LegalizeDAG.cpp revision 4a544a79bd735967f1d33fe675ae4566dbd17813
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SelectionDAG::Legalize method.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Analysis/DebugInfo.h"
15#include "llvm/CodeGen/Analysis.h"
16#include "llvm/CodeGen/MachineFunction.h"
17#include "llvm/CodeGen/MachineJumpTableInfo.h"
18#include "llvm/CodeGen/SelectionDAG.h"
19#include "llvm/Target/TargetFrameLowering.h"
20#include "llvm/Target/TargetLowering.h"
21#include "llvm/Target/TargetData.h"
22#include "llvm/Target/TargetMachine.h"
23#include "llvm/CallingConv.h"
24#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/LLVMContext.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/Support/ErrorHandling.h"
29#include "llvm/Support/MathExtras.h"
30#include "llvm/Support/raw_ostream.h"
31#include "llvm/ADT/DenseMap.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/SmallPtrSet.h"
34using namespace llvm;
35
36//===----------------------------------------------------------------------===//
37/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
38/// hacks on it until the target machine can handle it.  This involves
39/// eliminating value sizes the machine cannot handle (promoting small sizes to
40/// large sizes or splitting up large values into small values) as well as
41/// eliminating operations the machine cannot handle.
42///
43/// This code also does a small amount of optimization and recognition of idioms
44/// as part of its processing.  For example, if a target does not support a
45/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
46/// will attempt merge setcc and brc instructions into brcc's.
47///
48namespace {
49class SelectionDAGLegalize {
50  const TargetMachine &TM;
51  const TargetLowering &TLI;
52  SelectionDAG &DAG;
53
54  // Libcall insertion helpers.
55
56  /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been
57  /// legalized.  We use this to ensure that calls are properly serialized
58  /// against each other, including inserted libcalls.
59  SDValue LastCALLSEQ_END;
60
61  /// IsLegalizingCall - This member is used *only* for purposes of providing
62  /// helpful assertions that a libcall isn't created while another call is
63  /// being legalized (which could lead to non-serialized call sequences).
64  bool IsLegalizingCall;
65
66  /// LegalizedNodes - For nodes that are of legal width, and that have more
67  /// than one use, this map indicates what regularized operand to use.  This
68  /// allows us to avoid legalizing the same thing more than once.
69  DenseMap<SDValue, SDValue> LegalizedNodes;
70
71  void AddLegalizedOperand(SDValue From, SDValue To) {
72    LegalizedNodes.insert(std::make_pair(From, To));
73    // If someone requests legalization of the new node, return itself.
74    if (From != To)
75      LegalizedNodes.insert(std::make_pair(To, To));
76
77    // Transfer SDDbgValues.
78    DAG.TransferDbgValues(From, To);
79  }
80
81public:
82  explicit SelectionDAGLegalize(SelectionDAG &DAG);
83
84  void LegalizeDAG();
85
86private:
87  /// LegalizeOp - Return a legal replacement for the given operation, with
88  /// all legal operands.
89  SDValue LegalizeOp(SDValue O);
90
91  SDValue OptimizeFloatStore(StoreSDNode *ST);
92
93  /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
94  /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
95  /// is necessary to spill the vector being inserted into to memory, perform
96  /// the insert there, and then read the result back.
97  SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
98                                         SDValue Idx, DebugLoc dl);
99  SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
100                                  SDValue Idx, DebugLoc dl);
101
102  /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
103  /// performs the same shuffe in terms of order or result bytes, but on a type
104  /// whose vector element type is narrower than the original shuffle type.
105  /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
106  SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl,
107                                     SDValue N1, SDValue N2,
108                                     SmallVectorImpl<int> &Mask) const;
109
110  bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
111                                    SmallPtrSet<SDNode*, 32> &NodesLeadingTo);
112
113  void LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
114                             DebugLoc dl);
115
116  SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
117  SDValue ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, const SDValue *Ops,
118                        unsigned NumOps, bool isSigned, DebugLoc dl);
119
120  std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC,
121                                                 SDNode *Node, bool isSigned);
122  SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
123                          RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
124                          RTLIB::Libcall Call_PPCF128);
125  SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
126                           RTLIB::Libcall Call_I8,
127                           RTLIB::Libcall Call_I16,
128                           RTLIB::Libcall Call_I32,
129                           RTLIB::Libcall Call_I64,
130                           RTLIB::Libcall Call_I128);
131  void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
132
133  SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, DebugLoc dl);
134  SDValue ExpandBUILD_VECTOR(SDNode *Node);
135  SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
136  void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
137                                SmallVectorImpl<SDValue> &Results);
138  SDValue ExpandFCOPYSIGN(SDNode *Node);
139  SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT,
140                               DebugLoc dl);
141  SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned,
142                                DebugLoc dl);
143  SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned,
144                                DebugLoc dl);
145
146  SDValue ExpandBSWAP(SDValue Op, DebugLoc dl);
147  SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl);
148
149  SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
150  SDValue ExpandInsertToVectorThroughStack(SDValue Op);
151  SDValue ExpandVectorBuildThroughStack(SDNode* Node);
152
153  std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node);
154
155  void ExpandNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
156  void PromoteNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
157};
158}
159
160/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
161/// performs the same shuffe in terms of order or result bytes, but on a type
162/// whose vector element type is narrower than the original shuffle type.
163/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
164SDValue
165SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT,  DebugLoc dl,
166                                                 SDValue N1, SDValue N2,
167                                             SmallVectorImpl<int> &Mask) const {
168  unsigned NumMaskElts = VT.getVectorNumElements();
169  unsigned NumDestElts = NVT.getVectorNumElements();
170  unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
171
172  assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
173
174  if (NumEltsGrowth == 1)
175    return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
176
177  SmallVector<int, 8> NewMask;
178  for (unsigned i = 0; i != NumMaskElts; ++i) {
179    int Idx = Mask[i];
180    for (unsigned j = 0; j != NumEltsGrowth; ++j) {
181      if (Idx < 0)
182        NewMask.push_back(-1);
183      else
184        NewMask.push_back(Idx * NumEltsGrowth + j);
185    }
186  }
187  assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
188  assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
189  return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
190}
191
192SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag)
193  : TM(dag.getTarget()), TLI(dag.getTargetLoweringInfo()),
194    DAG(dag) {
195}
196
197void SelectionDAGLegalize::LegalizeDAG() {
198  LastCALLSEQ_END = DAG.getEntryNode();
199  IsLegalizingCall = false;
200
201  // The legalize process is inherently a bottom-up recursive process (users
202  // legalize their uses before themselves).  Given infinite stack space, we
203  // could just start legalizing on the root and traverse the whole graph.  In
204  // practice however, this causes us to run out of stack space on large basic
205  // blocks.  To avoid this problem, compute an ordering of the nodes where each
206  // node is only legalized after all of its operands are legalized.
207  DAG.AssignTopologicalOrder();
208  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
209       E = prior(DAG.allnodes_end()); I != llvm::next(E); ++I)
210    LegalizeOp(SDValue(I, 0));
211
212  // Finally, it's possible the root changed.  Get the new root.
213  SDValue OldRoot = DAG.getRoot();
214  assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
215  DAG.setRoot(LegalizedNodes[OldRoot]);
216
217  LegalizedNodes.clear();
218
219  // Remove dead nodes now.
220  DAG.RemoveDeadNodes();
221}
222
223
224/// FindCallEndFromCallStart - Given a chained node that is part of a call
225/// sequence, find the CALLSEQ_END node that terminates the call sequence.
226static SDNode *FindCallEndFromCallStart(SDNode *Node, int depth = 0) {
227  // Nested CALLSEQ_START/END constructs aren't yet legal,
228  // but we can DTRT and handle them correctly here.
229  if (Node->getOpcode() == ISD::CALLSEQ_START)
230    depth++;
231  else if (Node->getOpcode() == ISD::CALLSEQ_END) {
232    depth--;
233    if (depth == 0)
234      return Node;
235  }
236  if (Node->use_empty())
237    return 0;   // No CallSeqEnd
238
239  // The chain is usually at the end.
240  SDValue TheChain(Node, Node->getNumValues()-1);
241  if (TheChain.getValueType() != MVT::Other) {
242    // Sometimes it's at the beginning.
243    TheChain = SDValue(Node, 0);
244    if (TheChain.getValueType() != MVT::Other) {
245      // Otherwise, hunt for it.
246      for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i)
247        if (Node->getValueType(i) == MVT::Other) {
248          TheChain = SDValue(Node, i);
249          break;
250        }
251
252      // Otherwise, we walked into a node without a chain.
253      if (TheChain.getValueType() != MVT::Other)
254        return 0;
255    }
256  }
257
258  for (SDNode::use_iterator UI = Node->use_begin(),
259       E = Node->use_end(); UI != E; ++UI) {
260
261    // Make sure to only follow users of our token chain.
262    SDNode *User = *UI;
263    for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
264      if (User->getOperand(i) == TheChain)
265        if (SDNode *Result = FindCallEndFromCallStart(User, depth))
266          return Result;
267  }
268  return 0;
269}
270
271/// FindCallStartFromCallEnd - Given a chained node that is part of a call
272/// sequence, find the CALLSEQ_START node that initiates the call sequence.
273static SDNode *FindCallStartFromCallEnd(SDNode *Node) {
274  int nested = 0;
275  assert(Node && "Didn't find callseq_start for a call??");
276  while (Node->getOpcode() != ISD::CALLSEQ_START || nested) {
277    Node = Node->getOperand(0).getNode();
278    assert(Node->getOperand(0).getValueType() == MVT::Other &&
279           "Node doesn't have a token chain argument!");
280    switch (Node->getOpcode()) {
281    default:
282      break;
283    case ISD::CALLSEQ_START:
284      if (!nested)
285        return Node;
286      nested--;
287      break;
288    case ISD::CALLSEQ_END:
289      nested++;
290      break;
291    }
292  }
293  return 0;
294}
295
296/// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to
297/// see if any uses can reach Dest.  If no dest operands can get to dest,
298/// legalize them, legalize ourself, and return false, otherwise, return true.
299///
300/// Keep track of the nodes we fine that actually do lead to Dest in
301/// NodesLeadingTo.  This avoids retraversing them exponential number of times.
302///
303bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
304                                     SmallPtrSet<SDNode*, 32> &NodesLeadingTo) {
305  if (N == Dest) return true;  // N certainly leads to Dest :)
306
307  // If we've already processed this node and it does lead to Dest, there is no
308  // need to reprocess it.
309  if (NodesLeadingTo.count(N)) return true;
310
311  // If the first result of this node has been already legalized, then it cannot
312  // reach N.
313  if (LegalizedNodes.count(SDValue(N, 0))) return false;
314
315  // Okay, this node has not already been legalized.  Check and legalize all
316  // operands.  If none lead to Dest, then we can legalize this node.
317  bool OperandsLeadToDest = false;
318  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
319    OperandsLeadToDest |=     // If an operand leads to Dest, so do we.
320      LegalizeAllNodesNotLeadingTo(N->getOperand(i).getNode(), Dest,
321                                   NodesLeadingTo);
322
323  if (OperandsLeadToDest) {
324    NodesLeadingTo.insert(N);
325    return true;
326  }
327
328  // Okay, this node looks safe, legalize it and return false.
329  LegalizeOp(SDValue(N, 0));
330  return false;
331}
332
333/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
334/// a load from the constant pool.
335static SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP,
336                                SelectionDAG &DAG, const TargetLowering &TLI) {
337  bool Extend = false;
338  DebugLoc dl = CFP->getDebugLoc();
339
340  // If a FP immediate is precise when represented as a float and if the
341  // target can do an extending load from float to double, we put it into
342  // the constant pool as a float, even if it's is statically typed as a
343  // double.  This shrinks FP constants and canonicalizes them for targets where
344  // an FP extending load is the same cost as a normal load (such as on the x87
345  // fp stack or PPC FP unit).
346  EVT VT = CFP->getValueType(0);
347  ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
348  if (!UseCP) {
349    assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
350    return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(),
351                           (VT == MVT::f64) ? MVT::i64 : MVT::i32);
352  }
353
354  EVT OrigVT = VT;
355  EVT SVT = VT;
356  while (SVT != MVT::f32) {
357    SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
358    if (ConstantFPSDNode::isValueValidForType(SVT, CFP->getValueAPF()) &&
359        // Only do this if the target has a native EXTLOAD instruction from
360        // smaller type.
361        TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
362        TLI.ShouldShrinkFPConstant(OrigVT)) {
363      Type *SType = SVT.getTypeForEVT(*DAG.getContext());
364      LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
365      VT = SVT;
366      Extend = true;
367    }
368  }
369
370  SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
371  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
372  if (Extend)
373    return DAG.getExtLoad(ISD::EXTLOAD, dl, OrigVT,
374                          DAG.getEntryNode(),
375                          CPIdx, MachinePointerInfo::getConstantPool(),
376                          VT, false, false, Alignment);
377  return DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
378                     MachinePointerInfo::getConstantPool(), false, false,
379                     Alignment);
380}
381
382/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
383static
384SDValue ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
385                             const TargetLowering &TLI) {
386  SDValue Chain = ST->getChain();
387  SDValue Ptr = ST->getBasePtr();
388  SDValue Val = ST->getValue();
389  EVT VT = Val.getValueType();
390  int Alignment = ST->getAlignment();
391  DebugLoc dl = ST->getDebugLoc();
392  if (ST->getMemoryVT().isFloatingPoint() ||
393      ST->getMemoryVT().isVector()) {
394    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
395    if (TLI.isTypeLegal(intVT)) {
396      // Expand to a bitconvert of the value to the integer type of the
397      // same size, then a (misaligned) int store.
398      // FIXME: Does not handle truncating floating point stores!
399      SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
400      return DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
401                          ST->isVolatile(), ST->isNonTemporal(), Alignment);
402    }
403    // Do a (aligned) store to a stack slot, then copy from the stack slot
404    // to the final destination using (unaligned) integer loads and stores.
405    EVT StoredVT = ST->getMemoryVT();
406    EVT RegVT =
407      TLI.getRegisterType(*DAG.getContext(),
408                          EVT::getIntegerVT(*DAG.getContext(),
409                                            StoredVT.getSizeInBits()));
410    unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
411    unsigned RegBytes = RegVT.getSizeInBits() / 8;
412    unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
413
414    // Make sure the stack slot is also aligned for the register type.
415    SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
416
417    // Perform the original store, only redirected to the stack slot.
418    SDValue Store = DAG.getTruncStore(Chain, dl,
419                                      Val, StackPtr, MachinePointerInfo(),
420                                      StoredVT, false, false, 0);
421    SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
422    SmallVector<SDValue, 8> Stores;
423    unsigned Offset = 0;
424
425    // Do all but one copies using the full register width.
426    for (unsigned i = 1; i < NumRegs; i++) {
427      // Load one integer register's worth from the stack slot.
428      SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr,
429                                 MachinePointerInfo(),
430                                 false, false, 0);
431      // Store it to the final location.  Remember the store.
432      Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
433                                  ST->getPointerInfo().getWithOffset(Offset),
434                                    ST->isVolatile(), ST->isNonTemporal(),
435                                    MinAlign(ST->getAlignment(), Offset)));
436      // Increment the pointers.
437      Offset += RegBytes;
438      StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
439                             Increment);
440      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
441    }
442
443    // The last store may be partial.  Do a truncating store.  On big-endian
444    // machines this requires an extending load from the stack slot to ensure
445    // that the bits are in the right place.
446    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
447                                  8 * (StoredBytes - Offset));
448
449    // Load from the stack slot.
450    SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
451                                  MachinePointerInfo(),
452                                  MemVT, false, false, 0);
453
454    Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
455                                       ST->getPointerInfo()
456                                         .getWithOffset(Offset),
457                                       MemVT, ST->isVolatile(),
458                                       ST->isNonTemporal(),
459                                       MinAlign(ST->getAlignment(), Offset)));
460    // The order of the stores doesn't matter - say it with a TokenFactor.
461    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
462                       Stores.size());
463  }
464  assert(ST->getMemoryVT().isInteger() &&
465         !ST->getMemoryVT().isVector() &&
466         "Unaligned store of unknown type.");
467  // Get the half-size VT
468  EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
469  int NumBits = NewStoredVT.getSizeInBits();
470  int IncrementSize = NumBits / 8;
471
472  // Divide the stored value in two parts.
473  SDValue ShiftAmount = DAG.getConstant(NumBits,
474                                      TLI.getShiftAmountTy(Val.getValueType()));
475  SDValue Lo = Val;
476  SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
477
478  // Store the two parts
479  SDValue Store1, Store2;
480  Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
481                             ST->getPointerInfo(), NewStoredVT,
482                             ST->isVolatile(), ST->isNonTemporal(), Alignment);
483  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
484                    DAG.getConstant(IncrementSize, TLI.getPointerTy()));
485  Alignment = MinAlign(Alignment, IncrementSize);
486  Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
487                             ST->getPointerInfo().getWithOffset(IncrementSize),
488                             NewStoredVT, ST->isVolatile(), ST->isNonTemporal(),
489                             Alignment);
490
491  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
492}
493
494/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
495static
496SDValue ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
497                            const TargetLowering &TLI) {
498  SDValue Chain = LD->getChain();
499  SDValue Ptr = LD->getBasePtr();
500  EVT VT = LD->getValueType(0);
501  EVT LoadedVT = LD->getMemoryVT();
502  DebugLoc dl = LD->getDebugLoc();
503  if (VT.isFloatingPoint() || VT.isVector()) {
504    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
505    if (TLI.isTypeLegal(intVT)) {
506      // Expand to a (misaligned) integer load of the same size,
507      // then bitconvert to floating point or vector.
508      SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getPointerInfo(),
509                                    LD->isVolatile(),
510                                    LD->isNonTemporal(), LD->getAlignment());
511      SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
512      if (VT.isFloatingPoint() && LoadedVT != VT)
513        Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result);
514
515      SDValue Ops[] = { Result, Chain };
516      return DAG.getMergeValues(Ops, 2, dl);
517    }
518
519    // Copy the value to a (aligned) stack slot using (unaligned) integer
520    // loads and stores, then do a (aligned) load from the stack slot.
521    EVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT);
522    unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
523    unsigned RegBytes = RegVT.getSizeInBits() / 8;
524    unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
525
526    // Make sure the stack slot is also aligned for the register type.
527    SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
528
529    SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
530    SmallVector<SDValue, 8> Stores;
531    SDValue StackPtr = StackBase;
532    unsigned Offset = 0;
533
534    // Do all but one copies using the full register width.
535    for (unsigned i = 1; i < NumRegs; i++) {
536      // Load one integer register's worth from the original location.
537      SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr,
538                                 LD->getPointerInfo().getWithOffset(Offset),
539                                 LD->isVolatile(), LD->isNonTemporal(),
540                                 MinAlign(LD->getAlignment(), Offset));
541      // Follow the load with a store to the stack slot.  Remember the store.
542      Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
543                                    MachinePointerInfo(), false, false, 0));
544      // Increment the pointers.
545      Offset += RegBytes;
546      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
547      StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
548                             Increment);
549    }
550
551    // The last copy may be partial.  Do an extending load.
552    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
553                                  8 * (LoadedBytes - Offset));
554    SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
555                                  LD->getPointerInfo().getWithOffset(Offset),
556                                  MemVT, LD->isVolatile(),
557                                  LD->isNonTemporal(),
558                                  MinAlign(LD->getAlignment(), Offset));
559    // Follow the load with a store to the stack slot.  Remember the store.
560    // On big-endian machines this requires a truncating store to ensure
561    // that the bits end up in the right place.
562    Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
563                                       MachinePointerInfo(), MemVT,
564                                       false, false, 0));
565
566    // The order of the stores doesn't matter - say it with a TokenFactor.
567    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
568                             Stores.size());
569
570    // Finally, perform the original load only redirected to the stack slot.
571    Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
572                          MachinePointerInfo(), LoadedVT, false, false, 0);
573
574    // Callers expect a MERGE_VALUES node.
575    SDValue Ops[] = { Load, TF };
576    return DAG.getMergeValues(Ops, 2, dl);
577  }
578  assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
579         "Unaligned load of unsupported type.");
580
581  // Compute the new VT that is half the size of the old one.  This is an
582  // integer MVT.
583  unsigned NumBits = LoadedVT.getSizeInBits();
584  EVT NewLoadedVT;
585  NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
586  NumBits >>= 1;
587
588  unsigned Alignment = LD->getAlignment();
589  unsigned IncrementSize = NumBits / 8;
590  ISD::LoadExtType HiExtType = LD->getExtensionType();
591
592  // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
593  if (HiExtType == ISD::NON_EXTLOAD)
594    HiExtType = ISD::ZEXTLOAD;
595
596  // Load the value in two parts
597  SDValue Lo, Hi;
598  if (TLI.isLittleEndian()) {
599    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
600                        NewLoadedVT, LD->isVolatile(),
601                        LD->isNonTemporal(), Alignment);
602    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
603                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
604    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
605                        LD->getPointerInfo().getWithOffset(IncrementSize),
606                        NewLoadedVT, LD->isVolatile(),
607                        LD->isNonTemporal(), MinAlign(Alignment,IncrementSize));
608  } else {
609    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
610                        NewLoadedVT, LD->isVolatile(),
611                        LD->isNonTemporal(), Alignment);
612    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
613                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
614    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
615                        LD->getPointerInfo().getWithOffset(IncrementSize),
616                        NewLoadedVT, LD->isVolatile(),
617                        LD->isNonTemporal(), MinAlign(Alignment,IncrementSize));
618  }
619
620  // aggregate the two parts
621  SDValue ShiftAmount = DAG.getConstant(NumBits,
622                                       TLI.getShiftAmountTy(Hi.getValueType()));
623  SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
624  Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
625
626  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
627                             Hi.getValue(1));
628
629  SDValue Ops[] = { Result, TF };
630  return DAG.getMergeValues(Ops, 2, dl);
631}
632
633/// PerformInsertVectorEltInMemory - Some target cannot handle a variable
634/// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
635/// is necessary to spill the vector being inserted into to memory, perform
636/// the insert there, and then read the result back.
637SDValue SelectionDAGLegalize::
638PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
639                               DebugLoc dl) {
640  SDValue Tmp1 = Vec;
641  SDValue Tmp2 = Val;
642  SDValue Tmp3 = Idx;
643
644  // If the target doesn't support this, we have to spill the input vector
645  // to a temporary stack slot, update the element, then reload it.  This is
646  // badness.  We could also load the value into a vector register (either
647  // with a "move to register" or "extload into register" instruction, then
648  // permute it into place, if the idx is a constant and if the idx is
649  // supported by the target.
650  EVT VT    = Tmp1.getValueType();
651  EVT EltVT = VT.getVectorElementType();
652  EVT IdxVT = Tmp3.getValueType();
653  EVT PtrVT = TLI.getPointerTy();
654  SDValue StackPtr = DAG.CreateStackTemporary(VT);
655
656  int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
657
658  // Store the vector.
659  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr,
660                            MachinePointerInfo::getFixedStack(SPFI),
661                            false, false, 0);
662
663  // Truncate or zero extend offset to target pointer type.
664  unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
665  Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3);
666  // Add the offset to the index.
667  unsigned EltSize = EltVT.getSizeInBits()/8;
668  Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
669  SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
670  // Store the scalar value.
671  Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT,
672                         false, false, 0);
673  // Load the updated vector.
674  return DAG.getLoad(VT, dl, Ch, StackPtr,
675                     MachinePointerInfo::getFixedStack(SPFI), false, false, 0);
676}
677
678
679SDValue SelectionDAGLegalize::
680ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) {
681  if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
682    // SCALAR_TO_VECTOR requires that the type of the value being inserted
683    // match the element type of the vector being created, except for
684    // integers in which case the inserted value can be over width.
685    EVT EltVT = Vec.getValueType().getVectorElementType();
686    if (Val.getValueType() == EltVT ||
687        (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
688      SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
689                                  Vec.getValueType(), Val);
690
691      unsigned NumElts = Vec.getValueType().getVectorNumElements();
692      // We generate a shuffle of InVec and ScVec, so the shuffle mask
693      // should be 0,1,2,3,4,5... with the appropriate element replaced with
694      // elt 0 of the RHS.
695      SmallVector<int, 8> ShufOps;
696      for (unsigned i = 0; i != NumElts; ++i)
697        ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
698
699      return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
700                                  &ShufOps[0]);
701    }
702  }
703  return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
704}
705
706SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
707  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
708  // FIXME: We shouldn't do this for TargetConstantFP's.
709  // FIXME: move this to the DAG Combiner!  Note that we can't regress due
710  // to phase ordering between legalized code and the dag combiner.  This
711  // probably means that we need to integrate dag combiner and legalizer
712  // together.
713  // We generally can't do this one for long doubles.
714  SDValue Tmp1 = ST->getChain();
715  SDValue Tmp2 = ST->getBasePtr();
716  SDValue Tmp3;
717  unsigned Alignment = ST->getAlignment();
718  bool isVolatile = ST->isVolatile();
719  bool isNonTemporal = ST->isNonTemporal();
720  DebugLoc dl = ST->getDebugLoc();
721  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
722    if (CFP->getValueType(0) == MVT::f32 &&
723        TLI.isTypeLegal(MVT::i32)) {
724      Tmp3 = DAG.getConstant(CFP->getValueAPF().
725                                      bitcastToAPInt().zextOrTrunc(32),
726                              MVT::i32);
727      return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
728                          isVolatile, isNonTemporal, Alignment);
729    }
730
731    if (CFP->getValueType(0) == MVT::f64) {
732      // If this target supports 64-bit registers, do a single 64-bit store.
733      if (TLI.isTypeLegal(MVT::i64)) {
734        Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
735                                  zextOrTrunc(64), MVT::i64);
736        return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
737                            isVolatile, isNonTemporal, Alignment);
738      }
739
740      if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) {
741        // Otherwise, if the target supports 32-bit registers, use 2 32-bit
742        // stores.  If the target supports neither 32- nor 64-bits, this
743        // xform is certainly not worth it.
744        const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt();
745        SDValue Lo = DAG.getConstant(IntVal.trunc(32), MVT::i32);
746        SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32);
747        if (TLI.isBigEndian()) std::swap(Lo, Hi);
748
749        Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getPointerInfo(), isVolatile,
750                          isNonTemporal, Alignment);
751        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
752                            DAG.getIntPtrConstant(4));
753        Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2,
754                          ST->getPointerInfo().getWithOffset(4),
755                          isVolatile, isNonTemporal, MinAlign(Alignment, 4U));
756
757        return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
758      }
759    }
760  }
761  return SDValue(0, 0);
762}
763
764/// LegalizeOp - Return a legal replacement for the given operation, with
765/// all legal operands.
766SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
767  if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
768    return Op;
769
770  SDNode *Node = Op.getNode();
771  DebugLoc dl = Node->getDebugLoc();
772
773  for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
774    assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) ==
775             TargetLowering::TypeLegal &&
776           "Unexpected illegal type!");
777
778  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
779    assert((TLI.getTypeAction(*DAG.getContext(),
780                              Node->getOperand(i).getValueType()) ==
781              TargetLowering::TypeLegal ||
782            Node->getOperand(i).getOpcode() == ISD::TargetConstant) &&
783           "Unexpected illegal type!");
784
785  // Note that LegalizeOp may be reentered even from single-use nodes, which
786  // means that we always must cache transformed nodes.
787  DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
788  if (I != LegalizedNodes.end()) return I->second;
789
790  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
791  SDValue Result = Op;
792  bool isCustom = false;
793
794  // Figure out the correct action; the way to query this varies by opcode
795  TargetLowering::LegalizeAction Action = TargetLowering::Legal;
796  bool SimpleFinishLegalizing = true;
797  switch (Node->getOpcode()) {
798  case ISD::INTRINSIC_W_CHAIN:
799  case ISD::INTRINSIC_WO_CHAIN:
800  case ISD::INTRINSIC_VOID:
801  case ISD::VAARG:
802  case ISD::STACKSAVE:
803    Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
804    break;
805  case ISD::SINT_TO_FP:
806  case ISD::UINT_TO_FP:
807  case ISD::EXTRACT_VECTOR_ELT:
808    Action = TLI.getOperationAction(Node->getOpcode(),
809                                    Node->getOperand(0).getValueType());
810    break;
811  case ISD::FP_ROUND_INREG:
812  case ISD::SIGN_EXTEND_INREG: {
813    EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
814    Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
815    break;
816  }
817  case ISD::ATOMIC_STORE: {
818    Action = TLI.getOperationAction(Node->getOpcode(),
819                                    Node->getOperand(2).getValueType());
820    break;
821  }
822  case ISD::SELECT_CC:
823  case ISD::SETCC:
824  case ISD::BR_CC: {
825    unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
826                         Node->getOpcode() == ISD::SETCC ? 2 : 1;
827    unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
828    EVT OpVT = Node->getOperand(CompareOperand).getValueType();
829    ISD::CondCode CCCode =
830        cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
831    Action = TLI.getCondCodeAction(CCCode, OpVT);
832    if (Action == TargetLowering::Legal) {
833      if (Node->getOpcode() == ISD::SELECT_CC)
834        Action = TLI.getOperationAction(Node->getOpcode(),
835                                        Node->getValueType(0));
836      else
837        Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
838    }
839    break;
840  }
841  case ISD::LOAD:
842  case ISD::STORE:
843    // FIXME: Model these properly.  LOAD and STORE are complicated, and
844    // STORE expects the unlegalized operand in some cases.
845    SimpleFinishLegalizing = false;
846    break;
847  case ISD::CALLSEQ_START:
848  case ISD::CALLSEQ_END:
849    // FIXME: This shouldn't be necessary.  These nodes have special properties
850    // dealing with the recursive nature of legalization.  Removing this
851    // special case should be done as part of making LegalizeDAG non-recursive.
852    SimpleFinishLegalizing = false;
853    break;
854  case ISD::EXTRACT_ELEMENT:
855  case ISD::FLT_ROUNDS_:
856  case ISD::SADDO:
857  case ISD::SSUBO:
858  case ISD::UADDO:
859  case ISD::USUBO:
860  case ISD::SMULO:
861  case ISD::UMULO:
862  case ISD::FPOWI:
863  case ISD::MERGE_VALUES:
864  case ISD::EH_RETURN:
865  case ISD::FRAME_TO_ARGS_OFFSET:
866  case ISD::EH_SJLJ_SETJMP:
867  case ISD::EH_SJLJ_LONGJMP:
868  case ISD::EH_SJLJ_DISPATCHSETUP:
869    // These operations lie about being legal: when they claim to be legal,
870    // they should actually be expanded.
871    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
872    if (Action == TargetLowering::Legal)
873      Action = TargetLowering::Expand;
874    break;
875  case ISD::INIT_TRAMPOLINE:
876  case ISD::ADJUST_TRAMPOLINE:
877  case ISD::FRAMEADDR:
878  case ISD::RETURNADDR:
879    // These operations lie about being legal: when they claim to be legal,
880    // they should actually be custom-lowered.
881    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
882    if (Action == TargetLowering::Legal)
883      Action = TargetLowering::Custom;
884    break;
885  case ISD::BUILD_VECTOR:
886    // A weird case: legalization for BUILD_VECTOR never legalizes the
887    // operands!
888    // FIXME: This really sucks... changing it isn't semantically incorrect,
889    // but it massively pessimizes the code for floating-point BUILD_VECTORs
890    // because ConstantFP operands get legalized into constant pool loads
891    // before the BUILD_VECTOR code can see them.  It doesn't usually bite,
892    // though, because BUILD_VECTORS usually get lowered into other nodes
893    // which get legalized properly.
894    SimpleFinishLegalizing = false;
895    break;
896  default:
897    if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
898      Action = TargetLowering::Legal;
899    } else {
900      Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
901    }
902    break;
903  }
904
905  if (SimpleFinishLegalizing) {
906    SmallVector<SDValue, 8> Ops, ResultVals;
907    for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
908      Ops.push_back(LegalizeOp(Node->getOperand(i)));
909    switch (Node->getOpcode()) {
910    default: break;
911    case ISD::BR:
912    case ISD::BRIND:
913    case ISD::BR_JT:
914    case ISD::BR_CC:
915    case ISD::BRCOND:
916      // Branches tweak the chain to include LastCALLSEQ_END
917      Ops[0] = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ops[0],
918                           LastCALLSEQ_END);
919      Ops[0] = LegalizeOp(Ops[0]);
920      LastCALLSEQ_END = DAG.getEntryNode();
921      break;
922    case ISD::SHL:
923    case ISD::SRL:
924    case ISD::SRA:
925    case ISD::ROTL:
926    case ISD::ROTR:
927      // Legalizing shifts/rotates requires adjusting the shift amount
928      // to the appropriate width.
929      if (!Ops[1].getValueType().isVector())
930        Ops[1] = LegalizeOp(DAG.getShiftAmountOperand(Ops[0].getValueType(),
931                                                      Ops[1]));
932      break;
933    case ISD::SRL_PARTS:
934    case ISD::SRA_PARTS:
935    case ISD::SHL_PARTS:
936      // Legalizing shifts/rotates requires adjusting the shift amount
937      // to the appropriate width.
938      if (!Ops[2].getValueType().isVector())
939        Ops[2] = LegalizeOp(DAG.getShiftAmountOperand(Ops[0].getValueType(),
940                                                      Ops[2]));
941      break;
942    }
943
944    Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), Ops.data(),
945                                            Ops.size()), 0);
946    switch (Action) {
947    case TargetLowering::Legal:
948      for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
949        ResultVals.push_back(Result.getValue(i));
950      break;
951    case TargetLowering::Custom:
952      // FIXME: The handling for custom lowering with multiple results is
953      // a complete mess.
954      Tmp1 = TLI.LowerOperation(Result, DAG);
955      if (Tmp1.getNode()) {
956        for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
957          if (e == 1)
958            ResultVals.push_back(Tmp1);
959          else
960            ResultVals.push_back(Tmp1.getValue(i));
961        }
962        break;
963      }
964
965      // FALL THROUGH
966    case TargetLowering::Expand:
967      ExpandNode(Result.getNode(), ResultVals);
968      break;
969    case TargetLowering::Promote:
970      PromoteNode(Result.getNode(), ResultVals);
971      break;
972    }
973    if (!ResultVals.empty()) {
974      for (unsigned i = 0, e = ResultVals.size(); i != e; ++i) {
975        if (ResultVals[i] != SDValue(Node, i))
976          ResultVals[i] = LegalizeOp(ResultVals[i]);
977        AddLegalizedOperand(SDValue(Node, i), ResultVals[i]);
978      }
979      return ResultVals[Op.getResNo()];
980    }
981  }
982
983  switch (Node->getOpcode()) {
984  default:
985#ifndef NDEBUG
986    dbgs() << "NODE: ";
987    Node->dump( &DAG);
988    dbgs() << "\n";
989#endif
990    assert(0 && "Do not know how to legalize this operator!");
991
992  case ISD::BUILD_VECTOR:
993    switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) {
994    default: assert(0 && "This action is not supported yet!");
995    case TargetLowering::Custom:
996      Tmp3 = TLI.LowerOperation(Result, DAG);
997      if (Tmp3.getNode()) {
998        Result = Tmp3;
999        break;
1000      }
1001      // FALLTHROUGH
1002    case TargetLowering::Expand:
1003      Result = ExpandBUILD_VECTOR(Result.getNode());
1004      break;
1005    }
1006    break;
1007  case ISD::CALLSEQ_START: {
1008    SDNode *CallEnd = FindCallEndFromCallStart(Node);
1009
1010    // Recursively Legalize all of the inputs of the call end that do not lead
1011    // to this call start.  This ensures that any libcalls that need be inserted
1012    // are inserted *before* the CALLSEQ_START.
1013    {SmallPtrSet<SDNode*, 32> NodesLeadingTo;
1014    for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i)
1015      LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).getNode(), Node,
1016                                   NodesLeadingTo);
1017    }
1018
1019    // Now that we have legalized all of the inputs (which may have inserted
1020    // libcalls), create the new CALLSEQ_START node.
1021    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1022
1023    // Merge in the last call to ensure that this call starts after the last
1024    // call ended.
1025    if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) {
1026      Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1027                         Tmp1, LastCALLSEQ_END);
1028      Tmp1 = LegalizeOp(Tmp1);
1029    }
1030
1031    // Do not try to legalize the target-specific arguments (#1+).
1032    if (Tmp1 != Node->getOperand(0)) {
1033      SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1034      Ops[0] = Tmp1;
1035      Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), &Ops[0],
1036                                              Ops.size()), Result.getResNo());
1037    }
1038
1039    // Remember that the CALLSEQ_START is legalized.
1040    AddLegalizedOperand(Op.getValue(0), Result);
1041    if (Node->getNumValues() == 2)    // If this has a flag result, remember it.
1042      AddLegalizedOperand(Op.getValue(1), Result.getValue(1));
1043
1044    // Now that the callseq_start and all of the non-call nodes above this call
1045    // sequence have been legalized, legalize the call itself.  During this
1046    // process, no libcalls can/will be inserted, guaranteeing that no calls
1047    // can overlap.
1048    assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!");
1049    // Note that we are selecting this call!
1050    LastCALLSEQ_END = SDValue(CallEnd, 0);
1051    IsLegalizingCall = true;
1052
1053    // Legalize the call, starting from the CALLSEQ_END.
1054    LegalizeOp(LastCALLSEQ_END);
1055    assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!");
1056    return Result;
1057  }
1058  case ISD::CALLSEQ_END:
1059    // If the CALLSEQ_START node hasn't been legalized first, legalize it.  This
1060    // will cause this node to be legalized as well as handling libcalls right.
1061    if (LastCALLSEQ_END.getNode() != Node) {
1062      LegalizeOp(SDValue(FindCallStartFromCallEnd(Node), 0));
1063      DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
1064      assert(I != LegalizedNodes.end() &&
1065             "Legalizing the call start should have legalized this node!");
1066      return I->second;
1067    }
1068
1069    // Otherwise, the call start has been legalized and everything is going
1070    // according to plan.  Just legalize ourselves normally here.
1071    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1072    // Do not try to legalize the target-specific arguments (#1+), except for
1073    // an optional flag input.
1074    if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Glue){
1075      if (Tmp1 != Node->getOperand(0)) {
1076        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1077        Ops[0] = Tmp1;
1078        Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1079                                                &Ops[0], Ops.size()),
1080                         Result.getResNo());
1081      }
1082    } else {
1083      Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1));
1084      if (Tmp1 != Node->getOperand(0) ||
1085          Tmp2 != Node->getOperand(Node->getNumOperands()-1)) {
1086        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1087        Ops[0] = Tmp1;
1088        Ops.back() = Tmp2;
1089        Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1090                                                &Ops[0], Ops.size()),
1091                         Result.getResNo());
1092      }
1093    }
1094    assert(IsLegalizingCall && "Call sequence imbalance between start/end?");
1095    // This finishes up call legalization.
1096    IsLegalizingCall = false;
1097
1098    // If the CALLSEQ_END node has a flag, remember that we legalized it.
1099    AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0));
1100    if (Node->getNumValues() == 2)
1101      AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1));
1102    return Result.getValue(Op.getResNo());
1103  case ISD::LOAD: {
1104    LoadSDNode *LD = cast<LoadSDNode>(Node);
1105    Tmp1 = LegalizeOp(LD->getChain());   // Legalize the chain.
1106    Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer.
1107
1108    ISD::LoadExtType ExtType = LD->getExtensionType();
1109    if (ExtType == ISD::NON_EXTLOAD) {
1110      EVT VT = Node->getValueType(0);
1111      Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1112                                              Tmp1, Tmp2, LD->getOffset()),
1113                       Result.getResNo());
1114      Tmp3 = Result.getValue(0);
1115      Tmp4 = Result.getValue(1);
1116
1117      switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
1118      default: assert(0 && "This action is not supported yet!");
1119      case TargetLowering::Legal:
1120        // If this is an unaligned load and the target doesn't support it,
1121        // expand it.
1122        if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1123          Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1124          unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1125          if (LD->getAlignment() < ABIAlignment){
1126            Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
1127                                         DAG, TLI);
1128            Tmp3 = Result.getOperand(0);
1129            Tmp4 = Result.getOperand(1);
1130            Tmp3 = LegalizeOp(Tmp3);
1131            Tmp4 = LegalizeOp(Tmp4);
1132          }
1133        }
1134        break;
1135      case TargetLowering::Custom:
1136        Tmp1 = TLI.LowerOperation(Tmp3, DAG);
1137        if (Tmp1.getNode()) {
1138          Tmp3 = LegalizeOp(Tmp1);
1139          Tmp4 = LegalizeOp(Tmp1.getValue(1));
1140        }
1141        break;
1142      case TargetLowering::Promote: {
1143        // Only promote a load of vector type to another.
1144        assert(VT.isVector() && "Cannot promote this load!");
1145        // Change base type to a different vector type.
1146        EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
1147
1148        Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getPointerInfo(),
1149                           LD->isVolatile(), LD->isNonTemporal(),
1150                           LD->getAlignment());
1151        Tmp3 = LegalizeOp(DAG.getNode(ISD::BITCAST, dl, VT, Tmp1));
1152        Tmp4 = LegalizeOp(Tmp1.getValue(1));
1153        break;
1154      }
1155      }
1156      // Since loads produce two values, make sure to remember that we
1157      // legalized both of them.
1158      AddLegalizedOperand(SDValue(Node, 0), Tmp3);
1159      AddLegalizedOperand(SDValue(Node, 1), Tmp4);
1160      return Op.getResNo() ? Tmp4 : Tmp3;
1161    }
1162
1163    EVT SrcVT = LD->getMemoryVT();
1164    unsigned SrcWidth = SrcVT.getSizeInBits();
1165    unsigned Alignment = LD->getAlignment();
1166    bool isVolatile = LD->isVolatile();
1167    bool isNonTemporal = LD->isNonTemporal();
1168
1169    if (SrcWidth != SrcVT.getStoreSizeInBits() &&
1170        // Some targets pretend to have an i1 loading operation, and actually
1171        // load an i8.  This trick is correct for ZEXTLOAD because the top 7
1172        // bits are guaranteed to be zero; it helps the optimizers understand
1173        // that these bits are zero.  It is also useful for EXTLOAD, since it
1174        // tells the optimizers that those bits are undefined.  It would be
1175        // nice to have an effective generic way of getting these benefits...
1176        // Until such a way is found, don't insist on promoting i1 here.
1177        (SrcVT != MVT::i1 ||
1178         TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
1179      // Promote to a byte-sized load if not loading an integral number of
1180      // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
1181      unsigned NewWidth = SrcVT.getStoreSizeInBits();
1182      EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
1183      SDValue Ch;
1184
1185      // The extra bits are guaranteed to be zero, since we stored them that
1186      // way.  A zext load from NVT thus automatically gives zext from SrcVT.
1187
1188      ISD::LoadExtType NewExtType =
1189        ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
1190
1191      Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
1192                              Tmp1, Tmp2, LD->getPointerInfo(),
1193                              NVT, isVolatile, isNonTemporal, Alignment);
1194
1195      Ch = Result.getValue(1); // The chain.
1196
1197      if (ExtType == ISD::SEXTLOAD)
1198        // Having the top bits zero doesn't help when sign extending.
1199        Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1200                             Result.getValueType(),
1201                             Result, DAG.getValueType(SrcVT));
1202      else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
1203        // All the top bits are guaranteed to be zero - inform the optimizers.
1204        Result = DAG.getNode(ISD::AssertZext, dl,
1205                             Result.getValueType(), Result,
1206                             DAG.getValueType(SrcVT));
1207
1208      Tmp1 = LegalizeOp(Result);
1209      Tmp2 = LegalizeOp(Ch);
1210    } else if (SrcWidth & (SrcWidth - 1)) {
1211      // If not loading a power-of-2 number of bits, expand as two loads.
1212      assert(!SrcVT.isVector() && "Unsupported extload!");
1213      unsigned RoundWidth = 1 << Log2_32(SrcWidth);
1214      assert(RoundWidth < SrcWidth);
1215      unsigned ExtraWidth = SrcWidth - RoundWidth;
1216      assert(ExtraWidth < RoundWidth);
1217      assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1218             "Load size not an integral number of bytes!");
1219      EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1220      EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1221      SDValue Lo, Hi, Ch;
1222      unsigned IncrementSize;
1223
1224      if (TLI.isLittleEndian()) {
1225        // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
1226        // Load the bottom RoundWidth bits.
1227        Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0),
1228                            Tmp1, Tmp2,
1229                            LD->getPointerInfo(), RoundVT, isVolatile,
1230                            isNonTemporal, Alignment);
1231
1232        // Load the remaining ExtraWidth bits.
1233        IncrementSize = RoundWidth / 8;
1234        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1235                           DAG.getIntPtrConstant(IncrementSize));
1236        Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1237                            LD->getPointerInfo().getWithOffset(IncrementSize),
1238                            ExtraVT, isVolatile, isNonTemporal,
1239                            MinAlign(Alignment, IncrementSize));
1240
1241        // Build a factor node to remember that this load is independent of
1242        // the other one.
1243        Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1244                         Hi.getValue(1));
1245
1246        // Move the top bits to the right place.
1247        Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1248                         DAG.getConstant(RoundWidth,
1249                                      TLI.getShiftAmountTy(Hi.getValueType())));
1250
1251        // Join the hi and lo parts.
1252        Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1253      } else {
1254        // Big endian - avoid unaligned loads.
1255        // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
1256        // Load the top RoundWidth bits.
1257        Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1258                            LD->getPointerInfo(), RoundVT, isVolatile,
1259                            isNonTemporal, Alignment);
1260
1261        // Load the remaining ExtraWidth bits.
1262        IncrementSize = RoundWidth / 8;
1263        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1264                           DAG.getIntPtrConstant(IncrementSize));
1265        Lo = DAG.getExtLoad(ISD::ZEXTLOAD,
1266                            dl, Node->getValueType(0), Tmp1, Tmp2,
1267                            LD->getPointerInfo().getWithOffset(IncrementSize),
1268                            ExtraVT, isVolatile, isNonTemporal,
1269                            MinAlign(Alignment, IncrementSize));
1270
1271        // Build a factor node to remember that this load is independent of
1272        // the other one.
1273        Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1274                         Hi.getValue(1));
1275
1276        // Move the top bits to the right place.
1277        Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1278                         DAG.getConstant(ExtraWidth,
1279                                      TLI.getShiftAmountTy(Hi.getValueType())));
1280
1281        // Join the hi and lo parts.
1282        Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1283      }
1284
1285      Tmp1 = LegalizeOp(Result);
1286      Tmp2 = LegalizeOp(Ch);
1287    } else {
1288      switch (TLI.getLoadExtAction(ExtType, SrcVT)) {
1289      default: assert(0 && "This action is not supported yet!");
1290      case TargetLowering::Custom:
1291        isCustom = true;
1292        // FALLTHROUGH
1293      case TargetLowering::Legal:
1294        Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1295                                                Tmp1, Tmp2, LD->getOffset()),
1296                         Result.getResNo());
1297        Tmp1 = Result.getValue(0);
1298        Tmp2 = Result.getValue(1);
1299
1300        if (isCustom) {
1301          Tmp3 = TLI.LowerOperation(Result, DAG);
1302          if (Tmp3.getNode()) {
1303            Tmp1 = LegalizeOp(Tmp3);
1304            Tmp2 = LegalizeOp(Tmp3.getValue(1));
1305          }
1306        } else {
1307          // If this is an unaligned load and the target doesn't support it,
1308          // expand it.
1309          if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1310            Type *Ty =
1311              LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1312            unsigned ABIAlignment =
1313              TLI.getTargetData()->getABITypeAlignment(Ty);
1314            if (LD->getAlignment() < ABIAlignment){
1315              Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
1316                                           DAG, TLI);
1317              Tmp1 = Result.getOperand(0);
1318              Tmp2 = Result.getOperand(1);
1319              Tmp1 = LegalizeOp(Tmp1);
1320              Tmp2 = LegalizeOp(Tmp2);
1321            }
1322          }
1323        }
1324        break;
1325      case TargetLowering::Expand:
1326        if (!TLI.isLoadExtLegal(ISD::EXTLOAD, SrcVT) && TLI.isTypeLegal(SrcVT)) {
1327          SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2,
1328                                     LD->getPointerInfo(),
1329                                     LD->isVolatile(), LD->isNonTemporal(),
1330                                     LD->getAlignment());
1331          unsigned ExtendOp;
1332          switch (ExtType) {
1333          case ISD::EXTLOAD:
1334            ExtendOp = (SrcVT.isFloatingPoint() ?
1335                        ISD::FP_EXTEND : ISD::ANY_EXTEND);
1336            break;
1337          case ISD::SEXTLOAD: ExtendOp = ISD::SIGN_EXTEND; break;
1338          case ISD::ZEXTLOAD: ExtendOp = ISD::ZERO_EXTEND; break;
1339          default: llvm_unreachable("Unexpected extend load type!");
1340          }
1341          Result = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load);
1342          Tmp1 = LegalizeOp(Result);  // Relegalize new nodes.
1343          Tmp2 = LegalizeOp(Load.getValue(1));
1344          break;
1345        }
1346
1347        // If this is a promoted vector load, and the vector element types are
1348        // legal, then scalarize it.
1349        if (ExtType == ISD::EXTLOAD && SrcVT.isVector() &&
1350          TLI.isTypeLegal(Node->getValueType(0).getScalarType())) {
1351          SmallVector<SDValue, 8> LoadVals;
1352          SmallVector<SDValue, 8> LoadChains;
1353          unsigned NumElem = SrcVT.getVectorNumElements();
1354          unsigned Stride = SrcVT.getScalarType().getSizeInBits()/8;
1355
1356          for (unsigned Idx=0; Idx<NumElem; Idx++) {
1357            Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1358                                DAG.getIntPtrConstant(Stride));
1359            SDValue ScalarLoad = DAG.getExtLoad(ISD::EXTLOAD, dl,
1360                  Node->getValueType(0).getScalarType(),
1361                  Tmp1, Tmp2, LD->getPointerInfo().getWithOffset(Idx * Stride),
1362                  SrcVT.getScalarType(),
1363                  LD->isVolatile(), LD->isNonTemporal(),
1364                  LD->getAlignment());
1365
1366            LoadVals.push_back(ScalarLoad.getValue(0));
1367            LoadChains.push_back(ScalarLoad.getValue(1));
1368          }
1369          Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1370            &LoadChains[0], LoadChains.size());
1371          SDValue ValRes = DAG.getNode(ISD::BUILD_VECTOR, dl,
1372            Node->getValueType(0), &LoadVals[0], LoadVals.size());
1373
1374          Tmp1 = LegalizeOp(ValRes);  // Relegalize new nodes.
1375          Tmp2 = LegalizeOp(Result.getValue(0));  // Relegalize new nodes.
1376          break;
1377        }
1378
1379        // If this is a promoted vector load, and the vector element types are
1380        // illegal, create the promoted vector from bitcasted segments.
1381        if (ExtType == ISD::EXTLOAD && SrcVT.isVector()) {
1382          EVT MemElemTy = Node->getValueType(0).getScalarType();
1383          EVT SrcSclrTy = SrcVT.getScalarType();
1384          unsigned SizeRatio =
1385            (MemElemTy.getSizeInBits() / SrcSclrTy.getSizeInBits());
1386
1387          SmallVector<SDValue, 8> LoadVals;
1388          SmallVector<SDValue, 8> LoadChains;
1389          unsigned NumElem = SrcVT.getVectorNumElements();
1390          unsigned Stride = SrcVT.getScalarType().getSizeInBits()/8;
1391
1392          for (unsigned Idx=0; Idx<NumElem; Idx++) {
1393            Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1394                                DAG.getIntPtrConstant(Stride));
1395            SDValue ScalarLoad = DAG.getExtLoad(ISD::EXTLOAD, dl,
1396                  SrcVT.getScalarType(),
1397                  Tmp1, Tmp2, LD->getPointerInfo().getWithOffset(Idx * Stride),
1398                  SrcVT.getScalarType(),
1399                  LD->isVolatile(), LD->isNonTemporal(),
1400                  LD->getAlignment());
1401            if (TLI.isBigEndian()) {
1402              // MSB (which is garbage, comes first)
1403              LoadVals.push_back(ScalarLoad.getValue(0));
1404              for (unsigned i = 0; i<SizeRatio-1; ++i)
1405                LoadVals.push_back(DAG.getUNDEF(SrcVT.getScalarType()));
1406            } else {
1407              // LSB (which is data, comes first)
1408              for (unsigned i = 0; i<SizeRatio-1; ++i)
1409                LoadVals.push_back(DAG.getUNDEF(SrcVT.getScalarType()));
1410              LoadVals.push_back(ScalarLoad.getValue(0));
1411            }
1412            LoadChains.push_back(ScalarLoad.getValue(1));
1413          }
1414
1415          Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1416            &LoadChains[0], LoadChains.size());
1417          EVT TempWideVector = EVT::getVectorVT(*DAG.getContext(),
1418            SrcVT.getScalarType(), NumElem*SizeRatio);
1419          SDValue ValRes = DAG.getNode(ISD::BUILD_VECTOR, dl,
1420            TempWideVector, &LoadVals[0], LoadVals.size());
1421
1422          // Cast to the correct type
1423          ValRes = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), ValRes);
1424
1425          Tmp1 = LegalizeOp(ValRes);  // Relegalize new nodes.
1426          Tmp2 = LegalizeOp(Result.getValue(0));  // Relegalize new nodes.
1427          break;
1428
1429        }
1430
1431        // FIXME: This does not work for vectors on most targets.  Sign- and
1432        // zero-extend operations are currently folded into extending loads,
1433        // whether they are legal or not, and then we end up here without any
1434        // support for legalizing them.
1435        assert(ExtType != ISD::EXTLOAD &&
1436               "EXTLOAD should always be supported!");
1437        // Turn the unsupported load into an EXTLOAD followed by an explicit
1438        // zero/sign extend inreg.
1439        Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0),
1440                                Tmp1, Tmp2, LD->getPointerInfo(), SrcVT,
1441                                LD->isVolatile(), LD->isNonTemporal(),
1442                                LD->getAlignment());
1443        SDValue ValRes;
1444        if (ExtType == ISD::SEXTLOAD)
1445          ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1446                               Result.getValueType(),
1447                               Result, DAG.getValueType(SrcVT));
1448        else
1449          ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType());
1450        Tmp1 = LegalizeOp(ValRes);  // Relegalize new nodes.
1451        Tmp2 = LegalizeOp(Result.getValue(1));  // Relegalize new nodes.
1452        break;
1453      }
1454    }
1455
1456    // Since loads produce two values, make sure to remember that we legalized
1457    // both of them.
1458    AddLegalizedOperand(SDValue(Node, 0), Tmp1);
1459    AddLegalizedOperand(SDValue(Node, 1), Tmp2);
1460    return Op.getResNo() ? Tmp2 : Tmp1;
1461  }
1462  case ISD::STORE: {
1463    StoreSDNode *ST = cast<StoreSDNode>(Node);
1464    Tmp1 = LegalizeOp(ST->getChain());    // Legalize the chain.
1465    Tmp2 = LegalizeOp(ST->getBasePtr());  // Legalize the pointer.
1466    unsigned Alignment = ST->getAlignment();
1467    bool isVolatile = ST->isVolatile();
1468    bool isNonTemporal = ST->isNonTemporal();
1469
1470    if (!ST->isTruncatingStore()) {
1471      if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
1472        Result = SDValue(OptStore, 0);
1473        break;
1474      }
1475
1476      {
1477        Tmp3 = LegalizeOp(ST->getValue());
1478        Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1479                                                Tmp1, Tmp3, Tmp2,
1480                                                ST->getOffset()),
1481                         Result.getResNo());
1482
1483        EVT VT = Tmp3.getValueType();
1484        switch (TLI.getOperationAction(ISD::STORE, VT)) {
1485        default: assert(0 && "This action is not supported yet!");
1486        case TargetLowering::Legal:
1487          // If this is an unaligned store and the target doesn't support it,
1488          // expand it.
1489          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1490            Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1491            unsigned ABIAlignment= TLI.getTargetData()->getABITypeAlignment(Ty);
1492            if (ST->getAlignment() < ABIAlignment)
1493              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()),
1494                                            DAG, TLI);
1495          }
1496          break;
1497        case TargetLowering::Custom:
1498          Tmp1 = TLI.LowerOperation(Result, DAG);
1499          if (Tmp1.getNode()) Result = Tmp1;
1500          break;
1501        case TargetLowering::Promote:
1502          assert(VT.isVector() && "Unknown legal promote case!");
1503          Tmp3 = DAG.getNode(ISD::BITCAST, dl,
1504                             TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3);
1505          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2,
1506                                ST->getPointerInfo(), isVolatile,
1507                                isNonTemporal, Alignment);
1508          break;
1509        }
1510        break;
1511      }
1512    } else {
1513      Tmp3 = LegalizeOp(ST->getValue());
1514
1515      EVT StVT = ST->getMemoryVT();
1516      unsigned StWidth = StVT.getSizeInBits();
1517
1518      if (StWidth != StVT.getStoreSizeInBits()) {
1519        // Promote to a byte-sized store with upper bits zero if not
1520        // storing an integral number of bytes.  For example, promote
1521        // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
1522        EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
1523                                    StVT.getStoreSizeInBits());
1524        Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT);
1525        Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
1526                                   NVT, isVolatile, isNonTemporal, Alignment);
1527      } else if (StWidth & (StWidth - 1)) {
1528        // If not storing a power-of-2 number of bits, expand as two stores.
1529        assert(!StVT.isVector() && "Unsupported truncstore!");
1530        unsigned RoundWidth = 1 << Log2_32(StWidth);
1531        assert(RoundWidth < StWidth);
1532        unsigned ExtraWidth = StWidth - RoundWidth;
1533        assert(ExtraWidth < RoundWidth);
1534        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1535               "Store size not an integral number of bytes!");
1536        EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1537        EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1538        SDValue Lo, Hi;
1539        unsigned IncrementSize;
1540
1541        if (TLI.isLittleEndian()) {
1542          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
1543          // Store the bottom RoundWidth bits.
1544          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
1545                                 RoundVT,
1546                                 isVolatile, isNonTemporal, Alignment);
1547
1548          // Store the remaining ExtraWidth bits.
1549          IncrementSize = RoundWidth / 8;
1550          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1551                             DAG.getIntPtrConstant(IncrementSize));
1552          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1553                           DAG.getConstant(RoundWidth,
1554                                    TLI.getShiftAmountTy(Tmp3.getValueType())));
1555          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2,
1556                             ST->getPointerInfo().getWithOffset(IncrementSize),
1557                                 ExtraVT, isVolatile, isNonTemporal,
1558                                 MinAlign(Alignment, IncrementSize));
1559        } else {
1560          // Big endian - avoid unaligned stores.
1561          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
1562          // Store the top RoundWidth bits.
1563          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1564                           DAG.getConstant(ExtraWidth,
1565                                    TLI.getShiftAmountTy(Tmp3.getValueType())));
1566          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getPointerInfo(),
1567                                 RoundVT, isVolatile, isNonTemporal, Alignment);
1568
1569          // Store the remaining ExtraWidth bits.
1570          IncrementSize = RoundWidth / 8;
1571          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1572                             DAG.getIntPtrConstant(IncrementSize));
1573          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2,
1574                              ST->getPointerInfo().getWithOffset(IncrementSize),
1575                                 ExtraVT, isVolatile, isNonTemporal,
1576                                 MinAlign(Alignment, IncrementSize));
1577        }
1578
1579        // The order of the stores doesn't matter.
1580        Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
1581      } else {
1582        if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() ||
1583            Tmp2 != ST->getBasePtr())
1584          Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1585                                                  Tmp1, Tmp3, Tmp2,
1586                                                  ST->getOffset()),
1587                           Result.getResNo());
1588
1589        switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
1590        default: assert(0 && "This action is not supported yet!");
1591        case TargetLowering::Legal:
1592          // If this is an unaligned store and the target doesn't support it,
1593          // expand it.
1594          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1595            Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1596            unsigned ABIAlignment= TLI.getTargetData()->getABITypeAlignment(Ty);
1597            if (ST->getAlignment() < ABIAlignment)
1598              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()),
1599                                            DAG, TLI);
1600          }
1601          break;
1602        case TargetLowering::Custom:
1603          Result = TLI.LowerOperation(Result, DAG);
1604          break;
1605        case TargetLowering::Expand:
1606
1607          EVT WideScalarVT = Tmp3.getValueType().getScalarType();
1608          EVT NarrowScalarVT = StVT.getScalarType();
1609
1610          // The Store type is illegal, must scalarize the vector store.
1611          SmallVector<SDValue, 8> Stores;
1612          bool ScalarLegal = TLI.isTypeLegal(WideScalarVT);
1613          if (!TLI.isTypeLegal(StVT) && StVT.isVector() && ScalarLegal) {
1614            unsigned NumElem = StVT.getVectorNumElements();
1615
1616            unsigned ScalarSize = StVT.getScalarType().getSizeInBits();
1617            // Round odd types to the next pow of two.
1618            if (!isPowerOf2_32(ScalarSize))
1619              ScalarSize = NextPowerOf2(ScalarSize);
1620            // Types smaller than 8 bits are promoted to 8 bits.
1621            ScalarSize = std::max<unsigned>(ScalarSize, 8);
1622            // Store stride
1623            unsigned Stride = ScalarSize/8;
1624            assert(isPowerOf2_32(Stride) && "Stride must be a power of two");
1625
1626            for (unsigned Idx=0; Idx<NumElem; Idx++) {
1627              SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
1628                                       WideScalarVT, Tmp3, DAG.getIntPtrConstant(Idx));
1629
1630
1631              EVT NVT = EVT::getIntegerVT(*DAG.getContext(), ScalarSize);
1632
1633              Ex = DAG.getNode(ISD::TRUNCATE, dl, NVT, Ex);
1634              Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1635                                 DAG.getIntPtrConstant(Stride));
1636              SDValue Store = DAG.getStore(Tmp1, dl, Ex, Tmp2,
1637                                           ST->getPointerInfo().getWithOffset(Idx*Stride),
1638                                           isVolatile, isNonTemporal, Alignment);
1639              Stores.push_back(Store);
1640            }
1641            Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1642                                 &Stores[0], Stores.size());
1643            break;
1644          }
1645
1646          // The Store type is illegal, must scalarize the vector store.
1647          // However, the scalar type is illegal. Must bitcast the result
1648          // and store it in smaller parts.
1649          if (!TLI.isTypeLegal(StVT) && StVT.isVector()) {
1650            unsigned WideNumElem = StVT.getVectorNumElements();
1651            unsigned Stride = NarrowScalarVT.getSizeInBits()/8;
1652
1653            unsigned SizeRatio =
1654              (WideScalarVT.getSizeInBits() / NarrowScalarVT.getSizeInBits());
1655
1656            EVT CastValueVT = EVT::getVectorVT(*DAG.getContext(), NarrowScalarVT,
1657                                               SizeRatio*WideNumElem);
1658
1659            // Cast the wide elem vector to wider vec with smaller elem type.
1660            // Example <2 x i64> -> <4 x i32>
1661            Tmp3 = DAG.getNode(ISD::BITCAST, dl, CastValueVT, Tmp3);
1662
1663            for (unsigned Idx=0; Idx<WideNumElem*SizeRatio; Idx++) {
1664              // Extract elment i
1665              SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
1666                                       NarrowScalarVT, Tmp3, DAG.getIntPtrConstant(Idx));
1667              // bump pointer.
1668              Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1669                                 DAG.getIntPtrConstant(Stride));
1670
1671              // Store if, this element is:
1672              //  - First element on big endian, or
1673              //  - Last element on little endian
1674              if (( TLI.isBigEndian() && (Idx%SizeRatio == 0)) ||
1675                  ((!TLI.isBigEndian() && (Idx%SizeRatio == SizeRatio-1)))) {
1676                SDValue Store = DAG.getStore(Tmp1, dl, Ex, Tmp2,
1677                                             ST->getPointerInfo().getWithOffset(Idx*Stride),
1678                                             isVolatile, isNonTemporal, Alignment);
1679                Stores.push_back(Store);
1680              }
1681            }
1682            Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1683                                 &Stores[0], Stores.size());
1684            break;
1685          }
1686
1687
1688          // TRUNCSTORE:i16 i32 -> STORE i16
1689          assert(TLI.isTypeLegal(StVT) && "Do not know how to expand this store!");
1690          Tmp3 = DAG.getNode(ISD::TRUNCATE, dl, StVT, Tmp3);
1691          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
1692                                isVolatile, isNonTemporal, Alignment);
1693          break;
1694        }
1695      }
1696    }
1697    break;
1698  }
1699  }
1700  assert(Result.getValueType() == Op.getValueType() &&
1701         "Bad legalization!");
1702
1703  // Make sure that the generated code is itself legal.
1704  if (Result != Op)
1705    Result = LegalizeOp(Result);
1706
1707  // Note that LegalizeOp may be reentered even from single-use nodes, which
1708  // means that we always must cache transformed nodes.
1709  AddLegalizedOperand(Op, Result);
1710  return Result;
1711}
1712
1713SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1714  SDValue Vec = Op.getOperand(0);
1715  SDValue Idx = Op.getOperand(1);
1716  DebugLoc dl = Op.getDebugLoc();
1717  // Store the value to a temporary stack slot, then LOAD the returned part.
1718  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1719  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
1720                            MachinePointerInfo(), false, false, 0);
1721
1722  // Add the offset to the index.
1723  unsigned EltSize =
1724      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1725  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1726                    DAG.getConstant(EltSize, Idx.getValueType()));
1727
1728  if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1729    Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1730  else
1731    Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1732
1733  StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
1734
1735  if (Op.getValueType().isVector())
1736    return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr,MachinePointerInfo(),
1737                       false, false, 0);
1738  return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
1739                        MachinePointerInfo(),
1740                        Vec.getValueType().getVectorElementType(),
1741                        false, false, 0);
1742}
1743
1744SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) {
1745  assert(Op.getValueType().isVector() && "Non-vector insert subvector!");
1746
1747  SDValue Vec  = Op.getOperand(0);
1748  SDValue Part = Op.getOperand(1);
1749  SDValue Idx  = Op.getOperand(2);
1750  DebugLoc dl  = Op.getDebugLoc();
1751
1752  // Store the value to a temporary stack slot, then LOAD the returned part.
1753
1754  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1755  int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1756  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI);
1757
1758  // First store the whole vector.
1759  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo,
1760                            false, false, 0);
1761
1762  // Then store the inserted part.
1763
1764  // Add the offset to the index.
1765  unsigned EltSize =
1766      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1767
1768  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1769                    DAG.getConstant(EltSize, Idx.getValueType()));
1770
1771  if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1772    Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1773  else
1774    Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1775
1776  SDValue SubStackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx,
1777                                    StackPtr);
1778
1779  // Store the subvector.
1780  Ch = DAG.getStore(DAG.getEntryNode(), dl, Part, SubStackPtr,
1781                    MachinePointerInfo(), false, false, 0);
1782
1783  // Finally, load the updated vector.
1784  return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo,
1785                     false, false, 0);
1786}
1787
1788SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1789  // We can't handle this case efficiently.  Allocate a sufficiently
1790  // aligned object on the stack, store each element into it, then load
1791  // the result as a vector.
1792  // Create the stack frame object.
1793  EVT VT = Node->getValueType(0);
1794  EVT EltVT = VT.getVectorElementType();
1795  DebugLoc dl = Node->getDebugLoc();
1796  SDValue FIPtr = DAG.CreateStackTemporary(VT);
1797  int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1798  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI);
1799
1800  // Emit a store of each element to the stack slot.
1801  SmallVector<SDValue, 8> Stores;
1802  unsigned TypeByteSize = EltVT.getSizeInBits() / 8;
1803  // Store (in the right endianness) the elements to memory.
1804  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1805    // Ignore undef elements.
1806    if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1807
1808    unsigned Offset = TypeByteSize*i;
1809
1810    SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType());
1811    Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
1812
1813    // If the destination vector element type is narrower than the source
1814    // element type, only store the bits necessary.
1815    if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) {
1816      Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
1817                                         Node->getOperand(i), Idx,
1818                                         PtrInfo.getWithOffset(Offset),
1819                                         EltVT, false, false, 0));
1820    } else
1821      Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl,
1822                                    Node->getOperand(i), Idx,
1823                                    PtrInfo.getWithOffset(Offset),
1824                                    false, false, 0));
1825  }
1826
1827  SDValue StoreChain;
1828  if (!Stores.empty())    // Not all undef elements?
1829    StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1830                             &Stores[0], Stores.size());
1831  else
1832    StoreChain = DAG.getEntryNode();
1833
1834  // Result is a load from the stack slot.
1835  return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo, false, false, 0);
1836}
1837
1838SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) {
1839  DebugLoc dl = Node->getDebugLoc();
1840  SDValue Tmp1 = Node->getOperand(0);
1841  SDValue Tmp2 = Node->getOperand(1);
1842
1843  // Get the sign bit of the RHS.  First obtain a value that has the same
1844  // sign as the sign bit, i.e. negative if and only if the sign bit is 1.
1845  SDValue SignBit;
1846  EVT FloatVT = Tmp2.getValueType();
1847  EVT IVT = EVT::getIntegerVT(*DAG.getContext(), FloatVT.getSizeInBits());
1848  if (TLI.isTypeLegal(IVT)) {
1849    // Convert to an integer with the same sign bit.
1850    SignBit = DAG.getNode(ISD::BITCAST, dl, IVT, Tmp2);
1851  } else {
1852    // Store the float to memory, then load the sign part out as an integer.
1853    MVT LoadTy = TLI.getPointerTy();
1854    // First create a temporary that is aligned for both the load and store.
1855    SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
1856    // Then store the float to it.
1857    SDValue Ch =
1858      DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StackPtr, MachinePointerInfo(),
1859                   false, false, 0);
1860    if (TLI.isBigEndian()) {
1861      assert(FloatVT.isByteSized() && "Unsupported floating point type!");
1862      // Load out a legal integer with the same sign bit as the float.
1863      SignBit = DAG.getLoad(LoadTy, dl, Ch, StackPtr, MachinePointerInfo(),
1864                            false, false, 0);
1865    } else { // Little endian
1866      SDValue LoadPtr = StackPtr;
1867      // The float may be wider than the integer we are going to load.  Advance
1868      // the pointer so that the loaded integer will contain the sign bit.
1869      unsigned Strides = (FloatVT.getSizeInBits()-1)/LoadTy.getSizeInBits();
1870      unsigned ByteOffset = (Strides * LoadTy.getSizeInBits()) / 8;
1871      LoadPtr = DAG.getNode(ISD::ADD, dl, LoadPtr.getValueType(),
1872                            LoadPtr, DAG.getIntPtrConstant(ByteOffset));
1873      // Load a legal integer containing the sign bit.
1874      SignBit = DAG.getLoad(LoadTy, dl, Ch, LoadPtr, MachinePointerInfo(),
1875                            false, false, 0);
1876      // Move the sign bit to the top bit of the loaded integer.
1877      unsigned BitShift = LoadTy.getSizeInBits() -
1878        (FloatVT.getSizeInBits() - 8 * ByteOffset);
1879      assert(BitShift < LoadTy.getSizeInBits() && "Pointer advanced wrong?");
1880      if (BitShift)
1881        SignBit = DAG.getNode(ISD::SHL, dl, LoadTy, SignBit,
1882                              DAG.getConstant(BitShift,
1883                                 TLI.getShiftAmountTy(SignBit.getValueType())));
1884    }
1885  }
1886  // Now get the sign bit proper, by seeing whether the value is negative.
1887  SignBit = DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()),
1888                         SignBit, DAG.getConstant(0, SignBit.getValueType()),
1889                         ISD::SETLT);
1890  // Get the absolute value of the result.
1891  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1);
1892  // Select between the nabs and abs value based on the sign bit of
1893  // the input.
1894  return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit,
1895                     DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal),
1896                     AbsVal);
1897}
1898
1899void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1900                                           SmallVectorImpl<SDValue> &Results) {
1901  unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1902  assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1903          " not tell us which reg is the stack pointer!");
1904  DebugLoc dl = Node->getDebugLoc();
1905  EVT VT = Node->getValueType(0);
1906  SDValue Tmp1 = SDValue(Node, 0);
1907  SDValue Tmp2 = SDValue(Node, 1);
1908  SDValue Tmp3 = Node->getOperand(2);
1909  SDValue Chain = Tmp1.getOperand(0);
1910
1911  // Chain the dynamic stack allocation so that it doesn't modify the stack
1912  // pointer when other instructions are using the stack.
1913  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
1914
1915  SDValue Size  = Tmp2.getOperand(1);
1916  SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1917  Chain = SP.getValue(1);
1918  unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1919  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
1920  if (Align > StackAlign)
1921    SP = DAG.getNode(ISD::AND, dl, VT, SP,
1922                      DAG.getConstant(-(uint64_t)Align, VT));
1923  Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size);       // Value
1924  Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain
1925
1926  Tmp2 = DAG.getCALLSEQ_END(Chain,  DAG.getIntPtrConstant(0, true),
1927                            DAG.getIntPtrConstant(0, true), SDValue());
1928
1929  Results.push_back(Tmp1);
1930  Results.push_back(Tmp2);
1931}
1932
1933/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
1934/// condition code CC on the current target. This routine expands SETCC with
1935/// illegal condition code into AND / OR of multiple SETCC values.
1936void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT,
1937                                                 SDValue &LHS, SDValue &RHS,
1938                                                 SDValue &CC,
1939                                                 DebugLoc dl) {
1940  EVT OpVT = LHS.getValueType();
1941  ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1942  switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1943  default: assert(0 && "Unknown condition code action!");
1944  case TargetLowering::Legal:
1945    // Nothing to do.
1946    break;
1947  case TargetLowering::Expand: {
1948    ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1949    unsigned Opc = 0;
1950    switch (CCCode) {
1951    default: assert(0 && "Don't know how to expand this condition!");
1952    case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1953    case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1954    case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1955    case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1956    case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1957    case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1958    case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1959    case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1960    case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1961    case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1962    case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1963    case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1964    // FIXME: Implement more expansions.
1965    }
1966
1967    SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1968    SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
1969    LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1970    RHS = SDValue();
1971    CC  = SDValue();
1972    break;
1973  }
1974  }
1975}
1976
1977/// EmitStackConvert - Emit a store/load combination to the stack.  This stores
1978/// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
1979/// a load from the stack slot to DestVT, extending it if needed.
1980/// The resultant code need not be legal.
1981SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
1982                                               EVT SlotVT,
1983                                               EVT DestVT,
1984                                               DebugLoc dl) {
1985  // Create the stack frame object.
1986  unsigned SrcAlign =
1987    TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType().
1988                                              getTypeForEVT(*DAG.getContext()));
1989  SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1990
1991  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1992  int SPFI = StackPtrFI->getIndex();
1993  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(SPFI);
1994
1995  unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
1996  unsigned SlotSize = SlotVT.getSizeInBits();
1997  unsigned DestSize = DestVT.getSizeInBits();
1998  Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
1999  unsigned DestAlign = TLI.getTargetData()->getPrefTypeAlignment(DestType);
2000
2001  // Emit a store to the stack slot.  Use a truncstore if the input value is
2002  // later than DestVT.
2003  SDValue Store;
2004
2005  if (SrcSize > SlotSize)
2006    Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
2007                              PtrInfo, SlotVT, false, false, SrcAlign);
2008  else {
2009    assert(SrcSize == SlotSize && "Invalid store");
2010    Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
2011                         PtrInfo, false, false, SrcAlign);
2012  }
2013
2014  // Result is a load from the stack slot.
2015  if (SlotSize == DestSize)
2016    return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo,
2017                       false, false, DestAlign);
2018
2019  assert(SlotSize < DestSize && "Unknown extension!");
2020  return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr,
2021                        PtrInfo, SlotVT, false, false, DestAlign);
2022}
2023
2024SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
2025  DebugLoc dl = Node->getDebugLoc();
2026  // Create a vector sized/aligned stack slot, store the value to element #0,
2027  // then load the whole vector back out.
2028  SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
2029
2030  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
2031  int SPFI = StackPtrFI->getIndex();
2032
2033  SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0),
2034                                 StackPtr,
2035                                 MachinePointerInfo::getFixedStack(SPFI),
2036                                 Node->getValueType(0).getVectorElementType(),
2037                                 false, false, 0);
2038  return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr,
2039                     MachinePointerInfo::getFixedStack(SPFI),
2040                     false, false, 0);
2041}
2042
2043
2044/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
2045/// support the operation, but do support the resultant vector type.
2046SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
2047  unsigned NumElems = Node->getNumOperands();
2048  SDValue Value1, Value2;
2049  DebugLoc dl = Node->getDebugLoc();
2050  EVT VT = Node->getValueType(0);
2051  EVT OpVT = Node->getOperand(0).getValueType();
2052  EVT EltVT = VT.getVectorElementType();
2053
2054  // If the only non-undef value is the low element, turn this into a
2055  // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
2056  bool isOnlyLowElement = true;
2057  bool MoreThanTwoValues = false;
2058  bool isConstant = true;
2059  for (unsigned i = 0; i < NumElems; ++i) {
2060    SDValue V = Node->getOperand(i);
2061    if (V.getOpcode() == ISD::UNDEF)
2062      continue;
2063    if (i > 0)
2064      isOnlyLowElement = false;
2065    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
2066      isConstant = false;
2067
2068    if (!Value1.getNode()) {
2069      Value1 = V;
2070    } else if (!Value2.getNode()) {
2071      if (V != Value1)
2072        Value2 = V;
2073    } else if (V != Value1 && V != Value2) {
2074      MoreThanTwoValues = true;
2075    }
2076  }
2077
2078  if (!Value1.getNode())
2079    return DAG.getUNDEF(VT);
2080
2081  if (isOnlyLowElement)
2082    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
2083
2084  // If all elements are constants, create a load from the constant pool.
2085  if (isConstant) {
2086    std::vector<Constant*> CV;
2087    for (unsigned i = 0, e = NumElems; i != e; ++i) {
2088      if (ConstantFPSDNode *V =
2089          dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
2090        CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
2091      } else if (ConstantSDNode *V =
2092                 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
2093        if (OpVT==EltVT)
2094          CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
2095        else {
2096          // If OpVT and EltVT don't match, EltVT is not legal and the
2097          // element values have been promoted/truncated earlier.  Undo this;
2098          // we don't want a v16i8 to become a v16i32 for example.
2099          const ConstantInt *CI = V->getConstantIntValue();
2100          CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
2101                                        CI->getZExtValue()));
2102        }
2103      } else {
2104        assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
2105        Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
2106        CV.push_back(UndefValue::get(OpNTy));
2107      }
2108    }
2109    Constant *CP = ConstantVector::get(CV);
2110    SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
2111    unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2112    return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
2113                       MachinePointerInfo::getConstantPool(),
2114                       false, false, Alignment);
2115  }
2116
2117  if (!MoreThanTwoValues) {
2118    SmallVector<int, 8> ShuffleVec(NumElems, -1);
2119    for (unsigned i = 0; i < NumElems; ++i) {
2120      SDValue V = Node->getOperand(i);
2121      if (V.getOpcode() == ISD::UNDEF)
2122        continue;
2123      ShuffleVec[i] = V == Value1 ? 0 : NumElems;
2124    }
2125    if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
2126      // Get the splatted value into the low element of a vector register.
2127      SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
2128      SDValue Vec2;
2129      if (Value2.getNode())
2130        Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
2131      else
2132        Vec2 = DAG.getUNDEF(VT);
2133
2134      // Return shuffle(LowValVec, undef, <0,0,0,0>)
2135      return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
2136    }
2137  }
2138
2139  // Otherwise, we can't handle this case efficiently.
2140  return ExpandVectorBuildThroughStack(Node);
2141}
2142
2143// ExpandLibCall - Expand a node into a call to a libcall.  If the result value
2144// does not fit into a register, return the lo part and set the hi part to the
2145// by-reg argument.  If it does fit into a single register, return the result
2146// and leave the Hi part unset.
2147SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
2148                                            bool isSigned) {
2149  assert(!IsLegalizingCall && "Cannot overlap legalization of calls!");
2150  // The input chain to this libcall is the entry node of the function.
2151  // Legalizing the call will automatically add the previous call to the
2152  // dependence.
2153  SDValue InChain = DAG.getEntryNode();
2154
2155  TargetLowering::ArgListTy Args;
2156  TargetLowering::ArgListEntry Entry;
2157  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
2158    EVT ArgVT = Node->getOperand(i).getValueType();
2159    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2160    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
2161    Entry.isSExt = isSigned;
2162    Entry.isZExt = !isSigned;
2163    Args.push_back(Entry);
2164  }
2165  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2166                                         TLI.getPointerTy());
2167
2168  // Splice the libcall in wherever FindInputOutputChains tells us to.
2169  Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
2170
2171  // isTailCall may be true since the callee does not reference caller stack
2172  // frame. Check if it's in the right position.
2173  bool isTailCall = isInTailCallPosition(DAG, Node, TLI);
2174  std::pair<SDValue, SDValue> CallInfo =
2175    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
2176                    0, TLI.getLibcallCallingConv(LC), isTailCall,
2177                    /*isReturnValueUsed=*/true,
2178                    Callee, Args, DAG, Node->getDebugLoc());
2179
2180  if (!CallInfo.second.getNode())
2181    // It's a tailcall, return the chain (which is the DAG root).
2182    return DAG.getRoot();
2183
2184  // Legalize the call sequence, starting with the chain.  This will advance
2185  // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
2186  // was added by LowerCallTo (guaranteeing proper serialization of calls).
2187  LegalizeOp(CallInfo.second);
2188  return CallInfo.first;
2189}
2190
2191/// ExpandLibCall - Generate a libcall taking the given operands as arguments
2192/// and returning a result of type RetVT.
2193SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, EVT RetVT,
2194                                            const SDValue *Ops, unsigned NumOps,
2195                                            bool isSigned, DebugLoc dl) {
2196  TargetLowering::ArgListTy Args;
2197  Args.reserve(NumOps);
2198
2199  TargetLowering::ArgListEntry Entry;
2200  for (unsigned i = 0; i != NumOps; ++i) {
2201    Entry.Node = Ops[i];
2202    Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
2203    Entry.isSExt = isSigned;
2204    Entry.isZExt = !isSigned;
2205    Args.push_back(Entry);
2206  }
2207  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2208                                         TLI.getPointerTy());
2209
2210  Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2211  std::pair<SDValue,SDValue> CallInfo =
2212  TLI.LowerCallTo(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false,
2213                  false, 0, TLI.getLibcallCallingConv(LC), false,
2214                  /*isReturnValueUsed=*/true,
2215                  Callee, Args, DAG, dl);
2216
2217  // Legalize the call sequence, starting with the chain.  This will advance
2218  // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
2219  // was added by LowerCallTo (guaranteeing proper serialization of calls).
2220  LegalizeOp(CallInfo.second);
2221
2222  return CallInfo.first;
2223}
2224
2225// ExpandChainLibCall - Expand a node into a call to a libcall. Similar to
2226// ExpandLibCall except that the first operand is the in-chain.
2227std::pair<SDValue, SDValue>
2228SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC,
2229                                         SDNode *Node,
2230                                         bool isSigned) {
2231  assert(!IsLegalizingCall && "Cannot overlap legalization of calls!");
2232  SDValue InChain = Node->getOperand(0);
2233
2234  TargetLowering::ArgListTy Args;
2235  TargetLowering::ArgListEntry Entry;
2236  for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) {
2237    EVT ArgVT = Node->getOperand(i).getValueType();
2238    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2239    Entry.Node = Node->getOperand(i);
2240    Entry.Ty = ArgTy;
2241    Entry.isSExt = isSigned;
2242    Entry.isZExt = !isSigned;
2243    Args.push_back(Entry);
2244  }
2245  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2246                                         TLI.getPointerTy());
2247
2248  // Splice the libcall in wherever FindInputOutputChains tells us to.
2249  Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
2250  std::pair<SDValue, SDValue> CallInfo =
2251    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
2252                    0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false,
2253                    /*isReturnValueUsed=*/true,
2254                    Callee, Args, DAG, Node->getDebugLoc());
2255
2256  // Legalize the call sequence, starting with the chain.  This will advance
2257  // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
2258  // was added by LowerCallTo (guaranteeing proper serialization of calls).
2259  LegalizeOp(CallInfo.second);
2260  return CallInfo;
2261}
2262
2263SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
2264                                              RTLIB::Libcall Call_F32,
2265                                              RTLIB::Libcall Call_F64,
2266                                              RTLIB::Libcall Call_F80,
2267                                              RTLIB::Libcall Call_PPCF128) {
2268  RTLIB::Libcall LC;
2269  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
2270  default: assert(0 && "Unexpected request for libcall!");
2271  case MVT::f32: LC = Call_F32; break;
2272  case MVT::f64: LC = Call_F64; break;
2273  case MVT::f80: LC = Call_F80; break;
2274  case MVT::ppcf128: LC = Call_PPCF128; break;
2275  }
2276  return ExpandLibCall(LC, Node, false);
2277}
2278
2279SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
2280                                               RTLIB::Libcall Call_I8,
2281                                               RTLIB::Libcall Call_I16,
2282                                               RTLIB::Libcall Call_I32,
2283                                               RTLIB::Libcall Call_I64,
2284                                               RTLIB::Libcall Call_I128) {
2285  RTLIB::Libcall LC;
2286  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
2287  default: assert(0 && "Unexpected request for libcall!");
2288  case MVT::i8:   LC = Call_I8; break;
2289  case MVT::i16:  LC = Call_I16; break;
2290  case MVT::i32:  LC = Call_I32; break;
2291  case MVT::i64:  LC = Call_I64; break;
2292  case MVT::i128: LC = Call_I128; break;
2293  }
2294  return ExpandLibCall(LC, Node, isSigned);
2295}
2296
2297/// isDivRemLibcallAvailable - Return true if divmod libcall is available.
2298static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned,
2299                                     const TargetLowering &TLI) {
2300  RTLIB::Libcall LC;
2301  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
2302  default: assert(0 && "Unexpected request for libcall!");
2303  case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
2304  case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
2305  case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
2306  case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
2307  case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
2308  }
2309
2310  return TLI.getLibcallName(LC) != 0;
2311}
2312
2313/// UseDivRem - Only issue divrem libcall if both quotient and remainder are
2314/// needed.
2315static bool UseDivRem(SDNode *Node, bool isSigned, bool isDIV) {
2316  unsigned OtherOpcode = 0;
2317  if (isSigned)
2318    OtherOpcode = isDIV ? ISD::SREM : ISD::SDIV;
2319  else
2320    OtherOpcode = isDIV ? ISD::UREM : ISD::UDIV;
2321
2322  SDValue Op0 = Node->getOperand(0);
2323  SDValue Op1 = Node->getOperand(1);
2324  for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
2325         UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
2326    SDNode *User = *UI;
2327    if (User == Node)
2328      continue;
2329    if (User->getOpcode() == OtherOpcode &&
2330        User->getOperand(0) == Op0 &&
2331        User->getOperand(1) == Op1)
2332      return true;
2333  }
2334  return false;
2335}
2336
2337/// ExpandDivRemLibCall - Issue libcalls to __{u}divmod to compute div / rem
2338/// pairs.
2339void
2340SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node,
2341                                          SmallVectorImpl<SDValue> &Results) {
2342  unsigned Opcode = Node->getOpcode();
2343  bool isSigned = Opcode == ISD::SDIVREM;
2344
2345  RTLIB::Libcall LC;
2346  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
2347  default: assert(0 && "Unexpected request for libcall!");
2348  case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
2349  case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
2350  case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
2351  case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
2352  case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
2353  }
2354
2355  // The input chain to this libcall is the entry node of the function.
2356  // Legalizing the call will automatically add the previous call to the
2357  // dependence.
2358  SDValue InChain = DAG.getEntryNode();
2359
2360  EVT RetVT = Node->getValueType(0);
2361  Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2362
2363  TargetLowering::ArgListTy Args;
2364  TargetLowering::ArgListEntry Entry;
2365  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
2366    EVT ArgVT = Node->getOperand(i).getValueType();
2367    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2368    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
2369    Entry.isSExt = isSigned;
2370    Entry.isZExt = !isSigned;
2371    Args.push_back(Entry);
2372  }
2373
2374  // Also pass the return address of the remainder.
2375  SDValue FIPtr = DAG.CreateStackTemporary(RetVT);
2376  Entry.Node = FIPtr;
2377  Entry.Ty = RetTy->getPointerTo();
2378  Entry.isSExt = isSigned;
2379  Entry.isZExt = !isSigned;
2380  Args.push_back(Entry);
2381
2382  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2383                                         TLI.getPointerTy());
2384
2385  // Splice the libcall in wherever FindInputOutputChains tells us to.
2386  DebugLoc dl = Node->getDebugLoc();
2387  std::pair<SDValue, SDValue> CallInfo =
2388    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
2389                    0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false,
2390                    /*isReturnValueUsed=*/true, Callee, Args, DAG, dl);
2391
2392  // Legalize the call sequence, starting with the chain.  This will advance
2393  // the LastCALLSEQ to the legalized version of the CALLSEQ_END node that
2394  // was added by LowerCallTo (guaranteeing proper serialization of calls).
2395  LegalizeOp(CallInfo.second);
2396
2397  // Remainder is loaded back from the stack frame.
2398  SDValue Rem = DAG.getLoad(RetVT, dl, LastCALLSEQ_END, FIPtr,
2399                            MachinePointerInfo(), false, false, 0);
2400  Results.push_back(CallInfo.first);
2401  Results.push_back(Rem);
2402}
2403
2404/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
2405/// INT_TO_FP operation of the specified operand when the target requests that
2406/// we expand it.  At this point, we know that the result and operand types are
2407/// legal for the target.
2408SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
2409                                                   SDValue Op0,
2410                                                   EVT DestVT,
2411                                                   DebugLoc dl) {
2412  if (Op0.getValueType() == MVT::i32) {
2413    // simple 32-bit [signed|unsigned] integer to float/double expansion
2414
2415    // Get the stack frame index of a 8 byte buffer.
2416    SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
2417
2418    // word offset constant for Hi/Lo address computation
2419    SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy());
2420    // set up Hi and Lo (into buffer) address based on endian
2421    SDValue Hi = StackSlot;
2422    SDValue Lo = DAG.getNode(ISD::ADD, dl,
2423                             TLI.getPointerTy(), StackSlot, WordOff);
2424    if (TLI.isLittleEndian())
2425      std::swap(Hi, Lo);
2426
2427    // if signed map to unsigned space
2428    SDValue Op0Mapped;
2429    if (isSigned) {
2430      // constant used to invert sign bit (signed to unsigned mapping)
2431      SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32);
2432      Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
2433    } else {
2434      Op0Mapped = Op0;
2435    }
2436    // store the lo of the constructed double - based on integer input
2437    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
2438                                  Op0Mapped, Lo, MachinePointerInfo(),
2439                                  false, false, 0);
2440    // initial hi portion of constructed double
2441    SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
2442    // store the hi of the constructed double - biased exponent
2443    SDValue Store2 = DAG.getStore(Store1, dl, InitialHi, Hi,
2444                                  MachinePointerInfo(),
2445                                  false, false, 0);
2446    // load the constructed double
2447    SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot,
2448                               MachinePointerInfo(), false, false, 0);
2449    // FP constant to bias correct the final result
2450    SDValue Bias = DAG.getConstantFP(isSigned ?
2451                                     BitsToDouble(0x4330000080000000ULL) :
2452                                     BitsToDouble(0x4330000000000000ULL),
2453                                     MVT::f64);
2454    // subtract the bias
2455    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2456    // final result
2457    SDValue Result;
2458    // handle final rounding
2459    if (DestVT == MVT::f64) {
2460      // do nothing
2461      Result = Sub;
2462    } else if (DestVT.bitsLT(MVT::f64)) {
2463      Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
2464                           DAG.getIntPtrConstant(0));
2465    } else if (DestVT.bitsGT(MVT::f64)) {
2466      Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
2467    }
2468    return Result;
2469  }
2470  assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2471  // Code below here assumes !isSigned without checking again.
2472
2473  // Implementation of unsigned i64 to f64 following the algorithm in
2474  // __floatundidf in compiler_rt. This implementation has the advantage
2475  // of performing rounding correctly, both in the default rounding mode
2476  // and in all alternate rounding modes.
2477  // TODO: Generalize this for use with other types.
2478  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) {
2479    SDValue TwoP52 =
2480      DAG.getConstant(UINT64_C(0x4330000000000000), MVT::i64);
2481    SDValue TwoP84PlusTwoP52 =
2482      DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), MVT::f64);
2483    SDValue TwoP84 =
2484      DAG.getConstant(UINT64_C(0x4530000000000000), MVT::i64);
2485
2486    SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32);
2487    SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0,
2488                             DAG.getConstant(32, MVT::i64));
2489    SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52);
2490    SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84);
2491    SDValue LoFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, LoOr);
2492    SDValue HiFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, HiOr);
2493    SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt,
2494                                TwoP84PlusTwoP52);
2495    return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub);
2496  }
2497
2498  // Implementation of unsigned i64 to f32.
2499  // TODO: Generalize this for use with other types.
2500  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) {
2501    // For unsigned conversions, convert them to signed conversions using the
2502    // algorithm from the x86_64 __floatundidf in compiler_rt.
2503    if (!isSigned) {
2504      SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Op0);
2505
2506      SDValue ShiftConst =
2507          DAG.getConstant(1, TLI.getShiftAmountTy(Op0.getValueType()));
2508      SDValue Shr = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, ShiftConst);
2509      SDValue AndConst = DAG.getConstant(1, MVT::i64);
2510      SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, AndConst);
2511      SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, Shr);
2512
2513      SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Or);
2514      SDValue Slow = DAG.getNode(ISD::FADD, dl, MVT::f32, SignCvt, SignCvt);
2515
2516      // TODO: This really should be implemented using a branch rather than a
2517      // select.  We happen to get lucky and machinesink does the right
2518      // thing most of the time.  This would be a good candidate for a
2519      //pseudo-op, or, even better, for whole-function isel.
2520      SDValue SignBitTest = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2521        Op0, DAG.getConstant(0, MVT::i64), ISD::SETLT);
2522      return DAG.getNode(ISD::SELECT, dl, MVT::f32, SignBitTest, Slow, Fast);
2523    }
2524
2525    // Otherwise, implement the fully general conversion.
2526
2527    SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2528         DAG.getConstant(UINT64_C(0xfffffffffffff800), MVT::i64));
2529    SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And,
2530         DAG.getConstant(UINT64_C(0x800), MVT::i64));
2531    SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2532         DAG.getConstant(UINT64_C(0x7ff), MVT::i64));
2533    SDValue Ne = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2534                   And2, DAG.getConstant(UINT64_C(0), MVT::i64), ISD::SETNE);
2535    SDValue Sel = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ne, Or, Op0);
2536    SDValue Ge = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2537                   Op0, DAG.getConstant(UINT64_C(0x0020000000000000), MVT::i64),
2538                   ISD::SETUGE);
2539    SDValue Sel2 = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ge, Sel, Op0);
2540    EVT SHVT = TLI.getShiftAmountTy(Sel2.getValueType());
2541
2542    SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2,
2543                             DAG.getConstant(32, SHVT));
2544    SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh);
2545    SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc);
2546    SDValue TwoP32 =
2547      DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), MVT::f64);
2548    SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt);
2549    SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2);
2550    SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo);
2551    SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2);
2552    return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd,
2553                       DAG.getIntPtrConstant(0));
2554  }
2555
2556  SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2557
2558  SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()),
2559                                 Op0, DAG.getConstant(0, Op0.getValueType()),
2560                                 ISD::SETLT);
2561  SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
2562  SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(),
2563                                    SignSet, Four, Zero);
2564
2565  // If the sign bit of the integer is set, the large number will be treated
2566  // as a negative number.  To counteract this, the dynamic code adds an
2567  // offset depending on the data type.
2568  uint64_t FF;
2569  switch (Op0.getValueType().getSimpleVT().SimpleTy) {
2570  default: assert(0 && "Unsupported integer type!");
2571  case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
2572  case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
2573  case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
2574  case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
2575  }
2576  if (TLI.isLittleEndian()) FF <<= 32;
2577  Constant *FudgeFactor = ConstantInt::get(
2578                                       Type::getInt64Ty(*DAG.getContext()), FF);
2579
2580  SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
2581  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2582  CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset);
2583  Alignment = std::min(Alignment, 4u);
2584  SDValue FudgeInReg;
2585  if (DestVT == MVT::f32)
2586    FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2587                             MachinePointerInfo::getConstantPool(),
2588                             false, false, Alignment);
2589  else {
2590    FudgeInReg =
2591      LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT,
2592                                DAG.getEntryNode(), CPIdx,
2593                                MachinePointerInfo::getConstantPool(),
2594                                MVT::f32, false, false, Alignment));
2595  }
2596
2597  return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2598}
2599
2600/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
2601/// *INT_TO_FP operation of the specified operand when the target requests that
2602/// we promote it.  At this point, we know that the result and operand types are
2603/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2604/// operation that takes a larger input.
2605SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
2606                                                    EVT DestVT,
2607                                                    bool isSigned,
2608                                                    DebugLoc dl) {
2609  // First step, figure out the appropriate *INT_TO_FP operation to use.
2610  EVT NewInTy = LegalOp.getValueType();
2611
2612  unsigned OpToUse = 0;
2613
2614  // Scan for the appropriate larger type to use.
2615  while (1) {
2616    NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2617    assert(NewInTy.isInteger() && "Ran out of possibilities!");
2618
2619    // If the target supports SINT_TO_FP of this type, use it.
2620    if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2621      OpToUse = ISD::SINT_TO_FP;
2622      break;
2623    }
2624    if (isSigned) continue;
2625
2626    // If the target supports UINT_TO_FP of this type, use it.
2627    if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2628      OpToUse = ISD::UINT_TO_FP;
2629      break;
2630    }
2631
2632    // Otherwise, try a larger type.
2633  }
2634
2635  // Okay, we found the operation and type to use.  Zero extend our input to the
2636  // desired type then run the operation on it.
2637  return DAG.getNode(OpToUse, dl, DestVT,
2638                     DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2639                                 dl, NewInTy, LegalOp));
2640}
2641
2642/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
2643/// FP_TO_*INT operation of the specified operand when the target requests that
2644/// we promote it.  At this point, we know that the result and operand types are
2645/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2646/// operation that returns a larger result.
2647SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
2648                                                    EVT DestVT,
2649                                                    bool isSigned,
2650                                                    DebugLoc dl) {
2651  // First step, figure out the appropriate FP_TO*INT operation to use.
2652  EVT NewOutTy = DestVT;
2653
2654  unsigned OpToUse = 0;
2655
2656  // Scan for the appropriate larger type to use.
2657  while (1) {
2658    NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2659    assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2660
2661    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2662      OpToUse = ISD::FP_TO_SINT;
2663      break;
2664    }
2665
2666    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
2667      OpToUse = ISD::FP_TO_UINT;
2668      break;
2669    }
2670
2671    // Otherwise, try a larger type.
2672  }
2673
2674
2675  // Okay, we found the operation and type to use.
2676  SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2677
2678  // Truncate the result of the extended FP_TO_*INT operation to the desired
2679  // size.
2680  return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2681}
2682
2683/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
2684///
2685SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) {
2686  EVT VT = Op.getValueType();
2687  EVT SHVT = TLI.getShiftAmountTy(VT);
2688  SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2689  switch (VT.getSimpleVT().SimpleTy) {
2690  default: assert(0 && "Unhandled Expand type in BSWAP!");
2691  case MVT::i16:
2692    Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2693    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2694    return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2695  case MVT::i32:
2696    Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2697    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2698    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2699    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2700    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
2701    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT));
2702    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2703    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2704    return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2705  case MVT::i64:
2706    Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT));
2707    Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT));
2708    Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2709    Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2710    Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2711    Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2712    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT));
2713    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT));
2714    Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
2715    Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
2716    Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
2717    Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
2718    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
2719    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
2720    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2721    Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2722    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2723    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2724    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2725    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2726    return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2727  }
2728}
2729
2730/// SplatByte - Distribute ByteVal over NumBits bits.
2731// FIXME: Move this helper to a common place.
2732static APInt SplatByte(unsigned NumBits, uint8_t ByteVal) {
2733  APInt Val = APInt(NumBits, ByteVal);
2734  unsigned Shift = 8;
2735  for (unsigned i = NumBits; i > 8; i >>= 1) {
2736    Val = (Val << Shift) | Val;
2737    Shift <<= 1;
2738  }
2739  return Val;
2740}
2741
2742/// ExpandBitCount - Expand the specified bitcount instruction into operations.
2743///
2744SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
2745                                             DebugLoc dl) {
2746  switch (Opc) {
2747  default: assert(0 && "Cannot expand this yet!");
2748  case ISD::CTPOP: {
2749    EVT VT = Op.getValueType();
2750    EVT ShVT = TLI.getShiftAmountTy(VT);
2751    unsigned Len = VT.getSizeInBits();
2752
2753    assert(VT.isInteger() && Len <= 128 && Len % 8 == 0 &&
2754           "CTPOP not implemented for this type.");
2755
2756    // This is the "best" algorithm from
2757    // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
2758
2759    SDValue Mask55 = DAG.getConstant(SplatByte(Len, 0x55), VT);
2760    SDValue Mask33 = DAG.getConstant(SplatByte(Len, 0x33), VT);
2761    SDValue Mask0F = DAG.getConstant(SplatByte(Len, 0x0F), VT);
2762    SDValue Mask01 = DAG.getConstant(SplatByte(Len, 0x01), VT);
2763
2764    // v = v - ((v >> 1) & 0x55555555...)
2765    Op = DAG.getNode(ISD::SUB, dl, VT, Op,
2766                     DAG.getNode(ISD::AND, dl, VT,
2767                                 DAG.getNode(ISD::SRL, dl, VT, Op,
2768                                             DAG.getConstant(1, ShVT)),
2769                                 Mask55));
2770    // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
2771    Op = DAG.getNode(ISD::ADD, dl, VT,
2772                     DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
2773                     DAG.getNode(ISD::AND, dl, VT,
2774                                 DAG.getNode(ISD::SRL, dl, VT, Op,
2775                                             DAG.getConstant(2, ShVT)),
2776                                 Mask33));
2777    // v = (v + (v >> 4)) & 0x0F0F0F0F...
2778    Op = DAG.getNode(ISD::AND, dl, VT,
2779                     DAG.getNode(ISD::ADD, dl, VT, Op,
2780                                 DAG.getNode(ISD::SRL, dl, VT, Op,
2781                                             DAG.getConstant(4, ShVT))),
2782                     Mask0F);
2783    // v = (v * 0x01010101...) >> (Len - 8)
2784    Op = DAG.getNode(ISD::SRL, dl, VT,
2785                     DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
2786                     DAG.getConstant(Len - 8, ShVT));
2787
2788    return Op;
2789  }
2790  case ISD::CTLZ: {
2791    // for now, we do this:
2792    // x = x | (x >> 1);
2793    // x = x | (x >> 2);
2794    // ...
2795    // x = x | (x >>16);
2796    // x = x | (x >>32); // for 64-bit input
2797    // return popcount(~x);
2798    //
2799    // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
2800    EVT VT = Op.getValueType();
2801    EVT ShVT = TLI.getShiftAmountTy(VT);
2802    unsigned len = VT.getSizeInBits();
2803    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2804      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2805      Op = DAG.getNode(ISD::OR, dl, VT, Op,
2806                       DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
2807    }
2808    Op = DAG.getNOT(dl, Op, VT);
2809    return DAG.getNode(ISD::CTPOP, dl, VT, Op);
2810  }
2811  case ISD::CTTZ: {
2812    // for now, we use: { return popcount(~x & (x - 1)); }
2813    // unless the target has ctlz but not ctpop, in which case we use:
2814    // { return 32 - nlz(~x & (x-1)); }
2815    // see also http://www.hackersdelight.org/HDcode/ntz.cc
2816    EVT VT = Op.getValueType();
2817    SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
2818                               DAG.getNOT(dl, Op, VT),
2819                               DAG.getNode(ISD::SUB, dl, VT, Op,
2820                                           DAG.getConstant(1, VT)));
2821    // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
2822    if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
2823        TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
2824      return DAG.getNode(ISD::SUB, dl, VT,
2825                         DAG.getConstant(VT.getSizeInBits(), VT),
2826                         DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
2827    return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
2828  }
2829  }
2830}
2831
2832std::pair <SDValue, SDValue> SelectionDAGLegalize::ExpandAtomic(SDNode *Node) {
2833  unsigned Opc = Node->getOpcode();
2834  MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
2835  RTLIB::Libcall LC;
2836
2837  switch (Opc) {
2838  default:
2839    llvm_unreachable("Unhandled atomic intrinsic Expand!");
2840    break;
2841  case ISD::ATOMIC_SWAP:
2842    switch (VT.SimpleTy) {
2843    default: llvm_unreachable("Unexpected value type for atomic!");
2844    case MVT::i8:  LC = RTLIB::SYNC_LOCK_TEST_AND_SET_1; break;
2845    case MVT::i16: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_2; break;
2846    case MVT::i32: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_4; break;
2847    case MVT::i64: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_8; break;
2848    }
2849    break;
2850  case ISD::ATOMIC_CMP_SWAP:
2851    switch (VT.SimpleTy) {
2852    default: llvm_unreachable("Unexpected value type for atomic!");
2853    case MVT::i8:  LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1; break;
2854    case MVT::i16: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2; break;
2855    case MVT::i32: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4; break;
2856    case MVT::i64: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8; break;
2857    }
2858    break;
2859  case ISD::ATOMIC_LOAD_ADD:
2860    switch (VT.SimpleTy) {
2861    default: llvm_unreachable("Unexpected value type for atomic!");
2862    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_ADD_1; break;
2863    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_ADD_2; break;
2864    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_ADD_4; break;
2865    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_ADD_8; break;
2866    }
2867    break;
2868  case ISD::ATOMIC_LOAD_SUB:
2869    switch (VT.SimpleTy) {
2870    default: llvm_unreachable("Unexpected value type for atomic!");
2871    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_SUB_1; break;
2872    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_SUB_2; break;
2873    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_SUB_4; break;
2874    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_SUB_8; break;
2875    }
2876    break;
2877  case ISD::ATOMIC_LOAD_AND:
2878    switch (VT.SimpleTy) {
2879    default: llvm_unreachable("Unexpected value type for atomic!");
2880    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_AND_1; break;
2881    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_AND_2; break;
2882    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_AND_4; break;
2883    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_AND_8; break;
2884    }
2885    break;
2886  case ISD::ATOMIC_LOAD_OR:
2887    switch (VT.SimpleTy) {
2888    default: llvm_unreachable("Unexpected value type for atomic!");
2889    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_OR_1; break;
2890    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_OR_2; break;
2891    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_OR_4; break;
2892    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_OR_8; break;
2893    }
2894    break;
2895  case ISD::ATOMIC_LOAD_XOR:
2896    switch (VT.SimpleTy) {
2897    default: llvm_unreachable("Unexpected value type for atomic!");
2898    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_XOR_1; break;
2899    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_XOR_2; break;
2900    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_XOR_4; break;
2901    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_XOR_8; break;
2902    }
2903    break;
2904  case ISD::ATOMIC_LOAD_NAND:
2905    switch (VT.SimpleTy) {
2906    default: llvm_unreachable("Unexpected value type for atomic!");
2907    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_NAND_1; break;
2908    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_NAND_2; break;
2909    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_NAND_4; break;
2910    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_NAND_8; break;
2911    }
2912    break;
2913  }
2914
2915  return ExpandChainLibCall(LC, Node, false);
2916}
2917
2918void SelectionDAGLegalize::ExpandNode(SDNode *Node,
2919                                      SmallVectorImpl<SDValue> &Results) {
2920  DebugLoc dl = Node->getDebugLoc();
2921  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2922  switch (Node->getOpcode()) {
2923  case ISD::CTPOP:
2924  case ISD::CTLZ:
2925  case ISD::CTTZ:
2926    Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
2927    Results.push_back(Tmp1);
2928    break;
2929  case ISD::BSWAP:
2930    Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2931    break;
2932  case ISD::FRAMEADDR:
2933  case ISD::RETURNADDR:
2934  case ISD::FRAME_TO_ARGS_OFFSET:
2935    Results.push_back(DAG.getConstant(0, Node->getValueType(0)));
2936    break;
2937  case ISD::FLT_ROUNDS_:
2938    Results.push_back(DAG.getConstant(1, Node->getValueType(0)));
2939    break;
2940  case ISD::EH_RETURN:
2941  case ISD::EH_LABEL:
2942  case ISD::PREFETCH:
2943  case ISD::VAEND:
2944  case ISD::EH_SJLJ_LONGJMP:
2945  case ISD::EH_SJLJ_DISPATCHSETUP:
2946    // If the target didn't expand these, there's nothing to do, so just
2947    // preserve the chain and be done.
2948    Results.push_back(Node->getOperand(0));
2949    break;
2950  case ISD::EH_SJLJ_SETJMP:
2951    // If the target didn't expand this, just return 'zero' and preserve the
2952    // chain.
2953    Results.push_back(DAG.getConstant(0, MVT::i32));
2954    Results.push_back(Node->getOperand(0));
2955    break;
2956  case ISD::ATOMIC_FENCE:
2957  case ISD::MEMBARRIER: {
2958    // If the target didn't lower this, lower it to '__sync_synchronize()' call
2959    // FIXME: handle "fence singlethread" more efficiently.
2960    TargetLowering::ArgListTy Args;
2961    std::pair<SDValue, SDValue> CallResult =
2962      TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()),
2963                      false, false, false, false, 0, CallingConv::C,
2964                      /*isTailCall=*/false,
2965                      /*isReturnValueUsed=*/true,
2966                      DAG.getExternalSymbol("__sync_synchronize",
2967                                            TLI.getPointerTy()),
2968                      Args, DAG, dl);
2969    Results.push_back(CallResult.second);
2970    break;
2971  }
2972  case ISD::ATOMIC_LOAD: {
2973    // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP.
2974    SDValue Zero = DAG.getConstant(0, cast<AtomicSDNode>(Node)->getMemoryVT());
2975    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
2976                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
2977                                 Node->getOperand(0),
2978                                 Node->getOperand(1), Zero, Zero,
2979                                 cast<AtomicSDNode>(Node)->getMemOperand(),
2980                                 cast<AtomicSDNode>(Node)->getOrdering(),
2981                                 cast<AtomicSDNode>(Node)->getSynchScope());
2982    Results.push_back(Swap.getValue(0));
2983    Results.push_back(Swap.getValue(1));
2984    break;
2985  }
2986  case ISD::ATOMIC_STORE: {
2987    // There is no libcall for atomic store; fake it with ATOMIC_SWAP.
2988    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
2989                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
2990                                 Node->getOperand(0),
2991                                 Node->getOperand(1), Node->getOperand(2),
2992                                 cast<AtomicSDNode>(Node)->getMemOperand(),
2993                                 cast<AtomicSDNode>(Node)->getOrdering(),
2994                                 cast<AtomicSDNode>(Node)->getSynchScope());
2995    Results.push_back(Swap.getValue(1));
2996    break;
2997  }
2998  // By default, atomic intrinsics are marked Legal and lowered. Targets
2999  // which don't support them directly, however, may want libcalls, in which
3000  // case they mark them Expand, and we get here.
3001  case ISD::ATOMIC_SWAP:
3002  case ISD::ATOMIC_LOAD_ADD:
3003  case ISD::ATOMIC_LOAD_SUB:
3004  case ISD::ATOMIC_LOAD_AND:
3005  case ISD::ATOMIC_LOAD_OR:
3006  case ISD::ATOMIC_LOAD_XOR:
3007  case ISD::ATOMIC_LOAD_NAND:
3008  case ISD::ATOMIC_LOAD_MIN:
3009  case ISD::ATOMIC_LOAD_MAX:
3010  case ISD::ATOMIC_LOAD_UMIN:
3011  case ISD::ATOMIC_LOAD_UMAX:
3012  case ISD::ATOMIC_CMP_SWAP: {
3013    std::pair<SDValue, SDValue> Tmp = ExpandAtomic(Node);
3014    Results.push_back(Tmp.first);
3015    Results.push_back(Tmp.second);
3016    break;
3017  }
3018  case ISD::DYNAMIC_STACKALLOC:
3019    ExpandDYNAMIC_STACKALLOC(Node, Results);
3020    break;
3021  case ISD::MERGE_VALUES:
3022    for (unsigned i = 0; i < Node->getNumValues(); i++)
3023      Results.push_back(Node->getOperand(i));
3024    break;
3025  case ISD::UNDEF: {
3026    EVT VT = Node->getValueType(0);
3027    if (VT.isInteger())
3028      Results.push_back(DAG.getConstant(0, VT));
3029    else {
3030      assert(VT.isFloatingPoint() && "Unknown value type!");
3031      Results.push_back(DAG.getConstantFP(0, VT));
3032    }
3033    break;
3034  }
3035  case ISD::TRAP: {
3036    // If this operation is not supported, lower it to 'abort()' call
3037    TargetLowering::ArgListTy Args;
3038    std::pair<SDValue, SDValue> CallResult =
3039      TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()),
3040                      false, false, false, false, 0, CallingConv::C,
3041                      /*isTailCall=*/false,
3042                      /*isReturnValueUsed=*/true,
3043                      DAG.getExternalSymbol("abort", TLI.getPointerTy()),
3044                      Args, DAG, dl);
3045    Results.push_back(CallResult.second);
3046    break;
3047  }
3048  case ISD::FP_ROUND:
3049  case ISD::BITCAST:
3050    Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
3051                            Node->getValueType(0), dl);
3052    Results.push_back(Tmp1);
3053    break;
3054  case ISD::FP_EXTEND:
3055    Tmp1 = EmitStackConvert(Node->getOperand(0),
3056                            Node->getOperand(0).getValueType(),
3057                            Node->getValueType(0), dl);
3058    Results.push_back(Tmp1);
3059    break;
3060  case ISD::SIGN_EXTEND_INREG: {
3061    // NOTE: we could fall back on load/store here too for targets without
3062    // SAR.  However, it is doubtful that any exist.
3063    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
3064    EVT VT = Node->getValueType(0);
3065    EVT ShiftAmountTy = TLI.getShiftAmountTy(VT);
3066    if (VT.isVector())
3067      ShiftAmountTy = VT;
3068    unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
3069                        ExtraVT.getScalarType().getSizeInBits();
3070    SDValue ShiftCst = DAG.getConstant(BitsDiff, ShiftAmountTy);
3071    Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
3072                       Node->getOperand(0), ShiftCst);
3073    Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
3074    Results.push_back(Tmp1);
3075    break;
3076  }
3077  case ISD::FP_ROUND_INREG: {
3078    // The only way we can lower this is to turn it into a TRUNCSTORE,
3079    // EXTLOAD pair, targeting a temporary location (a stack slot).
3080
3081    // NOTE: there is a choice here between constantly creating new stack
3082    // slots and always reusing the same one.  We currently always create
3083    // new ones, as reuse may inhibit scheduling.
3084    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
3085    Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
3086                            Node->getValueType(0), dl);
3087    Results.push_back(Tmp1);
3088    break;
3089  }
3090  case ISD::SINT_TO_FP:
3091  case ISD::UINT_TO_FP:
3092    Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
3093                                Node->getOperand(0), Node->getValueType(0), dl);
3094    Results.push_back(Tmp1);
3095    break;
3096  case ISD::FP_TO_UINT: {
3097    SDValue True, False;
3098    EVT VT =  Node->getOperand(0).getValueType();
3099    EVT NVT = Node->getValueType(0);
3100    APFloat apf(APInt::getNullValue(VT.getSizeInBits()));
3101    APInt x = APInt::getSignBit(NVT.getSizeInBits());
3102    (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
3103    Tmp1 = DAG.getConstantFP(apf, VT);
3104    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT),
3105                        Node->getOperand(0),
3106                        Tmp1, ISD::SETLT);
3107    True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
3108    False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
3109                        DAG.getNode(ISD::FSUB, dl, VT,
3110                                    Node->getOperand(0), Tmp1));
3111    False = DAG.getNode(ISD::XOR, dl, NVT, False,
3112                        DAG.getConstant(x, NVT));
3113    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False);
3114    Results.push_back(Tmp1);
3115    break;
3116  }
3117  case ISD::VAARG: {
3118    const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
3119    EVT VT = Node->getValueType(0);
3120    Tmp1 = Node->getOperand(0);
3121    Tmp2 = Node->getOperand(1);
3122    unsigned Align = Node->getConstantOperandVal(3);
3123
3124    SDValue VAListLoad = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2,
3125                                     MachinePointerInfo(V), false, false, 0);
3126    SDValue VAList = VAListLoad;
3127
3128    if (Align > TLI.getMinStackArgumentAlignment()) {
3129      assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
3130
3131      VAList = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
3132                           DAG.getConstant(Align - 1,
3133                                           TLI.getPointerTy()));
3134
3135      VAList = DAG.getNode(ISD::AND, dl, TLI.getPointerTy(), VAList,
3136                           DAG.getConstant(-(int64_t)Align,
3137                                           TLI.getPointerTy()));
3138    }
3139
3140    // Increment the pointer, VAList, to the next vaarg
3141    Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
3142                       DAG.getConstant(TLI.getTargetData()->
3143                          getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())),
3144                                       TLI.getPointerTy()));
3145    // Store the incremented VAList to the legalized pointer
3146    Tmp3 = DAG.getStore(VAListLoad.getValue(1), dl, Tmp3, Tmp2,
3147                        MachinePointerInfo(V), false, false, 0);
3148    // Load the actual argument out of the pointer VAList
3149    Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, MachinePointerInfo(),
3150                                  false, false, 0));
3151    Results.push_back(Results[0].getValue(1));
3152    break;
3153  }
3154  case ISD::VACOPY: {
3155    // This defaults to loading a pointer from the input and storing it to the
3156    // output, returning the chain.
3157    const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
3158    const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
3159    Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0),
3160                       Node->getOperand(2), MachinePointerInfo(VS),
3161                       false, false, 0);
3162    Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
3163                        MachinePointerInfo(VD), false, false, 0);
3164    Results.push_back(Tmp1);
3165    break;
3166  }
3167  case ISD::EXTRACT_VECTOR_ELT:
3168    if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
3169      // This must be an access of the only element.  Return it.
3170      Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0),
3171                         Node->getOperand(0));
3172    else
3173      Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
3174    Results.push_back(Tmp1);
3175    break;
3176  case ISD::EXTRACT_SUBVECTOR:
3177    Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
3178    break;
3179  case ISD::INSERT_SUBVECTOR:
3180    Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0)));
3181    break;
3182  case ISD::CONCAT_VECTORS: {
3183    Results.push_back(ExpandVectorBuildThroughStack(Node));
3184    break;
3185  }
3186  case ISD::SCALAR_TO_VECTOR:
3187    Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
3188    break;
3189  case ISD::INSERT_VECTOR_ELT:
3190    Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
3191                                              Node->getOperand(1),
3192                                              Node->getOperand(2), dl));
3193    break;
3194  case ISD::VECTOR_SHUFFLE: {
3195    SmallVector<int, 8> Mask;
3196    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
3197
3198    EVT VT = Node->getValueType(0);
3199    EVT EltVT = VT.getVectorElementType();
3200    if (!TLI.isTypeLegal(EltVT))
3201      EltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT);
3202    unsigned NumElems = VT.getVectorNumElements();
3203    SmallVector<SDValue, 8> Ops;
3204    for (unsigned i = 0; i != NumElems; ++i) {
3205      if (Mask[i] < 0) {
3206        Ops.push_back(DAG.getUNDEF(EltVT));
3207        continue;
3208      }
3209      unsigned Idx = Mask[i];
3210      if (Idx < NumElems)
3211        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
3212                                  Node->getOperand(0),
3213                                  DAG.getIntPtrConstant(Idx)));
3214      else
3215        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
3216                                  Node->getOperand(1),
3217                                  DAG.getIntPtrConstant(Idx - NumElems)));
3218    }
3219    Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size());
3220    Results.push_back(Tmp1);
3221    break;
3222  }
3223  case ISD::EXTRACT_ELEMENT: {
3224    EVT OpTy = Node->getOperand(0).getValueType();
3225    if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
3226      // 1 -> Hi
3227      Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
3228                         DAG.getConstant(OpTy.getSizeInBits()/2,
3229                    TLI.getShiftAmountTy(Node->getOperand(0).getValueType())));
3230      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
3231    } else {
3232      // 0 -> Lo
3233      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
3234                         Node->getOperand(0));
3235    }
3236    Results.push_back(Tmp1);
3237    break;
3238  }
3239  case ISD::STACKSAVE:
3240    // Expand to CopyFromReg if the target set
3241    // StackPointerRegisterToSaveRestore.
3242    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
3243      Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
3244                                           Node->getValueType(0)));
3245      Results.push_back(Results[0].getValue(1));
3246    } else {
3247      Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
3248      Results.push_back(Node->getOperand(0));
3249    }
3250    break;
3251  case ISD::STACKRESTORE:
3252    // Expand to CopyToReg if the target set
3253    // StackPointerRegisterToSaveRestore.
3254    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
3255      Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
3256                                         Node->getOperand(1)));
3257    } else {
3258      Results.push_back(Node->getOperand(0));
3259    }
3260    break;
3261  case ISD::FCOPYSIGN:
3262    Results.push_back(ExpandFCOPYSIGN(Node));
3263    break;
3264  case ISD::FNEG:
3265    // Expand Y = FNEG(X) ->  Y = SUB -0.0, X
3266    Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0));
3267    Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
3268                       Node->getOperand(0));
3269    Results.push_back(Tmp1);
3270    break;
3271  case ISD::FABS: {
3272    // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
3273    EVT VT = Node->getValueType(0);
3274    Tmp1 = Node->getOperand(0);
3275    Tmp2 = DAG.getConstantFP(0.0, VT);
3276    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
3277                        Tmp1, Tmp2, ISD::SETUGT);
3278    Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1);
3279    Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3);
3280    Results.push_back(Tmp1);
3281    break;
3282  }
3283  case ISD::FSQRT:
3284    Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
3285                                      RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128));
3286    break;
3287  case ISD::FSIN:
3288    Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
3289                                      RTLIB::SIN_F80, RTLIB::SIN_PPCF128));
3290    break;
3291  case ISD::FCOS:
3292    Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
3293                                      RTLIB::COS_F80, RTLIB::COS_PPCF128));
3294    break;
3295  case ISD::FLOG:
3296    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
3297                                      RTLIB::LOG_F80, RTLIB::LOG_PPCF128));
3298    break;
3299  case ISD::FLOG2:
3300    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
3301                                      RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128));
3302    break;
3303  case ISD::FLOG10:
3304    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
3305                                      RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128));
3306    break;
3307  case ISD::FEXP:
3308    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
3309                                      RTLIB::EXP_F80, RTLIB::EXP_PPCF128));
3310    break;
3311  case ISD::FEXP2:
3312    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
3313                                      RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128));
3314    break;
3315  case ISD::FTRUNC:
3316    Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
3317                                      RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128));
3318    break;
3319  case ISD::FFLOOR:
3320    Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
3321                                      RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128));
3322    break;
3323  case ISD::FCEIL:
3324    Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
3325                                      RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128));
3326    break;
3327  case ISD::FRINT:
3328    Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
3329                                      RTLIB::RINT_F80, RTLIB::RINT_PPCF128));
3330    break;
3331  case ISD::FNEARBYINT:
3332    Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
3333                                      RTLIB::NEARBYINT_F64,
3334                                      RTLIB::NEARBYINT_F80,
3335                                      RTLIB::NEARBYINT_PPCF128));
3336    break;
3337  case ISD::FPOWI:
3338    Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
3339                                      RTLIB::POWI_F80, RTLIB::POWI_PPCF128));
3340    break;
3341  case ISD::FPOW:
3342    Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
3343                                      RTLIB::POW_F80, RTLIB::POW_PPCF128));
3344    break;
3345  case ISD::FDIV:
3346    Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
3347                                      RTLIB::DIV_F80, RTLIB::DIV_PPCF128));
3348    break;
3349  case ISD::FREM:
3350    Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
3351                                      RTLIB::REM_F80, RTLIB::REM_PPCF128));
3352    break;
3353  case ISD::FMA:
3354    Results.push_back(ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64,
3355                                      RTLIB::FMA_F80, RTLIB::FMA_PPCF128));
3356    break;
3357  case ISD::FP16_TO_FP32:
3358    Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
3359    break;
3360  case ISD::FP32_TO_FP16:
3361    Results.push_back(ExpandLibCall(RTLIB::FPROUND_F32_F16, Node, false));
3362    break;
3363  case ISD::ConstantFP: {
3364    ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
3365    // Check to see if this FP immediate is already legal.
3366    // If this is a legal constant, turn it into a TargetConstantFP node.
3367    if (TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0)))
3368      Results.push_back(SDValue(Node, 0));
3369    else
3370      Results.push_back(ExpandConstantFP(CFP, true, DAG, TLI));
3371    break;
3372  }
3373  case ISD::EHSELECTION: {
3374    unsigned Reg = TLI.getExceptionSelectorRegister();
3375    assert(Reg && "Can't expand to unknown register!");
3376    Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg,
3377                                         Node->getValueType(0)));
3378    Results.push_back(Results[0].getValue(1));
3379    break;
3380  }
3381  case ISD::EXCEPTIONADDR: {
3382    unsigned Reg = TLI.getExceptionAddressRegister();
3383    assert(Reg && "Can't expand to unknown register!");
3384    Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg,
3385                                         Node->getValueType(0)));
3386    Results.push_back(Results[0].getValue(1));
3387    break;
3388  }
3389  case ISD::SUB: {
3390    EVT VT = Node->getValueType(0);
3391    assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
3392           TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
3393           "Don't know how to expand this subtraction!");
3394    Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
3395               DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT));
3396    Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp2, DAG.getConstant(1, VT));
3397    Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
3398    break;
3399  }
3400  case ISD::UREM:
3401  case ISD::SREM: {
3402    EVT VT = Node->getValueType(0);
3403    SDVTList VTs = DAG.getVTList(VT, VT);
3404    bool isSigned = Node->getOpcode() == ISD::SREM;
3405    unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
3406    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3407    Tmp2 = Node->getOperand(0);
3408    Tmp3 = Node->getOperand(1);
3409    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) ||
3410        (isDivRemLibcallAvailable(Node, isSigned, TLI) &&
3411         UseDivRem(Node, isSigned, false))) {
3412      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
3413    } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
3414      // X % Y -> X-X/Y*Y
3415      Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
3416      Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
3417      Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
3418    } else if (isSigned)
3419      Tmp1 = ExpandIntLibCall(Node, true,
3420                              RTLIB::SREM_I8,
3421                              RTLIB::SREM_I16, RTLIB::SREM_I32,
3422                              RTLIB::SREM_I64, RTLIB::SREM_I128);
3423    else
3424      Tmp1 = ExpandIntLibCall(Node, false,
3425                              RTLIB::UREM_I8,
3426                              RTLIB::UREM_I16, RTLIB::UREM_I32,
3427                              RTLIB::UREM_I64, RTLIB::UREM_I128);
3428    Results.push_back(Tmp1);
3429    break;
3430  }
3431  case ISD::UDIV:
3432  case ISD::SDIV: {
3433    bool isSigned = Node->getOpcode() == ISD::SDIV;
3434    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3435    EVT VT = Node->getValueType(0);
3436    SDVTList VTs = DAG.getVTList(VT, VT);
3437    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) ||
3438        (isDivRemLibcallAvailable(Node, isSigned, TLI) &&
3439         UseDivRem(Node, isSigned, true)))
3440      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
3441                         Node->getOperand(1));
3442    else if (isSigned)
3443      Tmp1 = ExpandIntLibCall(Node, true,
3444                              RTLIB::SDIV_I8,
3445                              RTLIB::SDIV_I16, RTLIB::SDIV_I32,
3446                              RTLIB::SDIV_I64, RTLIB::SDIV_I128);
3447    else
3448      Tmp1 = ExpandIntLibCall(Node, false,
3449                              RTLIB::UDIV_I8,
3450                              RTLIB::UDIV_I16, RTLIB::UDIV_I32,
3451                              RTLIB::UDIV_I64, RTLIB::UDIV_I128);
3452    Results.push_back(Tmp1);
3453    break;
3454  }
3455  case ISD::MULHU:
3456  case ISD::MULHS: {
3457    unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
3458                                                              ISD::SMUL_LOHI;
3459    EVT VT = Node->getValueType(0);
3460    SDVTList VTs = DAG.getVTList(VT, VT);
3461    assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
3462           "If this wasn't legal, it shouldn't have been created!");
3463    Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
3464                       Node->getOperand(1));
3465    Results.push_back(Tmp1.getValue(1));
3466    break;
3467  }
3468  case ISD::SDIVREM:
3469  case ISD::UDIVREM:
3470    // Expand into divrem libcall
3471    ExpandDivRemLibCall(Node, Results);
3472    break;
3473  case ISD::MUL: {
3474    EVT VT = Node->getValueType(0);
3475    SDVTList VTs = DAG.getVTList(VT, VT);
3476    // See if multiply or divide can be lowered using two-result operations.
3477    // We just need the low half of the multiply; try both the signed
3478    // and unsigned forms. If the target supports both SMUL_LOHI and
3479    // UMUL_LOHI, form a preference by checking which forms of plain
3480    // MULH it supports.
3481    bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
3482    bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
3483    bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
3484    bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
3485    unsigned OpToUse = 0;
3486    if (HasSMUL_LOHI && !HasMULHS) {
3487      OpToUse = ISD::SMUL_LOHI;
3488    } else if (HasUMUL_LOHI && !HasMULHU) {
3489      OpToUse = ISD::UMUL_LOHI;
3490    } else if (HasSMUL_LOHI) {
3491      OpToUse = ISD::SMUL_LOHI;
3492    } else if (HasUMUL_LOHI) {
3493      OpToUse = ISD::UMUL_LOHI;
3494    }
3495    if (OpToUse) {
3496      Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
3497                                    Node->getOperand(1)));
3498      break;
3499    }
3500    Tmp1 = ExpandIntLibCall(Node, false,
3501                            RTLIB::MUL_I8,
3502                            RTLIB::MUL_I16, RTLIB::MUL_I32,
3503                            RTLIB::MUL_I64, RTLIB::MUL_I128);
3504    Results.push_back(Tmp1);
3505    break;
3506  }
3507  case ISD::SADDO:
3508  case ISD::SSUBO: {
3509    SDValue LHS = Node->getOperand(0);
3510    SDValue RHS = Node->getOperand(1);
3511    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
3512                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3513                              LHS, RHS);
3514    Results.push_back(Sum);
3515    EVT OType = Node->getValueType(1);
3516
3517    SDValue Zero = DAG.getConstant(0, LHS.getValueType());
3518
3519    //   LHSSign -> LHS >= 0
3520    //   RHSSign -> RHS >= 0
3521    //   SumSign -> Sum >= 0
3522    //
3523    //   Add:
3524    //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
3525    //   Sub:
3526    //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
3527    //
3528    SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
3529    SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
3530    SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
3531                                      Node->getOpcode() == ISD::SADDO ?
3532                                      ISD::SETEQ : ISD::SETNE);
3533
3534    SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
3535    SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
3536
3537    SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
3538    Results.push_back(Cmp);
3539    break;
3540  }
3541  case ISD::UADDO:
3542  case ISD::USUBO: {
3543    SDValue LHS = Node->getOperand(0);
3544    SDValue RHS = Node->getOperand(1);
3545    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
3546                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3547                              LHS, RHS);
3548    Results.push_back(Sum);
3549    Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS,
3550                                   Node->getOpcode () == ISD::UADDO ?
3551                                   ISD::SETULT : ISD::SETUGT));
3552    break;
3553  }
3554  case ISD::UMULO:
3555  case ISD::SMULO: {
3556    EVT VT = Node->getValueType(0);
3557    EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
3558    SDValue LHS = Node->getOperand(0);
3559    SDValue RHS = Node->getOperand(1);
3560    SDValue BottomHalf;
3561    SDValue TopHalf;
3562    static const unsigned Ops[2][3] =
3563        { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
3564          { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
3565    bool isSigned = Node->getOpcode() == ISD::SMULO;
3566    if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
3567      BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
3568      TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
3569    } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
3570      BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
3571                               RHS);
3572      TopHalf = BottomHalf.getValue(1);
3573    } else if (TLI.isTypeLegal(EVT::getIntegerVT(*DAG.getContext(),
3574                                                 VT.getSizeInBits() * 2))) {
3575      LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
3576      RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
3577      Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
3578      BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3579                               DAG.getIntPtrConstant(0));
3580      TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3581                            DAG.getIntPtrConstant(1));
3582    } else {
3583      // We can fall back to a libcall with an illegal type for the MUL if we
3584      // have a libcall big enough.
3585      // Also, we can fall back to a division in some cases, but that's a big
3586      // performance hit in the general case.
3587      RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
3588      if (WideVT == MVT::i16)
3589        LC = RTLIB::MUL_I16;
3590      else if (WideVT == MVT::i32)
3591        LC = RTLIB::MUL_I32;
3592      else if (WideVT == MVT::i64)
3593        LC = RTLIB::MUL_I64;
3594      else if (WideVT == MVT::i128)
3595        LC = RTLIB::MUL_I128;
3596      assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
3597
3598      // The high part is obtained by SRA'ing all but one of the bits of low
3599      // part.
3600      unsigned LoSize = VT.getSizeInBits();
3601      SDValue HiLHS = DAG.getNode(ISD::SRA, dl, VT, RHS,
3602                                DAG.getConstant(LoSize-1, TLI.getPointerTy()));
3603      SDValue HiRHS = DAG.getNode(ISD::SRA, dl, VT, LHS,
3604                                DAG.getConstant(LoSize-1, TLI.getPointerTy()));
3605
3606      // Here we're passing the 2 arguments explicitly as 4 arguments that are
3607      // pre-lowered to the correct types. This all depends upon WideVT not
3608      // being a legal type for the architecture and thus has to be split to
3609      // two arguments.
3610      SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
3611      SDValue Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl);
3612      BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret,
3613                               DAG.getIntPtrConstant(0));
3614      TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret,
3615                            DAG.getIntPtrConstant(1));
3616    }
3617
3618    if (isSigned) {
3619      Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1,
3620                             TLI.getShiftAmountTy(BottomHalf.getValueType()));
3621      Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1);
3622      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1,
3623                             ISD::SETNE);
3624    } else {
3625      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf,
3626                             DAG.getConstant(0, VT), ISD::SETNE);
3627    }
3628    Results.push_back(BottomHalf);
3629    Results.push_back(TopHalf);
3630    break;
3631  }
3632  case ISD::BUILD_PAIR: {
3633    EVT PairTy = Node->getValueType(0);
3634    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
3635    Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
3636    Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
3637                       DAG.getConstant(PairTy.getSizeInBits()/2,
3638                                       TLI.getShiftAmountTy(PairTy)));
3639    Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
3640    break;
3641  }
3642  case ISD::SELECT:
3643    Tmp1 = Node->getOperand(0);
3644    Tmp2 = Node->getOperand(1);
3645    Tmp3 = Node->getOperand(2);
3646    if (Tmp1.getOpcode() == ISD::SETCC) {
3647      Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
3648                             Tmp2, Tmp3,
3649                             cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
3650    } else {
3651      Tmp1 = DAG.getSelectCC(dl, Tmp1,
3652                             DAG.getConstant(0, Tmp1.getValueType()),
3653                             Tmp2, Tmp3, ISD::SETNE);
3654    }
3655    Results.push_back(Tmp1);
3656    break;
3657  case ISD::BR_JT: {
3658    SDValue Chain = Node->getOperand(0);
3659    SDValue Table = Node->getOperand(1);
3660    SDValue Index = Node->getOperand(2);
3661
3662    EVT PTy = TLI.getPointerTy();
3663
3664    const TargetData &TD = *TLI.getTargetData();
3665    unsigned EntrySize =
3666      DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
3667
3668    Index = DAG.getNode(ISD::MUL, dl, PTy,
3669                        Index, DAG.getConstant(EntrySize, PTy));
3670    SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
3671
3672    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
3673    SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr,
3674                                MachinePointerInfo::getJumpTable(), MemVT,
3675                                false, false, 0);
3676    Addr = LD;
3677    if (TM.getRelocationModel() == Reloc::PIC_) {
3678      // For PIC, the sequence is:
3679      // BRIND(load(Jumptable + index) + RelocBase)
3680      // RelocBase can be JumpTable, GOT or some sort of global base.
3681      Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
3682                          TLI.getPICJumpTableRelocBase(Table, DAG));
3683    }
3684    Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
3685    Results.push_back(Tmp1);
3686    break;
3687  }
3688  case ISD::BRCOND:
3689    // Expand brcond's setcc into its constituent parts and create a BR_CC
3690    // Node.
3691    Tmp1 = Node->getOperand(0);
3692    Tmp2 = Node->getOperand(1);
3693    if (Tmp2.getOpcode() == ISD::SETCC) {
3694      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
3695                         Tmp1, Tmp2.getOperand(2),
3696                         Tmp2.getOperand(0), Tmp2.getOperand(1),
3697                         Node->getOperand(2));
3698    } else {
3699      // We test only the i1 bit.  Skip the AND if UNDEF.
3700      Tmp3 = (Tmp2.getOpcode() == ISD::UNDEF) ? Tmp2 :
3701        DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2,
3702                    DAG.getConstant(1, Tmp2.getValueType()));
3703      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
3704                         DAG.getCondCode(ISD::SETNE), Tmp3,
3705                         DAG.getConstant(0, Tmp3.getValueType()),
3706                         Node->getOperand(2));
3707    }
3708    Results.push_back(Tmp1);
3709    break;
3710  case ISD::SETCC: {
3711    Tmp1 = Node->getOperand(0);
3712    Tmp2 = Node->getOperand(1);
3713    Tmp3 = Node->getOperand(2);
3714    LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl);
3715
3716    // If we expanded the SETCC into an AND/OR, return the new node
3717    if (Tmp2.getNode() == 0) {
3718      Results.push_back(Tmp1);
3719      break;
3720    }
3721
3722    // Otherwise, SETCC for the given comparison type must be completely
3723    // illegal; expand it into a SELECT_CC.
3724    EVT VT = Node->getValueType(0);
3725    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
3726                       DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3);
3727    Results.push_back(Tmp1);
3728    break;
3729  }
3730  case ISD::SELECT_CC: {
3731    Tmp1 = Node->getOperand(0);   // LHS
3732    Tmp2 = Node->getOperand(1);   // RHS
3733    Tmp3 = Node->getOperand(2);   // True
3734    Tmp4 = Node->getOperand(3);   // False
3735    SDValue CC = Node->getOperand(4);
3736
3737    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()),
3738                          Tmp1, Tmp2, CC, dl);
3739
3740    assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!");
3741    Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
3742    CC = DAG.getCondCode(ISD::SETNE);
3743    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2,
3744                       Tmp3, Tmp4, CC);
3745    Results.push_back(Tmp1);
3746    break;
3747  }
3748  case ISD::BR_CC: {
3749    Tmp1 = Node->getOperand(0);              // Chain
3750    Tmp2 = Node->getOperand(2);              // LHS
3751    Tmp3 = Node->getOperand(3);              // RHS
3752    Tmp4 = Node->getOperand(1);              // CC
3753
3754    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()),
3755                          Tmp2, Tmp3, Tmp4, dl);
3756    LastCALLSEQ_END = DAG.getEntryNode();
3757
3758    assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!");
3759    Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
3760    Tmp4 = DAG.getCondCode(ISD::SETNE);
3761    Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2,
3762                       Tmp3, Node->getOperand(4));
3763    Results.push_back(Tmp1);
3764    break;
3765  }
3766  case ISD::GLOBAL_OFFSET_TABLE:
3767  case ISD::GlobalAddress:
3768  case ISD::GlobalTLSAddress:
3769  case ISD::ExternalSymbol:
3770  case ISD::ConstantPool:
3771  case ISD::JumpTable:
3772  case ISD::INTRINSIC_W_CHAIN:
3773  case ISD::INTRINSIC_WO_CHAIN:
3774  case ISD::INTRINSIC_VOID:
3775    // FIXME: Custom lowering for these operations shouldn't return null!
3776    for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
3777      Results.push_back(SDValue(Node, i));
3778    break;
3779  }
3780}
3781void SelectionDAGLegalize::PromoteNode(SDNode *Node,
3782                                       SmallVectorImpl<SDValue> &Results) {
3783  EVT OVT = Node->getValueType(0);
3784  if (Node->getOpcode() == ISD::UINT_TO_FP ||
3785      Node->getOpcode() == ISD::SINT_TO_FP ||
3786      Node->getOpcode() == ISD::SETCC) {
3787    OVT = Node->getOperand(0).getValueType();
3788  }
3789  EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
3790  DebugLoc dl = Node->getDebugLoc();
3791  SDValue Tmp1, Tmp2, Tmp3;
3792  switch (Node->getOpcode()) {
3793  case ISD::CTTZ:
3794  case ISD::CTLZ:
3795  case ISD::CTPOP:
3796    // Zero extend the argument.
3797    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3798    // Perform the larger operation.
3799    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
3800    if (Node->getOpcode() == ISD::CTTZ) {
3801      //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT)
3802      Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT),
3803                          Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT),
3804                          ISD::SETEQ);
3805      Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2,
3806                          DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1);
3807    } else if (Node->getOpcode() == ISD::CTLZ) {
3808      // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
3809      Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
3810                          DAG.getConstant(NVT.getSizeInBits() -
3811                                          OVT.getSizeInBits(), NVT));
3812    }
3813    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
3814    break;
3815  case ISD::BSWAP: {
3816    unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
3817    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3818    Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
3819    Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
3820                          DAG.getConstant(DiffBits, TLI.getShiftAmountTy(NVT)));
3821    Results.push_back(Tmp1);
3822    break;
3823  }
3824  case ISD::FP_TO_UINT:
3825  case ISD::FP_TO_SINT:
3826    Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
3827                                 Node->getOpcode() == ISD::FP_TO_SINT, dl);
3828    Results.push_back(Tmp1);
3829    break;
3830  case ISD::UINT_TO_FP:
3831  case ISD::SINT_TO_FP:
3832    Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
3833                                 Node->getOpcode() == ISD::SINT_TO_FP, dl);
3834    Results.push_back(Tmp1);
3835    break;
3836  case ISD::AND:
3837  case ISD::OR:
3838  case ISD::XOR: {
3839    unsigned ExtOp, TruncOp;
3840    if (OVT.isVector()) {
3841      ExtOp   = ISD::BITCAST;
3842      TruncOp = ISD::BITCAST;
3843    } else {
3844      assert(OVT.isInteger() && "Cannot promote logic operation");
3845      ExtOp   = ISD::ANY_EXTEND;
3846      TruncOp = ISD::TRUNCATE;
3847    }
3848    // Promote each of the values to the new type.
3849    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3850    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3851    // Perform the larger operation, then convert back
3852    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3853    Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
3854    break;
3855  }
3856  case ISD::SELECT: {
3857    unsigned ExtOp, TruncOp;
3858    if (Node->getValueType(0).isVector()) {
3859      ExtOp   = ISD::BITCAST;
3860      TruncOp = ISD::BITCAST;
3861    } else if (Node->getValueType(0).isInteger()) {
3862      ExtOp   = ISD::ANY_EXTEND;
3863      TruncOp = ISD::TRUNCATE;
3864    } else {
3865      ExtOp   = ISD::FP_EXTEND;
3866      TruncOp = ISD::FP_ROUND;
3867    }
3868    Tmp1 = Node->getOperand(0);
3869    // Promote each of the values to the new type.
3870    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3871    Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
3872    // Perform the larger operation, then round down.
3873    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3);
3874    if (TruncOp != ISD::FP_ROUND)
3875      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
3876    else
3877      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
3878                         DAG.getIntPtrConstant(0));
3879    Results.push_back(Tmp1);
3880    break;
3881  }
3882  case ISD::VECTOR_SHUFFLE: {
3883    SmallVector<int, 8> Mask;
3884    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
3885
3886    // Cast the two input vectors.
3887    Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0));
3888    Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1));
3889
3890    // Convert the shuffle mask to the right # elements.
3891    Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
3892    Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1);
3893    Results.push_back(Tmp1);
3894    break;
3895  }
3896  case ISD::SETCC: {
3897    unsigned ExtOp = ISD::FP_EXTEND;
3898    if (NVT.isInteger()) {
3899      ISD::CondCode CCCode =
3900        cast<CondCodeSDNode>(Node->getOperand(2))->get();
3901      ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3902    }
3903    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3904    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3905    Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3906                                  Tmp1, Tmp2, Node->getOperand(2)));
3907    break;
3908  }
3909  }
3910}
3911
3912// SelectionDAG::Legalize - This is the entry point for the file.
3913//
3914void SelectionDAG::Legalize() {
3915  /// run - This is the main entry point to this class.
3916  ///
3917  SelectionDAGLegalize(*this).LegalizeDAG();
3918}
3919