LegalizeDAG.cpp revision 2f87640b86315beab8a5671cc23f524e59c58bd3
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the SelectionDAG::Legalize method. 11// 12//===----------------------------------------------------------------------===// 13 14#include "llvm/CallingConv.h" 15#include "llvm/Constants.h" 16#include "llvm/DebugInfo.h" 17#include "llvm/DerivedTypes.h" 18#include "llvm/LLVMContext.h" 19#include "llvm/CodeGen/Analysis.h" 20#include "llvm/CodeGen/MachineFunction.h" 21#include "llvm/CodeGen/MachineJumpTableInfo.h" 22#include "llvm/CodeGen/SelectionDAG.h" 23#include "llvm/Target/TargetFrameLowering.h" 24#include "llvm/Target/TargetLowering.h" 25#include "llvm/DataLayout.h" 26#include "llvm/Target/TargetMachine.h" 27#include "llvm/Support/Debug.h" 28#include "llvm/Support/ErrorHandling.h" 29#include "llvm/Support/MathExtras.h" 30#include "llvm/Support/raw_ostream.h" 31#include "llvm/ADT/DenseMap.h" 32#include "llvm/ADT/SmallVector.h" 33#include "llvm/ADT/SmallPtrSet.h" 34using namespace llvm; 35 36//===----------------------------------------------------------------------===// 37/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and 38/// hacks on it until the target machine can handle it. This involves 39/// eliminating value sizes the machine cannot handle (promoting small sizes to 40/// large sizes or splitting up large values into small values) as well as 41/// eliminating operations the machine cannot handle. 42/// 43/// This code also does a small amount of optimization and recognition of idioms 44/// as part of its processing. For example, if a target does not support a 45/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this 46/// will attempt merge setcc and brc instructions into brcc's. 47/// 48namespace { 49class SelectionDAGLegalize : public SelectionDAG::DAGUpdateListener { 50 const TargetMachine &TM; 51 const TargetLowering &TLI; 52 SelectionDAG &DAG; 53 54 /// LegalizePosition - The iterator for walking through the node list. 55 SelectionDAG::allnodes_iterator LegalizePosition; 56 57 /// LegalizedNodes - The set of nodes which have already been legalized. 58 SmallPtrSet<SDNode *, 16> LegalizedNodes; 59 60 // Libcall insertion helpers. 61 62public: 63 explicit SelectionDAGLegalize(SelectionDAG &DAG); 64 65 void LegalizeDAG(); 66 67private: 68 /// LegalizeOp - Legalizes the given operation. 69 void LegalizeOp(SDNode *Node); 70 71 SDValue OptimizeFloatStore(StoreSDNode *ST); 72 73 void LegalizeLoadOps(SDNode *Node); 74 void LegalizeStoreOps(SDNode *Node); 75 76 /// PerformInsertVectorEltInMemory - Some target cannot handle a variable 77 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 78 /// is necessary to spill the vector being inserted into to memory, perform 79 /// the insert there, and then read the result back. 80 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, 81 SDValue Idx, DebugLoc dl); 82 SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, 83 SDValue Idx, DebugLoc dl); 84 85 /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which 86 /// performs the same shuffe in terms of order or result bytes, but on a type 87 /// whose vector element type is narrower than the original shuffle type. 88 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 89 SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl, 90 SDValue N1, SDValue N2, 91 ArrayRef<int> Mask) const; 92 93 void LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, 94 DebugLoc dl); 95 96 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned); 97 SDValue ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, const SDValue *Ops, 98 unsigned NumOps, bool isSigned, DebugLoc dl); 99 100 std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC, 101 SDNode *Node, bool isSigned); 102 SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32, 103 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, 104 RTLIB::Libcall Call_PPCF128); 105 SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, 106 RTLIB::Libcall Call_I8, 107 RTLIB::Libcall Call_I16, 108 RTLIB::Libcall Call_I32, 109 RTLIB::Libcall Call_I64, 110 RTLIB::Libcall Call_I128); 111 void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 112 113 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, DebugLoc dl); 114 SDValue ExpandBUILD_VECTOR(SDNode *Node); 115 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); 116 void ExpandDYNAMIC_STACKALLOC(SDNode *Node, 117 SmallVectorImpl<SDValue> &Results); 118 SDValue ExpandFCOPYSIGN(SDNode *Node); 119 SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT, 120 DebugLoc dl); 121 SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned, 122 DebugLoc dl); 123 SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned, 124 DebugLoc dl); 125 126 SDValue ExpandBSWAP(SDValue Op, DebugLoc dl); 127 SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl); 128 129 SDValue ExpandExtractFromVectorThroughStack(SDValue Op); 130 SDValue ExpandInsertToVectorThroughStack(SDValue Op); 131 SDValue ExpandVectorBuildThroughStack(SDNode* Node); 132 133 SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP); 134 135 std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node); 136 137 void ExpandNode(SDNode *Node); 138 void PromoteNode(SDNode *Node); 139 140 void ForgetNode(SDNode *N) { 141 LegalizedNodes.erase(N); 142 if (LegalizePosition == SelectionDAG::allnodes_iterator(N)) 143 ++LegalizePosition; 144 } 145 146public: 147 // DAGUpdateListener implementation. 148 virtual void NodeDeleted(SDNode *N, SDNode *E) { 149 ForgetNode(N); 150 } 151 virtual void NodeUpdated(SDNode *N) {} 152 153 // Node replacement helpers 154 void ReplacedNode(SDNode *N) { 155 if (N->use_empty()) { 156 DAG.RemoveDeadNode(N); 157 } else { 158 ForgetNode(N); 159 } 160 } 161 void ReplaceNode(SDNode *Old, SDNode *New) { 162 DAG.ReplaceAllUsesWith(Old, New); 163 ReplacedNode(Old); 164 } 165 void ReplaceNode(SDValue Old, SDValue New) { 166 DAG.ReplaceAllUsesWith(Old, New); 167 ReplacedNode(Old.getNode()); 168 } 169 void ReplaceNode(SDNode *Old, const SDValue *New) { 170 DAG.ReplaceAllUsesWith(Old, New); 171 ReplacedNode(Old); 172 } 173}; 174} 175 176/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which 177/// performs the same shuffe in terms of order or result bytes, but on a type 178/// whose vector element type is narrower than the original shuffle type. 179/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 180SDValue 181SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl, 182 SDValue N1, SDValue N2, 183 ArrayRef<int> Mask) const { 184 unsigned NumMaskElts = VT.getVectorNumElements(); 185 unsigned NumDestElts = NVT.getVectorNumElements(); 186 unsigned NumEltsGrowth = NumDestElts / NumMaskElts; 187 188 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); 189 190 if (NumEltsGrowth == 1) 191 return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]); 192 193 SmallVector<int, 8> NewMask; 194 for (unsigned i = 0; i != NumMaskElts; ++i) { 195 int Idx = Mask[i]; 196 for (unsigned j = 0; j != NumEltsGrowth; ++j) { 197 if (Idx < 0) 198 NewMask.push_back(-1); 199 else 200 NewMask.push_back(Idx * NumEltsGrowth + j); 201 } 202 } 203 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?"); 204 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?"); 205 return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]); 206} 207 208SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag) 209 : SelectionDAG::DAGUpdateListener(dag), 210 TM(dag.getTarget()), TLI(dag.getTargetLoweringInfo()), 211 DAG(dag) { 212} 213 214void SelectionDAGLegalize::LegalizeDAG() { 215 DAG.AssignTopologicalOrder(); 216 217 // Visit all the nodes. We start in topological order, so that we see 218 // nodes with their original operands intact. Legalization can produce 219 // new nodes which may themselves need to be legalized. Iterate until all 220 // nodes have been legalized. 221 for (;;) { 222 bool AnyLegalized = false; 223 for (LegalizePosition = DAG.allnodes_end(); 224 LegalizePosition != DAG.allnodes_begin(); ) { 225 --LegalizePosition; 226 227 SDNode *N = LegalizePosition; 228 if (LegalizedNodes.insert(N)) { 229 AnyLegalized = true; 230 LegalizeOp(N); 231 } 232 } 233 if (!AnyLegalized) 234 break; 235 236 } 237 238 // Remove dead nodes now. 239 DAG.RemoveDeadNodes(); 240} 241 242/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or 243/// a load from the constant pool. 244SDValue 245SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) { 246 bool Extend = false; 247 DebugLoc dl = CFP->getDebugLoc(); 248 249 // If a FP immediate is precise when represented as a float and if the 250 // target can do an extending load from float to double, we put it into 251 // the constant pool as a float, even if it's is statically typed as a 252 // double. This shrinks FP constants and canonicalizes them for targets where 253 // an FP extending load is the same cost as a normal load (such as on the x87 254 // fp stack or PPC FP unit). 255 EVT VT = CFP->getValueType(0); 256 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue()); 257 if (!UseCP) { 258 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion"); 259 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), 260 (VT == MVT::f64) ? MVT::i64 : MVT::i32); 261 } 262 263 EVT OrigVT = VT; 264 EVT SVT = VT; 265 while (SVT != MVT::f32) { 266 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1); 267 if (ConstantFPSDNode::isValueValidForType(SVT, CFP->getValueAPF()) && 268 // Only do this if the target has a native EXTLOAD instruction from 269 // smaller type. 270 TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) && 271 TLI.ShouldShrinkFPConstant(OrigVT)) { 272 Type *SType = SVT.getTypeForEVT(*DAG.getContext()); 273 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType)); 274 VT = SVT; 275 Extend = true; 276 } 277 } 278 279 SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy()); 280 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 281 if (Extend) { 282 SDValue Result = 283 DAG.getExtLoad(ISD::EXTLOAD, dl, OrigVT, 284 DAG.getEntryNode(), 285 CPIdx, MachinePointerInfo::getConstantPool(), 286 VT, false, false, Alignment); 287 return Result; 288 } 289 SDValue Result = 290 DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx, 291 MachinePointerInfo::getConstantPool(), false, false, false, 292 Alignment); 293 return Result; 294} 295 296/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores. 297static void ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG, 298 const TargetLowering &TLI, 299 SelectionDAGLegalize *DAGLegalize) { 300 assert(ST->getAddressingMode() == ISD::UNINDEXED && 301 "unaligned indexed stores not implemented!"); 302 SDValue Chain = ST->getChain(); 303 SDValue Ptr = ST->getBasePtr(); 304 SDValue Val = ST->getValue(); 305 EVT VT = Val.getValueType(); 306 int Alignment = ST->getAlignment(); 307 DebugLoc dl = ST->getDebugLoc(); 308 if (ST->getMemoryVT().isFloatingPoint() || 309 ST->getMemoryVT().isVector()) { 310 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 311 if (TLI.isTypeLegal(intVT)) { 312 // Expand to a bitconvert of the value to the integer type of the 313 // same size, then a (misaligned) int store. 314 // FIXME: Does not handle truncating floating point stores! 315 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 316 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 317 ST->isVolatile(), ST->isNonTemporal(), Alignment); 318 DAGLegalize->ReplaceNode(SDValue(ST, 0), Result); 319 return; 320 } 321 // Do a (aligned) store to a stack slot, then copy from the stack slot 322 // to the final destination using (unaligned) integer loads and stores. 323 EVT StoredVT = ST->getMemoryVT(); 324 EVT RegVT = 325 TLI.getRegisterType(*DAG.getContext(), 326 EVT::getIntegerVT(*DAG.getContext(), 327 StoredVT.getSizeInBits())); 328 unsigned StoredBytes = StoredVT.getSizeInBits() / 8; 329 unsigned RegBytes = RegVT.getSizeInBits() / 8; 330 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 331 332 // Make sure the stack slot is also aligned for the register type. 333 SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT); 334 335 // Perform the original store, only redirected to the stack slot. 336 SDValue Store = DAG.getTruncStore(Chain, dl, 337 Val, StackPtr, MachinePointerInfo(), 338 StoredVT, false, false, 0); 339 SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy()); 340 SmallVector<SDValue, 8> Stores; 341 unsigned Offset = 0; 342 343 // Do all but one copies using the full register width. 344 for (unsigned i = 1; i < NumRegs; i++) { 345 // Load one integer register's worth from the stack slot. 346 SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr, 347 MachinePointerInfo(), 348 false, false, false, 0); 349 // Store it to the final location. Remember the store. 350 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 351 ST->getPointerInfo().getWithOffset(Offset), 352 ST->isVolatile(), ST->isNonTemporal(), 353 MinAlign(ST->getAlignment(), Offset))); 354 // Increment the pointers. 355 Offset += RegBytes; 356 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr, 357 Increment); 358 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 359 } 360 361 // The last store may be partial. Do a truncating store. On big-endian 362 // machines this requires an extending load from the stack slot to ensure 363 // that the bits are in the right place. 364 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 365 8 * (StoredBytes - Offset)); 366 367 // Load from the stack slot. 368 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 369 MachinePointerInfo(), 370 MemVT, false, false, 0); 371 372 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 373 ST->getPointerInfo() 374 .getWithOffset(Offset), 375 MemVT, ST->isVolatile(), 376 ST->isNonTemporal(), 377 MinAlign(ST->getAlignment(), Offset))); 378 // The order of the stores doesn't matter - say it with a TokenFactor. 379 SDValue Result = 380 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0], 381 Stores.size()); 382 DAGLegalize->ReplaceNode(SDValue(ST, 0), Result); 383 return; 384 } 385 assert(ST->getMemoryVT().isInteger() && 386 !ST->getMemoryVT().isVector() && 387 "Unaligned store of unknown type."); 388 // Get the half-size VT 389 EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext()); 390 int NumBits = NewStoredVT.getSizeInBits(); 391 int IncrementSize = NumBits / 8; 392 393 // Divide the stored value in two parts. 394 SDValue ShiftAmount = DAG.getConstant(NumBits, 395 TLI.getShiftAmountTy(Val.getValueType())); 396 SDValue Lo = Val; 397 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 398 399 // Store the two parts 400 SDValue Store1, Store2; 401 Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr, 402 ST->getPointerInfo(), NewStoredVT, 403 ST->isVolatile(), ST->isNonTemporal(), Alignment); 404 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 405 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 406 Alignment = MinAlign(Alignment, IncrementSize); 407 Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr, 408 ST->getPointerInfo().getWithOffset(IncrementSize), 409 NewStoredVT, ST->isVolatile(), ST->isNonTemporal(), 410 Alignment); 411 412 SDValue Result = 413 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 414 DAGLegalize->ReplaceNode(SDValue(ST, 0), Result); 415} 416 417/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads. 418static void 419ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG, 420 const TargetLowering &TLI, 421 SDValue &ValResult, SDValue &ChainResult) { 422 assert(LD->getAddressingMode() == ISD::UNINDEXED && 423 "unaligned indexed loads not implemented!"); 424 SDValue Chain = LD->getChain(); 425 SDValue Ptr = LD->getBasePtr(); 426 EVT VT = LD->getValueType(0); 427 EVT LoadedVT = LD->getMemoryVT(); 428 DebugLoc dl = LD->getDebugLoc(); 429 if (VT.isFloatingPoint() || VT.isVector()) { 430 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 431 if (TLI.isTypeLegal(intVT) && TLI.isTypeLegal(LoadedVT)) { 432 // Expand to a (misaligned) integer load of the same size, 433 // then bitconvert to floating point or vector. 434 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getPointerInfo(), 435 LD->isVolatile(), 436 LD->isNonTemporal(), 437 LD->isInvariant(), LD->getAlignment()); 438 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 439 if (LoadedVT != VT) 440 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 441 ISD::ANY_EXTEND, dl, VT, Result); 442 443 ValResult = Result; 444 ChainResult = Chain; 445 return; 446 } 447 448 // Copy the value to a (aligned) stack slot using (unaligned) integer 449 // loads and stores, then do a (aligned) load from the stack slot. 450 EVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT); 451 unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8; 452 unsigned RegBytes = RegVT.getSizeInBits() / 8; 453 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 454 455 // Make sure the stack slot is also aligned for the register type. 456 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 457 458 SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy()); 459 SmallVector<SDValue, 8> Stores; 460 SDValue StackPtr = StackBase; 461 unsigned Offset = 0; 462 463 // Do all but one copies using the full register width. 464 for (unsigned i = 1; i < NumRegs; i++) { 465 // Load one integer register's worth from the original location. 466 SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr, 467 LD->getPointerInfo().getWithOffset(Offset), 468 LD->isVolatile(), LD->isNonTemporal(), 469 LD->isInvariant(), 470 MinAlign(LD->getAlignment(), Offset)); 471 // Follow the load with a store to the stack slot. Remember the store. 472 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr, 473 MachinePointerInfo(), false, false, 0)); 474 // Increment the pointers. 475 Offset += RegBytes; 476 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 477 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr, 478 Increment); 479 } 480 481 // The last copy may be partial. Do an extending load. 482 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 483 8 * (LoadedBytes - Offset)); 484 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 485 LD->getPointerInfo().getWithOffset(Offset), 486 MemVT, LD->isVolatile(), 487 LD->isNonTemporal(), 488 MinAlign(LD->getAlignment(), Offset)); 489 // Follow the load with a store to the stack slot. Remember the store. 490 // On big-endian machines this requires a truncating store to ensure 491 // that the bits end up in the right place. 492 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr, 493 MachinePointerInfo(), MemVT, 494 false, false, 0)); 495 496 // The order of the stores doesn't matter - say it with a TokenFactor. 497 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0], 498 Stores.size()); 499 500 // Finally, perform the original load only redirected to the stack slot. 501 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 502 MachinePointerInfo(), LoadedVT, false, false, 0); 503 504 // Callers expect a MERGE_VALUES node. 505 ValResult = Load; 506 ChainResult = TF; 507 return; 508 } 509 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 510 "Unaligned load of unsupported type."); 511 512 // Compute the new VT that is half the size of the old one. This is an 513 // integer MVT. 514 unsigned NumBits = LoadedVT.getSizeInBits(); 515 EVT NewLoadedVT; 516 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 517 NumBits >>= 1; 518 519 unsigned Alignment = LD->getAlignment(); 520 unsigned IncrementSize = NumBits / 8; 521 ISD::LoadExtType HiExtType = LD->getExtensionType(); 522 523 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 524 if (HiExtType == ISD::NON_EXTLOAD) 525 HiExtType = ISD::ZEXTLOAD; 526 527 // Load the value in two parts 528 SDValue Lo, Hi; 529 if (TLI.isLittleEndian()) { 530 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 531 NewLoadedVT, LD->isVolatile(), 532 LD->isNonTemporal(), Alignment); 533 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 534 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 535 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 536 LD->getPointerInfo().getWithOffset(IncrementSize), 537 NewLoadedVT, LD->isVolatile(), 538 LD->isNonTemporal(), MinAlign(Alignment,IncrementSize)); 539 } else { 540 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 541 NewLoadedVT, LD->isVolatile(), 542 LD->isNonTemporal(), Alignment); 543 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 544 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 545 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 546 LD->getPointerInfo().getWithOffset(IncrementSize), 547 NewLoadedVT, LD->isVolatile(), 548 LD->isNonTemporal(), MinAlign(Alignment,IncrementSize)); 549 } 550 551 // aggregate the two parts 552 SDValue ShiftAmount = DAG.getConstant(NumBits, 553 TLI.getShiftAmountTy(Hi.getValueType())); 554 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 555 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 556 557 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 558 Hi.getValue(1)); 559 560 ValResult = Result; 561 ChainResult = TF; 562} 563 564/// PerformInsertVectorEltInMemory - Some target cannot handle a variable 565/// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 566/// is necessary to spill the vector being inserted into to memory, perform 567/// the insert there, and then read the result back. 568SDValue SelectionDAGLegalize:: 569PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx, 570 DebugLoc dl) { 571 SDValue Tmp1 = Vec; 572 SDValue Tmp2 = Val; 573 SDValue Tmp3 = Idx; 574 575 // If the target doesn't support this, we have to spill the input vector 576 // to a temporary stack slot, update the element, then reload it. This is 577 // badness. We could also load the value into a vector register (either 578 // with a "move to register" or "extload into register" instruction, then 579 // permute it into place, if the idx is a constant and if the idx is 580 // supported by the target. 581 EVT VT = Tmp1.getValueType(); 582 EVT EltVT = VT.getVectorElementType(); 583 EVT IdxVT = Tmp3.getValueType(); 584 EVT PtrVT = TLI.getPointerTy(); 585 SDValue StackPtr = DAG.CreateStackTemporary(VT); 586 587 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 588 589 // Store the vector. 590 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr, 591 MachinePointerInfo::getFixedStack(SPFI), 592 false, false, 0); 593 594 // Truncate or zero extend offset to target pointer type. 595 unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND; 596 Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3); 597 // Add the offset to the index. 598 unsigned EltSize = EltVT.getSizeInBits()/8; 599 Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT)); 600 SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr); 601 // Store the scalar value. 602 Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT, 603 false, false, 0); 604 // Load the updated vector. 605 return DAG.getLoad(VT, dl, Ch, StackPtr, 606 MachinePointerInfo::getFixedStack(SPFI), false, false, 607 false, 0); 608} 609 610 611SDValue SelectionDAGLegalize:: 612ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) { 613 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) { 614 // SCALAR_TO_VECTOR requires that the type of the value being inserted 615 // match the element type of the vector being created, except for 616 // integers in which case the inserted value can be over width. 617 EVT EltVT = Vec.getValueType().getVectorElementType(); 618 if (Val.getValueType() == EltVT || 619 (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) { 620 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, 621 Vec.getValueType(), Val); 622 623 unsigned NumElts = Vec.getValueType().getVectorNumElements(); 624 // We generate a shuffle of InVec and ScVec, so the shuffle mask 625 // should be 0,1,2,3,4,5... with the appropriate element replaced with 626 // elt 0 of the RHS. 627 SmallVector<int, 8> ShufOps; 628 for (unsigned i = 0; i != NumElts; ++i) 629 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts); 630 631 return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, 632 &ShufOps[0]); 633 } 634 } 635 return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl); 636} 637 638SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) { 639 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 640 // FIXME: We shouldn't do this for TargetConstantFP's. 641 // FIXME: move this to the DAG Combiner! Note that we can't regress due 642 // to phase ordering between legalized code and the dag combiner. This 643 // probably means that we need to integrate dag combiner and legalizer 644 // together. 645 // We generally can't do this one for long doubles. 646 SDValue Chain = ST->getChain(); 647 SDValue Ptr = ST->getBasePtr(); 648 unsigned Alignment = ST->getAlignment(); 649 bool isVolatile = ST->isVolatile(); 650 bool isNonTemporal = ST->isNonTemporal(); 651 DebugLoc dl = ST->getDebugLoc(); 652 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) { 653 if (CFP->getValueType(0) == MVT::f32 && 654 TLI.isTypeLegal(MVT::i32)) { 655 SDValue Con = DAG.getConstant(CFP->getValueAPF(). 656 bitcastToAPInt().zextOrTrunc(32), 657 MVT::i32); 658 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 659 isVolatile, isNonTemporal, Alignment); 660 } 661 662 if (CFP->getValueType(0) == MVT::f64) { 663 // If this target supports 64-bit registers, do a single 64-bit store. 664 if (TLI.isTypeLegal(MVT::i64)) { 665 SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 666 zextOrTrunc(64), MVT::i64); 667 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 668 isVolatile, isNonTemporal, Alignment); 669 } 670 671 if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) { 672 // Otherwise, if the target supports 32-bit registers, use 2 32-bit 673 // stores. If the target supports neither 32- nor 64-bits, this 674 // xform is certainly not worth it. 675 const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt(); 676 SDValue Lo = DAG.getConstant(IntVal.trunc(32), MVT::i32); 677 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32); 678 if (TLI.isBigEndian()) std::swap(Lo, Hi); 679 680 Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), isVolatile, 681 isNonTemporal, Alignment); 682 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 683 DAG.getIntPtrConstant(4)); 684 Hi = DAG.getStore(Chain, dl, Hi, Ptr, 685 ST->getPointerInfo().getWithOffset(4), 686 isVolatile, isNonTemporal, MinAlign(Alignment, 4U)); 687 688 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 689 } 690 } 691 } 692 return SDValue(0, 0); 693} 694 695void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) { 696 StoreSDNode *ST = cast<StoreSDNode>(Node); 697 SDValue Chain = ST->getChain(); 698 SDValue Ptr = ST->getBasePtr(); 699 DebugLoc dl = Node->getDebugLoc(); 700 701 unsigned Alignment = ST->getAlignment(); 702 bool isVolatile = ST->isVolatile(); 703 bool isNonTemporal = ST->isNonTemporal(); 704 705 if (!ST->isTruncatingStore()) { 706 if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) { 707 ReplaceNode(ST, OptStore); 708 return; 709 } 710 711 { 712 SDValue Value = ST->getValue(); 713 EVT VT = Value.getValueType(); 714 switch (TLI.getOperationAction(ISD::STORE, VT)) { 715 default: llvm_unreachable("This action is not supported yet!"); 716 case TargetLowering::Legal: 717 // If this is an unaligned store and the target doesn't support it, 718 // expand it. 719 if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) { 720 Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext()); 721 unsigned ABIAlignment= TLI.getDataLayout()->getABITypeAlignment(Ty); 722 if (ST->getAlignment() < ABIAlignment) 723 ExpandUnalignedStore(cast<StoreSDNode>(Node), 724 DAG, TLI, this); 725 } 726 break; 727 case TargetLowering::Custom: { 728 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 729 if (Res.getNode()) 730 ReplaceNode(SDValue(Node, 0), Res); 731 return; 732 } 733 case TargetLowering::Promote: { 734 assert(VT.isVector() && "Unknown legal promote case!"); 735 Value = DAG.getNode(ISD::BITCAST, dl, 736 TLI.getTypeToPromoteTo(ISD::STORE, VT), Value); 737 SDValue Result = 738 DAG.getStore(Chain, dl, Value, Ptr, 739 ST->getPointerInfo(), isVolatile, 740 isNonTemporal, Alignment); 741 ReplaceNode(SDValue(Node, 0), Result); 742 break; 743 } 744 } 745 return; 746 } 747 } else { 748 SDValue Value = ST->getValue(); 749 750 EVT StVT = ST->getMemoryVT(); 751 unsigned StWidth = StVT.getSizeInBits(); 752 753 if (StWidth != StVT.getStoreSizeInBits()) { 754 // Promote to a byte-sized store with upper bits zero if not 755 // storing an integral number of bytes. For example, promote 756 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 757 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), 758 StVT.getStoreSizeInBits()); 759 Value = DAG.getZeroExtendInReg(Value, dl, StVT); 760 SDValue Result = 761 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 762 NVT, isVolatile, isNonTemporal, Alignment); 763 ReplaceNode(SDValue(Node, 0), Result); 764 } else if (StWidth & (StWidth - 1)) { 765 // If not storing a power-of-2 number of bits, expand as two stores. 766 assert(!StVT.isVector() && "Unsupported truncstore!"); 767 unsigned RoundWidth = 1 << Log2_32(StWidth); 768 assert(RoundWidth < StWidth); 769 unsigned ExtraWidth = StWidth - RoundWidth; 770 assert(ExtraWidth < RoundWidth); 771 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 772 "Store size not an integral number of bytes!"); 773 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 774 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 775 SDValue Lo, Hi; 776 unsigned IncrementSize; 777 778 if (TLI.isLittleEndian()) { 779 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) 780 // Store the bottom RoundWidth bits. 781 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 782 RoundVT, 783 isVolatile, isNonTemporal, Alignment); 784 785 // Store the remaining ExtraWidth bits. 786 IncrementSize = RoundWidth / 8; 787 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 788 DAG.getIntPtrConstant(IncrementSize)); 789 Hi = DAG.getNode(ISD::SRL, dl, Value.getValueType(), Value, 790 DAG.getConstant(RoundWidth, 791 TLI.getShiftAmountTy(Value.getValueType()))); 792 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, 793 ST->getPointerInfo().getWithOffset(IncrementSize), 794 ExtraVT, isVolatile, isNonTemporal, 795 MinAlign(Alignment, IncrementSize)); 796 } else { 797 // Big endian - avoid unaligned stores. 798 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X 799 // Store the top RoundWidth bits. 800 Hi = DAG.getNode(ISD::SRL, dl, Value.getValueType(), Value, 801 DAG.getConstant(ExtraWidth, 802 TLI.getShiftAmountTy(Value.getValueType()))); 803 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(), 804 RoundVT, isVolatile, isNonTemporal, Alignment); 805 806 // Store the remaining ExtraWidth bits. 807 IncrementSize = RoundWidth / 8; 808 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 809 DAG.getIntPtrConstant(IncrementSize)); 810 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, 811 ST->getPointerInfo().getWithOffset(IncrementSize), 812 ExtraVT, isVolatile, isNonTemporal, 813 MinAlign(Alignment, IncrementSize)); 814 } 815 816 // The order of the stores doesn't matter. 817 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 818 ReplaceNode(SDValue(Node, 0), Result); 819 } else { 820 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { 821 default: llvm_unreachable("This action is not supported yet!"); 822 case TargetLowering::Legal: 823 // If this is an unaligned store and the target doesn't support it, 824 // expand it. 825 if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) { 826 Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext()); 827 unsigned ABIAlignment= TLI.getDataLayout()->getABITypeAlignment(Ty); 828 if (ST->getAlignment() < ABIAlignment) 829 ExpandUnalignedStore(cast<StoreSDNode>(Node), DAG, TLI, this); 830 } 831 break; 832 case TargetLowering::Custom: { 833 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 834 if (Res.getNode()) 835 ReplaceNode(SDValue(Node, 0), Res); 836 return; 837 } 838 case TargetLowering::Expand: 839 assert(!StVT.isVector() && 840 "Vector Stores are handled in LegalizeVectorOps"); 841 842 // TRUNCSTORE:i16 i32 -> STORE i16 843 assert(TLI.isTypeLegal(StVT) && 844 "Do not know how to expand this store!"); 845 Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value); 846 SDValue Result = 847 DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 848 isVolatile, isNonTemporal, Alignment); 849 ReplaceNode(SDValue(Node, 0), Result); 850 break; 851 } 852 } 853 } 854} 855 856void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) { 857 LoadSDNode *LD = cast<LoadSDNode>(Node); 858 SDValue Chain = LD->getChain(); // The chain. 859 SDValue Ptr = LD->getBasePtr(); // The base pointer. 860 SDValue Value; // The value returned by the load op. 861 DebugLoc dl = Node->getDebugLoc(); 862 863 ISD::LoadExtType ExtType = LD->getExtensionType(); 864 if (ExtType == ISD::NON_EXTLOAD) { 865 EVT VT = Node->getValueType(0); 866 SDValue RVal = SDValue(Node, 0); 867 SDValue RChain = SDValue(Node, 1); 868 869 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 870 default: llvm_unreachable("This action is not supported yet!"); 871 case TargetLowering::Legal: 872 // If this is an unaligned load and the target doesn't support it, 873 // expand it. 874 if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) { 875 Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext()); 876 unsigned ABIAlignment = 877 TLI.getDataLayout()->getABITypeAlignment(Ty); 878 if (LD->getAlignment() < ABIAlignment){ 879 ExpandUnalignedLoad(cast<LoadSDNode>(Node), DAG, TLI, RVal, RChain); 880 } 881 } 882 break; 883 case TargetLowering::Custom: { 884 SDValue Res = TLI.LowerOperation(RVal, DAG); 885 if (Res.getNode()) { 886 RVal = Res; 887 RChain = Res.getValue(1); 888 } 889 break; 890 } 891 case TargetLowering::Promote: { 892 // Only promote a load of vector type to another. 893 assert(VT.isVector() && "Cannot promote this load!"); 894 // Change base type to a different vector type. 895 EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 896 897 SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getPointerInfo(), 898 LD->isVolatile(), LD->isNonTemporal(), 899 LD->isInvariant(), LD->getAlignment()); 900 RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res); 901 RChain = Res.getValue(1); 902 break; 903 } 904 } 905 if (RChain.getNode() != Node) { 906 assert(RVal.getNode() != Node && "Load must be completely replaced"); 907 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal); 908 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain); 909 ReplacedNode(Node); 910 } 911 return; 912 } 913 914 EVT SrcVT = LD->getMemoryVT(); 915 unsigned SrcWidth = SrcVT.getSizeInBits(); 916 unsigned Alignment = LD->getAlignment(); 917 bool isVolatile = LD->isVolatile(); 918 bool isNonTemporal = LD->isNonTemporal(); 919 920 if (SrcWidth != SrcVT.getStoreSizeInBits() && 921 // Some targets pretend to have an i1 loading operation, and actually 922 // load an i8. This trick is correct for ZEXTLOAD because the top 7 923 // bits are guaranteed to be zero; it helps the optimizers understand 924 // that these bits are zero. It is also useful for EXTLOAD, since it 925 // tells the optimizers that those bits are undefined. It would be 926 // nice to have an effective generic way of getting these benefits... 927 // Until such a way is found, don't insist on promoting i1 here. 928 (SrcVT != MVT::i1 || 929 TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) { 930 // Promote to a byte-sized load if not loading an integral number of 931 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 932 unsigned NewWidth = SrcVT.getStoreSizeInBits(); 933 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth); 934 SDValue Ch; 935 936 // The extra bits are guaranteed to be zero, since we stored them that 937 // way. A zext load from NVT thus automatically gives zext from SrcVT. 938 939 ISD::LoadExtType NewExtType = 940 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; 941 942 SDValue Result = 943 DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), 944 Chain, Ptr, LD->getPointerInfo(), 945 NVT, isVolatile, isNonTemporal, Alignment); 946 947 Ch = Result.getValue(1); // The chain. 948 949 if (ExtType == ISD::SEXTLOAD) 950 // Having the top bits zero doesn't help when sign extending. 951 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 952 Result.getValueType(), 953 Result, DAG.getValueType(SrcVT)); 954 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) 955 // All the top bits are guaranteed to be zero - inform the optimizers. 956 Result = DAG.getNode(ISD::AssertZext, dl, 957 Result.getValueType(), Result, 958 DAG.getValueType(SrcVT)); 959 960 Value = Result; 961 Chain = Ch; 962 } else if (SrcWidth & (SrcWidth - 1)) { 963 // If not loading a power-of-2 number of bits, expand as two loads. 964 assert(!SrcVT.isVector() && "Unsupported extload!"); 965 unsigned RoundWidth = 1 << Log2_32(SrcWidth); 966 assert(RoundWidth < SrcWidth); 967 unsigned ExtraWidth = SrcWidth - RoundWidth; 968 assert(ExtraWidth < RoundWidth); 969 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 970 "Load size not an integral number of bytes!"); 971 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 972 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 973 SDValue Lo, Hi, Ch; 974 unsigned IncrementSize; 975 976 if (TLI.isLittleEndian()) { 977 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) 978 // Load the bottom RoundWidth bits. 979 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), 980 Chain, Ptr, 981 LD->getPointerInfo(), RoundVT, isVolatile, 982 isNonTemporal, Alignment); 983 984 // Load the remaining ExtraWidth bits. 985 IncrementSize = RoundWidth / 8; 986 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 987 DAG.getIntPtrConstant(IncrementSize)); 988 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 989 LD->getPointerInfo().getWithOffset(IncrementSize), 990 ExtraVT, isVolatile, isNonTemporal, 991 MinAlign(Alignment, IncrementSize)); 992 993 // Build a factor node to remember that this load is independent of 994 // the other one. 995 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 996 Hi.getValue(1)); 997 998 // Move the top bits to the right place. 999 Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi, 1000 DAG.getConstant(RoundWidth, 1001 TLI.getShiftAmountTy(Hi.getValueType()))); 1002 1003 // Join the hi and lo parts. 1004 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 1005 } else { 1006 // Big endian - avoid unaligned loads. 1007 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 1008 // Load the top RoundWidth bits. 1009 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 1010 LD->getPointerInfo(), RoundVT, isVolatile, 1011 isNonTemporal, Alignment); 1012 1013 // Load the remaining ExtraWidth bits. 1014 IncrementSize = RoundWidth / 8; 1015 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 1016 DAG.getIntPtrConstant(IncrementSize)); 1017 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, 1018 dl, Node->getValueType(0), Chain, Ptr, 1019 LD->getPointerInfo().getWithOffset(IncrementSize), 1020 ExtraVT, isVolatile, isNonTemporal, 1021 MinAlign(Alignment, IncrementSize)); 1022 1023 // Build a factor node to remember that this load is independent of 1024 // the other one. 1025 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 1026 Hi.getValue(1)); 1027 1028 // Move the top bits to the right place. 1029 Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi, 1030 DAG.getConstant(ExtraWidth, 1031 TLI.getShiftAmountTy(Hi.getValueType()))); 1032 1033 // Join the hi and lo parts. 1034 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 1035 } 1036 1037 Chain = Ch; 1038 } else { 1039 bool isCustom = false; 1040 switch (TLI.getLoadExtAction(ExtType, SrcVT)) { 1041 default: llvm_unreachable("This action is not supported yet!"); 1042 case TargetLowering::Custom: 1043 isCustom = true; 1044 // FALLTHROUGH 1045 case TargetLowering::Legal: { 1046 Value = SDValue(Node, 0); 1047 Chain = SDValue(Node, 1); 1048 1049 if (isCustom) { 1050 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 1051 if (Res.getNode()) { 1052 Value = Res; 1053 Chain = Res.getValue(1); 1054 } 1055 } else { 1056 // If this is an unaligned load and the target doesn't support it, 1057 // expand it. 1058 if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) { 1059 Type *Ty = 1060 LD->getMemoryVT().getTypeForEVT(*DAG.getContext()); 1061 unsigned ABIAlignment = 1062 TLI.getDataLayout()->getABITypeAlignment(Ty); 1063 if (LD->getAlignment() < ABIAlignment){ 1064 ExpandUnalignedLoad(cast<LoadSDNode>(Node), 1065 DAG, TLI, Value, Chain); 1066 } 1067 } 1068 } 1069 break; 1070 } 1071 case TargetLowering::Expand: 1072 if (!TLI.isLoadExtLegal(ISD::EXTLOAD, SrcVT) && TLI.isTypeLegal(SrcVT)) { 1073 SDValue Load = DAG.getLoad(SrcVT, dl, Chain, Ptr, 1074 LD->getPointerInfo(), 1075 LD->isVolatile(), LD->isNonTemporal(), 1076 LD->isInvariant(), LD->getAlignment()); 1077 unsigned ExtendOp; 1078 switch (ExtType) { 1079 case ISD::EXTLOAD: 1080 ExtendOp = (SrcVT.isFloatingPoint() ? 1081 ISD::FP_EXTEND : ISD::ANY_EXTEND); 1082 break; 1083 case ISD::SEXTLOAD: ExtendOp = ISD::SIGN_EXTEND; break; 1084 case ISD::ZEXTLOAD: ExtendOp = ISD::ZERO_EXTEND; break; 1085 default: llvm_unreachable("Unexpected extend load type!"); 1086 } 1087 Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load); 1088 Chain = Load.getValue(1); 1089 break; 1090 } 1091 1092 assert(!SrcVT.isVector() && 1093 "Vector Loads are handled in LegalizeVectorOps"); 1094 1095 // FIXME: This does not work for vectors on most targets. Sign- and 1096 // zero-extend operations are currently folded into extending loads, 1097 // whether they are legal or not, and then we end up here without any 1098 // support for legalizing them. 1099 assert(ExtType != ISD::EXTLOAD && 1100 "EXTLOAD should always be supported!"); 1101 // Turn the unsupported load into an EXTLOAD followed by an explicit 1102 // zero/sign extend inreg. 1103 SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0), 1104 Chain, Ptr, LD->getPointerInfo(), SrcVT, 1105 LD->isVolatile(), LD->isNonTemporal(), 1106 LD->getAlignment()); 1107 SDValue ValRes; 1108 if (ExtType == ISD::SEXTLOAD) 1109 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 1110 Result.getValueType(), 1111 Result, DAG.getValueType(SrcVT)); 1112 else 1113 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType()); 1114 Value = ValRes; 1115 Chain = Result.getValue(1); 1116 break; 1117 } 1118 } 1119 1120 // Since loads produce two values, make sure to remember that we legalized 1121 // both of them. 1122 if (Chain.getNode() != Node) { 1123 assert(Value.getNode() != Node && "Load must be completely replaced"); 1124 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value); 1125 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 1126 ReplacedNode(Node); 1127 } 1128} 1129 1130/// LegalizeOp - Return a legal replacement for the given operation, with 1131/// all legal operands. 1132void SelectionDAGLegalize::LegalizeOp(SDNode *Node) { 1133 if (Node->getOpcode() == ISD::TargetConstant) // Allow illegal target nodes. 1134 return; 1135 1136 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 1137 assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) == 1138 TargetLowering::TypeLegal && 1139 "Unexpected illegal type!"); 1140 1141 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 1142 assert((TLI.getTypeAction(*DAG.getContext(), 1143 Node->getOperand(i).getValueType()) == 1144 TargetLowering::TypeLegal || 1145 Node->getOperand(i).getOpcode() == ISD::TargetConstant) && 1146 "Unexpected illegal type!"); 1147 1148 // Figure out the correct action; the way to query this varies by opcode 1149 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 1150 bool SimpleFinishLegalizing = true; 1151 switch (Node->getOpcode()) { 1152 case ISD::INTRINSIC_W_CHAIN: 1153 case ISD::INTRINSIC_WO_CHAIN: 1154 case ISD::INTRINSIC_VOID: 1155 case ISD::STACKSAVE: 1156 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 1157 break; 1158 case ISD::VAARG: 1159 Action = TLI.getOperationAction(Node->getOpcode(), 1160 Node->getValueType(0)); 1161 if (Action != TargetLowering::Promote) 1162 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 1163 break; 1164 case ISD::SINT_TO_FP: 1165 case ISD::UINT_TO_FP: 1166 case ISD::EXTRACT_VECTOR_ELT: 1167 Action = TLI.getOperationAction(Node->getOpcode(), 1168 Node->getOperand(0).getValueType()); 1169 break; 1170 case ISD::FP_ROUND_INREG: 1171 case ISD::SIGN_EXTEND_INREG: { 1172 EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 1173 Action = TLI.getOperationAction(Node->getOpcode(), InnerType); 1174 break; 1175 } 1176 case ISD::ATOMIC_STORE: { 1177 Action = TLI.getOperationAction(Node->getOpcode(), 1178 Node->getOperand(2).getValueType()); 1179 break; 1180 } 1181 case ISD::SELECT_CC: 1182 case ISD::SETCC: 1183 case ISD::BR_CC: { 1184 unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 : 1185 Node->getOpcode() == ISD::SETCC ? 2 : 1; 1186 unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0; 1187 EVT OpVT = Node->getOperand(CompareOperand).getValueType(); 1188 ISD::CondCode CCCode = 1189 cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get(); 1190 Action = TLI.getCondCodeAction(CCCode, OpVT); 1191 if (Action == TargetLowering::Legal) { 1192 if (Node->getOpcode() == ISD::SELECT_CC) 1193 Action = TLI.getOperationAction(Node->getOpcode(), 1194 Node->getValueType(0)); 1195 else 1196 Action = TLI.getOperationAction(Node->getOpcode(), OpVT); 1197 } 1198 break; 1199 } 1200 case ISD::LOAD: 1201 case ISD::STORE: 1202 // FIXME: Model these properly. LOAD and STORE are complicated, and 1203 // STORE expects the unlegalized operand in some cases. 1204 SimpleFinishLegalizing = false; 1205 break; 1206 case ISD::CALLSEQ_START: 1207 case ISD::CALLSEQ_END: 1208 // FIXME: This shouldn't be necessary. These nodes have special properties 1209 // dealing with the recursive nature of legalization. Removing this 1210 // special case should be done as part of making LegalizeDAG non-recursive. 1211 SimpleFinishLegalizing = false; 1212 break; 1213 case ISD::EXTRACT_ELEMENT: 1214 case ISD::FLT_ROUNDS_: 1215 case ISD::SADDO: 1216 case ISD::SSUBO: 1217 case ISD::UADDO: 1218 case ISD::USUBO: 1219 case ISD::SMULO: 1220 case ISD::UMULO: 1221 case ISD::FPOWI: 1222 case ISD::MERGE_VALUES: 1223 case ISD::EH_RETURN: 1224 case ISD::FRAME_TO_ARGS_OFFSET: 1225 case ISD::EH_SJLJ_SETJMP: 1226 case ISD::EH_SJLJ_LONGJMP: 1227 // These operations lie about being legal: when they claim to be legal, 1228 // they should actually be expanded. 1229 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1230 if (Action == TargetLowering::Legal) 1231 Action = TargetLowering::Expand; 1232 break; 1233 case ISD::INIT_TRAMPOLINE: 1234 case ISD::ADJUST_TRAMPOLINE: 1235 case ISD::FRAMEADDR: 1236 case ISD::RETURNADDR: 1237 // These operations lie about being legal: when they claim to be legal, 1238 // they should actually be custom-lowered. 1239 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1240 if (Action == TargetLowering::Legal) 1241 Action = TargetLowering::Custom; 1242 break; 1243 case ISD::DEBUGTRAP: 1244 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1245 if (Action == TargetLowering::Expand) { 1246 // replace ISD::DEBUGTRAP with ISD::TRAP 1247 SDValue NewVal; 1248 NewVal = DAG.getNode(ISD::TRAP, Node->getDebugLoc(), Node->getVTList(), 1249 Node->getOperand(0)); 1250 ReplaceNode(Node, NewVal.getNode()); 1251 LegalizeOp(NewVal.getNode()); 1252 return; 1253 } 1254 break; 1255 1256 default: 1257 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { 1258 Action = TargetLowering::Legal; 1259 } else { 1260 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1261 } 1262 break; 1263 } 1264 1265 if (SimpleFinishLegalizing) { 1266 SDNode *NewNode = Node; 1267 switch (Node->getOpcode()) { 1268 default: break; 1269 case ISD::SHL: 1270 case ISD::SRL: 1271 case ISD::SRA: 1272 case ISD::ROTL: 1273 case ISD::ROTR: 1274 // Legalizing shifts/rotates requires adjusting the shift amount 1275 // to the appropriate width. 1276 if (!Node->getOperand(1).getValueType().isVector()) { 1277 SDValue SAO = 1278 DAG.getShiftAmountOperand(Node->getOperand(0).getValueType(), 1279 Node->getOperand(1)); 1280 HandleSDNode Handle(SAO); 1281 LegalizeOp(SAO.getNode()); 1282 NewNode = DAG.UpdateNodeOperands(Node, Node->getOperand(0), 1283 Handle.getValue()); 1284 } 1285 break; 1286 case ISD::SRL_PARTS: 1287 case ISD::SRA_PARTS: 1288 case ISD::SHL_PARTS: 1289 // Legalizing shifts/rotates requires adjusting the shift amount 1290 // to the appropriate width. 1291 if (!Node->getOperand(2).getValueType().isVector()) { 1292 SDValue SAO = 1293 DAG.getShiftAmountOperand(Node->getOperand(0).getValueType(), 1294 Node->getOperand(2)); 1295 HandleSDNode Handle(SAO); 1296 LegalizeOp(SAO.getNode()); 1297 NewNode = DAG.UpdateNodeOperands(Node, Node->getOperand(0), 1298 Node->getOperand(1), 1299 Handle.getValue()); 1300 } 1301 break; 1302 } 1303 1304 if (NewNode != Node) { 1305 DAG.ReplaceAllUsesWith(Node, NewNode); 1306 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 1307 DAG.TransferDbgValues(SDValue(Node, i), SDValue(NewNode, i)); 1308 ReplacedNode(Node); 1309 Node = NewNode; 1310 } 1311 switch (Action) { 1312 case TargetLowering::Legal: 1313 return; 1314 case TargetLowering::Custom: { 1315 // FIXME: The handling for custom lowering with multiple results is 1316 // a complete mess. 1317 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 1318 if (Res.getNode()) { 1319 SmallVector<SDValue, 8> ResultVals; 1320 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) { 1321 if (e == 1) 1322 ResultVals.push_back(Res); 1323 else 1324 ResultVals.push_back(Res.getValue(i)); 1325 } 1326 if (Res.getNode() != Node || Res.getResNo() != 0) { 1327 DAG.ReplaceAllUsesWith(Node, ResultVals.data()); 1328 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 1329 DAG.TransferDbgValues(SDValue(Node, i), ResultVals[i]); 1330 ReplacedNode(Node); 1331 } 1332 return; 1333 } 1334 } 1335 // FALL THROUGH 1336 case TargetLowering::Expand: 1337 ExpandNode(Node); 1338 return; 1339 case TargetLowering::Promote: 1340 PromoteNode(Node); 1341 return; 1342 } 1343 } 1344 1345 switch (Node->getOpcode()) { 1346 default: 1347#ifndef NDEBUG 1348 dbgs() << "NODE: "; 1349 Node->dump( &DAG); 1350 dbgs() << "\n"; 1351#endif 1352 llvm_unreachable("Do not know how to legalize this operator!"); 1353 1354 case ISD::CALLSEQ_START: 1355 case ISD::CALLSEQ_END: 1356 break; 1357 case ISD::LOAD: { 1358 return LegalizeLoadOps(Node); 1359 } 1360 case ISD::STORE: { 1361 return LegalizeStoreOps(Node); 1362 } 1363 } 1364} 1365 1366SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) { 1367 SDValue Vec = Op.getOperand(0); 1368 SDValue Idx = Op.getOperand(1); 1369 DebugLoc dl = Op.getDebugLoc(); 1370 // Store the value to a temporary stack slot, then LOAD the returned part. 1371 SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType()); 1372 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, 1373 MachinePointerInfo(), false, false, 0); 1374 1375 // Add the offset to the index. 1376 unsigned EltSize = 1377 Vec.getValueType().getVectorElementType().getSizeInBits()/8; 1378 Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx, 1379 DAG.getConstant(EltSize, Idx.getValueType())); 1380 1381 if (Idx.getValueType().bitsGT(TLI.getPointerTy())) 1382 Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx); 1383 else 1384 Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx); 1385 1386 StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr); 1387 1388 if (Op.getValueType().isVector()) 1389 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr,MachinePointerInfo(), 1390 false, false, false, 0); 1391 return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr, 1392 MachinePointerInfo(), 1393 Vec.getValueType().getVectorElementType(), 1394 false, false, 0); 1395} 1396 1397SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) { 1398 assert(Op.getValueType().isVector() && "Non-vector insert subvector!"); 1399 1400 SDValue Vec = Op.getOperand(0); 1401 SDValue Part = Op.getOperand(1); 1402 SDValue Idx = Op.getOperand(2); 1403 DebugLoc dl = Op.getDebugLoc(); 1404 1405 // Store the value to a temporary stack slot, then LOAD the returned part. 1406 1407 SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType()); 1408 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1409 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI); 1410 1411 // First store the whole vector. 1412 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo, 1413 false, false, 0); 1414 1415 // Then store the inserted part. 1416 1417 // Add the offset to the index. 1418 unsigned EltSize = 1419 Vec.getValueType().getVectorElementType().getSizeInBits()/8; 1420 1421 Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx, 1422 DAG.getConstant(EltSize, Idx.getValueType())); 1423 1424 if (Idx.getValueType().bitsGT(TLI.getPointerTy())) 1425 Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx); 1426 else 1427 Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx); 1428 1429 SDValue SubStackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, 1430 StackPtr); 1431 1432 // Store the subvector. 1433 Ch = DAG.getStore(DAG.getEntryNode(), dl, Part, SubStackPtr, 1434 MachinePointerInfo(), false, false, 0); 1435 1436 // Finally, load the updated vector. 1437 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo, 1438 false, false, false, 0); 1439} 1440 1441SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) { 1442 // We can't handle this case efficiently. Allocate a sufficiently 1443 // aligned object on the stack, store each element into it, then load 1444 // the result as a vector. 1445 // Create the stack frame object. 1446 EVT VT = Node->getValueType(0); 1447 EVT EltVT = VT.getVectorElementType(); 1448 DebugLoc dl = Node->getDebugLoc(); 1449 SDValue FIPtr = DAG.CreateStackTemporary(VT); 1450 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex(); 1451 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI); 1452 1453 // Emit a store of each element to the stack slot. 1454 SmallVector<SDValue, 8> Stores; 1455 unsigned TypeByteSize = EltVT.getSizeInBits() / 8; 1456 // Store (in the right endianness) the elements to memory. 1457 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 1458 // Ignore undef elements. 1459 if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue; 1460 1461 unsigned Offset = TypeByteSize*i; 1462 1463 SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType()); 1464 Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx); 1465 1466 // If the destination vector element type is narrower than the source 1467 // element type, only store the bits necessary. 1468 if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) { 1469 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, 1470 Node->getOperand(i), Idx, 1471 PtrInfo.getWithOffset(Offset), 1472 EltVT, false, false, 0)); 1473 } else 1474 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, 1475 Node->getOperand(i), Idx, 1476 PtrInfo.getWithOffset(Offset), 1477 false, false, 0)); 1478 } 1479 1480 SDValue StoreChain; 1481 if (!Stores.empty()) // Not all undef elements? 1482 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 1483 &Stores[0], Stores.size()); 1484 else 1485 StoreChain = DAG.getEntryNode(); 1486 1487 // Result is a load from the stack slot. 1488 return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo, 1489 false, false, false, 0); 1490} 1491 1492SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) { 1493 DebugLoc dl = Node->getDebugLoc(); 1494 SDValue Tmp1 = Node->getOperand(0); 1495 SDValue Tmp2 = Node->getOperand(1); 1496 1497 // Get the sign bit of the RHS. First obtain a value that has the same 1498 // sign as the sign bit, i.e. negative if and only if the sign bit is 1. 1499 SDValue SignBit; 1500 EVT FloatVT = Tmp2.getValueType(); 1501 EVT IVT = EVT::getIntegerVT(*DAG.getContext(), FloatVT.getSizeInBits()); 1502 if (TLI.isTypeLegal(IVT)) { 1503 // Convert to an integer with the same sign bit. 1504 SignBit = DAG.getNode(ISD::BITCAST, dl, IVT, Tmp2); 1505 } else { 1506 // Store the float to memory, then load the sign part out as an integer. 1507 MVT LoadTy = TLI.getPointerTy(); 1508 // First create a temporary that is aligned for both the load and store. 1509 SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy); 1510 // Then store the float to it. 1511 SDValue Ch = 1512 DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StackPtr, MachinePointerInfo(), 1513 false, false, 0); 1514 if (TLI.isBigEndian()) { 1515 assert(FloatVT.isByteSized() && "Unsupported floating point type!"); 1516 // Load out a legal integer with the same sign bit as the float. 1517 SignBit = DAG.getLoad(LoadTy, dl, Ch, StackPtr, MachinePointerInfo(), 1518 false, false, false, 0); 1519 } else { // Little endian 1520 SDValue LoadPtr = StackPtr; 1521 // The float may be wider than the integer we are going to load. Advance 1522 // the pointer so that the loaded integer will contain the sign bit. 1523 unsigned Strides = (FloatVT.getSizeInBits()-1)/LoadTy.getSizeInBits(); 1524 unsigned ByteOffset = (Strides * LoadTy.getSizeInBits()) / 8; 1525 LoadPtr = DAG.getNode(ISD::ADD, dl, LoadPtr.getValueType(), 1526 LoadPtr, DAG.getIntPtrConstant(ByteOffset)); 1527 // Load a legal integer containing the sign bit. 1528 SignBit = DAG.getLoad(LoadTy, dl, Ch, LoadPtr, MachinePointerInfo(), 1529 false, false, false, 0); 1530 // Move the sign bit to the top bit of the loaded integer. 1531 unsigned BitShift = LoadTy.getSizeInBits() - 1532 (FloatVT.getSizeInBits() - 8 * ByteOffset); 1533 assert(BitShift < LoadTy.getSizeInBits() && "Pointer advanced wrong?"); 1534 if (BitShift) 1535 SignBit = DAG.getNode(ISD::SHL, dl, LoadTy, SignBit, 1536 DAG.getConstant(BitShift, 1537 TLI.getShiftAmountTy(SignBit.getValueType()))); 1538 } 1539 } 1540 // Now get the sign bit proper, by seeing whether the value is negative. 1541 SignBit = DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()), 1542 SignBit, DAG.getConstant(0, SignBit.getValueType()), 1543 ISD::SETLT); 1544 // Get the absolute value of the result. 1545 SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1); 1546 // Select between the nabs and abs value based on the sign bit of 1547 // the input. 1548 return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit, 1549 DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal), 1550 AbsVal); 1551} 1552 1553void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node, 1554 SmallVectorImpl<SDValue> &Results) { 1555 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1556 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" 1557 " not tell us which reg is the stack pointer!"); 1558 DebugLoc dl = Node->getDebugLoc(); 1559 EVT VT = Node->getValueType(0); 1560 SDValue Tmp1 = SDValue(Node, 0); 1561 SDValue Tmp2 = SDValue(Node, 1); 1562 SDValue Tmp3 = Node->getOperand(2); 1563 SDValue Chain = Tmp1.getOperand(0); 1564 1565 // Chain the dynamic stack allocation so that it doesn't modify the stack 1566 // pointer when other instructions are using the stack. 1567 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true)); 1568 1569 SDValue Size = Tmp2.getOperand(1); 1570 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 1571 Chain = SP.getValue(1); 1572 unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue(); 1573 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); 1574 if (Align > StackAlign) 1575 SP = DAG.getNode(ISD::AND, dl, VT, SP, 1576 DAG.getConstant(-(uint64_t)Align, VT)); 1577 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value 1578 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain 1579 1580 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, true), 1581 DAG.getIntPtrConstant(0, true), SDValue()); 1582 1583 Results.push_back(Tmp1); 1584 Results.push_back(Tmp2); 1585} 1586 1587/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and 1588/// condition code CC on the current target. This routine expands SETCC with 1589/// illegal condition code into AND / OR of multiple SETCC values. 1590void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT, 1591 SDValue &LHS, SDValue &RHS, 1592 SDValue &CC, 1593 DebugLoc dl) { 1594 EVT OpVT = LHS.getValueType(); 1595 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 1596 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 1597 default: llvm_unreachable("Unknown condition code action!"); 1598 case TargetLowering::Legal: 1599 // Nothing to do. 1600 break; 1601 case TargetLowering::Expand: { 1602 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 1603 ISD::CondCode InvCC = ISD::SETCC_INVALID; 1604 unsigned Opc = 0; 1605 switch (CCCode) { 1606 default: llvm_unreachable("Don't know how to expand this condition!"); 1607 case ISD::SETO: 1608 assert(TLI.getCondCodeAction(ISD::SETOEQ, OpVT) 1609 == TargetLowering::Legal 1610 && "If SETO is expanded, SETOEQ must be legal!"); 1611 CC1 = ISD::SETOEQ; CC2 = ISD::SETOEQ; Opc = ISD::AND; break; 1612 case ISD::SETUO: 1613 assert(TLI.getCondCodeAction(ISD::SETUNE, OpVT) 1614 == TargetLowering::Legal 1615 && "If SETUO is expanded, SETUNE must be legal!"); 1616 CC1 = ISD::SETUNE; CC2 = ISD::SETUNE; Opc = ISD::OR; break; 1617 case ISD::SETOEQ: 1618 case ISD::SETOGT: 1619 case ISD::SETOGE: 1620 case ISD::SETOLT: 1621 case ISD::SETOLE: 1622 case ISD::SETONE: 1623 case ISD::SETUEQ: 1624 case ISD::SETUNE: 1625 case ISD::SETUGT: 1626 case ISD::SETUGE: 1627 case ISD::SETULT: 1628 case ISD::SETULE: 1629 // If we are floating point, assign and break, otherwise fall through. 1630 if (!OpVT.isInteger()) { 1631 // We can use the 4th bit to tell if we are the unordered 1632 // or ordered version of the opcode. 1633 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 1634 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 1635 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 1636 break; 1637 } 1638 // Fallthrough if we are unsigned integer. 1639 case ISD::SETLE: 1640 case ISD::SETGT: 1641 case ISD::SETGE: 1642 case ISD::SETLT: 1643 case ISD::SETNE: 1644 case ISD::SETEQ: 1645 InvCC = ISD::getSetCCSwappedOperands(CCCode); 1646 if (TLI.getCondCodeAction(InvCC, OpVT) == TargetLowering::Expand) { 1647 // We only support using the inverted operation and not a 1648 // different manner of supporting expanding these cases. 1649 llvm_unreachable("Don't know how to expand this condition!"); 1650 } 1651 LHS = DAG.getSetCC(dl, VT, RHS, LHS, InvCC); 1652 RHS = SDValue(); 1653 CC = SDValue(); 1654 return; 1655 } 1656 1657 SDValue SetCC1, SetCC2; 1658 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 1659 // If we aren't the ordered or unorder operation, 1660 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 1661 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1); 1662 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2); 1663 } else { 1664 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 1665 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1); 1666 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2); 1667 } 1668 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 1669 RHS = SDValue(); 1670 CC = SDValue(); 1671 break; 1672 } 1673 } 1674} 1675 1676/// EmitStackConvert - Emit a store/load combination to the stack. This stores 1677/// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does 1678/// a load from the stack slot to DestVT, extending it if needed. 1679/// The resultant code need not be legal. 1680SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, 1681 EVT SlotVT, 1682 EVT DestVT, 1683 DebugLoc dl) { 1684 // Create the stack frame object. 1685 unsigned SrcAlign = 1686 TLI.getDataLayout()->getPrefTypeAlignment(SrcOp.getValueType(). 1687 getTypeForEVT(*DAG.getContext())); 1688 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign); 1689 1690 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); 1691 int SPFI = StackPtrFI->getIndex(); 1692 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(SPFI); 1693 1694 unsigned SrcSize = SrcOp.getValueType().getSizeInBits(); 1695 unsigned SlotSize = SlotVT.getSizeInBits(); 1696 unsigned DestSize = DestVT.getSizeInBits(); 1697 Type *DestType = DestVT.getTypeForEVT(*DAG.getContext()); 1698 unsigned DestAlign = TLI.getDataLayout()->getPrefTypeAlignment(DestType); 1699 1700 // Emit a store to the stack slot. Use a truncstore if the input value is 1701 // later than DestVT. 1702 SDValue Store; 1703 1704 if (SrcSize > SlotSize) 1705 Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, 1706 PtrInfo, SlotVT, false, false, SrcAlign); 1707 else { 1708 assert(SrcSize == SlotSize && "Invalid store"); 1709 Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, 1710 PtrInfo, false, false, SrcAlign); 1711 } 1712 1713 // Result is a load from the stack slot. 1714 if (SlotSize == DestSize) 1715 return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, 1716 false, false, false, DestAlign); 1717 1718 assert(SlotSize < DestSize && "Unknown extension!"); 1719 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, 1720 PtrInfo, SlotVT, false, false, DestAlign); 1721} 1722 1723SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { 1724 DebugLoc dl = Node->getDebugLoc(); 1725 // Create a vector sized/aligned stack slot, store the value to element #0, 1726 // then load the whole vector back out. 1727 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); 1728 1729 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); 1730 int SPFI = StackPtrFI->getIndex(); 1731 1732 SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0), 1733 StackPtr, 1734 MachinePointerInfo::getFixedStack(SPFI), 1735 Node->getValueType(0).getVectorElementType(), 1736 false, false, 0); 1737 return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr, 1738 MachinePointerInfo::getFixedStack(SPFI), 1739 false, false, false, 0); 1740} 1741 1742 1743/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't 1744/// support the operation, but do support the resultant vector type. 1745SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { 1746 unsigned NumElems = Node->getNumOperands(); 1747 SDValue Value1, Value2; 1748 DebugLoc dl = Node->getDebugLoc(); 1749 EVT VT = Node->getValueType(0); 1750 EVT OpVT = Node->getOperand(0).getValueType(); 1751 EVT EltVT = VT.getVectorElementType(); 1752 1753 // If the only non-undef value is the low element, turn this into a 1754 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. 1755 bool isOnlyLowElement = true; 1756 bool MoreThanTwoValues = false; 1757 bool isConstant = true; 1758 for (unsigned i = 0; i < NumElems; ++i) { 1759 SDValue V = Node->getOperand(i); 1760 if (V.getOpcode() == ISD::UNDEF) 1761 continue; 1762 if (i > 0) 1763 isOnlyLowElement = false; 1764 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) 1765 isConstant = false; 1766 1767 if (!Value1.getNode()) { 1768 Value1 = V; 1769 } else if (!Value2.getNode()) { 1770 if (V != Value1) 1771 Value2 = V; 1772 } else if (V != Value1 && V != Value2) { 1773 MoreThanTwoValues = true; 1774 } 1775 } 1776 1777 if (!Value1.getNode()) 1778 return DAG.getUNDEF(VT); 1779 1780 if (isOnlyLowElement) 1781 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0)); 1782 1783 // If all elements are constants, create a load from the constant pool. 1784 if (isConstant) { 1785 SmallVector<Constant*, 16> CV; 1786 for (unsigned i = 0, e = NumElems; i != e; ++i) { 1787 if (ConstantFPSDNode *V = 1788 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { 1789 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue())); 1790 } else if (ConstantSDNode *V = 1791 dyn_cast<ConstantSDNode>(Node->getOperand(i))) { 1792 if (OpVT==EltVT) 1793 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue())); 1794 else { 1795 // If OpVT and EltVT don't match, EltVT is not legal and the 1796 // element values have been promoted/truncated earlier. Undo this; 1797 // we don't want a v16i8 to become a v16i32 for example. 1798 const ConstantInt *CI = V->getConstantIntValue(); 1799 CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()), 1800 CI->getZExtValue())); 1801 } 1802 } else { 1803 assert(Node->getOperand(i).getOpcode() == ISD::UNDEF); 1804 Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext()); 1805 CV.push_back(UndefValue::get(OpNTy)); 1806 } 1807 } 1808 Constant *CP = ConstantVector::get(CV); 1809 SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy()); 1810 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 1811 return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx, 1812 MachinePointerInfo::getConstantPool(), 1813 false, false, false, Alignment); 1814 } 1815 1816 if (!MoreThanTwoValues) { 1817 SmallVector<int, 8> ShuffleVec(NumElems, -1); 1818 for (unsigned i = 0; i < NumElems; ++i) { 1819 SDValue V = Node->getOperand(i); 1820 if (V.getOpcode() == ISD::UNDEF) 1821 continue; 1822 ShuffleVec[i] = V == Value1 ? 0 : NumElems; 1823 } 1824 if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) { 1825 // Get the splatted value into the low element of a vector register. 1826 SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1); 1827 SDValue Vec2; 1828 if (Value2.getNode()) 1829 Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2); 1830 else 1831 Vec2 = DAG.getUNDEF(VT); 1832 1833 // Return shuffle(LowValVec, undef, <0,0,0,0>) 1834 return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data()); 1835 } 1836 } 1837 1838 // Otherwise, we can't handle this case efficiently. 1839 return ExpandVectorBuildThroughStack(Node); 1840} 1841 1842// ExpandLibCall - Expand a node into a call to a libcall. If the result value 1843// does not fit into a register, return the lo part and set the hi part to the 1844// by-reg argument. If it does fit into a single register, return the result 1845// and leave the Hi part unset. 1846SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, 1847 bool isSigned) { 1848 TargetLowering::ArgListTy Args; 1849 TargetLowering::ArgListEntry Entry; 1850 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 1851 EVT ArgVT = Node->getOperand(i).getValueType(); 1852 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 1853 Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy; 1854 Entry.isSExt = isSigned; 1855 Entry.isZExt = !isSigned; 1856 Args.push_back(Entry); 1857 } 1858 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 1859 TLI.getPointerTy()); 1860 1861 Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext()); 1862 1863 // By default, the input chain to this libcall is the entry node of the 1864 // function. If the libcall is going to be emitted as a tail call then 1865 // TLI.isUsedByReturnOnly will change it to the right chain if the return 1866 // node which is being folded has a non-entry input chain. 1867 SDValue InChain = DAG.getEntryNode(); 1868 1869 // isTailCall may be true since the callee does not reference caller stack 1870 // frame. Check if it's in the right position. 1871 SDValue TCChain = InChain; 1872 bool isTailCall = isInTailCallPosition(DAG, Node, TCChain, TLI); 1873 if (isTailCall) 1874 InChain = TCChain; 1875 1876 TargetLowering:: 1877 CallLoweringInfo CLI(InChain, RetTy, isSigned, !isSigned, false, false, 1878 0, TLI.getLibcallCallingConv(LC), isTailCall, 1879 /*doesNotReturn=*/false, /*isReturnValueUsed=*/true, 1880 Callee, Args, DAG, Node->getDebugLoc()); 1881 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 1882 1883 1884 if (!CallInfo.second.getNode()) 1885 // It's a tailcall, return the chain (which is the DAG root). 1886 return DAG.getRoot(); 1887 1888 return CallInfo.first; 1889} 1890 1891/// ExpandLibCall - Generate a libcall taking the given operands as arguments 1892/// and returning a result of type RetVT. 1893SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, 1894 const SDValue *Ops, unsigned NumOps, 1895 bool isSigned, DebugLoc dl) { 1896 TargetLowering::ArgListTy Args; 1897 Args.reserve(NumOps); 1898 1899 TargetLowering::ArgListEntry Entry; 1900 for (unsigned i = 0; i != NumOps; ++i) { 1901 Entry.Node = Ops[i]; 1902 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 1903 Entry.isSExt = isSigned; 1904 Entry.isZExt = !isSigned; 1905 Args.push_back(Entry); 1906 } 1907 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 1908 TLI.getPointerTy()); 1909 1910 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 1911 TargetLowering:: 1912 CallLoweringInfo CLI(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false, 1913 false, 0, TLI.getLibcallCallingConv(LC), 1914 /*isTailCall=*/false, 1915 /*doesNotReturn=*/false, /*isReturnValueUsed=*/true, 1916 Callee, Args, DAG, dl); 1917 std::pair<SDValue,SDValue> CallInfo = TLI.LowerCallTo(CLI); 1918 1919 return CallInfo.first; 1920} 1921 1922// ExpandChainLibCall - Expand a node into a call to a libcall. Similar to 1923// ExpandLibCall except that the first operand is the in-chain. 1924std::pair<SDValue, SDValue> 1925SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC, 1926 SDNode *Node, 1927 bool isSigned) { 1928 SDValue InChain = Node->getOperand(0); 1929 1930 TargetLowering::ArgListTy Args; 1931 TargetLowering::ArgListEntry Entry; 1932 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) { 1933 EVT ArgVT = Node->getOperand(i).getValueType(); 1934 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 1935 Entry.Node = Node->getOperand(i); 1936 Entry.Ty = ArgTy; 1937 Entry.isSExt = isSigned; 1938 Entry.isZExt = !isSigned; 1939 Args.push_back(Entry); 1940 } 1941 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 1942 TLI.getPointerTy()); 1943 1944 Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext()); 1945 TargetLowering:: 1946 CallLoweringInfo CLI(InChain, RetTy, isSigned, !isSigned, false, false, 1947 0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false, 1948 /*doesNotReturn=*/false, /*isReturnValueUsed=*/true, 1949 Callee, Args, DAG, Node->getDebugLoc()); 1950 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 1951 1952 return CallInfo; 1953} 1954 1955SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, 1956 RTLIB::Libcall Call_F32, 1957 RTLIB::Libcall Call_F64, 1958 RTLIB::Libcall Call_F80, 1959 RTLIB::Libcall Call_PPCF128) { 1960 RTLIB::Libcall LC; 1961 switch (Node->getValueType(0).getSimpleVT().SimpleTy) { 1962 default: llvm_unreachable("Unexpected request for libcall!"); 1963 case MVT::f32: LC = Call_F32; break; 1964 case MVT::f64: LC = Call_F64; break; 1965 case MVT::f80: LC = Call_F80; break; 1966 case MVT::ppcf128: LC = Call_PPCF128; break; 1967 } 1968 return ExpandLibCall(LC, Node, false); 1969} 1970 1971SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned, 1972 RTLIB::Libcall Call_I8, 1973 RTLIB::Libcall Call_I16, 1974 RTLIB::Libcall Call_I32, 1975 RTLIB::Libcall Call_I64, 1976 RTLIB::Libcall Call_I128) { 1977 RTLIB::Libcall LC; 1978 switch (Node->getValueType(0).getSimpleVT().SimpleTy) { 1979 default: llvm_unreachable("Unexpected request for libcall!"); 1980 case MVT::i8: LC = Call_I8; break; 1981 case MVT::i16: LC = Call_I16; break; 1982 case MVT::i32: LC = Call_I32; break; 1983 case MVT::i64: LC = Call_I64; break; 1984 case MVT::i128: LC = Call_I128; break; 1985 } 1986 return ExpandLibCall(LC, Node, isSigned); 1987} 1988 1989/// isDivRemLibcallAvailable - Return true if divmod libcall is available. 1990static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned, 1991 const TargetLowering &TLI) { 1992 RTLIB::Libcall LC; 1993 switch (Node->getValueType(0).getSimpleVT().SimpleTy) { 1994 default: llvm_unreachable("Unexpected request for libcall!"); 1995 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 1996 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 1997 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 1998 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 1999 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 2000 } 2001 2002 return TLI.getLibcallName(LC) != 0; 2003} 2004 2005/// useDivRem - Only issue divrem libcall if both quotient and remainder are 2006/// needed. 2007static bool useDivRem(SDNode *Node, bool isSigned, bool isDIV) { 2008 // The other use might have been replaced with a divrem already. 2009 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 2010 unsigned OtherOpcode = 0; 2011 if (isSigned) 2012 OtherOpcode = isDIV ? ISD::SREM : ISD::SDIV; 2013 else 2014 OtherOpcode = isDIV ? ISD::UREM : ISD::UDIV; 2015 2016 SDValue Op0 = Node->getOperand(0); 2017 SDValue Op1 = Node->getOperand(1); 2018 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), 2019 UE = Op0.getNode()->use_end(); UI != UE; ++UI) { 2020 SDNode *User = *UI; 2021 if (User == Node) 2022 continue; 2023 if ((User->getOpcode() == OtherOpcode || User->getOpcode() == DivRemOpc) && 2024 User->getOperand(0) == Op0 && 2025 User->getOperand(1) == Op1) 2026 return true; 2027 } 2028 return false; 2029} 2030 2031/// ExpandDivRemLibCall - Issue libcalls to __{u}divmod to compute div / rem 2032/// pairs. 2033void 2034SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node, 2035 SmallVectorImpl<SDValue> &Results) { 2036 unsigned Opcode = Node->getOpcode(); 2037 bool isSigned = Opcode == ISD::SDIVREM; 2038 2039 RTLIB::Libcall LC; 2040 switch (Node->getValueType(0).getSimpleVT().SimpleTy) { 2041 default: llvm_unreachable("Unexpected request for libcall!"); 2042 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 2043 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 2044 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 2045 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 2046 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 2047 } 2048 2049 // The input chain to this libcall is the entry node of the function. 2050 // Legalizing the call will automatically add the previous call to the 2051 // dependence. 2052 SDValue InChain = DAG.getEntryNode(); 2053 2054 EVT RetVT = Node->getValueType(0); 2055 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2056 2057 TargetLowering::ArgListTy Args; 2058 TargetLowering::ArgListEntry Entry; 2059 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 2060 EVT ArgVT = Node->getOperand(i).getValueType(); 2061 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2062 Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy; 2063 Entry.isSExt = isSigned; 2064 Entry.isZExt = !isSigned; 2065 Args.push_back(Entry); 2066 } 2067 2068 // Also pass the return address of the remainder. 2069 SDValue FIPtr = DAG.CreateStackTemporary(RetVT); 2070 Entry.Node = FIPtr; 2071 Entry.Ty = RetTy->getPointerTo(0); 2072 Entry.isSExt = isSigned; 2073 Entry.isZExt = !isSigned; 2074 Args.push_back(Entry); 2075 2076 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2077 TLI.getPointerTy()); 2078 2079 DebugLoc dl = Node->getDebugLoc(); 2080 TargetLowering:: 2081 CallLoweringInfo CLI(InChain, RetTy, isSigned, !isSigned, false, false, 2082 0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false, 2083 /*doesNotReturn=*/false, /*isReturnValueUsed=*/true, 2084 Callee, Args, DAG, dl); 2085 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2086 2087 // Remainder is loaded back from the stack frame. 2088 SDValue Rem = DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, 2089 MachinePointerInfo(), false, false, false, 0); 2090 Results.push_back(CallInfo.first); 2091 Results.push_back(Rem); 2092} 2093 2094/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a 2095/// INT_TO_FP operation of the specified operand when the target requests that 2096/// we expand it. At this point, we know that the result and operand types are 2097/// legal for the target. 2098SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned, 2099 SDValue Op0, 2100 EVT DestVT, 2101 DebugLoc dl) { 2102 if (Op0.getValueType() == MVT::i32 && TLI.isTypeLegal(MVT::f64)) { 2103 // simple 32-bit [signed|unsigned] integer to float/double expansion 2104 2105 // Get the stack frame index of a 8 byte buffer. 2106 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); 2107 2108 // word offset constant for Hi/Lo address computation 2109 SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy()); 2110 // set up Hi and Lo (into buffer) address based on endian 2111 SDValue Hi = StackSlot; 2112 SDValue Lo = DAG.getNode(ISD::ADD, dl, 2113 TLI.getPointerTy(), StackSlot, WordOff); 2114 if (TLI.isLittleEndian()) 2115 std::swap(Hi, Lo); 2116 2117 // if signed map to unsigned space 2118 SDValue Op0Mapped; 2119 if (isSigned) { 2120 // constant used to invert sign bit (signed to unsigned mapping) 2121 SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32); 2122 Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit); 2123 } else { 2124 Op0Mapped = Op0; 2125 } 2126 // store the lo of the constructed double - based on integer input 2127 SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, 2128 Op0Mapped, Lo, MachinePointerInfo(), 2129 false, false, 0); 2130 // initial hi portion of constructed double 2131 SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32); 2132 // store the hi of the constructed double - biased exponent 2133 SDValue Store2 = DAG.getStore(Store1, dl, InitialHi, Hi, 2134 MachinePointerInfo(), 2135 false, false, 0); 2136 // load the constructed double 2137 SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot, 2138 MachinePointerInfo(), false, false, false, 0); 2139 // FP constant to bias correct the final result 2140 SDValue Bias = DAG.getConstantFP(isSigned ? 2141 BitsToDouble(0x4330000080000000ULL) : 2142 BitsToDouble(0x4330000000000000ULL), 2143 MVT::f64); 2144 // subtract the bias 2145 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias); 2146 // final result 2147 SDValue Result; 2148 // handle final rounding 2149 if (DestVT == MVT::f64) { 2150 // do nothing 2151 Result = Sub; 2152 } else if (DestVT.bitsLT(MVT::f64)) { 2153 Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub, 2154 DAG.getIntPtrConstant(0)); 2155 } else if (DestVT.bitsGT(MVT::f64)) { 2156 Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub); 2157 } 2158 return Result; 2159 } 2160 assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet"); 2161 // Code below here assumes !isSigned without checking again. 2162 2163 // Implementation of unsigned i64 to f64 following the algorithm in 2164 // __floatundidf in compiler_rt. This implementation has the advantage 2165 // of performing rounding correctly, both in the default rounding mode 2166 // and in all alternate rounding modes. 2167 // TODO: Generalize this for use with other types. 2168 if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) { 2169 SDValue TwoP52 = 2170 DAG.getConstant(UINT64_C(0x4330000000000000), MVT::i64); 2171 SDValue TwoP84PlusTwoP52 = 2172 DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), MVT::f64); 2173 SDValue TwoP84 = 2174 DAG.getConstant(UINT64_C(0x4530000000000000), MVT::i64); 2175 2176 SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32); 2177 SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, 2178 DAG.getConstant(32, MVT::i64)); 2179 SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52); 2180 SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84); 2181 SDValue LoFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, LoOr); 2182 SDValue HiFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, HiOr); 2183 SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt, 2184 TwoP84PlusTwoP52); 2185 return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub); 2186 } 2187 2188 // Implementation of unsigned i64 to f32. 2189 // TODO: Generalize this for use with other types. 2190 if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) { 2191 // For unsigned conversions, convert them to signed conversions using the 2192 // algorithm from the x86_64 __floatundidf in compiler_rt. 2193 if (!isSigned) { 2194 SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Op0); 2195 2196 SDValue ShiftConst = 2197 DAG.getConstant(1, TLI.getShiftAmountTy(Op0.getValueType())); 2198 SDValue Shr = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, ShiftConst); 2199 SDValue AndConst = DAG.getConstant(1, MVT::i64); 2200 SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, AndConst); 2201 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, Shr); 2202 2203 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Or); 2204 SDValue Slow = DAG.getNode(ISD::FADD, dl, MVT::f32, SignCvt, SignCvt); 2205 2206 // TODO: This really should be implemented using a branch rather than a 2207 // select. We happen to get lucky and machinesink does the right 2208 // thing most of the time. This would be a good candidate for a 2209 //pseudo-op, or, even better, for whole-function isel. 2210 SDValue SignBitTest = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64), 2211 Op0, DAG.getConstant(0, MVT::i64), ISD::SETLT); 2212 return DAG.getNode(ISD::SELECT, dl, MVT::f32, SignBitTest, Slow, Fast); 2213 } 2214 2215 // Otherwise, implement the fully general conversion. 2216 2217 SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, 2218 DAG.getConstant(UINT64_C(0xfffffffffffff800), MVT::i64)); 2219 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, 2220 DAG.getConstant(UINT64_C(0x800), MVT::i64)); 2221 SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, 2222 DAG.getConstant(UINT64_C(0x7ff), MVT::i64)); 2223 SDValue Ne = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64), 2224 And2, DAG.getConstant(UINT64_C(0), MVT::i64), ISD::SETNE); 2225 SDValue Sel = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ne, Or, Op0); 2226 SDValue Ge = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64), 2227 Op0, DAG.getConstant(UINT64_C(0x0020000000000000), MVT::i64), 2228 ISD::SETUGE); 2229 SDValue Sel2 = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ge, Sel, Op0); 2230 EVT SHVT = TLI.getShiftAmountTy(Sel2.getValueType()); 2231 2232 SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2, 2233 DAG.getConstant(32, SHVT)); 2234 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh); 2235 SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc); 2236 SDValue TwoP32 = 2237 DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), MVT::f64); 2238 SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt); 2239 SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2); 2240 SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo); 2241 SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2); 2242 return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd, 2243 DAG.getIntPtrConstant(0)); 2244 } 2245 2246 SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2247 2248 SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()), 2249 Op0, DAG.getConstant(0, Op0.getValueType()), 2250 ISD::SETLT); 2251 SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4); 2252 SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), 2253 SignSet, Four, Zero); 2254 2255 // If the sign bit of the integer is set, the large number will be treated 2256 // as a negative number. To counteract this, the dynamic code adds an 2257 // offset depending on the data type. 2258 uint64_t FF; 2259 switch (Op0.getValueType().getSimpleVT().SimpleTy) { 2260 default: llvm_unreachable("Unsupported integer type!"); 2261 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) 2262 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) 2263 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) 2264 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) 2265 } 2266 if (TLI.isLittleEndian()) FF <<= 32; 2267 Constant *FudgeFactor = ConstantInt::get( 2268 Type::getInt64Ty(*DAG.getContext()), FF); 2269 2270 SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy()); 2271 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 2272 CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset); 2273 Alignment = std::min(Alignment, 4u); 2274 SDValue FudgeInReg; 2275 if (DestVT == MVT::f32) 2276 FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx, 2277 MachinePointerInfo::getConstantPool(), 2278 false, false, false, Alignment); 2279 else { 2280 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, 2281 DAG.getEntryNode(), CPIdx, 2282 MachinePointerInfo::getConstantPool(), 2283 MVT::f32, false, false, Alignment); 2284 HandleSDNode Handle(Load); 2285 LegalizeOp(Load.getNode()); 2286 FudgeInReg = Handle.getValue(); 2287 } 2288 2289 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg); 2290} 2291 2292/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a 2293/// *INT_TO_FP operation of the specified operand when the target requests that 2294/// we promote it. At this point, we know that the result and operand types are 2295/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP 2296/// operation that takes a larger input. 2297SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp, 2298 EVT DestVT, 2299 bool isSigned, 2300 DebugLoc dl) { 2301 // First step, figure out the appropriate *INT_TO_FP operation to use. 2302 EVT NewInTy = LegalOp.getValueType(); 2303 2304 unsigned OpToUse = 0; 2305 2306 // Scan for the appropriate larger type to use. 2307 while (1) { 2308 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1); 2309 assert(NewInTy.isInteger() && "Ran out of possibilities!"); 2310 2311 // If the target supports SINT_TO_FP of this type, use it. 2312 if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) { 2313 OpToUse = ISD::SINT_TO_FP; 2314 break; 2315 } 2316 if (isSigned) continue; 2317 2318 // If the target supports UINT_TO_FP of this type, use it. 2319 if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) { 2320 OpToUse = ISD::UINT_TO_FP; 2321 break; 2322 } 2323 2324 // Otherwise, try a larger type. 2325 } 2326 2327 // Okay, we found the operation and type to use. Zero extend our input to the 2328 // desired type then run the operation on it. 2329 return DAG.getNode(OpToUse, dl, DestVT, 2330 DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2331 dl, NewInTy, LegalOp)); 2332} 2333 2334/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a 2335/// FP_TO_*INT operation of the specified operand when the target requests that 2336/// we promote it. At this point, we know that the result and operand types are 2337/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT 2338/// operation that returns a larger result. 2339SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp, 2340 EVT DestVT, 2341 bool isSigned, 2342 DebugLoc dl) { 2343 // First step, figure out the appropriate FP_TO*INT operation to use. 2344 EVT NewOutTy = DestVT; 2345 2346 unsigned OpToUse = 0; 2347 2348 // Scan for the appropriate larger type to use. 2349 while (1) { 2350 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1); 2351 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 2352 2353 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) { 2354 OpToUse = ISD::FP_TO_SINT; 2355 break; 2356 } 2357 2358 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) { 2359 OpToUse = ISD::FP_TO_UINT; 2360 break; 2361 } 2362 2363 // Otherwise, try a larger type. 2364 } 2365 2366 2367 // Okay, we found the operation and type to use. 2368 SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp); 2369 2370 // Truncate the result of the extended FP_TO_*INT operation to the desired 2371 // size. 2372 return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation); 2373} 2374 2375/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation. 2376/// 2377SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) { 2378 EVT VT = Op.getValueType(); 2379 EVT SHVT = TLI.getShiftAmountTy(VT); 2380 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 2381 switch (VT.getSimpleVT().SimpleTy) { 2382 default: llvm_unreachable("Unhandled Expand type in BSWAP!"); 2383 case MVT::i16: 2384 Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2385 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2386 return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); 2387 case MVT::i32: 2388 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT)); 2389 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2390 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2391 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT)); 2392 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT)); 2393 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT)); 2394 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2395 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2396 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2397 case MVT::i64: 2398 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT)); 2399 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT)); 2400 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT)); 2401 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2402 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2403 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT)); 2404 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT)); 2405 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT)); 2406 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT)); 2407 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT)); 2408 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT)); 2409 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT)); 2410 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT)); 2411 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT)); 2412 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 2413 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 2414 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2415 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2416 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 2417 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2418 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 2419 } 2420} 2421 2422/// SplatByte - Distribute ByteVal over NumBits bits. 2423// FIXME: Move this helper to a common place. 2424static APInt SplatByte(unsigned NumBits, uint8_t ByteVal) { 2425 APInt Val = APInt(NumBits, ByteVal); 2426 unsigned Shift = 8; 2427 for (unsigned i = NumBits; i > 8; i >>= 1) { 2428 Val = (Val << Shift) | Val; 2429 Shift <<= 1; 2430 } 2431 return Val; 2432} 2433 2434/// ExpandBitCount - Expand the specified bitcount instruction into operations. 2435/// 2436SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op, 2437 DebugLoc dl) { 2438 switch (Opc) { 2439 default: llvm_unreachable("Cannot expand this yet!"); 2440 case ISD::CTPOP: { 2441 EVT VT = Op.getValueType(); 2442 EVT ShVT = TLI.getShiftAmountTy(VT); 2443 unsigned Len = VT.getSizeInBits(); 2444 2445 assert(VT.isInteger() && Len <= 128 && Len % 8 == 0 && 2446 "CTPOP not implemented for this type."); 2447 2448 // This is the "best" algorithm from 2449 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 2450 2451 SDValue Mask55 = DAG.getConstant(SplatByte(Len, 0x55), VT); 2452 SDValue Mask33 = DAG.getConstant(SplatByte(Len, 0x33), VT); 2453 SDValue Mask0F = DAG.getConstant(SplatByte(Len, 0x0F), VT); 2454 SDValue Mask01 = DAG.getConstant(SplatByte(Len, 0x01), VT); 2455 2456 // v = v - ((v >> 1) & 0x55555555...) 2457 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 2458 DAG.getNode(ISD::AND, dl, VT, 2459 DAG.getNode(ISD::SRL, dl, VT, Op, 2460 DAG.getConstant(1, ShVT)), 2461 Mask55)); 2462 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 2463 Op = DAG.getNode(ISD::ADD, dl, VT, 2464 DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 2465 DAG.getNode(ISD::AND, dl, VT, 2466 DAG.getNode(ISD::SRL, dl, VT, Op, 2467 DAG.getConstant(2, ShVT)), 2468 Mask33)); 2469 // v = (v + (v >> 4)) & 0x0F0F0F0F... 2470 Op = DAG.getNode(ISD::AND, dl, VT, 2471 DAG.getNode(ISD::ADD, dl, VT, Op, 2472 DAG.getNode(ISD::SRL, dl, VT, Op, 2473 DAG.getConstant(4, ShVT))), 2474 Mask0F); 2475 // v = (v * 0x01010101...) >> (Len - 8) 2476 Op = DAG.getNode(ISD::SRL, dl, VT, 2477 DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 2478 DAG.getConstant(Len - 8, ShVT)); 2479 2480 return Op; 2481 } 2482 case ISD::CTLZ_ZERO_UNDEF: 2483 // This trivially expands to CTLZ. 2484 return DAG.getNode(ISD::CTLZ, dl, Op.getValueType(), Op); 2485 case ISD::CTLZ: { 2486 // for now, we do this: 2487 // x = x | (x >> 1); 2488 // x = x | (x >> 2); 2489 // ... 2490 // x = x | (x >>16); 2491 // x = x | (x >>32); // for 64-bit input 2492 // return popcount(~x); 2493 // 2494 // but see also: http://www.hackersdelight.org/HDcode/nlz.cc 2495 EVT VT = Op.getValueType(); 2496 EVT ShVT = TLI.getShiftAmountTy(VT); 2497 unsigned len = VT.getSizeInBits(); 2498 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) { 2499 SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT); 2500 Op = DAG.getNode(ISD::OR, dl, VT, Op, 2501 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3)); 2502 } 2503 Op = DAG.getNOT(dl, Op, VT); 2504 return DAG.getNode(ISD::CTPOP, dl, VT, Op); 2505 } 2506 case ISD::CTTZ_ZERO_UNDEF: 2507 // This trivially expands to CTTZ. 2508 return DAG.getNode(ISD::CTTZ, dl, Op.getValueType(), Op); 2509 case ISD::CTTZ: { 2510 // for now, we use: { return popcount(~x & (x - 1)); } 2511 // unless the target has ctlz but not ctpop, in which case we use: 2512 // { return 32 - nlz(~x & (x-1)); } 2513 // see also http://www.hackersdelight.org/HDcode/ntz.cc 2514 EVT VT = Op.getValueType(); 2515 SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT, 2516 DAG.getNOT(dl, Op, VT), 2517 DAG.getNode(ISD::SUB, dl, VT, Op, 2518 DAG.getConstant(1, VT))); 2519 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 2520 if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) && 2521 TLI.isOperationLegalOrCustom(ISD::CTLZ, VT)) 2522 return DAG.getNode(ISD::SUB, dl, VT, 2523 DAG.getConstant(VT.getSizeInBits(), VT), 2524 DAG.getNode(ISD::CTLZ, dl, VT, Tmp3)); 2525 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3); 2526 } 2527 } 2528} 2529 2530std::pair <SDValue, SDValue> SelectionDAGLegalize::ExpandAtomic(SDNode *Node) { 2531 unsigned Opc = Node->getOpcode(); 2532 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT(); 2533 RTLIB::Libcall LC; 2534 2535 switch (Opc) { 2536 default: 2537 llvm_unreachable("Unhandled atomic intrinsic Expand!"); 2538 case ISD::ATOMIC_SWAP: 2539 switch (VT.SimpleTy) { 2540 default: llvm_unreachable("Unexpected value type for atomic!"); 2541 case MVT::i8: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_1; break; 2542 case MVT::i16: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_2; break; 2543 case MVT::i32: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_4; break; 2544 case MVT::i64: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_8; break; 2545 } 2546 break; 2547 case ISD::ATOMIC_CMP_SWAP: 2548 switch (VT.SimpleTy) { 2549 default: llvm_unreachable("Unexpected value type for atomic!"); 2550 case MVT::i8: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1; break; 2551 case MVT::i16: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2; break; 2552 case MVT::i32: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4; break; 2553 case MVT::i64: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8; break; 2554 } 2555 break; 2556 case ISD::ATOMIC_LOAD_ADD: 2557 switch (VT.SimpleTy) { 2558 default: llvm_unreachable("Unexpected value type for atomic!"); 2559 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_ADD_1; break; 2560 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_ADD_2; break; 2561 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_ADD_4; break; 2562 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_ADD_8; break; 2563 } 2564 break; 2565 case ISD::ATOMIC_LOAD_SUB: 2566 switch (VT.SimpleTy) { 2567 default: llvm_unreachable("Unexpected value type for atomic!"); 2568 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_SUB_1; break; 2569 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_SUB_2; break; 2570 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_SUB_4; break; 2571 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_SUB_8; break; 2572 } 2573 break; 2574 case ISD::ATOMIC_LOAD_AND: 2575 switch (VT.SimpleTy) { 2576 default: llvm_unreachable("Unexpected value type for atomic!"); 2577 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_AND_1; break; 2578 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_AND_2; break; 2579 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_AND_4; break; 2580 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_AND_8; break; 2581 } 2582 break; 2583 case ISD::ATOMIC_LOAD_OR: 2584 switch (VT.SimpleTy) { 2585 default: llvm_unreachable("Unexpected value type for atomic!"); 2586 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_OR_1; break; 2587 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_OR_2; break; 2588 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_OR_4; break; 2589 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_OR_8; break; 2590 } 2591 break; 2592 case ISD::ATOMIC_LOAD_XOR: 2593 switch (VT.SimpleTy) { 2594 default: llvm_unreachable("Unexpected value type for atomic!"); 2595 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_XOR_1; break; 2596 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_XOR_2; break; 2597 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_XOR_4; break; 2598 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_XOR_8; break; 2599 } 2600 break; 2601 case ISD::ATOMIC_LOAD_NAND: 2602 switch (VT.SimpleTy) { 2603 default: llvm_unreachable("Unexpected value type for atomic!"); 2604 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_NAND_1; break; 2605 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_NAND_2; break; 2606 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_NAND_4; break; 2607 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_NAND_8; break; 2608 } 2609 break; 2610 } 2611 2612 return ExpandChainLibCall(LC, Node, false); 2613} 2614 2615void SelectionDAGLegalize::ExpandNode(SDNode *Node) { 2616 SmallVector<SDValue, 8> Results; 2617 DebugLoc dl = Node->getDebugLoc(); 2618 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 2619 switch (Node->getOpcode()) { 2620 case ISD::CTPOP: 2621 case ISD::CTLZ: 2622 case ISD::CTLZ_ZERO_UNDEF: 2623 case ISD::CTTZ: 2624 case ISD::CTTZ_ZERO_UNDEF: 2625 Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl); 2626 Results.push_back(Tmp1); 2627 break; 2628 case ISD::BSWAP: 2629 Results.push_back(ExpandBSWAP(Node->getOperand(0), dl)); 2630 break; 2631 case ISD::FRAMEADDR: 2632 case ISD::RETURNADDR: 2633 case ISD::FRAME_TO_ARGS_OFFSET: 2634 Results.push_back(DAG.getConstant(0, Node->getValueType(0))); 2635 break; 2636 case ISD::FLT_ROUNDS_: 2637 Results.push_back(DAG.getConstant(1, Node->getValueType(0))); 2638 break; 2639 case ISD::EH_RETURN: 2640 case ISD::EH_LABEL: 2641 case ISD::PREFETCH: 2642 case ISD::VAEND: 2643 case ISD::EH_SJLJ_LONGJMP: 2644 // If the target didn't expand these, there's nothing to do, so just 2645 // preserve the chain and be done. 2646 Results.push_back(Node->getOperand(0)); 2647 break; 2648 case ISD::EH_SJLJ_SETJMP: 2649 // If the target didn't expand this, just return 'zero' and preserve the 2650 // chain. 2651 Results.push_back(DAG.getConstant(0, MVT::i32)); 2652 Results.push_back(Node->getOperand(0)); 2653 break; 2654 case ISD::ATOMIC_FENCE: 2655 case ISD::MEMBARRIER: { 2656 // If the target didn't lower this, lower it to '__sync_synchronize()' call 2657 // FIXME: handle "fence singlethread" more efficiently. 2658 TargetLowering::ArgListTy Args; 2659 TargetLowering:: 2660 CallLoweringInfo CLI(Node->getOperand(0), 2661 Type::getVoidTy(*DAG.getContext()), 2662 false, false, false, false, 0, CallingConv::C, 2663 /*isTailCall=*/false, 2664 /*doesNotReturn=*/false, /*isReturnValueUsed=*/true, 2665 DAG.getExternalSymbol("__sync_synchronize", 2666 TLI.getPointerTy()), 2667 Args, DAG, dl); 2668 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 2669 2670 Results.push_back(CallResult.second); 2671 break; 2672 } 2673 case ISD::ATOMIC_LOAD: { 2674 // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP. 2675 SDValue Zero = DAG.getConstant(0, Node->getValueType(0)); 2676 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, 2677 cast<AtomicSDNode>(Node)->getMemoryVT(), 2678 Node->getOperand(0), 2679 Node->getOperand(1), Zero, Zero, 2680 cast<AtomicSDNode>(Node)->getMemOperand(), 2681 cast<AtomicSDNode>(Node)->getOrdering(), 2682 cast<AtomicSDNode>(Node)->getSynchScope()); 2683 Results.push_back(Swap.getValue(0)); 2684 Results.push_back(Swap.getValue(1)); 2685 break; 2686 } 2687 case ISD::ATOMIC_STORE: { 2688 // There is no libcall for atomic store; fake it with ATOMIC_SWAP. 2689 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl, 2690 cast<AtomicSDNode>(Node)->getMemoryVT(), 2691 Node->getOperand(0), 2692 Node->getOperand(1), Node->getOperand(2), 2693 cast<AtomicSDNode>(Node)->getMemOperand(), 2694 cast<AtomicSDNode>(Node)->getOrdering(), 2695 cast<AtomicSDNode>(Node)->getSynchScope()); 2696 Results.push_back(Swap.getValue(1)); 2697 break; 2698 } 2699 // By default, atomic intrinsics are marked Legal and lowered. Targets 2700 // which don't support them directly, however, may want libcalls, in which 2701 // case they mark them Expand, and we get here. 2702 case ISD::ATOMIC_SWAP: 2703 case ISD::ATOMIC_LOAD_ADD: 2704 case ISD::ATOMIC_LOAD_SUB: 2705 case ISD::ATOMIC_LOAD_AND: 2706 case ISD::ATOMIC_LOAD_OR: 2707 case ISD::ATOMIC_LOAD_XOR: 2708 case ISD::ATOMIC_LOAD_NAND: 2709 case ISD::ATOMIC_LOAD_MIN: 2710 case ISD::ATOMIC_LOAD_MAX: 2711 case ISD::ATOMIC_LOAD_UMIN: 2712 case ISD::ATOMIC_LOAD_UMAX: 2713 case ISD::ATOMIC_CMP_SWAP: { 2714 std::pair<SDValue, SDValue> Tmp = ExpandAtomic(Node); 2715 Results.push_back(Tmp.first); 2716 Results.push_back(Tmp.second); 2717 break; 2718 } 2719 case ISD::DYNAMIC_STACKALLOC: 2720 ExpandDYNAMIC_STACKALLOC(Node, Results); 2721 break; 2722 case ISD::MERGE_VALUES: 2723 for (unsigned i = 0; i < Node->getNumValues(); i++) 2724 Results.push_back(Node->getOperand(i)); 2725 break; 2726 case ISD::UNDEF: { 2727 EVT VT = Node->getValueType(0); 2728 if (VT.isInteger()) 2729 Results.push_back(DAG.getConstant(0, VT)); 2730 else { 2731 assert(VT.isFloatingPoint() && "Unknown value type!"); 2732 Results.push_back(DAG.getConstantFP(0, VT)); 2733 } 2734 break; 2735 } 2736 case ISD::TRAP: { 2737 // If this operation is not supported, lower it to 'abort()' call 2738 TargetLowering::ArgListTy Args; 2739 TargetLowering:: 2740 CallLoweringInfo CLI(Node->getOperand(0), 2741 Type::getVoidTy(*DAG.getContext()), 2742 false, false, false, false, 0, CallingConv::C, 2743 /*isTailCall=*/false, 2744 /*doesNotReturn=*/false, /*isReturnValueUsed=*/true, 2745 DAG.getExternalSymbol("abort", TLI.getPointerTy()), 2746 Args, DAG, dl); 2747 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 2748 2749 Results.push_back(CallResult.second); 2750 break; 2751 } 2752 case ISD::FP_ROUND: 2753 case ISD::BITCAST: 2754 Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 2755 Node->getValueType(0), dl); 2756 Results.push_back(Tmp1); 2757 break; 2758 case ISD::FP_EXTEND: 2759 Tmp1 = EmitStackConvert(Node->getOperand(0), 2760 Node->getOperand(0).getValueType(), 2761 Node->getValueType(0), dl); 2762 Results.push_back(Tmp1); 2763 break; 2764 case ISD::SIGN_EXTEND_INREG: { 2765 // NOTE: we could fall back on load/store here too for targets without 2766 // SAR. However, it is doubtful that any exist. 2767 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 2768 EVT VT = Node->getValueType(0); 2769 EVT ShiftAmountTy = TLI.getShiftAmountTy(VT); 2770 if (VT.isVector()) 2771 ShiftAmountTy = VT; 2772 unsigned BitsDiff = VT.getScalarType().getSizeInBits() - 2773 ExtraVT.getScalarType().getSizeInBits(); 2774 SDValue ShiftCst = DAG.getConstant(BitsDiff, ShiftAmountTy); 2775 Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0), 2776 Node->getOperand(0), ShiftCst); 2777 Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst); 2778 Results.push_back(Tmp1); 2779 break; 2780 } 2781 case ISD::FP_ROUND_INREG: { 2782 // The only way we can lower this is to turn it into a TRUNCSTORE, 2783 // EXTLOAD pair, targeting a temporary location (a stack slot). 2784 2785 // NOTE: there is a choice here between constantly creating new stack 2786 // slots and always reusing the same one. We currently always create 2787 // new ones, as reuse may inhibit scheduling. 2788 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 2789 Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT, 2790 Node->getValueType(0), dl); 2791 Results.push_back(Tmp1); 2792 break; 2793 } 2794 case ISD::SINT_TO_FP: 2795 case ISD::UINT_TO_FP: 2796 Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP, 2797 Node->getOperand(0), Node->getValueType(0), dl); 2798 Results.push_back(Tmp1); 2799 break; 2800 case ISD::FP_TO_UINT: { 2801 SDValue True, False; 2802 EVT VT = Node->getOperand(0).getValueType(); 2803 EVT NVT = Node->getValueType(0); 2804 APFloat apf(APInt::getNullValue(VT.getSizeInBits())); 2805 APInt x = APInt::getSignBit(NVT.getSizeInBits()); 2806 (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven); 2807 Tmp1 = DAG.getConstantFP(apf, VT); 2808 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), 2809 Node->getOperand(0), 2810 Tmp1, ISD::SETLT); 2811 True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0)); 2812 False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, 2813 DAG.getNode(ISD::FSUB, dl, VT, 2814 Node->getOperand(0), Tmp1)); 2815 False = DAG.getNode(ISD::XOR, dl, NVT, False, 2816 DAG.getConstant(x, NVT)); 2817 Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False); 2818 Results.push_back(Tmp1); 2819 break; 2820 } 2821 case ISD::VAARG: { 2822 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2823 EVT VT = Node->getValueType(0); 2824 Tmp1 = Node->getOperand(0); 2825 Tmp2 = Node->getOperand(1); 2826 unsigned Align = Node->getConstantOperandVal(3); 2827 2828 SDValue VAListLoad = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2, 2829 MachinePointerInfo(V), 2830 false, false, false, 0); 2831 SDValue VAList = VAListLoad; 2832 2833 if (Align > TLI.getMinStackArgumentAlignment()) { 2834 assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2"); 2835 2836 VAList = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList, 2837 DAG.getConstant(Align - 1, 2838 TLI.getPointerTy())); 2839 2840 VAList = DAG.getNode(ISD::AND, dl, TLI.getPointerTy(), VAList, 2841 DAG.getConstant(-(int64_t)Align, 2842 TLI.getPointerTy())); 2843 } 2844 2845 // Increment the pointer, VAList, to the next vaarg 2846 Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList, 2847 DAG.getConstant(TLI.getDataLayout()-> 2848 getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())), 2849 TLI.getPointerTy())); 2850 // Store the incremented VAList to the legalized pointer 2851 Tmp3 = DAG.getStore(VAListLoad.getValue(1), dl, Tmp3, Tmp2, 2852 MachinePointerInfo(V), false, false, 0); 2853 // Load the actual argument out of the pointer VAList 2854 Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, MachinePointerInfo(), 2855 false, false, false, 0)); 2856 Results.push_back(Results[0].getValue(1)); 2857 break; 2858 } 2859 case ISD::VACOPY: { 2860 // This defaults to loading a pointer from the input and storing it to the 2861 // output, returning the chain. 2862 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 2863 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 2864 Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0), 2865 Node->getOperand(2), MachinePointerInfo(VS), 2866 false, false, false, 0); 2867 Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 2868 MachinePointerInfo(VD), false, false, 0); 2869 Results.push_back(Tmp1); 2870 break; 2871 } 2872 case ISD::EXTRACT_VECTOR_ELT: 2873 if (Node->getOperand(0).getValueType().getVectorNumElements() == 1) 2874 // This must be an access of the only element. Return it. 2875 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), 2876 Node->getOperand(0)); 2877 else 2878 Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0)); 2879 Results.push_back(Tmp1); 2880 break; 2881 case ISD::EXTRACT_SUBVECTOR: 2882 Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0))); 2883 break; 2884 case ISD::INSERT_SUBVECTOR: 2885 Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0))); 2886 break; 2887 case ISD::CONCAT_VECTORS: { 2888 Results.push_back(ExpandVectorBuildThroughStack(Node)); 2889 break; 2890 } 2891 case ISD::SCALAR_TO_VECTOR: 2892 Results.push_back(ExpandSCALAR_TO_VECTOR(Node)); 2893 break; 2894 case ISD::INSERT_VECTOR_ELT: 2895 Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0), 2896 Node->getOperand(1), 2897 Node->getOperand(2), dl)); 2898 break; 2899 case ISD::VECTOR_SHUFFLE: { 2900 SmallVector<int, 32> NewMask; 2901 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 2902 2903 EVT VT = Node->getValueType(0); 2904 EVT EltVT = VT.getVectorElementType(); 2905 SDValue Op0 = Node->getOperand(0); 2906 SDValue Op1 = Node->getOperand(1); 2907 if (!TLI.isTypeLegal(EltVT)) { 2908 2909 EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT); 2910 2911 // BUILD_VECTOR operands are allowed to be wider than the element type. 2912 // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept it 2913 if (NewEltVT.bitsLT(EltVT)) { 2914 2915 // Convert shuffle node. 2916 // If original node was v4i64 and the new EltVT is i32, 2917 // cast operands to v8i32 and re-build the mask. 2918 2919 // Calculate new VT, the size of the new VT should be equal to original. 2920 EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltVT, 2921 VT.getSizeInBits()/NewEltVT.getSizeInBits()); 2922 assert(NewVT.bitsEq(VT)); 2923 2924 // cast operands to new VT 2925 Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0); 2926 Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1); 2927 2928 // Convert the shuffle mask 2929 unsigned int factor = NewVT.getVectorNumElements()/VT.getVectorNumElements(); 2930 2931 // EltVT gets smaller 2932 assert(factor > 0); 2933 2934 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { 2935 if (Mask[i] < 0) { 2936 for (unsigned fi = 0; fi < factor; ++fi) 2937 NewMask.push_back(Mask[i]); 2938 } 2939 else { 2940 for (unsigned fi = 0; fi < factor; ++fi) 2941 NewMask.push_back(Mask[i]*factor+fi); 2942 } 2943 } 2944 Mask = NewMask; 2945 VT = NewVT; 2946 } 2947 EltVT = NewEltVT; 2948 } 2949 unsigned NumElems = VT.getVectorNumElements(); 2950 SmallVector<SDValue, 16> Ops; 2951 for (unsigned i = 0; i != NumElems; ++i) { 2952 if (Mask[i] < 0) { 2953 Ops.push_back(DAG.getUNDEF(EltVT)); 2954 continue; 2955 } 2956 unsigned Idx = Mask[i]; 2957 if (Idx < NumElems) 2958 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, 2959 Op0, 2960 DAG.getIntPtrConstant(Idx))); 2961 else 2962 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, 2963 Op1, 2964 DAG.getIntPtrConstant(Idx - NumElems))); 2965 } 2966 2967 Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size()); 2968 // We may have changed the BUILD_VECTOR type. Cast it back to the Node type. 2969 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1); 2970 Results.push_back(Tmp1); 2971 break; 2972 } 2973 case ISD::EXTRACT_ELEMENT: { 2974 EVT OpTy = Node->getOperand(0).getValueType(); 2975 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { 2976 // 1 -> Hi 2977 Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0), 2978 DAG.getConstant(OpTy.getSizeInBits()/2, 2979 TLI.getShiftAmountTy(Node->getOperand(0).getValueType()))); 2980 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1); 2981 } else { 2982 // 0 -> Lo 2983 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), 2984 Node->getOperand(0)); 2985 } 2986 Results.push_back(Tmp1); 2987 break; 2988 } 2989 case ISD::STACKSAVE: 2990 // Expand to CopyFromReg if the target set 2991 // StackPointerRegisterToSaveRestore. 2992 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 2993 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP, 2994 Node->getValueType(0))); 2995 Results.push_back(Results[0].getValue(1)); 2996 } else { 2997 Results.push_back(DAG.getUNDEF(Node->getValueType(0))); 2998 Results.push_back(Node->getOperand(0)); 2999 } 3000 break; 3001 case ISD::STACKRESTORE: 3002 // Expand to CopyToReg if the target set 3003 // StackPointerRegisterToSaveRestore. 3004 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 3005 Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP, 3006 Node->getOperand(1))); 3007 } else { 3008 Results.push_back(Node->getOperand(0)); 3009 } 3010 break; 3011 case ISD::FCOPYSIGN: 3012 Results.push_back(ExpandFCOPYSIGN(Node)); 3013 break; 3014 case ISD::FNEG: 3015 // Expand Y = FNEG(X) -> Y = SUB -0.0, X 3016 Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0)); 3017 Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1, 3018 Node->getOperand(0)); 3019 Results.push_back(Tmp1); 3020 break; 3021 case ISD::FABS: { 3022 // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X). 3023 EVT VT = Node->getValueType(0); 3024 Tmp1 = Node->getOperand(0); 3025 Tmp2 = DAG.getConstantFP(0.0, VT); 3026 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()), 3027 Tmp1, Tmp2, ISD::SETUGT); 3028 Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1); 3029 Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3); 3030 Results.push_back(Tmp1); 3031 break; 3032 } 3033 case ISD::FSQRT: 3034 Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 3035 RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128)); 3036 break; 3037 case ISD::FSIN: 3038 Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64, 3039 RTLIB::SIN_F80, RTLIB::SIN_PPCF128)); 3040 break; 3041 case ISD::FCOS: 3042 Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64, 3043 RTLIB::COS_F80, RTLIB::COS_PPCF128)); 3044 break; 3045 case ISD::FLOG: 3046 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, 3047 RTLIB::LOG_F80, RTLIB::LOG_PPCF128)); 3048 break; 3049 case ISD::FLOG2: 3050 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, 3051 RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128)); 3052 break; 3053 case ISD::FLOG10: 3054 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, 3055 RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128)); 3056 break; 3057 case ISD::FEXP: 3058 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, 3059 RTLIB::EXP_F80, RTLIB::EXP_PPCF128)); 3060 break; 3061 case ISD::FEXP2: 3062 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, 3063 RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128)); 3064 break; 3065 case ISD::FTRUNC: 3066 Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, 3067 RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128)); 3068 break; 3069 case ISD::FFLOOR: 3070 Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, 3071 RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128)); 3072 break; 3073 case ISD::FCEIL: 3074 Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64, 3075 RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128)); 3076 break; 3077 case ISD::FRINT: 3078 Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64, 3079 RTLIB::RINT_F80, RTLIB::RINT_PPCF128)); 3080 break; 3081 case ISD::FNEARBYINT: 3082 Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32, 3083 RTLIB::NEARBYINT_F64, 3084 RTLIB::NEARBYINT_F80, 3085 RTLIB::NEARBYINT_PPCF128)); 3086 break; 3087 case ISD::FPOWI: 3088 Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64, 3089 RTLIB::POWI_F80, RTLIB::POWI_PPCF128)); 3090 break; 3091 case ISD::FPOW: 3092 Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, 3093 RTLIB::POW_F80, RTLIB::POW_PPCF128)); 3094 break; 3095 case ISD::FDIV: 3096 Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64, 3097 RTLIB::DIV_F80, RTLIB::DIV_PPCF128)); 3098 break; 3099 case ISD::FREM: 3100 Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64, 3101 RTLIB::REM_F80, RTLIB::REM_PPCF128)); 3102 break; 3103 case ISD::FMA: 3104 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64, 3105 RTLIB::FMA_F80, RTLIB::FMA_PPCF128)); 3106 break; 3107 case ISD::FP16_TO_FP32: 3108 Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false)); 3109 break; 3110 case ISD::FP32_TO_FP16: 3111 Results.push_back(ExpandLibCall(RTLIB::FPROUND_F32_F16, Node, false)); 3112 break; 3113 case ISD::ConstantFP: { 3114 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 3115 // Check to see if this FP immediate is already legal. 3116 // If this is a legal constant, turn it into a TargetConstantFP node. 3117 if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0))) 3118 Results.push_back(ExpandConstantFP(CFP, true)); 3119 break; 3120 } 3121 case ISD::EHSELECTION: { 3122 unsigned Reg = TLI.getExceptionSelectorRegister(); 3123 assert(Reg && "Can't expand to unknown register!"); 3124 Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg, 3125 Node->getValueType(0))); 3126 Results.push_back(Results[0].getValue(1)); 3127 break; 3128 } 3129 case ISD::EXCEPTIONADDR: { 3130 unsigned Reg = TLI.getExceptionPointerRegister(); 3131 assert(Reg && "Can't expand to unknown register!"); 3132 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg, 3133 Node->getValueType(0))); 3134 Results.push_back(Results[0].getValue(1)); 3135 break; 3136 } 3137 case ISD::FSUB: { 3138 EVT VT = Node->getValueType(0); 3139 assert(TLI.isOperationLegalOrCustom(ISD::FADD, VT) && 3140 TLI.isOperationLegalOrCustom(ISD::FNEG, VT) && 3141 "Don't know how to expand this FP subtraction!"); 3142 Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1)); 3143 Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1); 3144 Results.push_back(Tmp1); 3145 break; 3146 } 3147 case ISD::SUB: { 3148 EVT VT = Node->getValueType(0); 3149 assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 3150 TLI.isOperationLegalOrCustom(ISD::XOR, VT) && 3151 "Don't know how to expand this subtraction!"); 3152 Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1), 3153 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT)); 3154 Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, VT)); 3155 Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1)); 3156 break; 3157 } 3158 case ISD::UREM: 3159 case ISD::SREM: { 3160 EVT VT = Node->getValueType(0); 3161 SDVTList VTs = DAG.getVTList(VT, VT); 3162 bool isSigned = Node->getOpcode() == ISD::SREM; 3163 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 3164 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3165 Tmp2 = Node->getOperand(0); 3166 Tmp3 = Node->getOperand(1); 3167 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) || 3168 (isDivRemLibcallAvailable(Node, isSigned, TLI) && 3169 // If div is legal, it's better to do the normal expansion 3170 !TLI.isOperationLegalOrCustom(DivOpc, Node->getValueType(0)) && 3171 useDivRem(Node, isSigned, false))) { 3172 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1); 3173 } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) { 3174 // X % Y -> X-X/Y*Y 3175 Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3); 3176 Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3); 3177 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1); 3178 } else if (isSigned) 3179 Tmp1 = ExpandIntLibCall(Node, true, 3180 RTLIB::SREM_I8, 3181 RTLIB::SREM_I16, RTLIB::SREM_I32, 3182 RTLIB::SREM_I64, RTLIB::SREM_I128); 3183 else 3184 Tmp1 = ExpandIntLibCall(Node, false, 3185 RTLIB::UREM_I8, 3186 RTLIB::UREM_I16, RTLIB::UREM_I32, 3187 RTLIB::UREM_I64, RTLIB::UREM_I128); 3188 Results.push_back(Tmp1); 3189 break; 3190 } 3191 case ISD::UDIV: 3192 case ISD::SDIV: { 3193 bool isSigned = Node->getOpcode() == ISD::SDIV; 3194 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3195 EVT VT = Node->getValueType(0); 3196 SDVTList VTs = DAG.getVTList(VT, VT); 3197 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) || 3198 (isDivRemLibcallAvailable(Node, isSigned, TLI) && 3199 useDivRem(Node, isSigned, true))) 3200 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0), 3201 Node->getOperand(1)); 3202 else if (isSigned) 3203 Tmp1 = ExpandIntLibCall(Node, true, 3204 RTLIB::SDIV_I8, 3205 RTLIB::SDIV_I16, RTLIB::SDIV_I32, 3206 RTLIB::SDIV_I64, RTLIB::SDIV_I128); 3207 else 3208 Tmp1 = ExpandIntLibCall(Node, false, 3209 RTLIB::UDIV_I8, 3210 RTLIB::UDIV_I16, RTLIB::UDIV_I32, 3211 RTLIB::UDIV_I64, RTLIB::UDIV_I128); 3212 Results.push_back(Tmp1); 3213 break; 3214 } 3215 case ISD::MULHU: 3216 case ISD::MULHS: { 3217 unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : 3218 ISD::SMUL_LOHI; 3219 EVT VT = Node->getValueType(0); 3220 SDVTList VTs = DAG.getVTList(VT, VT); 3221 assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) && 3222 "If this wasn't legal, it shouldn't have been created!"); 3223 Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0), 3224 Node->getOperand(1)); 3225 Results.push_back(Tmp1.getValue(1)); 3226 break; 3227 } 3228 case ISD::SDIVREM: 3229 case ISD::UDIVREM: 3230 // Expand into divrem libcall 3231 ExpandDivRemLibCall(Node, Results); 3232 break; 3233 case ISD::MUL: { 3234 EVT VT = Node->getValueType(0); 3235 SDVTList VTs = DAG.getVTList(VT, VT); 3236 // See if multiply or divide can be lowered using two-result operations. 3237 // We just need the low half of the multiply; try both the signed 3238 // and unsigned forms. If the target supports both SMUL_LOHI and 3239 // UMUL_LOHI, form a preference by checking which forms of plain 3240 // MULH it supports. 3241 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT); 3242 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT); 3243 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT); 3244 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT); 3245 unsigned OpToUse = 0; 3246 if (HasSMUL_LOHI && !HasMULHS) { 3247 OpToUse = ISD::SMUL_LOHI; 3248 } else if (HasUMUL_LOHI && !HasMULHU) { 3249 OpToUse = ISD::UMUL_LOHI; 3250 } else if (HasSMUL_LOHI) { 3251 OpToUse = ISD::SMUL_LOHI; 3252 } else if (HasUMUL_LOHI) { 3253 OpToUse = ISD::UMUL_LOHI; 3254 } 3255 if (OpToUse) { 3256 Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0), 3257 Node->getOperand(1))); 3258 break; 3259 } 3260 Tmp1 = ExpandIntLibCall(Node, false, 3261 RTLIB::MUL_I8, 3262 RTLIB::MUL_I16, RTLIB::MUL_I32, 3263 RTLIB::MUL_I64, RTLIB::MUL_I128); 3264 Results.push_back(Tmp1); 3265 break; 3266 } 3267 case ISD::SADDO: 3268 case ISD::SSUBO: { 3269 SDValue LHS = Node->getOperand(0); 3270 SDValue RHS = Node->getOperand(1); 3271 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ? 3272 ISD::ADD : ISD::SUB, dl, LHS.getValueType(), 3273 LHS, RHS); 3274 Results.push_back(Sum); 3275 EVT OType = Node->getValueType(1); 3276 3277 SDValue Zero = DAG.getConstant(0, LHS.getValueType()); 3278 3279 // LHSSign -> LHS >= 0 3280 // RHSSign -> RHS >= 0 3281 // SumSign -> Sum >= 0 3282 // 3283 // Add: 3284 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign) 3285 // Sub: 3286 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign) 3287 // 3288 SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE); 3289 SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE); 3290 SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign, 3291 Node->getOpcode() == ISD::SADDO ? 3292 ISD::SETEQ : ISD::SETNE); 3293 3294 SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE); 3295 SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE); 3296 3297 SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE); 3298 Results.push_back(Cmp); 3299 break; 3300 } 3301 case ISD::UADDO: 3302 case ISD::USUBO: { 3303 SDValue LHS = Node->getOperand(0); 3304 SDValue RHS = Node->getOperand(1); 3305 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ? 3306 ISD::ADD : ISD::SUB, dl, LHS.getValueType(), 3307 LHS, RHS); 3308 Results.push_back(Sum); 3309 Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS, 3310 Node->getOpcode () == ISD::UADDO ? 3311 ISD::SETULT : ISD::SETUGT)); 3312 break; 3313 } 3314 case ISD::UMULO: 3315 case ISD::SMULO: { 3316 EVT VT = Node->getValueType(0); 3317 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2); 3318 SDValue LHS = Node->getOperand(0); 3319 SDValue RHS = Node->getOperand(1); 3320 SDValue BottomHalf; 3321 SDValue TopHalf; 3322 static const unsigned Ops[2][3] = 3323 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 3324 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 3325 bool isSigned = Node->getOpcode() == ISD::SMULO; 3326 if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 3327 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 3328 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 3329 } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 3330 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 3331 RHS); 3332 TopHalf = BottomHalf.getValue(1); 3333 } else if (TLI.isTypeLegal(EVT::getIntegerVT(*DAG.getContext(), 3334 VT.getSizeInBits() * 2))) { 3335 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 3336 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 3337 Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 3338 BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1, 3339 DAG.getIntPtrConstant(0)); 3340 TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1, 3341 DAG.getIntPtrConstant(1)); 3342 } else { 3343 // We can fall back to a libcall with an illegal type for the MUL if we 3344 // have a libcall big enough. 3345 // Also, we can fall back to a division in some cases, but that's a big 3346 // performance hit in the general case. 3347 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 3348 if (WideVT == MVT::i16) 3349 LC = RTLIB::MUL_I16; 3350 else if (WideVT == MVT::i32) 3351 LC = RTLIB::MUL_I32; 3352 else if (WideVT == MVT::i64) 3353 LC = RTLIB::MUL_I64; 3354 else if (WideVT == MVT::i128) 3355 LC = RTLIB::MUL_I128; 3356 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 3357 3358 // The high part is obtained by SRA'ing all but one of the bits of low 3359 // part. 3360 unsigned LoSize = VT.getSizeInBits(); 3361 SDValue HiLHS = DAG.getNode(ISD::SRA, dl, VT, RHS, 3362 DAG.getConstant(LoSize-1, TLI.getPointerTy())); 3363 SDValue HiRHS = DAG.getNode(ISD::SRA, dl, VT, LHS, 3364 DAG.getConstant(LoSize-1, TLI.getPointerTy())); 3365 3366 // Here we're passing the 2 arguments explicitly as 4 arguments that are 3367 // pre-lowered to the correct types. This all depends upon WideVT not 3368 // being a legal type for the architecture and thus has to be split to 3369 // two arguments. 3370 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 3371 SDValue Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl); 3372 BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret, 3373 DAG.getIntPtrConstant(0)); 3374 TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret, 3375 DAG.getIntPtrConstant(1)); 3376 // Ret is a node with an illegal type. Because such things are not 3377 // generally permitted during this phase of legalization, delete the 3378 // node. The above EXTRACT_ELEMENT nodes should have been folded. 3379 DAG.DeleteNode(Ret.getNode()); 3380 } 3381 3382 if (isSigned) { 3383 Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1, 3384 TLI.getShiftAmountTy(BottomHalf.getValueType())); 3385 Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1); 3386 TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1, 3387 ISD::SETNE); 3388 } else { 3389 TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, 3390 DAG.getConstant(0, VT), ISD::SETNE); 3391 } 3392 Results.push_back(BottomHalf); 3393 Results.push_back(TopHalf); 3394 break; 3395 } 3396 case ISD::BUILD_PAIR: { 3397 EVT PairTy = Node->getValueType(0); 3398 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0)); 3399 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1)); 3400 Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2, 3401 DAG.getConstant(PairTy.getSizeInBits()/2, 3402 TLI.getShiftAmountTy(PairTy))); 3403 Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2)); 3404 break; 3405 } 3406 case ISD::SELECT: 3407 Tmp1 = Node->getOperand(0); 3408 Tmp2 = Node->getOperand(1); 3409 Tmp3 = Node->getOperand(2); 3410 if (Tmp1.getOpcode() == ISD::SETCC) { 3411 Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1), 3412 Tmp2, Tmp3, 3413 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); 3414 } else { 3415 Tmp1 = DAG.getSelectCC(dl, Tmp1, 3416 DAG.getConstant(0, Tmp1.getValueType()), 3417 Tmp2, Tmp3, ISD::SETNE); 3418 } 3419 Results.push_back(Tmp1); 3420 break; 3421 case ISD::BR_JT: { 3422 SDValue Chain = Node->getOperand(0); 3423 SDValue Table = Node->getOperand(1); 3424 SDValue Index = Node->getOperand(2); 3425 3426 EVT PTy = TLI.getPointerTy(); 3427 3428 const DataLayout &TD = *TLI.getDataLayout(); 3429 unsigned EntrySize = 3430 DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD); 3431 3432 Index = DAG.getNode(ISD::MUL, dl, PTy, 3433 Index, DAG.getConstant(EntrySize, PTy)); 3434 SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table); 3435 3436 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8); 3437 SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr, 3438 MachinePointerInfo::getJumpTable(), MemVT, 3439 false, false, 0); 3440 Addr = LD; 3441 if (TM.getRelocationModel() == Reloc::PIC_) { 3442 // For PIC, the sequence is: 3443 // BRIND(load(Jumptable + index) + RelocBase) 3444 // RelocBase can be JumpTable, GOT or some sort of global base. 3445 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, 3446 TLI.getPICJumpTableRelocBase(Table, DAG)); 3447 } 3448 Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr); 3449 Results.push_back(Tmp1); 3450 break; 3451 } 3452 case ISD::BRCOND: 3453 // Expand brcond's setcc into its constituent parts and create a BR_CC 3454 // Node. 3455 Tmp1 = Node->getOperand(0); 3456 Tmp2 = Node->getOperand(1); 3457 if (Tmp2.getOpcode() == ISD::SETCC) { 3458 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, 3459 Tmp1, Tmp2.getOperand(2), 3460 Tmp2.getOperand(0), Tmp2.getOperand(1), 3461 Node->getOperand(2)); 3462 } else { 3463 // We test only the i1 bit. Skip the AND if UNDEF. 3464 Tmp3 = (Tmp2.getOpcode() == ISD::UNDEF) ? Tmp2 : 3465 DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2, 3466 DAG.getConstant(1, Tmp2.getValueType())); 3467 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, 3468 DAG.getCondCode(ISD::SETNE), Tmp3, 3469 DAG.getConstant(0, Tmp3.getValueType()), 3470 Node->getOperand(2)); 3471 } 3472 Results.push_back(Tmp1); 3473 break; 3474 case ISD::SETCC: { 3475 Tmp1 = Node->getOperand(0); 3476 Tmp2 = Node->getOperand(1); 3477 Tmp3 = Node->getOperand(2); 3478 LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl); 3479 3480 // If we expanded the SETCC into an AND/OR, return the new node 3481 if (Tmp2.getNode() == 0) { 3482 Results.push_back(Tmp1); 3483 break; 3484 } 3485 3486 // Otherwise, SETCC for the given comparison type must be completely 3487 // illegal; expand it into a SELECT_CC. 3488 EVT VT = Node->getValueType(0); 3489 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2, 3490 DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3); 3491 Results.push_back(Tmp1); 3492 break; 3493 } 3494 case ISD::SELECT_CC: { 3495 Tmp1 = Node->getOperand(0); // LHS 3496 Tmp2 = Node->getOperand(1); // RHS 3497 Tmp3 = Node->getOperand(2); // True 3498 Tmp4 = Node->getOperand(3); // False 3499 SDValue CC = Node->getOperand(4); 3500 3501 LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()), 3502 Tmp1, Tmp2, CC, dl); 3503 3504 assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!"); 3505 Tmp2 = DAG.getConstant(0, Tmp1.getValueType()); 3506 CC = DAG.getCondCode(ISD::SETNE); 3507 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2, 3508 Tmp3, Tmp4, CC); 3509 Results.push_back(Tmp1); 3510 break; 3511 } 3512 case ISD::BR_CC: { 3513 Tmp1 = Node->getOperand(0); // Chain 3514 Tmp2 = Node->getOperand(2); // LHS 3515 Tmp3 = Node->getOperand(3); // RHS 3516 Tmp4 = Node->getOperand(1); // CC 3517 3518 LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()), 3519 Tmp2, Tmp3, Tmp4, dl); 3520 3521 assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!"); 3522 Tmp3 = DAG.getConstant(0, Tmp2.getValueType()); 3523 Tmp4 = DAG.getCondCode(ISD::SETNE); 3524 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2, 3525 Tmp3, Node->getOperand(4)); 3526 Results.push_back(Tmp1); 3527 break; 3528 } 3529 case ISD::BUILD_VECTOR: 3530 Results.push_back(ExpandBUILD_VECTOR(Node)); 3531 break; 3532 case ISD::SRA: 3533 case ISD::SRL: 3534 case ISD::SHL: { 3535 // Scalarize vector SRA/SRL/SHL. 3536 EVT VT = Node->getValueType(0); 3537 assert(VT.isVector() && "Unable to legalize non-vector shift"); 3538 assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal"); 3539 unsigned NumElem = VT.getVectorNumElements(); 3540 3541 SmallVector<SDValue, 8> Scalars; 3542 for (unsigned Idx = 0; Idx < NumElem; Idx++) { 3543 SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 3544 VT.getScalarType(), 3545 Node->getOperand(0), DAG.getIntPtrConstant(Idx)); 3546 SDValue Sh = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 3547 VT.getScalarType(), 3548 Node->getOperand(1), DAG.getIntPtrConstant(Idx)); 3549 Scalars.push_back(DAG.getNode(Node->getOpcode(), dl, 3550 VT.getScalarType(), Ex, Sh)); 3551 } 3552 SDValue Result = 3553 DAG.getNode(ISD::BUILD_VECTOR, dl, Node->getValueType(0), 3554 &Scalars[0], Scalars.size()); 3555 ReplaceNode(SDValue(Node, 0), Result); 3556 break; 3557 } 3558 case ISD::GLOBAL_OFFSET_TABLE: 3559 case ISD::GlobalAddress: 3560 case ISD::GlobalTLSAddress: 3561 case ISD::ExternalSymbol: 3562 case ISD::ConstantPool: 3563 case ISD::JumpTable: 3564 case ISD::INTRINSIC_W_CHAIN: 3565 case ISD::INTRINSIC_WO_CHAIN: 3566 case ISD::INTRINSIC_VOID: 3567 // FIXME: Custom lowering for these operations shouldn't return null! 3568 break; 3569 } 3570 3571 // Replace the original node with the legalized result. 3572 if (!Results.empty()) 3573 ReplaceNode(Node, Results.data()); 3574} 3575 3576void SelectionDAGLegalize::PromoteNode(SDNode *Node) { 3577 SmallVector<SDValue, 8> Results; 3578 EVT OVT = Node->getValueType(0); 3579 if (Node->getOpcode() == ISD::UINT_TO_FP || 3580 Node->getOpcode() == ISD::SINT_TO_FP || 3581 Node->getOpcode() == ISD::SETCC) { 3582 OVT = Node->getOperand(0).getValueType(); 3583 } 3584 EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 3585 DebugLoc dl = Node->getDebugLoc(); 3586 SDValue Tmp1, Tmp2, Tmp3; 3587 switch (Node->getOpcode()) { 3588 case ISD::CTTZ: 3589 case ISD::CTTZ_ZERO_UNDEF: 3590 case ISD::CTLZ: 3591 case ISD::CTLZ_ZERO_UNDEF: 3592 case ISD::CTPOP: 3593 // Zero extend the argument. 3594 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 3595 // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is 3596 // already the correct result. 3597 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 3598 if (Node->getOpcode() == ISD::CTTZ) { 3599 // FIXME: This should set a bit in the zero extended value instead. 3600 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT), 3601 Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT), 3602 ISD::SETEQ); 3603 Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, 3604 DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1); 3605 } else if (Node->getOpcode() == ISD::CTLZ || 3606 Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) { 3607 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 3608 Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, 3609 DAG.getConstant(NVT.getSizeInBits() - 3610 OVT.getSizeInBits(), NVT)); 3611 } 3612 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 3613 break; 3614 case ISD::BSWAP: { 3615 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); 3616 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 3617 Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1); 3618 Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1, 3619 DAG.getConstant(DiffBits, TLI.getShiftAmountTy(NVT))); 3620 Results.push_back(Tmp1); 3621 break; 3622 } 3623 case ISD::FP_TO_UINT: 3624 case ISD::FP_TO_SINT: 3625 Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0), 3626 Node->getOpcode() == ISD::FP_TO_SINT, dl); 3627 Results.push_back(Tmp1); 3628 break; 3629 case ISD::UINT_TO_FP: 3630 case ISD::SINT_TO_FP: 3631 Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0), 3632 Node->getOpcode() == ISD::SINT_TO_FP, dl); 3633 Results.push_back(Tmp1); 3634 break; 3635 case ISD::VAARG: { 3636 SDValue Chain = Node->getOperand(0); // Get the chain. 3637 SDValue Ptr = Node->getOperand(1); // Get the pointer. 3638 3639 unsigned TruncOp; 3640 if (OVT.isVector()) { 3641 TruncOp = ISD::BITCAST; 3642 } else { 3643 assert(OVT.isInteger() 3644 && "VAARG promotion is supported only for vectors or integer types"); 3645 TruncOp = ISD::TRUNCATE; 3646 } 3647 3648 // Perform the larger operation, then convert back 3649 Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2), 3650 Node->getConstantOperandVal(3)); 3651 Chain = Tmp1.getValue(1); 3652 3653 Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1); 3654 3655 // Modified the chain result - switch anything that used the old chain to 3656 // use the new one. 3657 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2); 3658 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 3659 ReplacedNode(Node); 3660 break; 3661 } 3662 case ISD::AND: 3663 case ISD::OR: 3664 case ISD::XOR: { 3665 unsigned ExtOp, TruncOp; 3666 if (OVT.isVector()) { 3667 ExtOp = ISD::BITCAST; 3668 TruncOp = ISD::BITCAST; 3669 } else { 3670 assert(OVT.isInteger() && "Cannot promote logic operation"); 3671 ExtOp = ISD::ANY_EXTEND; 3672 TruncOp = ISD::TRUNCATE; 3673 } 3674 // Promote each of the values to the new type. 3675 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 3676 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 3677 // Perform the larger operation, then convert back 3678 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 3679 Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1)); 3680 break; 3681 } 3682 case ISD::SELECT: { 3683 unsigned ExtOp, TruncOp; 3684 if (Node->getValueType(0).isVector()) { 3685 ExtOp = ISD::BITCAST; 3686 TruncOp = ISD::BITCAST; 3687 } else if (Node->getValueType(0).isInteger()) { 3688 ExtOp = ISD::ANY_EXTEND; 3689 TruncOp = ISD::TRUNCATE; 3690 } else { 3691 ExtOp = ISD::FP_EXTEND; 3692 TruncOp = ISD::FP_ROUND; 3693 } 3694 Tmp1 = Node->getOperand(0); 3695 // Promote each of the values to the new type. 3696 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 3697 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 3698 // Perform the larger operation, then round down. 3699 Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3); 3700 if (TruncOp != ISD::FP_ROUND) 3701 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1); 3702 else 3703 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1, 3704 DAG.getIntPtrConstant(0)); 3705 Results.push_back(Tmp1); 3706 break; 3707 } 3708 case ISD::VECTOR_SHUFFLE: { 3709 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 3710 3711 // Cast the two input vectors. 3712 Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0)); 3713 Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1)); 3714 3715 // Convert the shuffle mask to the right # elements. 3716 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask); 3717 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1); 3718 Results.push_back(Tmp1); 3719 break; 3720 } 3721 case ISD::SETCC: { 3722 unsigned ExtOp = ISD::FP_EXTEND; 3723 if (NVT.isInteger()) { 3724 ISD::CondCode CCCode = 3725 cast<CondCodeSDNode>(Node->getOperand(2))->get(); 3726 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 3727 } 3728 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 3729 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 3730 Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), 3731 Tmp1, Tmp2, Node->getOperand(2))); 3732 break; 3733 } 3734 case ISD::FDIV: 3735 case ISD::FREM: 3736 case ISD::FPOW: { 3737 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 3738 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 3739 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 3740 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 3741 Tmp3, DAG.getIntPtrConstant(0))); 3742 break; 3743 } 3744 case ISD::FLOG2: 3745 case ISD::FEXP2: 3746 case ISD::FLOG: 3747 case ISD::FEXP: { 3748 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 3749 Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 3750 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 3751 Tmp2, DAG.getIntPtrConstant(0))); 3752 break; 3753 } 3754 } 3755 3756 // Replace the original node with the legalized result. 3757 if (!Results.empty()) 3758 ReplaceNode(Node, Results.data()); 3759} 3760 3761// SelectionDAG::Legalize - This is the entry point for the file. 3762// 3763void SelectionDAG::Legalize() { 3764 /// run - This is the main entry point to this class. 3765 /// 3766 SelectionDAGLegalize(*this).LegalizeDAG(); 3767} 3768