LegalizeDAG.cpp revision 2e68b6f52d0979575b2f02ed29717d907ba0684c
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the SelectionDAG::Legalize method. 11// 12//===----------------------------------------------------------------------===// 13 14#include "llvm/CodeGen/SelectionDAG.h" 15#include "llvm/CodeGen/MachineFunction.h" 16#include "llvm/CodeGen/MachineFrameInfo.h" 17#include "llvm/CodeGen/MachineJumpTableInfo.h" 18#include "llvm/CodeGen/MachineModuleInfo.h" 19#include "llvm/CodeGen/PseudoSourceValue.h" 20#include "llvm/Target/TargetFrameInfo.h" 21#include "llvm/Target/TargetLowering.h" 22#include "llvm/Target/TargetData.h" 23#include "llvm/Target/TargetMachine.h" 24#include "llvm/Target/TargetOptions.h" 25#include "llvm/CallingConv.h" 26#include "llvm/Constants.h" 27#include "llvm/DerivedTypes.h" 28#include "llvm/Support/CommandLine.h" 29#include "llvm/Support/Compiler.h" 30#include "llvm/Support/MathExtras.h" 31#include "llvm/ADT/DenseMap.h" 32#include "llvm/ADT/SmallVector.h" 33#include "llvm/ADT/SmallPtrSet.h" 34#include <map> 35using namespace llvm; 36 37#ifndef NDEBUG 38static cl::opt<bool> 39ViewLegalizeDAGs("view-legalize-dags", cl::Hidden, 40 cl::desc("Pop up a window to show dags before legalize")); 41#else 42static const bool ViewLegalizeDAGs = 0; 43#endif 44 45//===----------------------------------------------------------------------===// 46/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and 47/// hacks on it until the target machine can handle it. This involves 48/// eliminating value sizes the machine cannot handle (promoting small sizes to 49/// large sizes or splitting up large values into small values) as well as 50/// eliminating operations the machine cannot handle. 51/// 52/// This code also does a small amount of optimization and recognition of idioms 53/// as part of its processing. For example, if a target does not support a 54/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this 55/// will attempt merge setcc and brc instructions into brcc's. 56/// 57namespace { 58class VISIBILITY_HIDDEN SelectionDAGLegalize { 59 TargetLowering &TLI; 60 SelectionDAG &DAG; 61 62 // Libcall insertion helpers. 63 64 /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been 65 /// legalized. We use this to ensure that calls are properly serialized 66 /// against each other, including inserted libcalls. 67 SDOperand LastCALLSEQ_END; 68 69 /// IsLegalizingCall - This member is used *only* for purposes of providing 70 /// helpful assertions that a libcall isn't created while another call is 71 /// being legalized (which could lead to non-serialized call sequences). 72 bool IsLegalizingCall; 73 74 enum LegalizeAction { 75 Legal, // The target natively supports this operation. 76 Promote, // This operation should be executed in a larger type. 77 Expand // Try to expand this to other ops, otherwise use a libcall. 78 }; 79 80 /// ValueTypeActions - This is a bitvector that contains two bits for each 81 /// value type, where the two bits correspond to the LegalizeAction enum. 82 /// This can be queried with "getTypeAction(VT)". 83 TargetLowering::ValueTypeActionImpl ValueTypeActions; 84 85 /// LegalizedNodes - For nodes that are of legal width, and that have more 86 /// than one use, this map indicates what regularized operand to use. This 87 /// allows us to avoid legalizing the same thing more than once. 88 DenseMap<SDOperand, SDOperand> LegalizedNodes; 89 90 /// PromotedNodes - For nodes that are below legal width, and that have more 91 /// than one use, this map indicates what promoted value to use. This allows 92 /// us to avoid promoting the same thing more than once. 93 DenseMap<SDOperand, SDOperand> PromotedNodes; 94 95 /// ExpandedNodes - For nodes that need to be expanded this map indicates 96 /// which which operands are the expanded version of the input. This allows 97 /// us to avoid expanding the same node more than once. 98 DenseMap<SDOperand, std::pair<SDOperand, SDOperand> > ExpandedNodes; 99 100 /// SplitNodes - For vector nodes that need to be split, this map indicates 101 /// which which operands are the split version of the input. This allows us 102 /// to avoid splitting the same node more than once. 103 std::map<SDOperand, std::pair<SDOperand, SDOperand> > SplitNodes; 104 105 /// ScalarizedNodes - For nodes that need to be converted from vector types to 106 /// scalar types, this contains the mapping of ones we have already 107 /// processed to the result. 108 std::map<SDOperand, SDOperand> ScalarizedNodes; 109 110 void AddLegalizedOperand(SDOperand From, SDOperand To) { 111 LegalizedNodes.insert(std::make_pair(From, To)); 112 // If someone requests legalization of the new node, return itself. 113 if (From != To) 114 LegalizedNodes.insert(std::make_pair(To, To)); 115 } 116 void AddPromotedOperand(SDOperand From, SDOperand To) { 117 bool isNew = PromotedNodes.insert(std::make_pair(From, To)); 118 assert(isNew && "Got into the map somehow?"); 119 // If someone requests legalization of the new node, return itself. 120 LegalizedNodes.insert(std::make_pair(To, To)); 121 } 122 123public: 124 125 SelectionDAGLegalize(SelectionDAG &DAG); 126 127 /// getTypeAction - Return how we should legalize values of this type, either 128 /// it is already legal or we need to expand it into multiple registers of 129 /// smaller integer type, or we need to promote it to a larger type. 130 LegalizeAction getTypeAction(MVT::ValueType VT) const { 131 return (LegalizeAction)ValueTypeActions.getTypeAction(VT); 132 } 133 134 /// isTypeLegal - Return true if this type is legal on this target. 135 /// 136 bool isTypeLegal(MVT::ValueType VT) const { 137 return getTypeAction(VT) == Legal; 138 } 139 140 void LegalizeDAG(); 141 142private: 143 /// HandleOp - Legalize, Promote, or Expand the specified operand as 144 /// appropriate for its type. 145 void HandleOp(SDOperand Op); 146 147 /// LegalizeOp - We know that the specified value has a legal type. 148 /// Recursively ensure that the operands have legal types, then return the 149 /// result. 150 SDOperand LegalizeOp(SDOperand O); 151 152 /// UnrollVectorOp - We know that the given vector has a legal type, however 153 /// the operation it performs is not legal and is an operation that we have 154 /// no way of lowering. "Unroll" the vector, splitting out the scalars and 155 /// operating on each element individually. 156 SDOperand UnrollVectorOp(SDOperand O); 157 158 /// PromoteOp - Given an operation that produces a value in an invalid type, 159 /// promote it to compute the value into a larger type. The produced value 160 /// will have the correct bits for the low portion of the register, but no 161 /// guarantee is made about the top bits: it may be zero, sign-extended, or 162 /// garbage. 163 SDOperand PromoteOp(SDOperand O); 164 165 /// ExpandOp - Expand the specified SDOperand into its two component pieces 166 /// Lo&Hi. Note that the Op MUST be an expanded type. As a result of this, 167 /// the LegalizeNodes map is filled in for any results that are not expanded, 168 /// the ExpandedNodes map is filled in for any results that are expanded, and 169 /// the Lo/Hi values are returned. This applies to integer types and Vector 170 /// types. 171 void ExpandOp(SDOperand O, SDOperand &Lo, SDOperand &Hi); 172 173 /// SplitVectorOp - Given an operand of vector type, break it down into 174 /// two smaller values. 175 void SplitVectorOp(SDOperand O, SDOperand &Lo, SDOperand &Hi); 176 177 /// ScalarizeVectorOp - Given an operand of single-element vector type 178 /// (e.g. v1f32), convert it into the equivalent operation that returns a 179 /// scalar (e.g. f32) value. 180 SDOperand ScalarizeVectorOp(SDOperand O); 181 182 /// isShuffleLegal - Return true if a vector shuffle is legal with the 183 /// specified mask and type. Targets can specify exactly which masks they 184 /// support and the code generator is tasked with not creating illegal masks. 185 /// 186 /// Note that this will also return true for shuffles that are promoted to a 187 /// different type. 188 /// 189 /// If this is a legal shuffle, this method returns the (possibly promoted) 190 /// build_vector Mask. If it's not a legal shuffle, it returns null. 191 SDNode *isShuffleLegal(MVT::ValueType VT, SDOperand Mask) const; 192 193 bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest, 194 SmallPtrSet<SDNode*, 32> &NodesLeadingTo); 195 196 void LegalizeSetCCOperands(SDOperand &LHS, SDOperand &RHS, SDOperand &CC); 197 198 SDOperand ExpandLibCall(const char *Name, SDNode *Node, bool isSigned, 199 SDOperand &Hi); 200 SDOperand ExpandIntToFP(bool isSigned, MVT::ValueType DestTy, 201 SDOperand Source); 202 203 SDOperand EmitStackConvert(SDOperand SrcOp, MVT::ValueType SlotVT, 204 MVT::ValueType DestVT); 205 SDOperand ExpandBUILD_VECTOR(SDNode *Node); 206 SDOperand ExpandSCALAR_TO_VECTOR(SDNode *Node); 207 SDOperand ExpandLegalINT_TO_FP(bool isSigned, 208 SDOperand LegalOp, 209 MVT::ValueType DestVT); 210 SDOperand PromoteLegalINT_TO_FP(SDOperand LegalOp, MVT::ValueType DestVT, 211 bool isSigned); 212 SDOperand PromoteLegalFP_TO_INT(SDOperand LegalOp, MVT::ValueType DestVT, 213 bool isSigned); 214 215 SDOperand ExpandBSWAP(SDOperand Op); 216 SDOperand ExpandBitCount(unsigned Opc, SDOperand Op); 217 bool ExpandShift(unsigned Opc, SDOperand Op, SDOperand Amt, 218 SDOperand &Lo, SDOperand &Hi); 219 void ExpandShiftParts(unsigned NodeOp, SDOperand Op, SDOperand Amt, 220 SDOperand &Lo, SDOperand &Hi); 221 222 SDOperand ExpandEXTRACT_SUBVECTOR(SDOperand Op); 223 SDOperand ExpandEXTRACT_VECTOR_ELT(SDOperand Op); 224}; 225} 226 227/// isVectorShuffleLegal - Return true if a vector shuffle is legal with the 228/// specified mask and type. Targets can specify exactly which masks they 229/// support and the code generator is tasked with not creating illegal masks. 230/// 231/// Note that this will also return true for shuffles that are promoted to a 232/// different type. 233SDNode *SelectionDAGLegalize::isShuffleLegal(MVT::ValueType VT, 234 SDOperand Mask) const { 235 switch (TLI.getOperationAction(ISD::VECTOR_SHUFFLE, VT)) { 236 default: return 0; 237 case TargetLowering::Legal: 238 case TargetLowering::Custom: 239 break; 240 case TargetLowering::Promote: { 241 // If this is promoted to a different type, convert the shuffle mask and 242 // ask if it is legal in the promoted type! 243 MVT::ValueType NVT = TLI.getTypeToPromoteTo(ISD::VECTOR_SHUFFLE, VT); 244 245 // If we changed # elements, change the shuffle mask. 246 unsigned NumEltsGrowth = 247 MVT::getVectorNumElements(NVT) / MVT::getVectorNumElements(VT); 248 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); 249 if (NumEltsGrowth > 1) { 250 // Renumber the elements. 251 SmallVector<SDOperand, 8> Ops; 252 for (unsigned i = 0, e = Mask.getNumOperands(); i != e; ++i) { 253 SDOperand InOp = Mask.getOperand(i); 254 for (unsigned j = 0; j != NumEltsGrowth; ++j) { 255 if (InOp.getOpcode() == ISD::UNDEF) 256 Ops.push_back(DAG.getNode(ISD::UNDEF, MVT::i32)); 257 else { 258 unsigned InEltNo = cast<ConstantSDNode>(InOp)->getValue(); 259 Ops.push_back(DAG.getConstant(InEltNo*NumEltsGrowth+j, MVT::i32)); 260 } 261 } 262 } 263 Mask = DAG.getNode(ISD::BUILD_VECTOR, NVT, &Ops[0], Ops.size()); 264 } 265 VT = NVT; 266 break; 267 } 268 } 269 return TLI.isShuffleMaskLegal(Mask, VT) ? Mask.Val : 0; 270} 271 272SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag) 273 : TLI(dag.getTargetLoweringInfo()), DAG(dag), 274 ValueTypeActions(TLI.getValueTypeActions()) { 275 assert(MVT::LAST_VALUETYPE <= 32 && 276 "Too many value types for ValueTypeActions to hold!"); 277} 278 279/// ComputeTopDownOrdering - Compute a top-down ordering of the dag, where Order 280/// contains all of a nodes operands before it contains the node. 281static void ComputeTopDownOrdering(SelectionDAG &DAG, 282 SmallVector<SDNode*, 64> &Order) { 283 284 DenseMap<SDNode*, unsigned> Visited; 285 std::vector<SDNode*> Worklist; 286 Worklist.reserve(128); 287 288 // Compute ordering from all of the leaves in the graphs, those (like the 289 // entry node) that have no operands. 290 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 291 E = DAG.allnodes_end(); I != E; ++I) { 292 if (I->getNumOperands() == 0) { 293 Visited[I] = 0 - 1U; 294 Worklist.push_back(I); 295 } 296 } 297 298 while (!Worklist.empty()) { 299 SDNode *N = Worklist.back(); 300 Worklist.pop_back(); 301 302 if (++Visited[N] != N->getNumOperands()) 303 continue; // Haven't visited all operands yet 304 305 Order.push_back(N); 306 307 // Now that we have N in, add anything that uses it if all of their operands 308 // are now done. 309 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 310 UI != E; ++UI) 311 Worklist.push_back(*UI); 312 } 313 314 assert(Order.size() == Visited.size() && 315 Order.size() == 316 (unsigned)std::distance(DAG.allnodes_begin(), DAG.allnodes_end()) && 317 "Error: DAG is cyclic!"); 318} 319 320 321void SelectionDAGLegalize::LegalizeDAG() { 322 LastCALLSEQ_END = DAG.getEntryNode(); 323 IsLegalizingCall = false; 324 325 // The legalize process is inherently a bottom-up recursive process (users 326 // legalize their uses before themselves). Given infinite stack space, we 327 // could just start legalizing on the root and traverse the whole graph. In 328 // practice however, this causes us to run out of stack space on large basic 329 // blocks. To avoid this problem, compute an ordering of the nodes where each 330 // node is only legalized after all of its operands are legalized. 331 SmallVector<SDNode*, 64> Order; 332 ComputeTopDownOrdering(DAG, Order); 333 334 for (unsigned i = 0, e = Order.size(); i != e; ++i) 335 HandleOp(SDOperand(Order[i], 0)); 336 337 // Finally, it's possible the root changed. Get the new root. 338 SDOperand OldRoot = DAG.getRoot(); 339 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 340 DAG.setRoot(LegalizedNodes[OldRoot]); 341 342 ExpandedNodes.clear(); 343 LegalizedNodes.clear(); 344 PromotedNodes.clear(); 345 SplitNodes.clear(); 346 ScalarizedNodes.clear(); 347 348 // Remove dead nodes now. 349 DAG.RemoveDeadNodes(); 350} 351 352 353/// FindCallEndFromCallStart - Given a chained node that is part of a call 354/// sequence, find the CALLSEQ_END node that terminates the call sequence. 355static SDNode *FindCallEndFromCallStart(SDNode *Node) { 356 if (Node->getOpcode() == ISD::CALLSEQ_END) 357 return Node; 358 if (Node->use_empty()) 359 return 0; // No CallSeqEnd 360 361 // The chain is usually at the end. 362 SDOperand TheChain(Node, Node->getNumValues()-1); 363 if (TheChain.getValueType() != MVT::Other) { 364 // Sometimes it's at the beginning. 365 TheChain = SDOperand(Node, 0); 366 if (TheChain.getValueType() != MVT::Other) { 367 // Otherwise, hunt for it. 368 for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i) 369 if (Node->getValueType(i) == MVT::Other) { 370 TheChain = SDOperand(Node, i); 371 break; 372 } 373 374 // Otherwise, we walked into a node without a chain. 375 if (TheChain.getValueType() != MVT::Other) 376 return 0; 377 } 378 } 379 380 for (SDNode::use_iterator UI = Node->use_begin(), 381 E = Node->use_end(); UI != E; ++UI) { 382 383 // Make sure to only follow users of our token chain. 384 SDNode *User = *UI; 385 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) 386 if (User->getOperand(i) == TheChain) 387 if (SDNode *Result = FindCallEndFromCallStart(User)) 388 return Result; 389 } 390 return 0; 391} 392 393/// FindCallStartFromCallEnd - Given a chained node that is part of a call 394/// sequence, find the CALLSEQ_START node that initiates the call sequence. 395static SDNode *FindCallStartFromCallEnd(SDNode *Node) { 396 assert(Node && "Didn't find callseq_start for a call??"); 397 if (Node->getOpcode() == ISD::CALLSEQ_START) return Node; 398 399 assert(Node->getOperand(0).getValueType() == MVT::Other && 400 "Node doesn't have a token chain argument!"); 401 return FindCallStartFromCallEnd(Node->getOperand(0).Val); 402} 403 404/// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to 405/// see if any uses can reach Dest. If no dest operands can get to dest, 406/// legalize them, legalize ourself, and return false, otherwise, return true. 407/// 408/// Keep track of the nodes we fine that actually do lead to Dest in 409/// NodesLeadingTo. This avoids retraversing them exponential number of times. 410/// 411bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest, 412 SmallPtrSet<SDNode*, 32> &NodesLeadingTo) { 413 if (N == Dest) return true; // N certainly leads to Dest :) 414 415 // If we've already processed this node and it does lead to Dest, there is no 416 // need to reprocess it. 417 if (NodesLeadingTo.count(N)) return true; 418 419 // If the first result of this node has been already legalized, then it cannot 420 // reach N. 421 switch (getTypeAction(N->getValueType(0))) { 422 case Legal: 423 if (LegalizedNodes.count(SDOperand(N, 0))) return false; 424 break; 425 case Promote: 426 if (PromotedNodes.count(SDOperand(N, 0))) return false; 427 break; 428 case Expand: 429 if (ExpandedNodes.count(SDOperand(N, 0))) return false; 430 break; 431 } 432 433 // Okay, this node has not already been legalized. Check and legalize all 434 // operands. If none lead to Dest, then we can legalize this node. 435 bool OperandsLeadToDest = false; 436 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) 437 OperandsLeadToDest |= // If an operand leads to Dest, so do we. 438 LegalizeAllNodesNotLeadingTo(N->getOperand(i).Val, Dest, NodesLeadingTo); 439 440 if (OperandsLeadToDest) { 441 NodesLeadingTo.insert(N); 442 return true; 443 } 444 445 // Okay, this node looks safe, legalize it and return false. 446 HandleOp(SDOperand(N, 0)); 447 return false; 448} 449 450/// HandleOp - Legalize, Promote, or Expand the specified operand as 451/// appropriate for its type. 452void SelectionDAGLegalize::HandleOp(SDOperand Op) { 453 MVT::ValueType VT = Op.getValueType(); 454 switch (getTypeAction(VT)) { 455 default: assert(0 && "Bad type action!"); 456 case Legal: (void)LegalizeOp(Op); break; 457 case Promote: (void)PromoteOp(Op); break; 458 case Expand: 459 if (!MVT::isVector(VT)) { 460 // If this is an illegal scalar, expand it into its two component 461 // pieces. 462 SDOperand X, Y; 463 if (Op.getOpcode() == ISD::TargetConstant) 464 break; // Allow illegal target nodes. 465 ExpandOp(Op, X, Y); 466 } else if (MVT::getVectorNumElements(VT) == 1) { 467 // If this is an illegal single element vector, convert it to a 468 // scalar operation. 469 (void)ScalarizeVectorOp(Op); 470 } else { 471 // Otherwise, this is an illegal multiple element vector. 472 // Split it in half and legalize both parts. 473 SDOperand X, Y; 474 SplitVectorOp(Op, X, Y); 475 } 476 break; 477 } 478} 479 480/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or 481/// a load from the constant pool. 482static SDOperand ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP, 483 SelectionDAG &DAG, TargetLowering &TLI) { 484 bool Extend = false; 485 486 // If a FP immediate is precise when represented as a float and if the 487 // target can do an extending load from float to double, we put it into 488 // the constant pool as a float, even if it's is statically typed as a 489 // double. 490 MVT::ValueType VT = CFP->getValueType(0); 491 bool isDouble = VT == MVT::f64; 492 ConstantFP *LLVMC = ConstantFP::get(MVT::getTypeForValueType(VT), 493 CFP->getValueAPF()); 494 if (!UseCP) { 495 if (VT!=MVT::f64 && VT!=MVT::f32) 496 assert(0 && "Invalid type expansion"); 497 return DAG.getConstant(LLVMC->getValueAPF().convertToAPInt().getZExtValue(), 498 isDouble ? MVT::i64 : MVT::i32); 499 } 500 501 if (isDouble && CFP->isValueValidForType(MVT::f32, CFP->getValueAPF()) && 502 // Only do this if the target has a native EXTLOAD instruction from f32. 503 // Do not try to be clever about long doubles (so far) 504 TLI.isLoadXLegal(ISD::EXTLOAD, MVT::f32)) { 505 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC,Type::FloatTy)); 506 VT = MVT::f32; 507 Extend = true; 508 } 509 510 SDOperand CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy()); 511 if (Extend) { 512 return DAG.getExtLoad(ISD::EXTLOAD, MVT::f64, DAG.getEntryNode(), 513 CPIdx, PseudoSourceValue::getConstantPool(), 514 0, MVT::f32); 515 } else { 516 return DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, 517 PseudoSourceValue::getConstantPool(), 0); 518 } 519} 520 521 522/// ExpandFCOPYSIGNToBitwiseOps - Expands fcopysign to a series of bitwise 523/// operations. 524static 525SDOperand ExpandFCOPYSIGNToBitwiseOps(SDNode *Node, MVT::ValueType NVT, 526 SelectionDAG &DAG, TargetLowering &TLI) { 527 MVT::ValueType VT = Node->getValueType(0); 528 MVT::ValueType SrcVT = Node->getOperand(1).getValueType(); 529 assert((SrcVT == MVT::f32 || SrcVT == MVT::f64) && 530 "fcopysign expansion only supported for f32 and f64"); 531 MVT::ValueType SrcNVT = (SrcVT == MVT::f64) ? MVT::i64 : MVT::i32; 532 533 // First get the sign bit of second operand. 534 SDOperand Mask1 = (SrcVT == MVT::f64) 535 ? DAG.getConstantFP(BitsToDouble(1ULL << 63), SrcVT) 536 : DAG.getConstantFP(BitsToFloat(1U << 31), SrcVT); 537 Mask1 = DAG.getNode(ISD::BIT_CONVERT, SrcNVT, Mask1); 538 SDOperand SignBit= DAG.getNode(ISD::BIT_CONVERT, SrcNVT, Node->getOperand(1)); 539 SignBit = DAG.getNode(ISD::AND, SrcNVT, SignBit, Mask1); 540 // Shift right or sign-extend it if the two operands have different types. 541 int SizeDiff = MVT::getSizeInBits(SrcNVT) - MVT::getSizeInBits(NVT); 542 if (SizeDiff > 0) { 543 SignBit = DAG.getNode(ISD::SRL, SrcNVT, SignBit, 544 DAG.getConstant(SizeDiff, TLI.getShiftAmountTy())); 545 SignBit = DAG.getNode(ISD::TRUNCATE, NVT, SignBit); 546 } else if (SizeDiff < 0) 547 SignBit = DAG.getNode(ISD::SIGN_EXTEND, NVT, SignBit); 548 549 // Clear the sign bit of first operand. 550 SDOperand Mask2 = (VT == MVT::f64) 551 ? DAG.getConstantFP(BitsToDouble(~(1ULL << 63)), VT) 552 : DAG.getConstantFP(BitsToFloat(~(1U << 31)), VT); 553 Mask2 = DAG.getNode(ISD::BIT_CONVERT, NVT, Mask2); 554 SDOperand Result = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0)); 555 Result = DAG.getNode(ISD::AND, NVT, Result, Mask2); 556 557 // Or the value with the sign bit. 558 Result = DAG.getNode(ISD::OR, NVT, Result, SignBit); 559 return Result; 560} 561 562/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores. 563static 564SDOperand ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG, 565 TargetLowering &TLI) { 566 SDOperand Chain = ST->getChain(); 567 SDOperand Ptr = ST->getBasePtr(); 568 SDOperand Val = ST->getValue(); 569 MVT::ValueType VT = Val.getValueType(); 570 int Alignment = ST->getAlignment(); 571 int SVOffset = ST->getSrcValueOffset(); 572 if (MVT::isFloatingPoint(ST->getMemoryVT())) { 573 // Expand to a bitconvert of the value to the integer type of the 574 // same size, then a (misaligned) int store. 575 MVT::ValueType intVT; 576 if (VT==MVT::f64) 577 intVT = MVT::i64; 578 else if (VT==MVT::f32) 579 intVT = MVT::i32; 580 else 581 assert(0 && "Unaligned load of unsupported floating point type"); 582 583 SDOperand Result = DAG.getNode(ISD::BIT_CONVERT, intVT, Val); 584 return DAG.getStore(Chain, Result, Ptr, ST->getSrcValue(), 585 SVOffset, ST->isVolatile(), Alignment); 586 } 587 assert(MVT::isInteger(ST->getMemoryVT()) && 588 "Unaligned store of unknown type."); 589 // Get the half-size VT 590 MVT::ValueType NewStoredVT = ST->getMemoryVT() - 1; 591 int NumBits = MVT::getSizeInBits(NewStoredVT); 592 int IncrementSize = NumBits / 8; 593 594 // Divide the stored value in two parts. 595 SDOperand ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy()); 596 SDOperand Lo = Val; 597 SDOperand Hi = DAG.getNode(ISD::SRL, VT, Val, ShiftAmount); 598 599 // Store the two parts 600 SDOperand Store1, Store2; 601 Store1 = DAG.getTruncStore(Chain, TLI.isLittleEndian()?Lo:Hi, Ptr, 602 ST->getSrcValue(), SVOffset, NewStoredVT, 603 ST->isVolatile(), Alignment); 604 Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, 605 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 606 Alignment = MinAlign(Alignment, IncrementSize); 607 Store2 = DAG.getTruncStore(Chain, TLI.isLittleEndian()?Hi:Lo, Ptr, 608 ST->getSrcValue(), SVOffset + IncrementSize, 609 NewStoredVT, ST->isVolatile(), Alignment); 610 611 return DAG.getNode(ISD::TokenFactor, MVT::Other, Store1, Store2); 612} 613 614/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads. 615static 616SDOperand ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG, 617 TargetLowering &TLI) { 618 int SVOffset = LD->getSrcValueOffset(); 619 SDOperand Chain = LD->getChain(); 620 SDOperand Ptr = LD->getBasePtr(); 621 MVT::ValueType VT = LD->getValueType(0); 622 MVT::ValueType LoadedVT = LD->getMemoryVT(); 623 if (MVT::isFloatingPoint(VT) && !MVT::isVector(VT)) { 624 // Expand to a (misaligned) integer load of the same size, 625 // then bitconvert to floating point. 626 MVT::ValueType intVT; 627 if (LoadedVT == MVT::f64) 628 intVT = MVT::i64; 629 else if (LoadedVT == MVT::f32) 630 intVT = MVT::i32; 631 else 632 assert(0 && "Unaligned load of unsupported floating point type"); 633 634 SDOperand newLoad = DAG.getLoad(intVT, Chain, Ptr, LD->getSrcValue(), 635 SVOffset, LD->isVolatile(), 636 LD->getAlignment()); 637 SDOperand Result = DAG.getNode(ISD::BIT_CONVERT, LoadedVT, newLoad); 638 if (LoadedVT != VT) 639 Result = DAG.getNode(ISD::FP_EXTEND, VT, Result); 640 641 SDOperand Ops[] = { Result, Chain }; 642 return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, MVT::Other), 643 Ops, 2); 644 } 645 assert((MVT::isInteger(LoadedVT) || MVT::isVector(LoadedVT)) && 646 "Unaligned load of unsupported type."); 647 648 // Compute the new VT that is half the size of the old one. We either have an 649 // integer MVT or we have a vector MVT. 650 unsigned NumBits = MVT::getSizeInBits(LoadedVT); 651 MVT::ValueType NewLoadedVT; 652 if (!MVT::isVector(LoadedVT)) { 653 NewLoadedVT = MVT::getIntegerType(NumBits/2); 654 } else { 655 // FIXME: This is not right for <1 x anything> it is also not right for 656 // non-power-of-two vectors. 657 NewLoadedVT = MVT::getVectorType(MVT::getVectorElementType(LoadedVT), 658 MVT::getVectorNumElements(LoadedVT)/2); 659 } 660 NumBits >>= 1; 661 662 unsigned Alignment = LD->getAlignment(); 663 unsigned IncrementSize = NumBits / 8; 664 ISD::LoadExtType HiExtType = LD->getExtensionType(); 665 666 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 667 if (HiExtType == ISD::NON_EXTLOAD) 668 HiExtType = ISD::ZEXTLOAD; 669 670 // Load the value in two parts 671 SDOperand Lo, Hi; 672 if (TLI.isLittleEndian()) { 673 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, VT, Chain, Ptr, LD->getSrcValue(), 674 SVOffset, NewLoadedVT, LD->isVolatile(), Alignment); 675 Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, 676 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 677 Hi = DAG.getExtLoad(HiExtType, VT, Chain, Ptr, LD->getSrcValue(), 678 SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(), 679 MinAlign(Alignment, IncrementSize)); 680 } else { 681 Hi = DAG.getExtLoad(HiExtType, VT, Chain, Ptr, LD->getSrcValue(), SVOffset, 682 NewLoadedVT,LD->isVolatile(), Alignment); 683 Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, 684 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 685 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, VT, Chain, Ptr, LD->getSrcValue(), 686 SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(), 687 MinAlign(Alignment, IncrementSize)); 688 } 689 690 // aggregate the two parts 691 SDOperand ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy()); 692 SDOperand Result = DAG.getNode(ISD::SHL, VT, Hi, ShiftAmount); 693 Result = DAG.getNode(ISD::OR, VT, Result, Lo); 694 695 SDOperand TF = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), 696 Hi.getValue(1)); 697 698 SDOperand Ops[] = { Result, TF }; 699 return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, MVT::Other), Ops, 2); 700} 701 702/// UnrollVectorOp - We know that the given vector has a legal type, however 703/// the operation it performs is not legal and is an operation that we have 704/// no way of lowering. "Unroll" the vector, splitting out the scalars and 705/// operating on each element individually. 706SDOperand SelectionDAGLegalize::UnrollVectorOp(SDOperand Op) { 707 MVT::ValueType VT = Op.getValueType(); 708 assert(isTypeLegal(VT) && 709 "Caller should expand or promote operands that are not legal!"); 710 assert(Op.Val->getNumValues() == 1 && 711 "Can't unroll a vector with multiple results!"); 712 unsigned NE = MVT::getVectorNumElements(VT); 713 MVT::ValueType EltVT = MVT::getVectorElementType(VT); 714 715 SmallVector<SDOperand, 8> Scalars; 716 SmallVector<SDOperand, 4> Operands(Op.getNumOperands()); 717 for (unsigned i = 0; i != NE; ++i) { 718 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 719 SDOperand Operand = Op.getOperand(j); 720 MVT::ValueType OperandVT = Operand.getValueType(); 721 if (MVT::isVector(OperandVT)) { 722 // A vector operand; extract a single element. 723 MVT::ValueType OperandEltVT = MVT::getVectorElementType(OperandVT); 724 Operands[j] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, 725 OperandEltVT, 726 Operand, 727 DAG.getConstant(i, MVT::i32)); 728 } else { 729 // A scalar operand; just use it as is. 730 Operands[j] = Operand; 731 } 732 } 733 Scalars.push_back(DAG.getNode(Op.getOpcode(), EltVT, 734 &Operands[0], Operands.size())); 735 } 736 737 return DAG.getNode(ISD::BUILD_VECTOR, VT, &Scalars[0], Scalars.size()); 738} 739 740/// GetFPLibCall - Return the right libcall for the given floating point type. 741static RTLIB::Libcall GetFPLibCall(MVT::ValueType VT, 742 RTLIB::Libcall Call_F32, 743 RTLIB::Libcall Call_F64, 744 RTLIB::Libcall Call_F80, 745 RTLIB::Libcall Call_PPCF128) { 746 return 747 VT == MVT::f32 ? Call_F32 : 748 VT == MVT::f64 ? Call_F64 : 749 VT == MVT::f80 ? Call_F80 : 750 VT == MVT::ppcf128 ? Call_PPCF128 : 751 RTLIB::UNKNOWN_LIBCALL; 752} 753 754/// LegalizeOp - We know that the specified value has a legal type, and 755/// that its operands are legal. Now ensure that the operation itself 756/// is legal, recursively ensuring that the operands' operations remain 757/// legal. 758SDOperand SelectionDAGLegalize::LegalizeOp(SDOperand Op) { 759 if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes. 760 return Op; 761 762 assert(isTypeLegal(Op.getValueType()) && 763 "Caller should expand or promote operands that are not legal!"); 764 SDNode *Node = Op.Val; 765 766 // If this operation defines any values that cannot be represented in a 767 // register on this target, make sure to expand or promote them. 768 if (Node->getNumValues() > 1) { 769 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 770 if (getTypeAction(Node->getValueType(i)) != Legal) { 771 HandleOp(Op.getValue(i)); 772 assert(LegalizedNodes.count(Op) && 773 "Handling didn't add legal operands!"); 774 return LegalizedNodes[Op]; 775 } 776 } 777 778 // Note that LegalizeOp may be reentered even from single-use nodes, which 779 // means that we always must cache transformed nodes. 780 DenseMap<SDOperand, SDOperand>::iterator I = LegalizedNodes.find(Op); 781 if (I != LegalizedNodes.end()) return I->second; 782 783 SDOperand Tmp1, Tmp2, Tmp3, Tmp4; 784 SDOperand Result = Op; 785 bool isCustom = false; 786 787 switch (Node->getOpcode()) { 788 case ISD::FrameIndex: 789 case ISD::EntryToken: 790 case ISD::Register: 791 case ISD::BasicBlock: 792 case ISD::TargetFrameIndex: 793 case ISD::TargetJumpTable: 794 case ISD::TargetConstant: 795 case ISD::TargetConstantFP: 796 case ISD::TargetConstantPool: 797 case ISD::TargetGlobalAddress: 798 case ISD::TargetGlobalTLSAddress: 799 case ISD::TargetExternalSymbol: 800 case ISD::VALUETYPE: 801 case ISD::SRCVALUE: 802 case ISD::MEMOPERAND: 803 case ISD::STRING: 804 case ISD::CONDCODE: 805 // Primitives must all be legal. 806 assert(TLI.isOperationLegal(Node->getOpcode(), Node->getValueType(0)) && 807 "This must be legal!"); 808 break; 809 default: 810 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { 811 // If this is a target node, legalize it by legalizing the operands then 812 // passing it through. 813 SmallVector<SDOperand, 8> Ops; 814 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 815 Ops.push_back(LegalizeOp(Node->getOperand(i))); 816 817 Result = DAG.UpdateNodeOperands(Result.getValue(0), &Ops[0], Ops.size()); 818 819 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 820 AddLegalizedOperand(Op.getValue(i), Result.getValue(i)); 821 return Result.getValue(Op.ResNo); 822 } 823 // Otherwise this is an unhandled builtin node. splat. 824#ifndef NDEBUG 825 cerr << "NODE: "; Node->dump(&DAG); cerr << "\n"; 826#endif 827 assert(0 && "Do not know how to legalize this operator!"); 828 abort(); 829 case ISD::GLOBAL_OFFSET_TABLE: 830 case ISD::GlobalAddress: 831 case ISD::GlobalTLSAddress: 832 case ISD::ExternalSymbol: 833 case ISD::ConstantPool: 834 case ISD::JumpTable: // Nothing to do. 835 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 836 default: assert(0 && "This action is not supported yet!"); 837 case TargetLowering::Custom: 838 Tmp1 = TLI.LowerOperation(Op, DAG); 839 if (Tmp1.Val) Result = Tmp1; 840 // FALLTHROUGH if the target doesn't want to lower this op after all. 841 case TargetLowering::Legal: 842 break; 843 } 844 break; 845 case ISD::FRAMEADDR: 846 case ISD::RETURNADDR: 847 // The only option for these nodes is to custom lower them. If the target 848 // does not custom lower them, then return zero. 849 Tmp1 = TLI.LowerOperation(Op, DAG); 850 if (Tmp1.Val) 851 Result = Tmp1; 852 else 853 Result = DAG.getConstant(0, TLI.getPointerTy()); 854 break; 855 case ISD::FRAME_TO_ARGS_OFFSET: { 856 MVT::ValueType VT = Node->getValueType(0); 857 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 858 default: assert(0 && "This action is not supported yet!"); 859 case TargetLowering::Custom: 860 Result = TLI.LowerOperation(Op, DAG); 861 if (Result.Val) break; 862 // Fall Thru 863 case TargetLowering::Legal: 864 Result = DAG.getConstant(0, VT); 865 break; 866 } 867 } 868 break; 869 case ISD::EXCEPTIONADDR: { 870 Tmp1 = LegalizeOp(Node->getOperand(0)); 871 MVT::ValueType VT = Node->getValueType(0); 872 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 873 default: assert(0 && "This action is not supported yet!"); 874 case TargetLowering::Expand: { 875 unsigned Reg = TLI.getExceptionAddressRegister(); 876 Result = DAG.getCopyFromReg(Tmp1, Reg, VT); 877 } 878 break; 879 case TargetLowering::Custom: 880 Result = TLI.LowerOperation(Op, DAG); 881 if (Result.Val) break; 882 // Fall Thru 883 case TargetLowering::Legal: { 884 SDOperand Ops[] = { DAG.getConstant(0, VT), Tmp1 }; 885 Result = DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, MVT::Other), 886 Ops, 2); 887 break; 888 } 889 } 890 } 891 if (Result.Val->getNumValues() == 1) break; 892 893 assert(Result.Val->getNumValues() == 2 && 894 "Cannot return more than two values!"); 895 896 // Since we produced two values, make sure to remember that we 897 // legalized both of them. 898 Tmp1 = LegalizeOp(Result); 899 Tmp2 = LegalizeOp(Result.getValue(1)); 900 AddLegalizedOperand(Op.getValue(0), Tmp1); 901 AddLegalizedOperand(Op.getValue(1), Tmp2); 902 return Op.ResNo ? Tmp2 : Tmp1; 903 case ISD::EHSELECTION: { 904 Tmp1 = LegalizeOp(Node->getOperand(0)); 905 Tmp2 = LegalizeOp(Node->getOperand(1)); 906 MVT::ValueType VT = Node->getValueType(0); 907 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 908 default: assert(0 && "This action is not supported yet!"); 909 case TargetLowering::Expand: { 910 unsigned Reg = TLI.getExceptionSelectorRegister(); 911 Result = DAG.getCopyFromReg(Tmp2, Reg, VT); 912 } 913 break; 914 case TargetLowering::Custom: 915 Result = TLI.LowerOperation(Op, DAG); 916 if (Result.Val) break; 917 // Fall Thru 918 case TargetLowering::Legal: { 919 SDOperand Ops[] = { DAG.getConstant(0, VT), Tmp2 }; 920 Result = DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, MVT::Other), 921 Ops, 2); 922 break; 923 } 924 } 925 } 926 if (Result.Val->getNumValues() == 1) break; 927 928 assert(Result.Val->getNumValues() == 2 && 929 "Cannot return more than two values!"); 930 931 // Since we produced two values, make sure to remember that we 932 // legalized both of them. 933 Tmp1 = LegalizeOp(Result); 934 Tmp2 = LegalizeOp(Result.getValue(1)); 935 AddLegalizedOperand(Op.getValue(0), Tmp1); 936 AddLegalizedOperand(Op.getValue(1), Tmp2); 937 return Op.ResNo ? Tmp2 : Tmp1; 938 case ISD::EH_RETURN: { 939 MVT::ValueType VT = Node->getValueType(0); 940 // The only "good" option for this node is to custom lower it. 941 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 942 default: assert(0 && "This action is not supported at all!"); 943 case TargetLowering::Custom: 944 Result = TLI.LowerOperation(Op, DAG); 945 if (Result.Val) break; 946 // Fall Thru 947 case TargetLowering::Legal: 948 // Target does not know, how to lower this, lower to noop 949 Result = LegalizeOp(Node->getOperand(0)); 950 break; 951 } 952 } 953 break; 954 case ISD::AssertSext: 955 case ISD::AssertZext: 956 Tmp1 = LegalizeOp(Node->getOperand(0)); 957 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 958 break; 959 case ISD::MERGE_VALUES: 960 // Legalize eliminates MERGE_VALUES nodes. 961 Result = Node->getOperand(Op.ResNo); 962 break; 963 case ISD::CopyFromReg: 964 Tmp1 = LegalizeOp(Node->getOperand(0)); 965 Result = Op.getValue(0); 966 if (Node->getNumValues() == 2) { 967 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 968 } else { 969 assert(Node->getNumValues() == 3 && "Invalid copyfromreg!"); 970 if (Node->getNumOperands() == 3) { 971 Tmp2 = LegalizeOp(Node->getOperand(2)); 972 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1),Tmp2); 973 } else { 974 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 975 } 976 AddLegalizedOperand(Op.getValue(2), Result.getValue(2)); 977 } 978 // Since CopyFromReg produces two values, make sure to remember that we 979 // legalized both of them. 980 AddLegalizedOperand(Op.getValue(0), Result); 981 AddLegalizedOperand(Op.getValue(1), Result.getValue(1)); 982 return Result.getValue(Op.ResNo); 983 case ISD::UNDEF: { 984 MVT::ValueType VT = Op.getValueType(); 985 switch (TLI.getOperationAction(ISD::UNDEF, VT)) { 986 default: assert(0 && "This action is not supported yet!"); 987 case TargetLowering::Expand: 988 if (MVT::isInteger(VT)) 989 Result = DAG.getConstant(0, VT); 990 else if (MVT::isFloatingPoint(VT)) 991 Result = DAG.getConstantFP(APFloat(APInt(MVT::getSizeInBits(VT), 0)), 992 VT); 993 else 994 assert(0 && "Unknown value type!"); 995 break; 996 case TargetLowering::Legal: 997 break; 998 } 999 break; 1000 } 1001 1002 case ISD::INTRINSIC_W_CHAIN: 1003 case ISD::INTRINSIC_WO_CHAIN: 1004 case ISD::INTRINSIC_VOID: { 1005 SmallVector<SDOperand, 8> Ops; 1006 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 1007 Ops.push_back(LegalizeOp(Node->getOperand(i))); 1008 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1009 1010 // Allow the target to custom lower its intrinsics if it wants to. 1011 if (TLI.getOperationAction(Node->getOpcode(), MVT::Other) == 1012 TargetLowering::Custom) { 1013 Tmp3 = TLI.LowerOperation(Result, DAG); 1014 if (Tmp3.Val) Result = Tmp3; 1015 } 1016 1017 if (Result.Val->getNumValues() == 1) break; 1018 1019 // Must have return value and chain result. 1020 assert(Result.Val->getNumValues() == 2 && 1021 "Cannot return more than two values!"); 1022 1023 // Since loads produce two values, make sure to remember that we 1024 // legalized both of them. 1025 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 1026 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 1027 return Result.getValue(Op.ResNo); 1028 } 1029 1030 case ISD::LOCATION: 1031 assert(Node->getNumOperands() == 5 && "Invalid LOCATION node!"); 1032 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the input chain. 1033 1034 switch (TLI.getOperationAction(ISD::LOCATION, MVT::Other)) { 1035 case TargetLowering::Promote: 1036 default: assert(0 && "This action is not supported yet!"); 1037 case TargetLowering::Expand: { 1038 MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); 1039 bool useDEBUG_LOC = TLI.isOperationLegal(ISD::DEBUG_LOC, MVT::Other); 1040 bool useLABEL = TLI.isOperationLegal(ISD::LABEL, MVT::Other); 1041 1042 if (MMI && (useDEBUG_LOC || useLABEL)) { 1043 const std::string &FName = 1044 cast<StringSDNode>(Node->getOperand(3))->getValue(); 1045 const std::string &DirName = 1046 cast<StringSDNode>(Node->getOperand(4))->getValue(); 1047 unsigned SrcFile = MMI->RecordSource(DirName, FName); 1048 1049 SmallVector<SDOperand, 8> Ops; 1050 Ops.push_back(Tmp1); // chain 1051 SDOperand LineOp = Node->getOperand(1); 1052 SDOperand ColOp = Node->getOperand(2); 1053 1054 if (useDEBUG_LOC) { 1055 Ops.push_back(LineOp); // line # 1056 Ops.push_back(ColOp); // col # 1057 Ops.push_back(DAG.getConstant(SrcFile, MVT::i32)); // source file id 1058 Result = DAG.getNode(ISD::DEBUG_LOC, MVT::Other, &Ops[0], Ops.size()); 1059 } else { 1060 unsigned Line = cast<ConstantSDNode>(LineOp)->getValue(); 1061 unsigned Col = cast<ConstantSDNode>(ColOp)->getValue(); 1062 unsigned ID = MMI->RecordSourceLine(Line, Col, SrcFile); 1063 Ops.push_back(DAG.getConstant(ID, MVT::i32)); 1064 Ops.push_back(DAG.getConstant(0, MVT::i32)); // a debug label 1065 Result = DAG.getNode(ISD::LABEL, MVT::Other, &Ops[0], Ops.size()); 1066 } 1067 } else { 1068 Result = Tmp1; // chain 1069 } 1070 break; 1071 } 1072 case TargetLowering::Legal: 1073 if (Tmp1 != Node->getOperand(0) || 1074 getTypeAction(Node->getOperand(1).getValueType()) == Promote) { 1075 SmallVector<SDOperand, 8> Ops; 1076 Ops.push_back(Tmp1); 1077 if (getTypeAction(Node->getOperand(1).getValueType()) == Legal) { 1078 Ops.push_back(Node->getOperand(1)); // line # must be legal. 1079 Ops.push_back(Node->getOperand(2)); // col # must be legal. 1080 } else { 1081 // Otherwise promote them. 1082 Ops.push_back(PromoteOp(Node->getOperand(1))); 1083 Ops.push_back(PromoteOp(Node->getOperand(2))); 1084 } 1085 Ops.push_back(Node->getOperand(3)); // filename must be legal. 1086 Ops.push_back(Node->getOperand(4)); // working dir # must be legal. 1087 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1088 } 1089 break; 1090 } 1091 break; 1092 1093 case ISD::DECLARE: 1094 assert(Node->getNumOperands() == 3 && "Invalid DECLARE node!"); 1095 switch (TLI.getOperationAction(ISD::DECLARE, MVT::Other)) { 1096 default: assert(0 && "This action is not supported yet!"); 1097 case TargetLowering::Legal: 1098 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1099 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the address. 1100 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the variable. 1101 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1102 break; 1103 } 1104 break; 1105 1106 case ISD::DEBUG_LOC: 1107 assert(Node->getNumOperands() == 4 && "Invalid DEBUG_LOC node!"); 1108 switch (TLI.getOperationAction(ISD::DEBUG_LOC, MVT::Other)) { 1109 default: assert(0 && "This action is not supported yet!"); 1110 case TargetLowering::Legal: 1111 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1112 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the line #. 1113 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the col #. 1114 Tmp4 = LegalizeOp(Node->getOperand(3)); // Legalize the source file id. 1115 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, Tmp4); 1116 break; 1117 } 1118 break; 1119 1120 case ISD::LABEL: 1121 assert(Node->getNumOperands() == 3 && "Invalid LABEL node!"); 1122 switch (TLI.getOperationAction(ISD::LABEL, MVT::Other)) { 1123 default: assert(0 && "This action is not supported yet!"); 1124 case TargetLowering::Legal: 1125 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1126 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the label id. 1127 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the "flavor" operand. 1128 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1129 break; 1130 case TargetLowering::Expand: 1131 Result = LegalizeOp(Node->getOperand(0)); 1132 break; 1133 } 1134 break; 1135 1136 case ISD::MEMBARRIER: { 1137 assert(Node->getNumOperands() == 6 && "Invalid MemBarrier node!"); 1138 switch (TLI.getOperationAction(ISD::MEMBARRIER, MVT::Other)) { 1139 default: assert(0 && "This action is not supported yet!"); 1140 case TargetLowering::Legal: { 1141 SDOperand Ops[6]; 1142 Ops[0] = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1143 for (int x = 1; x < 6; ++x) 1144 Ops[x] = PromoteOp(Node->getOperand(x)); 1145 Result = DAG.UpdateNodeOperands(Result, &Ops[0], 6); 1146 break; 1147 } 1148 case TargetLowering::Expand: 1149 //There is no libgcc call for this op 1150 Result = Node->getOperand(0); // Noop 1151 break; 1152 } 1153 break; 1154 } 1155 1156 case ISD::ATOMIC_LCS: 1157 case ISD::ATOMIC_LAS: 1158 case ISD::ATOMIC_SWAP: { 1159 assert(((Node->getNumOperands() == 4 && Node->getOpcode() == ISD::ATOMIC_LCS) || 1160 (Node->getNumOperands() == 3 && Node->getOpcode() == ISD::ATOMIC_LAS) || 1161 (Node->getNumOperands() == 3 && Node->getOpcode() == ISD::ATOMIC_SWAP)) && 1162 "Invalid MemBarrier node!"); 1163 int num = Node->getOpcode() == ISD::ATOMIC_LCS ? 4 : 3; 1164 MVT::ValueType VT = Node->getValueType(0); 1165 switch (TLI.getOperationAction(ISD::ATOMIC_LCS, VT)) { 1166 default: assert(0 && "This action is not supported yet!"); 1167 case TargetLowering::Legal: { 1168 SDOperand Ops[4]; 1169 for (int x = 0; x < num; ++x) 1170 Ops[x] = LegalizeOp(Node->getOperand(x)); 1171 Result = DAG.UpdateNodeOperands(Result, &Ops[0], num); 1172 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 1173 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 1174 return Result.getValue(Op.ResNo); 1175 break; 1176 } 1177 } 1178 break; 1179 } 1180 1181 case ISD::Constant: { 1182 ConstantSDNode *CN = cast<ConstantSDNode>(Node); 1183 unsigned opAction = 1184 TLI.getOperationAction(ISD::Constant, CN->getValueType(0)); 1185 1186 // We know we don't need to expand constants here, constants only have one 1187 // value and we check that it is fine above. 1188 1189 if (opAction == TargetLowering::Custom) { 1190 Tmp1 = TLI.LowerOperation(Result, DAG); 1191 if (Tmp1.Val) 1192 Result = Tmp1; 1193 } 1194 break; 1195 } 1196 case ISD::ConstantFP: { 1197 // Spill FP immediates to the constant pool if the target cannot directly 1198 // codegen them. Targets often have some immediate values that can be 1199 // efficiently generated into an FP register without a load. We explicitly 1200 // leave these constants as ConstantFP nodes for the target to deal with. 1201 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 1202 1203 switch (TLI.getOperationAction(ISD::ConstantFP, CFP->getValueType(0))) { 1204 default: assert(0 && "This action is not supported yet!"); 1205 case TargetLowering::Legal: 1206 break; 1207 case TargetLowering::Custom: 1208 Tmp3 = TLI.LowerOperation(Result, DAG); 1209 if (Tmp3.Val) { 1210 Result = Tmp3; 1211 break; 1212 } 1213 // FALLTHROUGH 1214 case TargetLowering::Expand: { 1215 // Check to see if this FP immediate is already legal. 1216 bool isLegal = false; 1217 for (TargetLowering::legal_fpimm_iterator I = TLI.legal_fpimm_begin(), 1218 E = TLI.legal_fpimm_end(); I != E; ++I) { 1219 if (CFP->isExactlyValue(*I)) { 1220 isLegal = true; 1221 break; 1222 } 1223 } 1224 // If this is a legal constant, turn it into a TargetConstantFP node. 1225 if (isLegal) 1226 break; 1227 Result = ExpandConstantFP(CFP, true, DAG, TLI); 1228 } 1229 } 1230 break; 1231 } 1232 case ISD::TokenFactor: 1233 if (Node->getNumOperands() == 2) { 1234 Tmp1 = LegalizeOp(Node->getOperand(0)); 1235 Tmp2 = LegalizeOp(Node->getOperand(1)); 1236 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1237 } else if (Node->getNumOperands() == 3) { 1238 Tmp1 = LegalizeOp(Node->getOperand(0)); 1239 Tmp2 = LegalizeOp(Node->getOperand(1)); 1240 Tmp3 = LegalizeOp(Node->getOperand(2)); 1241 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1242 } else { 1243 SmallVector<SDOperand, 8> Ops; 1244 // Legalize the operands. 1245 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 1246 Ops.push_back(LegalizeOp(Node->getOperand(i))); 1247 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1248 } 1249 break; 1250 1251 case ISD::FORMAL_ARGUMENTS: 1252 case ISD::CALL: 1253 // The only option for this is to custom lower it. 1254 Tmp3 = TLI.LowerOperation(Result.getValue(0), DAG); 1255 assert(Tmp3.Val && "Target didn't custom lower this node!"); 1256 1257 // The number of incoming and outgoing values should match; unless the final 1258 // outgoing value is a flag. 1259 assert((Tmp3.Val->getNumValues() == Result.Val->getNumValues() || 1260 (Tmp3.Val->getNumValues() == Result.Val->getNumValues() + 1 && 1261 Tmp3.Val->getValueType(Tmp3.Val->getNumValues() - 1) == 1262 MVT::Flag)) && 1263 "Lowering call/formal_arguments produced unexpected # results!"); 1264 1265 // Since CALL/FORMAL_ARGUMENTS nodes produce multiple values, make sure to 1266 // remember that we legalized all of them, so it doesn't get relegalized. 1267 for (unsigned i = 0, e = Tmp3.Val->getNumValues(); i != e; ++i) { 1268 if (Tmp3.Val->getValueType(i) == MVT::Flag) 1269 continue; 1270 Tmp1 = LegalizeOp(Tmp3.getValue(i)); 1271 if (Op.ResNo == i) 1272 Tmp2 = Tmp1; 1273 AddLegalizedOperand(SDOperand(Node, i), Tmp1); 1274 } 1275 return Tmp2; 1276 case ISD::EXTRACT_SUBREG: { 1277 Tmp1 = LegalizeOp(Node->getOperand(0)); 1278 ConstantSDNode *idx = dyn_cast<ConstantSDNode>(Node->getOperand(1)); 1279 assert(idx && "Operand must be a constant"); 1280 Tmp2 = DAG.getTargetConstant(idx->getValue(), idx->getValueType(0)); 1281 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1282 } 1283 break; 1284 case ISD::INSERT_SUBREG: { 1285 Tmp1 = LegalizeOp(Node->getOperand(0)); 1286 Tmp2 = LegalizeOp(Node->getOperand(1)); 1287 ConstantSDNode *idx = dyn_cast<ConstantSDNode>(Node->getOperand(2)); 1288 assert(idx && "Operand must be a constant"); 1289 Tmp3 = DAG.getTargetConstant(idx->getValue(), idx->getValueType(0)); 1290 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1291 } 1292 break; 1293 case ISD::BUILD_VECTOR: 1294 switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) { 1295 default: assert(0 && "This action is not supported yet!"); 1296 case TargetLowering::Custom: 1297 Tmp3 = TLI.LowerOperation(Result, DAG); 1298 if (Tmp3.Val) { 1299 Result = Tmp3; 1300 break; 1301 } 1302 // FALLTHROUGH 1303 case TargetLowering::Expand: 1304 Result = ExpandBUILD_VECTOR(Result.Val); 1305 break; 1306 } 1307 break; 1308 case ISD::INSERT_VECTOR_ELT: 1309 Tmp1 = LegalizeOp(Node->getOperand(0)); // InVec 1310 Tmp3 = LegalizeOp(Node->getOperand(2)); // InEltNo 1311 1312 // The type of the value to insert may not be legal, even though the vector 1313 // type is legal. Legalize/Promote accordingly. We do not handle Expand 1314 // here. 1315 switch (getTypeAction(Node->getOperand(1).getValueType())) { 1316 default: assert(0 && "Cannot expand insert element operand"); 1317 case Legal: Tmp2 = LegalizeOp(Node->getOperand(1)); break; 1318 case Promote: Tmp2 = PromoteOp(Node->getOperand(1)); break; 1319 } 1320 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1321 1322 switch (TLI.getOperationAction(ISD::INSERT_VECTOR_ELT, 1323 Node->getValueType(0))) { 1324 default: assert(0 && "This action is not supported yet!"); 1325 case TargetLowering::Legal: 1326 break; 1327 case TargetLowering::Custom: 1328 Tmp4 = TLI.LowerOperation(Result, DAG); 1329 if (Tmp4.Val) { 1330 Result = Tmp4; 1331 break; 1332 } 1333 // FALLTHROUGH 1334 case TargetLowering::Expand: { 1335 // If the insert index is a constant, codegen this as a scalar_to_vector, 1336 // then a shuffle that inserts it into the right position in the vector. 1337 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Tmp3)) { 1338 // SCALAR_TO_VECTOR requires that the type of the value being inserted 1339 // match the element type of the vector being created. 1340 if (Tmp2.getValueType() == 1341 MVT::getVectorElementType(Op.getValueType())) { 1342 SDOperand ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, 1343 Tmp1.getValueType(), Tmp2); 1344 1345 unsigned NumElts = MVT::getVectorNumElements(Tmp1.getValueType()); 1346 MVT::ValueType ShufMaskVT = MVT::getIntVectorWithNumElements(NumElts); 1347 MVT::ValueType ShufMaskEltVT = MVT::getVectorElementType(ShufMaskVT); 1348 1349 // We generate a shuffle of InVec and ScVec, so the shuffle mask 1350 // should be 0,1,2,3,4,5... with the appropriate element replaced with 1351 // elt 0 of the RHS. 1352 SmallVector<SDOperand, 8> ShufOps; 1353 for (unsigned i = 0; i != NumElts; ++i) { 1354 if (i != InsertPos->getValue()) 1355 ShufOps.push_back(DAG.getConstant(i, ShufMaskEltVT)); 1356 else 1357 ShufOps.push_back(DAG.getConstant(NumElts, ShufMaskEltVT)); 1358 } 1359 SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, ShufMaskVT, 1360 &ShufOps[0], ShufOps.size()); 1361 1362 Result = DAG.getNode(ISD::VECTOR_SHUFFLE, Tmp1.getValueType(), 1363 Tmp1, ScVec, ShufMask); 1364 Result = LegalizeOp(Result); 1365 break; 1366 } 1367 } 1368 1369 // If the target doesn't support this, we have to spill the input vector 1370 // to a temporary stack slot, update the element, then reload it. This is 1371 // badness. We could also load the value into a vector register (either 1372 // with a "move to register" or "extload into register" instruction, then 1373 // permute it into place, if the idx is a constant and if the idx is 1374 // supported by the target. 1375 MVT::ValueType VT = Tmp1.getValueType(); 1376 MVT::ValueType EltVT = MVT::getVectorElementType(VT); 1377 MVT::ValueType IdxVT = Tmp3.getValueType(); 1378 MVT::ValueType PtrVT = TLI.getPointerTy(); 1379 SDOperand StackPtr = DAG.CreateStackTemporary(VT); 1380 1381 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr.Val); 1382 int SPFI = StackPtrFI->getIndex(); 1383 1384 // Store the vector. 1385 SDOperand Ch = DAG.getStore(DAG.getEntryNode(), Tmp1, StackPtr, 1386 PseudoSourceValue::getFixedStack(), 1387 SPFI); 1388 1389 // Truncate or zero extend offset to target pointer type. 1390 unsigned CastOpc = (IdxVT > PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND; 1391 Tmp3 = DAG.getNode(CastOpc, PtrVT, Tmp3); 1392 // Add the offset to the index. 1393 unsigned EltSize = MVT::getSizeInBits(EltVT)/8; 1394 Tmp3 = DAG.getNode(ISD::MUL, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT)); 1395 SDOperand StackPtr2 = DAG.getNode(ISD::ADD, IdxVT, Tmp3, StackPtr); 1396 // Store the scalar value. 1397 Ch = DAG.getTruncStore(Ch, Tmp2, StackPtr2, 1398 PseudoSourceValue::getFixedStack(), SPFI, EltVT); 1399 // Load the updated vector. 1400 Result = DAG.getLoad(VT, Ch, StackPtr, 1401 PseudoSourceValue::getFixedStack(), SPFI); 1402 break; 1403 } 1404 } 1405 break; 1406 case ISD::SCALAR_TO_VECTOR: 1407 if (!TLI.isTypeLegal(Node->getOperand(0).getValueType())) { 1408 Result = LegalizeOp(ExpandSCALAR_TO_VECTOR(Node)); 1409 break; 1410 } 1411 1412 Tmp1 = LegalizeOp(Node->getOperand(0)); // InVal 1413 Result = DAG.UpdateNodeOperands(Result, Tmp1); 1414 switch (TLI.getOperationAction(ISD::SCALAR_TO_VECTOR, 1415 Node->getValueType(0))) { 1416 default: assert(0 && "This action is not supported yet!"); 1417 case TargetLowering::Legal: 1418 break; 1419 case TargetLowering::Custom: 1420 Tmp3 = TLI.LowerOperation(Result, DAG); 1421 if (Tmp3.Val) { 1422 Result = Tmp3; 1423 break; 1424 } 1425 // FALLTHROUGH 1426 case TargetLowering::Expand: 1427 Result = LegalizeOp(ExpandSCALAR_TO_VECTOR(Node)); 1428 break; 1429 } 1430 break; 1431 case ISD::VECTOR_SHUFFLE: 1432 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the input vectors, 1433 Tmp2 = LegalizeOp(Node->getOperand(1)); // but not the shuffle mask. 1434 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 1435 1436 // Allow targets to custom lower the SHUFFLEs they support. 1437 switch (TLI.getOperationAction(ISD::VECTOR_SHUFFLE,Result.getValueType())) { 1438 default: assert(0 && "Unknown operation action!"); 1439 case TargetLowering::Legal: 1440 assert(isShuffleLegal(Result.getValueType(), Node->getOperand(2)) && 1441 "vector shuffle should not be created if not legal!"); 1442 break; 1443 case TargetLowering::Custom: 1444 Tmp3 = TLI.LowerOperation(Result, DAG); 1445 if (Tmp3.Val) { 1446 Result = Tmp3; 1447 break; 1448 } 1449 // FALLTHROUGH 1450 case TargetLowering::Expand: { 1451 MVT::ValueType VT = Node->getValueType(0); 1452 MVT::ValueType EltVT = MVT::getVectorElementType(VT); 1453 MVT::ValueType PtrVT = TLI.getPointerTy(); 1454 SDOperand Mask = Node->getOperand(2); 1455 unsigned NumElems = Mask.getNumOperands(); 1456 SmallVector<SDOperand,8> Ops; 1457 for (unsigned i = 0; i != NumElems; ++i) { 1458 SDOperand Arg = Mask.getOperand(i); 1459 if (Arg.getOpcode() == ISD::UNDEF) { 1460 Ops.push_back(DAG.getNode(ISD::UNDEF, EltVT)); 1461 } else { 1462 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); 1463 unsigned Idx = cast<ConstantSDNode>(Arg)->getValue(); 1464 if (Idx < NumElems) 1465 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EltVT, Tmp1, 1466 DAG.getConstant(Idx, PtrVT))); 1467 else 1468 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EltVT, Tmp2, 1469 DAG.getConstant(Idx - NumElems, PtrVT))); 1470 } 1471 } 1472 Result = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size()); 1473 break; 1474 } 1475 case TargetLowering::Promote: { 1476 // Change base type to a different vector type. 1477 MVT::ValueType OVT = Node->getValueType(0); 1478 MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 1479 1480 // Cast the two input vectors. 1481 Tmp1 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp1); 1482 Tmp2 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp2); 1483 1484 // Convert the shuffle mask to the right # elements. 1485 Tmp3 = SDOperand(isShuffleLegal(OVT, Node->getOperand(2)), 0); 1486 assert(Tmp3.Val && "Shuffle not legal?"); 1487 Result = DAG.getNode(ISD::VECTOR_SHUFFLE, NVT, Tmp1, Tmp2, Tmp3); 1488 Result = DAG.getNode(ISD::BIT_CONVERT, OVT, Result); 1489 break; 1490 } 1491 } 1492 break; 1493 1494 case ISD::EXTRACT_VECTOR_ELT: 1495 Tmp1 = Node->getOperand(0); 1496 Tmp2 = LegalizeOp(Node->getOperand(1)); 1497 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1498 Result = ExpandEXTRACT_VECTOR_ELT(Result); 1499 break; 1500 1501 case ISD::EXTRACT_SUBVECTOR: 1502 Tmp1 = Node->getOperand(0); 1503 Tmp2 = LegalizeOp(Node->getOperand(1)); 1504 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1505 Result = ExpandEXTRACT_SUBVECTOR(Result); 1506 break; 1507 1508 case ISD::CALLSEQ_START: { 1509 SDNode *CallEnd = FindCallEndFromCallStart(Node); 1510 1511 // Recursively Legalize all of the inputs of the call end that do not lead 1512 // to this call start. This ensures that any libcalls that need be inserted 1513 // are inserted *before* the CALLSEQ_START. 1514 {SmallPtrSet<SDNode*, 32> NodesLeadingTo; 1515 for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i) 1516 LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).Val, Node, 1517 NodesLeadingTo); 1518 } 1519 1520 // Now that we legalized all of the inputs (which may have inserted 1521 // libcalls) create the new CALLSEQ_START node. 1522 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1523 1524 // Merge in the last call, to ensure that this call start after the last 1525 // call ended. 1526 if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) { 1527 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1528 Tmp1 = LegalizeOp(Tmp1); 1529 } 1530 1531 // Do not try to legalize the target-specific arguments (#1+). 1532 if (Tmp1 != Node->getOperand(0)) { 1533 SmallVector<SDOperand, 8> Ops(Node->op_begin(), Node->op_end()); 1534 Ops[0] = Tmp1; 1535 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1536 } 1537 1538 // Remember that the CALLSEQ_START is legalized. 1539 AddLegalizedOperand(Op.getValue(0), Result); 1540 if (Node->getNumValues() == 2) // If this has a flag result, remember it. 1541 AddLegalizedOperand(Op.getValue(1), Result.getValue(1)); 1542 1543 // Now that the callseq_start and all of the non-call nodes above this call 1544 // sequence have been legalized, legalize the call itself. During this 1545 // process, no libcalls can/will be inserted, guaranteeing that no calls 1546 // can overlap. 1547 assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!"); 1548 SDOperand InCallSEQ = LastCALLSEQ_END; 1549 // Note that we are selecting this call! 1550 LastCALLSEQ_END = SDOperand(CallEnd, 0); 1551 IsLegalizingCall = true; 1552 1553 // Legalize the call, starting from the CALLSEQ_END. 1554 LegalizeOp(LastCALLSEQ_END); 1555 assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!"); 1556 return Result; 1557 } 1558 case ISD::CALLSEQ_END: 1559 // If the CALLSEQ_START node hasn't been legalized first, legalize it. This 1560 // will cause this node to be legalized as well as handling libcalls right. 1561 if (LastCALLSEQ_END.Val != Node) { 1562 LegalizeOp(SDOperand(FindCallStartFromCallEnd(Node), 0)); 1563 DenseMap<SDOperand, SDOperand>::iterator I = LegalizedNodes.find(Op); 1564 assert(I != LegalizedNodes.end() && 1565 "Legalizing the call start should have legalized this node!"); 1566 return I->second; 1567 } 1568 1569 // Otherwise, the call start has been legalized and everything is going 1570 // according to plan. Just legalize ourselves normally here. 1571 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1572 // Do not try to legalize the target-specific arguments (#1+), except for 1573 // an optional flag input. 1574 if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Flag){ 1575 if (Tmp1 != Node->getOperand(0)) { 1576 SmallVector<SDOperand, 8> Ops(Node->op_begin(), Node->op_end()); 1577 Ops[0] = Tmp1; 1578 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1579 } 1580 } else { 1581 Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1)); 1582 if (Tmp1 != Node->getOperand(0) || 1583 Tmp2 != Node->getOperand(Node->getNumOperands()-1)) { 1584 SmallVector<SDOperand, 8> Ops(Node->op_begin(), Node->op_end()); 1585 Ops[0] = Tmp1; 1586 Ops.back() = Tmp2; 1587 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1588 } 1589 } 1590 assert(IsLegalizingCall && "Call sequence imbalance between start/end?"); 1591 // This finishes up call legalization. 1592 IsLegalizingCall = false; 1593 1594 // If the CALLSEQ_END node has a flag, remember that we legalized it. 1595 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 1596 if (Node->getNumValues() == 2) 1597 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 1598 return Result.getValue(Op.ResNo); 1599 case ISD::DYNAMIC_STACKALLOC: { 1600 MVT::ValueType VT = Node->getValueType(0); 1601 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1602 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the size. 1603 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the alignment. 1604 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1605 1606 Tmp1 = Result.getValue(0); 1607 Tmp2 = Result.getValue(1); 1608 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 1609 default: assert(0 && "This action is not supported yet!"); 1610 case TargetLowering::Expand: { 1611 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1612 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" 1613 " not tell us which reg is the stack pointer!"); 1614 SDOperand Chain = Tmp1.getOperand(0); 1615 1616 // Chain the dynamic stack allocation so that it doesn't modify the stack 1617 // pointer when other instructions are using the stack. 1618 Chain = DAG.getCALLSEQ_START(Chain, 1619 DAG.getConstant(0, TLI.getPointerTy())); 1620 1621 SDOperand Size = Tmp2.getOperand(1); 1622 SDOperand SP = DAG.getCopyFromReg(Chain, SPReg, VT); 1623 Chain = SP.getValue(1); 1624 unsigned Align = cast<ConstantSDNode>(Tmp3)->getValue(); 1625 unsigned StackAlign = 1626 TLI.getTargetMachine().getFrameInfo()->getStackAlignment(); 1627 if (Align > StackAlign) 1628 SP = DAG.getNode(ISD::AND, VT, SP, 1629 DAG.getConstant(-(uint64_t)Align, VT)); 1630 Tmp1 = DAG.getNode(ISD::SUB, VT, SP, Size); // Value 1631 Chain = DAG.getCopyToReg(Chain, SPReg, Tmp1); // Output chain 1632 1633 Tmp2 = 1634 DAG.getCALLSEQ_END(Chain, 1635 DAG.getConstant(0, TLI.getPointerTy()), 1636 DAG.getConstant(0, TLI.getPointerTy()), 1637 SDOperand()); 1638 1639 Tmp1 = LegalizeOp(Tmp1); 1640 Tmp2 = LegalizeOp(Tmp2); 1641 break; 1642 } 1643 case TargetLowering::Custom: 1644 Tmp3 = TLI.LowerOperation(Tmp1, DAG); 1645 if (Tmp3.Val) { 1646 Tmp1 = LegalizeOp(Tmp3); 1647 Tmp2 = LegalizeOp(Tmp3.getValue(1)); 1648 } 1649 break; 1650 case TargetLowering::Legal: 1651 break; 1652 } 1653 // Since this op produce two values, make sure to remember that we 1654 // legalized both of them. 1655 AddLegalizedOperand(SDOperand(Node, 0), Tmp1); 1656 AddLegalizedOperand(SDOperand(Node, 1), Tmp2); 1657 return Op.ResNo ? Tmp2 : Tmp1; 1658 } 1659 case ISD::INLINEASM: { 1660 SmallVector<SDOperand, 8> Ops(Node->op_begin(), Node->op_end()); 1661 bool Changed = false; 1662 // Legalize all of the operands of the inline asm, in case they are nodes 1663 // that need to be expanded or something. Note we skip the asm string and 1664 // all of the TargetConstant flags. 1665 SDOperand Op = LegalizeOp(Ops[0]); 1666 Changed = Op != Ops[0]; 1667 Ops[0] = Op; 1668 1669 bool HasInFlag = Ops.back().getValueType() == MVT::Flag; 1670 for (unsigned i = 2, e = Ops.size()-HasInFlag; i < e; ) { 1671 unsigned NumVals = cast<ConstantSDNode>(Ops[i])->getValue() >> 3; 1672 for (++i; NumVals; ++i, --NumVals) { 1673 SDOperand Op = LegalizeOp(Ops[i]); 1674 if (Op != Ops[i]) { 1675 Changed = true; 1676 Ops[i] = Op; 1677 } 1678 } 1679 } 1680 1681 if (HasInFlag) { 1682 Op = LegalizeOp(Ops.back()); 1683 Changed |= Op != Ops.back(); 1684 Ops.back() = Op; 1685 } 1686 1687 if (Changed) 1688 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1689 1690 // INLINE asm returns a chain and flag, make sure to add both to the map. 1691 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 1692 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 1693 return Result.getValue(Op.ResNo); 1694 } 1695 case ISD::BR: 1696 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1697 // Ensure that libcalls are emitted before a branch. 1698 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1699 Tmp1 = LegalizeOp(Tmp1); 1700 LastCALLSEQ_END = DAG.getEntryNode(); 1701 1702 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 1703 break; 1704 case ISD::BRIND: 1705 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1706 // Ensure that libcalls are emitted before a branch. 1707 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1708 Tmp1 = LegalizeOp(Tmp1); 1709 LastCALLSEQ_END = DAG.getEntryNode(); 1710 1711 switch (getTypeAction(Node->getOperand(1).getValueType())) { 1712 default: assert(0 && "Indirect target must be legal type (pointer)!"); 1713 case Legal: 1714 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the condition. 1715 break; 1716 } 1717 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1718 break; 1719 case ISD::BR_JT: 1720 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1721 // Ensure that libcalls are emitted before a branch. 1722 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1723 Tmp1 = LegalizeOp(Tmp1); 1724 LastCALLSEQ_END = DAG.getEntryNode(); 1725 1726 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the jumptable node. 1727 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 1728 1729 switch (TLI.getOperationAction(ISD::BR_JT, MVT::Other)) { 1730 default: assert(0 && "This action is not supported yet!"); 1731 case TargetLowering::Legal: break; 1732 case TargetLowering::Custom: 1733 Tmp1 = TLI.LowerOperation(Result, DAG); 1734 if (Tmp1.Val) Result = Tmp1; 1735 break; 1736 case TargetLowering::Expand: { 1737 SDOperand Chain = Result.getOperand(0); 1738 SDOperand Table = Result.getOperand(1); 1739 SDOperand Index = Result.getOperand(2); 1740 1741 MVT::ValueType PTy = TLI.getPointerTy(); 1742 MachineFunction &MF = DAG.getMachineFunction(); 1743 unsigned EntrySize = MF.getJumpTableInfo()->getEntrySize(); 1744 Index= DAG.getNode(ISD::MUL, PTy, Index, DAG.getConstant(EntrySize, PTy)); 1745 SDOperand Addr = DAG.getNode(ISD::ADD, PTy, Index, Table); 1746 1747 SDOperand LD; 1748 switch (EntrySize) { 1749 default: assert(0 && "Size of jump table not supported yet."); break; 1750 case 4: LD = DAG.getLoad(MVT::i32, Chain, Addr, 1751 PseudoSourceValue::getJumpTable(), 0); break; 1752 case 8: LD = DAG.getLoad(MVT::i64, Chain, Addr, 1753 PseudoSourceValue::getJumpTable(), 0); break; 1754 } 1755 1756 Addr = LD; 1757 if (TLI.getTargetMachine().getRelocationModel() == Reloc::PIC_) { 1758 // For PIC, the sequence is: 1759 // BRIND(load(Jumptable + index) + RelocBase) 1760 // RelocBase can be JumpTable, GOT or some sort of global base. 1761 if (PTy != MVT::i32) 1762 Addr = DAG.getNode(ISD::SIGN_EXTEND, PTy, Addr); 1763 Addr = DAG.getNode(ISD::ADD, PTy, Addr, 1764 TLI.getPICJumpTableRelocBase(Table, DAG)); 1765 } 1766 Result = DAG.getNode(ISD::BRIND, MVT::Other, LD.getValue(1), Addr); 1767 } 1768 } 1769 break; 1770 case ISD::BRCOND: 1771 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1772 // Ensure that libcalls are emitted before a return. 1773 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1774 Tmp1 = LegalizeOp(Tmp1); 1775 LastCALLSEQ_END = DAG.getEntryNode(); 1776 1777 switch (getTypeAction(Node->getOperand(1).getValueType())) { 1778 case Expand: assert(0 && "It's impossible to expand bools"); 1779 case Legal: 1780 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the condition. 1781 break; 1782 case Promote: { 1783 Tmp2 = PromoteOp(Node->getOperand(1)); // Promote the condition. 1784 1785 // The top bits of the promoted condition are not necessarily zero, ensure 1786 // that the value is properly zero extended. 1787 unsigned BitWidth = Tmp2.getValueSizeInBits(); 1788 if (!DAG.MaskedValueIsZero(Tmp2, 1789 APInt::getHighBitsSet(BitWidth, BitWidth-1))) 1790 Tmp2 = DAG.getZeroExtendInReg(Tmp2, MVT::i1); 1791 break; 1792 } 1793 } 1794 1795 // Basic block destination (Op#2) is always legal. 1796 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 1797 1798 switch (TLI.getOperationAction(ISD::BRCOND, MVT::Other)) { 1799 default: assert(0 && "This action is not supported yet!"); 1800 case TargetLowering::Legal: break; 1801 case TargetLowering::Custom: 1802 Tmp1 = TLI.LowerOperation(Result, DAG); 1803 if (Tmp1.Val) Result = Tmp1; 1804 break; 1805 case TargetLowering::Expand: 1806 // Expand brcond's setcc into its constituent parts and create a BR_CC 1807 // Node. 1808 if (Tmp2.getOpcode() == ISD::SETCC) { 1809 Result = DAG.getNode(ISD::BR_CC, MVT::Other, Tmp1, Tmp2.getOperand(2), 1810 Tmp2.getOperand(0), Tmp2.getOperand(1), 1811 Node->getOperand(2)); 1812 } else { 1813 Result = DAG.getNode(ISD::BR_CC, MVT::Other, Tmp1, 1814 DAG.getCondCode(ISD::SETNE), Tmp2, 1815 DAG.getConstant(0, Tmp2.getValueType()), 1816 Node->getOperand(2)); 1817 } 1818 break; 1819 } 1820 break; 1821 case ISD::BR_CC: 1822 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1823 // Ensure that libcalls are emitted before a branch. 1824 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1825 Tmp1 = LegalizeOp(Tmp1); 1826 Tmp2 = Node->getOperand(2); // LHS 1827 Tmp3 = Node->getOperand(3); // RHS 1828 Tmp4 = Node->getOperand(1); // CC 1829 1830 LegalizeSetCCOperands(Tmp2, Tmp3, Tmp4); 1831 LastCALLSEQ_END = DAG.getEntryNode(); 1832 1833 // If we didn't get both a LHS and RHS back from LegalizeSetCCOperands, 1834 // the LHS is a legal SETCC itself. In this case, we need to compare 1835 // the result against zero to select between true and false values. 1836 if (Tmp3.Val == 0) { 1837 Tmp3 = DAG.getConstant(0, Tmp2.getValueType()); 1838 Tmp4 = DAG.getCondCode(ISD::SETNE); 1839 } 1840 1841 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp4, Tmp2, Tmp3, 1842 Node->getOperand(4)); 1843 1844 switch (TLI.getOperationAction(ISD::BR_CC, Tmp3.getValueType())) { 1845 default: assert(0 && "Unexpected action for BR_CC!"); 1846 case TargetLowering::Legal: break; 1847 case TargetLowering::Custom: 1848 Tmp4 = TLI.LowerOperation(Result, DAG); 1849 if (Tmp4.Val) Result = Tmp4; 1850 break; 1851 } 1852 break; 1853 case ISD::LOAD: { 1854 LoadSDNode *LD = cast<LoadSDNode>(Node); 1855 Tmp1 = LegalizeOp(LD->getChain()); // Legalize the chain. 1856 Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer. 1857 1858 ISD::LoadExtType ExtType = LD->getExtensionType(); 1859 if (ExtType == ISD::NON_EXTLOAD) { 1860 MVT::ValueType VT = Node->getValueType(0); 1861 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset()); 1862 Tmp3 = Result.getValue(0); 1863 Tmp4 = Result.getValue(1); 1864 1865 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 1866 default: assert(0 && "This action is not supported yet!"); 1867 case TargetLowering::Legal: 1868 // If this is an unaligned load and the target doesn't support it, 1869 // expand it. 1870 if (!TLI.allowsUnalignedMemoryAccesses()) { 1871 unsigned ABIAlignment = TLI.getTargetData()-> 1872 getABITypeAlignment(MVT::getTypeForValueType(LD->getMemoryVT())); 1873 if (LD->getAlignment() < ABIAlignment){ 1874 Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.Val), DAG, 1875 TLI); 1876 Tmp3 = Result.getOperand(0); 1877 Tmp4 = Result.getOperand(1); 1878 Tmp3 = LegalizeOp(Tmp3); 1879 Tmp4 = LegalizeOp(Tmp4); 1880 } 1881 } 1882 break; 1883 case TargetLowering::Custom: 1884 Tmp1 = TLI.LowerOperation(Tmp3, DAG); 1885 if (Tmp1.Val) { 1886 Tmp3 = LegalizeOp(Tmp1); 1887 Tmp4 = LegalizeOp(Tmp1.getValue(1)); 1888 } 1889 break; 1890 case TargetLowering::Promote: { 1891 // Only promote a load of vector type to another. 1892 assert(MVT::isVector(VT) && "Cannot promote this load!"); 1893 // Change base type to a different vector type. 1894 MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 1895 1896 Tmp1 = DAG.getLoad(NVT, Tmp1, Tmp2, LD->getSrcValue(), 1897 LD->getSrcValueOffset(), 1898 LD->isVolatile(), LD->getAlignment()); 1899 Tmp3 = LegalizeOp(DAG.getNode(ISD::BIT_CONVERT, VT, Tmp1)); 1900 Tmp4 = LegalizeOp(Tmp1.getValue(1)); 1901 break; 1902 } 1903 } 1904 // Since loads produce two values, make sure to remember that we 1905 // legalized both of them. 1906 AddLegalizedOperand(SDOperand(Node, 0), Tmp3); 1907 AddLegalizedOperand(SDOperand(Node, 1), Tmp4); 1908 return Op.ResNo ? Tmp4 : Tmp3; 1909 } else { 1910 MVT::ValueType SrcVT = LD->getMemoryVT(); 1911 unsigned SrcWidth = MVT::getSizeInBits(SrcVT); 1912 int SVOffset = LD->getSrcValueOffset(); 1913 unsigned Alignment = LD->getAlignment(); 1914 bool isVolatile = LD->isVolatile(); 1915 1916 if (SrcWidth != MVT::getStoreSizeInBits(SrcVT) && 1917 // Some targets pretend to have an i1 loading operation, and actually 1918 // load an i8. This trick is correct for ZEXTLOAD because the top 7 1919 // bits are guaranteed to be zero; it helps the optimizers understand 1920 // that these bits are zero. It is also useful for EXTLOAD, since it 1921 // tells the optimizers that those bits are undefined. It would be 1922 // nice to have an effective generic way of getting these benefits... 1923 // Until such a way is found, don't insist on promoting i1 here. 1924 (SrcVT != MVT::i1 || 1925 TLI.getLoadXAction(ExtType, MVT::i1) == TargetLowering::Promote)) { 1926 // Promote to a byte-sized load if not loading an integral number of 1927 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 1928 unsigned NewWidth = MVT::getStoreSizeInBits(SrcVT); 1929 MVT::ValueType NVT = MVT::getIntegerType(NewWidth); 1930 SDOperand Ch; 1931 1932 // The extra bits are guaranteed to be zero, since we stored them that 1933 // way. A zext load from NVT thus automatically gives zext from SrcVT. 1934 1935 ISD::LoadExtType NewExtType = 1936 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; 1937 1938 Result = DAG.getExtLoad(NewExtType, Node->getValueType(0), 1939 Tmp1, Tmp2, LD->getSrcValue(), SVOffset, 1940 NVT, isVolatile, Alignment); 1941 1942 Ch = Result.getValue(1); // The chain. 1943 1944 if (ExtType == ISD::SEXTLOAD) 1945 // Having the top bits zero doesn't help when sign extending. 1946 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(), 1947 Result, DAG.getValueType(SrcVT)); 1948 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) 1949 // All the top bits are guaranteed to be zero - inform the optimizers. 1950 Result = DAG.getNode(ISD::AssertZext, Result.getValueType(), Result, 1951 DAG.getValueType(SrcVT)); 1952 1953 Tmp1 = LegalizeOp(Result); 1954 Tmp2 = LegalizeOp(Ch); 1955 } else if (SrcWidth & (SrcWidth - 1)) { 1956 // If not loading a power-of-2 number of bits, expand as two loads. 1957 assert(MVT::isExtendedVT(SrcVT) && !MVT::isVector(SrcVT) && 1958 "Unsupported extload!"); 1959 unsigned RoundWidth = 1 << Log2_32(SrcWidth); 1960 assert(RoundWidth < SrcWidth); 1961 unsigned ExtraWidth = SrcWidth - RoundWidth; 1962 assert(ExtraWidth < RoundWidth); 1963 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 1964 "Load size not an integral number of bytes!"); 1965 MVT::ValueType RoundVT = MVT::getIntegerType(RoundWidth); 1966 MVT::ValueType ExtraVT = MVT::getIntegerType(ExtraWidth); 1967 SDOperand Lo, Hi, Ch; 1968 unsigned IncrementSize; 1969 1970 if (TLI.isLittleEndian()) { 1971 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) 1972 // Load the bottom RoundWidth bits. 1973 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, Node->getValueType(0), Tmp1, Tmp2, 1974 LD->getSrcValue(), SVOffset, RoundVT, isVolatile, 1975 Alignment); 1976 1977 // Load the remaining ExtraWidth bits. 1978 IncrementSize = RoundWidth / 8; 1979 Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, 1980 DAG.getIntPtrConstant(IncrementSize)); 1981 Hi = DAG.getExtLoad(ExtType, Node->getValueType(0), Tmp1, Tmp2, 1982 LD->getSrcValue(), SVOffset + IncrementSize, 1983 ExtraVT, isVolatile, 1984 MinAlign(Alignment, IncrementSize)); 1985 1986 // Build a factor node to remember that this load is independent of the 1987 // other one. 1988 Ch = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), 1989 Hi.getValue(1)); 1990 1991 // Move the top bits to the right place. 1992 Hi = DAG.getNode(ISD::SHL, Hi.getValueType(), Hi, 1993 DAG.getConstant(RoundWidth, TLI.getShiftAmountTy())); 1994 1995 // Join the hi and lo parts. 1996 Result = DAG.getNode(ISD::OR, Node->getValueType(0), Lo, Hi); 1997 } else { 1998 // Big endian - avoid unaligned loads. 1999 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 2000 // Load the top RoundWidth bits. 2001 Hi = DAG.getExtLoad(ExtType, Node->getValueType(0), Tmp1, Tmp2, 2002 LD->getSrcValue(), SVOffset, RoundVT, isVolatile, 2003 Alignment); 2004 2005 // Load the remaining ExtraWidth bits. 2006 IncrementSize = RoundWidth / 8; 2007 Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, 2008 DAG.getIntPtrConstant(IncrementSize)); 2009 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, Node->getValueType(0), Tmp1, Tmp2, 2010 LD->getSrcValue(), SVOffset + IncrementSize, 2011 ExtraVT, isVolatile, 2012 MinAlign(Alignment, IncrementSize)); 2013 2014 // Build a factor node to remember that this load is independent of the 2015 // other one. 2016 Ch = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), 2017 Hi.getValue(1)); 2018 2019 // Move the top bits to the right place. 2020 Hi = DAG.getNode(ISD::SHL, Hi.getValueType(), Hi, 2021 DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy())); 2022 2023 // Join the hi and lo parts. 2024 Result = DAG.getNode(ISD::OR, Node->getValueType(0), Lo, Hi); 2025 } 2026 2027 Tmp1 = LegalizeOp(Result); 2028 Tmp2 = LegalizeOp(Ch); 2029 } else { 2030 switch (TLI.getLoadXAction(ExtType, SrcVT)) { 2031 default: assert(0 && "This action is not supported yet!"); 2032 case TargetLowering::Custom: 2033 isCustom = true; 2034 // FALLTHROUGH 2035 case TargetLowering::Legal: 2036 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset()); 2037 Tmp1 = Result.getValue(0); 2038 Tmp2 = Result.getValue(1); 2039 2040 if (isCustom) { 2041 Tmp3 = TLI.LowerOperation(Result, DAG); 2042 if (Tmp3.Val) { 2043 Tmp1 = LegalizeOp(Tmp3); 2044 Tmp2 = LegalizeOp(Tmp3.getValue(1)); 2045 } 2046 } else { 2047 // If this is an unaligned load and the target doesn't support it, 2048 // expand it. 2049 if (!TLI.allowsUnalignedMemoryAccesses()) { 2050 unsigned ABIAlignment = TLI.getTargetData()-> 2051 getABITypeAlignment(MVT::getTypeForValueType(LD->getMemoryVT())); 2052 if (LD->getAlignment() < ABIAlignment){ 2053 Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.Val), DAG, 2054 TLI); 2055 Tmp1 = Result.getOperand(0); 2056 Tmp2 = Result.getOperand(1); 2057 Tmp1 = LegalizeOp(Tmp1); 2058 Tmp2 = LegalizeOp(Tmp2); 2059 } 2060 } 2061 } 2062 break; 2063 case TargetLowering::Expand: 2064 // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND 2065 if (SrcVT == MVT::f32 && Node->getValueType(0) == MVT::f64) { 2066 SDOperand Load = DAG.getLoad(SrcVT, Tmp1, Tmp2, LD->getSrcValue(), 2067 LD->getSrcValueOffset(), 2068 LD->isVolatile(), LD->getAlignment()); 2069 Result = DAG.getNode(ISD::FP_EXTEND, Node->getValueType(0), Load); 2070 Tmp1 = LegalizeOp(Result); // Relegalize new nodes. 2071 Tmp2 = LegalizeOp(Load.getValue(1)); 2072 break; 2073 } 2074 assert(ExtType != ISD::EXTLOAD &&"EXTLOAD should always be supported!"); 2075 // Turn the unsupported load into an EXTLOAD followed by an explicit 2076 // zero/sign extend inreg. 2077 Result = DAG.getExtLoad(ISD::EXTLOAD, Node->getValueType(0), 2078 Tmp1, Tmp2, LD->getSrcValue(), 2079 LD->getSrcValueOffset(), SrcVT, 2080 LD->isVolatile(), LD->getAlignment()); 2081 SDOperand ValRes; 2082 if (ExtType == ISD::SEXTLOAD) 2083 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(), 2084 Result, DAG.getValueType(SrcVT)); 2085 else 2086 ValRes = DAG.getZeroExtendInReg(Result, SrcVT); 2087 Tmp1 = LegalizeOp(ValRes); // Relegalize new nodes. 2088 Tmp2 = LegalizeOp(Result.getValue(1)); // Relegalize new nodes. 2089 break; 2090 } 2091 } 2092 2093 // Since loads produce two values, make sure to remember that we legalized 2094 // both of them. 2095 AddLegalizedOperand(SDOperand(Node, 0), Tmp1); 2096 AddLegalizedOperand(SDOperand(Node, 1), Tmp2); 2097 return Op.ResNo ? Tmp2 : Tmp1; 2098 } 2099 } 2100 case ISD::EXTRACT_ELEMENT: { 2101 MVT::ValueType OpTy = Node->getOperand(0).getValueType(); 2102 switch (getTypeAction(OpTy)) { 2103 default: assert(0 && "EXTRACT_ELEMENT action for type unimplemented!"); 2104 case Legal: 2105 if (cast<ConstantSDNode>(Node->getOperand(1))->getValue()) { 2106 // 1 -> Hi 2107 Result = DAG.getNode(ISD::SRL, OpTy, Node->getOperand(0), 2108 DAG.getConstant(MVT::getSizeInBits(OpTy)/2, 2109 TLI.getShiftAmountTy())); 2110 Result = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), Result); 2111 } else { 2112 // 0 -> Lo 2113 Result = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), 2114 Node->getOperand(0)); 2115 } 2116 break; 2117 case Expand: 2118 // Get both the low and high parts. 2119 ExpandOp(Node->getOperand(0), Tmp1, Tmp2); 2120 if (cast<ConstantSDNode>(Node->getOperand(1))->getValue()) 2121 Result = Tmp2; // 1 -> Hi 2122 else 2123 Result = Tmp1; // 0 -> Lo 2124 break; 2125 } 2126 break; 2127 } 2128 2129 case ISD::CopyToReg: 2130 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2131 2132 assert(isTypeLegal(Node->getOperand(2).getValueType()) && 2133 "Register type must be legal!"); 2134 // Legalize the incoming value (must be a legal type). 2135 Tmp2 = LegalizeOp(Node->getOperand(2)); 2136 if (Node->getNumValues() == 1) { 2137 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1), Tmp2); 2138 } else { 2139 assert(Node->getNumValues() == 2 && "Unknown CopyToReg"); 2140 if (Node->getNumOperands() == 4) { 2141 Tmp3 = LegalizeOp(Node->getOperand(3)); 2142 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1), Tmp2, 2143 Tmp3); 2144 } else { 2145 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1),Tmp2); 2146 } 2147 2148 // Since this produces two values, make sure to remember that we legalized 2149 // both of them. 2150 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 2151 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 2152 return Result; 2153 } 2154 break; 2155 2156 case ISD::RET: 2157 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2158 2159 // Ensure that libcalls are emitted before a return. 2160 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 2161 Tmp1 = LegalizeOp(Tmp1); 2162 LastCALLSEQ_END = DAG.getEntryNode(); 2163 2164 switch (Node->getNumOperands()) { 2165 case 3: // ret val 2166 Tmp2 = Node->getOperand(1); 2167 Tmp3 = Node->getOperand(2); // Signness 2168 switch (getTypeAction(Tmp2.getValueType())) { 2169 case Legal: 2170 Result = DAG.UpdateNodeOperands(Result, Tmp1, LegalizeOp(Tmp2), Tmp3); 2171 break; 2172 case Expand: 2173 if (!MVT::isVector(Tmp2.getValueType())) { 2174 SDOperand Lo, Hi; 2175 ExpandOp(Tmp2, Lo, Hi); 2176 2177 // Big endian systems want the hi reg first. 2178 if (TLI.isBigEndian()) 2179 std::swap(Lo, Hi); 2180 2181 if (Hi.Val) 2182 Result = DAG.getNode(ISD::RET, MVT::Other, Tmp1, Lo, Tmp3, Hi,Tmp3); 2183 else 2184 Result = DAG.getNode(ISD::RET, MVT::Other, Tmp1, Lo, Tmp3); 2185 Result = LegalizeOp(Result); 2186 } else { 2187 SDNode *InVal = Tmp2.Val; 2188 int InIx = Tmp2.ResNo; 2189 unsigned NumElems = MVT::getVectorNumElements(InVal->getValueType(InIx)); 2190 MVT::ValueType EVT = MVT::getVectorElementType(InVal->getValueType(InIx)); 2191 2192 // Figure out if there is a simple type corresponding to this Vector 2193 // type. If so, convert to the vector type. 2194 MVT::ValueType TVT = MVT::getVectorType(EVT, NumElems); 2195 if (TLI.isTypeLegal(TVT)) { 2196 // Turn this into a return of the vector type. 2197 Tmp2 = LegalizeOp(Tmp2); 2198 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2199 } else if (NumElems == 1) { 2200 // Turn this into a return of the scalar type. 2201 Tmp2 = ScalarizeVectorOp(Tmp2); 2202 Tmp2 = LegalizeOp(Tmp2); 2203 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2204 2205 // FIXME: Returns of gcc generic vectors smaller than a legal type 2206 // should be returned in integer registers! 2207 2208 // The scalarized value type may not be legal, e.g. it might require 2209 // promotion or expansion. Relegalize the return. 2210 Result = LegalizeOp(Result); 2211 } else { 2212 // FIXME: Returns of gcc generic vectors larger than a legal vector 2213 // type should be returned by reference! 2214 SDOperand Lo, Hi; 2215 SplitVectorOp(Tmp2, Lo, Hi); 2216 Result = DAG.getNode(ISD::RET, MVT::Other, Tmp1, Lo, Tmp3, Hi,Tmp3); 2217 Result = LegalizeOp(Result); 2218 } 2219 } 2220 break; 2221 case Promote: 2222 Tmp2 = PromoteOp(Node->getOperand(1)); 2223 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2224 Result = LegalizeOp(Result); 2225 break; 2226 } 2227 break; 2228 case 1: // ret void 2229 Result = DAG.UpdateNodeOperands(Result, Tmp1); 2230 break; 2231 default: { // ret <values> 2232 SmallVector<SDOperand, 8> NewValues; 2233 NewValues.push_back(Tmp1); 2234 for (unsigned i = 1, e = Node->getNumOperands(); i < e; i += 2) 2235 switch (getTypeAction(Node->getOperand(i).getValueType())) { 2236 case Legal: 2237 NewValues.push_back(LegalizeOp(Node->getOperand(i))); 2238 NewValues.push_back(Node->getOperand(i+1)); 2239 break; 2240 case Expand: { 2241 SDOperand Lo, Hi; 2242 assert(!MVT::isExtendedVT(Node->getOperand(i).getValueType()) && 2243 "FIXME: TODO: implement returning non-legal vector types!"); 2244 ExpandOp(Node->getOperand(i), Lo, Hi); 2245 NewValues.push_back(Lo); 2246 NewValues.push_back(Node->getOperand(i+1)); 2247 if (Hi.Val) { 2248 NewValues.push_back(Hi); 2249 NewValues.push_back(Node->getOperand(i+1)); 2250 } 2251 break; 2252 } 2253 case Promote: 2254 assert(0 && "Can't promote multiple return value yet!"); 2255 } 2256 2257 if (NewValues.size() == Node->getNumOperands()) 2258 Result = DAG.UpdateNodeOperands(Result, &NewValues[0],NewValues.size()); 2259 else 2260 Result = DAG.getNode(ISD::RET, MVT::Other, 2261 &NewValues[0], NewValues.size()); 2262 break; 2263 } 2264 } 2265 2266 if (Result.getOpcode() == ISD::RET) { 2267 switch (TLI.getOperationAction(Result.getOpcode(), MVT::Other)) { 2268 default: assert(0 && "This action is not supported yet!"); 2269 case TargetLowering::Legal: break; 2270 case TargetLowering::Custom: 2271 Tmp1 = TLI.LowerOperation(Result, DAG); 2272 if (Tmp1.Val) Result = Tmp1; 2273 break; 2274 } 2275 } 2276 break; 2277 case ISD::STORE: { 2278 StoreSDNode *ST = cast<StoreSDNode>(Node); 2279 Tmp1 = LegalizeOp(ST->getChain()); // Legalize the chain. 2280 Tmp2 = LegalizeOp(ST->getBasePtr()); // Legalize the pointer. 2281 int SVOffset = ST->getSrcValueOffset(); 2282 unsigned Alignment = ST->getAlignment(); 2283 bool isVolatile = ST->isVolatile(); 2284 2285 if (!ST->isTruncatingStore()) { 2286 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 2287 // FIXME: We shouldn't do this for TargetConstantFP's. 2288 // FIXME: move this to the DAG Combiner! Note that we can't regress due 2289 // to phase ordering between legalized code and the dag combiner. This 2290 // probably means that we need to integrate dag combiner and legalizer 2291 // together. 2292 // We generally can't do this one for long doubles. 2293 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) { 2294 if (CFP->getValueType(0) == MVT::f32 && 2295 getTypeAction(MVT::i32) == Legal) { 2296 Tmp3 = DAG.getConstant((uint32_t)CFP->getValueAPF(). 2297 convertToAPInt().getZExtValue(), 2298 MVT::i32); 2299 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2300 SVOffset, isVolatile, Alignment); 2301 break; 2302 } else if (CFP->getValueType(0) == MVT::f64) { 2303 // If this target supports 64-bit registers, do a single 64-bit store. 2304 if (getTypeAction(MVT::i64) == Legal) { 2305 Tmp3 = DAG.getConstant(CFP->getValueAPF().convertToAPInt(). 2306 getZExtValue(), MVT::i64); 2307 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2308 SVOffset, isVolatile, Alignment); 2309 break; 2310 } else if (getTypeAction(MVT::i32) == Legal) { 2311 // Otherwise, if the target supports 32-bit registers, use 2 32-bit 2312 // stores. If the target supports neither 32- nor 64-bits, this 2313 // xform is certainly not worth it. 2314 uint64_t IntVal =CFP->getValueAPF().convertToAPInt().getZExtValue(); 2315 SDOperand Lo = DAG.getConstant(uint32_t(IntVal), MVT::i32); 2316 SDOperand Hi = DAG.getConstant(uint32_t(IntVal >>32), MVT::i32); 2317 if (TLI.isBigEndian()) std::swap(Lo, Hi); 2318 2319 Lo = DAG.getStore(Tmp1, Lo, Tmp2, ST->getSrcValue(), 2320 SVOffset, isVolatile, Alignment); 2321 Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, 2322 DAG.getIntPtrConstant(4)); 2323 Hi = DAG.getStore(Tmp1, Hi, Tmp2, ST->getSrcValue(), SVOffset+4, 2324 isVolatile, MinAlign(Alignment, 4U)); 2325 2326 Result = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi); 2327 break; 2328 } 2329 } 2330 } 2331 2332 switch (getTypeAction(ST->getMemoryVT())) { 2333 case Legal: { 2334 Tmp3 = LegalizeOp(ST->getValue()); 2335 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2, 2336 ST->getOffset()); 2337 2338 MVT::ValueType VT = Tmp3.getValueType(); 2339 switch (TLI.getOperationAction(ISD::STORE, VT)) { 2340 default: assert(0 && "This action is not supported yet!"); 2341 case TargetLowering::Legal: 2342 // If this is an unaligned store and the target doesn't support it, 2343 // expand it. 2344 if (!TLI.allowsUnalignedMemoryAccesses()) { 2345 unsigned ABIAlignment = TLI.getTargetData()-> 2346 getABITypeAlignment(MVT::getTypeForValueType(ST->getMemoryVT())); 2347 if (ST->getAlignment() < ABIAlignment) 2348 Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.Val), DAG, 2349 TLI); 2350 } 2351 break; 2352 case TargetLowering::Custom: 2353 Tmp1 = TLI.LowerOperation(Result, DAG); 2354 if (Tmp1.Val) Result = Tmp1; 2355 break; 2356 case TargetLowering::Promote: 2357 assert(MVT::isVector(VT) && "Unknown legal promote case!"); 2358 Tmp3 = DAG.getNode(ISD::BIT_CONVERT, 2359 TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3); 2360 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, 2361 ST->getSrcValue(), SVOffset, isVolatile, 2362 Alignment); 2363 break; 2364 } 2365 break; 2366 } 2367 case Promote: 2368 // Truncate the value and store the result. 2369 Tmp3 = PromoteOp(ST->getValue()); 2370 Result = DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2371 SVOffset, ST->getMemoryVT(), 2372 isVolatile, Alignment); 2373 break; 2374 2375 case Expand: 2376 unsigned IncrementSize = 0; 2377 SDOperand Lo, Hi; 2378 2379 // If this is a vector type, then we have to calculate the increment as 2380 // the product of the element size in bytes, and the number of elements 2381 // in the high half of the vector. 2382 if (MVT::isVector(ST->getValue().getValueType())) { 2383 SDNode *InVal = ST->getValue().Val; 2384 int InIx = ST->getValue().ResNo; 2385 MVT::ValueType InVT = InVal->getValueType(InIx); 2386 unsigned NumElems = MVT::getVectorNumElements(InVT); 2387 MVT::ValueType EVT = MVT::getVectorElementType(InVT); 2388 2389 // Figure out if there is a simple type corresponding to this Vector 2390 // type. If so, convert to the vector type. 2391 MVT::ValueType TVT = MVT::getVectorType(EVT, NumElems); 2392 if (TLI.isTypeLegal(TVT)) { 2393 // Turn this into a normal store of the vector type. 2394 Tmp3 = LegalizeOp(ST->getValue()); 2395 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2396 SVOffset, isVolatile, Alignment); 2397 Result = LegalizeOp(Result); 2398 break; 2399 } else if (NumElems == 1) { 2400 // Turn this into a normal store of the scalar type. 2401 Tmp3 = ScalarizeVectorOp(ST->getValue()); 2402 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2403 SVOffset, isVolatile, Alignment); 2404 // The scalarized value type may not be legal, e.g. it might require 2405 // promotion or expansion. Relegalize the scalar store. 2406 Result = LegalizeOp(Result); 2407 break; 2408 } else { 2409 SplitVectorOp(ST->getValue(), Lo, Hi); 2410 IncrementSize = MVT::getVectorNumElements(Lo.Val->getValueType(0)) * 2411 MVT::getSizeInBits(EVT)/8; 2412 } 2413 } else { 2414 ExpandOp(ST->getValue(), Lo, Hi); 2415 IncrementSize = Hi.Val ? MVT::getSizeInBits(Hi.getValueType())/8 : 0; 2416 2417 if (TLI.isBigEndian()) 2418 std::swap(Lo, Hi); 2419 } 2420 2421 Lo = DAG.getStore(Tmp1, Lo, Tmp2, ST->getSrcValue(), 2422 SVOffset, isVolatile, Alignment); 2423 2424 if (Hi.Val == NULL) { 2425 // Must be int <-> float one-to-one expansion. 2426 Result = Lo; 2427 break; 2428 } 2429 2430 Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, 2431 DAG.getIntPtrConstant(IncrementSize)); 2432 assert(isTypeLegal(Tmp2.getValueType()) && 2433 "Pointers must be legal!"); 2434 SVOffset += IncrementSize; 2435 Alignment = MinAlign(Alignment, IncrementSize); 2436 Hi = DAG.getStore(Tmp1, Hi, Tmp2, ST->getSrcValue(), 2437 SVOffset, isVolatile, Alignment); 2438 Result = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi); 2439 break; 2440 } 2441 } else { 2442 switch (getTypeAction(ST->getValue().getValueType())) { 2443 case Legal: 2444 Tmp3 = LegalizeOp(ST->getValue()); 2445 break; 2446 case Promote: 2447 // We can promote the value, the truncstore will still take care of it. 2448 Tmp3 = PromoteOp(ST->getValue()); 2449 break; 2450 case Expand: 2451 // Just store the low part. This may become a non-trunc store, so make 2452 // sure to use getTruncStore, not UpdateNodeOperands below. 2453 ExpandOp(ST->getValue(), Tmp3, Tmp4); 2454 return DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2455 SVOffset, MVT::i8, isVolatile, Alignment); 2456 } 2457 2458 MVT::ValueType StVT = ST->getMemoryVT(); 2459 unsigned StWidth = MVT::getSizeInBits(StVT); 2460 2461 if (StWidth != MVT::getStoreSizeInBits(StVT)) { 2462 // Promote to a byte-sized store with upper bits zero if not 2463 // storing an integral number of bytes. For example, promote 2464 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 2465 MVT::ValueType NVT = MVT::getIntegerType(MVT::getStoreSizeInBits(StVT)); 2466 Tmp3 = DAG.getZeroExtendInReg(Tmp3, StVT); 2467 Result = DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2468 SVOffset, NVT, isVolatile, Alignment); 2469 } else if (StWidth & (StWidth - 1)) { 2470 // If not storing a power-of-2 number of bits, expand as two stores. 2471 assert(MVT::isExtendedVT(StVT) && !MVT::isVector(StVT) && 2472 "Unsupported truncstore!"); 2473 unsigned RoundWidth = 1 << Log2_32(StWidth); 2474 assert(RoundWidth < StWidth); 2475 unsigned ExtraWidth = StWidth - RoundWidth; 2476 assert(ExtraWidth < RoundWidth); 2477 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 2478 "Store size not an integral number of bytes!"); 2479 MVT::ValueType RoundVT = MVT::getIntegerType(RoundWidth); 2480 MVT::ValueType ExtraVT = MVT::getIntegerType(ExtraWidth); 2481 SDOperand Lo, Hi; 2482 unsigned IncrementSize; 2483 2484 if (TLI.isLittleEndian()) { 2485 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) 2486 // Store the bottom RoundWidth bits. 2487 Lo = DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2488 SVOffset, RoundVT, 2489 isVolatile, Alignment); 2490 2491 // Store the remaining ExtraWidth bits. 2492 IncrementSize = RoundWidth / 8; 2493 Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, 2494 DAG.getIntPtrConstant(IncrementSize)); 2495 Hi = DAG.getNode(ISD::SRL, Tmp3.getValueType(), Tmp3, 2496 DAG.getConstant(RoundWidth, TLI.getShiftAmountTy())); 2497 Hi = DAG.getTruncStore(Tmp1, Hi, Tmp2, ST->getSrcValue(), 2498 SVOffset + IncrementSize, ExtraVT, isVolatile, 2499 MinAlign(Alignment, IncrementSize)); 2500 } else { 2501 // Big endian - avoid unaligned stores. 2502 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X 2503 // Store the top RoundWidth bits. 2504 Hi = DAG.getNode(ISD::SRL, Tmp3.getValueType(), Tmp3, 2505 DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy())); 2506 Hi = DAG.getTruncStore(Tmp1, Hi, Tmp2, ST->getSrcValue(), SVOffset, 2507 RoundVT, isVolatile, Alignment); 2508 2509 // Store the remaining ExtraWidth bits. 2510 IncrementSize = RoundWidth / 8; 2511 Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, 2512 DAG.getIntPtrConstant(IncrementSize)); 2513 Lo = DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2514 SVOffset + IncrementSize, ExtraVT, isVolatile, 2515 MinAlign(Alignment, IncrementSize)); 2516 } 2517 2518 // The order of the stores doesn't matter. 2519 Result = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi); 2520 } else { 2521 if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() || 2522 Tmp2 != ST->getBasePtr()) 2523 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2, 2524 ST->getOffset()); 2525 2526 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { 2527 default: assert(0 && "This action is not supported yet!"); 2528 case TargetLowering::Legal: 2529 // If this is an unaligned store and the target doesn't support it, 2530 // expand it. 2531 if (!TLI.allowsUnalignedMemoryAccesses()) { 2532 unsigned ABIAlignment = TLI.getTargetData()-> 2533 getABITypeAlignment(MVT::getTypeForValueType(ST->getMemoryVT())); 2534 if (ST->getAlignment() < ABIAlignment) 2535 Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.Val), DAG, 2536 TLI); 2537 } 2538 break; 2539 case TargetLowering::Custom: 2540 Result = TLI.LowerOperation(Result, DAG); 2541 break; 2542 case Expand: 2543 // TRUNCSTORE:i16 i32 -> STORE i16 2544 assert(isTypeLegal(StVT) && "Do not know how to expand this store!"); 2545 Tmp3 = DAG.getNode(ISD::TRUNCATE, StVT, Tmp3); 2546 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), SVOffset, 2547 isVolatile, Alignment); 2548 break; 2549 } 2550 } 2551 } 2552 break; 2553 } 2554 case ISD::PCMARKER: 2555 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2556 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 2557 break; 2558 case ISD::STACKSAVE: 2559 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2560 Result = DAG.UpdateNodeOperands(Result, Tmp1); 2561 Tmp1 = Result.getValue(0); 2562 Tmp2 = Result.getValue(1); 2563 2564 switch (TLI.getOperationAction(ISD::STACKSAVE, MVT::Other)) { 2565 default: assert(0 && "This action is not supported yet!"); 2566 case TargetLowering::Legal: break; 2567 case TargetLowering::Custom: 2568 Tmp3 = TLI.LowerOperation(Result, DAG); 2569 if (Tmp3.Val) { 2570 Tmp1 = LegalizeOp(Tmp3); 2571 Tmp2 = LegalizeOp(Tmp3.getValue(1)); 2572 } 2573 break; 2574 case TargetLowering::Expand: 2575 // Expand to CopyFromReg if the target set 2576 // StackPointerRegisterToSaveRestore. 2577 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 2578 Tmp1 = DAG.getCopyFromReg(Result.getOperand(0), SP, 2579 Node->getValueType(0)); 2580 Tmp2 = Tmp1.getValue(1); 2581 } else { 2582 Tmp1 = DAG.getNode(ISD::UNDEF, Node->getValueType(0)); 2583 Tmp2 = Node->getOperand(0); 2584 } 2585 break; 2586 } 2587 2588 // Since stacksave produce two values, make sure to remember that we 2589 // legalized both of them. 2590 AddLegalizedOperand(SDOperand(Node, 0), Tmp1); 2591 AddLegalizedOperand(SDOperand(Node, 1), Tmp2); 2592 return Op.ResNo ? Tmp2 : Tmp1; 2593 2594 case ISD::STACKRESTORE: 2595 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2596 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. 2597 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 2598 2599 switch (TLI.getOperationAction(ISD::STACKRESTORE, MVT::Other)) { 2600 default: assert(0 && "This action is not supported yet!"); 2601 case TargetLowering::Legal: break; 2602 case TargetLowering::Custom: 2603 Tmp1 = TLI.LowerOperation(Result, DAG); 2604 if (Tmp1.Val) Result = Tmp1; 2605 break; 2606 case TargetLowering::Expand: 2607 // Expand to CopyToReg if the target set 2608 // StackPointerRegisterToSaveRestore. 2609 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 2610 Result = DAG.getCopyToReg(Tmp1, SP, Tmp2); 2611 } else { 2612 Result = Tmp1; 2613 } 2614 break; 2615 } 2616 break; 2617 2618 case ISD::READCYCLECOUNTER: 2619 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain 2620 Result = DAG.UpdateNodeOperands(Result, Tmp1); 2621 switch (TLI.getOperationAction(ISD::READCYCLECOUNTER, 2622 Node->getValueType(0))) { 2623 default: assert(0 && "This action is not supported yet!"); 2624 case TargetLowering::Legal: 2625 Tmp1 = Result.getValue(0); 2626 Tmp2 = Result.getValue(1); 2627 break; 2628 case TargetLowering::Custom: 2629 Result = TLI.LowerOperation(Result, DAG); 2630 Tmp1 = LegalizeOp(Result.getValue(0)); 2631 Tmp2 = LegalizeOp(Result.getValue(1)); 2632 break; 2633 } 2634 2635 // Since rdcc produce two values, make sure to remember that we legalized 2636 // both of them. 2637 AddLegalizedOperand(SDOperand(Node, 0), Tmp1); 2638 AddLegalizedOperand(SDOperand(Node, 1), Tmp2); 2639 return Result; 2640 2641 case ISD::SELECT: 2642 switch (getTypeAction(Node->getOperand(0).getValueType())) { 2643 case Expand: assert(0 && "It's impossible to expand bools"); 2644 case Legal: 2645 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the condition. 2646 break; 2647 case Promote: { 2648 Tmp1 = PromoteOp(Node->getOperand(0)); // Promote the condition. 2649 // Make sure the condition is either zero or one. 2650 unsigned BitWidth = Tmp1.getValueSizeInBits(); 2651 if (!DAG.MaskedValueIsZero(Tmp1, 2652 APInt::getHighBitsSet(BitWidth, BitWidth-1))) 2653 Tmp1 = DAG.getZeroExtendInReg(Tmp1, MVT::i1); 2654 break; 2655 } 2656 } 2657 Tmp2 = LegalizeOp(Node->getOperand(1)); // TrueVal 2658 Tmp3 = LegalizeOp(Node->getOperand(2)); // FalseVal 2659 2660 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2661 2662 switch (TLI.getOperationAction(ISD::SELECT, Tmp2.getValueType())) { 2663 default: assert(0 && "This action is not supported yet!"); 2664 case TargetLowering::Legal: break; 2665 case TargetLowering::Custom: { 2666 Tmp1 = TLI.LowerOperation(Result, DAG); 2667 if (Tmp1.Val) Result = Tmp1; 2668 break; 2669 } 2670 case TargetLowering::Expand: 2671 if (Tmp1.getOpcode() == ISD::SETCC) { 2672 Result = DAG.getSelectCC(Tmp1.getOperand(0), Tmp1.getOperand(1), 2673 Tmp2, Tmp3, 2674 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); 2675 } else { 2676 Result = DAG.getSelectCC(Tmp1, 2677 DAG.getConstant(0, Tmp1.getValueType()), 2678 Tmp2, Tmp3, ISD::SETNE); 2679 } 2680 break; 2681 case TargetLowering::Promote: { 2682 MVT::ValueType NVT = 2683 TLI.getTypeToPromoteTo(ISD::SELECT, Tmp2.getValueType()); 2684 unsigned ExtOp, TruncOp; 2685 if (MVT::isVector(Tmp2.getValueType())) { 2686 ExtOp = ISD::BIT_CONVERT; 2687 TruncOp = ISD::BIT_CONVERT; 2688 } else if (MVT::isInteger(Tmp2.getValueType())) { 2689 ExtOp = ISD::ANY_EXTEND; 2690 TruncOp = ISD::TRUNCATE; 2691 } else { 2692 ExtOp = ISD::FP_EXTEND; 2693 TruncOp = ISD::FP_ROUND; 2694 } 2695 // Promote each of the values to the new type. 2696 Tmp2 = DAG.getNode(ExtOp, NVT, Tmp2); 2697 Tmp3 = DAG.getNode(ExtOp, NVT, Tmp3); 2698 // Perform the larger operation, then round down. 2699 Result = DAG.getNode(ISD::SELECT, NVT, Tmp1, Tmp2,Tmp3); 2700 if (TruncOp != ISD::FP_ROUND) 2701 Result = DAG.getNode(TruncOp, Node->getValueType(0), Result); 2702 else 2703 Result = DAG.getNode(TruncOp, Node->getValueType(0), Result, 2704 DAG.getIntPtrConstant(0)); 2705 break; 2706 } 2707 } 2708 break; 2709 case ISD::SELECT_CC: { 2710 Tmp1 = Node->getOperand(0); // LHS 2711 Tmp2 = Node->getOperand(1); // RHS 2712 Tmp3 = LegalizeOp(Node->getOperand(2)); // True 2713 Tmp4 = LegalizeOp(Node->getOperand(3)); // False 2714 SDOperand CC = Node->getOperand(4); 2715 2716 LegalizeSetCCOperands(Tmp1, Tmp2, CC); 2717 2718 // If we didn't get both a LHS and RHS back from LegalizeSetCCOperands, 2719 // the LHS is a legal SETCC itself. In this case, we need to compare 2720 // the result against zero to select between true and false values. 2721 if (Tmp2.Val == 0) { 2722 Tmp2 = DAG.getConstant(0, Tmp1.getValueType()); 2723 CC = DAG.getCondCode(ISD::SETNE); 2724 } 2725 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, Tmp4, CC); 2726 2727 // Everything is legal, see if we should expand this op or something. 2728 switch (TLI.getOperationAction(ISD::SELECT_CC, Tmp3.getValueType())) { 2729 default: assert(0 && "This action is not supported yet!"); 2730 case TargetLowering::Legal: break; 2731 case TargetLowering::Custom: 2732 Tmp1 = TLI.LowerOperation(Result, DAG); 2733 if (Tmp1.Val) Result = Tmp1; 2734 break; 2735 } 2736 break; 2737 } 2738 case ISD::SETCC: 2739 Tmp1 = Node->getOperand(0); 2740 Tmp2 = Node->getOperand(1); 2741 Tmp3 = Node->getOperand(2); 2742 LegalizeSetCCOperands(Tmp1, Tmp2, Tmp3); 2743 2744 // If we had to Expand the SetCC operands into a SELECT node, then it may 2745 // not always be possible to return a true LHS & RHS. In this case, just 2746 // return the value we legalized, returned in the LHS 2747 if (Tmp2.Val == 0) { 2748 Result = Tmp1; 2749 break; 2750 } 2751 2752 switch (TLI.getOperationAction(ISD::SETCC, Tmp1.getValueType())) { 2753 default: assert(0 && "Cannot handle this action for SETCC yet!"); 2754 case TargetLowering::Custom: 2755 isCustom = true; 2756 // FALLTHROUGH. 2757 case TargetLowering::Legal: 2758 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2759 if (isCustom) { 2760 Tmp4 = TLI.LowerOperation(Result, DAG); 2761 if (Tmp4.Val) Result = Tmp4; 2762 } 2763 break; 2764 case TargetLowering::Promote: { 2765 // First step, figure out the appropriate operation to use. 2766 // Allow SETCC to not be supported for all legal data types 2767 // Mostly this targets FP 2768 MVT::ValueType NewInTy = Node->getOperand(0).getValueType(); 2769 MVT::ValueType OldVT = NewInTy; OldVT = OldVT; 2770 2771 // Scan for the appropriate larger type to use. 2772 while (1) { 2773 NewInTy = (MVT::ValueType)(NewInTy+1); 2774 2775 assert(MVT::isInteger(NewInTy) == MVT::isInteger(OldVT) && 2776 "Fell off of the edge of the integer world"); 2777 assert(MVT::isFloatingPoint(NewInTy) == MVT::isFloatingPoint(OldVT) && 2778 "Fell off of the edge of the floating point world"); 2779 2780 // If the target supports SETCC of this type, use it. 2781 if (TLI.isOperationLegal(ISD::SETCC, NewInTy)) 2782 break; 2783 } 2784 if (MVT::isInteger(NewInTy)) 2785 assert(0 && "Cannot promote Legal Integer SETCC yet"); 2786 else { 2787 Tmp1 = DAG.getNode(ISD::FP_EXTEND, NewInTy, Tmp1); 2788 Tmp2 = DAG.getNode(ISD::FP_EXTEND, NewInTy, Tmp2); 2789 } 2790 Tmp1 = LegalizeOp(Tmp1); 2791 Tmp2 = LegalizeOp(Tmp2); 2792 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2793 Result = LegalizeOp(Result); 2794 break; 2795 } 2796 case TargetLowering::Expand: 2797 // Expand a setcc node into a select_cc of the same condition, lhs, and 2798 // rhs that selects between const 1 (true) and const 0 (false). 2799 MVT::ValueType VT = Node->getValueType(0); 2800 Result = DAG.getNode(ISD::SELECT_CC, VT, Tmp1, Tmp2, 2801 DAG.getConstant(1, VT), DAG.getConstant(0, VT), 2802 Tmp3); 2803 break; 2804 } 2805 break; 2806 case ISD::MEMSET: 2807 case ISD::MEMCPY: 2808 case ISD::MEMMOVE: { 2809 Tmp1 = LegalizeOp(Node->getOperand(0)); // Chain 2810 Tmp2 = LegalizeOp(Node->getOperand(1)); // Pointer 2811 2812 if (Node->getOpcode() == ISD::MEMSET) { // memset = ubyte 2813 switch (getTypeAction(Node->getOperand(2).getValueType())) { 2814 case Expand: assert(0 && "Cannot expand a byte!"); 2815 case Legal: 2816 Tmp3 = LegalizeOp(Node->getOperand(2)); 2817 break; 2818 case Promote: 2819 Tmp3 = PromoteOp(Node->getOperand(2)); 2820 break; 2821 } 2822 } else { 2823 Tmp3 = LegalizeOp(Node->getOperand(2)); // memcpy/move = pointer, 2824 } 2825 2826 SDOperand Tmp4; 2827 switch (getTypeAction(Node->getOperand(3).getValueType())) { 2828 case Expand: { 2829 // Length is too big, just take the lo-part of the length. 2830 SDOperand HiPart; 2831 ExpandOp(Node->getOperand(3), Tmp4, HiPart); 2832 break; 2833 } 2834 case Legal: 2835 Tmp4 = LegalizeOp(Node->getOperand(3)); 2836 break; 2837 case Promote: 2838 Tmp4 = PromoteOp(Node->getOperand(3)); 2839 break; 2840 } 2841 2842 SDOperand Tmp5; 2843 switch (getTypeAction(Node->getOperand(4).getValueType())) { // uint 2844 case Expand: assert(0 && "Cannot expand this yet!"); 2845 case Legal: 2846 Tmp5 = LegalizeOp(Node->getOperand(4)); 2847 break; 2848 case Promote: 2849 Tmp5 = PromoteOp(Node->getOperand(4)); 2850 break; 2851 } 2852 2853 SDOperand Tmp6; 2854 switch (getTypeAction(Node->getOperand(5).getValueType())) { // bool 2855 case Expand: assert(0 && "Cannot expand this yet!"); 2856 case Legal: 2857 Tmp6 = LegalizeOp(Node->getOperand(5)); 2858 break; 2859 case Promote: 2860 Tmp6 = PromoteOp(Node->getOperand(5)); 2861 break; 2862 } 2863 2864 switch (TLI.getOperationAction(Node->getOpcode(), MVT::Other)) { 2865 default: assert(0 && "This action not implemented for this operation!"); 2866 case TargetLowering::Custom: 2867 isCustom = true; 2868 // FALLTHROUGH 2869 case TargetLowering::Legal: { 2870 SDOperand Ops[] = { Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6 }; 2871 Result = DAG.UpdateNodeOperands(Result, Ops, 6); 2872 if (isCustom) { 2873 Tmp1 = TLI.LowerOperation(Result, DAG); 2874 if (Tmp1.Val) Result = Tmp1; 2875 } 2876 break; 2877 } 2878 case TargetLowering::Expand: { 2879 // Otherwise, the target does not support this operation. Lower the 2880 // operation to an explicit libcall as appropriate. 2881 MVT::ValueType IntPtr = TLI.getPointerTy(); 2882 const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(); 2883 TargetLowering::ArgListTy Args; 2884 TargetLowering::ArgListEntry Entry; 2885 2886 const char *FnName = 0; 2887 if (Node->getOpcode() == ISD::MEMSET) { 2888 Entry.Node = Tmp2; Entry.Ty = IntPtrTy; 2889 Args.push_back(Entry); 2890 // Extend the (previously legalized) ubyte argument to be an int value 2891 // for the call. 2892 if (Tmp3.getValueType() > MVT::i32) 2893 Tmp3 = DAG.getNode(ISD::TRUNCATE, MVT::i32, Tmp3); 2894 else 2895 Tmp3 = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Tmp3); 2896 Entry.Node = Tmp3; Entry.Ty = Type::Int32Ty; Entry.isSExt = true; 2897 Args.push_back(Entry); 2898 Entry.Node = Tmp4; Entry.Ty = IntPtrTy; Entry.isSExt = false; 2899 Args.push_back(Entry); 2900 2901 FnName = "memset"; 2902 } else if (Node->getOpcode() == ISD::MEMCPY || 2903 Node->getOpcode() == ISD::MEMMOVE) { 2904 Entry.Ty = IntPtrTy; 2905 Entry.Node = Tmp2; Args.push_back(Entry); 2906 Entry.Node = Tmp3; Args.push_back(Entry); 2907 Entry.Node = Tmp4; Args.push_back(Entry); 2908 FnName = Node->getOpcode() == ISD::MEMMOVE ? "memmove" : "memcpy"; 2909 } else { 2910 assert(0 && "Unknown op!"); 2911 } 2912 2913 std::pair<SDOperand,SDOperand> CallResult = 2914 TLI.LowerCallTo(Tmp1, Type::VoidTy, 2915 false, false, false, CallingConv::C, false, 2916 DAG.getExternalSymbol(FnName, IntPtr), Args, DAG); 2917 Result = CallResult.second; 2918 break; 2919 } 2920 } 2921 break; 2922 } 2923 2924 case ISD::SHL_PARTS: 2925 case ISD::SRA_PARTS: 2926 case ISD::SRL_PARTS: { 2927 SmallVector<SDOperand, 8> Ops; 2928 bool Changed = false; 2929 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 2930 Ops.push_back(LegalizeOp(Node->getOperand(i))); 2931 Changed |= Ops.back() != Node->getOperand(i); 2932 } 2933 if (Changed) 2934 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 2935 2936 switch (TLI.getOperationAction(Node->getOpcode(), 2937 Node->getValueType(0))) { 2938 default: assert(0 && "This action is not supported yet!"); 2939 case TargetLowering::Legal: break; 2940 case TargetLowering::Custom: 2941 Tmp1 = TLI.LowerOperation(Result, DAG); 2942 if (Tmp1.Val) { 2943 SDOperand Tmp2, RetVal(0, 0); 2944 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) { 2945 Tmp2 = LegalizeOp(Tmp1.getValue(i)); 2946 AddLegalizedOperand(SDOperand(Node, i), Tmp2); 2947 if (i == Op.ResNo) 2948 RetVal = Tmp2; 2949 } 2950 assert(RetVal.Val && "Illegal result number"); 2951 return RetVal; 2952 } 2953 break; 2954 } 2955 2956 // Since these produce multiple values, make sure to remember that we 2957 // legalized all of them. 2958 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 2959 AddLegalizedOperand(SDOperand(Node, i), Result.getValue(i)); 2960 return Result.getValue(Op.ResNo); 2961 } 2962 2963 // Binary operators 2964 case ISD::ADD: 2965 case ISD::SUB: 2966 case ISD::MUL: 2967 case ISD::MULHS: 2968 case ISD::MULHU: 2969 case ISD::UDIV: 2970 case ISD::SDIV: 2971 case ISD::AND: 2972 case ISD::OR: 2973 case ISD::XOR: 2974 case ISD::SHL: 2975 case ISD::SRL: 2976 case ISD::SRA: 2977 case ISD::FADD: 2978 case ISD::FSUB: 2979 case ISD::FMUL: 2980 case ISD::FDIV: 2981 case ISD::FPOW: 2982 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 2983 switch (getTypeAction(Node->getOperand(1).getValueType())) { 2984 case Expand: assert(0 && "Not possible"); 2985 case Legal: 2986 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the RHS. 2987 break; 2988 case Promote: 2989 Tmp2 = PromoteOp(Node->getOperand(1)); // Promote the RHS. 2990 break; 2991 } 2992 2993 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 2994 2995 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 2996 default: assert(0 && "BinOp legalize operation not supported"); 2997 case TargetLowering::Legal: break; 2998 case TargetLowering::Custom: 2999 Tmp1 = TLI.LowerOperation(Result, DAG); 3000 if (Tmp1.Val) Result = Tmp1; 3001 break; 3002 case TargetLowering::Expand: { 3003 MVT::ValueType VT = Op.getValueType(); 3004 3005 // See if multiply or divide can be lowered using two-result operations. 3006 SDVTList VTs = DAG.getVTList(VT, VT); 3007 if (Node->getOpcode() == ISD::MUL) { 3008 // We just need the low half of the multiply; try both the signed 3009 // and unsigned forms. If the target supports both SMUL_LOHI and 3010 // UMUL_LOHI, form a preference by checking which forms of plain 3011 // MULH it supports. 3012 bool HasSMUL_LOHI = TLI.isOperationLegal(ISD::SMUL_LOHI, VT); 3013 bool HasUMUL_LOHI = TLI.isOperationLegal(ISD::UMUL_LOHI, VT); 3014 bool HasMULHS = TLI.isOperationLegal(ISD::MULHS, VT); 3015 bool HasMULHU = TLI.isOperationLegal(ISD::MULHU, VT); 3016 unsigned OpToUse = 0; 3017 if (HasSMUL_LOHI && !HasMULHS) { 3018 OpToUse = ISD::SMUL_LOHI; 3019 } else if (HasUMUL_LOHI && !HasMULHU) { 3020 OpToUse = ISD::UMUL_LOHI; 3021 } else if (HasSMUL_LOHI) { 3022 OpToUse = ISD::SMUL_LOHI; 3023 } else if (HasUMUL_LOHI) { 3024 OpToUse = ISD::UMUL_LOHI; 3025 } 3026 if (OpToUse) { 3027 Result = SDOperand(DAG.getNode(OpToUse, VTs, Tmp1, Tmp2).Val, 0); 3028 break; 3029 } 3030 } 3031 if (Node->getOpcode() == ISD::MULHS && 3032 TLI.isOperationLegal(ISD::SMUL_LOHI, VT)) { 3033 Result = SDOperand(DAG.getNode(ISD::SMUL_LOHI, VTs, Tmp1, Tmp2).Val, 1); 3034 break; 3035 } 3036 if (Node->getOpcode() == ISD::MULHU && 3037 TLI.isOperationLegal(ISD::UMUL_LOHI, VT)) { 3038 Result = SDOperand(DAG.getNode(ISD::UMUL_LOHI, VTs, Tmp1, Tmp2).Val, 1); 3039 break; 3040 } 3041 if (Node->getOpcode() == ISD::SDIV && 3042 TLI.isOperationLegal(ISD::SDIVREM, VT)) { 3043 Result = SDOperand(DAG.getNode(ISD::SDIVREM, VTs, Tmp1, Tmp2).Val, 0); 3044 break; 3045 } 3046 if (Node->getOpcode() == ISD::UDIV && 3047 TLI.isOperationLegal(ISD::UDIVREM, VT)) { 3048 Result = SDOperand(DAG.getNode(ISD::UDIVREM, VTs, Tmp1, Tmp2).Val, 0); 3049 break; 3050 } 3051 3052 // Check to see if we have a libcall for this operator. 3053 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 3054 bool isSigned = false; 3055 switch (Node->getOpcode()) { 3056 case ISD::UDIV: 3057 case ISD::SDIV: 3058 if (VT == MVT::i32) { 3059 LC = Node->getOpcode() == ISD::UDIV 3060 ? RTLIB::UDIV_I32 : RTLIB::SDIV_I32; 3061 isSigned = Node->getOpcode() == ISD::SDIV; 3062 } 3063 break; 3064 case ISD::FPOW: 3065 LC = GetFPLibCall(VT, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80, 3066 RTLIB::POW_PPCF128); 3067 break; 3068 default: break; 3069 } 3070 if (LC != RTLIB::UNKNOWN_LIBCALL) { 3071 SDOperand Dummy; 3072 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, isSigned, Dummy); 3073 break; 3074 } 3075 3076 assert(MVT::isVector(Node->getValueType(0)) && 3077 "Cannot expand this binary operator!"); 3078 // Expand the operation into a bunch of nasty scalar code. 3079 Result = LegalizeOp(UnrollVectorOp(Op)); 3080 break; 3081 } 3082 case TargetLowering::Promote: { 3083 switch (Node->getOpcode()) { 3084 default: assert(0 && "Do not know how to promote this BinOp!"); 3085 case ISD::AND: 3086 case ISD::OR: 3087 case ISD::XOR: { 3088 MVT::ValueType OVT = Node->getValueType(0); 3089 MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 3090 assert(MVT::isVector(OVT) && "Cannot promote this BinOp!"); 3091 // Bit convert each of the values to the new type. 3092 Tmp1 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp1); 3093 Tmp2 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp2); 3094 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 3095 // Bit convert the result back the original type. 3096 Result = DAG.getNode(ISD::BIT_CONVERT, OVT, Result); 3097 break; 3098 } 3099 } 3100 } 3101 } 3102 break; 3103 3104 case ISD::SMUL_LOHI: 3105 case ISD::UMUL_LOHI: 3106 case ISD::SDIVREM: 3107 case ISD::UDIVREM: 3108 // These nodes will only be produced by target-specific lowering, so 3109 // they shouldn't be here if they aren't legal. 3110 assert(TLI.isOperationLegal(Node->getOpcode(), Node->getValueType(0)) && 3111 "This must be legal!"); 3112 3113 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 3114 Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS 3115 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3116 break; 3117 3118 case ISD::FCOPYSIGN: // FCOPYSIGN does not require LHS/RHS to match type! 3119 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 3120 switch (getTypeAction(Node->getOperand(1).getValueType())) { 3121 case Expand: assert(0 && "Not possible"); 3122 case Legal: 3123 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the RHS. 3124 break; 3125 case Promote: 3126 Tmp2 = PromoteOp(Node->getOperand(1)); // Promote the RHS. 3127 break; 3128 } 3129 3130 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3131 3132 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3133 default: assert(0 && "Operation not supported"); 3134 case TargetLowering::Custom: 3135 Tmp1 = TLI.LowerOperation(Result, DAG); 3136 if (Tmp1.Val) Result = Tmp1; 3137 break; 3138 case TargetLowering::Legal: break; 3139 case TargetLowering::Expand: { 3140 // If this target supports fabs/fneg natively and select is cheap, 3141 // do this efficiently. 3142 if (!TLI.isSelectExpensive() && 3143 TLI.getOperationAction(ISD::FABS, Tmp1.getValueType()) == 3144 TargetLowering::Legal && 3145 TLI.getOperationAction(ISD::FNEG, Tmp1.getValueType()) == 3146 TargetLowering::Legal) { 3147 // Get the sign bit of the RHS. 3148 MVT::ValueType IVT = 3149 Tmp2.getValueType() == MVT::f32 ? MVT::i32 : MVT::i64; 3150 SDOperand SignBit = DAG.getNode(ISD::BIT_CONVERT, IVT, Tmp2); 3151 SignBit = DAG.getSetCC(TLI.getSetCCResultTy(), 3152 SignBit, DAG.getConstant(0, IVT), ISD::SETLT); 3153 // Get the absolute value of the result. 3154 SDOperand AbsVal = DAG.getNode(ISD::FABS, Tmp1.getValueType(), Tmp1); 3155 // Select between the nabs and abs value based on the sign bit of 3156 // the input. 3157 Result = DAG.getNode(ISD::SELECT, AbsVal.getValueType(), SignBit, 3158 DAG.getNode(ISD::FNEG, AbsVal.getValueType(), 3159 AbsVal), 3160 AbsVal); 3161 Result = LegalizeOp(Result); 3162 break; 3163 } 3164 3165 // Otherwise, do bitwise ops! 3166 MVT::ValueType NVT = 3167 Node->getValueType(0) == MVT::f32 ? MVT::i32 : MVT::i64; 3168 Result = ExpandFCOPYSIGNToBitwiseOps(Node, NVT, DAG, TLI); 3169 Result = DAG.getNode(ISD::BIT_CONVERT, Node->getValueType(0), Result); 3170 Result = LegalizeOp(Result); 3171 break; 3172 } 3173 } 3174 break; 3175 3176 case ISD::ADDC: 3177 case ISD::SUBC: 3178 Tmp1 = LegalizeOp(Node->getOperand(0)); 3179 Tmp2 = LegalizeOp(Node->getOperand(1)); 3180 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3181 // Since this produces two values, make sure to remember that we legalized 3182 // both of them. 3183 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 3184 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 3185 return Result; 3186 3187 case ISD::ADDE: 3188 case ISD::SUBE: 3189 Tmp1 = LegalizeOp(Node->getOperand(0)); 3190 Tmp2 = LegalizeOp(Node->getOperand(1)); 3191 Tmp3 = LegalizeOp(Node->getOperand(2)); 3192 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 3193 // Since this produces two values, make sure to remember that we legalized 3194 // both of them. 3195 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 3196 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 3197 return Result; 3198 3199 case ISD::BUILD_PAIR: { 3200 MVT::ValueType PairTy = Node->getValueType(0); 3201 // TODO: handle the case where the Lo and Hi operands are not of legal type 3202 Tmp1 = LegalizeOp(Node->getOperand(0)); // Lo 3203 Tmp2 = LegalizeOp(Node->getOperand(1)); // Hi 3204 switch (TLI.getOperationAction(ISD::BUILD_PAIR, PairTy)) { 3205 case TargetLowering::Promote: 3206 case TargetLowering::Custom: 3207 assert(0 && "Cannot promote/custom this yet!"); 3208 case TargetLowering::Legal: 3209 if (Tmp1 != Node->getOperand(0) || Tmp2 != Node->getOperand(1)) 3210 Result = DAG.getNode(ISD::BUILD_PAIR, PairTy, Tmp1, Tmp2); 3211 break; 3212 case TargetLowering::Expand: 3213 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, PairTy, Tmp1); 3214 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, PairTy, Tmp2); 3215 Tmp2 = DAG.getNode(ISD::SHL, PairTy, Tmp2, 3216 DAG.getConstant(MVT::getSizeInBits(PairTy)/2, 3217 TLI.getShiftAmountTy())); 3218 Result = DAG.getNode(ISD::OR, PairTy, Tmp1, Tmp2); 3219 break; 3220 } 3221 break; 3222 } 3223 3224 case ISD::UREM: 3225 case ISD::SREM: 3226 case ISD::FREM: 3227 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 3228 Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS 3229 3230 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3231 case TargetLowering::Promote: assert(0 && "Cannot promote this yet!"); 3232 case TargetLowering::Custom: 3233 isCustom = true; 3234 // FALLTHROUGH 3235 case TargetLowering::Legal: 3236 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3237 if (isCustom) { 3238 Tmp1 = TLI.LowerOperation(Result, DAG); 3239 if (Tmp1.Val) Result = Tmp1; 3240 } 3241 break; 3242 case TargetLowering::Expand: { 3243 unsigned DivOpc= (Node->getOpcode() == ISD::UREM) ? ISD::UDIV : ISD::SDIV; 3244 bool isSigned = DivOpc == ISD::SDIV; 3245 MVT::ValueType VT = Node->getValueType(0); 3246 3247 // See if remainder can be lowered using two-result operations. 3248 SDVTList VTs = DAG.getVTList(VT, VT); 3249 if (Node->getOpcode() == ISD::SREM && 3250 TLI.isOperationLegal(ISD::SDIVREM, VT)) { 3251 Result = SDOperand(DAG.getNode(ISD::SDIVREM, VTs, Tmp1, Tmp2).Val, 1); 3252 break; 3253 } 3254 if (Node->getOpcode() == ISD::UREM && 3255 TLI.isOperationLegal(ISD::UDIVREM, VT)) { 3256 Result = SDOperand(DAG.getNode(ISD::UDIVREM, VTs, Tmp1, Tmp2).Val, 1); 3257 break; 3258 } 3259 3260 if (MVT::isInteger(VT)) { 3261 if (TLI.getOperationAction(DivOpc, VT) == 3262 TargetLowering::Legal) { 3263 // X % Y -> X-X/Y*Y 3264 Result = DAG.getNode(DivOpc, VT, Tmp1, Tmp2); 3265 Result = DAG.getNode(ISD::MUL, VT, Result, Tmp2); 3266 Result = DAG.getNode(ISD::SUB, VT, Tmp1, Result); 3267 } else if (MVT::isVector(VT)) { 3268 Result = LegalizeOp(UnrollVectorOp(Op)); 3269 } else { 3270 assert(VT == MVT::i32 && 3271 "Cannot expand this binary operator!"); 3272 RTLIB::Libcall LC = Node->getOpcode() == ISD::UREM 3273 ? RTLIB::UREM_I32 : RTLIB::SREM_I32; 3274 SDOperand Dummy; 3275 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, isSigned, Dummy); 3276 } 3277 } else { 3278 assert(MVT::isFloatingPoint(VT) && 3279 "remainder op must have integer or floating-point type"); 3280 if (MVT::isVector(VT)) { 3281 Result = LegalizeOp(UnrollVectorOp(Op)); 3282 } else { 3283 // Floating point mod -> fmod libcall. 3284 RTLIB::Libcall LC = GetFPLibCall(VT, RTLIB::REM_F32, RTLIB::REM_F64, 3285 RTLIB::REM_F80, RTLIB::REM_PPCF128); 3286 SDOperand Dummy; 3287 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, 3288 false/*sign irrelevant*/, Dummy); 3289 } 3290 } 3291 break; 3292 } 3293 } 3294 break; 3295 case ISD::VAARG: { 3296 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 3297 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. 3298 3299 MVT::ValueType VT = Node->getValueType(0); 3300 switch (TLI.getOperationAction(Node->getOpcode(), MVT::Other)) { 3301 default: assert(0 && "This action is not supported yet!"); 3302 case TargetLowering::Custom: 3303 isCustom = true; 3304 // FALLTHROUGH 3305 case TargetLowering::Legal: 3306 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 3307 Result = Result.getValue(0); 3308 Tmp1 = Result.getValue(1); 3309 3310 if (isCustom) { 3311 Tmp2 = TLI.LowerOperation(Result, DAG); 3312 if (Tmp2.Val) { 3313 Result = LegalizeOp(Tmp2); 3314 Tmp1 = LegalizeOp(Tmp2.getValue(1)); 3315 } 3316 } 3317 break; 3318 case TargetLowering::Expand: { 3319 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 3320 SDOperand VAList = DAG.getLoad(TLI.getPointerTy(), Tmp1, Tmp2, V, 0); 3321 // Increment the pointer, VAList, to the next vaarg 3322 Tmp3 = DAG.getNode(ISD::ADD, TLI.getPointerTy(), VAList, 3323 DAG.getConstant(MVT::getSizeInBits(VT)/8, 3324 TLI.getPointerTy())); 3325 // Store the incremented VAList to the legalized pointer 3326 Tmp3 = DAG.getStore(VAList.getValue(1), Tmp3, Tmp2, V, 0); 3327 // Load the actual argument out of the pointer VAList 3328 Result = DAG.getLoad(VT, Tmp3, VAList, NULL, 0); 3329 Tmp1 = LegalizeOp(Result.getValue(1)); 3330 Result = LegalizeOp(Result); 3331 break; 3332 } 3333 } 3334 // Since VAARG produces two values, make sure to remember that we 3335 // legalized both of them. 3336 AddLegalizedOperand(SDOperand(Node, 0), Result); 3337 AddLegalizedOperand(SDOperand(Node, 1), Tmp1); 3338 return Op.ResNo ? Tmp1 : Result; 3339 } 3340 3341 case ISD::VACOPY: 3342 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 3343 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the dest pointer. 3344 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the source pointer. 3345 3346 switch (TLI.getOperationAction(ISD::VACOPY, MVT::Other)) { 3347 default: assert(0 && "This action is not supported yet!"); 3348 case TargetLowering::Custom: 3349 isCustom = true; 3350 // FALLTHROUGH 3351 case TargetLowering::Legal: 3352 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, 3353 Node->getOperand(3), Node->getOperand(4)); 3354 if (isCustom) { 3355 Tmp1 = TLI.LowerOperation(Result, DAG); 3356 if (Tmp1.Val) Result = Tmp1; 3357 } 3358 break; 3359 case TargetLowering::Expand: 3360 // This defaults to loading a pointer from the input and storing it to the 3361 // output, returning the chain. 3362 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 3363 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 3364 Tmp4 = DAG.getLoad(TLI.getPointerTy(), Tmp1, Tmp3, VD, 0); 3365 Result = DAG.getStore(Tmp4.getValue(1), Tmp4, Tmp2, VS, 0); 3366 break; 3367 } 3368 break; 3369 3370 case ISD::VAEND: 3371 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 3372 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. 3373 3374 switch (TLI.getOperationAction(ISD::VAEND, MVT::Other)) { 3375 default: assert(0 && "This action is not supported yet!"); 3376 case TargetLowering::Custom: 3377 isCustom = true; 3378 // FALLTHROUGH 3379 case TargetLowering::Legal: 3380 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 3381 if (isCustom) { 3382 Tmp1 = TLI.LowerOperation(Tmp1, DAG); 3383 if (Tmp1.Val) Result = Tmp1; 3384 } 3385 break; 3386 case TargetLowering::Expand: 3387 Result = Tmp1; // Default to a no-op, return the chain 3388 break; 3389 } 3390 break; 3391 3392 case ISD::VASTART: 3393 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 3394 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. 3395 3396 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 3397 3398 switch (TLI.getOperationAction(ISD::VASTART, MVT::Other)) { 3399 default: assert(0 && "This action is not supported yet!"); 3400 case TargetLowering::Legal: break; 3401 case TargetLowering::Custom: 3402 Tmp1 = TLI.LowerOperation(Result, DAG); 3403 if (Tmp1.Val) Result = Tmp1; 3404 break; 3405 } 3406 break; 3407 3408 case ISD::ROTL: 3409 case ISD::ROTR: 3410 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 3411 Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS 3412 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3413 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3414 default: 3415 assert(0 && "ROTL/ROTR legalize operation not supported"); 3416 break; 3417 case TargetLowering::Legal: 3418 break; 3419 case TargetLowering::Custom: 3420 Tmp1 = TLI.LowerOperation(Result, DAG); 3421 if (Tmp1.Val) Result = Tmp1; 3422 break; 3423 case TargetLowering::Promote: 3424 assert(0 && "Do not know how to promote ROTL/ROTR"); 3425 break; 3426 case TargetLowering::Expand: 3427 assert(0 && "Do not know how to expand ROTL/ROTR"); 3428 break; 3429 } 3430 break; 3431 3432 case ISD::BSWAP: 3433 Tmp1 = LegalizeOp(Node->getOperand(0)); // Op 3434 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3435 case TargetLowering::Custom: 3436 assert(0 && "Cannot custom legalize this yet!"); 3437 case TargetLowering::Legal: 3438 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3439 break; 3440 case TargetLowering::Promote: { 3441 MVT::ValueType OVT = Tmp1.getValueType(); 3442 MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 3443 unsigned DiffBits = MVT::getSizeInBits(NVT) - MVT::getSizeInBits(OVT); 3444 3445 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Tmp1); 3446 Tmp1 = DAG.getNode(ISD::BSWAP, NVT, Tmp1); 3447 Result = DAG.getNode(ISD::SRL, NVT, Tmp1, 3448 DAG.getConstant(DiffBits, TLI.getShiftAmountTy())); 3449 break; 3450 } 3451 case TargetLowering::Expand: 3452 Result = ExpandBSWAP(Tmp1); 3453 break; 3454 } 3455 break; 3456 3457 case ISD::CTPOP: 3458 case ISD::CTTZ: 3459 case ISD::CTLZ: 3460 Tmp1 = LegalizeOp(Node->getOperand(0)); // Op 3461 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3462 case TargetLowering::Custom: 3463 case TargetLowering::Legal: 3464 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3465 if (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)) == 3466 TargetLowering::Custom) { 3467 Tmp1 = TLI.LowerOperation(Result, DAG); 3468 if (Tmp1.Val) { 3469 Result = Tmp1; 3470 } 3471 } 3472 break; 3473 case TargetLowering::Promote: { 3474 MVT::ValueType OVT = Tmp1.getValueType(); 3475 MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 3476 3477 // Zero extend the argument. 3478 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Tmp1); 3479 // Perform the larger operation, then subtract if needed. 3480 Tmp1 = DAG.getNode(Node->getOpcode(), Node->getValueType(0), Tmp1); 3481 switch (Node->getOpcode()) { 3482 case ISD::CTPOP: 3483 Result = Tmp1; 3484 break; 3485 case ISD::CTTZ: 3486 //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT) 3487 Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), Tmp1, 3488 DAG.getConstant(MVT::getSizeInBits(NVT), NVT), 3489 ISD::SETEQ); 3490 Result = DAG.getNode(ISD::SELECT, NVT, Tmp2, 3491 DAG.getConstant(MVT::getSizeInBits(OVT),NVT), Tmp1); 3492 break; 3493 case ISD::CTLZ: 3494 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 3495 Result = DAG.getNode(ISD::SUB, NVT, Tmp1, 3496 DAG.getConstant(MVT::getSizeInBits(NVT) - 3497 MVT::getSizeInBits(OVT), NVT)); 3498 break; 3499 } 3500 break; 3501 } 3502 case TargetLowering::Expand: 3503 Result = ExpandBitCount(Node->getOpcode(), Tmp1); 3504 break; 3505 } 3506 break; 3507 3508 // Unary operators 3509 case ISD::FABS: 3510 case ISD::FNEG: 3511 case ISD::FSQRT: 3512 case ISD::FSIN: 3513 case ISD::FCOS: 3514 Tmp1 = LegalizeOp(Node->getOperand(0)); 3515 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3516 case TargetLowering::Promote: 3517 case TargetLowering::Custom: 3518 isCustom = true; 3519 // FALLTHROUGH 3520 case TargetLowering::Legal: 3521 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3522 if (isCustom) { 3523 Tmp1 = TLI.LowerOperation(Result, DAG); 3524 if (Tmp1.Val) Result = Tmp1; 3525 } 3526 break; 3527 case TargetLowering::Expand: 3528 switch (Node->getOpcode()) { 3529 default: assert(0 && "Unreachable!"); 3530 case ISD::FNEG: 3531 // Expand Y = FNEG(X) -> Y = SUB -0.0, X 3532 Tmp2 = DAG.getConstantFP(-0.0, Node->getValueType(0)); 3533 Result = DAG.getNode(ISD::FSUB, Node->getValueType(0), Tmp2, Tmp1); 3534 break; 3535 case ISD::FABS: { 3536 // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X). 3537 MVT::ValueType VT = Node->getValueType(0); 3538 Tmp2 = DAG.getConstantFP(0.0, VT); 3539 Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), Tmp1, Tmp2, ISD::SETUGT); 3540 Tmp3 = DAG.getNode(ISD::FNEG, VT, Tmp1); 3541 Result = DAG.getNode(ISD::SELECT, VT, Tmp2, Tmp1, Tmp3); 3542 break; 3543 } 3544 case ISD::FSQRT: 3545 case ISD::FSIN: 3546 case ISD::FCOS: { 3547 MVT::ValueType VT = Node->getValueType(0); 3548 3549 // Expand unsupported unary vector operators by unrolling them. 3550 if (MVT::isVector(VT)) { 3551 Result = LegalizeOp(UnrollVectorOp(Op)); 3552 break; 3553 } 3554 3555 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 3556 switch(Node->getOpcode()) { 3557 case ISD::FSQRT: 3558 LC = GetFPLibCall(VT, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 3559 RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128); 3560 break; 3561 case ISD::FSIN: 3562 LC = GetFPLibCall(VT, RTLIB::SIN_F32, RTLIB::SIN_F64, 3563 RTLIB::SIN_F80, RTLIB::SIN_PPCF128); 3564 break; 3565 case ISD::FCOS: 3566 LC = GetFPLibCall(VT, RTLIB::COS_F32, RTLIB::COS_F64, 3567 RTLIB::COS_F80, RTLIB::COS_PPCF128); 3568 break; 3569 default: assert(0 && "Unreachable!"); 3570 } 3571 SDOperand Dummy; 3572 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, 3573 false/*sign irrelevant*/, Dummy); 3574 break; 3575 } 3576 } 3577 break; 3578 } 3579 break; 3580 case ISD::FPOWI: { 3581 MVT::ValueType VT = Node->getValueType(0); 3582 3583 // Expand unsupported unary vector operators by unrolling them. 3584 if (MVT::isVector(VT)) { 3585 Result = LegalizeOp(UnrollVectorOp(Op)); 3586 break; 3587 } 3588 3589 // We always lower FPOWI into a libcall. No target support for it yet. 3590 RTLIB::Libcall LC = GetFPLibCall(VT, RTLIB::POWI_F32, RTLIB::POWI_F64, 3591 RTLIB::POWI_F80, RTLIB::POWI_PPCF128); 3592 SDOperand Dummy; 3593 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, 3594 false/*sign irrelevant*/, Dummy); 3595 break; 3596 } 3597 case ISD::BIT_CONVERT: 3598 if (!isTypeLegal(Node->getOperand(0).getValueType())) { 3599 Result = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 3600 Node->getValueType(0)); 3601 } else if (MVT::isVector(Op.getOperand(0).getValueType())) { 3602 // The input has to be a vector type, we have to either scalarize it, pack 3603 // it, or convert it based on whether the input vector type is legal. 3604 SDNode *InVal = Node->getOperand(0).Val; 3605 int InIx = Node->getOperand(0).ResNo; 3606 unsigned NumElems = MVT::getVectorNumElements(InVal->getValueType(InIx)); 3607 MVT::ValueType EVT = MVT::getVectorElementType(InVal->getValueType(InIx)); 3608 3609 // Figure out if there is a simple type corresponding to this Vector 3610 // type. If so, convert to the vector type. 3611 MVT::ValueType TVT = MVT::getVectorType(EVT, NumElems); 3612 if (TLI.isTypeLegal(TVT)) { 3613 // Turn this into a bit convert of the vector input. 3614 Result = DAG.getNode(ISD::BIT_CONVERT, Node->getValueType(0), 3615 LegalizeOp(Node->getOperand(0))); 3616 break; 3617 } else if (NumElems == 1) { 3618 // Turn this into a bit convert of the scalar input. 3619 Result = DAG.getNode(ISD::BIT_CONVERT, Node->getValueType(0), 3620 ScalarizeVectorOp(Node->getOperand(0))); 3621 break; 3622 } else { 3623 // FIXME: UNIMP! Store then reload 3624 assert(0 && "Cast from unsupported vector type not implemented yet!"); 3625 } 3626 } else { 3627 switch (TLI.getOperationAction(ISD::BIT_CONVERT, 3628 Node->getOperand(0).getValueType())) { 3629 default: assert(0 && "Unknown operation action!"); 3630 case TargetLowering::Expand: 3631 Result = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 3632 Node->getValueType(0)); 3633 break; 3634 case TargetLowering::Legal: 3635 Tmp1 = LegalizeOp(Node->getOperand(0)); 3636 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3637 break; 3638 } 3639 } 3640 break; 3641 3642 // Conversion operators. The source and destination have different types. 3643 case ISD::SINT_TO_FP: 3644 case ISD::UINT_TO_FP: { 3645 bool isSigned = Node->getOpcode() == ISD::SINT_TO_FP; 3646 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3647 case Legal: 3648 switch (TLI.getOperationAction(Node->getOpcode(), 3649 Node->getOperand(0).getValueType())) { 3650 default: assert(0 && "Unknown operation action!"); 3651 case TargetLowering::Custom: 3652 isCustom = true; 3653 // FALLTHROUGH 3654 case TargetLowering::Legal: 3655 Tmp1 = LegalizeOp(Node->getOperand(0)); 3656 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3657 if (isCustom) { 3658 Tmp1 = TLI.LowerOperation(Result, DAG); 3659 if (Tmp1.Val) Result = Tmp1; 3660 } 3661 break; 3662 case TargetLowering::Expand: 3663 Result = ExpandLegalINT_TO_FP(isSigned, 3664 LegalizeOp(Node->getOperand(0)), 3665 Node->getValueType(0)); 3666 break; 3667 case TargetLowering::Promote: 3668 Result = PromoteLegalINT_TO_FP(LegalizeOp(Node->getOperand(0)), 3669 Node->getValueType(0), 3670 isSigned); 3671 break; 3672 } 3673 break; 3674 case Expand: 3675 Result = ExpandIntToFP(Node->getOpcode() == ISD::SINT_TO_FP, 3676 Node->getValueType(0), Node->getOperand(0)); 3677 break; 3678 case Promote: 3679 Tmp1 = PromoteOp(Node->getOperand(0)); 3680 if (isSigned) { 3681 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, Tmp1.getValueType(), 3682 Tmp1, DAG.getValueType(Node->getOperand(0).getValueType())); 3683 } else { 3684 Tmp1 = DAG.getZeroExtendInReg(Tmp1, 3685 Node->getOperand(0).getValueType()); 3686 } 3687 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3688 Result = LegalizeOp(Result); // The 'op' is not necessarily legal! 3689 break; 3690 } 3691 break; 3692 } 3693 case ISD::TRUNCATE: 3694 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3695 case Legal: 3696 Tmp1 = LegalizeOp(Node->getOperand(0)); 3697 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3698 break; 3699 case Expand: 3700 ExpandOp(Node->getOperand(0), Tmp1, Tmp2); 3701 3702 // Since the result is legal, we should just be able to truncate the low 3703 // part of the source. 3704 Result = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), Tmp1); 3705 break; 3706 case Promote: 3707 Result = PromoteOp(Node->getOperand(0)); 3708 Result = DAG.getNode(ISD::TRUNCATE, Op.getValueType(), Result); 3709 break; 3710 } 3711 break; 3712 3713 case ISD::FP_TO_SINT: 3714 case ISD::FP_TO_UINT: 3715 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3716 case Legal: 3717 Tmp1 = LegalizeOp(Node->getOperand(0)); 3718 3719 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))){ 3720 default: assert(0 && "Unknown operation action!"); 3721 case TargetLowering::Custom: 3722 isCustom = true; 3723 // FALLTHROUGH 3724 case TargetLowering::Legal: 3725 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3726 if (isCustom) { 3727 Tmp1 = TLI.LowerOperation(Result, DAG); 3728 if (Tmp1.Val) Result = Tmp1; 3729 } 3730 break; 3731 case TargetLowering::Promote: 3732 Result = PromoteLegalFP_TO_INT(Tmp1, Node->getValueType(0), 3733 Node->getOpcode() == ISD::FP_TO_SINT); 3734 break; 3735 case TargetLowering::Expand: 3736 if (Node->getOpcode() == ISD::FP_TO_UINT) { 3737 SDOperand True, False; 3738 MVT::ValueType VT = Node->getOperand(0).getValueType(); 3739 MVT::ValueType NVT = Node->getValueType(0); 3740 unsigned ShiftAmt = MVT::getSizeInBits(NVT)-1; 3741 const uint64_t zero[] = {0, 0}; 3742 APFloat apf = APFloat(APInt(MVT::getSizeInBits(VT), 2, zero)); 3743 uint64_t x = 1ULL << ShiftAmt; 3744 (void)apf.convertFromZeroExtendedInteger 3745 (&x, MVT::getSizeInBits(NVT), false, APFloat::rmNearestTiesToEven); 3746 Tmp2 = DAG.getConstantFP(apf, VT); 3747 Tmp3 = DAG.getSetCC(TLI.getSetCCResultTy(), 3748 Node->getOperand(0), Tmp2, ISD::SETLT); 3749 True = DAG.getNode(ISD::FP_TO_SINT, NVT, Node->getOperand(0)); 3750 False = DAG.getNode(ISD::FP_TO_SINT, NVT, 3751 DAG.getNode(ISD::FSUB, VT, Node->getOperand(0), 3752 Tmp2)); 3753 False = DAG.getNode(ISD::XOR, NVT, False, 3754 DAG.getConstant(1ULL << ShiftAmt, NVT)); 3755 Result = DAG.getNode(ISD::SELECT, NVT, Tmp3, True, False); 3756 break; 3757 } else { 3758 assert(0 && "Do not know how to expand FP_TO_SINT yet!"); 3759 } 3760 break; 3761 } 3762 break; 3763 case Expand: { 3764 MVT::ValueType VT = Op.getValueType(); 3765 MVT::ValueType OVT = Node->getOperand(0).getValueType(); 3766 // Convert ppcf128 to i32 3767 if (OVT == MVT::ppcf128 && VT == MVT::i32) { 3768 if (Node->getOpcode() == ISD::FP_TO_SINT) { 3769 Result = DAG.getNode(ISD::FP_ROUND_INREG, MVT::ppcf128, 3770 Node->getOperand(0), DAG.getValueType(MVT::f64)); 3771 Result = DAG.getNode(ISD::FP_ROUND, MVT::f64, Result, 3772 DAG.getIntPtrConstant(1)); 3773 Result = DAG.getNode(ISD::FP_TO_SINT, VT, Result); 3774 } else { 3775 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 3776 APFloat apf = APFloat(APInt(128, 2, TwoE31)); 3777 Tmp2 = DAG.getConstantFP(apf, OVT); 3778 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 3779 // FIXME: generated code sucks. 3780 Result = DAG.getNode(ISD::SELECT_CC, VT, Node->getOperand(0), Tmp2, 3781 DAG.getNode(ISD::ADD, MVT::i32, 3782 DAG.getNode(ISD::FP_TO_SINT, VT, 3783 DAG.getNode(ISD::FSUB, OVT, 3784 Node->getOperand(0), Tmp2)), 3785 DAG.getConstant(0x80000000, MVT::i32)), 3786 DAG.getNode(ISD::FP_TO_SINT, VT, 3787 Node->getOperand(0)), 3788 DAG.getCondCode(ISD::SETGE)); 3789 } 3790 break; 3791 } 3792 // Convert f32 / f64 to i32 / i64. 3793 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 3794 switch (Node->getOpcode()) { 3795 case ISD::FP_TO_SINT: { 3796 if (OVT == MVT::f32) 3797 LC = (VT == MVT::i32) 3798 ? RTLIB::FPTOSINT_F32_I32 : RTLIB::FPTOSINT_F32_I64; 3799 else if (OVT == MVT::f64) 3800 LC = (VT == MVT::i32) 3801 ? RTLIB::FPTOSINT_F64_I32 : RTLIB::FPTOSINT_F64_I64; 3802 else if (OVT == MVT::f80) { 3803 assert(VT == MVT::i64); 3804 LC = RTLIB::FPTOSINT_F80_I64; 3805 } 3806 else if (OVT == MVT::ppcf128) { 3807 assert(VT == MVT::i64); 3808 LC = RTLIB::FPTOSINT_PPCF128_I64; 3809 } 3810 break; 3811 } 3812 case ISD::FP_TO_UINT: { 3813 if (OVT == MVT::f32) 3814 LC = (VT == MVT::i32) 3815 ? RTLIB::FPTOUINT_F32_I32 : RTLIB::FPTOSINT_F32_I64; 3816 else if (OVT == MVT::f64) 3817 LC = (VT == MVT::i32) 3818 ? RTLIB::FPTOUINT_F64_I32 : RTLIB::FPTOSINT_F64_I64; 3819 else if (OVT == MVT::f80) { 3820 LC = (VT == MVT::i32) 3821 ? RTLIB::FPTOUINT_F80_I32 : RTLIB::FPTOUINT_F80_I64; 3822 } 3823 else if (OVT == MVT::ppcf128) { 3824 assert(VT == MVT::i64); 3825 LC = RTLIB::FPTOUINT_PPCF128_I64; 3826 } 3827 break; 3828 } 3829 default: assert(0 && "Unreachable!"); 3830 } 3831 SDOperand Dummy; 3832 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, 3833 false/*sign irrelevant*/, Dummy); 3834 break; 3835 } 3836 case Promote: 3837 Tmp1 = PromoteOp(Node->getOperand(0)); 3838 Result = DAG.UpdateNodeOperands(Result, LegalizeOp(Tmp1)); 3839 Result = LegalizeOp(Result); 3840 break; 3841 } 3842 break; 3843 3844 case ISD::FP_EXTEND: { 3845 MVT::ValueType DstVT = Op.getValueType(); 3846 MVT::ValueType SrcVT = Op.getOperand(0).getValueType(); 3847 if (TLI.getConvertAction(SrcVT, DstVT) == TargetLowering::Expand) { 3848 // The only other way we can lower this is to turn it into a STORE, 3849 // LOAD pair, targetting a temporary location (a stack slot). 3850 Result = EmitStackConvert(Node->getOperand(0), SrcVT, DstVT); 3851 break; 3852 } 3853 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3854 case Expand: assert(0 && "Shouldn't need to expand other operators here!"); 3855 case Legal: 3856 Tmp1 = LegalizeOp(Node->getOperand(0)); 3857 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3858 break; 3859 case Promote: 3860 Tmp1 = PromoteOp(Node->getOperand(0)); 3861 Result = DAG.getNode(ISD::FP_EXTEND, Op.getValueType(), Tmp1); 3862 break; 3863 } 3864 break; 3865 } 3866 case ISD::FP_ROUND: { 3867 MVT::ValueType DstVT = Op.getValueType(); 3868 MVT::ValueType SrcVT = Op.getOperand(0).getValueType(); 3869 if (TLI.getConvertAction(SrcVT, DstVT) == TargetLowering::Expand) { 3870 if (SrcVT == MVT::ppcf128) { 3871 SDOperand Lo; 3872 ExpandOp(Node->getOperand(0), Lo, Result); 3873 // Round it the rest of the way (e.g. to f32) if needed. 3874 if (DstVT!=MVT::f64) 3875 Result = DAG.getNode(ISD::FP_ROUND, DstVT, Result, Op.getOperand(1)); 3876 break; 3877 } 3878 // The only other way we can lower this is to turn it into a STORE, 3879 // LOAD pair, targetting a temporary location (a stack slot). 3880 Result = EmitStackConvert(Node->getOperand(0), DstVT, DstVT); 3881 break; 3882 } 3883 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3884 case Expand: assert(0 && "Shouldn't need to expand other operators here!"); 3885 case Legal: 3886 Tmp1 = LegalizeOp(Node->getOperand(0)); 3887 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 3888 break; 3889 case Promote: 3890 Tmp1 = PromoteOp(Node->getOperand(0)); 3891 Result = DAG.getNode(ISD::FP_ROUND, Op.getValueType(), Tmp1, 3892 Node->getOperand(1)); 3893 break; 3894 } 3895 break; 3896 } 3897 case ISD::ANY_EXTEND: 3898 case ISD::ZERO_EXTEND: 3899 case ISD::SIGN_EXTEND: 3900 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3901 case Expand: assert(0 && "Shouldn't need to expand other operators here!"); 3902 case Legal: 3903 Tmp1 = LegalizeOp(Node->getOperand(0)); 3904 if (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)) == 3905 TargetLowering::Custom) { 3906 Tmp2 = TLI.LowerOperation(Result, DAG); 3907 if (Tmp2.Val) { 3908 Tmp1 = Tmp2; 3909 } 3910 } 3911 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3912 break; 3913 case Promote: 3914 switch (Node->getOpcode()) { 3915 case ISD::ANY_EXTEND: 3916 Tmp1 = PromoteOp(Node->getOperand(0)); 3917 Result = DAG.getNode(ISD::ANY_EXTEND, Op.getValueType(), Tmp1); 3918 break; 3919 case ISD::ZERO_EXTEND: 3920 Result = PromoteOp(Node->getOperand(0)); 3921 Result = DAG.getNode(ISD::ANY_EXTEND, Op.getValueType(), Result); 3922 Result = DAG.getZeroExtendInReg(Result, 3923 Node->getOperand(0).getValueType()); 3924 break; 3925 case ISD::SIGN_EXTEND: 3926 Result = PromoteOp(Node->getOperand(0)); 3927 Result = DAG.getNode(ISD::ANY_EXTEND, Op.getValueType(), Result); 3928 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(), 3929 Result, 3930 DAG.getValueType(Node->getOperand(0).getValueType())); 3931 break; 3932 } 3933 } 3934 break; 3935 case ISD::FP_ROUND_INREG: 3936 case ISD::SIGN_EXTEND_INREG: { 3937 Tmp1 = LegalizeOp(Node->getOperand(0)); 3938 MVT::ValueType ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 3939 3940 // If this operation is not supported, convert it to a shl/shr or load/store 3941 // pair. 3942 switch (TLI.getOperationAction(Node->getOpcode(), ExtraVT)) { 3943 default: assert(0 && "This action not supported for this op yet!"); 3944 case TargetLowering::Legal: 3945 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 3946 break; 3947 case TargetLowering::Expand: 3948 // If this is an integer extend and shifts are supported, do that. 3949 if (Node->getOpcode() == ISD::SIGN_EXTEND_INREG) { 3950 // NOTE: we could fall back on load/store here too for targets without 3951 // SAR. However, it is doubtful that any exist. 3952 unsigned BitsDiff = MVT::getSizeInBits(Node->getValueType(0)) - 3953 MVT::getSizeInBits(ExtraVT); 3954 SDOperand ShiftCst = DAG.getConstant(BitsDiff, TLI.getShiftAmountTy()); 3955 Result = DAG.getNode(ISD::SHL, Node->getValueType(0), 3956 Node->getOperand(0), ShiftCst); 3957 Result = DAG.getNode(ISD::SRA, Node->getValueType(0), 3958 Result, ShiftCst); 3959 } else if (Node->getOpcode() == ISD::FP_ROUND_INREG) { 3960 // The only way we can lower this is to turn it into a TRUNCSTORE, 3961 // EXTLOAD pair, targetting a temporary location (a stack slot). 3962 3963 // NOTE: there is a choice here between constantly creating new stack 3964 // slots and always reusing the same one. We currently always create 3965 // new ones, as reuse may inhibit scheduling. 3966 Result = EmitStackConvert(Node->getOperand(0), ExtraVT, 3967 Node->getValueType(0)); 3968 } else { 3969 assert(0 && "Unknown op"); 3970 } 3971 break; 3972 } 3973 break; 3974 } 3975 case ISD::TRAMPOLINE: { 3976 SDOperand Ops[6]; 3977 for (unsigned i = 0; i != 6; ++i) 3978 Ops[i] = LegalizeOp(Node->getOperand(i)); 3979 Result = DAG.UpdateNodeOperands(Result, Ops, 6); 3980 // The only option for this node is to custom lower it. 3981 Result = TLI.LowerOperation(Result, DAG); 3982 assert(Result.Val && "Should always custom lower!"); 3983 3984 // Since trampoline produces two values, make sure to remember that we 3985 // legalized both of them. 3986 Tmp1 = LegalizeOp(Result.getValue(1)); 3987 Result = LegalizeOp(Result); 3988 AddLegalizedOperand(SDOperand(Node, 0), Result); 3989 AddLegalizedOperand(SDOperand(Node, 1), Tmp1); 3990 return Op.ResNo ? Tmp1 : Result; 3991 } 3992 case ISD::FLT_ROUNDS_: { 3993 MVT::ValueType VT = Node->getValueType(0); 3994 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 3995 default: assert(0 && "This action not supported for this op yet!"); 3996 case TargetLowering::Custom: 3997 Result = TLI.LowerOperation(Op, DAG); 3998 if (Result.Val) break; 3999 // Fall Thru 4000 case TargetLowering::Legal: 4001 // If this operation is not supported, lower it to constant 1 4002 Result = DAG.getConstant(1, VT); 4003 break; 4004 } 4005 } 4006 case ISD::TRAP: { 4007 MVT::ValueType VT = Node->getValueType(0); 4008 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 4009 default: assert(0 && "This action not supported for this op yet!"); 4010 case TargetLowering::Legal: 4011 Tmp1 = LegalizeOp(Node->getOperand(0)); 4012 Result = DAG.UpdateNodeOperands(Result, Tmp1); 4013 break; 4014 case TargetLowering::Custom: 4015 Result = TLI.LowerOperation(Op, DAG); 4016 if (Result.Val) break; 4017 // Fall Thru 4018 case TargetLowering::Expand: 4019 // If this operation is not supported, lower it to 'abort()' call 4020 Tmp1 = LegalizeOp(Node->getOperand(0)); 4021 TargetLowering::ArgListTy Args; 4022 std::pair<SDOperand,SDOperand> CallResult = 4023 TLI.LowerCallTo(Tmp1, Type::VoidTy, 4024 false, false, false, CallingConv::C, false, 4025 DAG.getExternalSymbol("abort", TLI.getPointerTy()), 4026 Args, DAG); 4027 Result = CallResult.second; 4028 break; 4029 } 4030 break; 4031 } 4032 } 4033 4034 assert(Result.getValueType() == Op.getValueType() && 4035 "Bad legalization!"); 4036 4037 // Make sure that the generated code is itself legal. 4038 if (Result != Op) 4039 Result = LegalizeOp(Result); 4040 4041 // Note that LegalizeOp may be reentered even from single-use nodes, which 4042 // means that we always must cache transformed nodes. 4043 AddLegalizedOperand(Op, Result); 4044 return Result; 4045} 4046 4047/// PromoteOp - Given an operation that produces a value in an invalid type, 4048/// promote it to compute the value into a larger type. The produced value will 4049/// have the correct bits for the low portion of the register, but no guarantee 4050/// is made about the top bits: it may be zero, sign-extended, or garbage. 4051SDOperand SelectionDAGLegalize::PromoteOp(SDOperand Op) { 4052 MVT::ValueType VT = Op.getValueType(); 4053 MVT::ValueType NVT = TLI.getTypeToTransformTo(VT); 4054 assert(getTypeAction(VT) == Promote && 4055 "Caller should expand or legalize operands that are not promotable!"); 4056 assert(NVT > VT && MVT::isInteger(NVT) == MVT::isInteger(VT) && 4057 "Cannot promote to smaller type!"); 4058 4059 SDOperand Tmp1, Tmp2, Tmp3; 4060 SDOperand Result; 4061 SDNode *Node = Op.Val; 4062 4063 DenseMap<SDOperand, SDOperand>::iterator I = PromotedNodes.find(Op); 4064 if (I != PromotedNodes.end()) return I->second; 4065 4066 switch (Node->getOpcode()) { 4067 case ISD::CopyFromReg: 4068 assert(0 && "CopyFromReg must be legal!"); 4069 default: 4070#ifndef NDEBUG 4071 cerr << "NODE: "; Node->dump(&DAG); cerr << "\n"; 4072#endif 4073 assert(0 && "Do not know how to promote this operator!"); 4074 abort(); 4075 case ISD::UNDEF: 4076 Result = DAG.getNode(ISD::UNDEF, NVT); 4077 break; 4078 case ISD::Constant: 4079 if (VT != MVT::i1) 4080 Result = DAG.getNode(ISD::SIGN_EXTEND, NVT, Op); 4081 else 4082 Result = DAG.getNode(ISD::ZERO_EXTEND, NVT, Op); 4083 assert(isa<ConstantSDNode>(Result) && "Didn't constant fold zext?"); 4084 break; 4085 case ISD::ConstantFP: 4086 Result = DAG.getNode(ISD::FP_EXTEND, NVT, Op); 4087 assert(isa<ConstantFPSDNode>(Result) && "Didn't constant fold fp_extend?"); 4088 break; 4089 4090 case ISD::SETCC: 4091 assert(isTypeLegal(TLI.getSetCCResultTy()) && "SetCC type is not legal??"); 4092 Result = DAG.getNode(ISD::SETCC, TLI.getSetCCResultTy(),Node->getOperand(0), 4093 Node->getOperand(1), Node->getOperand(2)); 4094 break; 4095 4096 case ISD::TRUNCATE: 4097 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4098 case Legal: 4099 Result = LegalizeOp(Node->getOperand(0)); 4100 assert(Result.getValueType() >= NVT && 4101 "This truncation doesn't make sense!"); 4102 if (Result.getValueType() > NVT) // Truncate to NVT instead of VT 4103 Result = DAG.getNode(ISD::TRUNCATE, NVT, Result); 4104 break; 4105 case Promote: 4106 // The truncation is not required, because we don't guarantee anything 4107 // about high bits anyway. 4108 Result = PromoteOp(Node->getOperand(0)); 4109 break; 4110 case Expand: 4111 ExpandOp(Node->getOperand(0), Tmp1, Tmp2); 4112 // Truncate the low part of the expanded value to the result type 4113 Result = DAG.getNode(ISD::TRUNCATE, NVT, Tmp1); 4114 } 4115 break; 4116 case ISD::SIGN_EXTEND: 4117 case ISD::ZERO_EXTEND: 4118 case ISD::ANY_EXTEND: 4119 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4120 case Expand: assert(0 && "BUG: Smaller reg should have been promoted!"); 4121 case Legal: 4122 // Input is legal? Just do extend all the way to the larger type. 4123 Result = DAG.getNode(Node->getOpcode(), NVT, Node->getOperand(0)); 4124 break; 4125 case Promote: 4126 // Promote the reg if it's smaller. 4127 Result = PromoteOp(Node->getOperand(0)); 4128 // The high bits are not guaranteed to be anything. Insert an extend. 4129 if (Node->getOpcode() == ISD::SIGN_EXTEND) 4130 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Result, 4131 DAG.getValueType(Node->getOperand(0).getValueType())); 4132 else if (Node->getOpcode() == ISD::ZERO_EXTEND) 4133 Result = DAG.getZeroExtendInReg(Result, 4134 Node->getOperand(0).getValueType()); 4135 break; 4136 } 4137 break; 4138 case ISD::BIT_CONVERT: 4139 Result = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 4140 Node->getValueType(0)); 4141 Result = PromoteOp(Result); 4142 break; 4143 4144 case ISD::FP_EXTEND: 4145 assert(0 && "Case not implemented. Dynamically dead with 2 FP types!"); 4146 case ISD::FP_ROUND: 4147 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4148 case Expand: assert(0 && "BUG: Cannot expand FP regs!"); 4149 case Promote: assert(0 && "Unreachable with 2 FP types!"); 4150 case Legal: 4151 if (Node->getConstantOperandVal(1) == 0) { 4152 // Input is legal? Do an FP_ROUND_INREG. 4153 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Node->getOperand(0), 4154 DAG.getValueType(VT)); 4155 } else { 4156 // Just remove the truncate, it isn't affecting the value. 4157 Result = DAG.getNode(ISD::FP_ROUND, NVT, Node->getOperand(0), 4158 Node->getOperand(1)); 4159 } 4160 break; 4161 } 4162 break; 4163 case ISD::SINT_TO_FP: 4164 case ISD::UINT_TO_FP: 4165 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4166 case Legal: 4167 // No extra round required here. 4168 Result = DAG.getNode(Node->getOpcode(), NVT, Node->getOperand(0)); 4169 break; 4170 4171 case Promote: 4172 Result = PromoteOp(Node->getOperand(0)); 4173 if (Node->getOpcode() == ISD::SINT_TO_FP) 4174 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(), 4175 Result, 4176 DAG.getValueType(Node->getOperand(0).getValueType())); 4177 else 4178 Result = DAG.getZeroExtendInReg(Result, 4179 Node->getOperand(0).getValueType()); 4180 // No extra round required here. 4181 Result = DAG.getNode(Node->getOpcode(), NVT, Result); 4182 break; 4183 case Expand: 4184 Result = ExpandIntToFP(Node->getOpcode() == ISD::SINT_TO_FP, NVT, 4185 Node->getOperand(0)); 4186 // Round if we cannot tolerate excess precision. 4187 if (NoExcessFPPrecision) 4188 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 4189 DAG.getValueType(VT)); 4190 break; 4191 } 4192 break; 4193 4194 case ISD::SIGN_EXTEND_INREG: 4195 Result = PromoteOp(Node->getOperand(0)); 4196 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Result, 4197 Node->getOperand(1)); 4198 break; 4199 case ISD::FP_TO_SINT: 4200 case ISD::FP_TO_UINT: 4201 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4202 case Legal: 4203 case Expand: 4204 Tmp1 = Node->getOperand(0); 4205 break; 4206 case Promote: 4207 // The input result is prerounded, so we don't have to do anything 4208 // special. 4209 Tmp1 = PromoteOp(Node->getOperand(0)); 4210 break; 4211 } 4212 // If we're promoting a UINT to a larger size, check to see if the new node 4213 // will be legal. If it isn't, check to see if FP_TO_SINT is legal, since 4214 // we can use that instead. This allows us to generate better code for 4215 // FP_TO_UINT for small destination sizes on targets where FP_TO_UINT is not 4216 // legal, such as PowerPC. 4217 if (Node->getOpcode() == ISD::FP_TO_UINT && 4218 !TLI.isOperationLegal(ISD::FP_TO_UINT, NVT) && 4219 (TLI.isOperationLegal(ISD::FP_TO_SINT, NVT) || 4220 TLI.getOperationAction(ISD::FP_TO_SINT, NVT)==TargetLowering::Custom)){ 4221 Result = DAG.getNode(ISD::FP_TO_SINT, NVT, Tmp1); 4222 } else { 4223 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1); 4224 } 4225 break; 4226 4227 case ISD::FABS: 4228 case ISD::FNEG: 4229 Tmp1 = PromoteOp(Node->getOperand(0)); 4230 assert(Tmp1.getValueType() == NVT); 4231 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1); 4232 // NOTE: we do not have to do any extra rounding here for 4233 // NoExcessFPPrecision, because we know the input will have the appropriate 4234 // precision, and these operations don't modify precision at all. 4235 break; 4236 4237 case ISD::FSQRT: 4238 case ISD::FSIN: 4239 case ISD::FCOS: 4240 Tmp1 = PromoteOp(Node->getOperand(0)); 4241 assert(Tmp1.getValueType() == NVT); 4242 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1); 4243 if (NoExcessFPPrecision) 4244 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 4245 DAG.getValueType(VT)); 4246 break; 4247 4248 case ISD::FPOWI: { 4249 // Promote f32 powi to f64 powi. Note that this could insert a libcall 4250 // directly as well, which may be better. 4251 Tmp1 = PromoteOp(Node->getOperand(0)); 4252 assert(Tmp1.getValueType() == NVT); 4253 Result = DAG.getNode(ISD::FPOWI, NVT, Tmp1, Node->getOperand(1)); 4254 if (NoExcessFPPrecision) 4255 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 4256 DAG.getValueType(VT)); 4257 break; 4258 } 4259 4260 case ISD::ATOMIC_LCS: { 4261 Tmp2 = PromoteOp(Node->getOperand(2)); 4262 Tmp3 = PromoteOp(Node->getOperand(3)); 4263 Result = DAG.getAtomic(Node->getOpcode(), Node->getOperand(0), 4264 Node->getOperand(1), Tmp2, Tmp3, 4265 cast<AtomicSDNode>(Node)->getVT()); 4266 // Remember that we legalized the chain. 4267 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); 4268 break; 4269 } 4270 case ISD::ATOMIC_LAS: 4271 case ISD::ATOMIC_SWAP: { 4272 Tmp2 = PromoteOp(Node->getOperand(2)); 4273 Result = DAG.getAtomic(Node->getOpcode(), Node->getOperand(0), 4274 Node->getOperand(1), Tmp2, 4275 cast<AtomicSDNode>(Node)->getVT()); 4276 // Remember that we legalized the chain. 4277 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); 4278 break; 4279 } 4280 4281 case ISD::AND: 4282 case ISD::OR: 4283 case ISD::XOR: 4284 case ISD::ADD: 4285 case ISD::SUB: 4286 case ISD::MUL: 4287 // The input may have strange things in the top bits of the registers, but 4288 // these operations don't care. They may have weird bits going out, but 4289 // that too is okay if they are integer operations. 4290 Tmp1 = PromoteOp(Node->getOperand(0)); 4291 Tmp2 = PromoteOp(Node->getOperand(1)); 4292 assert(Tmp1.getValueType() == NVT && Tmp2.getValueType() == NVT); 4293 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 4294 break; 4295 case ISD::FADD: 4296 case ISD::FSUB: 4297 case ISD::FMUL: 4298 Tmp1 = PromoteOp(Node->getOperand(0)); 4299 Tmp2 = PromoteOp(Node->getOperand(1)); 4300 assert(Tmp1.getValueType() == NVT && Tmp2.getValueType() == NVT); 4301 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 4302 4303 // Floating point operations will give excess precision that we may not be 4304 // able to tolerate. If we DO allow excess precision, just leave it, 4305 // otherwise excise it. 4306 // FIXME: Why would we need to round FP ops more than integer ones? 4307 // Is Round(Add(Add(A,B),C)) != Round(Add(Round(Add(A,B)), C)) 4308 if (NoExcessFPPrecision) 4309 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 4310 DAG.getValueType(VT)); 4311 break; 4312 4313 case ISD::SDIV: 4314 case ISD::SREM: 4315 // These operators require that their input be sign extended. 4316 Tmp1 = PromoteOp(Node->getOperand(0)); 4317 Tmp2 = PromoteOp(Node->getOperand(1)); 4318 if (MVT::isInteger(NVT)) { 4319 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp1, 4320 DAG.getValueType(VT)); 4321 Tmp2 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp2, 4322 DAG.getValueType(VT)); 4323 } 4324 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 4325 4326 // Perform FP_ROUND: this is probably overly pessimistic. 4327 if (MVT::isFloatingPoint(NVT) && NoExcessFPPrecision) 4328 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 4329 DAG.getValueType(VT)); 4330 break; 4331 case ISD::FDIV: 4332 case ISD::FREM: 4333 case ISD::FCOPYSIGN: 4334 // These operators require that their input be fp extended. 4335 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4336 case Expand: assert(0 && "not implemented"); 4337 case Legal: Tmp1 = LegalizeOp(Node->getOperand(0)); break; 4338 case Promote: Tmp1 = PromoteOp(Node->getOperand(0)); break; 4339 } 4340 switch (getTypeAction(Node->getOperand(1).getValueType())) { 4341 case Expand: assert(0 && "not implemented"); 4342 case Legal: Tmp2 = LegalizeOp(Node->getOperand(1)); break; 4343 case Promote: Tmp2 = PromoteOp(Node->getOperand(1)); break; 4344 } 4345 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 4346 4347 // Perform FP_ROUND: this is probably overly pessimistic. 4348 if (NoExcessFPPrecision && Node->getOpcode() != ISD::FCOPYSIGN) 4349 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 4350 DAG.getValueType(VT)); 4351 break; 4352 4353 case ISD::UDIV: 4354 case ISD::UREM: 4355 // These operators require that their input be zero extended. 4356 Tmp1 = PromoteOp(Node->getOperand(0)); 4357 Tmp2 = PromoteOp(Node->getOperand(1)); 4358 assert(MVT::isInteger(NVT) && "Operators don't apply to FP!"); 4359 Tmp1 = DAG.getZeroExtendInReg(Tmp1, VT); 4360 Tmp2 = DAG.getZeroExtendInReg(Tmp2, VT); 4361 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 4362 break; 4363 4364 case ISD::SHL: 4365 Tmp1 = PromoteOp(Node->getOperand(0)); 4366 Result = DAG.getNode(ISD::SHL, NVT, Tmp1, Node->getOperand(1)); 4367 break; 4368 case ISD::SRA: 4369 // The input value must be properly sign extended. 4370 Tmp1 = PromoteOp(Node->getOperand(0)); 4371 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp1, 4372 DAG.getValueType(VT)); 4373 Result = DAG.getNode(ISD::SRA, NVT, Tmp1, Node->getOperand(1)); 4374 break; 4375 case ISD::SRL: 4376 // The input value must be properly zero extended. 4377 Tmp1 = PromoteOp(Node->getOperand(0)); 4378 Tmp1 = DAG.getZeroExtendInReg(Tmp1, VT); 4379 Result = DAG.getNode(ISD::SRL, NVT, Tmp1, Node->getOperand(1)); 4380 break; 4381 4382 case ISD::VAARG: 4383 Tmp1 = Node->getOperand(0); // Get the chain. 4384 Tmp2 = Node->getOperand(1); // Get the pointer. 4385 if (TLI.getOperationAction(ISD::VAARG, VT) == TargetLowering::Custom) { 4386 Tmp3 = DAG.getVAArg(VT, Tmp1, Tmp2, Node->getOperand(2)); 4387 Result = TLI.CustomPromoteOperation(Tmp3, DAG); 4388 } else { 4389 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 4390 SDOperand VAList = DAG.getLoad(TLI.getPointerTy(), Tmp1, Tmp2, V, 0); 4391 // Increment the pointer, VAList, to the next vaarg 4392 Tmp3 = DAG.getNode(ISD::ADD, TLI.getPointerTy(), VAList, 4393 DAG.getConstant(MVT::getSizeInBits(VT)/8, 4394 TLI.getPointerTy())); 4395 // Store the incremented VAList to the legalized pointer 4396 Tmp3 = DAG.getStore(VAList.getValue(1), Tmp3, Tmp2, V, 0); 4397 // Load the actual argument out of the pointer VAList 4398 Result = DAG.getExtLoad(ISD::EXTLOAD, NVT, Tmp3, VAList, NULL, 0, VT); 4399 } 4400 // Remember that we legalized the chain. 4401 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); 4402 break; 4403 4404 case ISD::LOAD: { 4405 LoadSDNode *LD = cast<LoadSDNode>(Node); 4406 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(Node) 4407 ? ISD::EXTLOAD : LD->getExtensionType(); 4408 Result = DAG.getExtLoad(ExtType, NVT, 4409 LD->getChain(), LD->getBasePtr(), 4410 LD->getSrcValue(), LD->getSrcValueOffset(), 4411 LD->getMemoryVT(), 4412 LD->isVolatile(), 4413 LD->getAlignment()); 4414 // Remember that we legalized the chain. 4415 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); 4416 break; 4417 } 4418 case ISD::SELECT: 4419 Tmp2 = PromoteOp(Node->getOperand(1)); // Legalize the op0 4420 Tmp3 = PromoteOp(Node->getOperand(2)); // Legalize the op1 4421 Result = DAG.getNode(ISD::SELECT, NVT, Node->getOperand(0), Tmp2, Tmp3); 4422 break; 4423 case ISD::SELECT_CC: 4424 Tmp2 = PromoteOp(Node->getOperand(2)); // True 4425 Tmp3 = PromoteOp(Node->getOperand(3)); // False 4426 Result = DAG.getNode(ISD::SELECT_CC, NVT, Node->getOperand(0), 4427 Node->getOperand(1), Tmp2, Tmp3, Node->getOperand(4)); 4428 break; 4429 case ISD::BSWAP: 4430 Tmp1 = Node->getOperand(0); 4431 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Tmp1); 4432 Tmp1 = DAG.getNode(ISD::BSWAP, NVT, Tmp1); 4433 Result = DAG.getNode(ISD::SRL, NVT, Tmp1, 4434 DAG.getConstant(MVT::getSizeInBits(NVT) - 4435 MVT::getSizeInBits(VT), 4436 TLI.getShiftAmountTy())); 4437 break; 4438 case ISD::CTPOP: 4439 case ISD::CTTZ: 4440 case ISD::CTLZ: 4441 // Zero extend the argument 4442 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Node->getOperand(0)); 4443 // Perform the larger operation, then subtract if needed. 4444 Tmp1 = DAG.getNode(Node->getOpcode(), NVT, Tmp1); 4445 switch(Node->getOpcode()) { 4446 case ISD::CTPOP: 4447 Result = Tmp1; 4448 break; 4449 case ISD::CTTZ: 4450 // if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT) 4451 Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), Tmp1, 4452 DAG.getConstant(MVT::getSizeInBits(NVT), NVT), 4453 ISD::SETEQ); 4454 Result = DAG.getNode(ISD::SELECT, NVT, Tmp2, 4455 DAG.getConstant(MVT::getSizeInBits(VT), NVT), Tmp1); 4456 break; 4457 case ISD::CTLZ: 4458 //Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 4459 Result = DAG.getNode(ISD::SUB, NVT, Tmp1, 4460 DAG.getConstant(MVT::getSizeInBits(NVT) - 4461 MVT::getSizeInBits(VT), NVT)); 4462 break; 4463 } 4464 break; 4465 case ISD::EXTRACT_SUBVECTOR: 4466 Result = PromoteOp(ExpandEXTRACT_SUBVECTOR(Op)); 4467 break; 4468 case ISD::EXTRACT_VECTOR_ELT: 4469 Result = PromoteOp(ExpandEXTRACT_VECTOR_ELT(Op)); 4470 break; 4471 } 4472 4473 assert(Result.Val && "Didn't set a result!"); 4474 4475 // Make sure the result is itself legal. 4476 Result = LegalizeOp(Result); 4477 4478 // Remember that we promoted this! 4479 AddPromotedOperand(Op, Result); 4480 return Result; 4481} 4482 4483/// ExpandEXTRACT_VECTOR_ELT - Expand an EXTRACT_VECTOR_ELT operation into 4484/// a legal EXTRACT_VECTOR_ELT operation, scalar code, or memory traffic, 4485/// based on the vector type. The return type of this matches the element type 4486/// of the vector, which may not be legal for the target. 4487SDOperand SelectionDAGLegalize::ExpandEXTRACT_VECTOR_ELT(SDOperand Op) { 4488 // We know that operand #0 is the Vec vector. If the index is a constant 4489 // or if the invec is a supported hardware type, we can use it. Otherwise, 4490 // lower to a store then an indexed load. 4491 SDOperand Vec = Op.getOperand(0); 4492 SDOperand Idx = Op.getOperand(1); 4493 4494 MVT::ValueType TVT = Vec.getValueType(); 4495 unsigned NumElems = MVT::getVectorNumElements(TVT); 4496 4497 switch (TLI.getOperationAction(ISD::EXTRACT_VECTOR_ELT, TVT)) { 4498 default: assert(0 && "This action is not supported yet!"); 4499 case TargetLowering::Custom: { 4500 Vec = LegalizeOp(Vec); 4501 Op = DAG.UpdateNodeOperands(Op, Vec, Idx); 4502 SDOperand Tmp3 = TLI.LowerOperation(Op, DAG); 4503 if (Tmp3.Val) 4504 return Tmp3; 4505 break; 4506 } 4507 case TargetLowering::Legal: 4508 if (isTypeLegal(TVT)) { 4509 Vec = LegalizeOp(Vec); 4510 Op = DAG.UpdateNodeOperands(Op, Vec, Idx); 4511 return Op; 4512 } 4513 break; 4514 case TargetLowering::Expand: 4515 break; 4516 } 4517 4518 if (NumElems == 1) { 4519 // This must be an access of the only element. Return it. 4520 Op = ScalarizeVectorOp(Vec); 4521 } else if (!TLI.isTypeLegal(TVT) && isa<ConstantSDNode>(Idx)) { 4522 unsigned NumLoElts = 1 << Log2_32(NumElems-1); 4523 ConstantSDNode *CIdx = cast<ConstantSDNode>(Idx); 4524 SDOperand Lo, Hi; 4525 SplitVectorOp(Vec, Lo, Hi); 4526 if (CIdx->getValue() < NumLoElts) { 4527 Vec = Lo; 4528 } else { 4529 Vec = Hi; 4530 Idx = DAG.getConstant(CIdx->getValue() - NumLoElts, 4531 Idx.getValueType()); 4532 } 4533 4534 // It's now an extract from the appropriate high or low part. Recurse. 4535 Op = DAG.UpdateNodeOperands(Op, Vec, Idx); 4536 Op = ExpandEXTRACT_VECTOR_ELT(Op); 4537 } else { 4538 // Store the value to a temporary stack slot, then LOAD the scalar 4539 // element back out. 4540 SDOperand StackPtr = DAG.CreateStackTemporary(Vec.getValueType()); 4541 SDOperand Ch = DAG.getStore(DAG.getEntryNode(), Vec, StackPtr, NULL, 0); 4542 4543 // Add the offset to the index. 4544 unsigned EltSize = MVT::getSizeInBits(Op.getValueType())/8; 4545 Idx = DAG.getNode(ISD::MUL, Idx.getValueType(), Idx, 4546 DAG.getConstant(EltSize, Idx.getValueType())); 4547 4548 if (MVT::getSizeInBits(Idx.getValueType()) > 4549 MVT::getSizeInBits(TLI.getPointerTy())) 4550 Idx = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), Idx); 4551 else 4552 Idx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), Idx); 4553 4554 StackPtr = DAG.getNode(ISD::ADD, Idx.getValueType(), Idx, StackPtr); 4555 4556 Op = DAG.getLoad(Op.getValueType(), Ch, StackPtr, NULL, 0); 4557 } 4558 return Op; 4559} 4560 4561/// ExpandEXTRACT_SUBVECTOR - Expand a EXTRACT_SUBVECTOR operation. For now 4562/// we assume the operation can be split if it is not already legal. 4563SDOperand SelectionDAGLegalize::ExpandEXTRACT_SUBVECTOR(SDOperand Op) { 4564 // We know that operand #0 is the Vec vector. For now we assume the index 4565 // is a constant and that the extracted result is a supported hardware type. 4566 SDOperand Vec = Op.getOperand(0); 4567 SDOperand Idx = LegalizeOp(Op.getOperand(1)); 4568 4569 unsigned NumElems = MVT::getVectorNumElements(Vec.getValueType()); 4570 4571 if (NumElems == MVT::getVectorNumElements(Op.getValueType())) { 4572 // This must be an access of the desired vector length. Return it. 4573 return Vec; 4574 } 4575 4576 ConstantSDNode *CIdx = cast<ConstantSDNode>(Idx); 4577 SDOperand Lo, Hi; 4578 SplitVectorOp(Vec, Lo, Hi); 4579 if (CIdx->getValue() < NumElems/2) { 4580 Vec = Lo; 4581 } else { 4582 Vec = Hi; 4583 Idx = DAG.getConstant(CIdx->getValue() - NumElems/2, Idx.getValueType()); 4584 } 4585 4586 // It's now an extract from the appropriate high or low part. Recurse. 4587 Op = DAG.UpdateNodeOperands(Op, Vec, Idx); 4588 return ExpandEXTRACT_SUBVECTOR(Op); 4589} 4590 4591/// LegalizeSetCCOperands - Attempts to create a legal LHS and RHS for a SETCC 4592/// with condition CC on the current target. This usually involves legalizing 4593/// or promoting the arguments. In the case where LHS and RHS must be expanded, 4594/// there may be no choice but to create a new SetCC node to represent the 4595/// legalized value of setcc lhs, rhs. In this case, the value is returned in 4596/// LHS, and the SDOperand returned in RHS has a nil SDNode value. 4597void SelectionDAGLegalize::LegalizeSetCCOperands(SDOperand &LHS, 4598 SDOperand &RHS, 4599 SDOperand &CC) { 4600 SDOperand Tmp1, Tmp2, Tmp3, Result; 4601 4602 switch (getTypeAction(LHS.getValueType())) { 4603 case Legal: 4604 Tmp1 = LegalizeOp(LHS); // LHS 4605 Tmp2 = LegalizeOp(RHS); // RHS 4606 break; 4607 case Promote: 4608 Tmp1 = PromoteOp(LHS); // LHS 4609 Tmp2 = PromoteOp(RHS); // RHS 4610 4611 // If this is an FP compare, the operands have already been extended. 4612 if (MVT::isInteger(LHS.getValueType())) { 4613 MVT::ValueType VT = LHS.getValueType(); 4614 MVT::ValueType NVT = TLI.getTypeToTransformTo(VT); 4615 4616 // Otherwise, we have to insert explicit sign or zero extends. Note 4617 // that we could insert sign extends for ALL conditions, but zero extend 4618 // is cheaper on many machines (an AND instead of two shifts), so prefer 4619 // it. 4620 switch (cast<CondCodeSDNode>(CC)->get()) { 4621 default: assert(0 && "Unknown integer comparison!"); 4622 case ISD::SETEQ: 4623 case ISD::SETNE: 4624 case ISD::SETUGE: 4625 case ISD::SETUGT: 4626 case ISD::SETULE: 4627 case ISD::SETULT: 4628 // ALL of these operations will work if we either sign or zero extend 4629 // the operands (including the unsigned comparisons!). Zero extend is 4630 // usually a simpler/cheaper operation, so prefer it. 4631 Tmp1 = DAG.getZeroExtendInReg(Tmp1, VT); 4632 Tmp2 = DAG.getZeroExtendInReg(Tmp2, VT); 4633 break; 4634 case ISD::SETGE: 4635 case ISD::SETGT: 4636 case ISD::SETLT: 4637 case ISD::SETLE: 4638 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp1, 4639 DAG.getValueType(VT)); 4640 Tmp2 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp2, 4641 DAG.getValueType(VT)); 4642 break; 4643 } 4644 } 4645 break; 4646 case Expand: { 4647 MVT::ValueType VT = LHS.getValueType(); 4648 if (VT == MVT::f32 || VT == MVT::f64) { 4649 // Expand into one or more soft-fp libcall(s). 4650 RTLIB::Libcall LC1, LC2 = RTLIB::UNKNOWN_LIBCALL; 4651 switch (cast<CondCodeSDNode>(CC)->get()) { 4652 case ISD::SETEQ: 4653 case ISD::SETOEQ: 4654 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : RTLIB::OEQ_F64; 4655 break; 4656 case ISD::SETNE: 4657 case ISD::SETUNE: 4658 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : RTLIB::UNE_F64; 4659 break; 4660 case ISD::SETGE: 4661 case ISD::SETOGE: 4662 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : RTLIB::OGE_F64; 4663 break; 4664 case ISD::SETLT: 4665 case ISD::SETOLT: 4666 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64; 4667 break; 4668 case ISD::SETLE: 4669 case ISD::SETOLE: 4670 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : RTLIB::OLE_F64; 4671 break; 4672 case ISD::SETGT: 4673 case ISD::SETOGT: 4674 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : RTLIB::OGT_F64; 4675 break; 4676 case ISD::SETUO: 4677 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : RTLIB::UO_F64; 4678 break; 4679 case ISD::SETO: 4680 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : RTLIB::O_F64; 4681 break; 4682 default: 4683 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : RTLIB::UO_F64; 4684 switch (cast<CondCodeSDNode>(CC)->get()) { 4685 case ISD::SETONE: 4686 // SETONE = SETOLT | SETOGT 4687 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64; 4688 // Fallthrough 4689 case ISD::SETUGT: 4690 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : RTLIB::OGT_F64; 4691 break; 4692 case ISD::SETUGE: 4693 LC2 = (VT == MVT::f32) ? RTLIB::OGE_F32 : RTLIB::OGE_F64; 4694 break; 4695 case ISD::SETULT: 4696 LC2 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64; 4697 break; 4698 case ISD::SETULE: 4699 LC2 = (VT == MVT::f32) ? RTLIB::OLE_F32 : RTLIB::OLE_F64; 4700 break; 4701 case ISD::SETUEQ: 4702 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : RTLIB::OEQ_F64; 4703 break; 4704 default: assert(0 && "Unsupported FP setcc!"); 4705 } 4706 } 4707 4708 SDOperand Dummy; 4709 Tmp1 = ExpandLibCall(TLI.getLibcallName(LC1), 4710 DAG.getNode(ISD::MERGE_VALUES, VT, LHS, RHS).Val, 4711 false /*sign irrelevant*/, Dummy); 4712 Tmp2 = DAG.getConstant(0, MVT::i32); 4713 CC = DAG.getCondCode(TLI.getCmpLibcallCC(LC1)); 4714 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 4715 Tmp1 = DAG.getNode(ISD::SETCC, TLI.getSetCCResultTy(), Tmp1, Tmp2, CC); 4716 LHS = ExpandLibCall(TLI.getLibcallName(LC2), 4717 DAG.getNode(ISD::MERGE_VALUES, VT, LHS, RHS).Val, 4718 false /*sign irrelevant*/, Dummy); 4719 Tmp2 = DAG.getNode(ISD::SETCC, TLI.getSetCCResultTy(), LHS, Tmp2, 4720 DAG.getCondCode(TLI.getCmpLibcallCC(LC2))); 4721 Tmp1 = DAG.getNode(ISD::OR, Tmp1.getValueType(), Tmp1, Tmp2); 4722 Tmp2 = SDOperand(); 4723 } 4724 LHS = Tmp1; 4725 RHS = Tmp2; 4726 return; 4727 } 4728 4729 SDOperand LHSLo, LHSHi, RHSLo, RHSHi; 4730 ExpandOp(LHS, LHSLo, LHSHi); 4731 ExpandOp(RHS, RHSLo, RHSHi); 4732 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 4733 4734 if (VT==MVT::ppcf128) { 4735 // FIXME: This generated code sucks. We want to generate 4736 // FCMP crN, hi1, hi2 4737 // BNE crN, L: 4738 // FCMP crN, lo1, lo2 4739 // The following can be improved, but not that much. 4740 Tmp1 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, ISD::SETEQ); 4741 Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSLo, RHSLo, CCCode); 4742 Tmp3 = DAG.getNode(ISD::AND, Tmp1.getValueType(), Tmp1, Tmp2); 4743 Tmp1 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, ISD::SETNE); 4744 Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, CCCode); 4745 Tmp1 = DAG.getNode(ISD::AND, Tmp1.getValueType(), Tmp1, Tmp2); 4746 Tmp1 = DAG.getNode(ISD::OR, Tmp1.getValueType(), Tmp1, Tmp3); 4747 Tmp2 = SDOperand(); 4748 break; 4749 } 4750 4751 switch (CCCode) { 4752 case ISD::SETEQ: 4753 case ISD::SETNE: 4754 if (RHSLo == RHSHi) 4755 if (ConstantSDNode *RHSCST = dyn_cast<ConstantSDNode>(RHSLo)) 4756 if (RHSCST->isAllOnesValue()) { 4757 // Comparison to -1. 4758 Tmp1 = DAG.getNode(ISD::AND, LHSLo.getValueType(), LHSLo, LHSHi); 4759 Tmp2 = RHSLo; 4760 break; 4761 } 4762 4763 Tmp1 = DAG.getNode(ISD::XOR, LHSLo.getValueType(), LHSLo, RHSLo); 4764 Tmp2 = DAG.getNode(ISD::XOR, LHSLo.getValueType(), LHSHi, RHSHi); 4765 Tmp1 = DAG.getNode(ISD::OR, Tmp1.getValueType(), Tmp1, Tmp2); 4766 Tmp2 = DAG.getConstant(0, Tmp1.getValueType()); 4767 break; 4768 default: 4769 // If this is a comparison of the sign bit, just look at the top part. 4770 // X > -1, x < 0 4771 if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(RHS)) 4772 if ((cast<CondCodeSDNode>(CC)->get() == ISD::SETLT && 4773 CST->getValue() == 0) || // X < 0 4774 (cast<CondCodeSDNode>(CC)->get() == ISD::SETGT && 4775 CST->isAllOnesValue())) { // X > -1 4776 Tmp1 = LHSHi; 4777 Tmp2 = RHSHi; 4778 break; 4779 } 4780 4781 // FIXME: This generated code sucks. 4782 ISD::CondCode LowCC; 4783 switch (CCCode) { 4784 default: assert(0 && "Unknown integer setcc!"); 4785 case ISD::SETLT: 4786 case ISD::SETULT: LowCC = ISD::SETULT; break; 4787 case ISD::SETGT: 4788 case ISD::SETUGT: LowCC = ISD::SETUGT; break; 4789 case ISD::SETLE: 4790 case ISD::SETULE: LowCC = ISD::SETULE; break; 4791 case ISD::SETGE: 4792 case ISD::SETUGE: LowCC = ISD::SETUGE; break; 4793 } 4794 4795 // Tmp1 = lo(op1) < lo(op2) // Always unsigned comparison 4796 // Tmp2 = hi(op1) < hi(op2) // Signedness depends on operands 4797 // dest = hi(op1) == hi(op2) ? Tmp1 : Tmp2; 4798 4799 // NOTE: on targets without efficient SELECT of bools, we can always use 4800 // this identity: (B1 ? B2 : B3) --> (B1 & B2)|(!B1&B3) 4801 TargetLowering::DAGCombinerInfo DagCombineInfo(DAG, false, true, NULL); 4802 Tmp1 = TLI.SimplifySetCC(TLI.getSetCCResultTy(), LHSLo, RHSLo, LowCC, 4803 false, DagCombineInfo); 4804 if (!Tmp1.Val) 4805 Tmp1 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSLo, RHSLo, LowCC); 4806 Tmp2 = TLI.SimplifySetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, 4807 CCCode, false, DagCombineInfo); 4808 if (!Tmp2.Val) 4809 Tmp2 = DAG.getNode(ISD::SETCC, TLI.getSetCCResultTy(), LHSHi, RHSHi,CC); 4810 4811 ConstantSDNode *Tmp1C = dyn_cast<ConstantSDNode>(Tmp1.Val); 4812 ConstantSDNode *Tmp2C = dyn_cast<ConstantSDNode>(Tmp2.Val); 4813 if ((Tmp1C && Tmp1C->getValue() == 0) || 4814 (Tmp2C && Tmp2C->getValue() == 0 && 4815 (CCCode == ISD::SETLE || CCCode == ISD::SETGE || 4816 CCCode == ISD::SETUGE || CCCode == ISD::SETULE)) || 4817 (Tmp2C && Tmp2C->getValue() == 1 && 4818 (CCCode == ISD::SETLT || CCCode == ISD::SETGT || 4819 CCCode == ISD::SETUGT || CCCode == ISD::SETULT))) { 4820 // low part is known false, returns high part. 4821 // For LE / GE, if high part is known false, ignore the low part. 4822 // For LT / GT, if high part is known true, ignore the low part. 4823 Tmp1 = Tmp2; 4824 Tmp2 = SDOperand(); 4825 } else { 4826 Result = TLI.SimplifySetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, 4827 ISD::SETEQ, false, DagCombineInfo); 4828 if (!Result.Val) 4829 Result=DAG.getSetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, ISD::SETEQ); 4830 Result = LegalizeOp(DAG.getNode(ISD::SELECT, Tmp1.getValueType(), 4831 Result, Tmp1, Tmp2)); 4832 Tmp1 = Result; 4833 Tmp2 = SDOperand(); 4834 } 4835 } 4836 } 4837 } 4838 LHS = Tmp1; 4839 RHS = Tmp2; 4840} 4841 4842/// EmitStackConvert - Emit a store/load combination to the stack. This stores 4843/// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does 4844/// a load from the stack slot to DestVT, extending it if needed. 4845/// The resultant code need not be legal. 4846SDOperand SelectionDAGLegalize::EmitStackConvert(SDOperand SrcOp, 4847 MVT::ValueType SlotVT, 4848 MVT::ValueType DestVT) { 4849 // Create the stack frame object. 4850 SDOperand FIPtr = DAG.CreateStackTemporary(SlotVT); 4851 4852 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); 4853 int SPFI = StackPtrFI->getIndex(); 4854 4855 unsigned SrcSize = MVT::getSizeInBits(SrcOp.getValueType()); 4856 unsigned SlotSize = MVT::getSizeInBits(SlotVT); 4857 unsigned DestSize = MVT::getSizeInBits(DestVT); 4858 4859 // Emit a store to the stack slot. Use a truncstore if the input value is 4860 // later than DestVT. 4861 SDOperand Store; 4862 if (SrcSize > SlotSize) 4863 Store = DAG.getTruncStore(DAG.getEntryNode(), SrcOp, FIPtr, 4864 PseudoSourceValue::getFixedStack(), 4865 SPFI, SlotVT); 4866 else { 4867 assert(SrcSize == SlotSize && "Invalid store"); 4868 Store = DAG.getStore(DAG.getEntryNode(), SrcOp, FIPtr, 4869 PseudoSourceValue::getFixedStack(), 4870 SPFI, SlotVT); 4871 } 4872 4873 // Result is a load from the stack slot. 4874 if (SlotSize == DestSize) 4875 return DAG.getLoad(DestVT, Store, FIPtr, NULL, 0); 4876 4877 assert(SlotSize < DestSize && "Unknown extension!"); 4878 return DAG.getExtLoad(ISD::EXTLOAD, DestVT, Store, FIPtr, NULL, 0, SlotVT); 4879} 4880 4881SDOperand SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { 4882 // Create a vector sized/aligned stack slot, store the value to element #0, 4883 // then load the whole vector back out. 4884 SDOperand StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); 4885 4886 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); 4887 int SPFI = StackPtrFI->getIndex(); 4888 4889 SDOperand Ch = DAG.getStore(DAG.getEntryNode(), Node->getOperand(0), StackPtr, 4890 PseudoSourceValue::getFixedStack(), SPFI); 4891 return DAG.getLoad(Node->getValueType(0), Ch, StackPtr, 4892 PseudoSourceValue::getFixedStack(), SPFI); 4893} 4894 4895 4896/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't 4897/// support the operation, but do support the resultant vector type. 4898SDOperand SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { 4899 4900 // If the only non-undef value is the low element, turn this into a 4901 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. 4902 unsigned NumElems = Node->getNumOperands(); 4903 bool isOnlyLowElement = true; 4904 SDOperand SplatValue = Node->getOperand(0); 4905 std::map<SDOperand, std::vector<unsigned> > Values; 4906 Values[SplatValue].push_back(0); 4907 bool isConstant = true; 4908 if (!isa<ConstantFPSDNode>(SplatValue) && !isa<ConstantSDNode>(SplatValue) && 4909 SplatValue.getOpcode() != ISD::UNDEF) 4910 isConstant = false; 4911 4912 for (unsigned i = 1; i < NumElems; ++i) { 4913 SDOperand V = Node->getOperand(i); 4914 Values[V].push_back(i); 4915 if (V.getOpcode() != ISD::UNDEF) 4916 isOnlyLowElement = false; 4917 if (SplatValue != V) 4918 SplatValue = SDOperand(0,0); 4919 4920 // If this isn't a constant element or an undef, we can't use a constant 4921 // pool load. 4922 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V) && 4923 V.getOpcode() != ISD::UNDEF) 4924 isConstant = false; 4925 } 4926 4927 if (isOnlyLowElement) { 4928 // If the low element is an undef too, then this whole things is an undef. 4929 if (Node->getOperand(0).getOpcode() == ISD::UNDEF) 4930 return DAG.getNode(ISD::UNDEF, Node->getValueType(0)); 4931 // Otherwise, turn this into a scalar_to_vector node. 4932 return DAG.getNode(ISD::SCALAR_TO_VECTOR, Node->getValueType(0), 4933 Node->getOperand(0)); 4934 } 4935 4936 // If all elements are constants, create a load from the constant pool. 4937 if (isConstant) { 4938 MVT::ValueType VT = Node->getValueType(0); 4939 const Type *OpNTy = 4940 MVT::getTypeForValueType(Node->getOperand(0).getValueType()); 4941 std::vector<Constant*> CV; 4942 for (unsigned i = 0, e = NumElems; i != e; ++i) { 4943 if (ConstantFPSDNode *V = 4944 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { 4945 CV.push_back(ConstantFP::get(OpNTy, V->getValueAPF())); 4946 } else if (ConstantSDNode *V = 4947 dyn_cast<ConstantSDNode>(Node->getOperand(i))) { 4948 CV.push_back(ConstantInt::get(OpNTy, V->getValue())); 4949 } else { 4950 assert(Node->getOperand(i).getOpcode() == ISD::UNDEF); 4951 CV.push_back(UndefValue::get(OpNTy)); 4952 } 4953 } 4954 Constant *CP = ConstantVector::get(CV); 4955 SDOperand CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy()); 4956 return DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, 4957 PseudoSourceValue::getConstantPool(), 0); 4958 } 4959 4960 if (SplatValue.Val) { // Splat of one value? 4961 // Build the shuffle constant vector: <0, 0, 0, 0> 4962 MVT::ValueType MaskVT = 4963 MVT::getIntVectorWithNumElements(NumElems); 4964 SDOperand Zero = DAG.getConstant(0, MVT::getVectorElementType(MaskVT)); 4965 std::vector<SDOperand> ZeroVec(NumElems, Zero); 4966 SDOperand SplatMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 4967 &ZeroVec[0], ZeroVec.size()); 4968 4969 // If the target supports VECTOR_SHUFFLE and this shuffle mask, use it. 4970 if (isShuffleLegal(Node->getValueType(0), SplatMask)) { 4971 // Get the splatted value into the low element of a vector register. 4972 SDOperand LowValVec = 4973 DAG.getNode(ISD::SCALAR_TO_VECTOR, Node->getValueType(0), SplatValue); 4974 4975 // Return shuffle(LowValVec, undef, <0,0,0,0>) 4976 return DAG.getNode(ISD::VECTOR_SHUFFLE, Node->getValueType(0), LowValVec, 4977 DAG.getNode(ISD::UNDEF, Node->getValueType(0)), 4978 SplatMask); 4979 } 4980 } 4981 4982 // If there are only two unique elements, we may be able to turn this into a 4983 // vector shuffle. 4984 if (Values.size() == 2) { 4985 // Build the shuffle constant vector: e.g. <0, 4, 0, 4> 4986 MVT::ValueType MaskVT = 4987 MVT::getIntVectorWithNumElements(NumElems); 4988 std::vector<SDOperand> MaskVec(NumElems); 4989 unsigned i = 0; 4990 for (std::map<SDOperand,std::vector<unsigned> >::iterator I=Values.begin(), 4991 E = Values.end(); I != E; ++I) { 4992 for (std::vector<unsigned>::iterator II = I->second.begin(), 4993 EE = I->second.end(); II != EE; ++II) 4994 MaskVec[*II] = DAG.getConstant(i, MVT::getVectorElementType(MaskVT)); 4995 i += NumElems; 4996 } 4997 SDOperand ShuffleMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 4998 &MaskVec[0], MaskVec.size()); 4999 5000 // If the target supports VECTOR_SHUFFLE and this shuffle mask, use it. 5001 if (TLI.isOperationLegal(ISD::SCALAR_TO_VECTOR, Node->getValueType(0)) && 5002 isShuffleLegal(Node->getValueType(0), ShuffleMask)) { 5003 SmallVector<SDOperand, 8> Ops; 5004 for(std::map<SDOperand,std::vector<unsigned> >::iterator I=Values.begin(), 5005 E = Values.end(); I != E; ++I) { 5006 SDOperand Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, Node->getValueType(0), 5007 I->first); 5008 Ops.push_back(Op); 5009 } 5010 Ops.push_back(ShuffleMask); 5011 5012 // Return shuffle(LoValVec, HiValVec, <0,1,0,1>) 5013 return DAG.getNode(ISD::VECTOR_SHUFFLE, Node->getValueType(0), 5014 &Ops[0], Ops.size()); 5015 } 5016 } 5017 5018 // Otherwise, we can't handle this case efficiently. Allocate a sufficiently 5019 // aligned object on the stack, store each element into it, then load 5020 // the result as a vector. 5021 MVT::ValueType VT = Node->getValueType(0); 5022 // Create the stack frame object. 5023 SDOperand FIPtr = DAG.CreateStackTemporary(VT); 5024 5025 // Emit a store of each element to the stack slot. 5026 SmallVector<SDOperand, 8> Stores; 5027 unsigned TypeByteSize = 5028 MVT::getSizeInBits(Node->getOperand(0).getValueType())/8; 5029 // Store (in the right endianness) the elements to memory. 5030 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 5031 // Ignore undef elements. 5032 if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue; 5033 5034 unsigned Offset = TypeByteSize*i; 5035 5036 SDOperand Idx = DAG.getConstant(Offset, FIPtr.getValueType()); 5037 Idx = DAG.getNode(ISD::ADD, FIPtr.getValueType(), FIPtr, Idx); 5038 5039 Stores.push_back(DAG.getStore(DAG.getEntryNode(), Node->getOperand(i), Idx, 5040 NULL, 0)); 5041 } 5042 5043 SDOperand StoreChain; 5044 if (!Stores.empty()) // Not all undef elements? 5045 StoreChain = DAG.getNode(ISD::TokenFactor, MVT::Other, 5046 &Stores[0], Stores.size()); 5047 else 5048 StoreChain = DAG.getEntryNode(); 5049 5050 // Result is a load from the stack slot. 5051 return DAG.getLoad(VT, StoreChain, FIPtr, NULL, 0); 5052} 5053 5054void SelectionDAGLegalize::ExpandShiftParts(unsigned NodeOp, 5055 SDOperand Op, SDOperand Amt, 5056 SDOperand &Lo, SDOperand &Hi) { 5057 // Expand the subcomponents. 5058 SDOperand LHSL, LHSH; 5059 ExpandOp(Op, LHSL, LHSH); 5060 5061 SDOperand Ops[] = { LHSL, LHSH, Amt }; 5062 MVT::ValueType VT = LHSL.getValueType(); 5063 Lo = DAG.getNode(NodeOp, DAG.getNodeValueTypes(VT, VT), 2, Ops, 3); 5064 Hi = Lo.getValue(1); 5065} 5066 5067 5068/// ExpandShift - Try to find a clever way to expand this shift operation out to 5069/// smaller elements. If we can't find a way that is more efficient than a 5070/// libcall on this target, return false. Otherwise, return true with the 5071/// low-parts expanded into Lo and Hi. 5072bool SelectionDAGLegalize::ExpandShift(unsigned Opc, SDOperand Op,SDOperand Amt, 5073 SDOperand &Lo, SDOperand &Hi) { 5074 assert((Opc == ISD::SHL || Opc == ISD::SRA || Opc == ISD::SRL) && 5075 "This is not a shift!"); 5076 5077 MVT::ValueType NVT = TLI.getTypeToTransformTo(Op.getValueType()); 5078 SDOperand ShAmt = LegalizeOp(Amt); 5079 MVT::ValueType ShTy = ShAmt.getValueType(); 5080 unsigned ShBits = MVT::getSizeInBits(ShTy); 5081 unsigned VTBits = MVT::getSizeInBits(Op.getValueType()); 5082 unsigned NVTBits = MVT::getSizeInBits(NVT); 5083 5084 // Handle the case when Amt is an immediate. 5085 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Amt.Val)) { 5086 unsigned Cst = CN->getValue(); 5087 // Expand the incoming operand to be shifted, so that we have its parts 5088 SDOperand InL, InH; 5089 ExpandOp(Op, InL, InH); 5090 switch(Opc) { 5091 case ISD::SHL: 5092 if (Cst > VTBits) { 5093 Lo = DAG.getConstant(0, NVT); 5094 Hi = DAG.getConstant(0, NVT); 5095 } else if (Cst > NVTBits) { 5096 Lo = DAG.getConstant(0, NVT); 5097 Hi = DAG.getNode(ISD::SHL, NVT, InL, DAG.getConstant(Cst-NVTBits,ShTy)); 5098 } else if (Cst == NVTBits) { 5099 Lo = DAG.getConstant(0, NVT); 5100 Hi = InL; 5101 } else { 5102 Lo = DAG.getNode(ISD::SHL, NVT, InL, DAG.getConstant(Cst, ShTy)); 5103 Hi = DAG.getNode(ISD::OR, NVT, 5104 DAG.getNode(ISD::SHL, NVT, InH, DAG.getConstant(Cst, ShTy)), 5105 DAG.getNode(ISD::SRL, NVT, InL, DAG.getConstant(NVTBits-Cst, ShTy))); 5106 } 5107 return true; 5108 case ISD::SRL: 5109 if (Cst > VTBits) { 5110 Lo = DAG.getConstant(0, NVT); 5111 Hi = DAG.getConstant(0, NVT); 5112 } else if (Cst > NVTBits) { 5113 Lo = DAG.getNode(ISD::SRL, NVT, InH, DAG.getConstant(Cst-NVTBits,ShTy)); 5114 Hi = DAG.getConstant(0, NVT); 5115 } else if (Cst == NVTBits) { 5116 Lo = InH; 5117 Hi = DAG.getConstant(0, NVT); 5118 } else { 5119 Lo = DAG.getNode(ISD::OR, NVT, 5120 DAG.getNode(ISD::SRL, NVT, InL, DAG.getConstant(Cst, ShTy)), 5121 DAG.getNode(ISD::SHL, NVT, InH, DAG.getConstant(NVTBits-Cst, ShTy))); 5122 Hi = DAG.getNode(ISD::SRL, NVT, InH, DAG.getConstant(Cst, ShTy)); 5123 } 5124 return true; 5125 case ISD::SRA: 5126 if (Cst > VTBits) { 5127 Hi = Lo = DAG.getNode(ISD::SRA, NVT, InH, 5128 DAG.getConstant(NVTBits-1, ShTy)); 5129 } else if (Cst > NVTBits) { 5130 Lo = DAG.getNode(ISD::SRA, NVT, InH, 5131 DAG.getConstant(Cst-NVTBits, ShTy)); 5132 Hi = DAG.getNode(ISD::SRA, NVT, InH, 5133 DAG.getConstant(NVTBits-1, ShTy)); 5134 } else if (Cst == NVTBits) { 5135 Lo = InH; 5136 Hi = DAG.getNode(ISD::SRA, NVT, InH, 5137 DAG.getConstant(NVTBits-1, ShTy)); 5138 } else { 5139 Lo = DAG.getNode(ISD::OR, NVT, 5140 DAG.getNode(ISD::SRL, NVT, InL, DAG.getConstant(Cst, ShTy)), 5141 DAG.getNode(ISD::SHL, NVT, InH, DAG.getConstant(NVTBits-Cst, ShTy))); 5142 Hi = DAG.getNode(ISD::SRA, NVT, InH, DAG.getConstant(Cst, ShTy)); 5143 } 5144 return true; 5145 } 5146 } 5147 5148 // Okay, the shift amount isn't constant. However, if we can tell that it is 5149 // >= 32 or < 32, we can still simplify it, without knowing the actual value. 5150 APInt Mask = APInt::getHighBitsSet(ShBits, ShBits - Log2_32(NVTBits)); 5151 APInt KnownZero, KnownOne; 5152 DAG.ComputeMaskedBits(Amt, Mask, KnownZero, KnownOne); 5153 5154 // If we know that if any of the high bits of the shift amount are one, then 5155 // we can do this as a couple of simple shifts. 5156 if (KnownOne.intersects(Mask)) { 5157 // Mask out the high bit, which we know is set. 5158 Amt = DAG.getNode(ISD::AND, Amt.getValueType(), Amt, 5159 DAG.getConstant(~Mask, Amt.getValueType())); 5160 5161 // Expand the incoming operand to be shifted, so that we have its parts 5162 SDOperand InL, InH; 5163 ExpandOp(Op, InL, InH); 5164 switch(Opc) { 5165 case ISD::SHL: 5166 Lo = DAG.getConstant(0, NVT); // Low part is zero. 5167 Hi = DAG.getNode(ISD::SHL, NVT, InL, Amt); // High part from Lo part. 5168 return true; 5169 case ISD::SRL: 5170 Hi = DAG.getConstant(0, NVT); // Hi part is zero. 5171 Lo = DAG.getNode(ISD::SRL, NVT, InH, Amt); // Lo part from Hi part. 5172 return true; 5173 case ISD::SRA: 5174 Hi = DAG.getNode(ISD::SRA, NVT, InH, // Sign extend high part. 5175 DAG.getConstant(NVTBits-1, Amt.getValueType())); 5176 Lo = DAG.getNode(ISD::SRA, NVT, InH, Amt); // Lo part from Hi part. 5177 return true; 5178 } 5179 } 5180 5181 // If we know that the high bits of the shift amount are all zero, then we can 5182 // do this as a couple of simple shifts. 5183 if ((KnownZero & Mask) == Mask) { 5184 // Compute 32-amt. 5185 SDOperand Amt2 = DAG.getNode(ISD::SUB, Amt.getValueType(), 5186 DAG.getConstant(NVTBits, Amt.getValueType()), 5187 Amt); 5188 5189 // Expand the incoming operand to be shifted, so that we have its parts 5190 SDOperand InL, InH; 5191 ExpandOp(Op, InL, InH); 5192 switch(Opc) { 5193 case ISD::SHL: 5194 Lo = DAG.getNode(ISD::SHL, NVT, InL, Amt); 5195 Hi = DAG.getNode(ISD::OR, NVT, 5196 DAG.getNode(ISD::SHL, NVT, InH, Amt), 5197 DAG.getNode(ISD::SRL, NVT, InL, Amt2)); 5198 return true; 5199 case ISD::SRL: 5200 Hi = DAG.getNode(ISD::SRL, NVT, InH, Amt); 5201 Lo = DAG.getNode(ISD::OR, NVT, 5202 DAG.getNode(ISD::SRL, NVT, InL, Amt), 5203 DAG.getNode(ISD::SHL, NVT, InH, Amt2)); 5204 return true; 5205 case ISD::SRA: 5206 Hi = DAG.getNode(ISD::SRA, NVT, InH, Amt); 5207 Lo = DAG.getNode(ISD::OR, NVT, 5208 DAG.getNode(ISD::SRL, NVT, InL, Amt), 5209 DAG.getNode(ISD::SHL, NVT, InH, Amt2)); 5210 return true; 5211 } 5212 } 5213 5214 return false; 5215} 5216 5217 5218// ExpandLibCall - Expand a node into a call to a libcall. If the result value 5219// does not fit into a register, return the lo part and set the hi part to the 5220// by-reg argument. If it does fit into a single register, return the result 5221// and leave the Hi part unset. 5222SDOperand SelectionDAGLegalize::ExpandLibCall(const char *Name, SDNode *Node, 5223 bool isSigned, SDOperand &Hi) { 5224 assert(!IsLegalizingCall && "Cannot overlap legalization of calls!"); 5225 // The input chain to this libcall is the entry node of the function. 5226 // Legalizing the call will automatically add the previous call to the 5227 // dependence. 5228 SDOperand InChain = DAG.getEntryNode(); 5229 5230 TargetLowering::ArgListTy Args; 5231 TargetLowering::ArgListEntry Entry; 5232 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 5233 MVT::ValueType ArgVT = Node->getOperand(i).getValueType(); 5234 const Type *ArgTy = MVT::getTypeForValueType(ArgVT); 5235 Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy; 5236 Entry.isSExt = isSigned; 5237 Entry.isZExt = !isSigned; 5238 Args.push_back(Entry); 5239 } 5240 SDOperand Callee = DAG.getExternalSymbol(Name, TLI.getPointerTy()); 5241 5242 // Splice the libcall in wherever FindInputOutputChains tells us to. 5243 const Type *RetTy = MVT::getTypeForValueType(Node->getValueType(0)); 5244 std::pair<SDOperand,SDOperand> CallInfo = 5245 TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, CallingConv::C, 5246 false, Callee, Args, DAG); 5247 5248 // Legalize the call sequence, starting with the chain. This will advance 5249 // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that 5250 // was added by LowerCallTo (guaranteeing proper serialization of calls). 5251 LegalizeOp(CallInfo.second); 5252 SDOperand Result; 5253 switch (getTypeAction(CallInfo.first.getValueType())) { 5254 default: assert(0 && "Unknown thing"); 5255 case Legal: 5256 Result = CallInfo.first; 5257 break; 5258 case Expand: 5259 ExpandOp(CallInfo.first, Result, Hi); 5260 break; 5261 } 5262 return Result; 5263} 5264 5265 5266/// ExpandIntToFP - Expand a [US]INT_TO_FP operation. 5267/// 5268SDOperand SelectionDAGLegalize:: 5269ExpandIntToFP(bool isSigned, MVT::ValueType DestTy, SDOperand Source) { 5270 assert(getTypeAction(Source.getValueType()) == Expand && 5271 "This is not an expansion!"); 5272 assert(Source.getValueType() == MVT::i64 && "Only handle expand from i64!"); 5273 5274 if (!isSigned) { 5275 assert(Source.getValueType() == MVT::i64 && 5276 "This only works for 64-bit -> FP"); 5277 // The 64-bit value loaded will be incorrectly if the 'sign bit' of the 5278 // incoming integer is set. To handle this, we dynamically test to see if 5279 // it is set, and, if so, add a fudge factor. 5280 SDOperand Lo, Hi; 5281 ExpandOp(Source, Lo, Hi); 5282 5283 // If this is unsigned, and not supported, first perform the conversion to 5284 // signed, then adjust the result if the sign bit is set. 5285 SDOperand SignedConv = ExpandIntToFP(true, DestTy, 5286 DAG.getNode(ISD::BUILD_PAIR, Source.getValueType(), Lo, Hi)); 5287 5288 SDOperand SignSet = DAG.getSetCC(TLI.getSetCCResultTy(), Hi, 5289 DAG.getConstant(0, Hi.getValueType()), 5290 ISD::SETLT); 5291 SDOperand Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4); 5292 SDOperand CstOffset = DAG.getNode(ISD::SELECT, Zero.getValueType(), 5293 SignSet, Four, Zero); 5294 uint64_t FF = 0x5f800000ULL; 5295 if (TLI.isLittleEndian()) FF <<= 32; 5296 static Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF); 5297 5298 SDOperand CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy()); 5299 CPIdx = DAG.getNode(ISD::ADD, TLI.getPointerTy(), CPIdx, CstOffset); 5300 SDOperand FudgeInReg; 5301 if (DestTy == MVT::f32) 5302 FudgeInReg = DAG.getLoad(MVT::f32, DAG.getEntryNode(), CPIdx, 5303 PseudoSourceValue::getConstantPool(), 0); 5304 else if (MVT::getSizeInBits(DestTy) > MVT::getSizeInBits(MVT::f32)) 5305 // FIXME: Avoid the extend by construction the right constantpool? 5306 FudgeInReg = DAG.getExtLoad(ISD::EXTLOAD, DestTy, DAG.getEntryNode(), 5307 CPIdx, 5308 PseudoSourceValue::getConstantPool(), 0, 5309 MVT::f32); 5310 else 5311 assert(0 && "Unexpected conversion"); 5312 5313 MVT::ValueType SCVT = SignedConv.getValueType(); 5314 if (SCVT != DestTy) { 5315 // Destination type needs to be expanded as well. The FADD now we are 5316 // constructing will be expanded into a libcall. 5317 if (MVT::getSizeInBits(SCVT) != MVT::getSizeInBits(DestTy)) { 5318 assert(SCVT == MVT::i32 && DestTy == MVT::f64); 5319 SignedConv = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, 5320 SignedConv, SignedConv.getValue(1)); 5321 } 5322 SignedConv = DAG.getNode(ISD::BIT_CONVERT, DestTy, SignedConv); 5323 } 5324 return DAG.getNode(ISD::FADD, DestTy, SignedConv, FudgeInReg); 5325 } 5326 5327 // Check to see if the target has a custom way to lower this. If so, use it. 5328 switch (TLI.getOperationAction(ISD::SINT_TO_FP, Source.getValueType())) { 5329 default: assert(0 && "This action not implemented for this operation!"); 5330 case TargetLowering::Legal: 5331 case TargetLowering::Expand: 5332 break; // This case is handled below. 5333 case TargetLowering::Custom: { 5334 SDOperand NV = TLI.LowerOperation(DAG.getNode(ISD::SINT_TO_FP, DestTy, 5335 Source), DAG); 5336 if (NV.Val) 5337 return LegalizeOp(NV); 5338 break; // The target decided this was legal after all 5339 } 5340 } 5341 5342 // Expand the source, then glue it back together for the call. We must expand 5343 // the source in case it is shared (this pass of legalize must traverse it). 5344 SDOperand SrcLo, SrcHi; 5345 ExpandOp(Source, SrcLo, SrcHi); 5346 Source = DAG.getNode(ISD::BUILD_PAIR, Source.getValueType(), SrcLo, SrcHi); 5347 5348 RTLIB::Libcall LC; 5349 if (DestTy == MVT::f32) 5350 LC = RTLIB::SINTTOFP_I64_F32; 5351 else { 5352 assert(DestTy == MVT::f64 && "Unknown fp value type!"); 5353 LC = RTLIB::SINTTOFP_I64_F64; 5354 } 5355 5356 assert(TLI.getLibcallName(LC) && "Don't know how to expand this SINT_TO_FP!"); 5357 Source = DAG.getNode(ISD::SINT_TO_FP, DestTy, Source); 5358 SDOperand UnusedHiPart; 5359 return ExpandLibCall(TLI.getLibcallName(LC), Source.Val, isSigned, 5360 UnusedHiPart); 5361} 5362 5363/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a 5364/// INT_TO_FP operation of the specified operand when the target requests that 5365/// we expand it. At this point, we know that the result and operand types are 5366/// legal for the target. 5367SDOperand SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned, 5368 SDOperand Op0, 5369 MVT::ValueType DestVT) { 5370 if (Op0.getValueType() == MVT::i32) { 5371 // simple 32-bit [signed|unsigned] integer to float/double expansion 5372 5373 // Get the stack frame index of a 8 byte buffer. 5374 SDOperand StackSlot = DAG.CreateStackTemporary(MVT::f64); 5375 5376 // word offset constant for Hi/Lo address computation 5377 SDOperand WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy()); 5378 // set up Hi and Lo (into buffer) address based on endian 5379 SDOperand Hi = StackSlot; 5380 SDOperand Lo = DAG.getNode(ISD::ADD, TLI.getPointerTy(), StackSlot,WordOff); 5381 if (TLI.isLittleEndian()) 5382 std::swap(Hi, Lo); 5383 5384 // if signed map to unsigned space 5385 SDOperand Op0Mapped; 5386 if (isSigned) { 5387 // constant used to invert sign bit (signed to unsigned mapping) 5388 SDOperand SignBit = DAG.getConstant(0x80000000u, MVT::i32); 5389 Op0Mapped = DAG.getNode(ISD::XOR, MVT::i32, Op0, SignBit); 5390 } else { 5391 Op0Mapped = Op0; 5392 } 5393 // store the lo of the constructed double - based on integer input 5394 SDOperand Store1 = DAG.getStore(DAG.getEntryNode(), 5395 Op0Mapped, Lo, NULL, 0); 5396 // initial hi portion of constructed double 5397 SDOperand InitialHi = DAG.getConstant(0x43300000u, MVT::i32); 5398 // store the hi of the constructed double - biased exponent 5399 SDOperand Store2=DAG.getStore(Store1, InitialHi, Hi, NULL, 0); 5400 // load the constructed double 5401 SDOperand Load = DAG.getLoad(MVT::f64, Store2, StackSlot, NULL, 0); 5402 // FP constant to bias correct the final result 5403 SDOperand Bias = DAG.getConstantFP(isSigned ? 5404 BitsToDouble(0x4330000080000000ULL) 5405 : BitsToDouble(0x4330000000000000ULL), 5406 MVT::f64); 5407 // subtract the bias 5408 SDOperand Sub = DAG.getNode(ISD::FSUB, MVT::f64, Load, Bias); 5409 // final result 5410 SDOperand Result; 5411 // handle final rounding 5412 if (DestVT == MVT::f64) { 5413 // do nothing 5414 Result = Sub; 5415 } else if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(MVT::f64)) { 5416 Result = DAG.getNode(ISD::FP_ROUND, DestVT, Sub, 5417 DAG.getIntPtrConstant(0)); 5418 } else if (MVT::getSizeInBits(DestVT) > MVT::getSizeInBits(MVT::f64)) { 5419 Result = DAG.getNode(ISD::FP_EXTEND, DestVT, Sub); 5420 } 5421 return Result; 5422 } 5423 assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet"); 5424 SDOperand Tmp1 = DAG.getNode(ISD::SINT_TO_FP, DestVT, Op0); 5425 5426 SDOperand SignSet = DAG.getSetCC(TLI.getSetCCResultTy(), Op0, 5427 DAG.getConstant(0, Op0.getValueType()), 5428 ISD::SETLT); 5429 SDOperand Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4); 5430 SDOperand CstOffset = DAG.getNode(ISD::SELECT, Zero.getValueType(), 5431 SignSet, Four, Zero); 5432 5433 // If the sign bit of the integer is set, the large number will be treated 5434 // as a negative number. To counteract this, the dynamic code adds an 5435 // offset depending on the data type. 5436 uint64_t FF; 5437 switch (Op0.getValueType()) { 5438 default: assert(0 && "Unsupported integer type!"); 5439 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) 5440 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) 5441 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) 5442 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) 5443 } 5444 if (TLI.isLittleEndian()) FF <<= 32; 5445 static Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF); 5446 5447 SDOperand CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy()); 5448 CPIdx = DAG.getNode(ISD::ADD, TLI.getPointerTy(), CPIdx, CstOffset); 5449 SDOperand FudgeInReg; 5450 if (DestVT == MVT::f32) 5451 FudgeInReg = DAG.getLoad(MVT::f32, DAG.getEntryNode(), CPIdx, 5452 PseudoSourceValue::getConstantPool(), 0); 5453 else { 5454 FudgeInReg = 5455 LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, DestVT, 5456 DAG.getEntryNode(), CPIdx, 5457 PseudoSourceValue::getConstantPool(), 0, 5458 MVT::f32)); 5459 } 5460 5461 return DAG.getNode(ISD::FADD, DestVT, Tmp1, FudgeInReg); 5462} 5463 5464/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a 5465/// *INT_TO_FP operation of the specified operand when the target requests that 5466/// we promote it. At this point, we know that the result and operand types are 5467/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP 5468/// operation that takes a larger input. 5469SDOperand SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDOperand LegalOp, 5470 MVT::ValueType DestVT, 5471 bool isSigned) { 5472 // First step, figure out the appropriate *INT_TO_FP operation to use. 5473 MVT::ValueType NewInTy = LegalOp.getValueType(); 5474 5475 unsigned OpToUse = 0; 5476 5477 // Scan for the appropriate larger type to use. 5478 while (1) { 5479 NewInTy = (MVT::ValueType)(NewInTy+1); 5480 assert(MVT::isInteger(NewInTy) && "Ran out of possibilities!"); 5481 5482 // If the target supports SINT_TO_FP of this type, use it. 5483 switch (TLI.getOperationAction(ISD::SINT_TO_FP, NewInTy)) { 5484 default: break; 5485 case TargetLowering::Legal: 5486 if (!TLI.isTypeLegal(NewInTy)) 5487 break; // Can't use this datatype. 5488 // FALL THROUGH. 5489 case TargetLowering::Custom: 5490 OpToUse = ISD::SINT_TO_FP; 5491 break; 5492 } 5493 if (OpToUse) break; 5494 if (isSigned) continue; 5495 5496 // If the target supports UINT_TO_FP of this type, use it. 5497 switch (TLI.getOperationAction(ISD::UINT_TO_FP, NewInTy)) { 5498 default: break; 5499 case TargetLowering::Legal: 5500 if (!TLI.isTypeLegal(NewInTy)) 5501 break; // Can't use this datatype. 5502 // FALL THROUGH. 5503 case TargetLowering::Custom: 5504 OpToUse = ISD::UINT_TO_FP; 5505 break; 5506 } 5507 if (OpToUse) break; 5508 5509 // Otherwise, try a larger type. 5510 } 5511 5512 // Okay, we found the operation and type to use. Zero extend our input to the 5513 // desired type then run the operation on it. 5514 return DAG.getNode(OpToUse, DestVT, 5515 DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 5516 NewInTy, LegalOp)); 5517} 5518 5519/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a 5520/// FP_TO_*INT operation of the specified operand when the target requests that 5521/// we promote it. At this point, we know that the result and operand types are 5522/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT 5523/// operation that returns a larger result. 5524SDOperand SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDOperand LegalOp, 5525 MVT::ValueType DestVT, 5526 bool isSigned) { 5527 // First step, figure out the appropriate FP_TO*INT operation to use. 5528 MVT::ValueType NewOutTy = DestVT; 5529 5530 unsigned OpToUse = 0; 5531 5532 // Scan for the appropriate larger type to use. 5533 while (1) { 5534 NewOutTy = (MVT::ValueType)(NewOutTy+1); 5535 assert(MVT::isInteger(NewOutTy) && "Ran out of possibilities!"); 5536 5537 // If the target supports FP_TO_SINT returning this type, use it. 5538 switch (TLI.getOperationAction(ISD::FP_TO_SINT, NewOutTy)) { 5539 default: break; 5540 case TargetLowering::Legal: 5541 if (!TLI.isTypeLegal(NewOutTy)) 5542 break; // Can't use this datatype. 5543 // FALL THROUGH. 5544 case TargetLowering::Custom: 5545 OpToUse = ISD::FP_TO_SINT; 5546 break; 5547 } 5548 if (OpToUse) break; 5549 5550 // If the target supports FP_TO_UINT of this type, use it. 5551 switch (TLI.getOperationAction(ISD::FP_TO_UINT, NewOutTy)) { 5552 default: break; 5553 case TargetLowering::Legal: 5554 if (!TLI.isTypeLegal(NewOutTy)) 5555 break; // Can't use this datatype. 5556 // FALL THROUGH. 5557 case TargetLowering::Custom: 5558 OpToUse = ISD::FP_TO_UINT; 5559 break; 5560 } 5561 if (OpToUse) break; 5562 5563 // Otherwise, try a larger type. 5564 } 5565 5566 5567 // Okay, we found the operation and type to use. 5568 SDOperand Operation = DAG.getNode(OpToUse, NewOutTy, LegalOp); 5569 5570 // If the operation produces an invalid type, it must be custom lowered. Use 5571 // the target lowering hooks to expand it. Just keep the low part of the 5572 // expanded operation, we know that we're truncating anyway. 5573 if (getTypeAction(NewOutTy) == Expand) { 5574 Operation = SDOperand(TLI.ExpandOperationResult(Operation.Val, DAG), 0); 5575 assert(Operation.Val && "Didn't return anything"); 5576 } 5577 5578 // Truncate the result of the extended FP_TO_*INT operation to the desired 5579 // size. 5580 return DAG.getNode(ISD::TRUNCATE, DestVT, Operation); 5581} 5582 5583/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation. 5584/// 5585SDOperand SelectionDAGLegalize::ExpandBSWAP(SDOperand Op) { 5586 MVT::ValueType VT = Op.getValueType(); 5587 MVT::ValueType SHVT = TLI.getShiftAmountTy(); 5588 SDOperand Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 5589 switch (VT) { 5590 default: assert(0 && "Unhandled Expand type in BSWAP!"); abort(); 5591 case MVT::i16: 5592 Tmp2 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(8, SHVT)); 5593 Tmp1 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(8, SHVT)); 5594 return DAG.getNode(ISD::OR, VT, Tmp1, Tmp2); 5595 case MVT::i32: 5596 Tmp4 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(24, SHVT)); 5597 Tmp3 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(8, SHVT)); 5598 Tmp2 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(8, SHVT)); 5599 Tmp1 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(24, SHVT)); 5600 Tmp3 = DAG.getNode(ISD::AND, VT, Tmp3, DAG.getConstant(0xFF0000, VT)); 5601 Tmp2 = DAG.getNode(ISD::AND, VT, Tmp2, DAG.getConstant(0xFF00, VT)); 5602 Tmp4 = DAG.getNode(ISD::OR, VT, Tmp4, Tmp3); 5603 Tmp2 = DAG.getNode(ISD::OR, VT, Tmp2, Tmp1); 5604 return DAG.getNode(ISD::OR, VT, Tmp4, Tmp2); 5605 case MVT::i64: 5606 Tmp8 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(56, SHVT)); 5607 Tmp7 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(40, SHVT)); 5608 Tmp6 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(24, SHVT)); 5609 Tmp5 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(8, SHVT)); 5610 Tmp4 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(8, SHVT)); 5611 Tmp3 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(24, SHVT)); 5612 Tmp2 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(40, SHVT)); 5613 Tmp1 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(56, SHVT)); 5614 Tmp7 = DAG.getNode(ISD::AND, VT, Tmp7, DAG.getConstant(255ULL<<48, VT)); 5615 Tmp6 = DAG.getNode(ISD::AND, VT, Tmp6, DAG.getConstant(255ULL<<40, VT)); 5616 Tmp5 = DAG.getNode(ISD::AND, VT, Tmp5, DAG.getConstant(255ULL<<32, VT)); 5617 Tmp4 = DAG.getNode(ISD::AND, VT, Tmp4, DAG.getConstant(255ULL<<24, VT)); 5618 Tmp3 = DAG.getNode(ISD::AND, VT, Tmp3, DAG.getConstant(255ULL<<16, VT)); 5619 Tmp2 = DAG.getNode(ISD::AND, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT)); 5620 Tmp8 = DAG.getNode(ISD::OR, VT, Tmp8, Tmp7); 5621 Tmp6 = DAG.getNode(ISD::OR, VT, Tmp6, Tmp5); 5622 Tmp4 = DAG.getNode(ISD::OR, VT, Tmp4, Tmp3); 5623 Tmp2 = DAG.getNode(ISD::OR, VT, Tmp2, Tmp1); 5624 Tmp8 = DAG.getNode(ISD::OR, VT, Tmp8, Tmp6); 5625 Tmp4 = DAG.getNode(ISD::OR, VT, Tmp4, Tmp2); 5626 return DAG.getNode(ISD::OR, VT, Tmp8, Tmp4); 5627 } 5628} 5629 5630/// ExpandBitCount - Expand the specified bitcount instruction into operations. 5631/// 5632SDOperand SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDOperand Op) { 5633 switch (Opc) { 5634 default: assert(0 && "Cannot expand this yet!"); 5635 case ISD::CTPOP: { 5636 static const uint64_t mask[6] = { 5637 0x5555555555555555ULL, 0x3333333333333333ULL, 5638 0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL, 5639 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL 5640 }; 5641 MVT::ValueType VT = Op.getValueType(); 5642 MVT::ValueType ShVT = TLI.getShiftAmountTy(); 5643 unsigned len = MVT::getSizeInBits(VT); 5644 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) { 5645 //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8]) 5646 SDOperand Tmp2 = DAG.getConstant(mask[i], VT); 5647 SDOperand Tmp3 = DAG.getConstant(1ULL << i, ShVT); 5648 Op = DAG.getNode(ISD::ADD, VT, DAG.getNode(ISD::AND, VT, Op, Tmp2), 5649 DAG.getNode(ISD::AND, VT, 5650 DAG.getNode(ISD::SRL, VT, Op, Tmp3),Tmp2)); 5651 } 5652 return Op; 5653 } 5654 case ISD::CTLZ: { 5655 // for now, we do this: 5656 // x = x | (x >> 1); 5657 // x = x | (x >> 2); 5658 // ... 5659 // x = x | (x >>16); 5660 // x = x | (x >>32); // for 64-bit input 5661 // return popcount(~x); 5662 // 5663 // but see also: http://www.hackersdelight.org/HDcode/nlz.cc 5664 MVT::ValueType VT = Op.getValueType(); 5665 MVT::ValueType ShVT = TLI.getShiftAmountTy(); 5666 unsigned len = MVT::getSizeInBits(VT); 5667 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) { 5668 SDOperand Tmp3 = DAG.getConstant(1ULL << i, ShVT); 5669 Op = DAG.getNode(ISD::OR, VT, Op, DAG.getNode(ISD::SRL, VT, Op, Tmp3)); 5670 } 5671 Op = DAG.getNode(ISD::XOR, VT, Op, DAG.getConstant(~0ULL, VT)); 5672 return DAG.getNode(ISD::CTPOP, VT, Op); 5673 } 5674 case ISD::CTTZ: { 5675 // for now, we use: { return popcount(~x & (x - 1)); } 5676 // unless the target has ctlz but not ctpop, in which case we use: 5677 // { return 32 - nlz(~x & (x-1)); } 5678 // see also http://www.hackersdelight.org/HDcode/ntz.cc 5679 MVT::ValueType VT = Op.getValueType(); 5680 SDOperand Tmp2 = DAG.getConstant(~0ULL, VT); 5681 SDOperand Tmp3 = DAG.getNode(ISD::AND, VT, 5682 DAG.getNode(ISD::XOR, VT, Op, Tmp2), 5683 DAG.getNode(ISD::SUB, VT, Op, DAG.getConstant(1, VT))); 5684 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 5685 if (!TLI.isOperationLegal(ISD::CTPOP, VT) && 5686 TLI.isOperationLegal(ISD::CTLZ, VT)) 5687 return DAG.getNode(ISD::SUB, VT, 5688 DAG.getConstant(MVT::getSizeInBits(VT), VT), 5689 DAG.getNode(ISD::CTLZ, VT, Tmp3)); 5690 return DAG.getNode(ISD::CTPOP, VT, Tmp3); 5691 } 5692 } 5693} 5694 5695/// ExpandOp - Expand the specified SDOperand into its two component pieces 5696/// Lo&Hi. Note that the Op MUST be an expanded type. As a result of this, the 5697/// LegalizeNodes map is filled in for any results that are not expanded, the 5698/// ExpandedNodes map is filled in for any results that are expanded, and the 5699/// Lo/Hi values are returned. 5700void SelectionDAGLegalize::ExpandOp(SDOperand Op, SDOperand &Lo, SDOperand &Hi){ 5701 MVT::ValueType VT = Op.getValueType(); 5702 MVT::ValueType NVT = TLI.getTypeToTransformTo(VT); 5703 SDNode *Node = Op.Val; 5704 assert(getTypeAction(VT) == Expand && "Not an expanded type!"); 5705 assert(((MVT::isInteger(NVT) && NVT < VT) || MVT::isFloatingPoint(VT) || 5706 MVT::isVector(VT)) && 5707 "Cannot expand to FP value or to larger int value!"); 5708 5709 // See if we already expanded it. 5710 DenseMap<SDOperand, std::pair<SDOperand, SDOperand> >::iterator I 5711 = ExpandedNodes.find(Op); 5712 if (I != ExpandedNodes.end()) { 5713 Lo = I->second.first; 5714 Hi = I->second.second; 5715 return; 5716 } 5717 5718 switch (Node->getOpcode()) { 5719 case ISD::CopyFromReg: 5720 assert(0 && "CopyFromReg must be legal!"); 5721 case ISD::FP_ROUND_INREG: 5722 if (VT == MVT::ppcf128 && 5723 TLI.getOperationAction(ISD::FP_ROUND_INREG, VT) == 5724 TargetLowering::Custom) { 5725 SDOperand SrcLo, SrcHi, Src; 5726 ExpandOp(Op.getOperand(0), SrcLo, SrcHi); 5727 Src = DAG.getNode(ISD::BUILD_PAIR, VT, SrcLo, SrcHi); 5728 SDOperand Result = TLI.LowerOperation( 5729 DAG.getNode(ISD::FP_ROUND_INREG, VT, Src, Op.getOperand(1)), DAG); 5730 assert(Result.Val->getOpcode() == ISD::BUILD_PAIR); 5731 Lo = Result.Val->getOperand(0); 5732 Hi = Result.Val->getOperand(1); 5733 break; 5734 } 5735 // fall through 5736 default: 5737#ifndef NDEBUG 5738 cerr << "NODE: "; Node->dump(&DAG); cerr << "\n"; 5739#endif 5740 assert(0 && "Do not know how to expand this operator!"); 5741 abort(); 5742 case ISD::EXTRACT_VECTOR_ELT: 5743 assert(VT==MVT::i64 && "Do not know how to expand this operator!"); 5744 // ExpandEXTRACT_VECTOR_ELT tolerates invalid result types. 5745 Lo = ExpandEXTRACT_VECTOR_ELT(Op); 5746 return ExpandOp(Lo, Lo, Hi); 5747 case ISD::UNDEF: 5748 NVT = TLI.getTypeToExpandTo(VT); 5749 Lo = DAG.getNode(ISD::UNDEF, NVT); 5750 Hi = DAG.getNode(ISD::UNDEF, NVT); 5751 break; 5752 case ISD::Constant: { 5753 uint64_t Cst = cast<ConstantSDNode>(Node)->getValue(); 5754 Lo = DAG.getConstant(Cst, NVT); 5755 Hi = DAG.getConstant(Cst >> MVT::getSizeInBits(NVT), NVT); 5756 break; 5757 } 5758 case ISD::ConstantFP: { 5759 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 5760 if (CFP->getValueType(0) == MVT::ppcf128) { 5761 APInt api = CFP->getValueAPF().convertToAPInt(); 5762 Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &api.getRawData()[1])), 5763 MVT::f64); 5764 Hi = DAG.getConstantFP(APFloat(APInt(64, 1, &api.getRawData()[0])), 5765 MVT::f64); 5766 break; 5767 } 5768 Lo = ExpandConstantFP(CFP, false, DAG, TLI); 5769 if (getTypeAction(Lo.getValueType()) == Expand) 5770 ExpandOp(Lo, Lo, Hi); 5771 break; 5772 } 5773 case ISD::BUILD_PAIR: 5774 // Return the operands. 5775 Lo = Node->getOperand(0); 5776 Hi = Node->getOperand(1); 5777 break; 5778 5779 case ISD::MERGE_VALUES: 5780 if (Node->getNumValues() == 1) { 5781 ExpandOp(Op.getOperand(0), Lo, Hi); 5782 break; 5783 } 5784 // FIXME: For now only expand i64,chain = MERGE_VALUES (x, y) 5785 assert(Op.ResNo == 0 && Node->getNumValues() == 2 && 5786 Op.getValue(1).getValueType() == MVT::Other && 5787 "unhandled MERGE_VALUES"); 5788 ExpandOp(Op.getOperand(0), Lo, Hi); 5789 // Remember that we legalized the chain. 5790 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Op.getOperand(1))); 5791 break; 5792 5793 case ISD::SIGN_EXTEND_INREG: 5794 ExpandOp(Node->getOperand(0), Lo, Hi); 5795 // sext_inreg the low part if needed. 5796 Lo = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Lo, Node->getOperand(1)); 5797 5798 // The high part gets the sign extension from the lo-part. This handles 5799 // things like sextinreg V:i64 from i8. 5800 Hi = DAG.getNode(ISD::SRA, NVT, Lo, 5801 DAG.getConstant(MVT::getSizeInBits(NVT)-1, 5802 TLI.getShiftAmountTy())); 5803 break; 5804 5805 case ISD::BSWAP: { 5806 ExpandOp(Node->getOperand(0), Lo, Hi); 5807 SDOperand TempLo = DAG.getNode(ISD::BSWAP, NVT, Hi); 5808 Hi = DAG.getNode(ISD::BSWAP, NVT, Lo); 5809 Lo = TempLo; 5810 break; 5811 } 5812 5813 case ISD::CTPOP: 5814 ExpandOp(Node->getOperand(0), Lo, Hi); 5815 Lo = DAG.getNode(ISD::ADD, NVT, // ctpop(HL) -> ctpop(H)+ctpop(L) 5816 DAG.getNode(ISD::CTPOP, NVT, Lo), 5817 DAG.getNode(ISD::CTPOP, NVT, Hi)); 5818 Hi = DAG.getConstant(0, NVT); 5819 break; 5820 5821 case ISD::CTLZ: { 5822 // ctlz (HL) -> ctlz(H) != 32 ? ctlz(H) : (ctlz(L)+32) 5823 ExpandOp(Node->getOperand(0), Lo, Hi); 5824 SDOperand BitsC = DAG.getConstant(MVT::getSizeInBits(NVT), NVT); 5825 SDOperand HLZ = DAG.getNode(ISD::CTLZ, NVT, Hi); 5826 SDOperand TopNotZero = DAG.getSetCC(TLI.getSetCCResultTy(), HLZ, BitsC, 5827 ISD::SETNE); 5828 SDOperand LowPart = DAG.getNode(ISD::CTLZ, NVT, Lo); 5829 LowPart = DAG.getNode(ISD::ADD, NVT, LowPart, BitsC); 5830 5831 Lo = DAG.getNode(ISD::SELECT, NVT, TopNotZero, HLZ, LowPart); 5832 Hi = DAG.getConstant(0, NVT); 5833 break; 5834 } 5835 5836 case ISD::CTTZ: { 5837 // cttz (HL) -> cttz(L) != 32 ? cttz(L) : (cttz(H)+32) 5838 ExpandOp(Node->getOperand(0), Lo, Hi); 5839 SDOperand BitsC = DAG.getConstant(MVT::getSizeInBits(NVT), NVT); 5840 SDOperand LTZ = DAG.getNode(ISD::CTTZ, NVT, Lo); 5841 SDOperand BotNotZero = DAG.getSetCC(TLI.getSetCCResultTy(), LTZ, BitsC, 5842 ISD::SETNE); 5843 SDOperand HiPart = DAG.getNode(ISD::CTTZ, NVT, Hi); 5844 HiPart = DAG.getNode(ISD::ADD, NVT, HiPart, BitsC); 5845 5846 Lo = DAG.getNode(ISD::SELECT, NVT, BotNotZero, LTZ, HiPart); 5847 Hi = DAG.getConstant(0, NVT); 5848 break; 5849 } 5850 5851 case ISD::VAARG: { 5852 SDOperand Ch = Node->getOperand(0); // Legalize the chain. 5853 SDOperand Ptr = Node->getOperand(1); // Legalize the pointer. 5854 Lo = DAG.getVAArg(NVT, Ch, Ptr, Node->getOperand(2)); 5855 Hi = DAG.getVAArg(NVT, Lo.getValue(1), Ptr, Node->getOperand(2)); 5856 5857 // Remember that we legalized the chain. 5858 Hi = LegalizeOp(Hi); 5859 AddLegalizedOperand(Op.getValue(1), Hi.getValue(1)); 5860 if (TLI.isBigEndian()) 5861 std::swap(Lo, Hi); 5862 break; 5863 } 5864 5865 case ISD::LOAD: { 5866 LoadSDNode *LD = cast<LoadSDNode>(Node); 5867 SDOperand Ch = LD->getChain(); // Legalize the chain. 5868 SDOperand Ptr = LD->getBasePtr(); // Legalize the pointer. 5869 ISD::LoadExtType ExtType = LD->getExtensionType(); 5870 int SVOffset = LD->getSrcValueOffset(); 5871 unsigned Alignment = LD->getAlignment(); 5872 bool isVolatile = LD->isVolatile(); 5873 5874 if (ExtType == ISD::NON_EXTLOAD) { 5875 Lo = DAG.getLoad(NVT, Ch, Ptr, LD->getSrcValue(), SVOffset, 5876 isVolatile, Alignment); 5877 if (VT == MVT::f32 || VT == MVT::f64) { 5878 // f32->i32 or f64->i64 one to one expansion. 5879 // Remember that we legalized the chain. 5880 AddLegalizedOperand(SDOperand(Node, 1), LegalizeOp(Lo.getValue(1))); 5881 // Recursively expand the new load. 5882 if (getTypeAction(NVT) == Expand) 5883 ExpandOp(Lo, Lo, Hi); 5884 break; 5885 } 5886 5887 // Increment the pointer to the other half. 5888 unsigned IncrementSize = MVT::getSizeInBits(Lo.getValueType())/8; 5889 Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, 5890 DAG.getIntPtrConstant(IncrementSize)); 5891 SVOffset += IncrementSize; 5892 Alignment = MinAlign(Alignment, IncrementSize); 5893 Hi = DAG.getLoad(NVT, Ch, Ptr, LD->getSrcValue(), SVOffset, 5894 isVolatile, Alignment); 5895 5896 // Build a factor node to remember that this load is independent of the 5897 // other one. 5898 SDOperand TF = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), 5899 Hi.getValue(1)); 5900 5901 // Remember that we legalized the chain. 5902 AddLegalizedOperand(Op.getValue(1), LegalizeOp(TF)); 5903 if (TLI.isBigEndian()) 5904 std::swap(Lo, Hi); 5905 } else { 5906 MVT::ValueType EVT = LD->getMemoryVT(); 5907 5908 if ((VT == MVT::f64 && EVT == MVT::f32) || 5909 (VT == MVT::ppcf128 && (EVT==MVT::f64 || EVT==MVT::f32))) { 5910 // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND 5911 SDOperand Load = DAG.getLoad(EVT, Ch, Ptr, LD->getSrcValue(), 5912 SVOffset, isVolatile, Alignment); 5913 // Remember that we legalized the chain. 5914 AddLegalizedOperand(SDOperand(Node, 1), LegalizeOp(Load.getValue(1))); 5915 ExpandOp(DAG.getNode(ISD::FP_EXTEND, VT, Load), Lo, Hi); 5916 break; 5917 } 5918 5919 if (EVT == NVT) 5920 Lo = DAG.getLoad(NVT, Ch, Ptr, LD->getSrcValue(), 5921 SVOffset, isVolatile, Alignment); 5922 else 5923 Lo = DAG.getExtLoad(ExtType, NVT, Ch, Ptr, LD->getSrcValue(), 5924 SVOffset, EVT, isVolatile, 5925 Alignment); 5926 5927 // Remember that we legalized the chain. 5928 AddLegalizedOperand(SDOperand(Node, 1), LegalizeOp(Lo.getValue(1))); 5929 5930 if (ExtType == ISD::SEXTLOAD) { 5931 // The high part is obtained by SRA'ing all but one of the bits of the 5932 // lo part. 5933 unsigned LoSize = MVT::getSizeInBits(Lo.getValueType()); 5934 Hi = DAG.getNode(ISD::SRA, NVT, Lo, 5935 DAG.getConstant(LoSize-1, TLI.getShiftAmountTy())); 5936 } else if (ExtType == ISD::ZEXTLOAD) { 5937 // The high part is just a zero. 5938 Hi = DAG.getConstant(0, NVT); 5939 } else /* if (ExtType == ISD::EXTLOAD) */ { 5940 // The high part is undefined. 5941 Hi = DAG.getNode(ISD::UNDEF, NVT); 5942 } 5943 } 5944 break; 5945 } 5946 case ISD::AND: 5947 case ISD::OR: 5948 case ISD::XOR: { // Simple logical operators -> two trivial pieces. 5949 SDOperand LL, LH, RL, RH; 5950 ExpandOp(Node->getOperand(0), LL, LH); 5951 ExpandOp(Node->getOperand(1), RL, RH); 5952 Lo = DAG.getNode(Node->getOpcode(), NVT, LL, RL); 5953 Hi = DAG.getNode(Node->getOpcode(), NVT, LH, RH); 5954 break; 5955 } 5956 case ISD::SELECT: { 5957 SDOperand LL, LH, RL, RH; 5958 ExpandOp(Node->getOperand(1), LL, LH); 5959 ExpandOp(Node->getOperand(2), RL, RH); 5960 if (getTypeAction(NVT) == Expand) 5961 NVT = TLI.getTypeToExpandTo(NVT); 5962 Lo = DAG.getNode(ISD::SELECT, NVT, Node->getOperand(0), LL, RL); 5963 if (VT != MVT::f32) 5964 Hi = DAG.getNode(ISD::SELECT, NVT, Node->getOperand(0), LH, RH); 5965 break; 5966 } 5967 case ISD::SELECT_CC: { 5968 SDOperand TL, TH, FL, FH; 5969 ExpandOp(Node->getOperand(2), TL, TH); 5970 ExpandOp(Node->getOperand(3), FL, FH); 5971 if (getTypeAction(NVT) == Expand) 5972 NVT = TLI.getTypeToExpandTo(NVT); 5973 Lo = DAG.getNode(ISD::SELECT_CC, NVT, Node->getOperand(0), 5974 Node->getOperand(1), TL, FL, Node->getOperand(4)); 5975 if (VT != MVT::f32) 5976 Hi = DAG.getNode(ISD::SELECT_CC, NVT, Node->getOperand(0), 5977 Node->getOperand(1), TH, FH, Node->getOperand(4)); 5978 break; 5979 } 5980 case ISD::ANY_EXTEND: 5981 // The low part is any extension of the input (which degenerates to a copy). 5982 Lo = DAG.getNode(ISD::ANY_EXTEND, NVT, Node->getOperand(0)); 5983 // The high part is undefined. 5984 Hi = DAG.getNode(ISD::UNDEF, NVT); 5985 break; 5986 case ISD::SIGN_EXTEND: { 5987 // The low part is just a sign extension of the input (which degenerates to 5988 // a copy). 5989 Lo = DAG.getNode(ISD::SIGN_EXTEND, NVT, Node->getOperand(0)); 5990 5991 // The high part is obtained by SRA'ing all but one of the bits of the lo 5992 // part. 5993 unsigned LoSize = MVT::getSizeInBits(Lo.getValueType()); 5994 Hi = DAG.getNode(ISD::SRA, NVT, Lo, 5995 DAG.getConstant(LoSize-1, TLI.getShiftAmountTy())); 5996 break; 5997 } 5998 case ISD::ZERO_EXTEND: 5999 // The low part is just a zero extension of the input (which degenerates to 6000 // a copy). 6001 Lo = DAG.getNode(ISD::ZERO_EXTEND, NVT, Node->getOperand(0)); 6002 6003 // The high part is just a zero. 6004 Hi = DAG.getConstant(0, NVT); 6005 break; 6006 6007 case ISD::TRUNCATE: { 6008 // The input value must be larger than this value. Expand *it*. 6009 SDOperand NewLo; 6010 ExpandOp(Node->getOperand(0), NewLo, Hi); 6011 6012 // The low part is now either the right size, or it is closer. If not the 6013 // right size, make an illegal truncate so we recursively expand it. 6014 if (NewLo.getValueType() != Node->getValueType(0)) 6015 NewLo = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), NewLo); 6016 ExpandOp(NewLo, Lo, Hi); 6017 break; 6018 } 6019 6020 case ISD::BIT_CONVERT: { 6021 SDOperand Tmp; 6022 if (TLI.getOperationAction(ISD::BIT_CONVERT, VT) == TargetLowering::Custom){ 6023 // If the target wants to, allow it to lower this itself. 6024 switch (getTypeAction(Node->getOperand(0).getValueType())) { 6025 case Expand: assert(0 && "cannot expand FP!"); 6026 case Legal: Tmp = LegalizeOp(Node->getOperand(0)); break; 6027 case Promote: Tmp = PromoteOp (Node->getOperand(0)); break; 6028 } 6029 Tmp = TLI.LowerOperation(DAG.getNode(ISD::BIT_CONVERT, VT, Tmp), DAG); 6030 } 6031 6032 // f32 / f64 must be expanded to i32 / i64. 6033 if (VT == MVT::f32 || VT == MVT::f64) { 6034 Lo = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0)); 6035 if (getTypeAction(NVT) == Expand) 6036 ExpandOp(Lo, Lo, Hi); 6037 break; 6038 } 6039 6040 // If source operand will be expanded to the same type as VT, i.e. 6041 // i64 <- f64, i32 <- f32, expand the source operand instead. 6042 MVT::ValueType VT0 = Node->getOperand(0).getValueType(); 6043 if (getTypeAction(VT0) == Expand && TLI.getTypeToTransformTo(VT0) == VT) { 6044 ExpandOp(Node->getOperand(0), Lo, Hi); 6045 break; 6046 } 6047 6048 // Turn this into a load/store pair by default. 6049 if (Tmp.Val == 0) 6050 Tmp = EmitStackConvert(Node->getOperand(0), VT, VT); 6051 6052 ExpandOp(Tmp, Lo, Hi); 6053 break; 6054 } 6055 6056 case ISD::READCYCLECOUNTER: { 6057 assert(TLI.getOperationAction(ISD::READCYCLECOUNTER, VT) == 6058 TargetLowering::Custom && 6059 "Must custom expand ReadCycleCounter"); 6060 SDOperand Tmp = TLI.LowerOperation(Op, DAG); 6061 assert(Tmp.Val && "Node must be custom expanded!"); 6062 ExpandOp(Tmp.getValue(0), Lo, Hi); 6063 AddLegalizedOperand(SDOperand(Node, 1), // Remember we legalized the chain. 6064 LegalizeOp(Tmp.getValue(1))); 6065 break; 6066 } 6067 6068 // These operators cannot be expanded directly, emit them as calls to 6069 // library functions. 6070 case ISD::FP_TO_SINT: { 6071 if (TLI.getOperationAction(ISD::FP_TO_SINT, VT) == TargetLowering::Custom) { 6072 SDOperand Op; 6073 switch (getTypeAction(Node->getOperand(0).getValueType())) { 6074 case Expand: assert(0 && "cannot expand FP!"); 6075 case Legal: Op = LegalizeOp(Node->getOperand(0)); break; 6076 case Promote: Op = PromoteOp (Node->getOperand(0)); break; 6077 } 6078 6079 Op = TLI.LowerOperation(DAG.getNode(ISD::FP_TO_SINT, VT, Op), DAG); 6080 6081 // Now that the custom expander is done, expand the result, which is still 6082 // VT. 6083 if (Op.Val) { 6084 ExpandOp(Op, Lo, Hi); 6085 break; 6086 } 6087 } 6088 6089 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 6090 if (Node->getOperand(0).getValueType() == MVT::f32) 6091 LC = RTLIB::FPTOSINT_F32_I64; 6092 else if (Node->getOperand(0).getValueType() == MVT::f64) 6093 LC = RTLIB::FPTOSINT_F64_I64; 6094 else if (Node->getOperand(0).getValueType() == MVT::f80) 6095 LC = RTLIB::FPTOSINT_F80_I64; 6096 else if (Node->getOperand(0).getValueType() == MVT::ppcf128) 6097 LC = RTLIB::FPTOSINT_PPCF128_I64; 6098 Lo = ExpandLibCall(TLI.getLibcallName(LC), Node, 6099 false/*sign irrelevant*/, Hi); 6100 break; 6101 } 6102 6103 case ISD::FP_TO_UINT: { 6104 if (TLI.getOperationAction(ISD::FP_TO_UINT, VT) == TargetLowering::Custom) { 6105 SDOperand Op; 6106 switch (getTypeAction(Node->getOperand(0).getValueType())) { 6107 case Expand: assert(0 && "cannot expand FP!"); 6108 case Legal: Op = LegalizeOp(Node->getOperand(0)); break; 6109 case Promote: Op = PromoteOp (Node->getOperand(0)); break; 6110 } 6111 6112 Op = TLI.LowerOperation(DAG.getNode(ISD::FP_TO_UINT, VT, Op), DAG); 6113 6114 // Now that the custom expander is done, expand the result. 6115 if (Op.Val) { 6116 ExpandOp(Op, Lo, Hi); 6117 break; 6118 } 6119 } 6120 6121 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 6122 if (Node->getOperand(0).getValueType() == MVT::f32) 6123 LC = RTLIB::FPTOUINT_F32_I64; 6124 else if (Node->getOperand(0).getValueType() == MVT::f64) 6125 LC = RTLIB::FPTOUINT_F64_I64; 6126 else if (Node->getOperand(0).getValueType() == MVT::f80) 6127 LC = RTLIB::FPTOUINT_F80_I64; 6128 else if (Node->getOperand(0).getValueType() == MVT::ppcf128) 6129 LC = RTLIB::FPTOUINT_PPCF128_I64; 6130 Lo = ExpandLibCall(TLI.getLibcallName(LC), Node, 6131 false/*sign irrelevant*/, Hi); 6132 break; 6133 } 6134 6135 case ISD::SHL: { 6136 // If the target wants custom lowering, do so. 6137 SDOperand ShiftAmt = LegalizeOp(Node->getOperand(1)); 6138 if (TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Custom) { 6139 SDOperand Op = DAG.getNode(ISD::SHL, VT, Node->getOperand(0), ShiftAmt); 6140 Op = TLI.LowerOperation(Op, DAG); 6141 if (Op.Val) { 6142 // Now that the custom expander is done, expand the result, which is 6143 // still VT. 6144 ExpandOp(Op, Lo, Hi); 6145 break; 6146 } 6147 } 6148 6149 // If ADDC/ADDE are supported and if the shift amount is a constant 1, emit 6150 // this X << 1 as X+X. 6151 if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(ShiftAmt)) { 6152 if (ShAmt->getValue() == 1 && TLI.isOperationLegal(ISD::ADDC, NVT) && 6153 TLI.isOperationLegal(ISD::ADDE, NVT)) { 6154 SDOperand LoOps[2], HiOps[3]; 6155 ExpandOp(Node->getOperand(0), LoOps[0], HiOps[0]); 6156 SDVTList VTList = DAG.getVTList(LoOps[0].getValueType(), MVT::Flag); 6157 LoOps[1] = LoOps[0]; 6158 Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2); 6159 6160 HiOps[1] = HiOps[0]; 6161 HiOps[2] = Lo.getValue(1); 6162 Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3); 6163 break; 6164 } 6165 } 6166 6167 // If we can emit an efficient shift operation, do so now. 6168 if (ExpandShift(ISD::SHL, Node->getOperand(0), ShiftAmt, Lo, Hi)) 6169 break; 6170 6171 // If this target supports SHL_PARTS, use it. 6172 TargetLowering::LegalizeAction Action = 6173 TLI.getOperationAction(ISD::SHL_PARTS, NVT); 6174 if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) || 6175 Action == TargetLowering::Custom) { 6176 ExpandShiftParts(ISD::SHL_PARTS, Node->getOperand(0), ShiftAmt, Lo, Hi); 6177 break; 6178 } 6179 6180 // Otherwise, emit a libcall. 6181 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SHL_I64), Node, 6182 false/*left shift=unsigned*/, Hi); 6183 break; 6184 } 6185 6186 case ISD::SRA: { 6187 // If the target wants custom lowering, do so. 6188 SDOperand ShiftAmt = LegalizeOp(Node->getOperand(1)); 6189 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Custom) { 6190 SDOperand Op = DAG.getNode(ISD::SRA, VT, Node->getOperand(0), ShiftAmt); 6191 Op = TLI.LowerOperation(Op, DAG); 6192 if (Op.Val) { 6193 // Now that the custom expander is done, expand the result, which is 6194 // still VT. 6195 ExpandOp(Op, Lo, Hi); 6196 break; 6197 } 6198 } 6199 6200 // If we can emit an efficient shift operation, do so now. 6201 if (ExpandShift(ISD::SRA, Node->getOperand(0), ShiftAmt, Lo, Hi)) 6202 break; 6203 6204 // If this target supports SRA_PARTS, use it. 6205 TargetLowering::LegalizeAction Action = 6206 TLI.getOperationAction(ISD::SRA_PARTS, NVT); 6207 if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) || 6208 Action == TargetLowering::Custom) { 6209 ExpandShiftParts(ISD::SRA_PARTS, Node->getOperand(0), ShiftAmt, Lo, Hi); 6210 break; 6211 } 6212 6213 // Otherwise, emit a libcall. 6214 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SRA_I64), Node, 6215 true/*ashr is signed*/, Hi); 6216 break; 6217 } 6218 6219 case ISD::SRL: { 6220 // If the target wants custom lowering, do so. 6221 SDOperand ShiftAmt = LegalizeOp(Node->getOperand(1)); 6222 if (TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Custom) { 6223 SDOperand Op = DAG.getNode(ISD::SRL, VT, Node->getOperand(0), ShiftAmt); 6224 Op = TLI.LowerOperation(Op, DAG); 6225 if (Op.Val) { 6226 // Now that the custom expander is done, expand the result, which is 6227 // still VT. 6228 ExpandOp(Op, Lo, Hi); 6229 break; 6230 } 6231 } 6232 6233 // If we can emit an efficient shift operation, do so now. 6234 if (ExpandShift(ISD::SRL, Node->getOperand(0), ShiftAmt, Lo, Hi)) 6235 break; 6236 6237 // If this target supports SRL_PARTS, use it. 6238 TargetLowering::LegalizeAction Action = 6239 TLI.getOperationAction(ISD::SRL_PARTS, NVT); 6240 if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) || 6241 Action == TargetLowering::Custom) { 6242 ExpandShiftParts(ISD::SRL_PARTS, Node->getOperand(0), ShiftAmt, Lo, Hi); 6243 break; 6244 } 6245 6246 // Otherwise, emit a libcall. 6247 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SRL_I64), Node, 6248 false/*lshr is unsigned*/, Hi); 6249 break; 6250 } 6251 6252 case ISD::ADD: 6253 case ISD::SUB: { 6254 // If the target wants to custom expand this, let them. 6255 if (TLI.getOperationAction(Node->getOpcode(), VT) == 6256 TargetLowering::Custom) { 6257 Op = TLI.LowerOperation(Op, DAG); 6258 if (Op.Val) { 6259 ExpandOp(Op, Lo, Hi); 6260 break; 6261 } 6262 } 6263 6264 // Expand the subcomponents. 6265 SDOperand LHSL, LHSH, RHSL, RHSH; 6266 ExpandOp(Node->getOperand(0), LHSL, LHSH); 6267 ExpandOp(Node->getOperand(1), RHSL, RHSH); 6268 SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); 6269 SDOperand LoOps[2], HiOps[3]; 6270 LoOps[0] = LHSL; 6271 LoOps[1] = RHSL; 6272 HiOps[0] = LHSH; 6273 HiOps[1] = RHSH; 6274 if (Node->getOpcode() == ISD::ADD) { 6275 Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2); 6276 HiOps[2] = Lo.getValue(1); 6277 Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3); 6278 } else { 6279 Lo = DAG.getNode(ISD::SUBC, VTList, LoOps, 2); 6280 HiOps[2] = Lo.getValue(1); 6281 Hi = DAG.getNode(ISD::SUBE, VTList, HiOps, 3); 6282 } 6283 break; 6284 } 6285 6286 case ISD::ADDC: 6287 case ISD::SUBC: { 6288 // Expand the subcomponents. 6289 SDOperand LHSL, LHSH, RHSL, RHSH; 6290 ExpandOp(Node->getOperand(0), LHSL, LHSH); 6291 ExpandOp(Node->getOperand(1), RHSL, RHSH); 6292 SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); 6293 SDOperand LoOps[2] = { LHSL, RHSL }; 6294 SDOperand HiOps[3] = { LHSH, RHSH }; 6295 6296 if (Node->getOpcode() == ISD::ADDC) { 6297 Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2); 6298 HiOps[2] = Lo.getValue(1); 6299 Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3); 6300 } else { 6301 Lo = DAG.getNode(ISD::SUBC, VTList, LoOps, 2); 6302 HiOps[2] = Lo.getValue(1); 6303 Hi = DAG.getNode(ISD::SUBE, VTList, HiOps, 3); 6304 } 6305 // Remember that we legalized the flag. 6306 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Hi.getValue(1))); 6307 break; 6308 } 6309 case ISD::ADDE: 6310 case ISD::SUBE: { 6311 // Expand the subcomponents. 6312 SDOperand LHSL, LHSH, RHSL, RHSH; 6313 ExpandOp(Node->getOperand(0), LHSL, LHSH); 6314 ExpandOp(Node->getOperand(1), RHSL, RHSH); 6315 SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); 6316 SDOperand LoOps[3] = { LHSL, RHSL, Node->getOperand(2) }; 6317 SDOperand HiOps[3] = { LHSH, RHSH }; 6318 6319 Lo = DAG.getNode(Node->getOpcode(), VTList, LoOps, 3); 6320 HiOps[2] = Lo.getValue(1); 6321 Hi = DAG.getNode(Node->getOpcode(), VTList, HiOps, 3); 6322 6323 // Remember that we legalized the flag. 6324 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Hi.getValue(1))); 6325 break; 6326 } 6327 case ISD::MUL: { 6328 // If the target wants to custom expand this, let them. 6329 if (TLI.getOperationAction(ISD::MUL, VT) == TargetLowering::Custom) { 6330 SDOperand New = TLI.LowerOperation(Op, DAG); 6331 if (New.Val) { 6332 ExpandOp(New, Lo, Hi); 6333 break; 6334 } 6335 } 6336 6337 bool HasMULHS = TLI.isOperationLegal(ISD::MULHS, NVT); 6338 bool HasMULHU = TLI.isOperationLegal(ISD::MULHU, NVT); 6339 bool HasSMUL_LOHI = TLI.isOperationLegal(ISD::SMUL_LOHI, NVT); 6340 bool HasUMUL_LOHI = TLI.isOperationLegal(ISD::UMUL_LOHI, NVT); 6341 if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) { 6342 SDOperand LL, LH, RL, RH; 6343 ExpandOp(Node->getOperand(0), LL, LH); 6344 ExpandOp(Node->getOperand(1), RL, RH); 6345 unsigned OuterBitSize = Op.getValueSizeInBits(); 6346 unsigned InnerBitSize = RH.getValueSizeInBits(); 6347 unsigned LHSSB = DAG.ComputeNumSignBits(Op.getOperand(0)); 6348 unsigned RHSSB = DAG.ComputeNumSignBits(Op.getOperand(1)); 6349 if (DAG.MaskedValueIsZero(Op.getOperand(0), 6350 APInt::getHighBitsSet(OuterBitSize, LHSSB)) && 6351 DAG.MaskedValueIsZero(Op.getOperand(1), 6352 APInt::getHighBitsSet(OuterBitSize, RHSSB))) { 6353 // The inputs are both zero-extended. 6354 if (HasUMUL_LOHI) { 6355 // We can emit a umul_lohi. 6356 Lo = DAG.getNode(ISD::UMUL_LOHI, DAG.getVTList(NVT, NVT), LL, RL); 6357 Hi = SDOperand(Lo.Val, 1); 6358 break; 6359 } 6360 if (HasMULHU) { 6361 // We can emit a mulhu+mul. 6362 Lo = DAG.getNode(ISD::MUL, NVT, LL, RL); 6363 Hi = DAG.getNode(ISD::MULHU, NVT, LL, RL); 6364 break; 6365 } 6366 } 6367 if (LHSSB > InnerBitSize && RHSSB > InnerBitSize) { 6368 // The input values are both sign-extended. 6369 if (HasSMUL_LOHI) { 6370 // We can emit a smul_lohi. 6371 Lo = DAG.getNode(ISD::SMUL_LOHI, DAG.getVTList(NVT, NVT), LL, RL); 6372 Hi = SDOperand(Lo.Val, 1); 6373 break; 6374 } 6375 if (HasMULHS) { 6376 // We can emit a mulhs+mul. 6377 Lo = DAG.getNode(ISD::MUL, NVT, LL, RL); 6378 Hi = DAG.getNode(ISD::MULHS, NVT, LL, RL); 6379 break; 6380 } 6381 } 6382 if (HasUMUL_LOHI) { 6383 // Lo,Hi = umul LHS, RHS. 6384 SDOperand UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, 6385 DAG.getVTList(NVT, NVT), LL, RL); 6386 Lo = UMulLOHI; 6387 Hi = UMulLOHI.getValue(1); 6388 RH = DAG.getNode(ISD::MUL, NVT, LL, RH); 6389 LH = DAG.getNode(ISD::MUL, NVT, LH, RL); 6390 Hi = DAG.getNode(ISD::ADD, NVT, Hi, RH); 6391 Hi = DAG.getNode(ISD::ADD, NVT, Hi, LH); 6392 break; 6393 } 6394 if (HasMULHU) { 6395 Lo = DAG.getNode(ISD::MUL, NVT, LL, RL); 6396 Hi = DAG.getNode(ISD::MULHU, NVT, LL, RL); 6397 RH = DAG.getNode(ISD::MUL, NVT, LL, RH); 6398 LH = DAG.getNode(ISD::MUL, NVT, LH, RL); 6399 Hi = DAG.getNode(ISD::ADD, NVT, Hi, RH); 6400 Hi = DAG.getNode(ISD::ADD, NVT, Hi, LH); 6401 break; 6402 } 6403 } 6404 6405 // If nothing else, we can make a libcall. 6406 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::MUL_I64), Node, 6407 false/*sign irrelevant*/, Hi); 6408 break; 6409 } 6410 case ISD::SDIV: 6411 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SDIV_I64), Node, true, Hi); 6412 break; 6413 case ISD::UDIV: 6414 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::UDIV_I64), Node, true, Hi); 6415 break; 6416 case ISD::SREM: 6417 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SREM_I64), Node, true, Hi); 6418 break; 6419 case ISD::UREM: 6420 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::UREM_I64), Node, true, Hi); 6421 break; 6422 6423 case ISD::FADD: 6424 Lo = ExpandLibCall(TLI.getLibcallName(GetFPLibCall(VT, RTLIB::ADD_F32, 6425 RTLIB::ADD_F64, 6426 RTLIB::ADD_F80, 6427 RTLIB::ADD_PPCF128)), 6428 Node, false, Hi); 6429 break; 6430 case ISD::FSUB: 6431 Lo = ExpandLibCall(TLI.getLibcallName(GetFPLibCall(VT, RTLIB::SUB_F32, 6432 RTLIB::SUB_F64, 6433 RTLIB::SUB_F80, 6434 RTLIB::SUB_PPCF128)), 6435 Node, false, Hi); 6436 break; 6437 case ISD::FMUL: 6438 Lo = ExpandLibCall(TLI.getLibcallName(GetFPLibCall(VT, RTLIB::MUL_F32, 6439 RTLIB::MUL_F64, 6440 RTLIB::MUL_F80, 6441 RTLIB::MUL_PPCF128)), 6442 Node, false, Hi); 6443 break; 6444 case ISD::FDIV: 6445 Lo = ExpandLibCall(TLI.getLibcallName(GetFPLibCall(VT, RTLIB::DIV_F32, 6446 RTLIB::DIV_F64, 6447 RTLIB::DIV_F80, 6448 RTLIB::DIV_PPCF128)), 6449 Node, false, Hi); 6450 break; 6451 case ISD::FP_EXTEND: 6452 if (VT == MVT::ppcf128) { 6453 assert(Node->getOperand(0).getValueType()==MVT::f32 || 6454 Node->getOperand(0).getValueType()==MVT::f64); 6455 const uint64_t zero = 0; 6456 if (Node->getOperand(0).getValueType()==MVT::f32) 6457 Hi = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Node->getOperand(0)); 6458 else 6459 Hi = Node->getOperand(0); 6460 Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &zero)), MVT::f64); 6461 break; 6462 } 6463 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::FPEXT_F32_F64), Node, true,Hi); 6464 break; 6465 case ISD::FP_ROUND: 6466 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::FPROUND_F64_F32),Node,true,Hi); 6467 break; 6468 case ISD::FPOWI: 6469 Lo = ExpandLibCall(TLI.getLibcallName(GetFPLibCall(VT, RTLIB::POWI_F32, 6470 RTLIB::POWI_F64, 6471 RTLIB::POWI_F80, 6472 RTLIB::POWI_PPCF128)), 6473 Node, false, Hi); 6474 break; 6475 case ISD::FSQRT: 6476 case ISD::FSIN: 6477 case ISD::FCOS: { 6478 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 6479 switch(Node->getOpcode()) { 6480 case ISD::FSQRT: 6481 LC = GetFPLibCall(VT, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 6482 RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128); 6483 break; 6484 case ISD::FSIN: 6485 LC = GetFPLibCall(VT, RTLIB::SIN_F32, RTLIB::SIN_F64, 6486 RTLIB::SIN_F80, RTLIB::SIN_PPCF128); 6487 break; 6488 case ISD::FCOS: 6489 LC = GetFPLibCall(VT, RTLIB::COS_F32, RTLIB::COS_F64, 6490 RTLIB::COS_F80, RTLIB::COS_PPCF128); 6491 break; 6492 default: assert(0 && "Unreachable!"); 6493 } 6494 Lo = ExpandLibCall(TLI.getLibcallName(LC), Node, false, Hi); 6495 break; 6496 } 6497 case ISD::FABS: { 6498 if (VT == MVT::ppcf128) { 6499 SDOperand Tmp; 6500 ExpandOp(Node->getOperand(0), Lo, Tmp); 6501 Hi = DAG.getNode(ISD::FABS, NVT, Tmp); 6502 // lo = hi==fabs(hi) ? lo : -lo; 6503 Lo = DAG.getNode(ISD::SELECT_CC, NVT, Hi, Tmp, 6504 Lo, DAG.getNode(ISD::FNEG, NVT, Lo), 6505 DAG.getCondCode(ISD::SETEQ)); 6506 break; 6507 } 6508 SDOperand Mask = (VT == MVT::f64) 6509 ? DAG.getConstantFP(BitsToDouble(~(1ULL << 63)), VT) 6510 : DAG.getConstantFP(BitsToFloat(~(1U << 31)), VT); 6511 Mask = DAG.getNode(ISD::BIT_CONVERT, NVT, Mask); 6512 Lo = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0)); 6513 Lo = DAG.getNode(ISD::AND, NVT, Lo, Mask); 6514 if (getTypeAction(NVT) == Expand) 6515 ExpandOp(Lo, Lo, Hi); 6516 break; 6517 } 6518 case ISD::FNEG: { 6519 if (VT == MVT::ppcf128) { 6520 ExpandOp(Node->getOperand(0), Lo, Hi); 6521 Lo = DAG.getNode(ISD::FNEG, MVT::f64, Lo); 6522 Hi = DAG.getNode(ISD::FNEG, MVT::f64, Hi); 6523 break; 6524 } 6525 SDOperand Mask = (VT == MVT::f64) 6526 ? DAG.getConstantFP(BitsToDouble(1ULL << 63), VT) 6527 : DAG.getConstantFP(BitsToFloat(1U << 31), VT); 6528 Mask = DAG.getNode(ISD::BIT_CONVERT, NVT, Mask); 6529 Lo = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0)); 6530 Lo = DAG.getNode(ISD::XOR, NVT, Lo, Mask); 6531 if (getTypeAction(NVT) == Expand) 6532 ExpandOp(Lo, Lo, Hi); 6533 break; 6534 } 6535 case ISD::FCOPYSIGN: { 6536 Lo = ExpandFCOPYSIGNToBitwiseOps(Node, NVT, DAG, TLI); 6537 if (getTypeAction(NVT) == Expand) 6538 ExpandOp(Lo, Lo, Hi); 6539 break; 6540 } 6541 case ISD::SINT_TO_FP: 6542 case ISD::UINT_TO_FP: { 6543 bool isSigned = Node->getOpcode() == ISD::SINT_TO_FP; 6544 MVT::ValueType SrcVT = Node->getOperand(0).getValueType(); 6545 if (VT == MVT::ppcf128 && SrcVT != MVT::i64) { 6546 static uint64_t zero = 0; 6547 if (isSigned) { 6548 Hi = LegalizeOp(DAG.getNode(ISD::SINT_TO_FP, MVT::f64, 6549 Node->getOperand(0))); 6550 Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &zero)), MVT::f64); 6551 } else { 6552 static uint64_t TwoE32[] = { 0x41f0000000000000LL, 0 }; 6553 Hi = LegalizeOp(DAG.getNode(ISD::SINT_TO_FP, MVT::f64, 6554 Node->getOperand(0))); 6555 Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &zero)), MVT::f64); 6556 Hi = DAG.getNode(ISD::BUILD_PAIR, VT, Lo, Hi); 6557 // X>=0 ? {(f64)x, 0} : {(f64)x, 0} + 2^32 6558 ExpandOp(DAG.getNode(ISD::SELECT_CC, MVT::ppcf128, Node->getOperand(0), 6559 DAG.getConstant(0, MVT::i32), 6560 DAG.getNode(ISD::FADD, MVT::ppcf128, Hi, 6561 DAG.getConstantFP( 6562 APFloat(APInt(128, 2, TwoE32)), 6563 MVT::ppcf128)), 6564 Hi, 6565 DAG.getCondCode(ISD::SETLT)), 6566 Lo, Hi); 6567 } 6568 break; 6569 } 6570 if (VT == MVT::ppcf128 && SrcVT == MVT::i64 && !isSigned) { 6571 // si64->ppcf128 done by libcall, below 6572 static uint64_t TwoE64[] = { 0x43f0000000000000LL, 0 }; 6573 ExpandOp(DAG.getNode(ISD::SINT_TO_FP, MVT::ppcf128, Node->getOperand(0)), 6574 Lo, Hi); 6575 Hi = DAG.getNode(ISD::BUILD_PAIR, VT, Lo, Hi); 6576 // x>=0 ? (ppcf128)(i64)x : (ppcf128)(i64)x + 2^64 6577 ExpandOp(DAG.getNode(ISD::SELECT_CC, MVT::ppcf128, Node->getOperand(0), 6578 DAG.getConstant(0, MVT::i64), 6579 DAG.getNode(ISD::FADD, MVT::ppcf128, Hi, 6580 DAG.getConstantFP( 6581 APFloat(APInt(128, 2, TwoE64)), 6582 MVT::ppcf128)), 6583 Hi, 6584 DAG.getCondCode(ISD::SETLT)), 6585 Lo, Hi); 6586 break; 6587 } 6588 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 6589 if (Node->getOperand(0).getValueType() == MVT::i64) { 6590 if (VT == MVT::f32) 6591 LC = isSigned ? RTLIB::SINTTOFP_I64_F32 : RTLIB::UINTTOFP_I64_F32; 6592 else if (VT == MVT::f64) 6593 LC = isSigned ? RTLIB::SINTTOFP_I64_F64 : RTLIB::UINTTOFP_I64_F64; 6594 else if (VT == MVT::f80) { 6595 assert(isSigned); 6596 LC = RTLIB::SINTTOFP_I64_F80; 6597 } 6598 else if (VT == MVT::ppcf128) { 6599 assert(isSigned); 6600 LC = RTLIB::SINTTOFP_I64_PPCF128; 6601 } 6602 } else { 6603 if (VT == MVT::f32) 6604 LC = isSigned ? RTLIB::SINTTOFP_I32_F32 : RTLIB::UINTTOFP_I32_F32; 6605 else 6606 LC = isSigned ? RTLIB::SINTTOFP_I32_F64 : RTLIB::UINTTOFP_I32_F64; 6607 } 6608 6609 // Promote the operand if needed. 6610 if (getTypeAction(SrcVT) == Promote) { 6611 SDOperand Tmp = PromoteOp(Node->getOperand(0)); 6612 Tmp = isSigned 6613 ? DAG.getNode(ISD::SIGN_EXTEND_INREG, Tmp.getValueType(), Tmp, 6614 DAG.getValueType(SrcVT)) 6615 : DAG.getZeroExtendInReg(Tmp, SrcVT); 6616 Node = DAG.UpdateNodeOperands(Op, Tmp).Val; 6617 } 6618 6619 const char *LibCall = TLI.getLibcallName(LC); 6620 if (LibCall) 6621 Lo = ExpandLibCall(TLI.getLibcallName(LC), Node, isSigned, Hi); 6622 else { 6623 Lo = ExpandIntToFP(Node->getOpcode() == ISD::SINT_TO_FP, VT, 6624 Node->getOperand(0)); 6625 if (getTypeAction(Lo.getValueType()) == Expand) 6626 ExpandOp(Lo, Lo, Hi); 6627 } 6628 break; 6629 } 6630 } 6631 6632 // Make sure the resultant values have been legalized themselves, unless this 6633 // is a type that requires multi-step expansion. 6634 if (getTypeAction(NVT) != Expand && NVT != MVT::isVoid) { 6635 Lo = LegalizeOp(Lo); 6636 if (Hi.Val) 6637 // Don't legalize the high part if it is expanded to a single node. 6638 Hi = LegalizeOp(Hi); 6639 } 6640 6641 // Remember in a map if the values will be reused later. 6642 bool isNew = ExpandedNodes.insert(std::make_pair(Op, std::make_pair(Lo, Hi))); 6643 assert(isNew && "Value already expanded?!?"); 6644} 6645 6646/// SplitVectorOp - Given an operand of vector type, break it down into 6647/// two smaller values, still of vector type. 6648void SelectionDAGLegalize::SplitVectorOp(SDOperand Op, SDOperand &Lo, 6649 SDOperand &Hi) { 6650 assert(MVT::isVector(Op.getValueType()) && "Cannot split non-vector type!"); 6651 SDNode *Node = Op.Val; 6652 unsigned NumElements = MVT::getVectorNumElements(Op.getValueType()); 6653 assert(NumElements > 1 && "Cannot split a single element vector!"); 6654 6655 MVT::ValueType NewEltVT = MVT::getVectorElementType(Op.getValueType()); 6656 6657 unsigned NewNumElts_Lo = 1 << Log2_32(NumElements-1); 6658 unsigned NewNumElts_Hi = NumElements - NewNumElts_Lo; 6659 6660 MVT::ValueType NewVT_Lo = MVT::getVectorType(NewEltVT, NewNumElts_Lo); 6661 MVT::ValueType NewVT_Hi = MVT::getVectorType(NewEltVT, NewNumElts_Hi); 6662 6663 // See if we already split it. 6664 std::map<SDOperand, std::pair<SDOperand, SDOperand> >::iterator I 6665 = SplitNodes.find(Op); 6666 if (I != SplitNodes.end()) { 6667 Lo = I->second.first; 6668 Hi = I->second.second; 6669 return; 6670 } 6671 6672 switch (Node->getOpcode()) { 6673 default: 6674#ifndef NDEBUG 6675 Node->dump(&DAG); 6676#endif 6677 assert(0 && "Unhandled operation in SplitVectorOp!"); 6678 case ISD::UNDEF: 6679 Lo = DAG.getNode(ISD::UNDEF, NewVT_Lo); 6680 Hi = DAG.getNode(ISD::UNDEF, NewVT_Hi); 6681 break; 6682 case ISD::BUILD_PAIR: 6683 Lo = Node->getOperand(0); 6684 Hi = Node->getOperand(1); 6685 break; 6686 case ISD::INSERT_VECTOR_ELT: { 6687 SplitVectorOp(Node->getOperand(0), Lo, Hi); 6688 unsigned Index = cast<ConstantSDNode>(Node->getOperand(2))->getValue(); 6689 SDOperand ScalarOp = Node->getOperand(1); 6690 if (Index < NewNumElts_Lo) 6691 Lo = DAG.getNode(ISD::INSERT_VECTOR_ELT, NewVT_Lo, Lo, ScalarOp, 6692 DAG.getConstant(Index, TLI.getPointerTy())); 6693 else 6694 Hi = DAG.getNode(ISD::INSERT_VECTOR_ELT, NewVT_Hi, Hi, ScalarOp, 6695 DAG.getConstant(Index - NewNumElts_Lo, 6696 TLI.getPointerTy())); 6697 break; 6698 } 6699 case ISD::VECTOR_SHUFFLE: { 6700 // Build the low part. 6701 SDOperand Mask = Node->getOperand(2); 6702 SmallVector<SDOperand, 8> Ops; 6703 MVT::ValueType PtrVT = TLI.getPointerTy(); 6704 6705 // Insert all of the elements from the input that are needed. We use 6706 // buildvector of extractelement here because the input vectors will have 6707 // to be legalized, so this makes the code simpler. 6708 for (unsigned i = 0; i != NewNumElts_Lo; ++i) { 6709 unsigned Idx = cast<ConstantSDNode>(Mask.getOperand(i))->getValue(); 6710 SDOperand InVec = Node->getOperand(0); 6711 if (Idx >= NumElements) { 6712 InVec = Node->getOperand(1); 6713 Idx -= NumElements; 6714 } 6715 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, NewEltVT, InVec, 6716 DAG.getConstant(Idx, PtrVT))); 6717 } 6718 Lo = DAG.getNode(ISD::BUILD_VECTOR, NewVT_Lo, &Ops[0], Ops.size()); 6719 Ops.clear(); 6720 6721 for (unsigned i = NewNumElts_Lo; i != NumElements; ++i) { 6722 unsigned Idx = cast<ConstantSDNode>(Mask.getOperand(i))->getValue(); 6723 SDOperand InVec = Node->getOperand(0); 6724 if (Idx >= NumElements) { 6725 InVec = Node->getOperand(1); 6726 Idx -= NumElements; 6727 } 6728 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, NewEltVT, InVec, 6729 DAG.getConstant(Idx, PtrVT))); 6730 } 6731 Hi = DAG.getNode(ISD::BUILD_VECTOR, NewVT_Lo, &Ops[0], Ops.size()); 6732 break; 6733 } 6734 case ISD::BUILD_VECTOR: { 6735 SmallVector<SDOperand, 8> LoOps(Node->op_begin(), 6736 Node->op_begin()+NewNumElts_Lo); 6737 Lo = DAG.getNode(ISD::BUILD_VECTOR, NewVT_Lo, &LoOps[0], LoOps.size()); 6738 6739 SmallVector<SDOperand, 8> HiOps(Node->op_begin()+NewNumElts_Lo, 6740 Node->op_end()); 6741 Hi = DAG.getNode(ISD::BUILD_VECTOR, NewVT_Hi, &HiOps[0], HiOps.size()); 6742 break; 6743 } 6744 case ISD::CONCAT_VECTORS: { 6745 // FIXME: Handle non-power-of-two vectors? 6746 unsigned NewNumSubvectors = Node->getNumOperands() / 2; 6747 if (NewNumSubvectors == 1) { 6748 Lo = Node->getOperand(0); 6749 Hi = Node->getOperand(1); 6750 } else { 6751 SmallVector<SDOperand, 8> LoOps(Node->op_begin(), 6752 Node->op_begin()+NewNumSubvectors); 6753 Lo = DAG.getNode(ISD::CONCAT_VECTORS, NewVT_Lo, &LoOps[0], LoOps.size()); 6754 6755 SmallVector<SDOperand, 8> HiOps(Node->op_begin()+NewNumSubvectors, 6756 Node->op_end()); 6757 Hi = DAG.getNode(ISD::CONCAT_VECTORS, NewVT_Hi, &HiOps[0], HiOps.size()); 6758 } 6759 break; 6760 } 6761 case ISD::SELECT: { 6762 SDOperand Cond = Node->getOperand(0); 6763 6764 SDOperand LL, LH, RL, RH; 6765 SplitVectorOp(Node->getOperand(1), LL, LH); 6766 SplitVectorOp(Node->getOperand(2), RL, RH); 6767 6768 if (MVT::isVector(Cond.getValueType())) { 6769 // Handle a vector merge. 6770 SDOperand CL, CH; 6771 SplitVectorOp(Cond, CL, CH); 6772 Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, CL, LL, RL); 6773 Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, CH, LH, RH); 6774 } else { 6775 // Handle a simple select with vector operands. 6776 Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, Cond, LL, RL); 6777 Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, Cond, LH, RH); 6778 } 6779 break; 6780 } 6781 case ISD::ADD: 6782 case ISD::SUB: 6783 case ISD::MUL: 6784 case ISD::FADD: 6785 case ISD::FSUB: 6786 case ISD::FMUL: 6787 case ISD::SDIV: 6788 case ISD::UDIV: 6789 case ISD::FDIV: 6790 case ISD::FPOW: 6791 case ISD::AND: 6792 case ISD::OR: 6793 case ISD::XOR: 6794 case ISD::UREM: 6795 case ISD::SREM: 6796 case ISD::FREM: { 6797 SDOperand LL, LH, RL, RH; 6798 SplitVectorOp(Node->getOperand(0), LL, LH); 6799 SplitVectorOp(Node->getOperand(1), RL, RH); 6800 6801 Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, LL, RL); 6802 Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, LH, RH); 6803 break; 6804 } 6805 case ISD::FPOWI: { 6806 SDOperand L, H; 6807 SplitVectorOp(Node->getOperand(0), L, H); 6808 6809 Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, L, Node->getOperand(1)); 6810 Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, H, Node->getOperand(1)); 6811 break; 6812 } 6813 case ISD::CTTZ: 6814 case ISD::CTLZ: 6815 case ISD::CTPOP: 6816 case ISD::FNEG: 6817 case ISD::FABS: 6818 case ISD::FSQRT: 6819 case ISD::FSIN: 6820 case ISD::FCOS: 6821 case ISD::FP_TO_SINT: 6822 case ISD::FP_TO_UINT: 6823 case ISD::SINT_TO_FP: 6824 case ISD::UINT_TO_FP: { 6825 SDOperand L, H; 6826 SplitVectorOp(Node->getOperand(0), L, H); 6827 6828 Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, L); 6829 Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, H); 6830 break; 6831 } 6832 case ISD::LOAD: { 6833 LoadSDNode *LD = cast<LoadSDNode>(Node); 6834 SDOperand Ch = LD->getChain(); 6835 SDOperand Ptr = LD->getBasePtr(); 6836 const Value *SV = LD->getSrcValue(); 6837 int SVOffset = LD->getSrcValueOffset(); 6838 unsigned Alignment = LD->getAlignment(); 6839 bool isVolatile = LD->isVolatile(); 6840 6841 Lo = DAG.getLoad(NewVT_Lo, Ch, Ptr, SV, SVOffset, isVolatile, Alignment); 6842 unsigned IncrementSize = NewNumElts_Lo * MVT::getSizeInBits(NewEltVT)/8; 6843 Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, 6844 DAG.getIntPtrConstant(IncrementSize)); 6845 SVOffset += IncrementSize; 6846 Alignment = MinAlign(Alignment, IncrementSize); 6847 Hi = DAG.getLoad(NewVT_Hi, Ch, Ptr, SV, SVOffset, isVolatile, Alignment); 6848 6849 // Build a factor node to remember that this load is independent of the 6850 // other one. 6851 SDOperand TF = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), 6852 Hi.getValue(1)); 6853 6854 // Remember that we legalized the chain. 6855 AddLegalizedOperand(Op.getValue(1), LegalizeOp(TF)); 6856 break; 6857 } 6858 case ISD::BIT_CONVERT: { 6859 // We know the result is a vector. The input may be either a vector or a 6860 // scalar value. 6861 SDOperand InOp = Node->getOperand(0); 6862 if (!MVT::isVector(InOp.getValueType()) || 6863 MVT::getVectorNumElements(InOp.getValueType()) == 1) { 6864 // The input is a scalar or single-element vector. 6865 // Lower to a store/load so that it can be split. 6866 // FIXME: this could be improved probably. 6867 SDOperand Ptr = DAG.CreateStackTemporary(InOp.getValueType()); 6868 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(Ptr.Val); 6869 6870 SDOperand St = DAG.getStore(DAG.getEntryNode(), 6871 InOp, Ptr, 6872 PseudoSourceValue::getFixedStack(), 6873 FI->getIndex()); 6874 InOp = DAG.getLoad(Op.getValueType(), St, Ptr, 6875 PseudoSourceValue::getFixedStack(), 6876 FI->getIndex()); 6877 } 6878 // Split the vector and convert each of the pieces now. 6879 SplitVectorOp(InOp, Lo, Hi); 6880 Lo = DAG.getNode(ISD::BIT_CONVERT, NewVT_Lo, Lo); 6881 Hi = DAG.getNode(ISD::BIT_CONVERT, NewVT_Hi, Hi); 6882 break; 6883 } 6884 } 6885 6886 // Remember in a map if the values will be reused later. 6887 bool isNew = 6888 SplitNodes.insert(std::make_pair(Op, std::make_pair(Lo, Hi))).second; 6889 assert(isNew && "Value already split?!?"); 6890} 6891 6892 6893/// ScalarizeVectorOp - Given an operand of single-element vector type 6894/// (e.g. v1f32), convert it into the equivalent operation that returns a 6895/// scalar (e.g. f32) value. 6896SDOperand SelectionDAGLegalize::ScalarizeVectorOp(SDOperand Op) { 6897 assert(MVT::isVector(Op.getValueType()) && 6898 "Bad ScalarizeVectorOp invocation!"); 6899 SDNode *Node = Op.Val; 6900 MVT::ValueType NewVT = MVT::getVectorElementType(Op.getValueType()); 6901 assert(MVT::getVectorNumElements(Op.getValueType()) == 1); 6902 6903 // See if we already scalarized it. 6904 std::map<SDOperand, SDOperand>::iterator I = ScalarizedNodes.find(Op); 6905 if (I != ScalarizedNodes.end()) return I->second; 6906 6907 SDOperand Result; 6908 switch (Node->getOpcode()) { 6909 default: 6910#ifndef NDEBUG 6911 Node->dump(&DAG); cerr << "\n"; 6912#endif 6913 assert(0 && "Unknown vector operation in ScalarizeVectorOp!"); 6914 case ISD::ADD: 6915 case ISD::FADD: 6916 case ISD::SUB: 6917 case ISD::FSUB: 6918 case ISD::MUL: 6919 case ISD::FMUL: 6920 case ISD::SDIV: 6921 case ISD::UDIV: 6922 case ISD::FDIV: 6923 case ISD::SREM: 6924 case ISD::UREM: 6925 case ISD::FREM: 6926 case ISD::FPOW: 6927 case ISD::AND: 6928 case ISD::OR: 6929 case ISD::XOR: 6930 Result = DAG.getNode(Node->getOpcode(), 6931 NewVT, 6932 ScalarizeVectorOp(Node->getOperand(0)), 6933 ScalarizeVectorOp(Node->getOperand(1))); 6934 break; 6935 case ISD::FNEG: 6936 case ISD::FABS: 6937 case ISD::FSQRT: 6938 case ISD::FSIN: 6939 case ISD::FCOS: 6940 Result = DAG.getNode(Node->getOpcode(), 6941 NewVT, 6942 ScalarizeVectorOp(Node->getOperand(0))); 6943 break; 6944 case ISD::FPOWI: 6945 Result = DAG.getNode(Node->getOpcode(), 6946 NewVT, 6947 ScalarizeVectorOp(Node->getOperand(0)), 6948 Node->getOperand(1)); 6949 break; 6950 case ISD::LOAD: { 6951 LoadSDNode *LD = cast<LoadSDNode>(Node); 6952 SDOperand Ch = LegalizeOp(LD->getChain()); // Legalize the chain. 6953 SDOperand Ptr = LegalizeOp(LD->getBasePtr()); // Legalize the pointer. 6954 6955 const Value *SV = LD->getSrcValue(); 6956 int SVOffset = LD->getSrcValueOffset(); 6957 Result = DAG.getLoad(NewVT, Ch, Ptr, SV, SVOffset, 6958 LD->isVolatile(), LD->getAlignment()); 6959 6960 // Remember that we legalized the chain. 6961 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); 6962 break; 6963 } 6964 case ISD::BUILD_VECTOR: 6965 Result = Node->getOperand(0); 6966 break; 6967 case ISD::INSERT_VECTOR_ELT: 6968 // Returning the inserted scalar element. 6969 Result = Node->getOperand(1); 6970 break; 6971 case ISD::CONCAT_VECTORS: 6972 assert(Node->getOperand(0).getValueType() == NewVT && 6973 "Concat of non-legal vectors not yet supported!"); 6974 Result = Node->getOperand(0); 6975 break; 6976 case ISD::VECTOR_SHUFFLE: { 6977 // Figure out if the scalar is the LHS or RHS and return it. 6978 SDOperand EltNum = Node->getOperand(2).getOperand(0); 6979 if (cast<ConstantSDNode>(EltNum)->getValue()) 6980 Result = ScalarizeVectorOp(Node->getOperand(1)); 6981 else 6982 Result = ScalarizeVectorOp(Node->getOperand(0)); 6983 break; 6984 } 6985 case ISD::EXTRACT_SUBVECTOR: 6986 Result = Node->getOperand(0); 6987 assert(Result.getValueType() == NewVT); 6988 break; 6989 case ISD::BIT_CONVERT: 6990 Result = DAG.getNode(ISD::BIT_CONVERT, NewVT, Op.getOperand(0)); 6991 break; 6992 case ISD::SELECT: 6993 Result = DAG.getNode(ISD::SELECT, NewVT, Op.getOperand(0), 6994 ScalarizeVectorOp(Op.getOperand(1)), 6995 ScalarizeVectorOp(Op.getOperand(2))); 6996 break; 6997 } 6998 6999 if (TLI.isTypeLegal(NewVT)) 7000 Result = LegalizeOp(Result); 7001 bool isNew = ScalarizedNodes.insert(std::make_pair(Op, Result)).second; 7002 assert(isNew && "Value already scalarized?"); 7003 return Result; 7004} 7005 7006 7007// SelectionDAG::Legalize - This is the entry point for the file. 7008// 7009void SelectionDAG::Legalize() { 7010 if (ViewLegalizeDAGs) viewGraph(); 7011 7012 /// run - This is the main entry point to this class. 7013 /// 7014 SelectionDAGLegalize(*this).LegalizeDAG(); 7015} 7016 7017