LegalizeDAG.cpp revision 2d916231ff503b995bf3b65a338c9bf0d84ee7c7
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SelectionDAG::Legalize method.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/ADT/DenseMap.h"
16#include "llvm/ADT/SmallPtrSet.h"
17#include "llvm/ADT/SmallVector.h"
18#include "llvm/CallingConv.h"
19#include "llvm/CodeGen/Analysis.h"
20#include "llvm/CodeGen/MachineFunction.h"
21#include "llvm/CodeGen/MachineJumpTableInfo.h"
22#include "llvm/Constants.h"
23#include "llvm/DataLayout.h"
24#include "llvm/DebugInfo.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/LLVMContext.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/Support/ErrorHandling.h"
29#include "llvm/Support/MathExtras.h"
30#include "llvm/Support/raw_ostream.h"
31#include "llvm/Target/TargetFrameLowering.h"
32#include "llvm/Target/TargetLowering.h"
33#include "llvm/Target/TargetMachine.h"
34using namespace llvm;
35
36//===----------------------------------------------------------------------===//
37/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
38/// hacks on it until the target machine can handle it.  This involves
39/// eliminating value sizes the machine cannot handle (promoting small sizes to
40/// large sizes or splitting up large values into small values) as well as
41/// eliminating operations the machine cannot handle.
42///
43/// This code also does a small amount of optimization and recognition of idioms
44/// as part of its processing.  For example, if a target does not support a
45/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
46/// will attempt merge setcc and brc instructions into brcc's.
47///
48namespace {
49class SelectionDAGLegalize : public SelectionDAG::DAGUpdateListener {
50  const TargetMachine &TM;
51  const TargetLowering &TLI;
52  SelectionDAG &DAG;
53
54  /// LegalizePosition - The iterator for walking through the node list.
55  SelectionDAG::allnodes_iterator LegalizePosition;
56
57  /// LegalizedNodes - The set of nodes which have already been legalized.
58  SmallPtrSet<SDNode *, 16> LegalizedNodes;
59
60  // Libcall insertion helpers.
61
62public:
63  explicit SelectionDAGLegalize(SelectionDAG &DAG);
64
65  void LegalizeDAG();
66
67private:
68  /// LegalizeOp - Legalizes the given operation.
69  void LegalizeOp(SDNode *Node);
70
71  SDValue OptimizeFloatStore(StoreSDNode *ST);
72
73  void LegalizeLoadOps(SDNode *Node);
74  void LegalizeStoreOps(SDNode *Node);
75
76  /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
77  /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
78  /// is necessary to spill the vector being inserted into to memory, perform
79  /// the insert there, and then read the result back.
80  SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
81                                         SDValue Idx, DebugLoc dl);
82  SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
83                                  SDValue Idx, DebugLoc dl);
84
85  /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
86  /// performs the same shuffe in terms of order or result bytes, but on a type
87  /// whose vector element type is narrower than the original shuffle type.
88  /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
89  SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl,
90                                     SDValue N1, SDValue N2,
91                                     ArrayRef<int> Mask) const;
92
93  void LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
94                             DebugLoc dl);
95
96  SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
97  SDValue ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, const SDValue *Ops,
98                        unsigned NumOps, bool isSigned, DebugLoc dl);
99
100  std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC,
101                                                 SDNode *Node, bool isSigned);
102  SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
103                          RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
104                          RTLIB::Libcall Call_PPCF128);
105  SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
106                           RTLIB::Libcall Call_I8,
107                           RTLIB::Libcall Call_I16,
108                           RTLIB::Libcall Call_I32,
109                           RTLIB::Libcall Call_I64,
110                           RTLIB::Libcall Call_I128);
111  void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
112
113  SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, DebugLoc dl);
114  SDValue ExpandBUILD_VECTOR(SDNode *Node);
115  SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
116  void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
117                                SmallVectorImpl<SDValue> &Results);
118  SDValue ExpandFCOPYSIGN(SDNode *Node);
119  SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT,
120                               DebugLoc dl);
121  SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned,
122                                DebugLoc dl);
123  SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned,
124                                DebugLoc dl);
125
126  SDValue ExpandBSWAP(SDValue Op, DebugLoc dl);
127  SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl);
128
129  SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
130  SDValue ExpandInsertToVectorThroughStack(SDValue Op);
131  SDValue ExpandVectorBuildThroughStack(SDNode* Node);
132
133  SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP);
134
135  std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node);
136
137  void ExpandNode(SDNode *Node);
138  void PromoteNode(SDNode *Node);
139
140  void ForgetNode(SDNode *N) {
141    LegalizedNodes.erase(N);
142    if (LegalizePosition == SelectionDAG::allnodes_iterator(N))
143      ++LegalizePosition;
144  }
145
146public:
147  // DAGUpdateListener implementation.
148  virtual void NodeDeleted(SDNode *N, SDNode *E) {
149    ForgetNode(N);
150  }
151  virtual void NodeUpdated(SDNode *N) {}
152
153  // Node replacement helpers
154  void ReplacedNode(SDNode *N) {
155    if (N->use_empty()) {
156      DAG.RemoveDeadNode(N);
157    } else {
158      ForgetNode(N);
159    }
160  }
161  void ReplaceNode(SDNode *Old, SDNode *New) {
162    DAG.ReplaceAllUsesWith(Old, New);
163    ReplacedNode(Old);
164  }
165  void ReplaceNode(SDValue Old, SDValue New) {
166    DAG.ReplaceAllUsesWith(Old, New);
167    ReplacedNode(Old.getNode());
168  }
169  void ReplaceNode(SDNode *Old, const SDValue *New) {
170    DAG.ReplaceAllUsesWith(Old, New);
171    ReplacedNode(Old);
172  }
173};
174}
175
176/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
177/// performs the same shuffe in terms of order or result bytes, but on a type
178/// whose vector element type is narrower than the original shuffle type.
179/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
180SDValue
181SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT,  DebugLoc dl,
182                                                 SDValue N1, SDValue N2,
183                                                 ArrayRef<int> Mask) const {
184  unsigned NumMaskElts = VT.getVectorNumElements();
185  unsigned NumDestElts = NVT.getVectorNumElements();
186  unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
187
188  assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
189
190  if (NumEltsGrowth == 1)
191    return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
192
193  SmallVector<int, 8> NewMask;
194  for (unsigned i = 0; i != NumMaskElts; ++i) {
195    int Idx = Mask[i];
196    for (unsigned j = 0; j != NumEltsGrowth; ++j) {
197      if (Idx < 0)
198        NewMask.push_back(-1);
199      else
200        NewMask.push_back(Idx * NumEltsGrowth + j);
201    }
202  }
203  assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
204  assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
205  return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
206}
207
208SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag)
209  : SelectionDAG::DAGUpdateListener(dag),
210    TM(dag.getTarget()), TLI(dag.getTargetLoweringInfo()),
211    DAG(dag) {
212}
213
214void SelectionDAGLegalize::LegalizeDAG() {
215  DAG.AssignTopologicalOrder();
216
217  // Visit all the nodes. We start in topological order, so that we see
218  // nodes with their original operands intact. Legalization can produce
219  // new nodes which may themselves need to be legalized. Iterate until all
220  // nodes have been legalized.
221  for (;;) {
222    bool AnyLegalized = false;
223    for (LegalizePosition = DAG.allnodes_end();
224         LegalizePosition != DAG.allnodes_begin(); ) {
225      --LegalizePosition;
226
227      SDNode *N = LegalizePosition;
228      if (LegalizedNodes.insert(N)) {
229        AnyLegalized = true;
230        LegalizeOp(N);
231      }
232    }
233    if (!AnyLegalized)
234      break;
235
236  }
237
238  // Remove dead nodes now.
239  DAG.RemoveDeadNodes();
240}
241
242/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
243/// a load from the constant pool.
244SDValue
245SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) {
246  bool Extend = false;
247  DebugLoc dl = CFP->getDebugLoc();
248
249  // If a FP immediate is precise when represented as a float and if the
250  // target can do an extending load from float to double, we put it into
251  // the constant pool as a float, even if it's is statically typed as a
252  // double.  This shrinks FP constants and canonicalizes them for targets where
253  // an FP extending load is the same cost as a normal load (such as on the x87
254  // fp stack or PPC FP unit).
255  EVT VT = CFP->getValueType(0);
256  ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
257  if (!UseCP) {
258    assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
259    return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(),
260                           (VT == MVT::f64) ? MVT::i64 : MVT::i32);
261  }
262
263  EVT OrigVT = VT;
264  EVT SVT = VT;
265  while (SVT != MVT::f32) {
266    SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
267    if (ConstantFPSDNode::isValueValidForType(SVT, CFP->getValueAPF()) &&
268        // Only do this if the target has a native EXTLOAD instruction from
269        // smaller type.
270        TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
271        TLI.ShouldShrinkFPConstant(OrigVT)) {
272      Type *SType = SVT.getTypeForEVT(*DAG.getContext());
273      LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
274      VT = SVT;
275      Extend = true;
276    }
277  }
278
279  SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
280  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
281  if (Extend) {
282    SDValue Result =
283      DAG.getExtLoad(ISD::EXTLOAD, dl, OrigVT,
284                     DAG.getEntryNode(),
285                     CPIdx, MachinePointerInfo::getConstantPool(),
286                     VT, false, false, Alignment);
287    return Result;
288  }
289  SDValue Result =
290    DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
291                MachinePointerInfo::getConstantPool(), false, false, false,
292                Alignment);
293  return Result;
294}
295
296/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
297static void ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
298                                 const TargetLowering &TLI,
299                                 SelectionDAGLegalize *DAGLegalize) {
300  assert(ST->getAddressingMode() == ISD::UNINDEXED &&
301         "unaligned indexed stores not implemented!");
302  SDValue Chain = ST->getChain();
303  SDValue Ptr = ST->getBasePtr();
304  SDValue Val = ST->getValue();
305  EVT VT = Val.getValueType();
306  int Alignment = ST->getAlignment();
307  DebugLoc dl = ST->getDebugLoc();
308  if (ST->getMemoryVT().isFloatingPoint() ||
309      ST->getMemoryVT().isVector()) {
310    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
311    if (TLI.isTypeLegal(intVT)) {
312      // Expand to a bitconvert of the value to the integer type of the
313      // same size, then a (misaligned) int store.
314      // FIXME: Does not handle truncating floating point stores!
315      SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
316      Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
317                           ST->isVolatile(), ST->isNonTemporal(), Alignment);
318      DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
319      return;
320    }
321    // Do a (aligned) store to a stack slot, then copy from the stack slot
322    // to the final destination using (unaligned) integer loads and stores.
323    EVT StoredVT = ST->getMemoryVT();
324    MVT RegVT =
325      TLI.getRegisterType(*DAG.getContext(),
326                          EVT::getIntegerVT(*DAG.getContext(),
327                                            StoredVT.getSizeInBits()));
328    unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
329    unsigned RegBytes = RegVT.getSizeInBits() / 8;
330    unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
331
332    // Make sure the stack slot is also aligned for the register type.
333    SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
334
335    // Perform the original store, only redirected to the stack slot.
336    SDValue Store = DAG.getTruncStore(Chain, dl,
337                                      Val, StackPtr, MachinePointerInfo(),
338                                      StoredVT, false, false, 0);
339    SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
340    SmallVector<SDValue, 8> Stores;
341    unsigned Offset = 0;
342
343    // Do all but one copies using the full register width.
344    for (unsigned i = 1; i < NumRegs; i++) {
345      // Load one integer register's worth from the stack slot.
346      SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr,
347                                 MachinePointerInfo(),
348                                 false, false, false, 0);
349      // Store it to the final location.  Remember the store.
350      Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
351                                  ST->getPointerInfo().getWithOffset(Offset),
352                                    ST->isVolatile(), ST->isNonTemporal(),
353                                    MinAlign(ST->getAlignment(), Offset)));
354      // Increment the pointers.
355      Offset += RegBytes;
356      StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
357                             Increment);
358      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
359    }
360
361    // The last store may be partial.  Do a truncating store.  On big-endian
362    // machines this requires an extending load from the stack slot to ensure
363    // that the bits are in the right place.
364    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
365                                  8 * (StoredBytes - Offset));
366
367    // Load from the stack slot.
368    SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
369                                  MachinePointerInfo(),
370                                  MemVT, false, false, 0);
371
372    Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
373                                       ST->getPointerInfo()
374                                         .getWithOffset(Offset),
375                                       MemVT, ST->isVolatile(),
376                                       ST->isNonTemporal(),
377                                       MinAlign(ST->getAlignment(), Offset)));
378    // The order of the stores doesn't matter - say it with a TokenFactor.
379    SDValue Result =
380      DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
381                  Stores.size());
382    DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
383    return;
384  }
385  assert(ST->getMemoryVT().isInteger() &&
386         !ST->getMemoryVT().isVector() &&
387         "Unaligned store of unknown type.");
388  // Get the half-size VT
389  EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
390  int NumBits = NewStoredVT.getSizeInBits();
391  int IncrementSize = NumBits / 8;
392
393  // Divide the stored value in two parts.
394  SDValue ShiftAmount = DAG.getConstant(NumBits,
395                                      TLI.getShiftAmountTy(Val.getValueType()));
396  SDValue Lo = Val;
397  SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
398
399  // Store the two parts
400  SDValue Store1, Store2;
401  Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
402                             ST->getPointerInfo(), NewStoredVT,
403                             ST->isVolatile(), ST->isNonTemporal(), Alignment);
404  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
405                    DAG.getConstant(IncrementSize, TLI.getPointerTy()));
406  Alignment = MinAlign(Alignment, IncrementSize);
407  Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
408                             ST->getPointerInfo().getWithOffset(IncrementSize),
409                             NewStoredVT, ST->isVolatile(), ST->isNonTemporal(),
410                             Alignment);
411
412  SDValue Result =
413    DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
414  DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
415}
416
417/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
418static void
419ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
420                    const TargetLowering &TLI,
421                    SDValue &ValResult, SDValue &ChainResult) {
422  assert(LD->getAddressingMode() == ISD::UNINDEXED &&
423         "unaligned indexed loads not implemented!");
424  SDValue Chain = LD->getChain();
425  SDValue Ptr = LD->getBasePtr();
426  EVT VT = LD->getValueType(0);
427  EVT LoadedVT = LD->getMemoryVT();
428  DebugLoc dl = LD->getDebugLoc();
429  if (VT.isFloatingPoint() || VT.isVector()) {
430    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
431    if (TLI.isTypeLegal(intVT) && TLI.isTypeLegal(LoadedVT)) {
432      // Expand to a (misaligned) integer load of the same size,
433      // then bitconvert to floating point or vector.
434      SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getPointerInfo(),
435                                    LD->isVolatile(),
436                                    LD->isNonTemporal(),
437                                    LD->isInvariant(), LD->getAlignment());
438      SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
439      if (LoadedVT != VT)
440        Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
441                             ISD::ANY_EXTEND, dl, VT, Result);
442
443      ValResult = Result;
444      ChainResult = Chain;
445      return;
446    }
447
448    // Copy the value to a (aligned) stack slot using (unaligned) integer
449    // loads and stores, then do a (aligned) load from the stack slot.
450    MVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT);
451    unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
452    unsigned RegBytes = RegVT.getSizeInBits() / 8;
453    unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
454
455    // Make sure the stack slot is also aligned for the register type.
456    SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
457
458    SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
459    SmallVector<SDValue, 8> Stores;
460    SDValue StackPtr = StackBase;
461    unsigned Offset = 0;
462
463    // Do all but one copies using the full register width.
464    for (unsigned i = 1; i < NumRegs; i++) {
465      // Load one integer register's worth from the original location.
466      SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr,
467                                 LD->getPointerInfo().getWithOffset(Offset),
468                                 LD->isVolatile(), LD->isNonTemporal(),
469                                 LD->isInvariant(),
470                                 MinAlign(LD->getAlignment(), Offset));
471      // Follow the load with a store to the stack slot.  Remember the store.
472      Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
473                                    MachinePointerInfo(), false, false, 0));
474      // Increment the pointers.
475      Offset += RegBytes;
476      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
477      StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
478                             Increment);
479    }
480
481    // The last copy may be partial.  Do an extending load.
482    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
483                                  8 * (LoadedBytes - Offset));
484    SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
485                                  LD->getPointerInfo().getWithOffset(Offset),
486                                  MemVT, LD->isVolatile(),
487                                  LD->isNonTemporal(),
488                                  MinAlign(LD->getAlignment(), Offset));
489    // Follow the load with a store to the stack slot.  Remember the store.
490    // On big-endian machines this requires a truncating store to ensure
491    // that the bits end up in the right place.
492    Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
493                                       MachinePointerInfo(), MemVT,
494                                       false, false, 0));
495
496    // The order of the stores doesn't matter - say it with a TokenFactor.
497    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
498                             Stores.size());
499
500    // Finally, perform the original load only redirected to the stack slot.
501    Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
502                          MachinePointerInfo(), LoadedVT, false, false, 0);
503
504    // Callers expect a MERGE_VALUES node.
505    ValResult = Load;
506    ChainResult = TF;
507    return;
508  }
509  assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
510         "Unaligned load of unsupported type.");
511
512  // Compute the new VT that is half the size of the old one.  This is an
513  // integer MVT.
514  unsigned NumBits = LoadedVT.getSizeInBits();
515  EVT NewLoadedVT;
516  NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
517  NumBits >>= 1;
518
519  unsigned Alignment = LD->getAlignment();
520  unsigned IncrementSize = NumBits / 8;
521  ISD::LoadExtType HiExtType = LD->getExtensionType();
522
523  // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
524  if (HiExtType == ISD::NON_EXTLOAD)
525    HiExtType = ISD::ZEXTLOAD;
526
527  // Load the value in two parts
528  SDValue Lo, Hi;
529  if (TLI.isLittleEndian()) {
530    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
531                        NewLoadedVT, LD->isVolatile(),
532                        LD->isNonTemporal(), Alignment);
533    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
534                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
535    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
536                        LD->getPointerInfo().getWithOffset(IncrementSize),
537                        NewLoadedVT, LD->isVolatile(),
538                        LD->isNonTemporal(), MinAlign(Alignment,IncrementSize));
539  } else {
540    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
541                        NewLoadedVT, LD->isVolatile(),
542                        LD->isNonTemporal(), Alignment);
543    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
544                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
545    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
546                        LD->getPointerInfo().getWithOffset(IncrementSize),
547                        NewLoadedVT, LD->isVolatile(),
548                        LD->isNonTemporal(), MinAlign(Alignment,IncrementSize));
549  }
550
551  // aggregate the two parts
552  SDValue ShiftAmount = DAG.getConstant(NumBits,
553                                       TLI.getShiftAmountTy(Hi.getValueType()));
554  SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
555  Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
556
557  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
558                             Hi.getValue(1));
559
560  ValResult = Result;
561  ChainResult = TF;
562}
563
564/// PerformInsertVectorEltInMemory - Some target cannot handle a variable
565/// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
566/// is necessary to spill the vector being inserted into to memory, perform
567/// the insert there, and then read the result back.
568SDValue SelectionDAGLegalize::
569PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
570                               DebugLoc dl) {
571  SDValue Tmp1 = Vec;
572  SDValue Tmp2 = Val;
573  SDValue Tmp3 = Idx;
574
575  // If the target doesn't support this, we have to spill the input vector
576  // to a temporary stack slot, update the element, then reload it.  This is
577  // badness.  We could also load the value into a vector register (either
578  // with a "move to register" or "extload into register" instruction, then
579  // permute it into place, if the idx is a constant and if the idx is
580  // supported by the target.
581  EVT VT    = Tmp1.getValueType();
582  EVT EltVT = VT.getVectorElementType();
583  EVT IdxVT = Tmp3.getValueType();
584  EVT PtrVT = TLI.getPointerTy();
585  SDValue StackPtr = DAG.CreateStackTemporary(VT);
586
587  int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
588
589  // Store the vector.
590  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr,
591                            MachinePointerInfo::getFixedStack(SPFI),
592                            false, false, 0);
593
594  // Truncate or zero extend offset to target pointer type.
595  unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
596  Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3);
597  // Add the offset to the index.
598  unsigned EltSize = EltVT.getSizeInBits()/8;
599  Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
600  SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
601  // Store the scalar value.
602  Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT,
603                         false, false, 0);
604  // Load the updated vector.
605  return DAG.getLoad(VT, dl, Ch, StackPtr,
606                     MachinePointerInfo::getFixedStack(SPFI), false, false,
607                     false, 0);
608}
609
610
611SDValue SelectionDAGLegalize::
612ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) {
613  if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
614    // SCALAR_TO_VECTOR requires that the type of the value being inserted
615    // match the element type of the vector being created, except for
616    // integers in which case the inserted value can be over width.
617    EVT EltVT = Vec.getValueType().getVectorElementType();
618    if (Val.getValueType() == EltVT ||
619        (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
620      SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
621                                  Vec.getValueType(), Val);
622
623      unsigned NumElts = Vec.getValueType().getVectorNumElements();
624      // We generate a shuffle of InVec and ScVec, so the shuffle mask
625      // should be 0,1,2,3,4,5... with the appropriate element replaced with
626      // elt 0 of the RHS.
627      SmallVector<int, 8> ShufOps;
628      for (unsigned i = 0; i != NumElts; ++i)
629        ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
630
631      return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
632                                  &ShufOps[0]);
633    }
634  }
635  return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
636}
637
638SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
639  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
640  // FIXME: We shouldn't do this for TargetConstantFP's.
641  // FIXME: move this to the DAG Combiner!  Note that we can't regress due
642  // to phase ordering between legalized code and the dag combiner.  This
643  // probably means that we need to integrate dag combiner and legalizer
644  // together.
645  // We generally can't do this one for long doubles.
646  SDValue Chain = ST->getChain();
647  SDValue Ptr = ST->getBasePtr();
648  unsigned Alignment = ST->getAlignment();
649  bool isVolatile = ST->isVolatile();
650  bool isNonTemporal = ST->isNonTemporal();
651  DebugLoc dl = ST->getDebugLoc();
652  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
653    if (CFP->getValueType(0) == MVT::f32 &&
654        TLI.isTypeLegal(MVT::i32)) {
655      SDValue Con = DAG.getConstant(CFP->getValueAPF().
656                                      bitcastToAPInt().zextOrTrunc(32),
657                              MVT::i32);
658      return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
659                          isVolatile, isNonTemporal, Alignment);
660    }
661
662    if (CFP->getValueType(0) == MVT::f64) {
663      // If this target supports 64-bit registers, do a single 64-bit store.
664      if (TLI.isTypeLegal(MVT::i64)) {
665        SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
666                                  zextOrTrunc(64), MVT::i64);
667        return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
668                            isVolatile, isNonTemporal, Alignment);
669      }
670
671      if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) {
672        // Otherwise, if the target supports 32-bit registers, use 2 32-bit
673        // stores.  If the target supports neither 32- nor 64-bits, this
674        // xform is certainly not worth it.
675        const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt();
676        SDValue Lo = DAG.getConstant(IntVal.trunc(32), MVT::i32);
677        SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32);
678        if (TLI.isBigEndian()) std::swap(Lo, Hi);
679
680        Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), isVolatile,
681                          isNonTemporal, Alignment);
682        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
683                            DAG.getIntPtrConstant(4));
684        Hi = DAG.getStore(Chain, dl, Hi, Ptr,
685                          ST->getPointerInfo().getWithOffset(4),
686                          isVolatile, isNonTemporal, MinAlign(Alignment, 4U));
687
688        return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
689      }
690    }
691  }
692  return SDValue(0, 0);
693}
694
695void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) {
696    StoreSDNode *ST = cast<StoreSDNode>(Node);
697    SDValue Chain = ST->getChain();
698    SDValue Ptr = ST->getBasePtr();
699    DebugLoc dl = Node->getDebugLoc();
700
701    unsigned Alignment = ST->getAlignment();
702    bool isVolatile = ST->isVolatile();
703    bool isNonTemporal = ST->isNonTemporal();
704
705    if (!ST->isTruncatingStore()) {
706      if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
707        ReplaceNode(ST, OptStore);
708        return;
709      }
710
711      {
712        SDValue Value = ST->getValue();
713        MVT VT = Value.getSimpleValueType();
714        switch (TLI.getOperationAction(ISD::STORE, VT)) {
715        default: llvm_unreachable("This action is not supported yet!");
716        case TargetLowering::Legal:
717          // If this is an unaligned store and the target doesn't support it,
718          // expand it.
719          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
720            Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
721            unsigned ABIAlignment= TLI.getDataLayout()->getABITypeAlignment(Ty);
722            if (ST->getAlignment() < ABIAlignment)
723              ExpandUnalignedStore(cast<StoreSDNode>(Node),
724                                   DAG, TLI, this);
725          }
726          break;
727        case TargetLowering::Custom: {
728          SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
729          if (Res.getNode())
730            ReplaceNode(SDValue(Node, 0), Res);
731          return;
732        }
733        case TargetLowering::Promote: {
734          EVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT);
735          assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
736                 "Can only promote stores to same size type");
737          Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value);
738          SDValue Result =
739            DAG.getStore(Chain, dl, Value, Ptr,
740                         ST->getPointerInfo(), isVolatile,
741                         isNonTemporal, Alignment);
742          ReplaceNode(SDValue(Node, 0), Result);
743          break;
744        }
745        }
746        return;
747      }
748    } else {
749      SDValue Value = ST->getValue();
750
751      EVT StVT = ST->getMemoryVT();
752      unsigned StWidth = StVT.getSizeInBits();
753
754      if (StWidth != StVT.getStoreSizeInBits()) {
755        // Promote to a byte-sized store with upper bits zero if not
756        // storing an integral number of bytes.  For example, promote
757        // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
758        EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
759                                    StVT.getStoreSizeInBits());
760        Value = DAG.getZeroExtendInReg(Value, dl, StVT);
761        SDValue Result =
762          DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
763                            NVT, isVolatile, isNonTemporal, Alignment);
764        ReplaceNode(SDValue(Node, 0), Result);
765      } else if (StWidth & (StWidth - 1)) {
766        // If not storing a power-of-2 number of bits, expand as two stores.
767        assert(!StVT.isVector() && "Unsupported truncstore!");
768        unsigned RoundWidth = 1 << Log2_32(StWidth);
769        assert(RoundWidth < StWidth);
770        unsigned ExtraWidth = StWidth - RoundWidth;
771        assert(ExtraWidth < RoundWidth);
772        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
773               "Store size not an integral number of bytes!");
774        EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
775        EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
776        SDValue Lo, Hi;
777        unsigned IncrementSize;
778
779        if (TLI.isLittleEndian()) {
780          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
781          // Store the bottom RoundWidth bits.
782          Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
783                                 RoundVT,
784                                 isVolatile, isNonTemporal, Alignment);
785
786          // Store the remaining ExtraWidth bits.
787          IncrementSize = RoundWidth / 8;
788          Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
789                             DAG.getIntPtrConstant(IncrementSize));
790          Hi = DAG.getNode(ISD::SRL, dl, Value.getValueType(), Value,
791                           DAG.getConstant(RoundWidth,
792                                    TLI.getShiftAmountTy(Value.getValueType())));
793          Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr,
794                             ST->getPointerInfo().getWithOffset(IncrementSize),
795                                 ExtraVT, isVolatile, isNonTemporal,
796                                 MinAlign(Alignment, IncrementSize));
797        } else {
798          // Big endian - avoid unaligned stores.
799          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
800          // Store the top RoundWidth bits.
801          Hi = DAG.getNode(ISD::SRL, dl, Value.getValueType(), Value,
802                           DAG.getConstant(ExtraWidth,
803                                    TLI.getShiftAmountTy(Value.getValueType())));
804          Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(),
805                                 RoundVT, isVolatile, isNonTemporal, Alignment);
806
807          // Store the remaining ExtraWidth bits.
808          IncrementSize = RoundWidth / 8;
809          Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
810                             DAG.getIntPtrConstant(IncrementSize));
811          Lo = DAG.getTruncStore(Chain, dl, Value, Ptr,
812                              ST->getPointerInfo().getWithOffset(IncrementSize),
813                                 ExtraVT, isVolatile, isNonTemporal,
814                                 MinAlign(Alignment, IncrementSize));
815        }
816
817        // The order of the stores doesn't matter.
818        SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
819        ReplaceNode(SDValue(Node, 0), Result);
820      } else {
821        switch (TLI.getTruncStoreAction(ST->getValue().getSimpleValueType(),
822                                        StVT.getSimpleVT())) {
823        default: llvm_unreachable("This action is not supported yet!");
824        case TargetLowering::Legal:
825          // If this is an unaligned store and the target doesn't support it,
826          // expand it.
827          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
828            Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
829            unsigned ABIAlignment= TLI.getDataLayout()->getABITypeAlignment(Ty);
830            if (ST->getAlignment() < ABIAlignment)
831              ExpandUnalignedStore(cast<StoreSDNode>(Node), DAG, TLI, this);
832          }
833          break;
834        case TargetLowering::Custom: {
835          SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
836          if (Res.getNode())
837            ReplaceNode(SDValue(Node, 0), Res);
838          return;
839        }
840        case TargetLowering::Expand:
841          assert(!StVT.isVector() &&
842                 "Vector Stores are handled in LegalizeVectorOps");
843
844          // TRUNCSTORE:i16 i32 -> STORE i16
845          assert(TLI.isTypeLegal(StVT) &&
846                 "Do not know how to expand this store!");
847          Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value);
848          SDValue Result =
849            DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
850                         isVolatile, isNonTemporal, Alignment);
851          ReplaceNode(SDValue(Node, 0), Result);
852          break;
853        }
854      }
855    }
856}
857
858void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) {
859  LoadSDNode *LD = cast<LoadSDNode>(Node);
860  SDValue Chain = LD->getChain();  // The chain.
861  SDValue Ptr = LD->getBasePtr();  // The base pointer.
862  SDValue Value;                   // The value returned by the load op.
863  DebugLoc dl = Node->getDebugLoc();
864
865  ISD::LoadExtType ExtType = LD->getExtensionType();
866  if (ExtType == ISD::NON_EXTLOAD) {
867    MVT VT = Node->getSimpleValueType(0);
868    SDValue RVal = SDValue(Node, 0);
869    SDValue RChain = SDValue(Node, 1);
870
871    switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
872    default: llvm_unreachable("This action is not supported yet!");
873    case TargetLowering::Legal:
874      // If this is an unaligned load and the target doesn't support it,
875      // expand it.
876      if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
877        Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
878        unsigned ABIAlignment =
879          TLI.getDataLayout()->getABITypeAlignment(Ty);
880        if (LD->getAlignment() < ABIAlignment){
881          ExpandUnalignedLoad(cast<LoadSDNode>(Node), DAG, TLI, RVal, RChain);
882        }
883      }
884      break;
885    case TargetLowering::Custom: {
886      SDValue Res = TLI.LowerOperation(RVal, DAG);
887      if (Res.getNode()) {
888        RVal = Res;
889        RChain = Res.getValue(1);
890      }
891      break;
892    }
893    case TargetLowering::Promote: {
894      MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
895      assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
896             "Can only promote loads to same size type");
897
898      SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getPointerInfo(),
899                         LD->isVolatile(), LD->isNonTemporal(),
900                         LD->isInvariant(), LD->getAlignment());
901      RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res);
902      RChain = Res.getValue(1);
903      break;
904    }
905    }
906    if (RChain.getNode() != Node) {
907      assert(RVal.getNode() != Node && "Load must be completely replaced");
908      DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal);
909      DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain);
910      ReplacedNode(Node);
911    }
912    return;
913  }
914
915  EVT SrcVT = LD->getMemoryVT();
916  unsigned SrcWidth = SrcVT.getSizeInBits();
917  unsigned Alignment = LD->getAlignment();
918  bool isVolatile = LD->isVolatile();
919  bool isNonTemporal = LD->isNonTemporal();
920
921  if (SrcWidth != SrcVT.getStoreSizeInBits() &&
922      // Some targets pretend to have an i1 loading operation, and actually
923      // load an i8.  This trick is correct for ZEXTLOAD because the top 7
924      // bits are guaranteed to be zero; it helps the optimizers understand
925      // that these bits are zero.  It is also useful for EXTLOAD, since it
926      // tells the optimizers that those bits are undefined.  It would be
927      // nice to have an effective generic way of getting these benefits...
928      // Until such a way is found, don't insist on promoting i1 here.
929      (SrcVT != MVT::i1 ||
930       TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
931    // Promote to a byte-sized load if not loading an integral number of
932    // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
933    unsigned NewWidth = SrcVT.getStoreSizeInBits();
934    EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
935    SDValue Ch;
936
937    // The extra bits are guaranteed to be zero, since we stored them that
938    // way.  A zext load from NVT thus automatically gives zext from SrcVT.
939
940    ISD::LoadExtType NewExtType =
941      ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
942
943    SDValue Result =
944      DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
945                     Chain, Ptr, LD->getPointerInfo(),
946                     NVT, isVolatile, isNonTemporal, Alignment);
947
948    Ch = Result.getValue(1); // The chain.
949
950    if (ExtType == ISD::SEXTLOAD)
951      // Having the top bits zero doesn't help when sign extending.
952      Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
953                           Result.getValueType(),
954                           Result, DAG.getValueType(SrcVT));
955    else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
956      // All the top bits are guaranteed to be zero - inform the optimizers.
957      Result = DAG.getNode(ISD::AssertZext, dl,
958                           Result.getValueType(), Result,
959                           DAG.getValueType(SrcVT));
960
961    Value = Result;
962    Chain = Ch;
963  } else if (SrcWidth & (SrcWidth - 1)) {
964    // If not loading a power-of-2 number of bits, expand as two loads.
965    assert(!SrcVT.isVector() && "Unsupported extload!");
966    unsigned RoundWidth = 1 << Log2_32(SrcWidth);
967    assert(RoundWidth < SrcWidth);
968    unsigned ExtraWidth = SrcWidth - RoundWidth;
969    assert(ExtraWidth < RoundWidth);
970    assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
971           "Load size not an integral number of bytes!");
972    EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
973    EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
974    SDValue Lo, Hi, Ch;
975    unsigned IncrementSize;
976
977    if (TLI.isLittleEndian()) {
978      // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
979      // Load the bottom RoundWidth bits.
980      Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0),
981                          Chain, Ptr,
982                          LD->getPointerInfo(), RoundVT, isVolatile,
983                          isNonTemporal, Alignment);
984
985      // Load the remaining ExtraWidth bits.
986      IncrementSize = RoundWidth / 8;
987      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
988                         DAG.getIntPtrConstant(IncrementSize));
989      Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
990                          LD->getPointerInfo().getWithOffset(IncrementSize),
991                          ExtraVT, isVolatile, isNonTemporal,
992                          MinAlign(Alignment, IncrementSize));
993
994      // Build a factor node to remember that this load is independent of
995      // the other one.
996      Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
997                       Hi.getValue(1));
998
999      // Move the top bits to the right place.
1000      Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1001                       DAG.getConstant(RoundWidth,
1002                                       TLI.getShiftAmountTy(Hi.getValueType())));
1003
1004      // Join the hi and lo parts.
1005      Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1006    } else {
1007      // Big endian - avoid unaligned loads.
1008      // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
1009      // Load the top RoundWidth bits.
1010      Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
1011                          LD->getPointerInfo(), RoundVT, isVolatile,
1012                          isNonTemporal, Alignment);
1013
1014      // Load the remaining ExtraWidth bits.
1015      IncrementSize = RoundWidth / 8;
1016      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
1017                         DAG.getIntPtrConstant(IncrementSize));
1018      Lo = DAG.getExtLoad(ISD::ZEXTLOAD,
1019                          dl, Node->getValueType(0), Chain, Ptr,
1020                          LD->getPointerInfo().getWithOffset(IncrementSize),
1021                          ExtraVT, isVolatile, isNonTemporal,
1022                          MinAlign(Alignment, IncrementSize));
1023
1024      // Build a factor node to remember that this load is independent of
1025      // the other one.
1026      Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1027                       Hi.getValue(1));
1028
1029      // Move the top bits to the right place.
1030      Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1031                       DAG.getConstant(ExtraWidth,
1032                                       TLI.getShiftAmountTy(Hi.getValueType())));
1033
1034      // Join the hi and lo parts.
1035      Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1036    }
1037
1038    Chain = Ch;
1039  } else {
1040    bool isCustom = false;
1041    switch (TLI.getLoadExtAction(ExtType, SrcVT.getSimpleVT())) {
1042    default: llvm_unreachable("This action is not supported yet!");
1043    case TargetLowering::Custom:
1044             isCustom = true;
1045             // FALLTHROUGH
1046    case TargetLowering::Legal: {
1047             Value = SDValue(Node, 0);
1048             Chain = SDValue(Node, 1);
1049
1050             if (isCustom) {
1051               SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
1052               if (Res.getNode()) {
1053                 Value = Res;
1054                 Chain = Res.getValue(1);
1055               }
1056             } else {
1057               // If this is an unaligned load and the target doesn't support it,
1058               // expand it.
1059               if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1060                 Type *Ty =
1061                   LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1062                 unsigned ABIAlignment =
1063                   TLI.getDataLayout()->getABITypeAlignment(Ty);
1064                 if (LD->getAlignment() < ABIAlignment){
1065                   ExpandUnalignedLoad(cast<LoadSDNode>(Node),
1066                                       DAG, TLI, Value, Chain);
1067                 }
1068               }
1069             }
1070             break;
1071    }
1072    case TargetLowering::Expand:
1073             if (!TLI.isLoadExtLegal(ISD::EXTLOAD, SrcVT) && TLI.isTypeLegal(SrcVT)) {
1074               SDValue Load = DAG.getLoad(SrcVT, dl, Chain, Ptr,
1075                                          LD->getPointerInfo(),
1076                                          LD->isVolatile(), LD->isNonTemporal(),
1077                                          LD->isInvariant(), LD->getAlignment());
1078               unsigned ExtendOp;
1079               switch (ExtType) {
1080               case ISD::EXTLOAD:
1081                 ExtendOp = (SrcVT.isFloatingPoint() ?
1082                             ISD::FP_EXTEND : ISD::ANY_EXTEND);
1083                 break;
1084               case ISD::SEXTLOAD: ExtendOp = ISD::SIGN_EXTEND; break;
1085               case ISD::ZEXTLOAD: ExtendOp = ISD::ZERO_EXTEND; break;
1086               default: llvm_unreachable("Unexpected extend load type!");
1087               }
1088               Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load);
1089               Chain = Load.getValue(1);
1090               break;
1091             }
1092
1093             assert(!SrcVT.isVector() &&
1094                    "Vector Loads are handled in LegalizeVectorOps");
1095
1096             // FIXME: This does not work for vectors on most targets.  Sign- and
1097             // zero-extend operations are currently folded into extending loads,
1098             // whether they are legal or not, and then we end up here without any
1099             // support for legalizing them.
1100             assert(ExtType != ISD::EXTLOAD &&
1101                    "EXTLOAD should always be supported!");
1102             // Turn the unsupported load into an EXTLOAD followed by an explicit
1103             // zero/sign extend inreg.
1104             SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0),
1105                                             Chain, Ptr, LD->getPointerInfo(), SrcVT,
1106                                             LD->isVolatile(), LD->isNonTemporal(),
1107                                             LD->getAlignment());
1108             SDValue ValRes;
1109             if (ExtType == ISD::SEXTLOAD)
1110               ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1111                                    Result.getValueType(),
1112                                    Result, DAG.getValueType(SrcVT));
1113             else
1114               ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType());
1115             Value = ValRes;
1116             Chain = Result.getValue(1);
1117             break;
1118    }
1119  }
1120
1121  // Since loads produce two values, make sure to remember that we legalized
1122  // both of them.
1123  if (Chain.getNode() != Node) {
1124    assert(Value.getNode() != Node && "Load must be completely replaced");
1125    DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value);
1126    DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
1127    ReplacedNode(Node);
1128  }
1129}
1130
1131/// LegalizeOp - Return a legal replacement for the given operation, with
1132/// all legal operands.
1133void SelectionDAGLegalize::LegalizeOp(SDNode *Node) {
1134  if (Node->getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
1135    return;
1136
1137  for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
1138    assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) ==
1139             TargetLowering::TypeLegal &&
1140           "Unexpected illegal type!");
1141
1142  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
1143    assert((TLI.getTypeAction(*DAG.getContext(),
1144                              Node->getOperand(i).getValueType()) ==
1145              TargetLowering::TypeLegal ||
1146            Node->getOperand(i).getOpcode() == ISD::TargetConstant) &&
1147           "Unexpected illegal type!");
1148
1149  // Figure out the correct action; the way to query this varies by opcode
1150  TargetLowering::LegalizeAction Action = TargetLowering::Legal;
1151  bool SimpleFinishLegalizing = true;
1152  switch (Node->getOpcode()) {
1153  case ISD::INTRINSIC_W_CHAIN:
1154  case ISD::INTRINSIC_WO_CHAIN:
1155  case ISD::INTRINSIC_VOID:
1156  case ISD::STACKSAVE:
1157    Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
1158    break;
1159  case ISD::VAARG:
1160    Action = TLI.getOperationAction(Node->getOpcode(),
1161                                    Node->getValueType(0));
1162    if (Action != TargetLowering::Promote)
1163      Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
1164    break;
1165  case ISD::SINT_TO_FP:
1166  case ISD::UINT_TO_FP:
1167  case ISD::EXTRACT_VECTOR_ELT:
1168    Action = TLI.getOperationAction(Node->getOpcode(),
1169                                    Node->getOperand(0).getValueType());
1170    break;
1171  case ISD::FP_ROUND_INREG:
1172  case ISD::SIGN_EXTEND_INREG: {
1173    EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
1174    Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
1175    break;
1176  }
1177  case ISD::ATOMIC_STORE: {
1178    Action = TLI.getOperationAction(Node->getOpcode(),
1179                                    Node->getOperand(2).getValueType());
1180    break;
1181  }
1182  case ISD::SELECT_CC:
1183  case ISD::SETCC:
1184  case ISD::BR_CC: {
1185    unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
1186                         Node->getOpcode() == ISD::SETCC ? 2 : 1;
1187    unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
1188    MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType();
1189    ISD::CondCode CCCode =
1190        cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
1191    Action = TLI.getCondCodeAction(CCCode, OpVT);
1192    if (Action == TargetLowering::Legal) {
1193      if (Node->getOpcode() == ISD::SELECT_CC)
1194        Action = TLI.getOperationAction(Node->getOpcode(),
1195                                        Node->getValueType(0));
1196      else
1197        Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
1198    }
1199    break;
1200  }
1201  case ISD::LOAD:
1202  case ISD::STORE:
1203    // FIXME: Model these properly.  LOAD and STORE are complicated, and
1204    // STORE expects the unlegalized operand in some cases.
1205    SimpleFinishLegalizing = false;
1206    break;
1207  case ISD::CALLSEQ_START:
1208  case ISD::CALLSEQ_END:
1209    // FIXME: This shouldn't be necessary.  These nodes have special properties
1210    // dealing with the recursive nature of legalization.  Removing this
1211    // special case should be done as part of making LegalizeDAG non-recursive.
1212    SimpleFinishLegalizing = false;
1213    break;
1214  case ISD::EXTRACT_ELEMENT:
1215  case ISD::FLT_ROUNDS_:
1216  case ISD::SADDO:
1217  case ISD::SSUBO:
1218  case ISD::UADDO:
1219  case ISD::USUBO:
1220  case ISD::SMULO:
1221  case ISD::UMULO:
1222  case ISD::FPOWI:
1223  case ISD::MERGE_VALUES:
1224  case ISD::EH_RETURN:
1225  case ISD::FRAME_TO_ARGS_OFFSET:
1226  case ISD::EH_SJLJ_SETJMP:
1227  case ISD::EH_SJLJ_LONGJMP:
1228    // These operations lie about being legal: when they claim to be legal,
1229    // they should actually be expanded.
1230    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1231    if (Action == TargetLowering::Legal)
1232      Action = TargetLowering::Expand;
1233    break;
1234  case ISD::INIT_TRAMPOLINE:
1235  case ISD::ADJUST_TRAMPOLINE:
1236  case ISD::FRAMEADDR:
1237  case ISD::RETURNADDR:
1238    // These operations lie about being legal: when they claim to be legal,
1239    // they should actually be custom-lowered.
1240    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1241    if (Action == TargetLowering::Legal)
1242      Action = TargetLowering::Custom;
1243    break;
1244  case ISD::DEBUGTRAP:
1245    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1246    if (Action == TargetLowering::Expand) {
1247      // replace ISD::DEBUGTRAP with ISD::TRAP
1248      SDValue NewVal;
1249      NewVal = DAG.getNode(ISD::TRAP, Node->getDebugLoc(), Node->getVTList(),
1250                           Node->getOperand(0));
1251      ReplaceNode(Node, NewVal.getNode());
1252      LegalizeOp(NewVal.getNode());
1253      return;
1254    }
1255    break;
1256
1257  default:
1258    if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
1259      Action = TargetLowering::Legal;
1260    } else {
1261      Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1262    }
1263    break;
1264  }
1265
1266  if (SimpleFinishLegalizing) {
1267    SDNode *NewNode = Node;
1268    switch (Node->getOpcode()) {
1269    default: break;
1270    case ISD::SHL:
1271    case ISD::SRL:
1272    case ISD::SRA:
1273    case ISD::ROTL:
1274    case ISD::ROTR:
1275      // Legalizing shifts/rotates requires adjusting the shift amount
1276      // to the appropriate width.
1277      if (!Node->getOperand(1).getValueType().isVector()) {
1278        SDValue SAO =
1279          DAG.getShiftAmountOperand(Node->getOperand(0).getValueType(),
1280                                    Node->getOperand(1));
1281        HandleSDNode Handle(SAO);
1282        LegalizeOp(SAO.getNode());
1283        NewNode = DAG.UpdateNodeOperands(Node, Node->getOperand(0),
1284                                         Handle.getValue());
1285      }
1286      break;
1287    case ISD::SRL_PARTS:
1288    case ISD::SRA_PARTS:
1289    case ISD::SHL_PARTS:
1290      // Legalizing shifts/rotates requires adjusting the shift amount
1291      // to the appropriate width.
1292      if (!Node->getOperand(2).getValueType().isVector()) {
1293        SDValue SAO =
1294          DAG.getShiftAmountOperand(Node->getOperand(0).getValueType(),
1295                                    Node->getOperand(2));
1296        HandleSDNode Handle(SAO);
1297        LegalizeOp(SAO.getNode());
1298        NewNode = DAG.UpdateNodeOperands(Node, Node->getOperand(0),
1299                                         Node->getOperand(1),
1300                                         Handle.getValue());
1301      }
1302      break;
1303    }
1304
1305    if (NewNode != Node) {
1306      DAG.ReplaceAllUsesWith(Node, NewNode);
1307      for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
1308        DAG.TransferDbgValues(SDValue(Node, i), SDValue(NewNode, i));
1309      ReplacedNode(Node);
1310      Node = NewNode;
1311    }
1312    switch (Action) {
1313    case TargetLowering::Legal:
1314      return;
1315    case TargetLowering::Custom: {
1316      // FIXME: The handling for custom lowering with multiple results is
1317      // a complete mess.
1318      SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
1319      if (Res.getNode()) {
1320        SmallVector<SDValue, 8> ResultVals;
1321        for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
1322          if (e == 1)
1323            ResultVals.push_back(Res);
1324          else
1325            ResultVals.push_back(Res.getValue(i));
1326        }
1327        if (Res.getNode() != Node || Res.getResNo() != 0) {
1328          DAG.ReplaceAllUsesWith(Node, ResultVals.data());
1329          for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
1330            DAG.TransferDbgValues(SDValue(Node, i), ResultVals[i]);
1331          ReplacedNode(Node);
1332        }
1333        return;
1334      }
1335    }
1336      // FALL THROUGH
1337    case TargetLowering::Expand:
1338      ExpandNode(Node);
1339      return;
1340    case TargetLowering::Promote:
1341      PromoteNode(Node);
1342      return;
1343    }
1344  }
1345
1346  switch (Node->getOpcode()) {
1347  default:
1348#ifndef NDEBUG
1349    dbgs() << "NODE: ";
1350    Node->dump( &DAG);
1351    dbgs() << "\n";
1352#endif
1353    llvm_unreachable("Do not know how to legalize this operator!");
1354
1355  case ISD::CALLSEQ_START:
1356  case ISD::CALLSEQ_END:
1357    break;
1358  case ISD::LOAD: {
1359    return LegalizeLoadOps(Node);
1360  }
1361  case ISD::STORE: {
1362    return LegalizeStoreOps(Node);
1363  }
1364  }
1365}
1366
1367SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1368  SDValue Vec = Op.getOperand(0);
1369  SDValue Idx = Op.getOperand(1);
1370  DebugLoc dl = Op.getDebugLoc();
1371  // Store the value to a temporary stack slot, then LOAD the returned part.
1372  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1373  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
1374                            MachinePointerInfo(), false, false, 0);
1375
1376  // Add the offset to the index.
1377  unsigned EltSize =
1378      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1379  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1380                    DAG.getConstant(EltSize, Idx.getValueType()));
1381
1382  if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1383    Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1384  else
1385    Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1386
1387  StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
1388
1389  if (Op.getValueType().isVector())
1390    return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr,MachinePointerInfo(),
1391                       false, false, false, 0);
1392  return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
1393                        MachinePointerInfo(),
1394                        Vec.getValueType().getVectorElementType(),
1395                        false, false, 0);
1396}
1397
1398SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) {
1399  assert(Op.getValueType().isVector() && "Non-vector insert subvector!");
1400
1401  SDValue Vec  = Op.getOperand(0);
1402  SDValue Part = Op.getOperand(1);
1403  SDValue Idx  = Op.getOperand(2);
1404  DebugLoc dl  = Op.getDebugLoc();
1405
1406  // Store the value to a temporary stack slot, then LOAD the returned part.
1407
1408  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1409  int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1410  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI);
1411
1412  // First store the whole vector.
1413  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo,
1414                            false, false, 0);
1415
1416  // Then store the inserted part.
1417
1418  // Add the offset to the index.
1419  unsigned EltSize =
1420      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1421
1422  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1423                    DAG.getConstant(EltSize, Idx.getValueType()));
1424
1425  if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1426    Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1427  else
1428    Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1429
1430  SDValue SubStackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx,
1431                                    StackPtr);
1432
1433  // Store the subvector.
1434  Ch = DAG.getStore(DAG.getEntryNode(), dl, Part, SubStackPtr,
1435                    MachinePointerInfo(), false, false, 0);
1436
1437  // Finally, load the updated vector.
1438  return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo,
1439                     false, false, false, 0);
1440}
1441
1442SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1443  // We can't handle this case efficiently.  Allocate a sufficiently
1444  // aligned object on the stack, store each element into it, then load
1445  // the result as a vector.
1446  // Create the stack frame object.
1447  EVT VT = Node->getValueType(0);
1448  EVT EltVT = VT.getVectorElementType();
1449  DebugLoc dl = Node->getDebugLoc();
1450  SDValue FIPtr = DAG.CreateStackTemporary(VT);
1451  int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1452  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI);
1453
1454  // Emit a store of each element to the stack slot.
1455  SmallVector<SDValue, 8> Stores;
1456  unsigned TypeByteSize = EltVT.getSizeInBits() / 8;
1457  // Store (in the right endianness) the elements to memory.
1458  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1459    // Ignore undef elements.
1460    if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1461
1462    unsigned Offset = TypeByteSize*i;
1463
1464    SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType());
1465    Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
1466
1467    // If the destination vector element type is narrower than the source
1468    // element type, only store the bits necessary.
1469    if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) {
1470      Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
1471                                         Node->getOperand(i), Idx,
1472                                         PtrInfo.getWithOffset(Offset),
1473                                         EltVT, false, false, 0));
1474    } else
1475      Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl,
1476                                    Node->getOperand(i), Idx,
1477                                    PtrInfo.getWithOffset(Offset),
1478                                    false, false, 0));
1479  }
1480
1481  SDValue StoreChain;
1482  if (!Stores.empty())    // Not all undef elements?
1483    StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1484                             &Stores[0], Stores.size());
1485  else
1486    StoreChain = DAG.getEntryNode();
1487
1488  // Result is a load from the stack slot.
1489  return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo,
1490                     false, false, false, 0);
1491}
1492
1493SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) {
1494  DebugLoc dl = Node->getDebugLoc();
1495  SDValue Tmp1 = Node->getOperand(0);
1496  SDValue Tmp2 = Node->getOperand(1);
1497
1498  // Get the sign bit of the RHS.  First obtain a value that has the same
1499  // sign as the sign bit, i.e. negative if and only if the sign bit is 1.
1500  SDValue SignBit;
1501  EVT FloatVT = Tmp2.getValueType();
1502  EVT IVT = EVT::getIntegerVT(*DAG.getContext(), FloatVT.getSizeInBits());
1503  if (TLI.isTypeLegal(IVT)) {
1504    // Convert to an integer with the same sign bit.
1505    SignBit = DAG.getNode(ISD::BITCAST, dl, IVT, Tmp2);
1506  } else {
1507    // Store the float to memory, then load the sign part out as an integer.
1508    MVT LoadTy = TLI.getPointerTy();
1509    // First create a temporary that is aligned for both the load and store.
1510    SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
1511    // Then store the float to it.
1512    SDValue Ch =
1513      DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StackPtr, MachinePointerInfo(),
1514                   false, false, 0);
1515    if (TLI.isBigEndian()) {
1516      assert(FloatVT.isByteSized() && "Unsupported floating point type!");
1517      // Load out a legal integer with the same sign bit as the float.
1518      SignBit = DAG.getLoad(LoadTy, dl, Ch, StackPtr, MachinePointerInfo(),
1519                            false, false, false, 0);
1520    } else { // Little endian
1521      SDValue LoadPtr = StackPtr;
1522      // The float may be wider than the integer we are going to load.  Advance
1523      // the pointer so that the loaded integer will contain the sign bit.
1524      unsigned Strides = (FloatVT.getSizeInBits()-1)/LoadTy.getSizeInBits();
1525      unsigned ByteOffset = (Strides * LoadTy.getSizeInBits()) / 8;
1526      LoadPtr = DAG.getNode(ISD::ADD, dl, LoadPtr.getValueType(),
1527                            LoadPtr, DAG.getIntPtrConstant(ByteOffset));
1528      // Load a legal integer containing the sign bit.
1529      SignBit = DAG.getLoad(LoadTy, dl, Ch, LoadPtr, MachinePointerInfo(),
1530                            false, false, false, 0);
1531      // Move the sign bit to the top bit of the loaded integer.
1532      unsigned BitShift = LoadTy.getSizeInBits() -
1533        (FloatVT.getSizeInBits() - 8 * ByteOffset);
1534      assert(BitShift < LoadTy.getSizeInBits() && "Pointer advanced wrong?");
1535      if (BitShift)
1536        SignBit = DAG.getNode(ISD::SHL, dl, LoadTy, SignBit,
1537                              DAG.getConstant(BitShift,
1538                                 TLI.getShiftAmountTy(SignBit.getValueType())));
1539    }
1540  }
1541  // Now get the sign bit proper, by seeing whether the value is negative.
1542  SignBit = DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()),
1543                         SignBit, DAG.getConstant(0, SignBit.getValueType()),
1544                         ISD::SETLT);
1545  // Get the absolute value of the result.
1546  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1);
1547  // Select between the nabs and abs value based on the sign bit of
1548  // the input.
1549  return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit,
1550                     DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal),
1551                     AbsVal);
1552}
1553
1554void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1555                                           SmallVectorImpl<SDValue> &Results) {
1556  unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1557  assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1558          " not tell us which reg is the stack pointer!");
1559  DebugLoc dl = Node->getDebugLoc();
1560  EVT VT = Node->getValueType(0);
1561  SDValue Tmp1 = SDValue(Node, 0);
1562  SDValue Tmp2 = SDValue(Node, 1);
1563  SDValue Tmp3 = Node->getOperand(2);
1564  SDValue Chain = Tmp1.getOperand(0);
1565
1566  // Chain the dynamic stack allocation so that it doesn't modify the stack
1567  // pointer when other instructions are using the stack.
1568  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
1569
1570  SDValue Size  = Tmp2.getOperand(1);
1571  SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1572  Chain = SP.getValue(1);
1573  unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1574  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
1575  if (Align > StackAlign)
1576    SP = DAG.getNode(ISD::AND, dl, VT, SP,
1577                      DAG.getConstant(-(uint64_t)Align, VT));
1578  Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size);       // Value
1579  Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain
1580
1581  Tmp2 = DAG.getCALLSEQ_END(Chain,  DAG.getIntPtrConstant(0, true),
1582                            DAG.getIntPtrConstant(0, true), SDValue());
1583
1584  Results.push_back(Tmp1);
1585  Results.push_back(Tmp2);
1586}
1587
1588/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
1589/// condition code CC on the current target. This routine expands SETCC with
1590/// illegal condition code into AND / OR of multiple SETCC values.
1591void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT,
1592                                                 SDValue &LHS, SDValue &RHS,
1593                                                 SDValue &CC,
1594                                                 DebugLoc dl) {
1595  MVT OpVT = LHS.getSimpleValueType();
1596  ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1597  switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1598  default: llvm_unreachable("Unknown condition code action!");
1599  case TargetLowering::Legal:
1600    // Nothing to do.
1601    break;
1602  case TargetLowering::Expand: {
1603    ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1604    ISD::CondCode InvCC = ISD::SETCC_INVALID;
1605    unsigned Opc = 0;
1606    switch (CCCode) {
1607    default: llvm_unreachable("Don't know how to expand this condition!");
1608    case ISD::SETO:
1609        assert(TLI.getCondCodeAction(ISD::SETOEQ, OpVT)
1610            == TargetLowering::Legal
1611            && "If SETO is expanded, SETOEQ must be legal!");
1612        CC1 = ISD::SETOEQ; CC2 = ISD::SETOEQ; Opc = ISD::AND; break;
1613    case ISD::SETUO:
1614        assert(TLI.getCondCodeAction(ISD::SETUNE, OpVT)
1615            == TargetLowering::Legal
1616            && "If SETUO is expanded, SETUNE must be legal!");
1617        CC1 = ISD::SETUNE; CC2 = ISD::SETUNE; Opc = ISD::OR;  break;
1618    case ISD::SETOEQ:
1619    case ISD::SETOGT:
1620    case ISD::SETOGE:
1621    case ISD::SETOLT:
1622    case ISD::SETOLE:
1623    case ISD::SETONE:
1624    case ISD::SETUEQ:
1625    case ISD::SETUNE:
1626    case ISD::SETUGT:
1627    case ISD::SETUGE:
1628    case ISD::SETULT:
1629    case ISD::SETULE:
1630        // If we are floating point, assign and break, otherwise fall through.
1631        if (!OpVT.isInteger()) {
1632          // We can use the 4th bit to tell if we are the unordered
1633          // or ordered version of the opcode.
1634          CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
1635          Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
1636          CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
1637          break;
1638        }
1639        // Fallthrough if we are unsigned integer.
1640    case ISD::SETLE:
1641    case ISD::SETGT:
1642    case ISD::SETGE:
1643    case ISD::SETLT:
1644    case ISD::SETNE:
1645    case ISD::SETEQ:
1646      InvCC = ISD::getSetCCSwappedOperands(CCCode);
1647      if (TLI.getCondCodeAction(InvCC, OpVT) == TargetLowering::Expand) {
1648        // We only support using the inverted operation and not a
1649        // different manner of supporting expanding these cases.
1650        llvm_unreachable("Don't know how to expand this condition!");
1651      }
1652      LHS = DAG.getSetCC(dl, VT, RHS, LHS, InvCC);
1653      RHS = SDValue();
1654      CC = SDValue();
1655      return;
1656    }
1657
1658    SDValue SetCC1, SetCC2;
1659    if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
1660      // If we aren't the ordered or unorder operation,
1661      // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
1662      SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1663      SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
1664    } else {
1665      // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
1666      SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1);
1667      SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2);
1668    }
1669    LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1670    RHS = SDValue();
1671    CC  = SDValue();
1672    break;
1673  }
1674  }
1675}
1676
1677/// EmitStackConvert - Emit a store/load combination to the stack.  This stores
1678/// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
1679/// a load from the stack slot to DestVT, extending it if needed.
1680/// The resultant code need not be legal.
1681SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
1682                                               EVT SlotVT,
1683                                               EVT DestVT,
1684                                               DebugLoc dl) {
1685  // Create the stack frame object.
1686  unsigned SrcAlign =
1687    TLI.getDataLayout()->getPrefTypeAlignment(SrcOp.getValueType().
1688                                              getTypeForEVT(*DAG.getContext()));
1689  SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1690
1691  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1692  int SPFI = StackPtrFI->getIndex();
1693  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(SPFI);
1694
1695  unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
1696  unsigned SlotSize = SlotVT.getSizeInBits();
1697  unsigned DestSize = DestVT.getSizeInBits();
1698  Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
1699  unsigned DestAlign = TLI.getDataLayout()->getPrefTypeAlignment(DestType);
1700
1701  // Emit a store to the stack slot.  Use a truncstore if the input value is
1702  // later than DestVT.
1703  SDValue Store;
1704
1705  if (SrcSize > SlotSize)
1706    Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1707                              PtrInfo, SlotVT, false, false, SrcAlign);
1708  else {
1709    assert(SrcSize == SlotSize && "Invalid store");
1710    Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1711                         PtrInfo, false, false, SrcAlign);
1712  }
1713
1714  // Result is a load from the stack slot.
1715  if (SlotSize == DestSize)
1716    return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo,
1717                       false, false, false, DestAlign);
1718
1719  assert(SlotSize < DestSize && "Unknown extension!");
1720  return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr,
1721                        PtrInfo, SlotVT, false, false, DestAlign);
1722}
1723
1724SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1725  DebugLoc dl = Node->getDebugLoc();
1726  // Create a vector sized/aligned stack slot, store the value to element #0,
1727  // then load the whole vector back out.
1728  SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1729
1730  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1731  int SPFI = StackPtrFI->getIndex();
1732
1733  SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0),
1734                                 StackPtr,
1735                                 MachinePointerInfo::getFixedStack(SPFI),
1736                                 Node->getValueType(0).getVectorElementType(),
1737                                 false, false, 0);
1738  return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr,
1739                     MachinePointerInfo::getFixedStack(SPFI),
1740                     false, false, false, 0);
1741}
1742
1743
1744/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
1745/// support the operation, but do support the resultant vector type.
1746SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1747  unsigned NumElems = Node->getNumOperands();
1748  SDValue Value1, Value2;
1749  DebugLoc dl = Node->getDebugLoc();
1750  EVT VT = Node->getValueType(0);
1751  EVT OpVT = Node->getOperand(0).getValueType();
1752  EVT EltVT = VT.getVectorElementType();
1753
1754  // If the only non-undef value is the low element, turn this into a
1755  // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
1756  bool isOnlyLowElement = true;
1757  bool MoreThanTwoValues = false;
1758  bool isConstant = true;
1759  for (unsigned i = 0; i < NumElems; ++i) {
1760    SDValue V = Node->getOperand(i);
1761    if (V.getOpcode() == ISD::UNDEF)
1762      continue;
1763    if (i > 0)
1764      isOnlyLowElement = false;
1765    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1766      isConstant = false;
1767
1768    if (!Value1.getNode()) {
1769      Value1 = V;
1770    } else if (!Value2.getNode()) {
1771      if (V != Value1)
1772        Value2 = V;
1773    } else if (V != Value1 && V != Value2) {
1774      MoreThanTwoValues = true;
1775    }
1776  }
1777
1778  if (!Value1.getNode())
1779    return DAG.getUNDEF(VT);
1780
1781  if (isOnlyLowElement)
1782    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1783
1784  // If all elements are constants, create a load from the constant pool.
1785  if (isConstant) {
1786    SmallVector<Constant*, 16> CV;
1787    for (unsigned i = 0, e = NumElems; i != e; ++i) {
1788      if (ConstantFPSDNode *V =
1789          dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1790        CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1791      } else if (ConstantSDNode *V =
1792                 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1793        if (OpVT==EltVT)
1794          CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1795        else {
1796          // If OpVT and EltVT don't match, EltVT is not legal and the
1797          // element values have been promoted/truncated earlier.  Undo this;
1798          // we don't want a v16i8 to become a v16i32 for example.
1799          const ConstantInt *CI = V->getConstantIntValue();
1800          CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
1801                                        CI->getZExtValue()));
1802        }
1803      } else {
1804        assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
1805        Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
1806        CV.push_back(UndefValue::get(OpNTy));
1807      }
1808    }
1809    Constant *CP = ConstantVector::get(CV);
1810    SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
1811    unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
1812    return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
1813                       MachinePointerInfo::getConstantPool(),
1814                       false, false, false, Alignment);
1815  }
1816
1817  if (!MoreThanTwoValues) {
1818    SmallVector<int, 8> ShuffleVec(NumElems, -1);
1819    for (unsigned i = 0; i < NumElems; ++i) {
1820      SDValue V = Node->getOperand(i);
1821      if (V.getOpcode() == ISD::UNDEF)
1822        continue;
1823      ShuffleVec[i] = V == Value1 ? 0 : NumElems;
1824    }
1825    if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
1826      // Get the splatted value into the low element of a vector register.
1827      SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
1828      SDValue Vec2;
1829      if (Value2.getNode())
1830        Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
1831      else
1832        Vec2 = DAG.getUNDEF(VT);
1833
1834      // Return shuffle(LowValVec, undef, <0,0,0,0>)
1835      return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
1836    }
1837  }
1838
1839  // Otherwise, we can't handle this case efficiently.
1840  return ExpandVectorBuildThroughStack(Node);
1841}
1842
1843// ExpandLibCall - Expand a node into a call to a libcall.  If the result value
1844// does not fit into a register, return the lo part and set the hi part to the
1845// by-reg argument.  If it does fit into a single register, return the result
1846// and leave the Hi part unset.
1847SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
1848                                            bool isSigned) {
1849  TargetLowering::ArgListTy Args;
1850  TargetLowering::ArgListEntry Entry;
1851  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1852    EVT ArgVT = Node->getOperand(i).getValueType();
1853    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1854    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
1855    Entry.isSExt = isSigned;
1856    Entry.isZExt = !isSigned;
1857    Args.push_back(Entry);
1858  }
1859  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1860                                         TLI.getPointerTy());
1861
1862  Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1863
1864  // By default, the input chain to this libcall is the entry node of the
1865  // function. If the libcall is going to be emitted as a tail call then
1866  // TLI.isUsedByReturnOnly will change it to the right chain if the return
1867  // node which is being folded has a non-entry input chain.
1868  SDValue InChain = DAG.getEntryNode();
1869
1870  // isTailCall may be true since the callee does not reference caller stack
1871  // frame. Check if it's in the right position.
1872  SDValue TCChain = InChain;
1873  bool isTailCall = isInTailCallPosition(DAG, Node, TCChain, TLI);
1874  if (isTailCall)
1875    InChain = TCChain;
1876
1877  TargetLowering::
1878  CallLoweringInfo CLI(InChain, RetTy, isSigned, !isSigned, false, false,
1879                    0, TLI.getLibcallCallingConv(LC), isTailCall,
1880                    /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
1881                    Callee, Args, DAG, Node->getDebugLoc());
1882  std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
1883
1884
1885  if (!CallInfo.second.getNode())
1886    // It's a tailcall, return the chain (which is the DAG root).
1887    return DAG.getRoot();
1888
1889  return CallInfo.first;
1890}
1891
1892/// ExpandLibCall - Generate a libcall taking the given operands as arguments
1893/// and returning a result of type RetVT.
1894SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, EVT RetVT,
1895                                            const SDValue *Ops, unsigned NumOps,
1896                                            bool isSigned, DebugLoc dl) {
1897  TargetLowering::ArgListTy Args;
1898  Args.reserve(NumOps);
1899
1900  TargetLowering::ArgListEntry Entry;
1901  for (unsigned i = 0; i != NumOps; ++i) {
1902    Entry.Node = Ops[i];
1903    Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
1904    Entry.isSExt = isSigned;
1905    Entry.isZExt = !isSigned;
1906    Args.push_back(Entry);
1907  }
1908  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1909                                         TLI.getPointerTy());
1910
1911  Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
1912  TargetLowering::
1913  CallLoweringInfo CLI(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false,
1914                       false, 0, TLI.getLibcallCallingConv(LC),
1915                       /*isTailCall=*/false,
1916                  /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
1917                  Callee, Args, DAG, dl);
1918  std::pair<SDValue,SDValue> CallInfo = TLI.LowerCallTo(CLI);
1919
1920  return CallInfo.first;
1921}
1922
1923// ExpandChainLibCall - Expand a node into a call to a libcall. Similar to
1924// ExpandLibCall except that the first operand is the in-chain.
1925std::pair<SDValue, SDValue>
1926SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC,
1927                                         SDNode *Node,
1928                                         bool isSigned) {
1929  SDValue InChain = Node->getOperand(0);
1930
1931  TargetLowering::ArgListTy Args;
1932  TargetLowering::ArgListEntry Entry;
1933  for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) {
1934    EVT ArgVT = Node->getOperand(i).getValueType();
1935    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1936    Entry.Node = Node->getOperand(i);
1937    Entry.Ty = ArgTy;
1938    Entry.isSExt = isSigned;
1939    Entry.isZExt = !isSigned;
1940    Args.push_back(Entry);
1941  }
1942  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1943                                         TLI.getPointerTy());
1944
1945  Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1946  TargetLowering::
1947  CallLoweringInfo CLI(InChain, RetTy, isSigned, !isSigned, false, false,
1948                    0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false,
1949                    /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
1950                    Callee, Args, DAG, Node->getDebugLoc());
1951  std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
1952
1953  return CallInfo;
1954}
1955
1956SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
1957                                              RTLIB::Libcall Call_F32,
1958                                              RTLIB::Libcall Call_F64,
1959                                              RTLIB::Libcall Call_F80,
1960                                              RTLIB::Libcall Call_PPCF128) {
1961  RTLIB::Libcall LC;
1962  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1963  default: llvm_unreachable("Unexpected request for libcall!");
1964  case MVT::f32: LC = Call_F32; break;
1965  case MVT::f64: LC = Call_F64; break;
1966  case MVT::f80: LC = Call_F80; break;
1967  case MVT::ppcf128: LC = Call_PPCF128; break;
1968  }
1969  return ExpandLibCall(LC, Node, false);
1970}
1971
1972SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
1973                                               RTLIB::Libcall Call_I8,
1974                                               RTLIB::Libcall Call_I16,
1975                                               RTLIB::Libcall Call_I32,
1976                                               RTLIB::Libcall Call_I64,
1977                                               RTLIB::Libcall Call_I128) {
1978  RTLIB::Libcall LC;
1979  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1980  default: llvm_unreachable("Unexpected request for libcall!");
1981  case MVT::i8:   LC = Call_I8; break;
1982  case MVT::i16:  LC = Call_I16; break;
1983  case MVT::i32:  LC = Call_I32; break;
1984  case MVT::i64:  LC = Call_I64; break;
1985  case MVT::i128: LC = Call_I128; break;
1986  }
1987  return ExpandLibCall(LC, Node, isSigned);
1988}
1989
1990/// isDivRemLibcallAvailable - Return true if divmod libcall is available.
1991static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned,
1992                                     const TargetLowering &TLI) {
1993  RTLIB::Libcall LC;
1994  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1995  default: llvm_unreachable("Unexpected request for libcall!");
1996  case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
1997  case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
1998  case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
1999  case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
2000  case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
2001  }
2002
2003  return TLI.getLibcallName(LC) != 0;
2004}
2005
2006/// useDivRem - Only issue divrem libcall if both quotient and remainder are
2007/// needed.
2008static bool useDivRem(SDNode *Node, bool isSigned, bool isDIV) {
2009  // The other use might have been replaced with a divrem already.
2010  unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2011  unsigned OtherOpcode = 0;
2012  if (isSigned)
2013    OtherOpcode = isDIV ? ISD::SREM : ISD::SDIV;
2014  else
2015    OtherOpcode = isDIV ? ISD::UREM : ISD::UDIV;
2016
2017  SDValue Op0 = Node->getOperand(0);
2018  SDValue Op1 = Node->getOperand(1);
2019  for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
2020         UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
2021    SDNode *User = *UI;
2022    if (User == Node)
2023      continue;
2024    if ((User->getOpcode() == OtherOpcode || User->getOpcode() == DivRemOpc) &&
2025        User->getOperand(0) == Op0 &&
2026        User->getOperand(1) == Op1)
2027      return true;
2028  }
2029  return false;
2030}
2031
2032/// ExpandDivRemLibCall - Issue libcalls to __{u}divmod to compute div / rem
2033/// pairs.
2034void
2035SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node,
2036                                          SmallVectorImpl<SDValue> &Results) {
2037  unsigned Opcode = Node->getOpcode();
2038  bool isSigned = Opcode == ISD::SDIVREM;
2039
2040  RTLIB::Libcall LC;
2041  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
2042  default: llvm_unreachable("Unexpected request for libcall!");
2043  case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
2044  case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
2045  case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
2046  case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
2047  case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
2048  }
2049
2050  // The input chain to this libcall is the entry node of the function.
2051  // Legalizing the call will automatically add the previous call to the
2052  // dependence.
2053  SDValue InChain = DAG.getEntryNode();
2054
2055  EVT RetVT = Node->getValueType(0);
2056  Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2057
2058  TargetLowering::ArgListTy Args;
2059  TargetLowering::ArgListEntry Entry;
2060  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
2061    EVT ArgVT = Node->getOperand(i).getValueType();
2062    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2063    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
2064    Entry.isSExt = isSigned;
2065    Entry.isZExt = !isSigned;
2066    Args.push_back(Entry);
2067  }
2068
2069  // Also pass the return address of the remainder.
2070  SDValue FIPtr = DAG.CreateStackTemporary(RetVT);
2071  Entry.Node = FIPtr;
2072  Entry.Ty = RetTy->getPointerTo();
2073  Entry.isSExt = isSigned;
2074  Entry.isZExt = !isSigned;
2075  Args.push_back(Entry);
2076
2077  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2078                                         TLI.getPointerTy());
2079
2080  DebugLoc dl = Node->getDebugLoc();
2081  TargetLowering::
2082  CallLoweringInfo CLI(InChain, RetTy, isSigned, !isSigned, false, false,
2083                    0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false,
2084                    /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
2085                    Callee, Args, DAG, dl);
2086  std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2087
2088  // Remainder is loaded back from the stack frame.
2089  SDValue Rem = DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr,
2090                            MachinePointerInfo(), false, false, false, 0);
2091  Results.push_back(CallInfo.first);
2092  Results.push_back(Rem);
2093}
2094
2095/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
2096/// INT_TO_FP operation of the specified operand when the target requests that
2097/// we expand it.  At this point, we know that the result and operand types are
2098/// legal for the target.
2099SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
2100                                                   SDValue Op0,
2101                                                   EVT DestVT,
2102                                                   DebugLoc dl) {
2103  if (Op0.getValueType() == MVT::i32 && TLI.isTypeLegal(MVT::f64)) {
2104    // simple 32-bit [signed|unsigned] integer to float/double expansion
2105
2106    // Get the stack frame index of a 8 byte buffer.
2107    SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
2108
2109    // word offset constant for Hi/Lo address computation
2110    SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy());
2111    // set up Hi and Lo (into buffer) address based on endian
2112    SDValue Hi = StackSlot;
2113    SDValue Lo = DAG.getNode(ISD::ADD, dl,
2114                             TLI.getPointerTy(), StackSlot, WordOff);
2115    if (TLI.isLittleEndian())
2116      std::swap(Hi, Lo);
2117
2118    // if signed map to unsigned space
2119    SDValue Op0Mapped;
2120    if (isSigned) {
2121      // constant used to invert sign bit (signed to unsigned mapping)
2122      SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32);
2123      Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
2124    } else {
2125      Op0Mapped = Op0;
2126    }
2127    // store the lo of the constructed double - based on integer input
2128    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
2129                                  Op0Mapped, Lo, MachinePointerInfo(),
2130                                  false, false, 0);
2131    // initial hi portion of constructed double
2132    SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
2133    // store the hi of the constructed double - biased exponent
2134    SDValue Store2 = DAG.getStore(Store1, dl, InitialHi, Hi,
2135                                  MachinePointerInfo(),
2136                                  false, false, 0);
2137    // load the constructed double
2138    SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot,
2139                               MachinePointerInfo(), false, false, false, 0);
2140    // FP constant to bias correct the final result
2141    SDValue Bias = DAG.getConstantFP(isSigned ?
2142                                     BitsToDouble(0x4330000080000000ULL) :
2143                                     BitsToDouble(0x4330000000000000ULL),
2144                                     MVT::f64);
2145    // subtract the bias
2146    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2147    // final result
2148    SDValue Result;
2149    // handle final rounding
2150    if (DestVT == MVT::f64) {
2151      // do nothing
2152      Result = Sub;
2153    } else if (DestVT.bitsLT(MVT::f64)) {
2154      Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
2155                           DAG.getIntPtrConstant(0));
2156    } else if (DestVT.bitsGT(MVT::f64)) {
2157      Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
2158    }
2159    return Result;
2160  }
2161  assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2162  // Code below here assumes !isSigned without checking again.
2163
2164  // Implementation of unsigned i64 to f64 following the algorithm in
2165  // __floatundidf in compiler_rt. This implementation has the advantage
2166  // of performing rounding correctly, both in the default rounding mode
2167  // and in all alternate rounding modes.
2168  // TODO: Generalize this for use with other types.
2169  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) {
2170    SDValue TwoP52 =
2171      DAG.getConstant(UINT64_C(0x4330000000000000), MVT::i64);
2172    SDValue TwoP84PlusTwoP52 =
2173      DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), MVT::f64);
2174    SDValue TwoP84 =
2175      DAG.getConstant(UINT64_C(0x4530000000000000), MVT::i64);
2176
2177    SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32);
2178    SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0,
2179                             DAG.getConstant(32, MVT::i64));
2180    SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52);
2181    SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84);
2182    SDValue LoFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, LoOr);
2183    SDValue HiFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, HiOr);
2184    SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt,
2185                                TwoP84PlusTwoP52);
2186    return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub);
2187  }
2188
2189  // Implementation of unsigned i64 to f32.
2190  // TODO: Generalize this for use with other types.
2191  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) {
2192    // For unsigned conversions, convert them to signed conversions using the
2193    // algorithm from the x86_64 __floatundidf in compiler_rt.
2194    if (!isSigned) {
2195      SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Op0);
2196
2197      SDValue ShiftConst =
2198          DAG.getConstant(1, TLI.getShiftAmountTy(Op0.getValueType()));
2199      SDValue Shr = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, ShiftConst);
2200      SDValue AndConst = DAG.getConstant(1, MVT::i64);
2201      SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, AndConst);
2202      SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, Shr);
2203
2204      SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Or);
2205      SDValue Slow = DAG.getNode(ISD::FADD, dl, MVT::f32, SignCvt, SignCvt);
2206
2207      // TODO: This really should be implemented using a branch rather than a
2208      // select.  We happen to get lucky and machinesink does the right
2209      // thing most of the time.  This would be a good candidate for a
2210      //pseudo-op, or, even better, for whole-function isel.
2211      SDValue SignBitTest = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2212        Op0, DAG.getConstant(0, MVT::i64), ISD::SETLT);
2213      return DAG.getNode(ISD::SELECT, dl, MVT::f32, SignBitTest, Slow, Fast);
2214    }
2215
2216    // Otherwise, implement the fully general conversion.
2217
2218    SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2219         DAG.getConstant(UINT64_C(0xfffffffffffff800), MVT::i64));
2220    SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And,
2221         DAG.getConstant(UINT64_C(0x800), MVT::i64));
2222    SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2223         DAG.getConstant(UINT64_C(0x7ff), MVT::i64));
2224    SDValue Ne = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2225                   And2, DAG.getConstant(UINT64_C(0), MVT::i64), ISD::SETNE);
2226    SDValue Sel = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ne, Or, Op0);
2227    SDValue Ge = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2228                   Op0, DAG.getConstant(UINT64_C(0x0020000000000000), MVT::i64),
2229                   ISD::SETUGE);
2230    SDValue Sel2 = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ge, Sel, Op0);
2231    EVT SHVT = TLI.getShiftAmountTy(Sel2.getValueType());
2232
2233    SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2,
2234                             DAG.getConstant(32, SHVT));
2235    SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh);
2236    SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc);
2237    SDValue TwoP32 =
2238      DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), MVT::f64);
2239    SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt);
2240    SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2);
2241    SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo);
2242    SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2);
2243    return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd,
2244                       DAG.getIntPtrConstant(0));
2245  }
2246
2247  SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2248
2249  SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()),
2250                                 Op0, DAG.getConstant(0, Op0.getValueType()),
2251                                 ISD::SETLT);
2252  SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
2253  SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(),
2254                                    SignSet, Four, Zero);
2255
2256  // If the sign bit of the integer is set, the large number will be treated
2257  // as a negative number.  To counteract this, the dynamic code adds an
2258  // offset depending on the data type.
2259  uint64_t FF;
2260  switch (Op0.getValueType().getSimpleVT().SimpleTy) {
2261  default: llvm_unreachable("Unsupported integer type!");
2262  case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
2263  case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
2264  case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
2265  case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
2266  }
2267  if (TLI.isLittleEndian()) FF <<= 32;
2268  Constant *FudgeFactor = ConstantInt::get(
2269                                       Type::getInt64Ty(*DAG.getContext()), FF);
2270
2271  SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
2272  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2273  CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset);
2274  Alignment = std::min(Alignment, 4u);
2275  SDValue FudgeInReg;
2276  if (DestVT == MVT::f32)
2277    FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2278                             MachinePointerInfo::getConstantPool(),
2279                             false, false, false, Alignment);
2280  else {
2281    SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT,
2282                                  DAG.getEntryNode(), CPIdx,
2283                                  MachinePointerInfo::getConstantPool(),
2284                                  MVT::f32, false, false, Alignment);
2285    HandleSDNode Handle(Load);
2286    LegalizeOp(Load.getNode());
2287    FudgeInReg = Handle.getValue();
2288  }
2289
2290  return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2291}
2292
2293/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
2294/// *INT_TO_FP operation of the specified operand when the target requests that
2295/// we promote it.  At this point, we know that the result and operand types are
2296/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2297/// operation that takes a larger input.
2298SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
2299                                                    EVT DestVT,
2300                                                    bool isSigned,
2301                                                    DebugLoc dl) {
2302  // First step, figure out the appropriate *INT_TO_FP operation to use.
2303  EVT NewInTy = LegalOp.getValueType();
2304
2305  unsigned OpToUse = 0;
2306
2307  // Scan for the appropriate larger type to use.
2308  while (1) {
2309    NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2310    assert(NewInTy.isInteger() && "Ran out of possibilities!");
2311
2312    // If the target supports SINT_TO_FP of this type, use it.
2313    if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2314      OpToUse = ISD::SINT_TO_FP;
2315      break;
2316    }
2317    if (isSigned) continue;
2318
2319    // If the target supports UINT_TO_FP of this type, use it.
2320    if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2321      OpToUse = ISD::UINT_TO_FP;
2322      break;
2323    }
2324
2325    // Otherwise, try a larger type.
2326  }
2327
2328  // Okay, we found the operation and type to use.  Zero extend our input to the
2329  // desired type then run the operation on it.
2330  return DAG.getNode(OpToUse, dl, DestVT,
2331                     DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2332                                 dl, NewInTy, LegalOp));
2333}
2334
2335/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
2336/// FP_TO_*INT operation of the specified operand when the target requests that
2337/// we promote it.  At this point, we know that the result and operand types are
2338/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2339/// operation that returns a larger result.
2340SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
2341                                                    EVT DestVT,
2342                                                    bool isSigned,
2343                                                    DebugLoc dl) {
2344  // First step, figure out the appropriate FP_TO*INT operation to use.
2345  EVT NewOutTy = DestVT;
2346
2347  unsigned OpToUse = 0;
2348
2349  // Scan for the appropriate larger type to use.
2350  while (1) {
2351    NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2352    assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2353
2354    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2355      OpToUse = ISD::FP_TO_SINT;
2356      break;
2357    }
2358
2359    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
2360      OpToUse = ISD::FP_TO_UINT;
2361      break;
2362    }
2363
2364    // Otherwise, try a larger type.
2365  }
2366
2367
2368  // Okay, we found the operation and type to use.
2369  SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2370
2371  // Truncate the result of the extended FP_TO_*INT operation to the desired
2372  // size.
2373  return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2374}
2375
2376/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
2377///
2378SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) {
2379  EVT VT = Op.getValueType();
2380  EVT SHVT = TLI.getShiftAmountTy(VT);
2381  SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2382  switch (VT.getSimpleVT().SimpleTy) {
2383  default: llvm_unreachable("Unhandled Expand type in BSWAP!");
2384  case MVT::i16:
2385    Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2386    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2387    return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2388  case MVT::i32:
2389    Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2390    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2391    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2392    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2393    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
2394    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT));
2395    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2396    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2397    return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2398  case MVT::i64:
2399    Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT));
2400    Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT));
2401    Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2402    Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2403    Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2404    Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2405    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT));
2406    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT));
2407    Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
2408    Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
2409    Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
2410    Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
2411    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
2412    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
2413    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2414    Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2415    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2416    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2417    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2418    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2419    return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2420  }
2421}
2422
2423/// SplatByte - Distribute ByteVal over NumBits bits.
2424// FIXME: Move this helper to a common place.
2425static APInt SplatByte(unsigned NumBits, uint8_t ByteVal) {
2426  APInt Val = APInt(NumBits, ByteVal);
2427  unsigned Shift = 8;
2428  for (unsigned i = NumBits; i > 8; i >>= 1) {
2429    Val = (Val << Shift) | Val;
2430    Shift <<= 1;
2431  }
2432  return Val;
2433}
2434
2435/// ExpandBitCount - Expand the specified bitcount instruction into operations.
2436///
2437SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
2438                                             DebugLoc dl) {
2439  switch (Opc) {
2440  default: llvm_unreachable("Cannot expand this yet!");
2441  case ISD::CTPOP: {
2442    EVT VT = Op.getValueType();
2443    EVT ShVT = TLI.getShiftAmountTy(VT);
2444    unsigned Len = VT.getSizeInBits();
2445
2446    assert(VT.isInteger() && Len <= 128 && Len % 8 == 0 &&
2447           "CTPOP not implemented for this type.");
2448
2449    // This is the "best" algorithm from
2450    // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
2451
2452    SDValue Mask55 = DAG.getConstant(SplatByte(Len, 0x55), VT);
2453    SDValue Mask33 = DAG.getConstant(SplatByte(Len, 0x33), VT);
2454    SDValue Mask0F = DAG.getConstant(SplatByte(Len, 0x0F), VT);
2455    SDValue Mask01 = DAG.getConstant(SplatByte(Len, 0x01), VT);
2456
2457    // v = v - ((v >> 1) & 0x55555555...)
2458    Op = DAG.getNode(ISD::SUB, dl, VT, Op,
2459                     DAG.getNode(ISD::AND, dl, VT,
2460                                 DAG.getNode(ISD::SRL, dl, VT, Op,
2461                                             DAG.getConstant(1, ShVT)),
2462                                 Mask55));
2463    // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
2464    Op = DAG.getNode(ISD::ADD, dl, VT,
2465                     DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
2466                     DAG.getNode(ISD::AND, dl, VT,
2467                                 DAG.getNode(ISD::SRL, dl, VT, Op,
2468                                             DAG.getConstant(2, ShVT)),
2469                                 Mask33));
2470    // v = (v + (v >> 4)) & 0x0F0F0F0F...
2471    Op = DAG.getNode(ISD::AND, dl, VT,
2472                     DAG.getNode(ISD::ADD, dl, VT, Op,
2473                                 DAG.getNode(ISD::SRL, dl, VT, Op,
2474                                             DAG.getConstant(4, ShVT))),
2475                     Mask0F);
2476    // v = (v * 0x01010101...) >> (Len - 8)
2477    Op = DAG.getNode(ISD::SRL, dl, VT,
2478                     DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
2479                     DAG.getConstant(Len - 8, ShVT));
2480
2481    return Op;
2482  }
2483  case ISD::CTLZ_ZERO_UNDEF:
2484    // This trivially expands to CTLZ.
2485    return DAG.getNode(ISD::CTLZ, dl, Op.getValueType(), Op);
2486  case ISD::CTLZ: {
2487    // for now, we do this:
2488    // x = x | (x >> 1);
2489    // x = x | (x >> 2);
2490    // ...
2491    // x = x | (x >>16);
2492    // x = x | (x >>32); // for 64-bit input
2493    // return popcount(~x);
2494    //
2495    // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
2496    EVT VT = Op.getValueType();
2497    EVT ShVT = TLI.getShiftAmountTy(VT);
2498    unsigned len = VT.getSizeInBits();
2499    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2500      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2501      Op = DAG.getNode(ISD::OR, dl, VT, Op,
2502                       DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
2503    }
2504    Op = DAG.getNOT(dl, Op, VT);
2505    return DAG.getNode(ISD::CTPOP, dl, VT, Op);
2506  }
2507  case ISD::CTTZ_ZERO_UNDEF:
2508    // This trivially expands to CTTZ.
2509    return DAG.getNode(ISD::CTTZ, dl, Op.getValueType(), Op);
2510  case ISD::CTTZ: {
2511    // for now, we use: { return popcount(~x & (x - 1)); }
2512    // unless the target has ctlz but not ctpop, in which case we use:
2513    // { return 32 - nlz(~x & (x-1)); }
2514    // see also http://www.hackersdelight.org/HDcode/ntz.cc
2515    EVT VT = Op.getValueType();
2516    SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
2517                               DAG.getNOT(dl, Op, VT),
2518                               DAG.getNode(ISD::SUB, dl, VT, Op,
2519                                           DAG.getConstant(1, VT)));
2520    // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
2521    if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
2522        TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
2523      return DAG.getNode(ISD::SUB, dl, VT,
2524                         DAG.getConstant(VT.getSizeInBits(), VT),
2525                         DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
2526    return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
2527  }
2528  }
2529}
2530
2531std::pair <SDValue, SDValue> SelectionDAGLegalize::ExpandAtomic(SDNode *Node) {
2532  unsigned Opc = Node->getOpcode();
2533  MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
2534  RTLIB::Libcall LC;
2535
2536  switch (Opc) {
2537  default:
2538    llvm_unreachable("Unhandled atomic intrinsic Expand!");
2539  case ISD::ATOMIC_SWAP:
2540    switch (VT.SimpleTy) {
2541    default: llvm_unreachable("Unexpected value type for atomic!");
2542    case MVT::i8:  LC = RTLIB::SYNC_LOCK_TEST_AND_SET_1; break;
2543    case MVT::i16: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_2; break;
2544    case MVT::i32: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_4; break;
2545    case MVT::i64: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_8; break;
2546    }
2547    break;
2548  case ISD::ATOMIC_CMP_SWAP:
2549    switch (VT.SimpleTy) {
2550    default: llvm_unreachable("Unexpected value type for atomic!");
2551    case MVT::i8:  LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1; break;
2552    case MVT::i16: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2; break;
2553    case MVT::i32: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4; break;
2554    case MVT::i64: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8; break;
2555    }
2556    break;
2557  case ISD::ATOMIC_LOAD_ADD:
2558    switch (VT.SimpleTy) {
2559    default: llvm_unreachable("Unexpected value type for atomic!");
2560    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_ADD_1; break;
2561    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_ADD_2; break;
2562    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_ADD_4; break;
2563    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_ADD_8; break;
2564    }
2565    break;
2566  case ISD::ATOMIC_LOAD_SUB:
2567    switch (VT.SimpleTy) {
2568    default: llvm_unreachable("Unexpected value type for atomic!");
2569    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_SUB_1; break;
2570    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_SUB_2; break;
2571    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_SUB_4; break;
2572    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_SUB_8; break;
2573    }
2574    break;
2575  case ISD::ATOMIC_LOAD_AND:
2576    switch (VT.SimpleTy) {
2577    default: llvm_unreachable("Unexpected value type for atomic!");
2578    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_AND_1; break;
2579    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_AND_2; break;
2580    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_AND_4; break;
2581    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_AND_8; break;
2582    }
2583    break;
2584  case ISD::ATOMIC_LOAD_OR:
2585    switch (VT.SimpleTy) {
2586    default: llvm_unreachable("Unexpected value type for atomic!");
2587    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_OR_1; break;
2588    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_OR_2; break;
2589    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_OR_4; break;
2590    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_OR_8; break;
2591    }
2592    break;
2593  case ISD::ATOMIC_LOAD_XOR:
2594    switch (VT.SimpleTy) {
2595    default: llvm_unreachable("Unexpected value type for atomic!");
2596    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_XOR_1; break;
2597    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_XOR_2; break;
2598    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_XOR_4; break;
2599    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_XOR_8; break;
2600    }
2601    break;
2602  case ISD::ATOMIC_LOAD_NAND:
2603    switch (VT.SimpleTy) {
2604    default: llvm_unreachable("Unexpected value type for atomic!");
2605    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_NAND_1; break;
2606    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_NAND_2; break;
2607    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_NAND_4; break;
2608    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_NAND_8; break;
2609    }
2610    break;
2611  }
2612
2613  return ExpandChainLibCall(LC, Node, false);
2614}
2615
2616void SelectionDAGLegalize::ExpandNode(SDNode *Node) {
2617  SmallVector<SDValue, 8> Results;
2618  DebugLoc dl = Node->getDebugLoc();
2619  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2620  switch (Node->getOpcode()) {
2621  case ISD::CTPOP:
2622  case ISD::CTLZ:
2623  case ISD::CTLZ_ZERO_UNDEF:
2624  case ISD::CTTZ:
2625  case ISD::CTTZ_ZERO_UNDEF:
2626    Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
2627    Results.push_back(Tmp1);
2628    break;
2629  case ISD::BSWAP:
2630    Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2631    break;
2632  case ISD::FRAMEADDR:
2633  case ISD::RETURNADDR:
2634  case ISD::FRAME_TO_ARGS_OFFSET:
2635    Results.push_back(DAG.getConstant(0, Node->getValueType(0)));
2636    break;
2637  case ISD::FLT_ROUNDS_:
2638    Results.push_back(DAG.getConstant(1, Node->getValueType(0)));
2639    break;
2640  case ISD::EH_RETURN:
2641  case ISD::EH_LABEL:
2642  case ISD::PREFETCH:
2643  case ISD::VAEND:
2644  case ISD::EH_SJLJ_LONGJMP:
2645    // If the target didn't expand these, there's nothing to do, so just
2646    // preserve the chain and be done.
2647    Results.push_back(Node->getOperand(0));
2648    break;
2649  case ISD::EH_SJLJ_SETJMP:
2650    // If the target didn't expand this, just return 'zero' and preserve the
2651    // chain.
2652    Results.push_back(DAG.getConstant(0, MVT::i32));
2653    Results.push_back(Node->getOperand(0));
2654    break;
2655  case ISD::ATOMIC_FENCE:
2656  case ISD::MEMBARRIER: {
2657    // If the target didn't lower this, lower it to '__sync_synchronize()' call
2658    // FIXME: handle "fence singlethread" more efficiently.
2659    TargetLowering::ArgListTy Args;
2660    TargetLowering::
2661    CallLoweringInfo CLI(Node->getOperand(0),
2662                         Type::getVoidTy(*DAG.getContext()),
2663                      false, false, false, false, 0, CallingConv::C,
2664                      /*isTailCall=*/false,
2665                      /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
2666                      DAG.getExternalSymbol("__sync_synchronize",
2667                                            TLI.getPointerTy()),
2668                      Args, DAG, dl);
2669    std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
2670
2671    Results.push_back(CallResult.second);
2672    break;
2673  }
2674  case ISD::ATOMIC_LOAD: {
2675    // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP.
2676    SDValue Zero = DAG.getConstant(0, Node->getValueType(0));
2677    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
2678                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
2679                                 Node->getOperand(0),
2680                                 Node->getOperand(1), Zero, Zero,
2681                                 cast<AtomicSDNode>(Node)->getMemOperand(),
2682                                 cast<AtomicSDNode>(Node)->getOrdering(),
2683                                 cast<AtomicSDNode>(Node)->getSynchScope());
2684    Results.push_back(Swap.getValue(0));
2685    Results.push_back(Swap.getValue(1));
2686    break;
2687  }
2688  case ISD::ATOMIC_STORE: {
2689    // There is no libcall for atomic store; fake it with ATOMIC_SWAP.
2690    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
2691                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
2692                                 Node->getOperand(0),
2693                                 Node->getOperand(1), Node->getOperand(2),
2694                                 cast<AtomicSDNode>(Node)->getMemOperand(),
2695                                 cast<AtomicSDNode>(Node)->getOrdering(),
2696                                 cast<AtomicSDNode>(Node)->getSynchScope());
2697    Results.push_back(Swap.getValue(1));
2698    break;
2699  }
2700  // By default, atomic intrinsics are marked Legal and lowered. Targets
2701  // which don't support them directly, however, may want libcalls, in which
2702  // case they mark them Expand, and we get here.
2703  case ISD::ATOMIC_SWAP:
2704  case ISD::ATOMIC_LOAD_ADD:
2705  case ISD::ATOMIC_LOAD_SUB:
2706  case ISD::ATOMIC_LOAD_AND:
2707  case ISD::ATOMIC_LOAD_OR:
2708  case ISD::ATOMIC_LOAD_XOR:
2709  case ISD::ATOMIC_LOAD_NAND:
2710  case ISD::ATOMIC_LOAD_MIN:
2711  case ISD::ATOMIC_LOAD_MAX:
2712  case ISD::ATOMIC_LOAD_UMIN:
2713  case ISD::ATOMIC_LOAD_UMAX:
2714  case ISD::ATOMIC_CMP_SWAP: {
2715    std::pair<SDValue, SDValue> Tmp = ExpandAtomic(Node);
2716    Results.push_back(Tmp.first);
2717    Results.push_back(Tmp.second);
2718    break;
2719  }
2720  case ISD::DYNAMIC_STACKALLOC:
2721    ExpandDYNAMIC_STACKALLOC(Node, Results);
2722    break;
2723  case ISD::MERGE_VALUES:
2724    for (unsigned i = 0; i < Node->getNumValues(); i++)
2725      Results.push_back(Node->getOperand(i));
2726    break;
2727  case ISD::UNDEF: {
2728    EVT VT = Node->getValueType(0);
2729    if (VT.isInteger())
2730      Results.push_back(DAG.getConstant(0, VT));
2731    else {
2732      assert(VT.isFloatingPoint() && "Unknown value type!");
2733      Results.push_back(DAG.getConstantFP(0, VT));
2734    }
2735    break;
2736  }
2737  case ISD::TRAP: {
2738    // If this operation is not supported, lower it to 'abort()' call
2739    TargetLowering::ArgListTy Args;
2740    TargetLowering::
2741    CallLoweringInfo CLI(Node->getOperand(0),
2742                         Type::getVoidTy(*DAG.getContext()),
2743                      false, false, false, false, 0, CallingConv::C,
2744                      /*isTailCall=*/false,
2745                      /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
2746                      DAG.getExternalSymbol("abort", TLI.getPointerTy()),
2747                      Args, DAG, dl);
2748    std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
2749
2750    Results.push_back(CallResult.second);
2751    break;
2752  }
2753  case ISD::FP_ROUND:
2754  case ISD::BITCAST:
2755    Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
2756                            Node->getValueType(0), dl);
2757    Results.push_back(Tmp1);
2758    break;
2759  case ISD::FP_EXTEND:
2760    Tmp1 = EmitStackConvert(Node->getOperand(0),
2761                            Node->getOperand(0).getValueType(),
2762                            Node->getValueType(0), dl);
2763    Results.push_back(Tmp1);
2764    break;
2765  case ISD::SIGN_EXTEND_INREG: {
2766    // NOTE: we could fall back on load/store here too for targets without
2767    // SAR.  However, it is doubtful that any exist.
2768    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2769    EVT VT = Node->getValueType(0);
2770    EVT ShiftAmountTy = TLI.getShiftAmountTy(VT);
2771    if (VT.isVector())
2772      ShiftAmountTy = VT;
2773    unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
2774                        ExtraVT.getScalarType().getSizeInBits();
2775    SDValue ShiftCst = DAG.getConstant(BitsDiff, ShiftAmountTy);
2776    Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
2777                       Node->getOperand(0), ShiftCst);
2778    Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
2779    Results.push_back(Tmp1);
2780    break;
2781  }
2782  case ISD::FP_ROUND_INREG: {
2783    // The only way we can lower this is to turn it into a TRUNCSTORE,
2784    // EXTLOAD pair, targeting a temporary location (a stack slot).
2785
2786    // NOTE: there is a choice here between constantly creating new stack
2787    // slots and always reusing the same one.  We currently always create
2788    // new ones, as reuse may inhibit scheduling.
2789    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2790    Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
2791                            Node->getValueType(0), dl);
2792    Results.push_back(Tmp1);
2793    break;
2794  }
2795  case ISD::SINT_TO_FP:
2796  case ISD::UINT_TO_FP:
2797    Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
2798                                Node->getOperand(0), Node->getValueType(0), dl);
2799    Results.push_back(Tmp1);
2800    break;
2801  case ISD::FP_TO_UINT: {
2802    SDValue True, False;
2803    EVT VT =  Node->getOperand(0).getValueType();
2804    EVT NVT = Node->getValueType(0);
2805    APFloat apf(APInt::getNullValue(VT.getSizeInBits()));
2806    APInt x = APInt::getSignBit(NVT.getSizeInBits());
2807    (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
2808    Tmp1 = DAG.getConstantFP(apf, VT);
2809    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT),
2810                        Node->getOperand(0),
2811                        Tmp1, ISD::SETLT);
2812    True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
2813    False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
2814                        DAG.getNode(ISD::FSUB, dl, VT,
2815                                    Node->getOperand(0), Tmp1));
2816    False = DAG.getNode(ISD::XOR, dl, NVT, False,
2817                        DAG.getConstant(x, NVT));
2818    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False);
2819    Results.push_back(Tmp1);
2820    break;
2821  }
2822  case ISD::VAARG: {
2823    const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2824    EVT VT = Node->getValueType(0);
2825    Tmp1 = Node->getOperand(0);
2826    Tmp2 = Node->getOperand(1);
2827    unsigned Align = Node->getConstantOperandVal(3);
2828
2829    SDValue VAListLoad = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2,
2830                                     MachinePointerInfo(V),
2831                                     false, false, false, 0);
2832    SDValue VAList = VAListLoad;
2833
2834    if (Align > TLI.getMinStackArgumentAlignment()) {
2835      assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
2836
2837      VAList = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2838                           DAG.getConstant(Align - 1,
2839                                           TLI.getPointerTy()));
2840
2841      VAList = DAG.getNode(ISD::AND, dl, TLI.getPointerTy(), VAList,
2842                           DAG.getConstant(-(int64_t)Align,
2843                                           TLI.getPointerTy()));
2844    }
2845
2846    // Increment the pointer, VAList, to the next vaarg
2847    Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2848                       DAG.getConstant(TLI.getDataLayout()->
2849                          getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())),
2850                                       TLI.getPointerTy()));
2851    // Store the incremented VAList to the legalized pointer
2852    Tmp3 = DAG.getStore(VAListLoad.getValue(1), dl, Tmp3, Tmp2,
2853                        MachinePointerInfo(V), false, false, 0);
2854    // Load the actual argument out of the pointer VAList
2855    Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, MachinePointerInfo(),
2856                                  false, false, false, 0));
2857    Results.push_back(Results[0].getValue(1));
2858    break;
2859  }
2860  case ISD::VACOPY: {
2861    // This defaults to loading a pointer from the input and storing it to the
2862    // output, returning the chain.
2863    const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2864    const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2865    Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0),
2866                       Node->getOperand(2), MachinePointerInfo(VS),
2867                       false, false, false, 0);
2868    Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2869                        MachinePointerInfo(VD), false, false, 0);
2870    Results.push_back(Tmp1);
2871    break;
2872  }
2873  case ISD::EXTRACT_VECTOR_ELT:
2874    if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
2875      // This must be an access of the only element.  Return it.
2876      Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0),
2877                         Node->getOperand(0));
2878    else
2879      Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
2880    Results.push_back(Tmp1);
2881    break;
2882  case ISD::EXTRACT_SUBVECTOR:
2883    Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
2884    break;
2885  case ISD::INSERT_SUBVECTOR:
2886    Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0)));
2887    break;
2888  case ISD::CONCAT_VECTORS: {
2889    Results.push_back(ExpandVectorBuildThroughStack(Node));
2890    break;
2891  }
2892  case ISD::SCALAR_TO_VECTOR:
2893    Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
2894    break;
2895  case ISD::INSERT_VECTOR_ELT:
2896    Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
2897                                              Node->getOperand(1),
2898                                              Node->getOperand(2), dl));
2899    break;
2900  case ISD::VECTOR_SHUFFLE: {
2901    SmallVector<int, 32> NewMask;
2902    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
2903
2904    EVT VT = Node->getValueType(0);
2905    EVT EltVT = VT.getVectorElementType();
2906    SDValue Op0 = Node->getOperand(0);
2907    SDValue Op1 = Node->getOperand(1);
2908    if (!TLI.isTypeLegal(EltVT)) {
2909
2910      EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT);
2911
2912      // BUILD_VECTOR operands are allowed to be wider than the element type.
2913      // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept it
2914      if (NewEltVT.bitsLT(EltVT)) {
2915
2916        // Convert shuffle node.
2917        // If original node was v4i64 and the new EltVT is i32,
2918        // cast operands to v8i32 and re-build the mask.
2919
2920        // Calculate new VT, the size of the new VT should be equal to original.
2921        EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltVT,
2922                                      VT.getSizeInBits()/NewEltVT.getSizeInBits());
2923        assert(NewVT.bitsEq(VT));
2924
2925        // cast operands to new VT
2926        Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0);
2927        Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1);
2928
2929        // Convert the shuffle mask
2930        unsigned int factor = NewVT.getVectorNumElements()/VT.getVectorNumElements();
2931
2932        // EltVT gets smaller
2933        assert(factor > 0);
2934
2935        for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
2936          if (Mask[i] < 0) {
2937            for (unsigned fi = 0; fi < factor; ++fi)
2938              NewMask.push_back(Mask[i]);
2939          }
2940          else {
2941            for (unsigned fi = 0; fi < factor; ++fi)
2942              NewMask.push_back(Mask[i]*factor+fi);
2943          }
2944        }
2945        Mask = NewMask;
2946        VT = NewVT;
2947      }
2948      EltVT = NewEltVT;
2949    }
2950    unsigned NumElems = VT.getVectorNumElements();
2951    SmallVector<SDValue, 16> Ops;
2952    for (unsigned i = 0; i != NumElems; ++i) {
2953      if (Mask[i] < 0) {
2954        Ops.push_back(DAG.getUNDEF(EltVT));
2955        continue;
2956      }
2957      unsigned Idx = Mask[i];
2958      if (Idx < NumElems)
2959        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2960                                  Op0,
2961                                  DAG.getIntPtrConstant(Idx)));
2962      else
2963        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2964                                  Op1,
2965                                  DAG.getIntPtrConstant(Idx - NumElems)));
2966    }
2967
2968    Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size());
2969    // We may have changed the BUILD_VECTOR type. Cast it back to the Node type.
2970    Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1);
2971    Results.push_back(Tmp1);
2972    break;
2973  }
2974  case ISD::EXTRACT_ELEMENT: {
2975    EVT OpTy = Node->getOperand(0).getValueType();
2976    if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
2977      // 1 -> Hi
2978      Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
2979                         DAG.getConstant(OpTy.getSizeInBits()/2,
2980                    TLI.getShiftAmountTy(Node->getOperand(0).getValueType())));
2981      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
2982    } else {
2983      // 0 -> Lo
2984      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
2985                         Node->getOperand(0));
2986    }
2987    Results.push_back(Tmp1);
2988    break;
2989  }
2990  case ISD::STACKSAVE:
2991    // Expand to CopyFromReg if the target set
2992    // StackPointerRegisterToSaveRestore.
2993    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2994      Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
2995                                           Node->getValueType(0)));
2996      Results.push_back(Results[0].getValue(1));
2997    } else {
2998      Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
2999      Results.push_back(Node->getOperand(0));
3000    }
3001    break;
3002  case ISD::STACKRESTORE:
3003    // Expand to CopyToReg if the target set
3004    // StackPointerRegisterToSaveRestore.
3005    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
3006      Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
3007                                         Node->getOperand(1)));
3008    } else {
3009      Results.push_back(Node->getOperand(0));
3010    }
3011    break;
3012  case ISD::FCOPYSIGN:
3013    Results.push_back(ExpandFCOPYSIGN(Node));
3014    break;
3015  case ISD::FNEG:
3016    // Expand Y = FNEG(X) ->  Y = SUB -0.0, X
3017    Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0));
3018    Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
3019                       Node->getOperand(0));
3020    Results.push_back(Tmp1);
3021    break;
3022  case ISD::FABS: {
3023    // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
3024    EVT VT = Node->getValueType(0);
3025    Tmp1 = Node->getOperand(0);
3026    Tmp2 = DAG.getConstantFP(0.0, VT);
3027    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
3028                        Tmp1, Tmp2, ISD::SETUGT);
3029    Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1);
3030    Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3);
3031    Results.push_back(Tmp1);
3032    break;
3033  }
3034  case ISD::FSQRT:
3035    Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
3036                                      RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128));
3037    break;
3038  case ISD::FSIN:
3039    Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
3040                                      RTLIB::SIN_F80, RTLIB::SIN_PPCF128));
3041    break;
3042  case ISD::FCOS:
3043    Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
3044                                      RTLIB::COS_F80, RTLIB::COS_PPCF128));
3045    break;
3046  case ISD::FLOG:
3047    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
3048                                      RTLIB::LOG_F80, RTLIB::LOG_PPCF128));
3049    break;
3050  case ISD::FLOG2:
3051    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
3052                                      RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128));
3053    break;
3054  case ISD::FLOG10:
3055    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
3056                                      RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128));
3057    break;
3058  case ISD::FEXP:
3059    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
3060                                      RTLIB::EXP_F80, RTLIB::EXP_PPCF128));
3061    break;
3062  case ISD::FEXP2:
3063    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
3064                                      RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128));
3065    break;
3066  case ISD::FTRUNC:
3067    Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
3068                                      RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128));
3069    break;
3070  case ISD::FFLOOR:
3071    Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
3072                                      RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128));
3073    break;
3074  case ISD::FCEIL:
3075    Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
3076                                      RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128));
3077    break;
3078  case ISD::FRINT:
3079    Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
3080                                      RTLIB::RINT_F80, RTLIB::RINT_PPCF128));
3081    break;
3082  case ISD::FNEARBYINT:
3083    Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
3084                                      RTLIB::NEARBYINT_F64,
3085                                      RTLIB::NEARBYINT_F80,
3086                                      RTLIB::NEARBYINT_PPCF128));
3087    break;
3088  case ISD::FPOWI:
3089    Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
3090                                      RTLIB::POWI_F80, RTLIB::POWI_PPCF128));
3091    break;
3092  case ISD::FPOW:
3093    Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
3094                                      RTLIB::POW_F80, RTLIB::POW_PPCF128));
3095    break;
3096  case ISD::FDIV:
3097    Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
3098                                      RTLIB::DIV_F80, RTLIB::DIV_PPCF128));
3099    break;
3100  case ISD::FREM:
3101    Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
3102                                      RTLIB::REM_F80, RTLIB::REM_PPCF128));
3103    break;
3104  case ISD::FMA:
3105    Results.push_back(ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64,
3106                                      RTLIB::FMA_F80, RTLIB::FMA_PPCF128));
3107    break;
3108  case ISD::FP16_TO_FP32:
3109    Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
3110    break;
3111  case ISD::FP32_TO_FP16:
3112    Results.push_back(ExpandLibCall(RTLIB::FPROUND_F32_F16, Node, false));
3113    break;
3114  case ISD::ConstantFP: {
3115    ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
3116    // Check to see if this FP immediate is already legal.
3117    // If this is a legal constant, turn it into a TargetConstantFP node.
3118    if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0)))
3119      Results.push_back(ExpandConstantFP(CFP, true));
3120    break;
3121  }
3122  case ISD::EHSELECTION: {
3123    unsigned Reg = TLI.getExceptionSelectorRegister();
3124    assert(Reg && "Can't expand to unknown register!");
3125    Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg,
3126                                         Node->getValueType(0)));
3127    Results.push_back(Results[0].getValue(1));
3128    break;
3129  }
3130  case ISD::EXCEPTIONADDR: {
3131    unsigned Reg = TLI.getExceptionPointerRegister();
3132    assert(Reg && "Can't expand to unknown register!");
3133    Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg,
3134                                         Node->getValueType(0)));
3135    Results.push_back(Results[0].getValue(1));
3136    break;
3137  }
3138  case ISD::FSUB: {
3139    EVT VT = Node->getValueType(0);
3140    assert(TLI.isOperationLegalOrCustom(ISD::FADD, VT) &&
3141           TLI.isOperationLegalOrCustom(ISD::FNEG, VT) &&
3142           "Don't know how to expand this FP subtraction!");
3143    Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1));
3144    Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1);
3145    Results.push_back(Tmp1);
3146    break;
3147  }
3148  case ISD::SUB: {
3149    EVT VT = Node->getValueType(0);
3150    assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
3151           TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
3152           "Don't know how to expand this subtraction!");
3153    Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
3154               DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT));
3155    Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, VT));
3156    Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
3157    break;
3158  }
3159  case ISD::UREM:
3160  case ISD::SREM: {
3161    EVT VT = Node->getValueType(0);
3162    SDVTList VTs = DAG.getVTList(VT, VT);
3163    bool isSigned = Node->getOpcode() == ISD::SREM;
3164    unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
3165    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3166    Tmp2 = Node->getOperand(0);
3167    Tmp3 = Node->getOperand(1);
3168    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) ||
3169        (isDivRemLibcallAvailable(Node, isSigned, TLI) &&
3170         // If div is legal, it's better to do the normal expansion
3171         !TLI.isOperationLegalOrCustom(DivOpc, Node->getValueType(0)) &&
3172         useDivRem(Node, isSigned, false))) {
3173      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
3174    } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
3175      // X % Y -> X-X/Y*Y
3176      Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
3177      Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
3178      Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
3179    } else if (isSigned)
3180      Tmp1 = ExpandIntLibCall(Node, true,
3181                              RTLIB::SREM_I8,
3182                              RTLIB::SREM_I16, RTLIB::SREM_I32,
3183                              RTLIB::SREM_I64, RTLIB::SREM_I128);
3184    else
3185      Tmp1 = ExpandIntLibCall(Node, false,
3186                              RTLIB::UREM_I8,
3187                              RTLIB::UREM_I16, RTLIB::UREM_I32,
3188                              RTLIB::UREM_I64, RTLIB::UREM_I128);
3189    Results.push_back(Tmp1);
3190    break;
3191  }
3192  case ISD::UDIV:
3193  case ISD::SDIV: {
3194    bool isSigned = Node->getOpcode() == ISD::SDIV;
3195    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3196    EVT VT = Node->getValueType(0);
3197    SDVTList VTs = DAG.getVTList(VT, VT);
3198    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) ||
3199        (isDivRemLibcallAvailable(Node, isSigned, TLI) &&
3200         useDivRem(Node, isSigned, true)))
3201      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
3202                         Node->getOperand(1));
3203    else if (isSigned)
3204      Tmp1 = ExpandIntLibCall(Node, true,
3205                              RTLIB::SDIV_I8,
3206                              RTLIB::SDIV_I16, RTLIB::SDIV_I32,
3207                              RTLIB::SDIV_I64, RTLIB::SDIV_I128);
3208    else
3209      Tmp1 = ExpandIntLibCall(Node, false,
3210                              RTLIB::UDIV_I8,
3211                              RTLIB::UDIV_I16, RTLIB::UDIV_I32,
3212                              RTLIB::UDIV_I64, RTLIB::UDIV_I128);
3213    Results.push_back(Tmp1);
3214    break;
3215  }
3216  case ISD::MULHU:
3217  case ISD::MULHS: {
3218    unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
3219                                                              ISD::SMUL_LOHI;
3220    EVT VT = Node->getValueType(0);
3221    SDVTList VTs = DAG.getVTList(VT, VT);
3222    assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
3223           "If this wasn't legal, it shouldn't have been created!");
3224    Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
3225                       Node->getOperand(1));
3226    Results.push_back(Tmp1.getValue(1));
3227    break;
3228  }
3229  case ISD::SDIVREM:
3230  case ISD::UDIVREM:
3231    // Expand into divrem libcall
3232    ExpandDivRemLibCall(Node, Results);
3233    break;
3234  case ISD::MUL: {
3235    EVT VT = Node->getValueType(0);
3236    SDVTList VTs = DAG.getVTList(VT, VT);
3237    // See if multiply or divide can be lowered using two-result operations.
3238    // We just need the low half of the multiply; try both the signed
3239    // and unsigned forms. If the target supports both SMUL_LOHI and
3240    // UMUL_LOHI, form a preference by checking which forms of plain
3241    // MULH it supports.
3242    bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
3243    bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
3244    bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
3245    bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
3246    unsigned OpToUse = 0;
3247    if (HasSMUL_LOHI && !HasMULHS) {
3248      OpToUse = ISD::SMUL_LOHI;
3249    } else if (HasUMUL_LOHI && !HasMULHU) {
3250      OpToUse = ISD::UMUL_LOHI;
3251    } else if (HasSMUL_LOHI) {
3252      OpToUse = ISD::SMUL_LOHI;
3253    } else if (HasUMUL_LOHI) {
3254      OpToUse = ISD::UMUL_LOHI;
3255    }
3256    if (OpToUse) {
3257      Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
3258                                    Node->getOperand(1)));
3259      break;
3260    }
3261    Tmp1 = ExpandIntLibCall(Node, false,
3262                            RTLIB::MUL_I8,
3263                            RTLIB::MUL_I16, RTLIB::MUL_I32,
3264                            RTLIB::MUL_I64, RTLIB::MUL_I128);
3265    Results.push_back(Tmp1);
3266    break;
3267  }
3268  case ISD::SADDO:
3269  case ISD::SSUBO: {
3270    SDValue LHS = Node->getOperand(0);
3271    SDValue RHS = Node->getOperand(1);
3272    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
3273                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3274                              LHS, RHS);
3275    Results.push_back(Sum);
3276    EVT OType = Node->getValueType(1);
3277
3278    SDValue Zero = DAG.getConstant(0, LHS.getValueType());
3279
3280    //   LHSSign -> LHS >= 0
3281    //   RHSSign -> RHS >= 0
3282    //   SumSign -> Sum >= 0
3283    //
3284    //   Add:
3285    //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
3286    //   Sub:
3287    //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
3288    //
3289    SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
3290    SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
3291    SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
3292                                      Node->getOpcode() == ISD::SADDO ?
3293                                      ISD::SETEQ : ISD::SETNE);
3294
3295    SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
3296    SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
3297
3298    SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
3299    Results.push_back(Cmp);
3300    break;
3301  }
3302  case ISD::UADDO:
3303  case ISD::USUBO: {
3304    SDValue LHS = Node->getOperand(0);
3305    SDValue RHS = Node->getOperand(1);
3306    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
3307                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3308                              LHS, RHS);
3309    Results.push_back(Sum);
3310    Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS,
3311                                   Node->getOpcode () == ISD::UADDO ?
3312                                   ISD::SETULT : ISD::SETUGT));
3313    break;
3314  }
3315  case ISD::UMULO:
3316  case ISD::SMULO: {
3317    EVT VT = Node->getValueType(0);
3318    EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
3319    SDValue LHS = Node->getOperand(0);
3320    SDValue RHS = Node->getOperand(1);
3321    SDValue BottomHalf;
3322    SDValue TopHalf;
3323    static const unsigned Ops[2][3] =
3324        { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
3325          { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
3326    bool isSigned = Node->getOpcode() == ISD::SMULO;
3327    if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
3328      BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
3329      TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
3330    } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
3331      BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
3332                               RHS);
3333      TopHalf = BottomHalf.getValue(1);
3334    } else if (TLI.isTypeLegal(EVT::getIntegerVT(*DAG.getContext(),
3335                                                 VT.getSizeInBits() * 2))) {
3336      LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
3337      RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
3338      Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
3339      BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3340                               DAG.getIntPtrConstant(0));
3341      TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3342                            DAG.getIntPtrConstant(1));
3343    } else {
3344      // We can fall back to a libcall with an illegal type for the MUL if we
3345      // have a libcall big enough.
3346      // Also, we can fall back to a division in some cases, but that's a big
3347      // performance hit in the general case.
3348      RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
3349      if (WideVT == MVT::i16)
3350        LC = RTLIB::MUL_I16;
3351      else if (WideVT == MVT::i32)
3352        LC = RTLIB::MUL_I32;
3353      else if (WideVT == MVT::i64)
3354        LC = RTLIB::MUL_I64;
3355      else if (WideVT == MVT::i128)
3356        LC = RTLIB::MUL_I128;
3357      assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
3358
3359      // The high part is obtained by SRA'ing all but one of the bits of low
3360      // part.
3361      unsigned LoSize = VT.getSizeInBits();
3362      SDValue HiLHS = DAG.getNode(ISD::SRA, dl, VT, RHS,
3363                                DAG.getConstant(LoSize-1, TLI.getPointerTy()));
3364      SDValue HiRHS = DAG.getNode(ISD::SRA, dl, VT, LHS,
3365                                DAG.getConstant(LoSize-1, TLI.getPointerTy()));
3366
3367      // Here we're passing the 2 arguments explicitly as 4 arguments that are
3368      // pre-lowered to the correct types. This all depends upon WideVT not
3369      // being a legal type for the architecture and thus has to be split to
3370      // two arguments.
3371      SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
3372      SDValue Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl);
3373      BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret,
3374                               DAG.getIntPtrConstant(0));
3375      TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret,
3376                            DAG.getIntPtrConstant(1));
3377      // Ret is a node with an illegal type. Because such things are not
3378      // generally permitted during this phase of legalization, delete the
3379      // node. The above EXTRACT_ELEMENT nodes should have been folded.
3380      DAG.DeleteNode(Ret.getNode());
3381    }
3382
3383    if (isSigned) {
3384      Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1,
3385                             TLI.getShiftAmountTy(BottomHalf.getValueType()));
3386      Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1);
3387      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1,
3388                             ISD::SETNE);
3389    } else {
3390      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf,
3391                             DAG.getConstant(0, VT), ISD::SETNE);
3392    }
3393    Results.push_back(BottomHalf);
3394    Results.push_back(TopHalf);
3395    break;
3396  }
3397  case ISD::BUILD_PAIR: {
3398    EVT PairTy = Node->getValueType(0);
3399    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
3400    Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
3401    Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
3402                       DAG.getConstant(PairTy.getSizeInBits()/2,
3403                                       TLI.getShiftAmountTy(PairTy)));
3404    Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
3405    break;
3406  }
3407  case ISD::SELECT:
3408    Tmp1 = Node->getOperand(0);
3409    Tmp2 = Node->getOperand(1);
3410    Tmp3 = Node->getOperand(2);
3411    if (Tmp1.getOpcode() == ISD::SETCC) {
3412      Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
3413                             Tmp2, Tmp3,
3414                             cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
3415    } else {
3416      Tmp1 = DAG.getSelectCC(dl, Tmp1,
3417                             DAG.getConstant(0, Tmp1.getValueType()),
3418                             Tmp2, Tmp3, ISD::SETNE);
3419    }
3420    Results.push_back(Tmp1);
3421    break;
3422  case ISD::BR_JT: {
3423    SDValue Chain = Node->getOperand(0);
3424    SDValue Table = Node->getOperand(1);
3425    SDValue Index = Node->getOperand(2);
3426
3427    EVT PTy = TLI.getPointerTy();
3428
3429    const DataLayout &TD = *TLI.getDataLayout();
3430    unsigned EntrySize =
3431      DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
3432
3433    Index = DAG.getNode(ISD::MUL, dl, PTy,
3434                        Index, DAG.getConstant(EntrySize, PTy));
3435    SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
3436
3437    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
3438    SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr,
3439                                MachinePointerInfo::getJumpTable(), MemVT,
3440                                false, false, 0);
3441    Addr = LD;
3442    if (TM.getRelocationModel() == Reloc::PIC_) {
3443      // For PIC, the sequence is:
3444      // BRIND(load(Jumptable + index) + RelocBase)
3445      // RelocBase can be JumpTable, GOT or some sort of global base.
3446      Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
3447                          TLI.getPICJumpTableRelocBase(Table, DAG));
3448    }
3449    Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
3450    Results.push_back(Tmp1);
3451    break;
3452  }
3453  case ISD::BRCOND:
3454    // Expand brcond's setcc into its constituent parts and create a BR_CC
3455    // Node.
3456    Tmp1 = Node->getOperand(0);
3457    Tmp2 = Node->getOperand(1);
3458    if (Tmp2.getOpcode() == ISD::SETCC) {
3459      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
3460                         Tmp1, Tmp2.getOperand(2),
3461                         Tmp2.getOperand(0), Tmp2.getOperand(1),
3462                         Node->getOperand(2));
3463    } else {
3464      // We test only the i1 bit.  Skip the AND if UNDEF.
3465      Tmp3 = (Tmp2.getOpcode() == ISD::UNDEF) ? Tmp2 :
3466        DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2,
3467                    DAG.getConstant(1, Tmp2.getValueType()));
3468      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
3469                         DAG.getCondCode(ISD::SETNE), Tmp3,
3470                         DAG.getConstant(0, Tmp3.getValueType()),
3471                         Node->getOperand(2));
3472    }
3473    Results.push_back(Tmp1);
3474    break;
3475  case ISD::SETCC: {
3476    Tmp1 = Node->getOperand(0);
3477    Tmp2 = Node->getOperand(1);
3478    Tmp3 = Node->getOperand(2);
3479    LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl);
3480
3481    // If we expanded the SETCC into an AND/OR, return the new node
3482    if (Tmp2.getNode() == 0) {
3483      Results.push_back(Tmp1);
3484      break;
3485    }
3486
3487    // Otherwise, SETCC for the given comparison type must be completely
3488    // illegal; expand it into a SELECT_CC.
3489    EVT VT = Node->getValueType(0);
3490    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
3491                       DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3);
3492    Results.push_back(Tmp1);
3493    break;
3494  }
3495  case ISD::SELECT_CC: {
3496    Tmp1 = Node->getOperand(0);   // LHS
3497    Tmp2 = Node->getOperand(1);   // RHS
3498    Tmp3 = Node->getOperand(2);   // True
3499    Tmp4 = Node->getOperand(3);   // False
3500    SDValue CC = Node->getOperand(4);
3501
3502    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()),
3503                          Tmp1, Tmp2, CC, dl);
3504
3505    assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!");
3506    Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
3507    CC = DAG.getCondCode(ISD::SETNE);
3508    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2,
3509                       Tmp3, Tmp4, CC);
3510    Results.push_back(Tmp1);
3511    break;
3512  }
3513  case ISD::BR_CC: {
3514    Tmp1 = Node->getOperand(0);              // Chain
3515    Tmp2 = Node->getOperand(2);              // LHS
3516    Tmp3 = Node->getOperand(3);              // RHS
3517    Tmp4 = Node->getOperand(1);              // CC
3518
3519    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()),
3520                          Tmp2, Tmp3, Tmp4, dl);
3521
3522    assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!");
3523    Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
3524    Tmp4 = DAG.getCondCode(ISD::SETNE);
3525    Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2,
3526                       Tmp3, Node->getOperand(4));
3527    Results.push_back(Tmp1);
3528    break;
3529  }
3530  case ISD::BUILD_VECTOR:
3531    Results.push_back(ExpandBUILD_VECTOR(Node));
3532    break;
3533  case ISD::SRA:
3534  case ISD::SRL:
3535  case ISD::SHL: {
3536    // Scalarize vector SRA/SRL/SHL.
3537    EVT VT = Node->getValueType(0);
3538    assert(VT.isVector() && "Unable to legalize non-vector shift");
3539    assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal");
3540    unsigned NumElem = VT.getVectorNumElements();
3541
3542    SmallVector<SDValue, 8> Scalars;
3543    for (unsigned Idx = 0; Idx < NumElem; Idx++) {
3544      SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
3545                               VT.getScalarType(),
3546                               Node->getOperand(0), DAG.getIntPtrConstant(Idx));
3547      SDValue Sh = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
3548                               VT.getScalarType(),
3549                               Node->getOperand(1), DAG.getIntPtrConstant(Idx));
3550      Scalars.push_back(DAG.getNode(Node->getOpcode(), dl,
3551                                    VT.getScalarType(), Ex, Sh));
3552    }
3553    SDValue Result =
3554      DAG.getNode(ISD::BUILD_VECTOR, dl, Node->getValueType(0),
3555                  &Scalars[0], Scalars.size());
3556    ReplaceNode(SDValue(Node, 0), Result);
3557    break;
3558  }
3559  case ISD::GLOBAL_OFFSET_TABLE:
3560  case ISD::GlobalAddress:
3561  case ISD::GlobalTLSAddress:
3562  case ISD::ExternalSymbol:
3563  case ISD::ConstantPool:
3564  case ISD::JumpTable:
3565  case ISD::INTRINSIC_W_CHAIN:
3566  case ISD::INTRINSIC_WO_CHAIN:
3567  case ISD::INTRINSIC_VOID:
3568    // FIXME: Custom lowering for these operations shouldn't return null!
3569    break;
3570  }
3571
3572  // Replace the original node with the legalized result.
3573  if (!Results.empty())
3574    ReplaceNode(Node, Results.data());
3575}
3576
3577void SelectionDAGLegalize::PromoteNode(SDNode *Node) {
3578  SmallVector<SDValue, 8> Results;
3579  MVT OVT = Node->getSimpleValueType(0);
3580  if (Node->getOpcode() == ISD::UINT_TO_FP ||
3581      Node->getOpcode() == ISD::SINT_TO_FP ||
3582      Node->getOpcode() == ISD::SETCC) {
3583    OVT = Node->getOperand(0).getSimpleValueType();
3584  }
3585  MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
3586  DebugLoc dl = Node->getDebugLoc();
3587  SDValue Tmp1, Tmp2, Tmp3;
3588  switch (Node->getOpcode()) {
3589  case ISD::CTTZ:
3590  case ISD::CTTZ_ZERO_UNDEF:
3591  case ISD::CTLZ:
3592  case ISD::CTLZ_ZERO_UNDEF:
3593  case ISD::CTPOP:
3594    // Zero extend the argument.
3595    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3596    // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is
3597    // already the correct result.
3598    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
3599    if (Node->getOpcode() == ISD::CTTZ) {
3600      // FIXME: This should set a bit in the zero extended value instead.
3601      Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT),
3602                          Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT),
3603                          ISD::SETEQ);
3604      Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2,
3605                          DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1);
3606    } else if (Node->getOpcode() == ISD::CTLZ ||
3607               Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) {
3608      // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
3609      Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
3610                          DAG.getConstant(NVT.getSizeInBits() -
3611                                          OVT.getSizeInBits(), NVT));
3612    }
3613    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
3614    break;
3615  case ISD::BSWAP: {
3616    unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
3617    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3618    Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
3619    Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
3620                          DAG.getConstant(DiffBits, TLI.getShiftAmountTy(NVT)));
3621    Results.push_back(Tmp1);
3622    break;
3623  }
3624  case ISD::FP_TO_UINT:
3625  case ISD::FP_TO_SINT:
3626    Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
3627                                 Node->getOpcode() == ISD::FP_TO_SINT, dl);
3628    Results.push_back(Tmp1);
3629    break;
3630  case ISD::UINT_TO_FP:
3631  case ISD::SINT_TO_FP:
3632    Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
3633                                 Node->getOpcode() == ISD::SINT_TO_FP, dl);
3634    Results.push_back(Tmp1);
3635    break;
3636  case ISD::VAARG: {
3637    SDValue Chain = Node->getOperand(0); // Get the chain.
3638    SDValue Ptr = Node->getOperand(1); // Get the pointer.
3639
3640    unsigned TruncOp;
3641    if (OVT.isVector()) {
3642      TruncOp = ISD::BITCAST;
3643    } else {
3644      assert(OVT.isInteger()
3645        && "VAARG promotion is supported only for vectors or integer types");
3646      TruncOp = ISD::TRUNCATE;
3647    }
3648
3649    // Perform the larger operation, then convert back
3650    Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2),
3651             Node->getConstantOperandVal(3));
3652    Chain = Tmp1.getValue(1);
3653
3654    Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1);
3655
3656    // Modified the chain result - switch anything that used the old chain to
3657    // use the new one.
3658    DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2);
3659    DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
3660    ReplacedNode(Node);
3661    break;
3662  }
3663  case ISD::AND:
3664  case ISD::OR:
3665  case ISD::XOR: {
3666    unsigned ExtOp, TruncOp;
3667    if (OVT.isVector()) {
3668      ExtOp   = ISD::BITCAST;
3669      TruncOp = ISD::BITCAST;
3670    } else {
3671      assert(OVT.isInteger() && "Cannot promote logic operation");
3672      ExtOp   = ISD::ANY_EXTEND;
3673      TruncOp = ISD::TRUNCATE;
3674    }
3675    // Promote each of the values to the new type.
3676    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3677    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3678    // Perform the larger operation, then convert back
3679    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3680    Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
3681    break;
3682  }
3683  case ISD::SELECT: {
3684    unsigned ExtOp, TruncOp;
3685    if (Node->getValueType(0).isVector()) {
3686      ExtOp   = ISD::BITCAST;
3687      TruncOp = ISD::BITCAST;
3688    } else if (Node->getValueType(0).isInteger()) {
3689      ExtOp   = ISD::ANY_EXTEND;
3690      TruncOp = ISD::TRUNCATE;
3691    } else {
3692      ExtOp   = ISD::FP_EXTEND;
3693      TruncOp = ISD::FP_ROUND;
3694    }
3695    Tmp1 = Node->getOperand(0);
3696    // Promote each of the values to the new type.
3697    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3698    Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
3699    // Perform the larger operation, then round down.
3700    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3);
3701    if (TruncOp != ISD::FP_ROUND)
3702      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
3703    else
3704      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
3705                         DAG.getIntPtrConstant(0));
3706    Results.push_back(Tmp1);
3707    break;
3708  }
3709  case ISD::VECTOR_SHUFFLE: {
3710    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
3711
3712    // Cast the two input vectors.
3713    Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0));
3714    Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1));
3715
3716    // Convert the shuffle mask to the right # elements.
3717    Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
3718    Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1);
3719    Results.push_back(Tmp1);
3720    break;
3721  }
3722  case ISD::SETCC: {
3723    unsigned ExtOp = ISD::FP_EXTEND;
3724    if (NVT.isInteger()) {
3725      ISD::CondCode CCCode =
3726        cast<CondCodeSDNode>(Node->getOperand(2))->get();
3727      ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3728    }
3729    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3730    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3731    Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3732                                  Tmp1, Tmp2, Node->getOperand(2)));
3733    break;
3734  }
3735  case ISD::FDIV:
3736  case ISD::FREM:
3737  case ISD::FPOW: {
3738    Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
3739    Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
3740    Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3741    Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
3742                                  Tmp3, DAG.getIntPtrConstant(0)));
3743    break;
3744  }
3745  case ISD::FLOG2:
3746  case ISD::FEXP2:
3747  case ISD::FLOG:
3748  case ISD::FEXP: {
3749    Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
3750    Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
3751    Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
3752                                  Tmp2, DAG.getIntPtrConstant(0)));
3753    break;
3754  }
3755  }
3756
3757  // Replace the original node with the legalized result.
3758  if (!Results.empty())
3759    ReplaceNode(Node, Results.data());
3760}
3761
3762// SelectionDAG::Legalize - This is the entry point for the file.
3763//
3764void SelectionDAG::Legalize() {
3765  /// run - This is the main entry point to this class.
3766  ///
3767  SelectionDAGLegalize(*this).LegalizeDAG();
3768}
3769