dl, InitialHi, Hi, 2135 MachinePointerInfo(), 2136 false, false, 0); 2137 // load the constructed double 2138 SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot, 2139 MachinePointerInfo(), false, false, false, 0); 2140 // FP constant to bias correct the final result 2141 SDValue Bias = DAG.getConstantFP(isSigned ? 2142 BitsToDouble(0x4330000080000000ULL) : 2143 BitsToDouble(0x4330000000000000ULL), 2144 MVT::f64); 2145 // subtract the bias 2146 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias); 2147 // final result 2148 SDValue Result; 2149 // handle final rounding 2150 if (DestVT == MVT::f64) { 2151 // do nothing 2152 Result = Sub; 2153 } else if (DestVT.bitsLT(MVT::f64)) { 2154 Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub, 2155 DAG.getIntPtrConstant(0)); 2156 } else if (DestVT.bitsGT(MVT::f64)) { 2157 Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub); 2158 } 2159 return Result; 2160 } 2161 assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet"); 2162 // Code below here assumes !isSigned without checking again. 2163 2164 // Implementation of unsigned i64 to f64 following the algorithm in 2165 // __floatundidf in compiler_rt. This implementation has the advantage 2166 // of performing rounding correctly, both in the default rounding mode 2167 // and in all alternate rounding modes. 2168 // TODO: Generalize this for use with other types. 2169 if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) { 2170 SDValue TwoP52 = 2171 DAG.getConstant(UINT64_C(0x4330000000000000), MVT::i64); 2172 SDValue TwoP84PlusTwoP52 = 2173 DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), MVT::f64); 2174 SDValue TwoP84 = 2175 DAG.getConstant(UINT64_C(0x4530000000000000), MVT::i64); 2176 2177 SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32); 2178 SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, 2179 DAG.getConstant(32, MVT::i64)); 2180 SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52); 2181 SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84); 2182 SDValue LoFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, LoOr); 2183 SDValue HiFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, HiOr); 2184 SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt, 2185 TwoP84PlusTwoP52); 2186 return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub); 2187 } 2188 2189 // Implementation of unsigned i64 to f32. 2190 // TODO: Generalize this for use with other types. 2191 if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) { 2192 // For unsigned conversions, convert them to signed conversions using the 2193 // algorithm from the x86_64 __floatundidf in compiler_rt. 2194 if (!isSigned) { 2195 SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Op0); 2196 2197 SDValue ShiftConst = 2198 DAG.getConstant(1, TLI.getShiftAmountTy(Op0.getValueType())); 2199 SDValue Shr = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, ShiftConst); 2200 SDValue AndConst = DAG.getConstant(1, MVT::i64); 2201 SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, AndConst); 2202 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, Shr); 2203 2204 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Or); 2205 SDValue Slow = DAG.getNode(ISD::FADD, dl, MVT::f32, SignCvt, SignCvt); 2206 2207 // TODO: This really should be implemented using a branch rather than a 2208 // select. We happen to get lucky and machinesink does the right 2209 // thing most of the time. This would be a good candidate for a 2210 //pseudo-op, or, even better, for whole-function isel. 2211 SDValue SignBitTest = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64), 2212 Op0, DAG.getConstant(0, MVT::i64), ISD::SETLT); 2213 return DAG.getNode(ISD::SELECT, dl, MVT::f32, SignBitTest, Slow, Fast); 2214 } 2215 2216 // Otherwise, implement the fully general conversion. 2217 2218 SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, 2219 DAG.getConstant(UINT64_C(0xfffffffffffff800), MVT::i64)); 2220 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, 2221 DAG.getConstant(UINT64_C(0x800), MVT::i64)); 2222 SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, 2223 DAG.getConstant(UINT64_C(0x7ff), MVT::i64)); 2224 SDValue Ne = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64), 2225 And2, DAG.getConstant(UINT64_C(0), MVT::i64), ISD::SETNE); 2226 SDValue Sel = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ne, Or, Op0); 2227 SDValue Ge = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64), 2228 Op0, DAG.getConstant(UINT64_C(0x0020000000000000), MVT::i64), 2229 ISD::SETUGE); 2230 SDValue Sel2 = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ge, Sel, Op0); 2231 EVT SHVT = TLI.getShiftAmountTy(Sel2.getValueType()); 2232 2233 SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2, 2234 DAG.getConstant(32, SHVT)); 2235 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh); 2236 SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc); 2237 SDValue TwoP32 = 2238 DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), MVT::f64); 2239 SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt); 2240 SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2); 2241 SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo); 2242 SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2); 2243 return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd, 2244 DAG.getIntPtrConstant(0)); 2245 } 2246 2247 SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2248 2249 SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()), 2250 Op0, DAG.getConstant(0, Op0.getValueType()), 2251 ISD::SETLT); 2252 SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4); 2253 SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), 2254 SignSet, Four, Zero); 2255 2256 // If the sign bit of the integer is set, the large number will be treated 2257 // as a negative number. To counteract this, the dynamic code adds an 2258 // offset depending on the data type. 2259 uint64_t FF; 2260 switch (Op0.getValueType().getSimpleVT().SimpleTy) { 2261 default: llvm_unreachable("Unsupported integer type!"); 2262 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) 2263 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) 2264 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) 2265 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) 2266 } 2267 if (TLI.isLittleEndian()) FF <<= 32; 2268 Constant *FudgeFactor = ConstantInt::get( 2269 Type::getInt64Ty(*DAG.getContext()), FF); 2270 2271 SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy()); 2272 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 2273 CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset); 2274 Alignment = std::min(Alignment, 4u); 2275 SDValue FudgeInReg; 2276 if (DestVT == MVT::f32) 2277 FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx, 2278 MachinePointerInfo::getConstantPool(), 2279 false, false, false, Alignment); 2280 else { 2281 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, 2282 DAG.getEntryNode(), CPIdx, 2283 MachinePointerInfo::getConstantPool(), 2284 MVT::f32, false, false, Alignment); 2285 HandleSDNode Handle(Load); 2286 LegalizeOp(Load.getNode()); 2287 FudgeInReg = Handle.getValue(); 2288 } 2289 2290 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg); 2291} 2292 2293/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a 2294/// *INT_TO_FP operation of the specified operand when the target requests that 2295/// we promote it. At this point, we know that the result and operand types are 2296/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP 2297/// operation that takes a larger input. 2298SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp, 2299 EVT DestVT, 2300 bool isSigned, 2301 DebugLoc dl) { 2302 // First step, figure out the appropriate *INT_TO_FP operation to use. 2303 EVT NewInTy = LegalOp.getValueType(); 2304 2305 unsigned OpToUse = 0; 2306 2307 // Scan for the appropriate larger type to use. 2308 while (1) { 2309 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1); 2310 assert(NewInTy.isInteger() && "Ran out of possibilities!"); 2311 2312 // If the target supports SINT_TO_FP of this type, use it. 2313 if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) { 2314 OpToUse = ISD::SINT_TO_FP; 2315 break; 2316 } 2317 if (isSigned) continue; 2318 2319 // If the target supports UINT_TO_FP of this type, use it. 2320 if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) { 2321 OpToUse = ISD::UINT_TO_FP; 2322 break; 2323 } 2324 2325 // Otherwise, try a larger type. 2326 } 2327 2328 // Okay, we found the operation and type to use. Zero extend our input to the 2329 // desired type then run the operation on it. 2330 return DAG.getNode(OpToUse, dl, DestVT, 2331 DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2332 dl, NewInTy, LegalOp)); 2333} 2334 2335/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a 2336/// FP_TO_*INT operation of the specified operand when the target requests that 2337/// we promote it. At this point, we know that the result and operand types are 2338/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT 2339/// operation that returns a larger result. 2340SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp, 2341 EVT DestVT, 2342 bool isSigned, 2343 DebugLoc dl) { 2344 // First step, figure out the appropriate FP_TO*INT operation to use. 2345 EVT NewOutTy = DestVT; 2346 2347 unsigned OpToUse = 0; 2348 2349 // Scan for the appropriate larger type to use. 2350 while (1) { 2351 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1); 2352 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 2353 2354 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) { 2355 OpToUse = ISD::FP_TO_SINT; 2356 break; 2357 } 2358 2359 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) { 2360 OpToUse = ISD::FP_TO_UINT; 2361 break; 2362 } 2363 2364 // Otherwise, try a larger type. 2365 } 2366 2367 2368 // Okay, we found the operation and type to use. 2369 SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp); 2370 2371 // Truncate the result of the extended FP_TO_*INT operation to the desired 2372 // size. 2373 return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation); 2374} 2375 2376/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation. 2377/// 2378SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) { 2379 EVT VT = Op.getValueType(); 2380 EVT SHVT = TLI.getShiftAmountTy(VT); 2381 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 2382 switch (VT.getSimpleVT().SimpleTy) { 2383 default: llvm_unreachable("Unhandled Expand type in BSWAP!"); 2384 case MVT::i16: 2385 Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2386 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2387 return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); 2388 case MVT::i32: 2389 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT)); 2390 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2391 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2392 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT)); 2393 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT)); 2394 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT)); 2395 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2396 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2397 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2398 case MVT::i64: 2399 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT)); 2400 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT)); 2401 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT)); 2402 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2403 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2404 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT)); 2405 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT)); 2406 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT)); 2407 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT)); 2408 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT)); 2409 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT)); 2410 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT)); 2411 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT)); 2412 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT)); 2413 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 2414 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 2415 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2416 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2417 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 2418 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2419 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 2420 } 2421} 2422 2423/// SplatByte - Distribute ByteVal over NumBits bits. 2424// FIXME: Move this helper to a common place. 2425static APInt SplatByte(unsigned NumBits, uint8_t ByteVal) { 2426 APInt Val = APInt(NumBits, ByteVal); 2427 unsigned Shift = 8; 2428 for (unsigned i = NumBits; i > 8; i >>= 1) { 2429 Val = (Val << Shift) | Val; 2430 Shift <<= 1; 2431 } 2432 return Val; 2433} 2434 2435/// ExpandBitCount - Expand the specified bitcount instruction into operations. 2436/// 2437SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op, 2438 DebugLoc dl) { 2439 switch (Opc) { 2440 default: llvm_unreachable("Cannot expand this yet!"); 2441 case ISD::CTPOP: { 2442 EVT VT = Op.getValueType(); 2443 EVT ShVT = TLI.getShiftAmountTy(VT); 2444 unsigned Len = VT.getSizeInBits(); 2445 2446 assert(VT.isInteger() && Len <= 128 && Len % 8 == 0 && 2447 "CTPOP not implemented for this type."); 2448 2449 // This is the "best" algorithm from 2450 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 2451 2452 SDValue Mask55 = DAG.getConstant(SplatByte(Len, 0x55), VT); 2453 SDValue Mask33 = DAG.getConstant(SplatByte(Len, 0x33), VT); 2454 SDValue Mask0F = DAG.getConstant(SplatByte(Len, 0x0F), VT); 2455 SDValue Mask01 = DAG.getConstant(SplatByte(Len, 0x01), VT); 2456 2457 // v = v - ((v >> 1) & 0x55555555...) 2458 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 2459 DAG.getNode(ISD::AND, dl, VT, 2460 DAG.getNode(ISD::SRL, dl, VT, Op, 2461 DAG.getConstant(1, ShVT)), 2462 Mask55)); 2463 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 2464 Op = DAG.getNode(ISD::ADD, dl, VT, 2465 DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 2466 DAG.getNode(ISD::AND, dl, VT, 2467 DAG.getNode(ISD::SRL, dl, VT, Op, 2468 DAG.getConstant(2, ShVT)), 2469 Mask33)); 2470 // v = (v + (v >> 4)) & 0x0F0F0F0F... 2471 Op = DAG.getNode(ISD::AND, dl, VT, 2472 DAG.getNode(ISD::ADD, dl, VT, Op, 2473 DAG.getNode(ISD::SRL, dl, VT, Op, 2474 DAG.getConstant(4, ShVT))), 2475 Mask0F); 2476 // v = (v * 0x01010101...) >> (Len - 8) 2477 Op = DAG.getNode(ISD::SRL, dl, VT, 2478 DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 2479 DAG.getConstant(Len - 8, ShVT)); 2480 2481 return Op; 2482 } 2483 case ISD::CTLZ_ZERO_UNDEF: 2484 // This trivially expands to CTLZ. 2485 return DAG.getNode(ISD::CTLZ, dl, Op.getValueType(), Op); 2486 case ISD::CTLZ: { 2487 // for now, we do this: 2488 // x = x | (x >> 1); 2489 // x = x | (x >> 2); 2490 // ... 2491 // x = x | (x >>16); 2492 // x = x | (x >>32); // for 64-bit input 2493 // return popcount(~x); 2494 // 2495 // but see also: http://www.hackersdelight.org/HDcode/nlz.cc 2496 EVT VT = Op.getValueType(); 2497 EVT ShVT = TLI.getShiftAmountTy(VT); 2498 unsigned len = VT.getSizeInBits(); 2499 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) { 2500 SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT); 2501 Op = DAG.getNode(ISD::OR, dl, VT, Op, 2502 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3)); 2503 } 2504 Op = DAG.getNOT(dl, Op, VT); 2505 return DAG.getNode(ISD::CTPOP, dl, VT, Op); 2506 } 2507 case ISD::CTTZ_ZERO_UNDEF: 2508 // This trivially expands to CTTZ. 2509 return DAG.getNode(ISD::CTTZ, dl, Op.getValueType(), Op); 2510 case ISD::CTTZ: { 2511 // for now, we use: { return popcount(~x & (x - 1)); } 2512 // unless the target has ctlz but not ctpop, in which case we use: 2513 // { return 32 - nlz(~x & (x-1)); } 2514 // see also http://www.hackersdelight.org/HDcode/ntz.cc 2515 EVT VT = Op.getValueType(); 2516 SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT, 2517 DAG.getNOT(dl, Op, VT), 2518 DAG.getNode(ISD::SUB, dl, VT, Op, 2519 DAG.getConstant(1, VT))); 2520 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 2521 if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) && 2522 TLI.isOperationLegalOrCustom(ISD::CTLZ, VT)) 2523 return DAG.getNode(ISD::SUB, dl, VT, 2524 DAG.getConstant(VT.getSizeInBits(), VT), 2525 DAG.getNode(ISD::CTLZ, dl, VT, Tmp3)); 2526 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3); 2527 } 2528 } 2529} 2530 2531std::pair <SDValue, SDValue> SelectionDAGLegalize::ExpandAtomic(SDNode *Node) { 2532 unsigned Opc = Node->getOpcode(); 2533 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT(); 2534 RTLIB::Libcall LC; 2535 2536 switch (Opc) { 2537 default: 2538 llvm_unreachable("Unhandled atomic intrinsic Expand!"); 2539 case ISD::ATOMIC_SWAP: 2540 switch (VT.SimpleTy) { 2541 default: llvm_unreachable("Unexpected value type for atomic!"); 2542 case MVT::i8: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_1; break; 2543 case MVT::i16: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_2; break; 2544 case MVT::i32: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_4; break; 2545 case MVT::i64: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_8; break; 2546 } 2547 break; 2548 case ISD::ATOMIC_CMP_SWAP: 2549 switch (VT.SimpleTy) { 2550 default: llvm_unreachable("Unexpected value type for atomic!"); 2551 case MVT::i8: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1; break; 2552 case MVT::i16: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2; break; 2553 case MVT::i32: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4; break; 2554 case MVT::i64: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8; break; 2555 } 2556 break; 2557 case ISD::ATOMIC_LOAD_ADD: 2558 switch (VT.SimpleTy) { 2559 default: llvm_unreachable("Unexpected value type for atomic!"); 2560 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_ADD_1; break; 2561 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_ADD_2; break; 2562 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_ADD_4; break; 2563 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_ADD_8; break; 2564 } 2565 break; 2566 case ISD::ATOMIC_LOAD_SUB: 2567 switch (VT.SimpleTy) { 2568 default: llvm_unreachable("Unexpected value type for atomic!"); 2569 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_SUB_1; break; 2570 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_SUB_2; break; 2571 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_SUB_4; break; 2572 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_SUB_8; break; 2573 } 2574 break; 2575 case ISD::ATOMIC_LOAD_AND: 2576 switch (VT.SimpleTy) { 2577 default: llvm_unreachable("Unexpected value type for atomic!"); 2578 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_AND_1; break; 2579 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_AND_2; break; 2580 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_AND_4; break; 2581 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_AND_8; break; 2582 } 2583 break; 2584 case ISD::ATOMIC_LOAD_OR: 2585 switch (VT.SimpleTy) { 2586 default: llvm_unreachable("Unexpected value type for atomic!"); 2587 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_OR_1; break; 2588 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_OR_2; break; 2589 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_OR_4; break; 2590 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_OR_8; break; 2591 } 2592 break; 2593 case ISD::ATOMIC_LOAD_XOR: 2594 switch (VT.SimpleTy) { 2595 default: llvm_unreachable("Unexpected value type for atomic!"); 2596 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_XOR_1; break; 2597 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_XOR_2; break; 2598 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_XOR_4; break; 2599 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_XOR_8; break; 2600 } 2601 break; 2602 case ISD::ATOMIC_LOAD_NAND: 2603 switch (VT.SimpleTy) { 2604 default: llvm_unreachable("Unexpected value type for atomic!"); 2605 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_NAND_1; break; 2606 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_NAND_2; break; 2607 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_NAND_4; break; 2608 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_NAND_8; break; 2609 } 2610 break; 2611 } 2612 2613 return ExpandChainLibCall(LC, Node, false); 2614} 2615 2616void SelectionDAGLegalize::ExpandNode(SDNode *Node) { 2617 SmallVector<SDValue, 8> Results; 2618 DebugLoc dl = Node->getDebugLoc(); 2619 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 2620 switch (Node->getOpcode()) { 2621 case ISD::CTPOP: 2622 case ISD::CTLZ: 2623 case ISD::CTLZ_ZERO_UNDEF: 2624 case ISD::CTTZ: 2625 case ISD::CTTZ_ZERO_UNDEF: 2626 Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl); 2627 Results.push_back(Tmp1); 2628 break; 2629 case ISD::BSWAP: 2630 Results.push_back(ExpandBSWAP(Node->getOperand(0), dl)); 2631 break; 2632 case ISD::FRAMEADDR: 2633 case ISD::RETURNADDR: 2634 case ISD::FRAME_TO_ARGS_OFFSET: 2635 Results.push_back(DAG.getConstant(0, Node->getValueType(0))); 2636 break; 2637 case ISD::FLT_ROUNDS_: 2638 Results.push_back(DAG.getConstant(1, Node->getValueType(0))); 2639 break; 2640 case ISD::EH_RETURN: 2641 case ISD::EH_LABEL: 2642 case ISD::PREFETCH: 2643 case ISD::VAEND: 2644 case ISD::EH_SJLJ_LONGJMP: 2645 // If the target didn't expand these, there's nothing to do, so just 2646 // preserve the chain and be done. 2647 Results.push_back(Node->getOperand(0)); 2648 break; 2649 case ISD::EH_SJLJ_SETJMP: 2650 // If the target didn't expand this, just return 'zero' and preserve the 2651 // chain. 2652 Results.push_back(DAG.getConstant(0, MVT::i32)); 2653 Results.push_back(Node->getOperand(0)); 2654 break; 2655 case ISD::ATOMIC_FENCE: 2656 case ISD::MEMBARRIER: { 2657 // If the target didn't lower this, lower it to '__sync_synchronize()' call 2658 // FIXME: handle "fence singlethread" more efficiently. 2659 TargetLowering::ArgListTy Args; 2660 TargetLowering:: 2661 CallLoweringInfo CLI(Node->getOperand(0), 2662 Type::getVoidTy(*DAG.getContext()), 2663 false, false, false, false, 0, CallingConv::C, 2664 /*isTailCall=*/false, 2665 /*doesNotReturn=*/false, /*isReturnValueUsed=*/true, 2666 DAG.getExternalSymbol("__sync_synchronize", 2667 TLI.getPointerTy()), 2668 Args, DAG, dl); 2669 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 2670 2671 Results.push_back(CallResult.second); 2672 break; 2673 } 2674 case ISD::ATOMIC_LOAD: { 2675 // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP. 2676 SDValue Zero = DAG.getConstant(0, Node->getValueType(0)); 2677 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, 2678 cast<AtomicSDNode>(Node)->getMemoryVT(), 2679 Node->getOperand(0), 2680 Node->getOperand(1), Zero, Zero, 2681 cast<AtomicSDNode>(Node)->getMemOperand(), 2682 cast<AtomicSDNode>(Node)->getOrdering(), 2683 cast<AtomicSDNode>(Node)->getSynchScope()); 2684 Results.push_back(Swap.getValue(0)); 2685 Results.push_back(Swap.getValue(1)); 2686 break; 2687 } 2688 case ISD::ATOMIC_STORE: { 2689 // There is no libcall for atomic store; fake it with ATOMIC_SWAP. 2690 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl, 2691 cast<AtomicSDNode>(Node)->getMemoryVT(), 2692 Node->getOperand(0), 2693 Node->getOperand(1), Node->getOperand(2), 2694 cast<AtomicSDNode>(Node)->getMemOperand(), 2695 cast<AtomicSDNode>(Node)->getOrdering(), 2696 cast<AtomicSDNode>(Node)->getSynchScope()); 2697 Results.push_back(Swap.getValue(1)); 2698 break; 2699 } 2700 // By default, atomic intrinsics are marked Legal and lowered. Targets 2701 // which don't support them directly, however, may want libcalls, in which 2702 // case they mark them Expand, and we get here. 2703 case ISD::ATOMIC_SWAP: 2704 case ISD::ATOMIC_LOAD_ADD: 2705 case ISD::ATOMIC_LOAD_SUB: 2706 case ISD::ATOMIC_LOAD_AND: 2707 case ISD::ATOMIC_LOAD_OR: 2708 case ISD::ATOMIC_LOAD_XOR: 2709 case ISD::ATOMIC_LOAD_NAND: 2710 case ISD::ATOMIC_LOAD_MIN: 2711 case ISD::ATOMIC_LOAD_MAX: 2712 case ISD::ATOMIC_LOAD_UMIN: 2713 case ISD::ATOMIC_LOAD_UMAX: 2714 case ISD::ATOMIC_CMP_SWAP: { 2715 std::pair<SDValue, SDValue> Tmp = ExpandAtomic(Node); 2716 Results.push_back(Tmp.first); 2717 Results.push_back(Tmp.second); 2718 break; 2719 } 2720 case ISD::DYNAMIC_STACKALLOC: 2721 ExpandDYNAMIC_STACKALLOC(Node, Results); 2722 break; 2723 case ISD::MERGE_VALUES: 2724 for (unsigned i = 0; i < Node->getNumValues(); i++) 2725 Results.push_back(Node->getOperand(i)); 2726 break; 2727 case ISD::UNDEF: { 2728 EVT VT = Node->getValueType(0); 2729 if (VT.isInteger()) 2730 Results.push_back(DAG.getConstant(0, VT)); 2731 else { 2732 assert(VT.isFloatingPoint() && "Unknown value type!"); 2733 Results.push_back(DAG.getConstantFP(0, VT)); 2734 } 2735 break; 2736 } 2737 case ISD::TRAP: { 2738 // If this operation is not supported, lower it to 'abort()' call 2739 TargetLowering::ArgListTy Args; 2740 TargetLowering:: 2741 CallLoweringInfo CLI(Node->getOperand(0), 2742 Type::getVoidTy(*DAG.getContext()), 2743 false, false, false, false, 0, CallingConv::C, 2744 /*isTailCall=*/false, 2745 /*doesNotReturn=*/false, /*isReturnValueUsed=*/true, 2746 DAG.getExternalSymbol("abort", TLI.getPointerTy()), 2747 Args, DAG, dl); 2748 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 2749 2750 Results.push_back(CallResult.second); 2751 break; 2752 } 2753 case ISD::FP_ROUND: 2754 case ISD::BITCAST: 2755 Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 2756 Node->getValueType(0), dl); 2757 Results.push_back(Tmp1); 2758 break; 2759 case ISD::FP_EXTEND: 2760 Tmp1 = EmitStackConvert(Node->getOperand(0), 2761 Node->getOperand(0).getValueType(), 2762 Node->getValueType(0), dl); 2763 Results.push_back(Tmp1); 2764 break; 2765 case ISD::SIGN_EXTEND_INREG: { 2766 // NOTE: we could fall back on load/store here too for targets without 2767 // SAR. However, it is doubtful that any exist. 2768 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 2769 EVT VT = Node->getValueType(0); 2770 EVT ShiftAmountTy = TLI.getShiftAmountTy(VT); 2771 if (VT.isVector()) 2772 ShiftAmountTy = VT; 2773 unsigned BitsDiff = VT.getScalarType().getSizeInBits() - 2774 ExtraVT.getScalarType().getSizeInBits(); 2775 SDValue ShiftCst = DAG.getConstant(BitsDiff, ShiftAmountTy); 2776 Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0), 2777 Node->getOperand(0), ShiftCst); 2778 Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst); 2779 Results.push_back(Tmp1); 2780 break; 2781 } 2782 case ISD::FP_ROUND_INREG: { 2783 // The only way we can lower this is to turn it into a TRUNCSTORE, 2784 // EXTLOAD pair, targeting a temporary location (a stack slot). 2785 2786 // NOTE: there is a choice here between constantly creating new stack 2787 // slots and always reusing the same one. We currently always create 2788 // new ones, as reuse may inhibit scheduling. 2789 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 2790 Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT, 2791 Node->getValueType(0), dl); 2792 Results.push_back(Tmp1); 2793 break; 2794 } 2795 case ISD::SINT_TO_FP: 2796 case ISD::UINT_TO_FP: 2797 Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP, 2798 Node->getOperand(0), Node->getValueType(0), dl); 2799 Results.push_back(Tmp1); 2800 break; 2801 case ISD::FP_TO_UINT: { 2802 SDValue True, False; 2803 EVT VT = Node->getOperand(0).getValueType(); 2804 EVT NVT = Node->getValueType(0); 2805 APFloat apf(APInt::getNullValue(VT.getSizeInBits())); 2806 APInt x = APInt::getSignBit(NVT.getSizeInBits()); 2807 (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven); 2808 Tmp1 = DAG.getConstantFP(apf, VT); 2809 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), 2810 Node->getOperand(0), 2811 Tmp1, ISD::SETLT); 2812 True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0)); 2813 False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, 2814 DAG.getNode(ISD::FSUB, dl, VT, 2815 Node->getOperand(0), Tmp1)); 2816 False = DAG.getNode(ISD::XOR, dl, NVT, False, 2817 DAG.getConstant(x, NVT)); 2818 Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False); 2819 Results.push_back(Tmp1); 2820 break; 2821 } 2822 case ISD::VAARG: { 2823 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2824 EVT VT = Node->getValueType(0); 2825 Tmp1 = Node->getOperand(0); 2826 Tmp2 = Node->getOperand(1); 2827 unsigned Align = Node->getConstantOperandVal(3); 2828 2829 SDValue VAListLoad = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2, 2830 MachinePointerInfo(V), 2831 false, false, false, 0); 2832 SDValue VAList = VAListLoad; 2833 2834 if (Align > TLI.getMinStackArgumentAlignment()) { 2835 assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2"); 2836 2837 VAList = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList, 2838 DAG.getConstant(Align - 1, 2839 TLI.getPointerTy())); 2840 2841 VAList = DAG.getNode(ISD::AND, dl, TLI.getPointerTy(), VAList, 2842 DAG.getConstant(-(int64_t)Align, 2843 TLI.getPointerTy())); 2844 } 2845 2846 // Increment the pointer, VAList, to the next vaarg 2847 Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList, 2848 DAG.getConstant(TLI.getDataLayout()-> 2849 getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())), 2850 TLI.getPointerTy())); 2851 // Store the incremented VAList to the legalized pointer 2852 Tmp3 = DAG.getStore(VAListLoad.getValue(1), dl, Tmp3, Tmp2, 2853 MachinePointerInfo(V), false, false, 0); 2854 // Load the actual argument out of the pointer VAList 2855 Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, MachinePointerInfo(), 2856 false, false, false, 0)); 2857 Results.push_back(Results[0].getValue(1)); 2858 break; 2859 } 2860 case ISD::VACOPY: { 2861 // This defaults to loading a pointer from the input and storing it to the 2862 // output, returning the chain. 2863 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 2864 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 2865 Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0), 2866 Node->getOperand(2), MachinePointerInfo(VS), 2867 false, false, false, 0); 2868 Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 2869 MachinePointerInfo(VD), false, false, 0); 2870 Results.push_back(Tmp1); 2871 break; 2872 } 2873 case ISD::EXTRACT_VECTOR_ELT: 2874 if (Node->getOperand(0).getValueType().getVectorNumElements() == 1) 2875 // This must be an access of the only element. Return it. 2876 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), 2877 Node->getOperand(0)); 2878 else 2879 Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0)); 2880 Results.push_back(Tmp1); 2881 break; 2882 case ISD::EXTRACT_SUBVECTOR: 2883 Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0))); 2884 break; 2885 case ISD::INSERT_SUBVECTOR: 2886 Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0))); 2887 break; 2888 case ISD::CONCAT_VECTORS: { 2889 Results.push_back(ExpandVectorBuildThroughStack(Node)); 2890 break; 2891 } 2892 case ISD::SCALAR_TO_VECTOR: 2893 Results.push_back(ExpandSCALAR_TO_VECTOR(Node)); 2894 break; 2895 case ISD::INSERT_VECTOR_ELT: 2896 Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0), 2897 Node->getOperand(1), 2898 Node->getOperand(2), dl)); 2899 break; 2900 case ISD::VECTOR_SHUFFLE: { 2901 SmallVector<int, 32> NewMask; 2902 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 2903 2904 EVT VT = Node->getValueType(0); 2905 EVT EltVT = VT.getVectorElementType(); 2906 SDValue Op0 = Node->getOperand(0); 2907 SDValue Op1 = Node->getOperand(1); 2908 if (!TLI.isTypeLegal(EltVT)) { 2909 2910 EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT); 2911 2912 // BUILD_VECTOR operands are allowed to be wider than the element type. 2913 // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept it 2914 if (NewEltVT.bitsLT(EltVT)) { 2915 2916 // Convert shuffle node. 2917 // If original node was v4i64 and the new EltVT is i32, 2918 // cast operands to v8i32 and re-build the mask. 2919 2920 // Calculate new VT, the size of the new VT should be equal to original. 2921 EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltVT, 2922 VT.getSizeInBits()/NewEltVT.getSizeInBits()); 2923 assert(NewVT.bitsEq(VT)); 2924 2925 // cast operands to new VT 2926 Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0); 2927 Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1); 2928 2929 // Convert the shuffle mask 2930 unsigned int factor = NewVT.getVectorNumElements()/VT.getVectorNumElements(); 2931 2932 // EltVT gets smaller 2933 assert(factor > 0); 2934 2935 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { 2936 if (Mask[i] < 0) { 2937 for (unsigned fi = 0; fi < factor; ++fi) 2938 NewMask.push_back(Mask[i]); 2939 } 2940 else { 2941 for (unsigned fi = 0; fi < factor; ++fi) 2942 NewMask.push_back(Mask[i]*factor+fi); 2943 } 2944 } 2945 Mask = NewMask; 2946 VT = NewVT; 2947 } 2948 EltVT = NewEltVT; 2949 } 2950 unsigned NumElems = VT.getVectorNumElements(); 2951 SmallVector<SDValue, 16> Ops; 2952 for (unsigned i = 0; i != NumElems; ++i) { 2953 if (Mask[i] < 0) { 2954 Ops.push_back(DAG.getUNDEF(EltVT)); 2955 continue; 2956 } 2957 unsigned Idx = Mask[i]; 2958 if (Idx < NumElems) 2959 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, 2960 Op0, 2961 DAG.getIntPtrConstant(Idx))); 2962 else 2963 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, 2964 Op1, 2965 DAG.getIntPtrConstant(Idx - NumElems))); 2966 } 2967 2968 Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size()); 2969 // We may have changed the BUILD_VECTOR type. Cast it back to the Node type. 2970 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1); 2971 Results.push_back(Tmp1); 2972 break; 2973 } 2974 case ISD::EXTRACT_ELEMENT: { 2975 EVT OpTy = Node->getOperand(0).getValueType(); 2976 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { 2977 // 1 -> Hi 2978 Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0), 2979 DAG.getConstant(OpTy.getSizeInBits()/2, 2980 TLI.getShiftAmountTy(Node->getOperand(0).getValueType()))); 2981 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1); 2982 } else { 2983 // 0 -> Lo 2984 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), 2985 Node->getOperand(0)); 2986 } 2987 Results.push_back(Tmp1); 2988 break; 2989 } 2990 case ISD::STACKSAVE: 2991 // Expand to CopyFromReg if the target set 2992 // StackPointerRegisterToSaveRestore. 2993 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 2994 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP, 2995 Node->getValueType(0))); 2996 Results.push_back(Results[0].getValue(1)); 2997 } else { 2998 Results.push_back(DAG.getUNDEF(Node->getValueType(0))); 2999 Results.push_back(Node->getOperand(0)); 3000 } 3001 break; 3002 case ISD::STACKRESTORE: 3003 // Expand to CopyToReg if the target set 3004 // StackPointerRegisterToSaveRestore. 3005 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 3006 Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP, 3007 Node->getOperand(1))); 3008 } else { 3009 Results.push_back(Node->getOperand(0)); 3010 } 3011 break; 3012 case ISD::FCOPYSIGN: 3013 Results.push_back(ExpandFCOPYSIGN(Node)); 3014 break; 3015 case ISD::FNEG: 3016 // Expand Y = FNEG(X) -> Y = SUB -0.0, X 3017 Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0)); 3018 Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1, 3019 Node->getOperand(0)); 3020 Results.push_back(Tmp1); 3021 break; 3022 case ISD::FABS: { 3023 // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X). 3024 EVT VT = Node->getValueType(0); 3025 Tmp1 = Node->getOperand(0); 3026 Tmp2 = DAG.getConstantFP(0.0, VT); 3027 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()), 3028 Tmp1, Tmp2, ISD::SETUGT); 3029 Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1); 3030 Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3); 3031 Results.push_back(Tmp1); 3032 break; 3033 } 3034 case ISD::FSQRT: 3035 Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 3036 RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128)); 3037 break; 3038 case ISD::FSIN: 3039 Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64, 3040 RTLIB::SIN_F80, RTLIB::SIN_PPCF128)); 3041 break; 3042 case ISD::FCOS: 3043 Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64, 3044 RTLIB::COS_F80, RTLIB::COS_PPCF128)); 3045 break; 3046 case ISD::FLOG: 3047 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, 3048 RTLIB::LOG_F80, RTLIB::LOG_PPCF128)); 3049 break; 3050 case ISD::FLOG2: 3051 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, 3052 RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128)); 3053 break; 3054 case ISD::FLOG10: 3055 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, 3056 RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128)); 3057 break; 3058 case ISD::FEXP: 3059 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, 3060 RTLIB::EXP_F80, RTLIB::EXP_PPCF128)); 3061 break; 3062 case ISD::FEXP2: 3063 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, 3064 RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128)); 3065 break; 3066 case ISD::FTRUNC: 3067 Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, 3068 RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128)); 3069 break; 3070 case ISD::FFLOOR: 3071 Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, 3072 RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128)); 3073 break; 3074 case ISD::FCEIL: 3075 Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64, 3076 RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128)); 3077 break; 3078 case ISD::FRINT: 3079 Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64, 3080 RTLIB::RINT_F80, RTLIB::RINT_PPCF128)); 3081 break; 3082 case ISD::FNEARBYINT: 3083 Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32, 3084 RTLIB::NEARBYINT_F64, 3085 RTLIB::NEARBYINT_F80, 3086 RTLIB::NEARBYINT_PPCF128)); 3087 break; 3088 case ISD::FPOWI: 3089 Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64, 3090 RTLIB::POWI_F80, RTLIB::POWI_PPCF128)); 3091 break; 3092 case ISD::FPOW: 3093 Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, 3094 RTLIB::POW_F80, RTLIB::POW_PPCF128)); 3095 break; 3096 case ISD::FDIV: 3097 Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64, 3098 RTLIB::DIV_F80, RTLIB::DIV_PPCF128)); 3099 break; 3100 case ISD::FREM: 3101 Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64, 3102 RTLIB::REM_F80, RTLIB::REM_PPCF128)); 3103 break; 3104 case ISD::FMA: 3105 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64, 3106 RTLIB::FMA_F80, RTLIB::FMA_PPCF128)); 3107 break; 3108 case ISD::FP16_TO_FP32: 3109 Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false)); 3110 break; 3111 case ISD::FP32_TO_FP16: 3112 Results.push_back(ExpandLibCall(RTLIB::FPROUND_F32_F16, Node, false)); 3113 break; 3114 case ISD::ConstantFP: { 3115 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 3116 // Check to see if this FP immediate is already legal. 3117 // If this is a legal constant, turn it into a TargetConstantFP node. 3118 if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0))) 3119 Results.push_back(ExpandConstantFP(CFP, true)); 3120 break; 3121 } 3122 case ISD::EHSELECTION: { 3123 unsigned Reg = TLI.getExceptionSelectorRegister(); 3124 assert(Reg && "Can't expand to unknown register!"); 3125 Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg, 3126 Node->getValueType(0))); 3127 Results.push_back(Results[0].getValue(1)); 3128 break; 3129 } 3130 case ISD::EXCEPTIONADDR: { 3131 unsigned Reg = TLI.getExceptionPointerRegister(); 3132 assert(Reg && "Can't expand to unknown register!"); 3133 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg, 3134 Node->getValueType(0))); 3135 Results.push_back(Results[0].getValue(1)); 3136 break; 3137 } 3138 case ISD::FSUB: { 3139 EVT VT = Node->getValueType(0); 3140 assert(TLI.isOperationLegalOrCustom(ISD::FADD, VT) && 3141 TLI.isOperationLegalOrCustom(ISD::FNEG, VT) && 3142 "Don't know how to expand this FP subtraction!"); 3143 Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1)); 3144 Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1); 3145 Results.push_back(Tmp1); 3146 break; 3147 } 3148 case ISD::SUB: { 3149 EVT VT = Node->getValueType(0); 3150 assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 3151 TLI.isOperationLegalOrCustom(ISD::XOR, VT) && 3152 "Don't know how to expand this subtraction!"); 3153 Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1), 3154 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT)); 3155 Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, VT)); 3156 Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1)); 3157 break; 3158 } 3159 case ISD::UREM: 3160 case ISD::SREM: { 3161 EVT VT = Node->getValueType(0); 3162 SDVTList VTs = DAG.getVTList(VT, VT); 3163 bool isSigned = Node->getOpcode() == ISD::SREM; 3164 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 3165 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3166 Tmp2 = Node->getOperand(0); 3167 Tmp3 = Node->getOperand(1); 3168 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) || 3169 (isDivRemLibcallAvailable(Node, isSigned, TLI) && 3170 // If div is legal, it's better to do the normal expansion 3171 !TLI.isOperationLegalOrCustom(DivOpc, Node->getValueType(0)) && 3172 useDivRem(Node, isSigned, false))) { 3173 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1); 3174 } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) { 3175 // X % Y -> X-X/Y*Y 3176 Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3); 3177 Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3); 3178 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1); 3179 } else if (isSigned) 3180 Tmp1 = ExpandIntLibCall(Node, true, 3181 RTLIB::SREM_I8, 3182 RTLIB::SREM_I16, RTLIB::SREM_I32, 3183 RTLIB::SREM_I64, RTLIB::SREM_I128); 3184 else 3185 Tmp1 = ExpandIntLibCall(Node, false, 3186 RTLIB::UREM_I8, 3187 RTLIB::UREM_I16, RTLIB::UREM_I32, 3188 RTLIB::UREM_I64, RTLIB::UREM_I128); 3189 Results.push_back(Tmp1); 3190 break; 3191 } 3192 case ISD::UDIV: 3193 case ISD::SDIV: { 3194 bool isSigned = Node->getOpcode() == ISD::SDIV; 3195 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3196 EVT VT = Node->getValueType(0); 3197 SDVTList VTs = DAG.getVTList(VT, VT); 3198 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) || 3199 (isDivRemLibcallAvailable(Node, isSigned, TLI) && 3200 useDivRem(Node, isSigned, true))) 3201 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0), 3202 Node->getOperand(1)); 3203 else if (isSigned) 3204 Tmp1 = ExpandIntLibCall(Node, true, 3205 RTLIB::SDIV_I8, 3206 RTLIB::SDIV_I16, RTLIB::SDIV_I32, 3207 RTLIB::SDIV_I64, RTLIB::SDIV_I128); 3208 else 3209 Tmp1 = ExpandIntLibCall(Node, false, 3210 RTLIB::UDIV_I8, 3211 RTLIB::UDIV_I16, RTLIB::UDIV_I32, 3212 RTLIB::UDIV_I64, RTLIB::UDIV_I128); 3213 Results.push_back(Tmp1); 3214 break; 3215 } 3216 case ISD::MULHU: 3217 case ISD::MULHS: { 3218 unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : 3219 ISD::SMUL_LOHI; 3220 EVT VT = Node->getValueType(0); 3221 SDVTList VTs = DAG.getVTList(VT, VT); 3222 assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) && 3223 "If this wasn't legal, it shouldn't have been created!"); 3224 Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0), 3225 Node->getOperand(1)); 3226 Results.push_back(Tmp1.getValue(1)); 3227 break; 3228 } 3229 case ISD::SDIVREM: 3230 case ISD::UDIVREM: 3231 // Expand into divrem libcall 3232 ExpandDivRemLibCall(Node, Results); 3233 break; 3234 case ISD::MUL: { 3235 EVT VT = Node->getValueType(0); 3236 SDVTList VTs = DAG.getVTList(VT, VT); 3237 // See if multiply or divide can be lowered using two-result operations. 3238 // We just need the low half of the multiply; try both the signed 3239 // and unsigned forms. If the target supports both SMUL_LOHI and 3240 // UMUL_LOHI, form a preference by checking which forms of plain 3241 // MULH it supports. 3242 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT); 3243 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT); 3244 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT); 3245 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT); 3246 unsigned OpToUse = 0; 3247 if (HasSMUL_LOHI && !HasMULHS) { 3248 OpToUse = ISD::SMUL_LOHI; 3249 } else if (HasUMUL_LOHI && !HasMULHU) { 3250 OpToUse = ISD::UMUL_LOHI; 3251 } else if (HasSMUL_LOHI) { 3252 OpToUse = ISD::SMUL_LOHI; 3253 } else if (HasUMUL_LOHI) { 3254 OpToUse = ISD::UMUL_LOHI; 3255 } 3256 if (OpToUse) { 3257 Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0), 3258 Node->getOperand(1))); 3259 break; 3260 } 3261 Tmp1 = ExpandIntLibCall(Node, false, 3262 RTLIB::MUL_I8, 3263 RTLIB::MUL_I16, RTLIB::MUL_I32, 3264 RTLIB::MUL_I64, RTLIB::MUL_I128); 3265 Results.push_back(Tmp1); 3266 break; 3267 } 3268 case ISD::SADDO: 3269 case ISD::SSUBO: { 3270 SDValue LHS = Node->getOperand(0); 3271 SDValue RHS = Node->getOperand(1); 3272 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ? 3273 ISD::ADD : ISD::SUB, dl, LHS.getValueType(), 3274 LHS, RHS); 3275 Results.push_back(Sum); 3276 EVT OType = Node->getValueType(1); 3277 3278 SDValue Zero = DAG.getConstant(0, LHS.getValueType()); 3279 3280 // LHSSign -> LHS >= 0 3281 // RHSSign -> RHS >= 0 3282 // SumSign -> Sum >= 0 3283 // 3284 // Add: 3285 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign) 3286 // Sub: 3287 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign) 3288 // 3289 SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE); 3290 SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE); 3291 SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign, 3292 Node->getOpcode() == ISD::SADDO ? 3293 ISD::SETEQ : ISD::SETNE); 3294 3295 SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE); 3296 SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE); 3297 3298 SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE); 3299 Results.push_back(Cmp); 3300 break; 3301 } 3302 case ISD::UADDO: 3303 case ISD::USUBO: { 3304 SDValue LHS = Node->getOperand(0); 3305 SDValue RHS = Node->getOperand(1); 3306 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ? 3307 ISD::ADD : ISD::SUB, dl, LHS.getValueType(), 3308 LHS, RHS); 3309 Results.push_back(Sum); 3310 Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS, 3311 Node->getOpcode () == ISD::UADDO ? 3312 ISD::SETULT : ISD::SETUGT)); 3313 break; 3314 } 3315 case ISD::UMULO: 3316 case ISD::SMULO: { 3317 EVT VT = Node->getValueType(0); 3318 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2); 3319 SDValue LHS = Node->getOperand(0); 3320 SDValue RHS = Node->getOperand(1); 3321 SDValue BottomHalf; 3322 SDValue TopHalf; 3323 static const unsigned Ops[2][3] = 3324 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 3325 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 3326 bool isSigned = Node->getOpcode() == ISD::SMULO; 3327 if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 3328 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 3329 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 3330 } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 3331 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 3332 RHS); 3333 TopHalf = BottomHalf.getValue(1); 3334 } else if (TLI.isTypeLegal(EVT::getIntegerVT(*DAG.getContext(), 3335 VT.getSizeInBits() * 2))) { 3336 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 3337 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 3338 Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 3339 BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1, 3340 DAG.getIntPtrConstant(0)); 3341 TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1, 3342 DAG.getIntPtrConstant(1)); 3343 } else { 3344 // We can fall back to a libcall with an illegal type for the MUL if we 3345 // have a libcall big enough. 3346 // Also, we can fall back to a division in some cases, but that's a big 3347 // performance hit in the general case. 3348 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 3349 if (WideVT == MVT::i16) 3350 LC = RTLIB::MUL_I16; 3351 else if (WideVT == MVT::i32) 3352 LC = RTLIB::MUL_I32; 3353 else if (WideVT == MVT::i64) 3354 LC = RTLIB::MUL_I64; 3355 else if (WideVT == MVT::i128) 3356 LC = RTLIB::MUL_I128; 3357 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 3358 3359 // The high part is obtained by SRA'ing all but one of the bits of low 3360 // part. 3361 unsigned LoSize = VT.getSizeInBits(); 3362 SDValue HiLHS = DAG.getNode(ISD::SRA, dl, VT, RHS, 3363 DAG.getConstant(LoSize-1, TLI.getPointerTy())); 3364 SDValue HiRHS = DAG.getNode(ISD::SRA, dl, VT, LHS, 3365 DAG.getConstant(LoSize-1, TLI.getPointerTy())); 3366 3367 // Here we're passing the 2 arguments explicitly as 4 arguments that are 3368 // pre-lowered to the correct types. This all depends upon WideVT not 3369 // being a legal type for the architecture and thus has to be split to 3370 // two arguments. 3371 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 3372 SDValue Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl); 3373 BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret, 3374 DAG.getIntPtrConstant(0)); 3375 TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret, 3376 DAG.getIntPtrConstant(1)); 3377 // Ret is a node with an illegal type. Because such things are not 3378 // generally permitted during this phase of legalization, delete the 3379 // node. The above EXTRACT_ELEMENT nodes should have been folded. 3380 DAG.DeleteNode(Ret.getNode()); 3381 } 3382 3383 if (isSigned) { 3384 Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1, 3385 TLI.getShiftAmountTy(BottomHalf.getValueType())); 3386 Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1); 3387 TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1, 3388 ISD::SETNE); 3389 } else { 3390 TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, 3391 DAG.getConstant(0, VT), ISD::SETNE); 3392 } 3393 Results.push_back(BottomHalf); 3394 Results.push_back(TopHalf); 3395 break; 3396 } 3397 case ISD::BUILD_PAIR: { 3398 EVT PairTy = Node->getValueType(0); 3399 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0)); 3400 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1)); 3401 Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2, 3402 DAG.getConstant(PairTy.getSizeInBits()/2, 3403 TLI.getShiftAmountTy(PairTy))); 3404 Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2)); 3405 break; 3406 } 3407 case ISD::SELECT: 3408 Tmp1 = Node->getOperand(0); 3409 Tmp2 = Node->getOperand(1); 3410 Tmp3 = Node->getOperand(2); 3411 if (Tmp1.getOpcode() == ISD::SETCC) { 3412 Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1), 3413 Tmp2, Tmp3, 3414 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); 3415 } else { 3416 Tmp1 = DAG.getSelectCC(dl, Tmp1, 3417 DAG.getConstant(0, Tmp1.getValueType()), 3418 Tmp2, Tmp3, ISD::SETNE); 3419 } 3420 Results.push_back(Tmp1); 3421 break; 3422 case ISD::BR_JT: { 3423 SDValue Chain = Node->getOperand(0); 3424 SDValue Table = Node->getOperand(1); 3425 SDValue Index = Node->getOperand(2); 3426 3427 EVT PTy = TLI.getPointerTy(); 3428 3429 const DataLayout &TD = *TLI.getDataLayout(); 3430 unsigned EntrySize = 3431 DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD); 3432 3433 Index = DAG.getNode(ISD::MUL, dl, PTy, 3434 Index, DAG.getConstant(EntrySize, PTy)); 3435 SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table); 3436 3437 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8); 3438 SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr, 3439 MachinePointerInfo::getJumpTable(), MemVT, 3440 false, false, 0); 3441 Addr = LD; 3442 if (TM.getRelocationModel() == Reloc::PIC_) { 3443 // For PIC, the sequence is: 3444 // BRIND(load(Jumptable + index) + RelocBase) 3445 // RelocBase can be JumpTable, GOT or some sort of global base. 3446 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, 3447 TLI.getPICJumpTableRelocBase(Table, DAG)); 3448 } 3449 Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr); 3450 Results.push_back(Tmp1); 3451 break; 3452 } 3453 case ISD::BRCOND: 3454 // Expand brcond's setcc into its constituent parts and create a BR_CC 3455 // Node. 3456 Tmp1 = Node->getOperand(0); 3457 Tmp2 = Node->getOperand(1); 3458 if (Tmp2.getOpcode() == ISD::SETCC) { 3459 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, 3460 Tmp1, Tmp2.getOperand(2), 3461 Tmp2.getOperand(0), Tmp2.getOperand(1), 3462 Node->getOperand(2)); 3463 } else { 3464 // We test only the i1 bit. Skip the AND if UNDEF. 3465 Tmp3 = (Tmp2.getOpcode() == ISD::UNDEF) ? Tmp2 : 3466 DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2, 3467 DAG.getConstant(1, Tmp2.getValueType())); 3468 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, 3469 DAG.getCondCode(ISD::SETNE), Tmp3, 3470 DAG.getConstant(0, Tmp3.getValueType()), 3471 Node->getOperand(2)); 3472 } 3473 Results.push_back(Tmp1); 3474 break; 3475 case ISD::SETCC: { 3476 Tmp1 = Node->getOperand(0); 3477 Tmp2 = Node->getOperand(1); 3478 Tmp3 = Node->getOperand(2); 3479 LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl); 3480 3481 // If we expanded the SETCC into an AND/OR, return the new node 3482 if (Tmp2.getNode() == 0) { 3483 Results.push_back(Tmp1); 3484 break; 3485 } 3486 3487 // Otherwise, SETCC for the given comparison type must be completely 3488 // illegal; expand it into a SELECT_CC. 3489 EVT VT = Node->getValueType(0); 3490 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2, 3491 DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3); 3492 Results.push_back(Tmp1); 3493 break; 3494 } 3495 case ISD::SELECT_CC: { 3496 Tmp1 = Node->getOperand(0); // LHS 3497 Tmp2 = Node->getOperand(1); // RHS 3498 Tmp3 = Node->getOperand(2); // True 3499 Tmp4 = Node->getOperand(3); // False 3500 SDValue CC = Node->getOperand(4); 3501 3502 LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()), 3503 Tmp1, Tmp2, CC, dl); 3504 3505 assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!"); 3506 Tmp2 = DAG.getConstant(0, Tmp1.getValueType()); 3507 CC = DAG.getCondCode(ISD::SETNE); 3508 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2, 3509 Tmp3, Tmp4, CC); 3510 Results.push_back(Tmp1); 3511 break; 3512 } 3513 case ISD::BR_CC: { 3514 Tmp1 = Node->getOperand(0); // Chain 3515 Tmp2 = Node->getOperand(2); // LHS 3516 Tmp3 = Node->getOperand(3); // RHS 3517 Tmp4 = Node->getOperand(1); // CC 3518 3519 LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()), 3520 Tmp2, Tmp3, Tmp4, dl); 3521 3522 assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!"); 3523 Tmp3 = DAG.getConstant(0, Tmp2.getValueType()); 3524 Tmp4 = DAG.getCondCode(ISD::SETNE); 3525 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2, 3526 Tmp3, Node->getOperand(4)); 3527 Results.push_back(Tmp1); 3528 break; 3529 } 3530 case ISD::BUILD_VECTOR: 3531 Results.push_back(ExpandBUILD_VECTOR(Node)); 3532 break; 3533 case ISD::SRA: 3534 case ISD::SRL: 3535 case ISD::SHL: { 3536 // Scalarize vector SRA/SRL/SHL. 3537 EVT VT = Node->getValueType(0); 3538 assert(VT.isVector() && "Unable to legalize non-vector shift"); 3539 assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal"); 3540 unsigned NumElem = VT.getVectorNumElements(); 3541 3542 SmallVector<SDValue, 8> Scalars; 3543 for (unsigned Idx = 0; Idx < NumElem; Idx++) { 3544 SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 3545 VT.getScalarType(), 3546 Node->getOperand(0), DAG.getIntPtrConstant(Idx)); 3547 SDValue Sh = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 3548 VT.getScalarType(), 3549 Node->getOperand(1), DAG.getIntPtrConstant(Idx)); 3550 Scalars.push_back(DAG.getNode(Node->getOpcode(), dl, 3551 VT.getScalarType(), Ex, Sh)); 3552 } 3553 SDValue Result = 3554 DAG.getNode(ISD::BUILD_VECTOR, dl, Node->getValueType(0), 3555 &Scalars[0], Scalars.size()); 3556 ReplaceNode(SDValue(Node, 0), Result); 3557 break; 3558 } 3559 case ISD::GLOBAL_OFFSET_TABLE: 3560 case ISD::GlobalAddress: 3561 case ISD::GlobalTLSAddress: 3562 case ISD::ExternalSymbol: 3563 case ISD::ConstantPool: 3564 case ISD::JumpTable: 3565 case ISD::INTRINSIC_W_CHAIN: 3566 case ISD::INTRINSIC_WO_CHAIN: 3567 case ISD::INTRINSIC_VOID: 3568 // FIXME: Custom lowering for these operations shouldn't return null! 3569 break; 3570 } 3571 3572 // Replace the original node with the legalized result. 3573 if (!Results.empty()) 3574 ReplaceNode(Node, Results.data()); 3575} 3576 3577void SelectionDAGLegalize::PromoteNode(SDNode *Node) { 3578 SmallVector<SDValue, 8> Results; 3579 MVT OVT = Node->getSimpleValueType(0); 3580 if (Node->getOpcode() == ISD::UINT_TO_FP || 3581 Node->getOpcode() == ISD::SINT_TO_FP || 3582 Node->getOpcode() == ISD::SETCC) { 3583 OVT = Node->getOperand(0).getSimpleValueType(); 3584 } 3585 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 3586 DebugLoc dl = Node->getDebugLoc(); 3587 SDValue Tmp1, Tmp2, Tmp3; 3588 switch (Node->getOpcode()) { 3589 case ISD::CTTZ: 3590 case ISD::CTTZ_ZERO_UNDEF: 3591 case ISD::CTLZ: 3592 case ISD::CTLZ_ZERO_UNDEF: 3593 case ISD::CTPOP: 3594 // Zero extend the argument. 3595 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 3596 // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is 3597 // already the correct result. 3598 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 3599 if (Node->getOpcode() == ISD::CTTZ) { 3600 // FIXME: This should set a bit in the zero extended value instead. 3601 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT), 3602 Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT), 3603 ISD::SETEQ); 3604 Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, 3605 DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1); 3606 } else if (Node->getOpcode() == ISD::CTLZ || 3607 Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) { 3608 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 3609 Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, 3610 DAG.getConstant(NVT.getSizeInBits() - 3611 OVT.getSizeInBits(), NVT)); 3612 } 3613 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 3614 break; 3615 case ISD::BSWAP: { 3616 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); 3617 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 3618 Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1); 3619 Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1, 3620 DAG.getConstant(DiffBits, TLI.getShiftAmountTy(NVT))); 3621 Results.push_back(Tmp1); 3622 break; 3623 } 3624 case ISD::FP_TO_UINT: 3625 case ISD::FP_TO_SINT: 3626 Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0), 3627 Node->getOpcode() == ISD::FP_TO_SINT, dl); 3628 Results.push_back(Tmp1); 3629 break; 3630 case ISD::UINT_TO_FP: 3631 case ISD::SINT_TO_FP: 3632 Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0), 3633 Node->getOpcode() == ISD::SINT_TO_FP, dl); 3634 Results.push_back(Tmp1); 3635 break; 3636 case ISD::VAARG: { 3637 SDValue Chain = Node->getOperand(0); // Get the chain. 3638 SDValue Ptr = Node->getOperand(1); // Get the pointer. 3639 3640 unsigned TruncOp; 3641 if (OVT.isVector()) { 3642 TruncOp = ISD::BITCAST; 3643 } else { 3644 assert(OVT.isInteger() 3645 && "VAARG promotion is supported only for vectors or integer types"); 3646 TruncOp = ISD::TRUNCATE; 3647 } 3648 3649 // Perform the larger operation, then convert back 3650 Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2), 3651 Node->getConstantOperandVal(3)); 3652 Chain = Tmp1.getValue(1); 3653 3654 Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1); 3655 3656 // Modified the chain result - switch anything that used the old chain to 3657 // use the new one. 3658 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2); 3659 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 3660 ReplacedNode(Node); 3661 break; 3662 } 3663 case ISD::AND: 3664 case ISD::OR: 3665 case ISD::XOR: { 3666 unsigned ExtOp, TruncOp; 3667 if (OVT.isVector()) { 3668 ExtOp = ISD::BITCAST; 3669 TruncOp = ISD::BITCAST; 3670 } else { 3671 assert(OVT.isInteger() && "Cannot promote logic operation"); 3672 ExtOp = ISD::ANY_EXTEND; 3673 TruncOp = ISD::TRUNCATE; 3674 } 3675 // Promote each of the values to the new type. 3676 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 3677 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 3678 // Perform the larger operation, then convert back 3679 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 3680 Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1)); 3681 break; 3682 } 3683 case ISD::SELECT: { 3684 unsigned ExtOp, TruncOp; 3685 if (Node->getValueType(0).isVector()) { 3686 ExtOp = ISD::BITCAST; 3687 TruncOp = ISD::BITCAST; 3688 } else if (Node->getValueType(0).isInteger()) { 3689 ExtOp = ISD::ANY_EXTEND; 3690 TruncOp = ISD::TRUNCATE; 3691 } else { 3692 ExtOp = ISD::FP_EXTEND; 3693 TruncOp = ISD::FP_ROUND; 3694 } 3695 Tmp1 = Node->getOperand(0); 3696 // Promote each of the values to the new type. 3697 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 3698 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 3699 // Perform the larger operation, then round down. 3700 Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3); 3701 if (TruncOp != ISD::FP_ROUND) 3702 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1); 3703 else 3704 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1, 3705 DAG.getIntPtrConstant(0)); 3706 Results.push_back(Tmp1); 3707 break; 3708 } 3709 case ISD::VECTOR_SHUFFLE: { 3710 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 3711 3712 // Cast the two input vectors. 3713 Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0)); 3714 Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1)); 3715 3716 // Convert the shuffle mask to the right # elements. 3717 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask); 3718 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1); 3719 Results.push_back(Tmp1); 3720 break; 3721 } 3722 case ISD::SETCC: { 3723 unsigned ExtOp = ISD::FP_EXTEND; 3724 if (NVT.isInteger()) { 3725 ISD::CondCode CCCode = 3726 cast<CondCodeSDNode>(Node->getOperand(2))->get(); 3727 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 3728 } 3729 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 3730 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 3731 Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), 3732 Tmp1, Tmp2, Node->getOperand(2))); 3733 break; 3734 } 3735 case ISD::FDIV: 3736 case ISD::FREM: 3737 case ISD::FPOW: { 3738 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 3739 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 3740 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 3741 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 3742 Tmp3, DAG.getIntPtrConstant(0))); 3743 break; 3744 } 3745 case ISD::FLOG2: 3746 case ISD::FEXP2: 3747 case ISD::FLOG: 3748 case ISD::FEXP: { 3749 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 3750 Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 3751 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 3752 Tmp2, DAG.getIntPtrConstant(0))); 3753 break; 3754 } 3755 } 3756 3757 // Replace the original node with the legalized result. 3758 if (!Results.empty()) 3759 ReplaceNode(Node, Results.data()); 3760} 3761 3762// SelectionDAG::Legalize - This is the entry point for the file. 3763// 3764void SelectionDAG::Legalize() { 3765 /// run - This is the main entry point to this class. 3766 /// 3767 SelectionDAGLegalize(*this).LegalizeDAG(); 3768} 3769