LegalizeDAG.cpp revision 4ee451de366474b9c228b4e5fa573795a715216d
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the SelectionDAG::Legalize method. 11// 12//===----------------------------------------------------------------------===// 13 14#include "llvm/CodeGen/SelectionDAG.h" 15#include "llvm/CodeGen/MachineFunction.h" 16#include "llvm/CodeGen/MachineFrameInfo.h" 17#include "llvm/CodeGen/MachineJumpTableInfo.h" 18#include "llvm/Target/TargetFrameInfo.h" 19#include "llvm/Target/TargetLowering.h" 20#include "llvm/Target/TargetData.h" 21#include "llvm/Target/TargetMachine.h" 22#include "llvm/Target/TargetOptions.h" 23#include "llvm/CallingConv.h" 24#include "llvm/Constants.h" 25#include "llvm/DerivedTypes.h" 26#include "llvm/Support/CommandLine.h" 27#include "llvm/Support/Compiler.h" 28#include "llvm/Support/MathExtras.h" 29#include "llvm/ADT/DenseMap.h" 30#include "llvm/ADT/SmallVector.h" 31#include "llvm/ADT/SmallPtrSet.h" 32#include <map> 33using namespace llvm; 34 35#ifndef NDEBUG 36static cl::opt<bool> 37ViewLegalizeDAGs("view-legalize-dags", cl::Hidden, 38 cl::desc("Pop up a window to show dags before legalize")); 39#else 40static const bool ViewLegalizeDAGs = 0; 41#endif 42 43//===----------------------------------------------------------------------===// 44/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and 45/// hacks on it until the target machine can handle it. This involves 46/// eliminating value sizes the machine cannot handle (promoting small sizes to 47/// large sizes or splitting up large values into small values) as well as 48/// eliminating operations the machine cannot handle. 49/// 50/// This code also does a small amount of optimization and recognition of idioms 51/// as part of its processing. For example, if a target does not support a 52/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this 53/// will attempt merge setcc and brc instructions into brcc's. 54/// 55namespace { 56class VISIBILITY_HIDDEN SelectionDAGLegalize { 57 TargetLowering &TLI; 58 SelectionDAG &DAG; 59 60 // Libcall insertion helpers. 61 62 /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been 63 /// legalized. We use this to ensure that calls are properly serialized 64 /// against each other, including inserted libcalls. 65 SDOperand LastCALLSEQ_END; 66 67 /// IsLegalizingCall - This member is used *only* for purposes of providing 68 /// helpful assertions that a libcall isn't created while another call is 69 /// being legalized (which could lead to non-serialized call sequences). 70 bool IsLegalizingCall; 71 72 enum LegalizeAction { 73 Legal, // The target natively supports this operation. 74 Promote, // This operation should be executed in a larger type. 75 Expand // Try to expand this to other ops, otherwise use a libcall. 76 }; 77 78 /// ValueTypeActions - This is a bitvector that contains two bits for each 79 /// value type, where the two bits correspond to the LegalizeAction enum. 80 /// This can be queried with "getTypeAction(VT)". 81 TargetLowering::ValueTypeActionImpl ValueTypeActions; 82 83 /// LegalizedNodes - For nodes that are of legal width, and that have more 84 /// than one use, this map indicates what regularized operand to use. This 85 /// allows us to avoid legalizing the same thing more than once. 86 DenseMap<SDOperand, SDOperand> LegalizedNodes; 87 88 /// PromotedNodes - For nodes that are below legal width, and that have more 89 /// than one use, this map indicates what promoted value to use. This allows 90 /// us to avoid promoting the same thing more than once. 91 DenseMap<SDOperand, SDOperand> PromotedNodes; 92 93 /// ExpandedNodes - For nodes that need to be expanded this map indicates 94 /// which which operands are the expanded version of the input. This allows 95 /// us to avoid expanding the same node more than once. 96 DenseMap<SDOperand, std::pair<SDOperand, SDOperand> > ExpandedNodes; 97 98 /// SplitNodes - For vector nodes that need to be split, this map indicates 99 /// which which operands are the split version of the input. This allows us 100 /// to avoid splitting the same node more than once. 101 std::map<SDOperand, std::pair<SDOperand, SDOperand> > SplitNodes; 102 103 /// ScalarizedNodes - For nodes that need to be converted from vector types to 104 /// scalar types, this contains the mapping of ones we have already 105 /// processed to the result. 106 std::map<SDOperand, SDOperand> ScalarizedNodes; 107 108 void AddLegalizedOperand(SDOperand From, SDOperand To) { 109 LegalizedNodes.insert(std::make_pair(From, To)); 110 // If someone requests legalization of the new node, return itself. 111 if (From != To) 112 LegalizedNodes.insert(std::make_pair(To, To)); 113 } 114 void AddPromotedOperand(SDOperand From, SDOperand To) { 115 bool isNew = PromotedNodes.insert(std::make_pair(From, To)); 116 assert(isNew && "Got into the map somehow?"); 117 // If someone requests legalization of the new node, return itself. 118 LegalizedNodes.insert(std::make_pair(To, To)); 119 } 120 121public: 122 123 SelectionDAGLegalize(SelectionDAG &DAG); 124 125 /// getTypeAction - Return how we should legalize values of this type, either 126 /// it is already legal or we need to expand it into multiple registers of 127 /// smaller integer type, or we need to promote it to a larger type. 128 LegalizeAction getTypeAction(MVT::ValueType VT) const { 129 return (LegalizeAction)ValueTypeActions.getTypeAction(VT); 130 } 131 132 /// isTypeLegal - Return true if this type is legal on this target. 133 /// 134 bool isTypeLegal(MVT::ValueType VT) const { 135 return getTypeAction(VT) == Legal; 136 } 137 138 void LegalizeDAG(); 139 140private: 141 /// HandleOp - Legalize, Promote, or Expand the specified operand as 142 /// appropriate for its type. 143 void HandleOp(SDOperand Op); 144 145 /// LegalizeOp - We know that the specified value has a legal type. 146 /// Recursively ensure that the operands have legal types, then return the 147 /// result. 148 SDOperand LegalizeOp(SDOperand O); 149 150 /// UnrollVectorOp - We know that the given vector has a legal type, however 151 /// the operation it performs is not legal and is an operation that we have 152 /// no way of lowering. "Unroll" the vector, splitting out the scalars and 153 /// operating on each element individually. 154 SDOperand UnrollVectorOp(SDOperand O); 155 156 /// PromoteOp - Given an operation that produces a value in an invalid type, 157 /// promote it to compute the value into a larger type. The produced value 158 /// will have the correct bits for the low portion of the register, but no 159 /// guarantee is made about the top bits: it may be zero, sign-extended, or 160 /// garbage. 161 SDOperand PromoteOp(SDOperand O); 162 163 /// ExpandOp - Expand the specified SDOperand into its two component pieces 164 /// Lo&Hi. Note that the Op MUST be an expanded type. As a result of this, 165 /// the LegalizeNodes map is filled in for any results that are not expanded, 166 /// the ExpandedNodes map is filled in for any results that are expanded, and 167 /// the Lo/Hi values are returned. This applies to integer types and Vector 168 /// types. 169 void ExpandOp(SDOperand O, SDOperand &Lo, SDOperand &Hi); 170 171 /// SplitVectorOp - Given an operand of vector type, break it down into 172 /// two smaller values. 173 void SplitVectorOp(SDOperand O, SDOperand &Lo, SDOperand &Hi); 174 175 /// ScalarizeVectorOp - Given an operand of single-element vector type 176 /// (e.g. v1f32), convert it into the equivalent operation that returns a 177 /// scalar (e.g. f32) value. 178 SDOperand ScalarizeVectorOp(SDOperand O); 179 180 /// isShuffleLegal - Return true if a vector shuffle is legal with the 181 /// specified mask and type. Targets can specify exactly which masks they 182 /// support and the code generator is tasked with not creating illegal masks. 183 /// 184 /// Note that this will also return true for shuffles that are promoted to a 185 /// different type. 186 /// 187 /// If this is a legal shuffle, this method returns the (possibly promoted) 188 /// build_vector Mask. If it's not a legal shuffle, it returns null. 189 SDNode *isShuffleLegal(MVT::ValueType VT, SDOperand Mask) const; 190 191 bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest, 192 SmallPtrSet<SDNode*, 32> &NodesLeadingTo); 193 194 void LegalizeSetCCOperands(SDOperand &LHS, SDOperand &RHS, SDOperand &CC); 195 196 SDOperand ExpandLibCall(const char *Name, SDNode *Node, bool isSigned, 197 SDOperand &Hi); 198 SDOperand ExpandIntToFP(bool isSigned, MVT::ValueType DestTy, 199 SDOperand Source); 200 201 SDOperand ExpandBIT_CONVERT(MVT::ValueType DestVT, SDOperand SrcOp); 202 SDOperand ExpandBUILD_VECTOR(SDNode *Node); 203 SDOperand ExpandSCALAR_TO_VECTOR(SDNode *Node); 204 SDOperand ExpandLegalINT_TO_FP(bool isSigned, 205 SDOperand LegalOp, 206 MVT::ValueType DestVT); 207 SDOperand PromoteLegalINT_TO_FP(SDOperand LegalOp, MVT::ValueType DestVT, 208 bool isSigned); 209 SDOperand PromoteLegalFP_TO_INT(SDOperand LegalOp, MVT::ValueType DestVT, 210 bool isSigned); 211 212 SDOperand ExpandBSWAP(SDOperand Op); 213 SDOperand ExpandBitCount(unsigned Opc, SDOperand Op); 214 bool ExpandShift(unsigned Opc, SDOperand Op, SDOperand Amt, 215 SDOperand &Lo, SDOperand &Hi); 216 void ExpandShiftParts(unsigned NodeOp, SDOperand Op, SDOperand Amt, 217 SDOperand &Lo, SDOperand &Hi); 218 219 SDOperand ExpandEXTRACT_SUBVECTOR(SDOperand Op); 220 SDOperand ExpandEXTRACT_VECTOR_ELT(SDOperand Op); 221 222 SDOperand getIntPtrConstant(uint64_t Val) { 223 return DAG.getConstant(Val, TLI.getPointerTy()); 224 } 225}; 226} 227 228/// isVectorShuffleLegal - Return true if a vector shuffle is legal with the 229/// specified mask and type. Targets can specify exactly which masks they 230/// support and the code generator is tasked with not creating illegal masks. 231/// 232/// Note that this will also return true for shuffles that are promoted to a 233/// different type. 234SDNode *SelectionDAGLegalize::isShuffleLegal(MVT::ValueType VT, 235 SDOperand Mask) const { 236 switch (TLI.getOperationAction(ISD::VECTOR_SHUFFLE, VT)) { 237 default: return 0; 238 case TargetLowering::Legal: 239 case TargetLowering::Custom: 240 break; 241 case TargetLowering::Promote: { 242 // If this is promoted to a different type, convert the shuffle mask and 243 // ask if it is legal in the promoted type! 244 MVT::ValueType NVT = TLI.getTypeToPromoteTo(ISD::VECTOR_SHUFFLE, VT); 245 246 // If we changed # elements, change the shuffle mask. 247 unsigned NumEltsGrowth = 248 MVT::getVectorNumElements(NVT) / MVT::getVectorNumElements(VT); 249 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); 250 if (NumEltsGrowth > 1) { 251 // Renumber the elements. 252 SmallVector<SDOperand, 8> Ops; 253 for (unsigned i = 0, e = Mask.getNumOperands(); i != e; ++i) { 254 SDOperand InOp = Mask.getOperand(i); 255 for (unsigned j = 0; j != NumEltsGrowth; ++j) { 256 if (InOp.getOpcode() == ISD::UNDEF) 257 Ops.push_back(DAG.getNode(ISD::UNDEF, MVT::i32)); 258 else { 259 unsigned InEltNo = cast<ConstantSDNode>(InOp)->getValue(); 260 Ops.push_back(DAG.getConstant(InEltNo*NumEltsGrowth+j, MVT::i32)); 261 } 262 } 263 } 264 Mask = DAG.getNode(ISD::BUILD_VECTOR, NVT, &Ops[0], Ops.size()); 265 } 266 VT = NVT; 267 break; 268 } 269 } 270 return TLI.isShuffleMaskLegal(Mask, VT) ? Mask.Val : 0; 271} 272 273SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag) 274 : TLI(dag.getTargetLoweringInfo()), DAG(dag), 275 ValueTypeActions(TLI.getValueTypeActions()) { 276 assert(MVT::LAST_VALUETYPE <= 32 && 277 "Too many value types for ValueTypeActions to hold!"); 278} 279 280/// ComputeTopDownOrdering - Compute a top-down ordering of the dag, where Order 281/// contains all of a nodes operands before it contains the node. 282static void ComputeTopDownOrdering(SelectionDAG &DAG, 283 SmallVector<SDNode*, 64> &Order) { 284 285 DenseMap<SDNode*, unsigned> Visited; 286 std::vector<SDNode*> Worklist; 287 Worklist.reserve(128); 288 289 // Compute ordering from all of the leaves in the graphs, those (like the 290 // entry node) that have no operands. 291 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 292 E = DAG.allnodes_end(); I != E; ++I) { 293 if (I->getNumOperands() == 0) { 294 Visited[I] = 0 - 1U; 295 Worklist.push_back(I); 296 } 297 } 298 299 while (!Worklist.empty()) { 300 SDNode *N = Worklist.back(); 301 Worklist.pop_back(); 302 303 if (++Visited[N] != N->getNumOperands()) 304 continue; // Haven't visited all operands yet 305 306 Order.push_back(N); 307 308 // Now that we have N in, add anything that uses it if all of their operands 309 // are now done. 310 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 311 UI != E; ++UI) 312 Worklist.push_back(*UI); 313 } 314 315 assert(Order.size() == Visited.size() && 316 Order.size() == 317 (unsigned)std::distance(DAG.allnodes_begin(), DAG.allnodes_end()) && 318 "Error: DAG is cyclic!"); 319} 320 321 322void SelectionDAGLegalize::LegalizeDAG() { 323 LastCALLSEQ_END = DAG.getEntryNode(); 324 IsLegalizingCall = false; 325 326 // The legalize process is inherently a bottom-up recursive process (users 327 // legalize their uses before themselves). Given infinite stack space, we 328 // could just start legalizing on the root and traverse the whole graph. In 329 // practice however, this causes us to run out of stack space on large basic 330 // blocks. To avoid this problem, compute an ordering of the nodes where each 331 // node is only legalized after all of its operands are legalized. 332 SmallVector<SDNode*, 64> Order; 333 ComputeTopDownOrdering(DAG, Order); 334 335 for (unsigned i = 0, e = Order.size(); i != e; ++i) 336 HandleOp(SDOperand(Order[i], 0)); 337 338 // Finally, it's possible the root changed. Get the new root. 339 SDOperand OldRoot = DAG.getRoot(); 340 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 341 DAG.setRoot(LegalizedNodes[OldRoot]); 342 343 ExpandedNodes.clear(); 344 LegalizedNodes.clear(); 345 PromotedNodes.clear(); 346 SplitNodes.clear(); 347 ScalarizedNodes.clear(); 348 349 // Remove dead nodes now. 350 DAG.RemoveDeadNodes(); 351} 352 353 354/// FindCallEndFromCallStart - Given a chained node that is part of a call 355/// sequence, find the CALLSEQ_END node that terminates the call sequence. 356static SDNode *FindCallEndFromCallStart(SDNode *Node) { 357 if (Node->getOpcode() == ISD::CALLSEQ_END) 358 return Node; 359 if (Node->use_empty()) 360 return 0; // No CallSeqEnd 361 362 // The chain is usually at the end. 363 SDOperand TheChain(Node, Node->getNumValues()-1); 364 if (TheChain.getValueType() != MVT::Other) { 365 // Sometimes it's at the beginning. 366 TheChain = SDOperand(Node, 0); 367 if (TheChain.getValueType() != MVT::Other) { 368 // Otherwise, hunt for it. 369 for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i) 370 if (Node->getValueType(i) == MVT::Other) { 371 TheChain = SDOperand(Node, i); 372 break; 373 } 374 375 // Otherwise, we walked into a node without a chain. 376 if (TheChain.getValueType() != MVT::Other) 377 return 0; 378 } 379 } 380 381 for (SDNode::use_iterator UI = Node->use_begin(), 382 E = Node->use_end(); UI != E; ++UI) { 383 384 // Make sure to only follow users of our token chain. 385 SDNode *User = *UI; 386 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) 387 if (User->getOperand(i) == TheChain) 388 if (SDNode *Result = FindCallEndFromCallStart(User)) 389 return Result; 390 } 391 return 0; 392} 393 394/// FindCallStartFromCallEnd - Given a chained node that is part of a call 395/// sequence, find the CALLSEQ_START node that initiates the call sequence. 396static SDNode *FindCallStartFromCallEnd(SDNode *Node) { 397 assert(Node && "Didn't find callseq_start for a call??"); 398 if (Node->getOpcode() == ISD::CALLSEQ_START) return Node; 399 400 assert(Node->getOperand(0).getValueType() == MVT::Other && 401 "Node doesn't have a token chain argument!"); 402 return FindCallStartFromCallEnd(Node->getOperand(0).Val); 403} 404 405/// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to 406/// see if any uses can reach Dest. If no dest operands can get to dest, 407/// legalize them, legalize ourself, and return false, otherwise, return true. 408/// 409/// Keep track of the nodes we fine that actually do lead to Dest in 410/// NodesLeadingTo. This avoids retraversing them exponential number of times. 411/// 412bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest, 413 SmallPtrSet<SDNode*, 32> &NodesLeadingTo) { 414 if (N == Dest) return true; // N certainly leads to Dest :) 415 416 // If we've already processed this node and it does lead to Dest, there is no 417 // need to reprocess it. 418 if (NodesLeadingTo.count(N)) return true; 419 420 // If the first result of this node has been already legalized, then it cannot 421 // reach N. 422 switch (getTypeAction(N->getValueType(0))) { 423 case Legal: 424 if (LegalizedNodes.count(SDOperand(N, 0))) return false; 425 break; 426 case Promote: 427 if (PromotedNodes.count(SDOperand(N, 0))) return false; 428 break; 429 case Expand: 430 if (ExpandedNodes.count(SDOperand(N, 0))) return false; 431 break; 432 } 433 434 // Okay, this node has not already been legalized. Check and legalize all 435 // operands. If none lead to Dest, then we can legalize this node. 436 bool OperandsLeadToDest = false; 437 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) 438 OperandsLeadToDest |= // If an operand leads to Dest, so do we. 439 LegalizeAllNodesNotLeadingTo(N->getOperand(i).Val, Dest, NodesLeadingTo); 440 441 if (OperandsLeadToDest) { 442 NodesLeadingTo.insert(N); 443 return true; 444 } 445 446 // Okay, this node looks safe, legalize it and return false. 447 HandleOp(SDOperand(N, 0)); 448 return false; 449} 450 451/// HandleOp - Legalize, Promote, or Expand the specified operand as 452/// appropriate for its type. 453void SelectionDAGLegalize::HandleOp(SDOperand Op) { 454 MVT::ValueType VT = Op.getValueType(); 455 switch (getTypeAction(VT)) { 456 default: assert(0 && "Bad type action!"); 457 case Legal: (void)LegalizeOp(Op); break; 458 case Promote: (void)PromoteOp(Op); break; 459 case Expand: 460 if (!MVT::isVector(VT)) { 461 // If this is an illegal scalar, expand it into its two component 462 // pieces. 463 SDOperand X, Y; 464 if (Op.getOpcode() == ISD::TargetConstant) 465 break; // Allow illegal target nodes. 466 ExpandOp(Op, X, Y); 467 } else if (MVT::getVectorNumElements(VT) == 1) { 468 // If this is an illegal single element vector, convert it to a 469 // scalar operation. 470 (void)ScalarizeVectorOp(Op); 471 } else { 472 // Otherwise, this is an illegal multiple element vector. 473 // Split it in half and legalize both parts. 474 SDOperand X, Y; 475 SplitVectorOp(Op, X, Y); 476 } 477 break; 478 } 479} 480 481/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or 482/// a load from the constant pool. 483static SDOperand ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP, 484 SelectionDAG &DAG, TargetLowering &TLI) { 485 bool Extend = false; 486 487 // If a FP immediate is precise when represented as a float and if the 488 // target can do an extending load from float to double, we put it into 489 // the constant pool as a float, even if it's is statically typed as a 490 // double. 491 MVT::ValueType VT = CFP->getValueType(0); 492 bool isDouble = VT == MVT::f64; 493 ConstantFP *LLVMC = ConstantFP::get(MVT::getTypeForValueType(VT), 494 CFP->getValueAPF()); 495 if (!UseCP) { 496 if (VT!=MVT::f64 && VT!=MVT::f32) 497 assert(0 && "Invalid type expansion"); 498 return DAG.getConstant(LLVMC->getValueAPF().convertToAPInt().getZExtValue(), 499 isDouble ? MVT::i64 : MVT::i32); 500 } 501 502 if (isDouble && CFP->isValueValidForType(MVT::f32, CFP->getValueAPF()) && 503 // Only do this if the target has a native EXTLOAD instruction from f32. 504 // Do not try to be clever about long doubles (so far) 505 TLI.isLoadXLegal(ISD::EXTLOAD, MVT::f32)) { 506 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC,Type::FloatTy)); 507 VT = MVT::f32; 508 Extend = true; 509 } 510 511 SDOperand CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy()); 512 if (Extend) { 513 return DAG.getExtLoad(ISD::EXTLOAD, MVT::f64, DAG.getEntryNode(), 514 CPIdx, NULL, 0, MVT::f32); 515 } else { 516 return DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0); 517 } 518} 519 520 521/// ExpandFCOPYSIGNToBitwiseOps - Expands fcopysign to a series of bitwise 522/// operations. 523static 524SDOperand ExpandFCOPYSIGNToBitwiseOps(SDNode *Node, MVT::ValueType NVT, 525 SelectionDAG &DAG, TargetLowering &TLI) { 526 MVT::ValueType VT = Node->getValueType(0); 527 MVT::ValueType SrcVT = Node->getOperand(1).getValueType(); 528 assert((SrcVT == MVT::f32 || SrcVT == MVT::f64) && 529 "fcopysign expansion only supported for f32 and f64"); 530 MVT::ValueType SrcNVT = (SrcVT == MVT::f64) ? MVT::i64 : MVT::i32; 531 532 // First get the sign bit of second operand. 533 SDOperand Mask1 = (SrcVT == MVT::f64) 534 ? DAG.getConstantFP(BitsToDouble(1ULL << 63), SrcVT) 535 : DAG.getConstantFP(BitsToFloat(1U << 31), SrcVT); 536 Mask1 = DAG.getNode(ISD::BIT_CONVERT, SrcNVT, Mask1); 537 SDOperand SignBit= DAG.getNode(ISD::BIT_CONVERT, SrcNVT, Node->getOperand(1)); 538 SignBit = DAG.getNode(ISD::AND, SrcNVT, SignBit, Mask1); 539 // Shift right or sign-extend it if the two operands have different types. 540 int SizeDiff = MVT::getSizeInBits(SrcNVT) - MVT::getSizeInBits(NVT); 541 if (SizeDiff > 0) { 542 SignBit = DAG.getNode(ISD::SRL, SrcNVT, SignBit, 543 DAG.getConstant(SizeDiff, TLI.getShiftAmountTy())); 544 SignBit = DAG.getNode(ISD::TRUNCATE, NVT, SignBit); 545 } else if (SizeDiff < 0) 546 SignBit = DAG.getNode(ISD::SIGN_EXTEND, NVT, SignBit); 547 548 // Clear the sign bit of first operand. 549 SDOperand Mask2 = (VT == MVT::f64) 550 ? DAG.getConstantFP(BitsToDouble(~(1ULL << 63)), VT) 551 : DAG.getConstantFP(BitsToFloat(~(1U << 31)), VT); 552 Mask2 = DAG.getNode(ISD::BIT_CONVERT, NVT, Mask2); 553 SDOperand Result = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0)); 554 Result = DAG.getNode(ISD::AND, NVT, Result, Mask2); 555 556 // Or the value with the sign bit. 557 Result = DAG.getNode(ISD::OR, NVT, Result, SignBit); 558 return Result; 559} 560 561/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores. 562static 563SDOperand ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG, 564 TargetLowering &TLI) { 565 SDOperand Chain = ST->getChain(); 566 SDOperand Ptr = ST->getBasePtr(); 567 SDOperand Val = ST->getValue(); 568 MVT::ValueType VT = Val.getValueType(); 569 int Alignment = ST->getAlignment(); 570 int SVOffset = ST->getSrcValueOffset(); 571 if (MVT::isFloatingPoint(ST->getStoredVT())) { 572 // Expand to a bitconvert of the value to the integer type of the 573 // same size, then a (misaligned) int store. 574 MVT::ValueType intVT; 575 if (VT==MVT::f64) 576 intVT = MVT::i64; 577 else if (VT==MVT::f32) 578 intVT = MVT::i32; 579 else 580 assert(0 && "Unaligned load of unsupported floating point type"); 581 582 SDOperand Result = DAG.getNode(ISD::BIT_CONVERT, intVT, Val); 583 return DAG.getStore(Chain, Result, Ptr, ST->getSrcValue(), 584 SVOffset, ST->isVolatile(), Alignment); 585 } 586 assert(MVT::isInteger(ST->getStoredVT()) && 587 "Unaligned store of unknown type."); 588 // Get the half-size VT 589 MVT::ValueType NewStoredVT = ST->getStoredVT() - 1; 590 int NumBits = MVT::getSizeInBits(NewStoredVT); 591 int IncrementSize = NumBits / 8; 592 593 // Divide the stored value in two parts. 594 SDOperand ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy()); 595 SDOperand Lo = Val; 596 SDOperand Hi = DAG.getNode(ISD::SRL, VT, Val, ShiftAmount); 597 598 // Store the two parts 599 SDOperand Store1, Store2; 600 Store1 = DAG.getTruncStore(Chain, TLI.isLittleEndian()?Lo:Hi, Ptr, 601 ST->getSrcValue(), SVOffset, NewStoredVT, 602 ST->isVolatile(), Alignment); 603 Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, 604 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 605 Alignment = MinAlign(Alignment, IncrementSize); 606 Store2 = DAG.getTruncStore(Chain, TLI.isLittleEndian()?Hi:Lo, Ptr, 607 ST->getSrcValue(), SVOffset + IncrementSize, 608 NewStoredVT, ST->isVolatile(), Alignment); 609 610 return DAG.getNode(ISD::TokenFactor, MVT::Other, Store1, Store2); 611} 612 613/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads. 614static 615SDOperand ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG, 616 TargetLowering &TLI) { 617 int SVOffset = LD->getSrcValueOffset(); 618 SDOperand Chain = LD->getChain(); 619 SDOperand Ptr = LD->getBasePtr(); 620 MVT::ValueType VT = LD->getValueType(0); 621 MVT::ValueType LoadedVT = LD->getLoadedVT(); 622 if (MVT::isFloatingPoint(VT) && !MVT::isVector(VT)) { 623 // Expand to a (misaligned) integer load of the same size, 624 // then bitconvert to floating point. 625 MVT::ValueType intVT; 626 if (LoadedVT == MVT::f64) 627 intVT = MVT::i64; 628 else if (LoadedVT == MVT::f32) 629 intVT = MVT::i32; 630 else 631 assert(0 && "Unaligned load of unsupported floating point type"); 632 633 SDOperand newLoad = DAG.getLoad(intVT, Chain, Ptr, LD->getSrcValue(), 634 SVOffset, LD->isVolatile(), 635 LD->getAlignment()); 636 SDOperand Result = DAG.getNode(ISD::BIT_CONVERT, LoadedVT, newLoad); 637 if (LoadedVT != VT) 638 Result = DAG.getNode(ISD::FP_EXTEND, VT, Result); 639 640 SDOperand Ops[] = { Result, Chain }; 641 return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, MVT::Other), 642 Ops, 2); 643 } 644 assert((MVT::isInteger(LoadedVT) || MVT::isVector(LoadedVT)) && 645 "Unaligned load of unsupported type."); 646 647 // Compute the new VT that is half the size of the old one. We either have an 648 // integer MVT or we have a vector MVT. 649 unsigned NumBits = MVT::getSizeInBits(LoadedVT); 650 MVT::ValueType NewLoadedVT; 651 if (!MVT::isVector(LoadedVT)) { 652 NewLoadedVT = MVT::getIntegerType(NumBits/2); 653 } else { 654 // FIXME: This is not right for <1 x anything> it is also not right for 655 // non-power-of-two vectors. 656 NewLoadedVT = MVT::getVectorType(MVT::getVectorElementType(LoadedVT), 657 MVT::getVectorNumElements(LoadedVT)/2); 658 } 659 NumBits >>= 1; 660 661 unsigned Alignment = LD->getAlignment(); 662 unsigned IncrementSize = NumBits / 8; 663 ISD::LoadExtType HiExtType = LD->getExtensionType(); 664 665 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 666 if (HiExtType == ISD::NON_EXTLOAD) 667 HiExtType = ISD::ZEXTLOAD; 668 669 // Load the value in two parts 670 SDOperand Lo, Hi; 671 if (TLI.isLittleEndian()) { 672 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, VT, Chain, Ptr, LD->getSrcValue(), 673 SVOffset, NewLoadedVT, LD->isVolatile(), Alignment); 674 Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, 675 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 676 Hi = DAG.getExtLoad(HiExtType, VT, Chain, Ptr, LD->getSrcValue(), 677 SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(), 678 MinAlign(Alignment, IncrementSize)); 679 } else { 680 Hi = DAG.getExtLoad(HiExtType, VT, Chain, Ptr, LD->getSrcValue(), SVOffset, 681 NewLoadedVT,LD->isVolatile(), Alignment); 682 Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, 683 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 684 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, VT, Chain, Ptr, LD->getSrcValue(), 685 SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(), 686 MinAlign(Alignment, IncrementSize)); 687 } 688 689 // aggregate the two parts 690 SDOperand ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy()); 691 SDOperand Result = DAG.getNode(ISD::SHL, VT, Hi, ShiftAmount); 692 Result = DAG.getNode(ISD::OR, VT, Result, Lo); 693 694 SDOperand TF = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), 695 Hi.getValue(1)); 696 697 SDOperand Ops[] = { Result, TF }; 698 return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, MVT::Other), Ops, 2); 699} 700 701/// UnrollVectorOp - We know that the given vector has a legal type, however 702/// the operation it performs is not legal and is an operation that we have 703/// no way of lowering. "Unroll" the vector, splitting out the scalars and 704/// operating on each element individually. 705SDOperand SelectionDAGLegalize::UnrollVectorOp(SDOperand Op) { 706 MVT::ValueType VT = Op.getValueType(); 707 assert(isTypeLegal(VT) && 708 "Caller should expand or promote operands that are not legal!"); 709 assert(Op.Val->getNumValues() == 1 && 710 "Can't unroll a vector with multiple results!"); 711 unsigned NE = MVT::getVectorNumElements(VT); 712 MVT::ValueType EltVT = MVT::getVectorElementType(VT); 713 714 SmallVector<SDOperand, 8> Scalars; 715 SmallVector<SDOperand, 4> Operands(Op.getNumOperands()); 716 for (unsigned i = 0; i != NE; ++i) { 717 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 718 SDOperand Operand = Op.getOperand(j); 719 MVT::ValueType OperandVT = Operand.getValueType(); 720 if (MVT::isVector(OperandVT)) { 721 // A vector operand; extract a single element. 722 MVT::ValueType OperandEltVT = MVT::getVectorElementType(OperandVT); 723 Operands[j] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, 724 OperandEltVT, 725 Operand, 726 DAG.getConstant(i, MVT::i32)); 727 } else { 728 // A scalar operand; just use it as is. 729 Operands[j] = Operand; 730 } 731 } 732 Scalars.push_back(DAG.getNode(Op.getOpcode(), EltVT, 733 &Operands[0], Operands.size())); 734 } 735 736 return DAG.getNode(ISD::BUILD_VECTOR, VT, &Scalars[0], Scalars.size()); 737} 738 739/// LegalizeOp - We know that the specified value has a legal type, and 740/// that its operands are legal. Now ensure that the operation itself 741/// is legal, recursively ensuring that the operands' operations remain 742/// legal. 743SDOperand SelectionDAGLegalize::LegalizeOp(SDOperand Op) { 744 if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes. 745 return Op; 746 747 assert(isTypeLegal(Op.getValueType()) && 748 "Caller should expand or promote operands that are not legal!"); 749 SDNode *Node = Op.Val; 750 751 // If this operation defines any values that cannot be represented in a 752 // register on this target, make sure to expand or promote them. 753 if (Node->getNumValues() > 1) { 754 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 755 if (getTypeAction(Node->getValueType(i)) != Legal) { 756 HandleOp(Op.getValue(i)); 757 assert(LegalizedNodes.count(Op) && 758 "Handling didn't add legal operands!"); 759 return LegalizedNodes[Op]; 760 } 761 } 762 763 // Note that LegalizeOp may be reentered even from single-use nodes, which 764 // means that we always must cache transformed nodes. 765 DenseMap<SDOperand, SDOperand>::iterator I = LegalizedNodes.find(Op); 766 if (I != LegalizedNodes.end()) return I->second; 767 768 SDOperand Tmp1, Tmp2, Tmp3, Tmp4; 769 SDOperand Result = Op; 770 bool isCustom = false; 771 772 switch (Node->getOpcode()) { 773 case ISD::FrameIndex: 774 case ISD::EntryToken: 775 case ISD::Register: 776 case ISD::BasicBlock: 777 case ISD::TargetFrameIndex: 778 case ISD::TargetJumpTable: 779 case ISD::TargetConstant: 780 case ISD::TargetConstantFP: 781 case ISD::TargetConstantPool: 782 case ISD::TargetGlobalAddress: 783 case ISD::TargetGlobalTLSAddress: 784 case ISD::TargetExternalSymbol: 785 case ISD::VALUETYPE: 786 case ISD::SRCVALUE: 787 case ISD::STRING: 788 case ISD::CONDCODE: 789 // Primitives must all be legal. 790 assert(TLI.isOperationLegal(Node->getOpcode(), Node->getValueType(0)) && 791 "This must be legal!"); 792 break; 793 default: 794 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { 795 // If this is a target node, legalize it by legalizing the operands then 796 // passing it through. 797 SmallVector<SDOperand, 8> Ops; 798 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 799 Ops.push_back(LegalizeOp(Node->getOperand(i))); 800 801 Result = DAG.UpdateNodeOperands(Result.getValue(0), &Ops[0], Ops.size()); 802 803 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 804 AddLegalizedOperand(Op.getValue(i), Result.getValue(i)); 805 return Result.getValue(Op.ResNo); 806 } 807 // Otherwise this is an unhandled builtin node. splat. 808#ifndef NDEBUG 809 cerr << "NODE: "; Node->dump(&DAG); cerr << "\n"; 810#endif 811 assert(0 && "Do not know how to legalize this operator!"); 812 abort(); 813 case ISD::GLOBAL_OFFSET_TABLE: 814 case ISD::GlobalAddress: 815 case ISD::GlobalTLSAddress: 816 case ISD::ExternalSymbol: 817 case ISD::ConstantPool: 818 case ISD::JumpTable: // Nothing to do. 819 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 820 default: assert(0 && "This action is not supported yet!"); 821 case TargetLowering::Custom: 822 Tmp1 = TLI.LowerOperation(Op, DAG); 823 if (Tmp1.Val) Result = Tmp1; 824 // FALLTHROUGH if the target doesn't want to lower this op after all. 825 case TargetLowering::Legal: 826 break; 827 } 828 break; 829 case ISD::FRAMEADDR: 830 case ISD::RETURNADDR: 831 // The only option for these nodes is to custom lower them. If the target 832 // does not custom lower them, then return zero. 833 Tmp1 = TLI.LowerOperation(Op, DAG); 834 if (Tmp1.Val) 835 Result = Tmp1; 836 else 837 Result = DAG.getConstant(0, TLI.getPointerTy()); 838 break; 839 case ISD::FRAME_TO_ARGS_OFFSET: { 840 MVT::ValueType VT = Node->getValueType(0); 841 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 842 default: assert(0 && "This action is not supported yet!"); 843 case TargetLowering::Custom: 844 Result = TLI.LowerOperation(Op, DAG); 845 if (Result.Val) break; 846 // Fall Thru 847 case TargetLowering::Legal: 848 Result = DAG.getConstant(0, VT); 849 break; 850 } 851 } 852 break; 853 case ISD::EXCEPTIONADDR: { 854 Tmp1 = LegalizeOp(Node->getOperand(0)); 855 MVT::ValueType VT = Node->getValueType(0); 856 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 857 default: assert(0 && "This action is not supported yet!"); 858 case TargetLowering::Expand: { 859 unsigned Reg = TLI.getExceptionAddressRegister(); 860 Result = DAG.getCopyFromReg(Tmp1, Reg, VT).getValue(Op.ResNo); 861 } 862 break; 863 case TargetLowering::Custom: 864 Result = TLI.LowerOperation(Op, DAG); 865 if (Result.Val) break; 866 // Fall Thru 867 case TargetLowering::Legal: { 868 SDOperand Ops[] = { DAG.getConstant(0, VT), Tmp1 }; 869 Result = DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, MVT::Other), 870 Ops, 2).getValue(Op.ResNo); 871 break; 872 } 873 } 874 } 875 break; 876 case ISD::EHSELECTION: { 877 Tmp1 = LegalizeOp(Node->getOperand(0)); 878 Tmp2 = LegalizeOp(Node->getOperand(1)); 879 MVT::ValueType VT = Node->getValueType(0); 880 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 881 default: assert(0 && "This action is not supported yet!"); 882 case TargetLowering::Expand: { 883 unsigned Reg = TLI.getExceptionSelectorRegister(); 884 Result = DAG.getCopyFromReg(Tmp2, Reg, VT).getValue(Op.ResNo); 885 } 886 break; 887 case TargetLowering::Custom: 888 Result = TLI.LowerOperation(Op, DAG); 889 if (Result.Val) break; 890 // Fall Thru 891 case TargetLowering::Legal: { 892 SDOperand Ops[] = { DAG.getConstant(0, VT), Tmp2 }; 893 Result = DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, MVT::Other), 894 Ops, 2).getValue(Op.ResNo); 895 break; 896 } 897 } 898 } 899 break; 900 case ISD::EH_RETURN: { 901 MVT::ValueType VT = Node->getValueType(0); 902 // The only "good" option for this node is to custom lower it. 903 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 904 default: assert(0 && "This action is not supported at all!"); 905 case TargetLowering::Custom: 906 Result = TLI.LowerOperation(Op, DAG); 907 if (Result.Val) break; 908 // Fall Thru 909 case TargetLowering::Legal: 910 // Target does not know, how to lower this, lower to noop 911 Result = LegalizeOp(Node->getOperand(0)); 912 break; 913 } 914 } 915 break; 916 case ISD::AssertSext: 917 case ISD::AssertZext: 918 Tmp1 = LegalizeOp(Node->getOperand(0)); 919 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 920 break; 921 case ISD::MERGE_VALUES: 922 // Legalize eliminates MERGE_VALUES nodes. 923 Result = Node->getOperand(Op.ResNo); 924 break; 925 case ISD::CopyFromReg: 926 Tmp1 = LegalizeOp(Node->getOperand(0)); 927 Result = Op.getValue(0); 928 if (Node->getNumValues() == 2) { 929 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 930 } else { 931 assert(Node->getNumValues() == 3 && "Invalid copyfromreg!"); 932 if (Node->getNumOperands() == 3) { 933 Tmp2 = LegalizeOp(Node->getOperand(2)); 934 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1),Tmp2); 935 } else { 936 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 937 } 938 AddLegalizedOperand(Op.getValue(2), Result.getValue(2)); 939 } 940 // Since CopyFromReg produces two values, make sure to remember that we 941 // legalized both of them. 942 AddLegalizedOperand(Op.getValue(0), Result); 943 AddLegalizedOperand(Op.getValue(1), Result.getValue(1)); 944 return Result.getValue(Op.ResNo); 945 case ISD::UNDEF: { 946 MVT::ValueType VT = Op.getValueType(); 947 switch (TLI.getOperationAction(ISD::UNDEF, VT)) { 948 default: assert(0 && "This action is not supported yet!"); 949 case TargetLowering::Expand: 950 if (MVT::isInteger(VT)) 951 Result = DAG.getConstant(0, VT); 952 else if (MVT::isFloatingPoint(VT)) 953 Result = DAG.getConstantFP(APFloat(APInt(MVT::getSizeInBits(VT), 0)), 954 VT); 955 else 956 assert(0 && "Unknown value type!"); 957 break; 958 case TargetLowering::Legal: 959 break; 960 } 961 break; 962 } 963 964 case ISD::INTRINSIC_W_CHAIN: 965 case ISD::INTRINSIC_WO_CHAIN: 966 case ISD::INTRINSIC_VOID: { 967 SmallVector<SDOperand, 8> Ops; 968 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 969 Ops.push_back(LegalizeOp(Node->getOperand(i))); 970 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 971 972 // Allow the target to custom lower its intrinsics if it wants to. 973 if (TLI.getOperationAction(Node->getOpcode(), MVT::Other) == 974 TargetLowering::Custom) { 975 Tmp3 = TLI.LowerOperation(Result, DAG); 976 if (Tmp3.Val) Result = Tmp3; 977 } 978 979 if (Result.Val->getNumValues() == 1) break; 980 981 // Must have return value and chain result. 982 assert(Result.Val->getNumValues() == 2 && 983 "Cannot return more than two values!"); 984 985 // Since loads produce two values, make sure to remember that we 986 // legalized both of them. 987 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 988 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 989 return Result.getValue(Op.ResNo); 990 } 991 992 case ISD::LOCATION: 993 assert(Node->getNumOperands() == 5 && "Invalid LOCATION node!"); 994 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the input chain. 995 996 switch (TLI.getOperationAction(ISD::LOCATION, MVT::Other)) { 997 case TargetLowering::Promote: 998 default: assert(0 && "This action is not supported yet!"); 999 case TargetLowering::Expand: { 1000 MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); 1001 bool useDEBUG_LOC = TLI.isOperationLegal(ISD::DEBUG_LOC, MVT::Other); 1002 bool useLABEL = TLI.isOperationLegal(ISD::LABEL, MVT::Other); 1003 1004 if (MMI && (useDEBUG_LOC || useLABEL)) { 1005 const std::string &FName = 1006 cast<StringSDNode>(Node->getOperand(3))->getValue(); 1007 const std::string &DirName = 1008 cast<StringSDNode>(Node->getOperand(4))->getValue(); 1009 unsigned SrcFile = MMI->RecordSource(DirName, FName); 1010 1011 SmallVector<SDOperand, 8> Ops; 1012 Ops.push_back(Tmp1); // chain 1013 SDOperand LineOp = Node->getOperand(1); 1014 SDOperand ColOp = Node->getOperand(2); 1015 1016 if (useDEBUG_LOC) { 1017 Ops.push_back(LineOp); // line # 1018 Ops.push_back(ColOp); // col # 1019 Ops.push_back(DAG.getConstant(SrcFile, MVT::i32)); // source file id 1020 Result = DAG.getNode(ISD::DEBUG_LOC, MVT::Other, &Ops[0], Ops.size()); 1021 } else { 1022 unsigned Line = cast<ConstantSDNode>(LineOp)->getValue(); 1023 unsigned Col = cast<ConstantSDNode>(ColOp)->getValue(); 1024 unsigned ID = MMI->RecordLabel(Line, Col, SrcFile); 1025 Ops.push_back(DAG.getConstant(ID, MVT::i32)); 1026 Result = DAG.getNode(ISD::LABEL, MVT::Other,&Ops[0],Ops.size()); 1027 } 1028 } else { 1029 Result = Tmp1; // chain 1030 } 1031 break; 1032 } 1033 case TargetLowering::Legal: 1034 if (Tmp1 != Node->getOperand(0) || 1035 getTypeAction(Node->getOperand(1).getValueType()) == Promote) { 1036 SmallVector<SDOperand, 8> Ops; 1037 Ops.push_back(Tmp1); 1038 if (getTypeAction(Node->getOperand(1).getValueType()) == Legal) { 1039 Ops.push_back(Node->getOperand(1)); // line # must be legal. 1040 Ops.push_back(Node->getOperand(2)); // col # must be legal. 1041 } else { 1042 // Otherwise promote them. 1043 Ops.push_back(PromoteOp(Node->getOperand(1))); 1044 Ops.push_back(PromoteOp(Node->getOperand(2))); 1045 } 1046 Ops.push_back(Node->getOperand(3)); // filename must be legal. 1047 Ops.push_back(Node->getOperand(4)); // working dir # must be legal. 1048 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1049 } 1050 break; 1051 } 1052 break; 1053 1054 case ISD::DEBUG_LOC: 1055 assert(Node->getNumOperands() == 4 && "Invalid DEBUG_LOC node!"); 1056 switch (TLI.getOperationAction(ISD::DEBUG_LOC, MVT::Other)) { 1057 default: assert(0 && "This action is not supported yet!"); 1058 case TargetLowering::Legal: 1059 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1060 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the line #. 1061 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the col #. 1062 Tmp4 = LegalizeOp(Node->getOperand(3)); // Legalize the source file id. 1063 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, Tmp4); 1064 break; 1065 } 1066 break; 1067 1068 case ISD::LABEL: 1069 assert(Node->getNumOperands() == 2 && "Invalid LABEL node!"); 1070 switch (TLI.getOperationAction(ISD::LABEL, MVT::Other)) { 1071 default: assert(0 && "This action is not supported yet!"); 1072 case TargetLowering::Legal: 1073 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1074 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the label id. 1075 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1076 break; 1077 case TargetLowering::Expand: 1078 Result = LegalizeOp(Node->getOperand(0)); 1079 break; 1080 } 1081 break; 1082 1083 case ISD::Constant: { 1084 ConstantSDNode *CN = cast<ConstantSDNode>(Node); 1085 unsigned opAction = 1086 TLI.getOperationAction(ISD::Constant, CN->getValueType(0)); 1087 1088 // We know we don't need to expand constants here, constants only have one 1089 // value and we check that it is fine above. 1090 1091 if (opAction == TargetLowering::Custom) { 1092 Tmp1 = TLI.LowerOperation(Result, DAG); 1093 if (Tmp1.Val) 1094 Result = Tmp1; 1095 } 1096 break; 1097 } 1098 case ISD::ConstantFP: { 1099 // Spill FP immediates to the constant pool if the target cannot directly 1100 // codegen them. Targets often have some immediate values that can be 1101 // efficiently generated into an FP register without a load. We explicitly 1102 // leave these constants as ConstantFP nodes for the target to deal with. 1103 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 1104 1105 // Check to see if this FP immediate is already legal. 1106 bool isLegal = false; 1107 for (TargetLowering::legal_fpimm_iterator I = TLI.legal_fpimm_begin(), 1108 E = TLI.legal_fpimm_end(); I != E; ++I) 1109 if (CFP->isExactlyValue(*I)) { 1110 isLegal = true; 1111 break; 1112 } 1113 1114 // If this is a legal constant, turn it into a TargetConstantFP node. 1115 if (isLegal) { 1116 Result = DAG.getTargetConstantFP(CFP->getValueAPF(), 1117 CFP->getValueType(0)); 1118 break; 1119 } 1120 1121 switch (TLI.getOperationAction(ISD::ConstantFP, CFP->getValueType(0))) { 1122 default: assert(0 && "This action is not supported yet!"); 1123 case TargetLowering::Custom: 1124 Tmp3 = TLI.LowerOperation(Result, DAG); 1125 if (Tmp3.Val) { 1126 Result = Tmp3; 1127 break; 1128 } 1129 // FALLTHROUGH 1130 case TargetLowering::Expand: 1131 Result = ExpandConstantFP(CFP, true, DAG, TLI); 1132 } 1133 break; 1134 } 1135 case ISD::TokenFactor: 1136 if (Node->getNumOperands() == 2) { 1137 Tmp1 = LegalizeOp(Node->getOperand(0)); 1138 Tmp2 = LegalizeOp(Node->getOperand(1)); 1139 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1140 } else if (Node->getNumOperands() == 3) { 1141 Tmp1 = LegalizeOp(Node->getOperand(0)); 1142 Tmp2 = LegalizeOp(Node->getOperand(1)); 1143 Tmp3 = LegalizeOp(Node->getOperand(2)); 1144 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1145 } else { 1146 SmallVector<SDOperand, 8> Ops; 1147 // Legalize the operands. 1148 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 1149 Ops.push_back(LegalizeOp(Node->getOperand(i))); 1150 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1151 } 1152 break; 1153 1154 case ISD::FORMAL_ARGUMENTS: 1155 case ISD::CALL: 1156 // The only option for this is to custom lower it. 1157 Tmp3 = TLI.LowerOperation(Result.getValue(0), DAG); 1158 assert(Tmp3.Val && "Target didn't custom lower this node!"); 1159 1160 // The number of incoming and outgoing values should match; unless the final 1161 // outgoing value is a flag. 1162 assert((Tmp3.Val->getNumValues() == Result.Val->getNumValues() || 1163 (Tmp3.Val->getNumValues() == Result.Val->getNumValues() + 1 && 1164 Tmp3.Val->getValueType(Tmp3.Val->getNumValues() - 1) == 1165 MVT::Flag)) && 1166 "Lowering call/formal_arguments produced unexpected # results!"); 1167 1168 // Since CALL/FORMAL_ARGUMENTS nodes produce multiple values, make sure to 1169 // remember that we legalized all of them, so it doesn't get relegalized. 1170 for (unsigned i = 0, e = Tmp3.Val->getNumValues(); i != e; ++i) { 1171 if (Tmp3.Val->getValueType(i) == MVT::Flag) 1172 continue; 1173 Tmp1 = LegalizeOp(Tmp3.getValue(i)); 1174 if (Op.ResNo == i) 1175 Tmp2 = Tmp1; 1176 AddLegalizedOperand(SDOperand(Node, i), Tmp1); 1177 } 1178 return Tmp2; 1179 case ISD::EXTRACT_SUBREG: { 1180 Tmp1 = LegalizeOp(Node->getOperand(0)); 1181 ConstantSDNode *idx = dyn_cast<ConstantSDNode>(Node->getOperand(1)); 1182 assert(idx && "Operand must be a constant"); 1183 Tmp2 = DAG.getTargetConstant(idx->getValue(), idx->getValueType(0)); 1184 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1185 } 1186 break; 1187 case ISD::INSERT_SUBREG: { 1188 Tmp1 = LegalizeOp(Node->getOperand(0)); 1189 Tmp2 = LegalizeOp(Node->getOperand(1)); 1190 ConstantSDNode *idx = dyn_cast<ConstantSDNode>(Node->getOperand(2)); 1191 assert(idx && "Operand must be a constant"); 1192 Tmp3 = DAG.getTargetConstant(idx->getValue(), idx->getValueType(0)); 1193 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1194 } 1195 break; 1196 case ISD::BUILD_VECTOR: 1197 switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) { 1198 default: assert(0 && "This action is not supported yet!"); 1199 case TargetLowering::Custom: 1200 Tmp3 = TLI.LowerOperation(Result, DAG); 1201 if (Tmp3.Val) { 1202 Result = Tmp3; 1203 break; 1204 } 1205 // FALLTHROUGH 1206 case TargetLowering::Expand: 1207 Result = ExpandBUILD_VECTOR(Result.Val); 1208 break; 1209 } 1210 break; 1211 case ISD::INSERT_VECTOR_ELT: 1212 Tmp1 = LegalizeOp(Node->getOperand(0)); // InVec 1213 Tmp2 = LegalizeOp(Node->getOperand(1)); // InVal 1214 Tmp3 = LegalizeOp(Node->getOperand(2)); // InEltNo 1215 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1216 1217 switch (TLI.getOperationAction(ISD::INSERT_VECTOR_ELT, 1218 Node->getValueType(0))) { 1219 default: assert(0 && "This action is not supported yet!"); 1220 case TargetLowering::Legal: 1221 break; 1222 case TargetLowering::Custom: 1223 Tmp3 = TLI.LowerOperation(Result, DAG); 1224 if (Tmp3.Val) { 1225 Result = Tmp3; 1226 break; 1227 } 1228 // FALLTHROUGH 1229 case TargetLowering::Expand: { 1230 // If the insert index is a constant, codegen this as a scalar_to_vector, 1231 // then a shuffle that inserts it into the right position in the vector. 1232 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Tmp3)) { 1233 SDOperand ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, 1234 Tmp1.getValueType(), Tmp2); 1235 1236 unsigned NumElts = MVT::getVectorNumElements(Tmp1.getValueType()); 1237 MVT::ValueType ShufMaskVT = MVT::getIntVectorWithNumElements(NumElts); 1238 MVT::ValueType ShufMaskEltVT = MVT::getVectorElementType(ShufMaskVT); 1239 1240 // We generate a shuffle of InVec and ScVec, so the shuffle mask should 1241 // be 0,1,2,3,4,5... with the appropriate element replaced with elt 0 of 1242 // the RHS. 1243 SmallVector<SDOperand, 8> ShufOps; 1244 for (unsigned i = 0; i != NumElts; ++i) { 1245 if (i != InsertPos->getValue()) 1246 ShufOps.push_back(DAG.getConstant(i, ShufMaskEltVT)); 1247 else 1248 ShufOps.push_back(DAG.getConstant(NumElts, ShufMaskEltVT)); 1249 } 1250 SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, ShufMaskVT, 1251 &ShufOps[0], ShufOps.size()); 1252 1253 Result = DAG.getNode(ISD::VECTOR_SHUFFLE, Tmp1.getValueType(), 1254 Tmp1, ScVec, ShufMask); 1255 Result = LegalizeOp(Result); 1256 break; 1257 } 1258 1259 // If the target doesn't support this, we have to spill the input vector 1260 // to a temporary stack slot, update the element, then reload it. This is 1261 // badness. We could also load the value into a vector register (either 1262 // with a "move to register" or "extload into register" instruction, then 1263 // permute it into place, if the idx is a constant and if the idx is 1264 // supported by the target. 1265 MVT::ValueType VT = Tmp1.getValueType(); 1266 MVT::ValueType EltVT = Tmp2.getValueType(); 1267 MVT::ValueType IdxVT = Tmp3.getValueType(); 1268 MVT::ValueType PtrVT = TLI.getPointerTy(); 1269 SDOperand StackPtr = DAG.CreateStackTemporary(VT); 1270 // Store the vector. 1271 SDOperand Ch = DAG.getStore(DAG.getEntryNode(), Tmp1, StackPtr, NULL, 0); 1272 1273 // Truncate or zero extend offset to target pointer type. 1274 unsigned CastOpc = (IdxVT > PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND; 1275 Tmp3 = DAG.getNode(CastOpc, PtrVT, Tmp3); 1276 // Add the offset to the index. 1277 unsigned EltSize = MVT::getSizeInBits(EltVT)/8; 1278 Tmp3 = DAG.getNode(ISD::MUL, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT)); 1279 SDOperand StackPtr2 = DAG.getNode(ISD::ADD, IdxVT, Tmp3, StackPtr); 1280 // Store the scalar value. 1281 Ch = DAG.getStore(Ch, Tmp2, StackPtr2, NULL, 0); 1282 // Load the updated vector. 1283 Result = DAG.getLoad(VT, Ch, StackPtr, NULL, 0); 1284 break; 1285 } 1286 } 1287 break; 1288 case ISD::SCALAR_TO_VECTOR: 1289 if (!TLI.isTypeLegal(Node->getOperand(0).getValueType())) { 1290 Result = LegalizeOp(ExpandSCALAR_TO_VECTOR(Node)); 1291 break; 1292 } 1293 1294 Tmp1 = LegalizeOp(Node->getOperand(0)); // InVal 1295 Result = DAG.UpdateNodeOperands(Result, Tmp1); 1296 switch (TLI.getOperationAction(ISD::SCALAR_TO_VECTOR, 1297 Node->getValueType(0))) { 1298 default: assert(0 && "This action is not supported yet!"); 1299 case TargetLowering::Legal: 1300 break; 1301 case TargetLowering::Custom: 1302 Tmp3 = TLI.LowerOperation(Result, DAG); 1303 if (Tmp3.Val) { 1304 Result = Tmp3; 1305 break; 1306 } 1307 // FALLTHROUGH 1308 case TargetLowering::Expand: 1309 Result = LegalizeOp(ExpandSCALAR_TO_VECTOR(Node)); 1310 break; 1311 } 1312 break; 1313 case ISD::VECTOR_SHUFFLE: 1314 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the input vectors, 1315 Tmp2 = LegalizeOp(Node->getOperand(1)); // but not the shuffle mask. 1316 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 1317 1318 // Allow targets to custom lower the SHUFFLEs they support. 1319 switch (TLI.getOperationAction(ISD::VECTOR_SHUFFLE,Result.getValueType())) { 1320 default: assert(0 && "Unknown operation action!"); 1321 case TargetLowering::Legal: 1322 assert(isShuffleLegal(Result.getValueType(), Node->getOperand(2)) && 1323 "vector shuffle should not be created if not legal!"); 1324 break; 1325 case TargetLowering::Custom: 1326 Tmp3 = TLI.LowerOperation(Result, DAG); 1327 if (Tmp3.Val) { 1328 Result = Tmp3; 1329 break; 1330 } 1331 // FALLTHROUGH 1332 case TargetLowering::Expand: { 1333 MVT::ValueType VT = Node->getValueType(0); 1334 MVT::ValueType EltVT = MVT::getVectorElementType(VT); 1335 MVT::ValueType PtrVT = TLI.getPointerTy(); 1336 SDOperand Mask = Node->getOperand(2); 1337 unsigned NumElems = Mask.getNumOperands(); 1338 SmallVector<SDOperand,8> Ops; 1339 for (unsigned i = 0; i != NumElems; ++i) { 1340 SDOperand Arg = Mask.getOperand(i); 1341 if (Arg.getOpcode() == ISD::UNDEF) { 1342 Ops.push_back(DAG.getNode(ISD::UNDEF, EltVT)); 1343 } else { 1344 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); 1345 unsigned Idx = cast<ConstantSDNode>(Arg)->getValue(); 1346 if (Idx < NumElems) 1347 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EltVT, Tmp1, 1348 DAG.getConstant(Idx, PtrVT))); 1349 else 1350 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EltVT, Tmp2, 1351 DAG.getConstant(Idx - NumElems, PtrVT))); 1352 } 1353 } 1354 Result = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size()); 1355 break; 1356 } 1357 case TargetLowering::Promote: { 1358 // Change base type to a different vector type. 1359 MVT::ValueType OVT = Node->getValueType(0); 1360 MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 1361 1362 // Cast the two input vectors. 1363 Tmp1 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp1); 1364 Tmp2 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp2); 1365 1366 // Convert the shuffle mask to the right # elements. 1367 Tmp3 = SDOperand(isShuffleLegal(OVT, Node->getOperand(2)), 0); 1368 assert(Tmp3.Val && "Shuffle not legal?"); 1369 Result = DAG.getNode(ISD::VECTOR_SHUFFLE, NVT, Tmp1, Tmp2, Tmp3); 1370 Result = DAG.getNode(ISD::BIT_CONVERT, OVT, Result); 1371 break; 1372 } 1373 } 1374 break; 1375 1376 case ISD::EXTRACT_VECTOR_ELT: 1377 Tmp1 = Node->getOperand(0); 1378 Tmp2 = LegalizeOp(Node->getOperand(1)); 1379 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1380 Result = ExpandEXTRACT_VECTOR_ELT(Result); 1381 break; 1382 1383 case ISD::EXTRACT_SUBVECTOR: 1384 Tmp1 = Node->getOperand(0); 1385 Tmp2 = LegalizeOp(Node->getOperand(1)); 1386 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1387 Result = ExpandEXTRACT_SUBVECTOR(Result); 1388 break; 1389 1390 case ISD::CALLSEQ_START: { 1391 SDNode *CallEnd = FindCallEndFromCallStart(Node); 1392 1393 // Recursively Legalize all of the inputs of the call end that do not lead 1394 // to this call start. This ensures that any libcalls that need be inserted 1395 // are inserted *before* the CALLSEQ_START. 1396 {SmallPtrSet<SDNode*, 32> NodesLeadingTo; 1397 for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i) 1398 LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).Val, Node, 1399 NodesLeadingTo); 1400 } 1401 1402 // Now that we legalized all of the inputs (which may have inserted 1403 // libcalls) create the new CALLSEQ_START node. 1404 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1405 1406 // Merge in the last call, to ensure that this call start after the last 1407 // call ended. 1408 if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) { 1409 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1410 Tmp1 = LegalizeOp(Tmp1); 1411 } 1412 1413 // Do not try to legalize the target-specific arguments (#1+). 1414 if (Tmp1 != Node->getOperand(0)) { 1415 SmallVector<SDOperand, 8> Ops(Node->op_begin(), Node->op_end()); 1416 Ops[0] = Tmp1; 1417 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1418 } 1419 1420 // Remember that the CALLSEQ_START is legalized. 1421 AddLegalizedOperand(Op.getValue(0), Result); 1422 if (Node->getNumValues() == 2) // If this has a flag result, remember it. 1423 AddLegalizedOperand(Op.getValue(1), Result.getValue(1)); 1424 1425 // Now that the callseq_start and all of the non-call nodes above this call 1426 // sequence have been legalized, legalize the call itself. During this 1427 // process, no libcalls can/will be inserted, guaranteeing that no calls 1428 // can overlap. 1429 assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!"); 1430 SDOperand InCallSEQ = LastCALLSEQ_END; 1431 // Note that we are selecting this call! 1432 LastCALLSEQ_END = SDOperand(CallEnd, 0); 1433 IsLegalizingCall = true; 1434 1435 // Legalize the call, starting from the CALLSEQ_END. 1436 LegalizeOp(LastCALLSEQ_END); 1437 assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!"); 1438 return Result; 1439 } 1440 case ISD::CALLSEQ_END: 1441 // If the CALLSEQ_START node hasn't been legalized first, legalize it. This 1442 // will cause this node to be legalized as well as handling libcalls right. 1443 if (LastCALLSEQ_END.Val != Node) { 1444 LegalizeOp(SDOperand(FindCallStartFromCallEnd(Node), 0)); 1445 DenseMap<SDOperand, SDOperand>::iterator I = LegalizedNodes.find(Op); 1446 assert(I != LegalizedNodes.end() && 1447 "Legalizing the call start should have legalized this node!"); 1448 return I->second; 1449 } 1450 1451 // Otherwise, the call start has been legalized and everything is going 1452 // according to plan. Just legalize ourselves normally here. 1453 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1454 // Do not try to legalize the target-specific arguments (#1+), except for 1455 // an optional flag input. 1456 if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Flag){ 1457 if (Tmp1 != Node->getOperand(0)) { 1458 SmallVector<SDOperand, 8> Ops(Node->op_begin(), Node->op_end()); 1459 Ops[0] = Tmp1; 1460 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1461 } 1462 } else { 1463 Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1)); 1464 if (Tmp1 != Node->getOperand(0) || 1465 Tmp2 != Node->getOperand(Node->getNumOperands()-1)) { 1466 SmallVector<SDOperand, 8> Ops(Node->op_begin(), Node->op_end()); 1467 Ops[0] = Tmp1; 1468 Ops.back() = Tmp2; 1469 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1470 } 1471 } 1472 assert(IsLegalizingCall && "Call sequence imbalance between start/end?"); 1473 // This finishes up call legalization. 1474 IsLegalizingCall = false; 1475 1476 // If the CALLSEQ_END node has a flag, remember that we legalized it. 1477 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 1478 if (Node->getNumValues() == 2) 1479 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 1480 return Result.getValue(Op.ResNo); 1481 case ISD::DYNAMIC_STACKALLOC: { 1482 MVT::ValueType VT = Node->getValueType(0); 1483 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1484 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the size. 1485 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the alignment. 1486 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1487 1488 Tmp1 = Result.getValue(0); 1489 Tmp2 = Result.getValue(1); 1490 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 1491 default: assert(0 && "This action is not supported yet!"); 1492 case TargetLowering::Expand: { 1493 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1494 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" 1495 " not tell us which reg is the stack pointer!"); 1496 SDOperand Chain = Tmp1.getOperand(0); 1497 1498 // Chain the dynamic stack allocation so that it doesn't modify the stack 1499 // pointer when other instructions are using the stack. 1500 Chain = DAG.getCALLSEQ_START(Chain, 1501 DAG.getConstant(0, TLI.getPointerTy())); 1502 1503 SDOperand Size = Tmp2.getOperand(1); 1504 SDOperand SP = DAG.getCopyFromReg(Chain, SPReg, VT); 1505 Chain = SP.getValue(1); 1506 unsigned Align = cast<ConstantSDNode>(Tmp3)->getValue(); 1507 unsigned StackAlign = 1508 TLI.getTargetMachine().getFrameInfo()->getStackAlignment(); 1509 if (Align > StackAlign) 1510 SP = DAG.getNode(ISD::AND, VT, SP, 1511 DAG.getConstant(-(uint64_t)Align, VT)); 1512 Tmp1 = DAG.getNode(ISD::SUB, VT, SP, Size); // Value 1513 Chain = DAG.getCopyToReg(Chain, SPReg, Tmp1); // Output chain 1514 1515 Tmp2 = 1516 DAG.getCALLSEQ_END(Chain, 1517 DAG.getConstant(0, TLI.getPointerTy()), 1518 DAG.getConstant(0, TLI.getPointerTy()), 1519 SDOperand()); 1520 1521 Tmp1 = LegalizeOp(Tmp1); 1522 Tmp2 = LegalizeOp(Tmp2); 1523 break; 1524 } 1525 case TargetLowering::Custom: 1526 Tmp3 = TLI.LowerOperation(Tmp1, DAG); 1527 if (Tmp3.Val) { 1528 Tmp1 = LegalizeOp(Tmp3); 1529 Tmp2 = LegalizeOp(Tmp3.getValue(1)); 1530 } 1531 break; 1532 case TargetLowering::Legal: 1533 break; 1534 } 1535 // Since this op produce two values, make sure to remember that we 1536 // legalized both of them. 1537 AddLegalizedOperand(SDOperand(Node, 0), Tmp1); 1538 AddLegalizedOperand(SDOperand(Node, 1), Tmp2); 1539 return Op.ResNo ? Tmp2 : Tmp1; 1540 } 1541 case ISD::INLINEASM: { 1542 SmallVector<SDOperand, 8> Ops(Node->op_begin(), Node->op_end()); 1543 bool Changed = false; 1544 // Legalize all of the operands of the inline asm, in case they are nodes 1545 // that need to be expanded or something. Note we skip the asm string and 1546 // all of the TargetConstant flags. 1547 SDOperand Op = LegalizeOp(Ops[0]); 1548 Changed = Op != Ops[0]; 1549 Ops[0] = Op; 1550 1551 bool HasInFlag = Ops.back().getValueType() == MVT::Flag; 1552 for (unsigned i = 2, e = Ops.size()-HasInFlag; i < e; ) { 1553 unsigned NumVals = cast<ConstantSDNode>(Ops[i])->getValue() >> 3; 1554 for (++i; NumVals; ++i, --NumVals) { 1555 SDOperand Op = LegalizeOp(Ops[i]); 1556 if (Op != Ops[i]) { 1557 Changed = true; 1558 Ops[i] = Op; 1559 } 1560 } 1561 } 1562 1563 if (HasInFlag) { 1564 Op = LegalizeOp(Ops.back()); 1565 Changed |= Op != Ops.back(); 1566 Ops.back() = Op; 1567 } 1568 1569 if (Changed) 1570 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1571 1572 // INLINE asm returns a chain and flag, make sure to add both to the map. 1573 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 1574 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 1575 return Result.getValue(Op.ResNo); 1576 } 1577 case ISD::BR: 1578 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1579 // Ensure that libcalls are emitted before a branch. 1580 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1581 Tmp1 = LegalizeOp(Tmp1); 1582 LastCALLSEQ_END = DAG.getEntryNode(); 1583 1584 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 1585 break; 1586 case ISD::BRIND: 1587 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1588 // Ensure that libcalls are emitted before a branch. 1589 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1590 Tmp1 = LegalizeOp(Tmp1); 1591 LastCALLSEQ_END = DAG.getEntryNode(); 1592 1593 switch (getTypeAction(Node->getOperand(1).getValueType())) { 1594 default: assert(0 && "Indirect target must be legal type (pointer)!"); 1595 case Legal: 1596 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the condition. 1597 break; 1598 } 1599 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1600 break; 1601 case ISD::BR_JT: 1602 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1603 // Ensure that libcalls are emitted before a branch. 1604 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1605 Tmp1 = LegalizeOp(Tmp1); 1606 LastCALLSEQ_END = DAG.getEntryNode(); 1607 1608 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the jumptable node. 1609 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 1610 1611 switch (TLI.getOperationAction(ISD::BR_JT, MVT::Other)) { 1612 default: assert(0 && "This action is not supported yet!"); 1613 case TargetLowering::Legal: break; 1614 case TargetLowering::Custom: 1615 Tmp1 = TLI.LowerOperation(Result, DAG); 1616 if (Tmp1.Val) Result = Tmp1; 1617 break; 1618 case TargetLowering::Expand: { 1619 SDOperand Chain = Result.getOperand(0); 1620 SDOperand Table = Result.getOperand(1); 1621 SDOperand Index = Result.getOperand(2); 1622 1623 MVT::ValueType PTy = TLI.getPointerTy(); 1624 MachineFunction &MF = DAG.getMachineFunction(); 1625 unsigned EntrySize = MF.getJumpTableInfo()->getEntrySize(); 1626 Index= DAG.getNode(ISD::MUL, PTy, Index, DAG.getConstant(EntrySize, PTy)); 1627 SDOperand Addr = DAG.getNode(ISD::ADD, PTy, Index, Table); 1628 1629 SDOperand LD; 1630 switch (EntrySize) { 1631 default: assert(0 && "Size of jump table not supported yet."); break; 1632 case 4: LD = DAG.getLoad(MVT::i32, Chain, Addr, NULL, 0); break; 1633 case 8: LD = DAG.getLoad(MVT::i64, Chain, Addr, NULL, 0); break; 1634 } 1635 1636 Addr = LD; 1637 if (TLI.getTargetMachine().getRelocationModel() == Reloc::PIC_) { 1638 // For PIC, the sequence is: 1639 // BRIND(load(Jumptable + index) + RelocBase) 1640 // RelocBase can be JumpTable, GOT or some sort of global base. 1641 if (PTy != MVT::i32) 1642 Addr = DAG.getNode(ISD::SIGN_EXTEND, PTy, Addr); 1643 Addr = DAG.getNode(ISD::ADD, PTy, Addr, 1644 TLI.getPICJumpTableRelocBase(Table, DAG)); 1645 } 1646 Result = DAG.getNode(ISD::BRIND, MVT::Other, LD.getValue(1), Addr); 1647 } 1648 } 1649 break; 1650 case ISD::BRCOND: 1651 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1652 // Ensure that libcalls are emitted before a return. 1653 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1654 Tmp1 = LegalizeOp(Tmp1); 1655 LastCALLSEQ_END = DAG.getEntryNode(); 1656 1657 switch (getTypeAction(Node->getOperand(1).getValueType())) { 1658 case Expand: assert(0 && "It's impossible to expand bools"); 1659 case Legal: 1660 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the condition. 1661 break; 1662 case Promote: 1663 Tmp2 = PromoteOp(Node->getOperand(1)); // Promote the condition. 1664 1665 // The top bits of the promoted condition are not necessarily zero, ensure 1666 // that the value is properly zero extended. 1667 if (!DAG.MaskedValueIsZero(Tmp2, 1668 MVT::getIntVTBitMask(Tmp2.getValueType())^1)) 1669 Tmp2 = DAG.getZeroExtendInReg(Tmp2, MVT::i1); 1670 break; 1671 } 1672 1673 // Basic block destination (Op#2) is always legal. 1674 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 1675 1676 switch (TLI.getOperationAction(ISD::BRCOND, MVT::Other)) { 1677 default: assert(0 && "This action is not supported yet!"); 1678 case TargetLowering::Legal: break; 1679 case TargetLowering::Custom: 1680 Tmp1 = TLI.LowerOperation(Result, DAG); 1681 if (Tmp1.Val) Result = Tmp1; 1682 break; 1683 case TargetLowering::Expand: 1684 // Expand brcond's setcc into its constituent parts and create a BR_CC 1685 // Node. 1686 if (Tmp2.getOpcode() == ISD::SETCC) { 1687 Result = DAG.getNode(ISD::BR_CC, MVT::Other, Tmp1, Tmp2.getOperand(2), 1688 Tmp2.getOperand(0), Tmp2.getOperand(1), 1689 Node->getOperand(2)); 1690 } else { 1691 Result = DAG.getNode(ISD::BR_CC, MVT::Other, Tmp1, 1692 DAG.getCondCode(ISD::SETNE), Tmp2, 1693 DAG.getConstant(0, Tmp2.getValueType()), 1694 Node->getOperand(2)); 1695 } 1696 break; 1697 } 1698 break; 1699 case ISD::BR_CC: 1700 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1701 // Ensure that libcalls are emitted before a branch. 1702 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1703 Tmp1 = LegalizeOp(Tmp1); 1704 Tmp2 = Node->getOperand(2); // LHS 1705 Tmp3 = Node->getOperand(3); // RHS 1706 Tmp4 = Node->getOperand(1); // CC 1707 1708 LegalizeSetCCOperands(Tmp2, Tmp3, Tmp4); 1709 LastCALLSEQ_END = DAG.getEntryNode(); 1710 1711 // If we didn't get both a LHS and RHS back from LegalizeSetCCOperands, 1712 // the LHS is a legal SETCC itself. In this case, we need to compare 1713 // the result against zero to select between true and false values. 1714 if (Tmp3.Val == 0) { 1715 Tmp3 = DAG.getConstant(0, Tmp2.getValueType()); 1716 Tmp4 = DAG.getCondCode(ISD::SETNE); 1717 } 1718 1719 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp4, Tmp2, Tmp3, 1720 Node->getOperand(4)); 1721 1722 switch (TLI.getOperationAction(ISD::BR_CC, Tmp3.getValueType())) { 1723 default: assert(0 && "Unexpected action for BR_CC!"); 1724 case TargetLowering::Legal: break; 1725 case TargetLowering::Custom: 1726 Tmp4 = TLI.LowerOperation(Result, DAG); 1727 if (Tmp4.Val) Result = Tmp4; 1728 break; 1729 } 1730 break; 1731 case ISD::LOAD: { 1732 LoadSDNode *LD = cast<LoadSDNode>(Node); 1733 Tmp1 = LegalizeOp(LD->getChain()); // Legalize the chain. 1734 Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer. 1735 1736 ISD::LoadExtType ExtType = LD->getExtensionType(); 1737 if (ExtType == ISD::NON_EXTLOAD) { 1738 MVT::ValueType VT = Node->getValueType(0); 1739 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset()); 1740 Tmp3 = Result.getValue(0); 1741 Tmp4 = Result.getValue(1); 1742 1743 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 1744 default: assert(0 && "This action is not supported yet!"); 1745 case TargetLowering::Legal: 1746 // If this is an unaligned load and the target doesn't support it, 1747 // expand it. 1748 if (!TLI.allowsUnalignedMemoryAccesses()) { 1749 unsigned ABIAlignment = TLI.getTargetData()-> 1750 getABITypeAlignment(MVT::getTypeForValueType(LD->getLoadedVT())); 1751 if (LD->getAlignment() < ABIAlignment){ 1752 Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.Val), DAG, 1753 TLI); 1754 Tmp3 = Result.getOperand(0); 1755 Tmp4 = Result.getOperand(1); 1756 Tmp3 = LegalizeOp(Tmp3); 1757 Tmp4 = LegalizeOp(Tmp4); 1758 } 1759 } 1760 break; 1761 case TargetLowering::Custom: 1762 Tmp1 = TLI.LowerOperation(Tmp3, DAG); 1763 if (Tmp1.Val) { 1764 Tmp3 = LegalizeOp(Tmp1); 1765 Tmp4 = LegalizeOp(Tmp1.getValue(1)); 1766 } 1767 break; 1768 case TargetLowering::Promote: { 1769 // Only promote a load of vector type to another. 1770 assert(MVT::isVector(VT) && "Cannot promote this load!"); 1771 // Change base type to a different vector type. 1772 MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 1773 1774 Tmp1 = DAG.getLoad(NVT, Tmp1, Tmp2, LD->getSrcValue(), 1775 LD->getSrcValueOffset(), 1776 LD->isVolatile(), LD->getAlignment()); 1777 Tmp3 = LegalizeOp(DAG.getNode(ISD::BIT_CONVERT, VT, Tmp1)); 1778 Tmp4 = LegalizeOp(Tmp1.getValue(1)); 1779 break; 1780 } 1781 } 1782 // Since loads produce two values, make sure to remember that we 1783 // legalized both of them. 1784 AddLegalizedOperand(SDOperand(Node, 0), Tmp3); 1785 AddLegalizedOperand(SDOperand(Node, 1), Tmp4); 1786 return Op.ResNo ? Tmp4 : Tmp3; 1787 } else { 1788 MVT::ValueType SrcVT = LD->getLoadedVT(); 1789 switch (TLI.getLoadXAction(ExtType, SrcVT)) { 1790 default: assert(0 && "This action is not supported yet!"); 1791 case TargetLowering::Promote: 1792 assert(SrcVT == MVT::i1 && 1793 "Can only promote extending LOAD from i1 -> i8!"); 1794 Result = DAG.getExtLoad(ExtType, Node->getValueType(0), Tmp1, Tmp2, 1795 LD->getSrcValue(), LD->getSrcValueOffset(), 1796 MVT::i8, LD->isVolatile(), LD->getAlignment()); 1797 Tmp1 = Result.getValue(0); 1798 Tmp2 = Result.getValue(1); 1799 break; 1800 case TargetLowering::Custom: 1801 isCustom = true; 1802 // FALLTHROUGH 1803 case TargetLowering::Legal: 1804 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset()); 1805 Tmp1 = Result.getValue(0); 1806 Tmp2 = Result.getValue(1); 1807 1808 if (isCustom) { 1809 Tmp3 = TLI.LowerOperation(Result, DAG); 1810 if (Tmp3.Val) { 1811 Tmp1 = LegalizeOp(Tmp3); 1812 Tmp2 = LegalizeOp(Tmp3.getValue(1)); 1813 } 1814 } else { 1815 // If this is an unaligned load and the target doesn't support it, 1816 // expand it. 1817 if (!TLI.allowsUnalignedMemoryAccesses()) { 1818 unsigned ABIAlignment = TLI.getTargetData()-> 1819 getABITypeAlignment(MVT::getTypeForValueType(LD->getLoadedVT())); 1820 if (LD->getAlignment() < ABIAlignment){ 1821 Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.Val), DAG, 1822 TLI); 1823 Tmp1 = Result.getOperand(0); 1824 Tmp2 = Result.getOperand(1); 1825 Tmp1 = LegalizeOp(Tmp1); 1826 Tmp2 = LegalizeOp(Tmp2); 1827 } 1828 } 1829 } 1830 break; 1831 case TargetLowering::Expand: 1832 // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND 1833 if (SrcVT == MVT::f32 && Node->getValueType(0) == MVT::f64) { 1834 SDOperand Load = DAG.getLoad(SrcVT, Tmp1, Tmp2, LD->getSrcValue(), 1835 LD->getSrcValueOffset(), 1836 LD->isVolatile(), LD->getAlignment()); 1837 Result = DAG.getNode(ISD::FP_EXTEND, Node->getValueType(0), Load); 1838 Tmp1 = LegalizeOp(Result); // Relegalize new nodes. 1839 Tmp2 = LegalizeOp(Load.getValue(1)); 1840 break; 1841 } 1842 assert(ExtType != ISD::EXTLOAD &&"EXTLOAD should always be supported!"); 1843 // Turn the unsupported load into an EXTLOAD followed by an explicit 1844 // zero/sign extend inreg. 1845 Result = DAG.getExtLoad(ISD::EXTLOAD, Node->getValueType(0), 1846 Tmp1, Tmp2, LD->getSrcValue(), 1847 LD->getSrcValueOffset(), SrcVT, 1848 LD->isVolatile(), LD->getAlignment()); 1849 SDOperand ValRes; 1850 if (ExtType == ISD::SEXTLOAD) 1851 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(), 1852 Result, DAG.getValueType(SrcVT)); 1853 else 1854 ValRes = DAG.getZeroExtendInReg(Result, SrcVT); 1855 Tmp1 = LegalizeOp(ValRes); // Relegalize new nodes. 1856 Tmp2 = LegalizeOp(Result.getValue(1)); // Relegalize new nodes. 1857 break; 1858 } 1859 // Since loads produce two values, make sure to remember that we legalized 1860 // both of them. 1861 AddLegalizedOperand(SDOperand(Node, 0), Tmp1); 1862 AddLegalizedOperand(SDOperand(Node, 1), Tmp2); 1863 return Op.ResNo ? Tmp2 : Tmp1; 1864 } 1865 } 1866 case ISD::EXTRACT_ELEMENT: { 1867 MVT::ValueType OpTy = Node->getOperand(0).getValueType(); 1868 switch (getTypeAction(OpTy)) { 1869 default: assert(0 && "EXTRACT_ELEMENT action for type unimplemented!"); 1870 case Legal: 1871 if (cast<ConstantSDNode>(Node->getOperand(1))->getValue()) { 1872 // 1 -> Hi 1873 Result = DAG.getNode(ISD::SRL, OpTy, Node->getOperand(0), 1874 DAG.getConstant(MVT::getSizeInBits(OpTy)/2, 1875 TLI.getShiftAmountTy())); 1876 Result = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), Result); 1877 } else { 1878 // 0 -> Lo 1879 Result = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), 1880 Node->getOperand(0)); 1881 } 1882 break; 1883 case Expand: 1884 // Get both the low and high parts. 1885 ExpandOp(Node->getOperand(0), Tmp1, Tmp2); 1886 if (cast<ConstantSDNode>(Node->getOperand(1))->getValue()) 1887 Result = Tmp2; // 1 -> Hi 1888 else 1889 Result = Tmp1; // 0 -> Lo 1890 break; 1891 } 1892 break; 1893 } 1894 1895 case ISD::CopyToReg: 1896 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1897 1898 assert(isTypeLegal(Node->getOperand(2).getValueType()) && 1899 "Register type must be legal!"); 1900 // Legalize the incoming value (must be a legal type). 1901 Tmp2 = LegalizeOp(Node->getOperand(2)); 1902 if (Node->getNumValues() == 1) { 1903 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1), Tmp2); 1904 } else { 1905 assert(Node->getNumValues() == 2 && "Unknown CopyToReg"); 1906 if (Node->getNumOperands() == 4) { 1907 Tmp3 = LegalizeOp(Node->getOperand(3)); 1908 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1), Tmp2, 1909 Tmp3); 1910 } else { 1911 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1),Tmp2); 1912 } 1913 1914 // Since this produces two values, make sure to remember that we legalized 1915 // both of them. 1916 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 1917 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 1918 return Result; 1919 } 1920 break; 1921 1922 case ISD::RET: 1923 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1924 1925 // Ensure that libcalls are emitted before a return. 1926 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1927 Tmp1 = LegalizeOp(Tmp1); 1928 LastCALLSEQ_END = DAG.getEntryNode(); 1929 1930 switch (Node->getNumOperands()) { 1931 case 3: // ret val 1932 Tmp2 = Node->getOperand(1); 1933 Tmp3 = Node->getOperand(2); // Signness 1934 switch (getTypeAction(Tmp2.getValueType())) { 1935 case Legal: 1936 Result = DAG.UpdateNodeOperands(Result, Tmp1, LegalizeOp(Tmp2), Tmp3); 1937 break; 1938 case Expand: 1939 if (!MVT::isVector(Tmp2.getValueType())) { 1940 SDOperand Lo, Hi; 1941 ExpandOp(Tmp2, Lo, Hi); 1942 1943 // Big endian systems want the hi reg first. 1944 if (!TLI.isLittleEndian()) 1945 std::swap(Lo, Hi); 1946 1947 if (Hi.Val) 1948 Result = DAG.getNode(ISD::RET, MVT::Other, Tmp1, Lo, Tmp3, Hi,Tmp3); 1949 else 1950 Result = DAG.getNode(ISD::RET, MVT::Other, Tmp1, Lo, Tmp3); 1951 Result = LegalizeOp(Result); 1952 } else { 1953 SDNode *InVal = Tmp2.Val; 1954 int InIx = Tmp2.ResNo; 1955 unsigned NumElems = MVT::getVectorNumElements(InVal->getValueType(InIx)); 1956 MVT::ValueType EVT = MVT::getVectorElementType(InVal->getValueType(InIx)); 1957 1958 // Figure out if there is a simple type corresponding to this Vector 1959 // type. If so, convert to the vector type. 1960 MVT::ValueType TVT = MVT::getVectorType(EVT, NumElems); 1961 if (TLI.isTypeLegal(TVT)) { 1962 // Turn this into a return of the vector type. 1963 Tmp2 = LegalizeOp(Tmp2); 1964 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1965 } else if (NumElems == 1) { 1966 // Turn this into a return of the scalar type. 1967 Tmp2 = ScalarizeVectorOp(Tmp2); 1968 Tmp2 = LegalizeOp(Tmp2); 1969 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1970 1971 // FIXME: Returns of gcc generic vectors smaller than a legal type 1972 // should be returned in integer registers! 1973 1974 // The scalarized value type may not be legal, e.g. it might require 1975 // promotion or expansion. Relegalize the return. 1976 Result = LegalizeOp(Result); 1977 } else { 1978 // FIXME: Returns of gcc generic vectors larger than a legal vector 1979 // type should be returned by reference! 1980 SDOperand Lo, Hi; 1981 SplitVectorOp(Tmp2, Lo, Hi); 1982 Result = DAG.getNode(ISD::RET, MVT::Other, Tmp1, Lo, Tmp3, Hi,Tmp3); 1983 Result = LegalizeOp(Result); 1984 } 1985 } 1986 break; 1987 case Promote: 1988 Tmp2 = PromoteOp(Node->getOperand(1)); 1989 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1990 Result = LegalizeOp(Result); 1991 break; 1992 } 1993 break; 1994 case 1: // ret void 1995 Result = DAG.UpdateNodeOperands(Result, Tmp1); 1996 break; 1997 default: { // ret <values> 1998 SmallVector<SDOperand, 8> NewValues; 1999 NewValues.push_back(Tmp1); 2000 for (unsigned i = 1, e = Node->getNumOperands(); i < e; i += 2) 2001 switch (getTypeAction(Node->getOperand(i).getValueType())) { 2002 case Legal: 2003 NewValues.push_back(LegalizeOp(Node->getOperand(i))); 2004 NewValues.push_back(Node->getOperand(i+1)); 2005 break; 2006 case Expand: { 2007 SDOperand Lo, Hi; 2008 assert(!MVT::isExtendedVT(Node->getOperand(i).getValueType()) && 2009 "FIXME: TODO: implement returning non-legal vector types!"); 2010 ExpandOp(Node->getOperand(i), Lo, Hi); 2011 NewValues.push_back(Lo); 2012 NewValues.push_back(Node->getOperand(i+1)); 2013 if (Hi.Val) { 2014 NewValues.push_back(Hi); 2015 NewValues.push_back(Node->getOperand(i+1)); 2016 } 2017 break; 2018 } 2019 case Promote: 2020 assert(0 && "Can't promote multiple return value yet!"); 2021 } 2022 2023 if (NewValues.size() == Node->getNumOperands()) 2024 Result = DAG.UpdateNodeOperands(Result, &NewValues[0],NewValues.size()); 2025 else 2026 Result = DAG.getNode(ISD::RET, MVT::Other, 2027 &NewValues[0], NewValues.size()); 2028 break; 2029 } 2030 } 2031 2032 if (Result.getOpcode() == ISD::RET) { 2033 switch (TLI.getOperationAction(Result.getOpcode(), MVT::Other)) { 2034 default: assert(0 && "This action is not supported yet!"); 2035 case TargetLowering::Legal: break; 2036 case TargetLowering::Custom: 2037 Tmp1 = TLI.LowerOperation(Result, DAG); 2038 if (Tmp1.Val) Result = Tmp1; 2039 break; 2040 } 2041 } 2042 break; 2043 case ISD::STORE: { 2044 StoreSDNode *ST = cast<StoreSDNode>(Node); 2045 Tmp1 = LegalizeOp(ST->getChain()); // Legalize the chain. 2046 Tmp2 = LegalizeOp(ST->getBasePtr()); // Legalize the pointer. 2047 int SVOffset = ST->getSrcValueOffset(); 2048 unsigned Alignment = ST->getAlignment(); 2049 bool isVolatile = ST->isVolatile(); 2050 2051 if (!ST->isTruncatingStore()) { 2052 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 2053 // FIXME: We shouldn't do this for TargetConstantFP's. 2054 // FIXME: move this to the DAG Combiner! Note that we can't regress due 2055 // to phase ordering between legalized code and the dag combiner. This 2056 // probably means that we need to integrate dag combiner and legalizer 2057 // together. 2058 // We generally can't do this one for long doubles. 2059 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) { 2060 if (CFP->getValueType(0) == MVT::f32 && 2061 getTypeAction(MVT::i32) == Legal) { 2062 Tmp3 = DAG.getConstant((uint32_t)CFP->getValueAPF(). 2063 convertToAPInt().getZExtValue(), 2064 MVT::i32); 2065 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2066 SVOffset, isVolatile, Alignment); 2067 break; 2068 } else if (CFP->getValueType(0) == MVT::f64) { 2069 // If this target supports 64-bit registers, do a single 64-bit store. 2070 if (getTypeAction(MVT::i64) == Legal) { 2071 Tmp3 = DAG.getConstant(CFP->getValueAPF().convertToAPInt(). 2072 getZExtValue(), MVT::i64); 2073 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2074 SVOffset, isVolatile, Alignment); 2075 break; 2076 } else if (getTypeAction(MVT::i32) == Legal) { 2077 // Otherwise, if the target supports 32-bit registers, use 2 32-bit 2078 // stores. If the target supports neither 32- nor 64-bits, this 2079 // xform is certainly not worth it. 2080 uint64_t IntVal =CFP->getValueAPF().convertToAPInt().getZExtValue(); 2081 SDOperand Lo = DAG.getConstant(uint32_t(IntVal), MVT::i32); 2082 SDOperand Hi = DAG.getConstant(uint32_t(IntVal >>32), MVT::i32); 2083 if (!TLI.isLittleEndian()) std::swap(Lo, Hi); 2084 2085 Lo = DAG.getStore(Tmp1, Lo, Tmp2, ST->getSrcValue(), 2086 SVOffset, isVolatile, Alignment); 2087 Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, 2088 getIntPtrConstant(4)); 2089 Hi = DAG.getStore(Tmp1, Hi, Tmp2, ST->getSrcValue(), SVOffset+4, 2090 isVolatile, MinAlign(Alignment, 4U)); 2091 2092 Result = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi); 2093 break; 2094 } 2095 } 2096 } 2097 2098 switch (getTypeAction(ST->getStoredVT())) { 2099 case Legal: { 2100 Tmp3 = LegalizeOp(ST->getValue()); 2101 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2, 2102 ST->getOffset()); 2103 2104 MVT::ValueType VT = Tmp3.getValueType(); 2105 switch (TLI.getOperationAction(ISD::STORE, VT)) { 2106 default: assert(0 && "This action is not supported yet!"); 2107 case TargetLowering::Legal: 2108 // If this is an unaligned store and the target doesn't support it, 2109 // expand it. 2110 if (!TLI.allowsUnalignedMemoryAccesses()) { 2111 unsigned ABIAlignment = TLI.getTargetData()-> 2112 getABITypeAlignment(MVT::getTypeForValueType(ST->getStoredVT())); 2113 if (ST->getAlignment() < ABIAlignment) 2114 Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.Val), DAG, 2115 TLI); 2116 } 2117 break; 2118 case TargetLowering::Custom: 2119 Tmp1 = TLI.LowerOperation(Result, DAG); 2120 if (Tmp1.Val) Result = Tmp1; 2121 break; 2122 case TargetLowering::Promote: 2123 assert(MVT::isVector(VT) && "Unknown legal promote case!"); 2124 Tmp3 = DAG.getNode(ISD::BIT_CONVERT, 2125 TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3); 2126 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, 2127 ST->getSrcValue(), SVOffset, isVolatile, 2128 Alignment); 2129 break; 2130 } 2131 break; 2132 } 2133 case Promote: 2134 // Truncate the value and store the result. 2135 Tmp3 = PromoteOp(ST->getValue()); 2136 Result = DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2137 SVOffset, ST->getStoredVT(), 2138 isVolatile, Alignment); 2139 break; 2140 2141 case Expand: 2142 unsigned IncrementSize = 0; 2143 SDOperand Lo, Hi; 2144 2145 // If this is a vector type, then we have to calculate the increment as 2146 // the product of the element size in bytes, and the number of elements 2147 // in the high half of the vector. 2148 if (MVT::isVector(ST->getValue().getValueType())) { 2149 SDNode *InVal = ST->getValue().Val; 2150 int InIx = ST->getValue().ResNo; 2151 unsigned NumElems = MVT::getVectorNumElements(InVal->getValueType(InIx)); 2152 MVT::ValueType EVT = MVT::getVectorElementType(InVal->getValueType(InIx)); 2153 2154 // Figure out if there is a simple type corresponding to this Vector 2155 // type. If so, convert to the vector type. 2156 MVT::ValueType TVT = MVT::getVectorType(EVT, NumElems); 2157 if (TLI.isTypeLegal(TVT)) { 2158 // Turn this into a normal store of the vector type. 2159 Tmp3 = LegalizeOp(Node->getOperand(1)); 2160 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2161 SVOffset, isVolatile, Alignment); 2162 Result = LegalizeOp(Result); 2163 break; 2164 } else if (NumElems == 1) { 2165 // Turn this into a normal store of the scalar type. 2166 Tmp3 = ScalarizeVectorOp(Node->getOperand(1)); 2167 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2168 SVOffset, isVolatile, Alignment); 2169 // The scalarized value type may not be legal, e.g. it might require 2170 // promotion or expansion. Relegalize the scalar store. 2171 Result = LegalizeOp(Result); 2172 break; 2173 } else { 2174 SplitVectorOp(Node->getOperand(1), Lo, Hi); 2175 IncrementSize = MVT::getVectorNumElements(Lo.Val->getValueType(0)) * 2176 MVT::getSizeInBits(EVT)/8; 2177 } 2178 } else { 2179 ExpandOp(Node->getOperand(1), Lo, Hi); 2180 IncrementSize = Hi.Val ? MVT::getSizeInBits(Hi.getValueType())/8 : 0; 2181 2182 if (!TLI.isLittleEndian()) 2183 std::swap(Lo, Hi); 2184 } 2185 2186 Lo = DAG.getStore(Tmp1, Lo, Tmp2, ST->getSrcValue(), 2187 SVOffset, isVolatile, Alignment); 2188 2189 if (Hi.Val == NULL) { 2190 // Must be int <-> float one-to-one expansion. 2191 Result = Lo; 2192 break; 2193 } 2194 2195 Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, 2196 getIntPtrConstant(IncrementSize)); 2197 assert(isTypeLegal(Tmp2.getValueType()) && 2198 "Pointers must be legal!"); 2199 SVOffset += IncrementSize; 2200 Alignment = MinAlign(Alignment, IncrementSize); 2201 Hi = DAG.getStore(Tmp1, Hi, Tmp2, ST->getSrcValue(), 2202 SVOffset, isVolatile, Alignment); 2203 Result = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi); 2204 break; 2205 } 2206 } else { 2207 // Truncating store 2208 assert(isTypeLegal(ST->getValue().getValueType()) && 2209 "Cannot handle illegal TRUNCSTORE yet!"); 2210 Tmp3 = LegalizeOp(ST->getValue()); 2211 2212 // The only promote case we handle is TRUNCSTORE:i1 X into 2213 // -> TRUNCSTORE:i8 (and X, 1) 2214 if (ST->getStoredVT() == MVT::i1 && 2215 TLI.getStoreXAction(MVT::i1) == TargetLowering::Promote) { 2216 // Promote the bool to a mask then store. 2217 Tmp3 = DAG.getNode(ISD::AND, Tmp3.getValueType(), Tmp3, 2218 DAG.getConstant(1, Tmp3.getValueType())); 2219 Result = DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2220 SVOffset, MVT::i8, 2221 isVolatile, Alignment); 2222 } else if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() || 2223 Tmp2 != ST->getBasePtr()) { 2224 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2, 2225 ST->getOffset()); 2226 } 2227 2228 MVT::ValueType StVT = cast<StoreSDNode>(Result.Val)->getStoredVT(); 2229 switch (TLI.getStoreXAction(StVT)) { 2230 default: assert(0 && "This action is not supported yet!"); 2231 case TargetLowering::Legal: 2232 // If this is an unaligned store and the target doesn't support it, 2233 // expand it. 2234 if (!TLI.allowsUnalignedMemoryAccesses()) { 2235 unsigned ABIAlignment = TLI.getTargetData()-> 2236 getABITypeAlignment(MVT::getTypeForValueType(ST->getStoredVT())); 2237 if (ST->getAlignment() < ABIAlignment) 2238 Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.Val), DAG, 2239 TLI); 2240 } 2241 break; 2242 case TargetLowering::Custom: 2243 Tmp1 = TLI.LowerOperation(Result, DAG); 2244 if (Tmp1.Val) Result = Tmp1; 2245 break; 2246 } 2247 } 2248 break; 2249 } 2250 case ISD::PCMARKER: 2251 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2252 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 2253 break; 2254 case ISD::STACKSAVE: 2255 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2256 Result = DAG.UpdateNodeOperands(Result, Tmp1); 2257 Tmp1 = Result.getValue(0); 2258 Tmp2 = Result.getValue(1); 2259 2260 switch (TLI.getOperationAction(ISD::STACKSAVE, MVT::Other)) { 2261 default: assert(0 && "This action is not supported yet!"); 2262 case TargetLowering::Legal: break; 2263 case TargetLowering::Custom: 2264 Tmp3 = TLI.LowerOperation(Result, DAG); 2265 if (Tmp3.Val) { 2266 Tmp1 = LegalizeOp(Tmp3); 2267 Tmp2 = LegalizeOp(Tmp3.getValue(1)); 2268 } 2269 break; 2270 case TargetLowering::Expand: 2271 // Expand to CopyFromReg if the target set 2272 // StackPointerRegisterToSaveRestore. 2273 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 2274 Tmp1 = DAG.getCopyFromReg(Result.getOperand(0), SP, 2275 Node->getValueType(0)); 2276 Tmp2 = Tmp1.getValue(1); 2277 } else { 2278 Tmp1 = DAG.getNode(ISD::UNDEF, Node->getValueType(0)); 2279 Tmp2 = Node->getOperand(0); 2280 } 2281 break; 2282 } 2283 2284 // Since stacksave produce two values, make sure to remember that we 2285 // legalized both of them. 2286 AddLegalizedOperand(SDOperand(Node, 0), Tmp1); 2287 AddLegalizedOperand(SDOperand(Node, 1), Tmp2); 2288 return Op.ResNo ? Tmp2 : Tmp1; 2289 2290 case ISD::STACKRESTORE: 2291 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2292 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. 2293 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 2294 2295 switch (TLI.getOperationAction(ISD::STACKRESTORE, MVT::Other)) { 2296 default: assert(0 && "This action is not supported yet!"); 2297 case TargetLowering::Legal: break; 2298 case TargetLowering::Custom: 2299 Tmp1 = TLI.LowerOperation(Result, DAG); 2300 if (Tmp1.Val) Result = Tmp1; 2301 break; 2302 case TargetLowering::Expand: 2303 // Expand to CopyToReg if the target set 2304 // StackPointerRegisterToSaveRestore. 2305 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 2306 Result = DAG.getCopyToReg(Tmp1, SP, Tmp2); 2307 } else { 2308 Result = Tmp1; 2309 } 2310 break; 2311 } 2312 break; 2313 2314 case ISD::READCYCLECOUNTER: 2315 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain 2316 Result = DAG.UpdateNodeOperands(Result, Tmp1); 2317 switch (TLI.getOperationAction(ISD::READCYCLECOUNTER, 2318 Node->getValueType(0))) { 2319 default: assert(0 && "This action is not supported yet!"); 2320 case TargetLowering::Legal: 2321 Tmp1 = Result.getValue(0); 2322 Tmp2 = Result.getValue(1); 2323 break; 2324 case TargetLowering::Custom: 2325 Result = TLI.LowerOperation(Result, DAG); 2326 Tmp1 = LegalizeOp(Result.getValue(0)); 2327 Tmp2 = LegalizeOp(Result.getValue(1)); 2328 break; 2329 } 2330 2331 // Since rdcc produce two values, make sure to remember that we legalized 2332 // both of them. 2333 AddLegalizedOperand(SDOperand(Node, 0), Tmp1); 2334 AddLegalizedOperand(SDOperand(Node, 1), Tmp2); 2335 return Result; 2336 2337 case ISD::SELECT: 2338 switch (getTypeAction(Node->getOperand(0).getValueType())) { 2339 case Expand: assert(0 && "It's impossible to expand bools"); 2340 case Legal: 2341 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the condition. 2342 break; 2343 case Promote: 2344 Tmp1 = PromoteOp(Node->getOperand(0)); // Promote the condition. 2345 // Make sure the condition is either zero or one. 2346 if (!DAG.MaskedValueIsZero(Tmp1, 2347 MVT::getIntVTBitMask(Tmp1.getValueType())^1)) 2348 Tmp1 = DAG.getZeroExtendInReg(Tmp1, MVT::i1); 2349 break; 2350 } 2351 Tmp2 = LegalizeOp(Node->getOperand(1)); // TrueVal 2352 Tmp3 = LegalizeOp(Node->getOperand(2)); // FalseVal 2353 2354 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2355 2356 switch (TLI.getOperationAction(ISD::SELECT, Tmp2.getValueType())) { 2357 default: assert(0 && "This action is not supported yet!"); 2358 case TargetLowering::Legal: break; 2359 case TargetLowering::Custom: { 2360 Tmp1 = TLI.LowerOperation(Result, DAG); 2361 if (Tmp1.Val) Result = Tmp1; 2362 break; 2363 } 2364 case TargetLowering::Expand: 2365 if (Tmp1.getOpcode() == ISD::SETCC) { 2366 Result = DAG.getSelectCC(Tmp1.getOperand(0), Tmp1.getOperand(1), 2367 Tmp2, Tmp3, 2368 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); 2369 } else { 2370 Result = DAG.getSelectCC(Tmp1, 2371 DAG.getConstant(0, Tmp1.getValueType()), 2372 Tmp2, Tmp3, ISD::SETNE); 2373 } 2374 break; 2375 case TargetLowering::Promote: { 2376 MVT::ValueType NVT = 2377 TLI.getTypeToPromoteTo(ISD::SELECT, Tmp2.getValueType()); 2378 unsigned ExtOp, TruncOp; 2379 if (MVT::isVector(Tmp2.getValueType())) { 2380 ExtOp = ISD::BIT_CONVERT; 2381 TruncOp = ISD::BIT_CONVERT; 2382 } else if (MVT::isInteger(Tmp2.getValueType())) { 2383 ExtOp = ISD::ANY_EXTEND; 2384 TruncOp = ISD::TRUNCATE; 2385 } else { 2386 ExtOp = ISD::FP_EXTEND; 2387 TruncOp = ISD::FP_ROUND; 2388 } 2389 // Promote each of the values to the new type. 2390 Tmp2 = DAG.getNode(ExtOp, NVT, Tmp2); 2391 Tmp3 = DAG.getNode(ExtOp, NVT, Tmp3); 2392 // Perform the larger operation, then round down. 2393 Result = DAG.getNode(ISD::SELECT, NVT, Tmp1, Tmp2,Tmp3); 2394 Result = DAG.getNode(TruncOp, Node->getValueType(0), Result); 2395 break; 2396 } 2397 } 2398 break; 2399 case ISD::SELECT_CC: { 2400 Tmp1 = Node->getOperand(0); // LHS 2401 Tmp2 = Node->getOperand(1); // RHS 2402 Tmp3 = LegalizeOp(Node->getOperand(2)); // True 2403 Tmp4 = LegalizeOp(Node->getOperand(3)); // False 2404 SDOperand CC = Node->getOperand(4); 2405 2406 LegalizeSetCCOperands(Tmp1, Tmp2, CC); 2407 2408 // If we didn't get both a LHS and RHS back from LegalizeSetCCOperands, 2409 // the LHS is a legal SETCC itself. In this case, we need to compare 2410 // the result against zero to select between true and false values. 2411 if (Tmp2.Val == 0) { 2412 Tmp2 = DAG.getConstant(0, Tmp1.getValueType()); 2413 CC = DAG.getCondCode(ISD::SETNE); 2414 } 2415 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, Tmp4, CC); 2416 2417 // Everything is legal, see if we should expand this op or something. 2418 switch (TLI.getOperationAction(ISD::SELECT_CC, Tmp3.getValueType())) { 2419 default: assert(0 && "This action is not supported yet!"); 2420 case TargetLowering::Legal: break; 2421 case TargetLowering::Custom: 2422 Tmp1 = TLI.LowerOperation(Result, DAG); 2423 if (Tmp1.Val) Result = Tmp1; 2424 break; 2425 } 2426 break; 2427 } 2428 case ISD::SETCC: 2429 Tmp1 = Node->getOperand(0); 2430 Tmp2 = Node->getOperand(1); 2431 Tmp3 = Node->getOperand(2); 2432 LegalizeSetCCOperands(Tmp1, Tmp2, Tmp3); 2433 2434 // If we had to Expand the SetCC operands into a SELECT node, then it may 2435 // not always be possible to return a true LHS & RHS. In this case, just 2436 // return the value we legalized, returned in the LHS 2437 if (Tmp2.Val == 0) { 2438 Result = Tmp1; 2439 break; 2440 } 2441 2442 switch (TLI.getOperationAction(ISD::SETCC, Tmp1.getValueType())) { 2443 default: assert(0 && "Cannot handle this action for SETCC yet!"); 2444 case TargetLowering::Custom: 2445 isCustom = true; 2446 // FALLTHROUGH. 2447 case TargetLowering::Legal: 2448 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2449 if (isCustom) { 2450 Tmp4 = TLI.LowerOperation(Result, DAG); 2451 if (Tmp4.Val) Result = Tmp4; 2452 } 2453 break; 2454 case TargetLowering::Promote: { 2455 // First step, figure out the appropriate operation to use. 2456 // Allow SETCC to not be supported for all legal data types 2457 // Mostly this targets FP 2458 MVT::ValueType NewInTy = Node->getOperand(0).getValueType(); 2459 MVT::ValueType OldVT = NewInTy; OldVT = OldVT; 2460 2461 // Scan for the appropriate larger type to use. 2462 while (1) { 2463 NewInTy = (MVT::ValueType)(NewInTy+1); 2464 2465 assert(MVT::isInteger(NewInTy) == MVT::isInteger(OldVT) && 2466 "Fell off of the edge of the integer world"); 2467 assert(MVT::isFloatingPoint(NewInTy) == MVT::isFloatingPoint(OldVT) && 2468 "Fell off of the edge of the floating point world"); 2469 2470 // If the target supports SETCC of this type, use it. 2471 if (TLI.isOperationLegal(ISD::SETCC, NewInTy)) 2472 break; 2473 } 2474 if (MVT::isInteger(NewInTy)) 2475 assert(0 && "Cannot promote Legal Integer SETCC yet"); 2476 else { 2477 Tmp1 = DAG.getNode(ISD::FP_EXTEND, NewInTy, Tmp1); 2478 Tmp2 = DAG.getNode(ISD::FP_EXTEND, NewInTy, Tmp2); 2479 } 2480 Tmp1 = LegalizeOp(Tmp1); 2481 Tmp2 = LegalizeOp(Tmp2); 2482 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2483 Result = LegalizeOp(Result); 2484 break; 2485 } 2486 case TargetLowering::Expand: 2487 // Expand a setcc node into a select_cc of the same condition, lhs, and 2488 // rhs that selects between const 1 (true) and const 0 (false). 2489 MVT::ValueType VT = Node->getValueType(0); 2490 Result = DAG.getNode(ISD::SELECT_CC, VT, Tmp1, Tmp2, 2491 DAG.getConstant(1, VT), DAG.getConstant(0, VT), 2492 Tmp3); 2493 break; 2494 } 2495 break; 2496 case ISD::MEMSET: 2497 case ISD::MEMCPY: 2498 case ISD::MEMMOVE: { 2499 Tmp1 = LegalizeOp(Node->getOperand(0)); // Chain 2500 Tmp2 = LegalizeOp(Node->getOperand(1)); // Pointer 2501 2502 if (Node->getOpcode() == ISD::MEMSET) { // memset = ubyte 2503 switch (getTypeAction(Node->getOperand(2).getValueType())) { 2504 case Expand: assert(0 && "Cannot expand a byte!"); 2505 case Legal: 2506 Tmp3 = LegalizeOp(Node->getOperand(2)); 2507 break; 2508 case Promote: 2509 Tmp3 = PromoteOp(Node->getOperand(2)); 2510 break; 2511 } 2512 } else { 2513 Tmp3 = LegalizeOp(Node->getOperand(2)); // memcpy/move = pointer, 2514 } 2515 2516 SDOperand Tmp4; 2517 switch (getTypeAction(Node->getOperand(3).getValueType())) { 2518 case Expand: { 2519 // Length is too big, just take the lo-part of the length. 2520 SDOperand HiPart; 2521 ExpandOp(Node->getOperand(3), Tmp4, HiPart); 2522 break; 2523 } 2524 case Legal: 2525 Tmp4 = LegalizeOp(Node->getOperand(3)); 2526 break; 2527 case Promote: 2528 Tmp4 = PromoteOp(Node->getOperand(3)); 2529 break; 2530 } 2531 2532 SDOperand Tmp5; 2533 switch (getTypeAction(Node->getOperand(4).getValueType())) { // uint 2534 case Expand: assert(0 && "Cannot expand this yet!"); 2535 case Legal: 2536 Tmp5 = LegalizeOp(Node->getOperand(4)); 2537 break; 2538 case Promote: 2539 Tmp5 = PromoteOp(Node->getOperand(4)); 2540 break; 2541 } 2542 2543 SDOperand Tmp6; 2544 switch (getTypeAction(Node->getOperand(5).getValueType())) { // bool 2545 case Expand: assert(0 && "Cannot expand this yet!"); 2546 case Legal: 2547 Tmp6 = LegalizeOp(Node->getOperand(5)); 2548 break; 2549 case Promote: 2550 Tmp6 = PromoteOp(Node->getOperand(5)); 2551 break; 2552 } 2553 2554 switch (TLI.getOperationAction(Node->getOpcode(), MVT::Other)) { 2555 default: assert(0 && "This action not implemented for this operation!"); 2556 case TargetLowering::Custom: 2557 isCustom = true; 2558 // FALLTHROUGH 2559 case TargetLowering::Legal: { 2560 SDOperand Ops[] = { Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6 }; 2561 Result = DAG.UpdateNodeOperands(Result, Ops, 6); 2562 if (isCustom) { 2563 Tmp1 = TLI.LowerOperation(Result, DAG); 2564 if (Tmp1.Val) Result = Tmp1; 2565 } 2566 break; 2567 } 2568 case TargetLowering::Expand: { 2569 // Otherwise, the target does not support this operation. Lower the 2570 // operation to an explicit libcall as appropriate. 2571 MVT::ValueType IntPtr = TLI.getPointerTy(); 2572 const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(); 2573 TargetLowering::ArgListTy Args; 2574 TargetLowering::ArgListEntry Entry; 2575 2576 const char *FnName = 0; 2577 if (Node->getOpcode() == ISD::MEMSET) { 2578 Entry.Node = Tmp2; Entry.Ty = IntPtrTy; 2579 Args.push_back(Entry); 2580 // Extend the (previously legalized) ubyte argument to be an int value 2581 // for the call. 2582 if (Tmp3.getValueType() > MVT::i32) 2583 Tmp3 = DAG.getNode(ISD::TRUNCATE, MVT::i32, Tmp3); 2584 else 2585 Tmp3 = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Tmp3); 2586 Entry.Node = Tmp3; Entry.Ty = Type::Int32Ty; Entry.isSExt = true; 2587 Args.push_back(Entry); 2588 Entry.Node = Tmp4; Entry.Ty = IntPtrTy; Entry.isSExt = false; 2589 Args.push_back(Entry); 2590 2591 FnName = "memset"; 2592 } else if (Node->getOpcode() == ISD::MEMCPY || 2593 Node->getOpcode() == ISD::MEMMOVE) { 2594 Entry.Ty = IntPtrTy; 2595 Entry.Node = Tmp2; Args.push_back(Entry); 2596 Entry.Node = Tmp3; Args.push_back(Entry); 2597 Entry.Node = Tmp4; Args.push_back(Entry); 2598 FnName = Node->getOpcode() == ISD::MEMMOVE ? "memmove" : "memcpy"; 2599 } else { 2600 assert(0 && "Unknown op!"); 2601 } 2602 2603 std::pair<SDOperand,SDOperand> CallResult = 2604 TLI.LowerCallTo(Tmp1, Type::VoidTy, false, false, CallingConv::C, false, 2605 DAG.getExternalSymbol(FnName, IntPtr), Args, DAG); 2606 Result = CallResult.second; 2607 break; 2608 } 2609 } 2610 break; 2611 } 2612 2613 case ISD::SHL_PARTS: 2614 case ISD::SRA_PARTS: 2615 case ISD::SRL_PARTS: { 2616 SmallVector<SDOperand, 8> Ops; 2617 bool Changed = false; 2618 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 2619 Ops.push_back(LegalizeOp(Node->getOperand(i))); 2620 Changed |= Ops.back() != Node->getOperand(i); 2621 } 2622 if (Changed) 2623 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 2624 2625 switch (TLI.getOperationAction(Node->getOpcode(), 2626 Node->getValueType(0))) { 2627 default: assert(0 && "This action is not supported yet!"); 2628 case TargetLowering::Legal: break; 2629 case TargetLowering::Custom: 2630 Tmp1 = TLI.LowerOperation(Result, DAG); 2631 if (Tmp1.Val) { 2632 SDOperand Tmp2, RetVal(0, 0); 2633 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) { 2634 Tmp2 = LegalizeOp(Tmp1.getValue(i)); 2635 AddLegalizedOperand(SDOperand(Node, i), Tmp2); 2636 if (i == Op.ResNo) 2637 RetVal = Tmp2; 2638 } 2639 assert(RetVal.Val && "Illegal result number"); 2640 return RetVal; 2641 } 2642 break; 2643 } 2644 2645 // Since these produce multiple values, make sure to remember that we 2646 // legalized all of them. 2647 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 2648 AddLegalizedOperand(SDOperand(Node, i), Result.getValue(i)); 2649 return Result.getValue(Op.ResNo); 2650 } 2651 2652 // Binary operators 2653 case ISD::ADD: 2654 case ISD::SUB: 2655 case ISD::MUL: 2656 case ISD::MULHS: 2657 case ISD::MULHU: 2658 case ISD::UDIV: 2659 case ISD::SDIV: 2660 case ISD::AND: 2661 case ISD::OR: 2662 case ISD::XOR: 2663 case ISD::SHL: 2664 case ISD::SRL: 2665 case ISD::SRA: 2666 case ISD::FADD: 2667 case ISD::FSUB: 2668 case ISD::FMUL: 2669 case ISD::FDIV: 2670 case ISD::FPOW: 2671 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 2672 switch (getTypeAction(Node->getOperand(1).getValueType())) { 2673 case Expand: assert(0 && "Not possible"); 2674 case Legal: 2675 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the RHS. 2676 break; 2677 case Promote: 2678 Tmp2 = PromoteOp(Node->getOperand(1)); // Promote the RHS. 2679 break; 2680 } 2681 2682 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 2683 2684 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 2685 default: assert(0 && "BinOp legalize operation not supported"); 2686 case TargetLowering::Legal: break; 2687 case TargetLowering::Custom: 2688 Tmp1 = TLI.LowerOperation(Result, DAG); 2689 if (Tmp1.Val) Result = Tmp1; 2690 break; 2691 case TargetLowering::Expand: { 2692 MVT::ValueType VT = Op.getValueType(); 2693 2694 // See if multiply or divide can be lowered using two-result operations. 2695 SDVTList VTs = DAG.getVTList(VT, VT); 2696 if (Node->getOpcode() == ISD::MUL) { 2697 // We just need the low half of the multiply; try both the signed 2698 // and unsigned forms. If the target supports both SMUL_LOHI and 2699 // UMUL_LOHI, form a preference by checking which forms of plain 2700 // MULH it supports. 2701 bool HasSMUL_LOHI = TLI.isOperationLegal(ISD::SMUL_LOHI, VT); 2702 bool HasUMUL_LOHI = TLI.isOperationLegal(ISD::UMUL_LOHI, VT); 2703 bool HasMULHS = TLI.isOperationLegal(ISD::MULHS, VT); 2704 bool HasMULHU = TLI.isOperationLegal(ISD::MULHU, VT); 2705 unsigned OpToUse = 0; 2706 if (HasSMUL_LOHI && !HasMULHS) { 2707 OpToUse = ISD::SMUL_LOHI; 2708 } else if (HasUMUL_LOHI && !HasMULHU) { 2709 OpToUse = ISD::UMUL_LOHI; 2710 } else if (HasSMUL_LOHI) { 2711 OpToUse = ISD::SMUL_LOHI; 2712 } else if (HasUMUL_LOHI) { 2713 OpToUse = ISD::UMUL_LOHI; 2714 } 2715 if (OpToUse) { 2716 Result = SDOperand(DAG.getNode(OpToUse, VTs, Tmp1, Tmp2).Val, 0); 2717 break; 2718 } 2719 } 2720 if (Node->getOpcode() == ISD::MULHS && 2721 TLI.isOperationLegal(ISD::SMUL_LOHI, VT)) { 2722 Result = SDOperand(DAG.getNode(ISD::SMUL_LOHI, VTs, Tmp1, Tmp2).Val, 1); 2723 break; 2724 } 2725 if (Node->getOpcode() == ISD::MULHU && 2726 TLI.isOperationLegal(ISD::UMUL_LOHI, VT)) { 2727 Result = SDOperand(DAG.getNode(ISD::UMUL_LOHI, VTs, Tmp1, Tmp2).Val, 1); 2728 break; 2729 } 2730 if (Node->getOpcode() == ISD::SDIV && 2731 TLI.isOperationLegal(ISD::SDIVREM, VT)) { 2732 Result = SDOperand(DAG.getNode(ISD::SDIVREM, VTs, Tmp1, Tmp2).Val, 0); 2733 break; 2734 } 2735 if (Node->getOpcode() == ISD::UDIV && 2736 TLI.isOperationLegal(ISD::UDIVREM, VT)) { 2737 Result = SDOperand(DAG.getNode(ISD::UDIVREM, VTs, Tmp1, Tmp2).Val, 0); 2738 break; 2739 } 2740 2741 // Check to see if we have a libcall for this operator. 2742 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 2743 bool isSigned = false; 2744 switch (Node->getOpcode()) { 2745 case ISD::UDIV: 2746 case ISD::SDIV: 2747 if (VT == MVT::i32) { 2748 LC = Node->getOpcode() == ISD::UDIV 2749 ? RTLIB::UDIV_I32 : RTLIB::SDIV_I32; 2750 isSigned = Node->getOpcode() == ISD::SDIV; 2751 } 2752 break; 2753 case ISD::FPOW: 2754 LC = VT == MVT::f32 ? RTLIB::POW_F32 : 2755 VT == MVT::f64 ? RTLIB::POW_F64 : 2756 VT == MVT::f80 ? RTLIB::POW_F80 : 2757 VT == MVT::ppcf128 ? RTLIB::POW_PPCF128 : 2758 RTLIB::UNKNOWN_LIBCALL; 2759 break; 2760 default: break; 2761 } 2762 if (LC != RTLIB::UNKNOWN_LIBCALL) { 2763 SDOperand Dummy; 2764 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, isSigned, Dummy); 2765 break; 2766 } 2767 2768 assert(MVT::isVector(Node->getValueType(0)) && 2769 "Cannot expand this binary operator!"); 2770 // Expand the operation into a bunch of nasty scalar code. 2771 Result = LegalizeOp(UnrollVectorOp(Op)); 2772 break; 2773 } 2774 case TargetLowering::Promote: { 2775 switch (Node->getOpcode()) { 2776 default: assert(0 && "Do not know how to promote this BinOp!"); 2777 case ISD::AND: 2778 case ISD::OR: 2779 case ISD::XOR: { 2780 MVT::ValueType OVT = Node->getValueType(0); 2781 MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 2782 assert(MVT::isVector(OVT) && "Cannot promote this BinOp!"); 2783 // Bit convert each of the values to the new type. 2784 Tmp1 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp1); 2785 Tmp2 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp2); 2786 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 2787 // Bit convert the result back the original type. 2788 Result = DAG.getNode(ISD::BIT_CONVERT, OVT, Result); 2789 break; 2790 } 2791 } 2792 } 2793 } 2794 break; 2795 2796 case ISD::SMUL_LOHI: 2797 case ISD::UMUL_LOHI: 2798 case ISD::SDIVREM: 2799 case ISD::UDIVREM: 2800 // These nodes will only be produced by target-specific lowering, so 2801 // they shouldn't be here if they aren't legal. 2802 assert(TLI.isOperationLegal(Node->getOpcode(), Node->getValueType(0)) && 2803 "This must be legal!"); 2804 2805 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 2806 Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS 2807 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 2808 break; 2809 2810 case ISD::FCOPYSIGN: // FCOPYSIGN does not require LHS/RHS to match type! 2811 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 2812 switch (getTypeAction(Node->getOperand(1).getValueType())) { 2813 case Expand: assert(0 && "Not possible"); 2814 case Legal: 2815 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the RHS. 2816 break; 2817 case Promote: 2818 Tmp2 = PromoteOp(Node->getOperand(1)); // Promote the RHS. 2819 break; 2820 } 2821 2822 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 2823 2824 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 2825 default: assert(0 && "Operation not supported"); 2826 case TargetLowering::Custom: 2827 Tmp1 = TLI.LowerOperation(Result, DAG); 2828 if (Tmp1.Val) Result = Tmp1; 2829 break; 2830 case TargetLowering::Legal: break; 2831 case TargetLowering::Expand: { 2832 // If this target supports fabs/fneg natively and select is cheap, 2833 // do this efficiently. 2834 if (!TLI.isSelectExpensive() && 2835 TLI.getOperationAction(ISD::FABS, Tmp1.getValueType()) == 2836 TargetLowering::Legal && 2837 TLI.getOperationAction(ISD::FNEG, Tmp1.getValueType()) == 2838 TargetLowering::Legal) { 2839 // Get the sign bit of the RHS. 2840 MVT::ValueType IVT = 2841 Tmp2.getValueType() == MVT::f32 ? MVT::i32 : MVT::i64; 2842 SDOperand SignBit = DAG.getNode(ISD::BIT_CONVERT, IVT, Tmp2); 2843 SignBit = DAG.getSetCC(TLI.getSetCCResultTy(), 2844 SignBit, DAG.getConstant(0, IVT), ISD::SETLT); 2845 // Get the absolute value of the result. 2846 SDOperand AbsVal = DAG.getNode(ISD::FABS, Tmp1.getValueType(), Tmp1); 2847 // Select between the nabs and abs value based on the sign bit of 2848 // the input. 2849 Result = DAG.getNode(ISD::SELECT, AbsVal.getValueType(), SignBit, 2850 DAG.getNode(ISD::FNEG, AbsVal.getValueType(), 2851 AbsVal), 2852 AbsVal); 2853 Result = LegalizeOp(Result); 2854 break; 2855 } 2856 2857 // Otherwise, do bitwise ops! 2858 MVT::ValueType NVT = 2859 Node->getValueType(0) == MVT::f32 ? MVT::i32 : MVT::i64; 2860 Result = ExpandFCOPYSIGNToBitwiseOps(Node, NVT, DAG, TLI); 2861 Result = DAG.getNode(ISD::BIT_CONVERT, Node->getValueType(0), Result); 2862 Result = LegalizeOp(Result); 2863 break; 2864 } 2865 } 2866 break; 2867 2868 case ISD::ADDC: 2869 case ISD::SUBC: 2870 Tmp1 = LegalizeOp(Node->getOperand(0)); 2871 Tmp2 = LegalizeOp(Node->getOperand(1)); 2872 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 2873 // Since this produces two values, make sure to remember that we legalized 2874 // both of them. 2875 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 2876 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 2877 return Result; 2878 2879 case ISD::ADDE: 2880 case ISD::SUBE: 2881 Tmp1 = LegalizeOp(Node->getOperand(0)); 2882 Tmp2 = LegalizeOp(Node->getOperand(1)); 2883 Tmp3 = LegalizeOp(Node->getOperand(2)); 2884 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2885 // Since this produces two values, make sure to remember that we legalized 2886 // both of them. 2887 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 2888 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 2889 return Result; 2890 2891 case ISD::BUILD_PAIR: { 2892 MVT::ValueType PairTy = Node->getValueType(0); 2893 // TODO: handle the case where the Lo and Hi operands are not of legal type 2894 Tmp1 = LegalizeOp(Node->getOperand(0)); // Lo 2895 Tmp2 = LegalizeOp(Node->getOperand(1)); // Hi 2896 switch (TLI.getOperationAction(ISD::BUILD_PAIR, PairTy)) { 2897 case TargetLowering::Promote: 2898 case TargetLowering::Custom: 2899 assert(0 && "Cannot promote/custom this yet!"); 2900 case TargetLowering::Legal: 2901 if (Tmp1 != Node->getOperand(0) || Tmp2 != Node->getOperand(1)) 2902 Result = DAG.getNode(ISD::BUILD_PAIR, PairTy, Tmp1, Tmp2); 2903 break; 2904 case TargetLowering::Expand: 2905 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, PairTy, Tmp1); 2906 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, PairTy, Tmp2); 2907 Tmp2 = DAG.getNode(ISD::SHL, PairTy, Tmp2, 2908 DAG.getConstant(MVT::getSizeInBits(PairTy)/2, 2909 TLI.getShiftAmountTy())); 2910 Result = DAG.getNode(ISD::OR, PairTy, Tmp1, Tmp2); 2911 break; 2912 } 2913 break; 2914 } 2915 2916 case ISD::UREM: 2917 case ISD::SREM: 2918 case ISD::FREM: 2919 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 2920 Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS 2921 2922 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 2923 case TargetLowering::Promote: assert(0 && "Cannot promote this yet!"); 2924 case TargetLowering::Custom: 2925 isCustom = true; 2926 // FALLTHROUGH 2927 case TargetLowering::Legal: 2928 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 2929 if (isCustom) { 2930 Tmp1 = TLI.LowerOperation(Result, DAG); 2931 if (Tmp1.Val) Result = Tmp1; 2932 } 2933 break; 2934 case TargetLowering::Expand: { 2935 unsigned DivOpc= (Node->getOpcode() == ISD::UREM) ? ISD::UDIV : ISD::SDIV; 2936 bool isSigned = DivOpc == ISD::SDIV; 2937 MVT::ValueType VT = Node->getValueType(0); 2938 2939 // See if remainder can be lowered using two-result operations. 2940 SDVTList VTs = DAG.getVTList(VT, VT); 2941 if (Node->getOpcode() == ISD::SREM && 2942 TLI.isOperationLegal(ISD::SDIVREM, VT)) { 2943 Result = SDOperand(DAG.getNode(ISD::SDIVREM, VTs, Tmp1, Tmp2).Val, 1); 2944 break; 2945 } 2946 if (Node->getOpcode() == ISD::UREM && 2947 TLI.isOperationLegal(ISD::UDIVREM, VT)) { 2948 Result = SDOperand(DAG.getNode(ISD::UDIVREM, VTs, Tmp1, Tmp2).Val, 1); 2949 break; 2950 } 2951 2952 if (MVT::isInteger(VT)) { 2953 if (TLI.getOperationAction(DivOpc, VT) == 2954 TargetLowering::Legal) { 2955 // X % Y -> X-X/Y*Y 2956 Result = DAG.getNode(DivOpc, VT, Tmp1, Tmp2); 2957 Result = DAG.getNode(ISD::MUL, VT, Result, Tmp2); 2958 Result = DAG.getNode(ISD::SUB, VT, Tmp1, Result); 2959 } else if (MVT::isVector(VT)) { 2960 Result = LegalizeOp(UnrollVectorOp(Op)); 2961 } else { 2962 assert(VT == MVT::i32 && 2963 "Cannot expand this binary operator!"); 2964 RTLIB::Libcall LC = Node->getOpcode() == ISD::UREM 2965 ? RTLIB::UREM_I32 : RTLIB::SREM_I32; 2966 SDOperand Dummy; 2967 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, isSigned, Dummy); 2968 } 2969 } else { 2970 assert(MVT::isFloatingPoint(VT) && 2971 "remainder op must have integer or floating-point type"); 2972 if (MVT::isVector(VT)) { 2973 Result = LegalizeOp(UnrollVectorOp(Op)); 2974 } else { 2975 // Floating point mod -> fmod libcall. 2976 RTLIB::Libcall LC = VT == MVT::f32 2977 ? RTLIB::REM_F32 : RTLIB::REM_F64; 2978 SDOperand Dummy; 2979 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, 2980 false/*sign irrelevant*/, Dummy); 2981 } 2982 } 2983 break; 2984 } 2985 } 2986 break; 2987 case ISD::VAARG: { 2988 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2989 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. 2990 2991 MVT::ValueType VT = Node->getValueType(0); 2992 switch (TLI.getOperationAction(Node->getOpcode(), MVT::Other)) { 2993 default: assert(0 && "This action is not supported yet!"); 2994 case TargetLowering::Custom: 2995 isCustom = true; 2996 // FALLTHROUGH 2997 case TargetLowering::Legal: 2998 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 2999 Result = Result.getValue(0); 3000 Tmp1 = Result.getValue(1); 3001 3002 if (isCustom) { 3003 Tmp2 = TLI.LowerOperation(Result, DAG); 3004 if (Tmp2.Val) { 3005 Result = LegalizeOp(Tmp2); 3006 Tmp1 = LegalizeOp(Tmp2.getValue(1)); 3007 } 3008 } 3009 break; 3010 case TargetLowering::Expand: { 3011 SrcValueSDNode *SV = cast<SrcValueSDNode>(Node->getOperand(2)); 3012 SDOperand VAList = DAG.getLoad(TLI.getPointerTy(), Tmp1, Tmp2, 3013 SV->getValue(), SV->getOffset()); 3014 // Increment the pointer, VAList, to the next vaarg 3015 Tmp3 = DAG.getNode(ISD::ADD, TLI.getPointerTy(), VAList, 3016 DAG.getConstant(MVT::getSizeInBits(VT)/8, 3017 TLI.getPointerTy())); 3018 // Store the incremented VAList to the legalized pointer 3019 Tmp3 = DAG.getStore(VAList.getValue(1), Tmp3, Tmp2, SV->getValue(), 3020 SV->getOffset()); 3021 // Load the actual argument out of the pointer VAList 3022 Result = DAG.getLoad(VT, Tmp3, VAList, NULL, 0); 3023 Tmp1 = LegalizeOp(Result.getValue(1)); 3024 Result = LegalizeOp(Result); 3025 break; 3026 } 3027 } 3028 // Since VAARG produces two values, make sure to remember that we 3029 // legalized both of them. 3030 AddLegalizedOperand(SDOperand(Node, 0), Result); 3031 AddLegalizedOperand(SDOperand(Node, 1), Tmp1); 3032 return Op.ResNo ? Tmp1 : Result; 3033 } 3034 3035 case ISD::VACOPY: 3036 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 3037 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the dest pointer. 3038 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the source pointer. 3039 3040 switch (TLI.getOperationAction(ISD::VACOPY, MVT::Other)) { 3041 default: assert(0 && "This action is not supported yet!"); 3042 case TargetLowering::Custom: 3043 isCustom = true; 3044 // FALLTHROUGH 3045 case TargetLowering::Legal: 3046 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, 3047 Node->getOperand(3), Node->getOperand(4)); 3048 if (isCustom) { 3049 Tmp1 = TLI.LowerOperation(Result, DAG); 3050 if (Tmp1.Val) Result = Tmp1; 3051 } 3052 break; 3053 case TargetLowering::Expand: 3054 // This defaults to loading a pointer from the input and storing it to the 3055 // output, returning the chain. 3056 SrcValueSDNode *SVD = cast<SrcValueSDNode>(Node->getOperand(3)); 3057 SrcValueSDNode *SVS = cast<SrcValueSDNode>(Node->getOperand(4)); 3058 Tmp4 = DAG.getLoad(TLI.getPointerTy(), Tmp1, Tmp3, SVD->getValue(), 3059 SVD->getOffset()); 3060 Result = DAG.getStore(Tmp4.getValue(1), Tmp4, Tmp2, SVS->getValue(), 3061 SVS->getOffset()); 3062 break; 3063 } 3064 break; 3065 3066 case ISD::VAEND: 3067 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 3068 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. 3069 3070 switch (TLI.getOperationAction(ISD::VAEND, MVT::Other)) { 3071 default: assert(0 && "This action is not supported yet!"); 3072 case TargetLowering::Custom: 3073 isCustom = true; 3074 // FALLTHROUGH 3075 case TargetLowering::Legal: 3076 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 3077 if (isCustom) { 3078 Tmp1 = TLI.LowerOperation(Tmp1, DAG); 3079 if (Tmp1.Val) Result = Tmp1; 3080 } 3081 break; 3082 case TargetLowering::Expand: 3083 Result = Tmp1; // Default to a no-op, return the chain 3084 break; 3085 } 3086 break; 3087 3088 case ISD::VASTART: 3089 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 3090 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. 3091 3092 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 3093 3094 switch (TLI.getOperationAction(ISD::VASTART, MVT::Other)) { 3095 default: assert(0 && "This action is not supported yet!"); 3096 case TargetLowering::Legal: break; 3097 case TargetLowering::Custom: 3098 Tmp1 = TLI.LowerOperation(Result, DAG); 3099 if (Tmp1.Val) Result = Tmp1; 3100 break; 3101 } 3102 break; 3103 3104 case ISD::ROTL: 3105 case ISD::ROTR: 3106 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 3107 Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS 3108 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3109 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3110 default: 3111 assert(0 && "ROTL/ROTR legalize operation not supported"); 3112 break; 3113 case TargetLowering::Legal: 3114 break; 3115 case TargetLowering::Custom: 3116 Tmp1 = TLI.LowerOperation(Result, DAG); 3117 if (Tmp1.Val) Result = Tmp1; 3118 break; 3119 case TargetLowering::Promote: 3120 assert(0 && "Do not know how to promote ROTL/ROTR"); 3121 break; 3122 case TargetLowering::Expand: 3123 assert(0 && "Do not know how to expand ROTL/ROTR"); 3124 break; 3125 } 3126 break; 3127 3128 case ISD::BSWAP: 3129 Tmp1 = LegalizeOp(Node->getOperand(0)); // Op 3130 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3131 case TargetLowering::Custom: 3132 assert(0 && "Cannot custom legalize this yet!"); 3133 case TargetLowering::Legal: 3134 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3135 break; 3136 case TargetLowering::Promote: { 3137 MVT::ValueType OVT = Tmp1.getValueType(); 3138 MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 3139 unsigned DiffBits = MVT::getSizeInBits(NVT) - MVT::getSizeInBits(OVT); 3140 3141 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Tmp1); 3142 Tmp1 = DAG.getNode(ISD::BSWAP, NVT, Tmp1); 3143 Result = DAG.getNode(ISD::SRL, NVT, Tmp1, 3144 DAG.getConstant(DiffBits, TLI.getShiftAmountTy())); 3145 break; 3146 } 3147 case TargetLowering::Expand: 3148 Result = ExpandBSWAP(Tmp1); 3149 break; 3150 } 3151 break; 3152 3153 case ISD::CTPOP: 3154 case ISD::CTTZ: 3155 case ISD::CTLZ: 3156 Tmp1 = LegalizeOp(Node->getOperand(0)); // Op 3157 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3158 case TargetLowering::Custom: 3159 case TargetLowering::Legal: 3160 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3161 if (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)) == 3162 TargetLowering::Custom) { 3163 Tmp1 = TLI.LowerOperation(Result, DAG); 3164 if (Tmp1.Val) { 3165 Result = Tmp1; 3166 } 3167 } 3168 break; 3169 case TargetLowering::Promote: { 3170 MVT::ValueType OVT = Tmp1.getValueType(); 3171 MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 3172 3173 // Zero extend the argument. 3174 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Tmp1); 3175 // Perform the larger operation, then subtract if needed. 3176 Tmp1 = DAG.getNode(Node->getOpcode(), Node->getValueType(0), Tmp1); 3177 switch (Node->getOpcode()) { 3178 case ISD::CTPOP: 3179 Result = Tmp1; 3180 break; 3181 case ISD::CTTZ: 3182 //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT) 3183 Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), Tmp1, 3184 DAG.getConstant(MVT::getSizeInBits(NVT), NVT), 3185 ISD::SETEQ); 3186 Result = DAG.getNode(ISD::SELECT, NVT, Tmp2, 3187 DAG.getConstant(MVT::getSizeInBits(OVT),NVT), Tmp1); 3188 break; 3189 case ISD::CTLZ: 3190 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 3191 Result = DAG.getNode(ISD::SUB, NVT, Tmp1, 3192 DAG.getConstant(MVT::getSizeInBits(NVT) - 3193 MVT::getSizeInBits(OVT), NVT)); 3194 break; 3195 } 3196 break; 3197 } 3198 case TargetLowering::Expand: 3199 Result = ExpandBitCount(Node->getOpcode(), Tmp1); 3200 break; 3201 } 3202 break; 3203 3204 // Unary operators 3205 case ISD::FABS: 3206 case ISD::FNEG: 3207 case ISD::FSQRT: 3208 case ISD::FSIN: 3209 case ISD::FCOS: 3210 Tmp1 = LegalizeOp(Node->getOperand(0)); 3211 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3212 case TargetLowering::Promote: 3213 case TargetLowering::Custom: 3214 isCustom = true; 3215 // FALLTHROUGH 3216 case TargetLowering::Legal: 3217 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3218 if (isCustom) { 3219 Tmp1 = TLI.LowerOperation(Result, DAG); 3220 if (Tmp1.Val) Result = Tmp1; 3221 } 3222 break; 3223 case TargetLowering::Expand: 3224 switch (Node->getOpcode()) { 3225 default: assert(0 && "Unreachable!"); 3226 case ISD::FNEG: 3227 // Expand Y = FNEG(X) -> Y = SUB -0.0, X 3228 Tmp2 = DAG.getConstantFP(-0.0, Node->getValueType(0)); 3229 Result = DAG.getNode(ISD::FSUB, Node->getValueType(0), Tmp2, Tmp1); 3230 break; 3231 case ISD::FABS: { 3232 // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X). 3233 MVT::ValueType VT = Node->getValueType(0); 3234 Tmp2 = DAG.getConstantFP(0.0, VT); 3235 Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), Tmp1, Tmp2, ISD::SETUGT); 3236 Tmp3 = DAG.getNode(ISD::FNEG, VT, Tmp1); 3237 Result = DAG.getNode(ISD::SELECT, VT, Tmp2, Tmp1, Tmp3); 3238 break; 3239 } 3240 case ISD::FSQRT: 3241 case ISD::FSIN: 3242 case ISD::FCOS: { 3243 MVT::ValueType VT = Node->getValueType(0); 3244 3245 // Expand unsupported unary vector operators by unrolling them. 3246 if (MVT::isVector(VT)) { 3247 Result = LegalizeOp(UnrollVectorOp(Op)); 3248 break; 3249 } 3250 3251 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 3252 switch(Node->getOpcode()) { 3253 case ISD::FSQRT: 3254 LC = VT == MVT::f32 ? RTLIB::SQRT_F32 : 3255 VT == MVT::f64 ? RTLIB::SQRT_F64 : 3256 VT == MVT::f80 ? RTLIB::SQRT_F80 : 3257 VT == MVT::ppcf128 ? RTLIB::SQRT_PPCF128 : 3258 RTLIB::UNKNOWN_LIBCALL; 3259 break; 3260 case ISD::FSIN: 3261 LC = VT == MVT::f32 ? RTLIB::SIN_F32 : RTLIB::SIN_F64; 3262 break; 3263 case ISD::FCOS: 3264 LC = VT == MVT::f32 ? RTLIB::COS_F32 : RTLIB::COS_F64; 3265 break; 3266 default: assert(0 && "Unreachable!"); 3267 } 3268 SDOperand Dummy; 3269 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, 3270 false/*sign irrelevant*/, Dummy); 3271 break; 3272 } 3273 } 3274 break; 3275 } 3276 break; 3277 case ISD::FPOWI: { 3278 MVT::ValueType VT = Node->getValueType(0); 3279 3280 // Expand unsupported unary vector operators by unrolling them. 3281 if (MVT::isVector(VT)) { 3282 Result = LegalizeOp(UnrollVectorOp(Op)); 3283 break; 3284 } 3285 3286 // We always lower FPOWI into a libcall. No target support for it yet. 3287 RTLIB::Libcall LC = 3288 VT == MVT::f32 ? RTLIB::POWI_F32 : 3289 VT == MVT::f64 ? RTLIB::POWI_F64 : 3290 VT == MVT::f80 ? RTLIB::POWI_F80 : 3291 VT == MVT::ppcf128 ? RTLIB::POWI_PPCF128 : 3292 RTLIB::UNKNOWN_LIBCALL; 3293 SDOperand Dummy; 3294 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, 3295 false/*sign irrelevant*/, Dummy); 3296 break; 3297 } 3298 case ISD::BIT_CONVERT: 3299 if (!isTypeLegal(Node->getOperand(0).getValueType())) { 3300 Result = ExpandBIT_CONVERT(Node->getValueType(0), Node->getOperand(0)); 3301 } else if (MVT::isVector(Op.getOperand(0).getValueType())) { 3302 // The input has to be a vector type, we have to either scalarize it, pack 3303 // it, or convert it based on whether the input vector type is legal. 3304 SDNode *InVal = Node->getOperand(0).Val; 3305 int InIx = Node->getOperand(0).ResNo; 3306 unsigned NumElems = MVT::getVectorNumElements(InVal->getValueType(InIx)); 3307 MVT::ValueType EVT = MVT::getVectorElementType(InVal->getValueType(InIx)); 3308 3309 // Figure out if there is a simple type corresponding to this Vector 3310 // type. If so, convert to the vector type. 3311 MVT::ValueType TVT = MVT::getVectorType(EVT, NumElems); 3312 if (TLI.isTypeLegal(TVT)) { 3313 // Turn this into a bit convert of the vector input. 3314 Result = DAG.getNode(ISD::BIT_CONVERT, Node->getValueType(0), 3315 LegalizeOp(Node->getOperand(0))); 3316 break; 3317 } else if (NumElems == 1) { 3318 // Turn this into a bit convert of the scalar input. 3319 Result = DAG.getNode(ISD::BIT_CONVERT, Node->getValueType(0), 3320 ScalarizeVectorOp(Node->getOperand(0))); 3321 break; 3322 } else { 3323 // FIXME: UNIMP! Store then reload 3324 assert(0 && "Cast from unsupported vector type not implemented yet!"); 3325 } 3326 } else { 3327 switch (TLI.getOperationAction(ISD::BIT_CONVERT, 3328 Node->getOperand(0).getValueType())) { 3329 default: assert(0 && "Unknown operation action!"); 3330 case TargetLowering::Expand: 3331 Result = ExpandBIT_CONVERT(Node->getValueType(0), Node->getOperand(0)); 3332 break; 3333 case TargetLowering::Legal: 3334 Tmp1 = LegalizeOp(Node->getOperand(0)); 3335 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3336 break; 3337 } 3338 } 3339 break; 3340 3341 // Conversion operators. The source and destination have different types. 3342 case ISD::SINT_TO_FP: 3343 case ISD::UINT_TO_FP: { 3344 bool isSigned = Node->getOpcode() == ISD::SINT_TO_FP; 3345 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3346 case Legal: 3347 switch (TLI.getOperationAction(Node->getOpcode(), 3348 Node->getOperand(0).getValueType())) { 3349 default: assert(0 && "Unknown operation action!"); 3350 case TargetLowering::Custom: 3351 isCustom = true; 3352 // FALLTHROUGH 3353 case TargetLowering::Legal: 3354 Tmp1 = LegalizeOp(Node->getOperand(0)); 3355 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3356 if (isCustom) { 3357 Tmp1 = TLI.LowerOperation(Result, DAG); 3358 if (Tmp1.Val) Result = Tmp1; 3359 } 3360 break; 3361 case TargetLowering::Expand: 3362 Result = ExpandLegalINT_TO_FP(isSigned, 3363 LegalizeOp(Node->getOperand(0)), 3364 Node->getValueType(0)); 3365 break; 3366 case TargetLowering::Promote: 3367 Result = PromoteLegalINT_TO_FP(LegalizeOp(Node->getOperand(0)), 3368 Node->getValueType(0), 3369 isSigned); 3370 break; 3371 } 3372 break; 3373 case Expand: 3374 Result = ExpandIntToFP(Node->getOpcode() == ISD::SINT_TO_FP, 3375 Node->getValueType(0), Node->getOperand(0)); 3376 break; 3377 case Promote: 3378 Tmp1 = PromoteOp(Node->getOperand(0)); 3379 if (isSigned) { 3380 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, Tmp1.getValueType(), 3381 Tmp1, DAG.getValueType(Node->getOperand(0).getValueType())); 3382 } else { 3383 Tmp1 = DAG.getZeroExtendInReg(Tmp1, 3384 Node->getOperand(0).getValueType()); 3385 } 3386 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3387 Result = LegalizeOp(Result); // The 'op' is not necessarily legal! 3388 break; 3389 } 3390 break; 3391 } 3392 case ISD::TRUNCATE: 3393 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3394 case Legal: 3395 Tmp1 = LegalizeOp(Node->getOperand(0)); 3396 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3397 break; 3398 case Expand: 3399 ExpandOp(Node->getOperand(0), Tmp1, Tmp2); 3400 3401 // Since the result is legal, we should just be able to truncate the low 3402 // part of the source. 3403 Result = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), Tmp1); 3404 break; 3405 case Promote: 3406 Result = PromoteOp(Node->getOperand(0)); 3407 Result = DAG.getNode(ISD::TRUNCATE, Op.getValueType(), Result); 3408 break; 3409 } 3410 break; 3411 3412 case ISD::FP_TO_SINT: 3413 case ISD::FP_TO_UINT: 3414 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3415 case Legal: 3416 Tmp1 = LegalizeOp(Node->getOperand(0)); 3417 3418 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))){ 3419 default: assert(0 && "Unknown operation action!"); 3420 case TargetLowering::Custom: 3421 isCustom = true; 3422 // FALLTHROUGH 3423 case TargetLowering::Legal: 3424 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3425 if (isCustom) { 3426 Tmp1 = TLI.LowerOperation(Result, DAG); 3427 if (Tmp1.Val) Result = Tmp1; 3428 } 3429 break; 3430 case TargetLowering::Promote: 3431 Result = PromoteLegalFP_TO_INT(Tmp1, Node->getValueType(0), 3432 Node->getOpcode() == ISD::FP_TO_SINT); 3433 break; 3434 case TargetLowering::Expand: 3435 if (Node->getOpcode() == ISD::FP_TO_UINT) { 3436 SDOperand True, False; 3437 MVT::ValueType VT = Node->getOperand(0).getValueType(); 3438 MVT::ValueType NVT = Node->getValueType(0); 3439 unsigned ShiftAmt = MVT::getSizeInBits(NVT)-1; 3440 const uint64_t zero[] = {0, 0}; 3441 APFloat apf = APFloat(APInt(MVT::getSizeInBits(VT), 2, zero)); 3442 uint64_t x = 1ULL << ShiftAmt; 3443 (void)apf.convertFromZeroExtendedInteger 3444 (&x, MVT::getSizeInBits(NVT), false, APFloat::rmNearestTiesToEven); 3445 Tmp2 = DAG.getConstantFP(apf, VT); 3446 Tmp3 = DAG.getSetCC(TLI.getSetCCResultTy(), 3447 Node->getOperand(0), Tmp2, ISD::SETLT); 3448 True = DAG.getNode(ISD::FP_TO_SINT, NVT, Node->getOperand(0)); 3449 False = DAG.getNode(ISD::FP_TO_SINT, NVT, 3450 DAG.getNode(ISD::FSUB, VT, Node->getOperand(0), 3451 Tmp2)); 3452 False = DAG.getNode(ISD::XOR, NVT, False, 3453 DAG.getConstant(1ULL << ShiftAmt, NVT)); 3454 Result = DAG.getNode(ISD::SELECT, NVT, Tmp3, True, False); 3455 break; 3456 } else { 3457 assert(0 && "Do not know how to expand FP_TO_SINT yet!"); 3458 } 3459 break; 3460 } 3461 break; 3462 case Expand: { 3463 MVT::ValueType VT = Op.getValueType(); 3464 MVT::ValueType OVT = Node->getOperand(0).getValueType(); 3465 // Convert ppcf128 to i32 3466 if (OVT == MVT::ppcf128 && VT == MVT::i32) { 3467 if (Node->getOpcode()==ISD::FP_TO_SINT) 3468 Result = DAG.getNode(ISD::FP_TO_SINT, VT, 3469 DAG.getNode(ISD::FP_ROUND, MVT::f64, 3470 (DAG.getNode(ISD::FP_ROUND_INREG, 3471 MVT::ppcf128, Node->getOperand(0), 3472 DAG.getValueType(MVT::f64))))); 3473 else { 3474 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 3475 APFloat apf = APFloat(APInt(128, 2, TwoE31)); 3476 Tmp2 = DAG.getConstantFP(apf, OVT); 3477 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 3478 // FIXME: generated code sucks. 3479 Result = DAG.getNode(ISD::SELECT_CC, VT, Node->getOperand(0), Tmp2, 3480 DAG.getNode(ISD::ADD, MVT::i32, 3481 DAG.getNode(ISD::FP_TO_SINT, VT, 3482 DAG.getNode(ISD::FSUB, OVT, 3483 Node->getOperand(0), Tmp2)), 3484 DAG.getConstant(0x80000000, MVT::i32)), 3485 DAG.getNode(ISD::FP_TO_SINT, VT, 3486 Node->getOperand(0)), 3487 DAG.getCondCode(ISD::SETGE)); 3488 } 3489 break; 3490 } 3491 // Convert f32 / f64 to i32 / i64. 3492 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 3493 switch (Node->getOpcode()) { 3494 case ISD::FP_TO_SINT: { 3495 if (OVT == MVT::f32) 3496 LC = (VT == MVT::i32) 3497 ? RTLIB::FPTOSINT_F32_I32 : RTLIB::FPTOSINT_F32_I64; 3498 else if (OVT == MVT::f64) 3499 LC = (VT == MVT::i32) 3500 ? RTLIB::FPTOSINT_F64_I32 : RTLIB::FPTOSINT_F64_I64; 3501 else if (OVT == MVT::f80) { 3502 assert(VT == MVT::i64); 3503 LC = RTLIB::FPTOSINT_F80_I64; 3504 } 3505 else if (OVT == MVT::ppcf128) { 3506 assert(VT == MVT::i64); 3507 LC = RTLIB::FPTOSINT_PPCF128_I64; 3508 } 3509 break; 3510 } 3511 case ISD::FP_TO_UINT: { 3512 if (OVT == MVT::f32) 3513 LC = (VT == MVT::i32) 3514 ? RTLIB::FPTOUINT_F32_I32 : RTLIB::FPTOSINT_F32_I64; 3515 else if (OVT == MVT::f64) 3516 LC = (VT == MVT::i32) 3517 ? RTLIB::FPTOUINT_F64_I32 : RTLIB::FPTOSINT_F64_I64; 3518 else if (OVT == MVT::f80) { 3519 LC = (VT == MVT::i32) 3520 ? RTLIB::FPTOUINT_F80_I32 : RTLIB::FPTOUINT_F80_I64; 3521 } 3522 else if (OVT == MVT::ppcf128) { 3523 assert(VT == MVT::i64); 3524 LC = RTLIB::FPTOUINT_PPCF128_I64; 3525 } 3526 break; 3527 } 3528 default: assert(0 && "Unreachable!"); 3529 } 3530 SDOperand Dummy; 3531 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, 3532 false/*sign irrelevant*/, Dummy); 3533 break; 3534 } 3535 case Promote: 3536 Tmp1 = PromoteOp(Node->getOperand(0)); 3537 Result = DAG.UpdateNodeOperands(Result, LegalizeOp(Tmp1)); 3538 Result = LegalizeOp(Result); 3539 break; 3540 } 3541 break; 3542 3543 case ISD::FP_EXTEND: 3544 case ISD::FP_ROUND: { 3545 MVT::ValueType newVT = Op.getValueType(); 3546 MVT::ValueType oldVT = Op.getOperand(0).getValueType(); 3547 if (TLI.getConvertAction(oldVT, newVT) == TargetLowering::Expand) { 3548 if (Node->getOpcode() == ISD::FP_ROUND && oldVT == MVT::ppcf128) { 3549 SDOperand Lo, Hi; 3550 ExpandOp(Node->getOperand(0), Lo, Hi); 3551 if (newVT == MVT::f64) 3552 Result = Hi; 3553 else 3554 Result = DAG.getNode(ISD::FP_ROUND, newVT, Hi); 3555 break; 3556 } else { 3557 // The only other way we can lower this is to turn it into a STORE, 3558 // LOAD pair, targetting a temporary location (a stack slot). 3559 3560 // NOTE: there is a choice here between constantly creating new stack 3561 // slots and always reusing the same one. We currently always create 3562 // new ones, as reuse may inhibit scheduling. 3563 MVT::ValueType slotVT = 3564 (Node->getOpcode() == ISD::FP_EXTEND) ? oldVT : newVT; 3565 const Type *Ty = MVT::getTypeForValueType(slotVT); 3566 uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty); 3567 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty); 3568 MachineFunction &MF = DAG.getMachineFunction(); 3569 int SSFI = 3570 MF.getFrameInfo()->CreateStackObject(TySize, Align); 3571 SDOperand StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 3572 if (Node->getOpcode() == ISD::FP_EXTEND) { 3573 Result = DAG.getStore(DAG.getEntryNode(), Node->getOperand(0), 3574 StackSlot, NULL, 0); 3575 Result = DAG.getExtLoad(ISD::EXTLOAD, newVT, 3576 Result, StackSlot, NULL, 0, oldVT); 3577 } else { 3578 Result = DAG.getTruncStore(DAG.getEntryNode(), Node->getOperand(0), 3579 StackSlot, NULL, 0, newVT); 3580 Result = DAG.getLoad(newVT, Result, StackSlot, NULL, 0); 3581 } 3582 break; 3583 } 3584 } 3585 } 3586 // FALL THROUGH 3587 case ISD::ANY_EXTEND: 3588 case ISD::ZERO_EXTEND: 3589 case ISD::SIGN_EXTEND: 3590 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3591 case Expand: assert(0 && "Shouldn't need to expand other operators here!"); 3592 case Legal: 3593 Tmp1 = LegalizeOp(Node->getOperand(0)); 3594 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3595 break; 3596 case Promote: 3597 switch (Node->getOpcode()) { 3598 case ISD::ANY_EXTEND: 3599 Tmp1 = PromoteOp(Node->getOperand(0)); 3600 Result = DAG.getNode(ISD::ANY_EXTEND, Op.getValueType(), Tmp1); 3601 break; 3602 case ISD::ZERO_EXTEND: 3603 Result = PromoteOp(Node->getOperand(0)); 3604 Result = DAG.getNode(ISD::ANY_EXTEND, Op.getValueType(), Result); 3605 Result = DAG.getZeroExtendInReg(Result, 3606 Node->getOperand(0).getValueType()); 3607 break; 3608 case ISD::SIGN_EXTEND: 3609 Result = PromoteOp(Node->getOperand(0)); 3610 Result = DAG.getNode(ISD::ANY_EXTEND, Op.getValueType(), Result); 3611 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(), 3612 Result, 3613 DAG.getValueType(Node->getOperand(0).getValueType())); 3614 break; 3615 case ISD::FP_EXTEND: 3616 Result = PromoteOp(Node->getOperand(0)); 3617 if (Result.getValueType() != Op.getValueType()) 3618 // Dynamically dead while we have only 2 FP types. 3619 Result = DAG.getNode(ISD::FP_EXTEND, Op.getValueType(), Result); 3620 break; 3621 case ISD::FP_ROUND: 3622 Result = PromoteOp(Node->getOperand(0)); 3623 Result = DAG.getNode(Node->getOpcode(), Op.getValueType(), Result); 3624 break; 3625 } 3626 } 3627 break; 3628 case ISD::FP_ROUND_INREG: 3629 case ISD::SIGN_EXTEND_INREG: { 3630 Tmp1 = LegalizeOp(Node->getOperand(0)); 3631 MVT::ValueType ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 3632 3633 // If this operation is not supported, convert it to a shl/shr or load/store 3634 // pair. 3635 switch (TLI.getOperationAction(Node->getOpcode(), ExtraVT)) { 3636 default: assert(0 && "This action not supported for this op yet!"); 3637 case TargetLowering::Legal: 3638 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 3639 break; 3640 case TargetLowering::Expand: 3641 // If this is an integer extend and shifts are supported, do that. 3642 if (Node->getOpcode() == ISD::SIGN_EXTEND_INREG) { 3643 // NOTE: we could fall back on load/store here too for targets without 3644 // SAR. However, it is doubtful that any exist. 3645 unsigned BitsDiff = MVT::getSizeInBits(Node->getValueType(0)) - 3646 MVT::getSizeInBits(ExtraVT); 3647 SDOperand ShiftCst = DAG.getConstant(BitsDiff, TLI.getShiftAmountTy()); 3648 Result = DAG.getNode(ISD::SHL, Node->getValueType(0), 3649 Node->getOperand(0), ShiftCst); 3650 Result = DAG.getNode(ISD::SRA, Node->getValueType(0), 3651 Result, ShiftCst); 3652 } else if (Node->getOpcode() == ISD::FP_ROUND_INREG) { 3653 // The only way we can lower this is to turn it into a TRUNCSTORE, 3654 // EXTLOAD pair, targetting a temporary location (a stack slot). 3655 3656 // NOTE: there is a choice here between constantly creating new stack 3657 // slots and always reusing the same one. We currently always create 3658 // new ones, as reuse may inhibit scheduling. 3659 const Type *Ty = MVT::getTypeForValueType(ExtraVT); 3660 uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty); 3661 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty); 3662 MachineFunction &MF = DAG.getMachineFunction(); 3663 int SSFI = 3664 MF.getFrameInfo()->CreateStackObject(TySize, Align); 3665 SDOperand StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 3666 Result = DAG.getTruncStore(DAG.getEntryNode(), Node->getOperand(0), 3667 StackSlot, NULL, 0, ExtraVT); 3668 Result = DAG.getExtLoad(ISD::EXTLOAD, Node->getValueType(0), 3669 Result, StackSlot, NULL, 0, ExtraVT); 3670 } else { 3671 assert(0 && "Unknown op"); 3672 } 3673 break; 3674 } 3675 break; 3676 } 3677 case ISD::TRAMPOLINE: { 3678 SDOperand Ops[6]; 3679 for (unsigned i = 0; i != 6; ++i) 3680 Ops[i] = LegalizeOp(Node->getOperand(i)); 3681 Result = DAG.UpdateNodeOperands(Result, Ops, 6); 3682 // The only option for this node is to custom lower it. 3683 Result = TLI.LowerOperation(Result, DAG); 3684 assert(Result.Val && "Should always custom lower!"); 3685 3686 // Since trampoline produces two values, make sure to remember that we 3687 // legalized both of them. 3688 Tmp1 = LegalizeOp(Result.getValue(1)); 3689 Result = LegalizeOp(Result); 3690 AddLegalizedOperand(SDOperand(Node, 0), Result); 3691 AddLegalizedOperand(SDOperand(Node, 1), Tmp1); 3692 return Op.ResNo ? Tmp1 : Result; 3693 } 3694 case ISD::FLT_ROUNDS: { 3695 MVT::ValueType VT = Node->getValueType(0); 3696 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 3697 default: assert(0 && "This action not supported for this op yet!"); 3698 case TargetLowering::Custom: 3699 Result = TLI.LowerOperation(Op, DAG); 3700 if (Result.Val) break; 3701 // Fall Thru 3702 case TargetLowering::Legal: 3703 // If this operation is not supported, lower it to constant 1 3704 Result = DAG.getConstant(1, VT); 3705 break; 3706 } 3707 } 3708 } 3709 3710 assert(Result.getValueType() == Op.getValueType() && 3711 "Bad legalization!"); 3712 3713 // Make sure that the generated code is itself legal. 3714 if (Result != Op) 3715 Result = LegalizeOp(Result); 3716 3717 // Note that LegalizeOp may be reentered even from single-use nodes, which 3718 // means that we always must cache transformed nodes. 3719 AddLegalizedOperand(Op, Result); 3720 return Result; 3721} 3722 3723/// PromoteOp - Given an operation that produces a value in an invalid type, 3724/// promote it to compute the value into a larger type. The produced value will 3725/// have the correct bits for the low portion of the register, but no guarantee 3726/// is made about the top bits: it may be zero, sign-extended, or garbage. 3727SDOperand SelectionDAGLegalize::PromoteOp(SDOperand Op) { 3728 MVT::ValueType VT = Op.getValueType(); 3729 MVT::ValueType NVT = TLI.getTypeToTransformTo(VT); 3730 assert(getTypeAction(VT) == Promote && 3731 "Caller should expand or legalize operands that are not promotable!"); 3732 assert(NVT > VT && MVT::isInteger(NVT) == MVT::isInteger(VT) && 3733 "Cannot promote to smaller type!"); 3734 3735 SDOperand Tmp1, Tmp2, Tmp3; 3736 SDOperand Result; 3737 SDNode *Node = Op.Val; 3738 3739 DenseMap<SDOperand, SDOperand>::iterator I = PromotedNodes.find(Op); 3740 if (I != PromotedNodes.end()) return I->second; 3741 3742 switch (Node->getOpcode()) { 3743 case ISD::CopyFromReg: 3744 assert(0 && "CopyFromReg must be legal!"); 3745 default: 3746#ifndef NDEBUG 3747 cerr << "NODE: "; Node->dump(&DAG); cerr << "\n"; 3748#endif 3749 assert(0 && "Do not know how to promote this operator!"); 3750 abort(); 3751 case ISD::UNDEF: 3752 Result = DAG.getNode(ISD::UNDEF, NVT); 3753 break; 3754 case ISD::Constant: 3755 if (VT != MVT::i1) 3756 Result = DAG.getNode(ISD::SIGN_EXTEND, NVT, Op); 3757 else 3758 Result = DAG.getNode(ISD::ZERO_EXTEND, NVT, Op); 3759 assert(isa<ConstantSDNode>(Result) && "Didn't constant fold zext?"); 3760 break; 3761 case ISD::ConstantFP: 3762 Result = DAG.getNode(ISD::FP_EXTEND, NVT, Op); 3763 assert(isa<ConstantFPSDNode>(Result) && "Didn't constant fold fp_extend?"); 3764 break; 3765 3766 case ISD::SETCC: 3767 assert(isTypeLegal(TLI.getSetCCResultTy()) && "SetCC type is not legal??"); 3768 Result = DAG.getNode(ISD::SETCC, TLI.getSetCCResultTy(),Node->getOperand(0), 3769 Node->getOperand(1), Node->getOperand(2)); 3770 break; 3771 3772 case ISD::TRUNCATE: 3773 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3774 case Legal: 3775 Result = LegalizeOp(Node->getOperand(0)); 3776 assert(Result.getValueType() >= NVT && 3777 "This truncation doesn't make sense!"); 3778 if (Result.getValueType() > NVT) // Truncate to NVT instead of VT 3779 Result = DAG.getNode(ISD::TRUNCATE, NVT, Result); 3780 break; 3781 case Promote: 3782 // The truncation is not required, because we don't guarantee anything 3783 // about high bits anyway. 3784 Result = PromoteOp(Node->getOperand(0)); 3785 break; 3786 case Expand: 3787 ExpandOp(Node->getOperand(0), Tmp1, Tmp2); 3788 // Truncate the low part of the expanded value to the result type 3789 Result = DAG.getNode(ISD::TRUNCATE, NVT, Tmp1); 3790 } 3791 break; 3792 case ISD::SIGN_EXTEND: 3793 case ISD::ZERO_EXTEND: 3794 case ISD::ANY_EXTEND: 3795 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3796 case Expand: assert(0 && "BUG: Smaller reg should have been promoted!"); 3797 case Legal: 3798 // Input is legal? Just do extend all the way to the larger type. 3799 Result = DAG.getNode(Node->getOpcode(), NVT, Node->getOperand(0)); 3800 break; 3801 case Promote: 3802 // Promote the reg if it's smaller. 3803 Result = PromoteOp(Node->getOperand(0)); 3804 // The high bits are not guaranteed to be anything. Insert an extend. 3805 if (Node->getOpcode() == ISD::SIGN_EXTEND) 3806 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Result, 3807 DAG.getValueType(Node->getOperand(0).getValueType())); 3808 else if (Node->getOpcode() == ISD::ZERO_EXTEND) 3809 Result = DAG.getZeroExtendInReg(Result, 3810 Node->getOperand(0).getValueType()); 3811 break; 3812 } 3813 break; 3814 case ISD::BIT_CONVERT: 3815 Result = ExpandBIT_CONVERT(Node->getValueType(0), Node->getOperand(0)); 3816 Result = PromoteOp(Result); 3817 break; 3818 3819 case ISD::FP_EXTEND: 3820 assert(0 && "Case not implemented. Dynamically dead with 2 FP types!"); 3821 case ISD::FP_ROUND: 3822 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3823 case Expand: assert(0 && "BUG: Cannot expand FP regs!"); 3824 case Promote: assert(0 && "Unreachable with 2 FP types!"); 3825 case Legal: 3826 // Input is legal? Do an FP_ROUND_INREG. 3827 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Node->getOperand(0), 3828 DAG.getValueType(VT)); 3829 break; 3830 } 3831 break; 3832 3833 case ISD::SINT_TO_FP: 3834 case ISD::UINT_TO_FP: 3835 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3836 case Legal: 3837 // No extra round required here. 3838 Result = DAG.getNode(Node->getOpcode(), NVT, Node->getOperand(0)); 3839 break; 3840 3841 case Promote: 3842 Result = PromoteOp(Node->getOperand(0)); 3843 if (Node->getOpcode() == ISD::SINT_TO_FP) 3844 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(), 3845 Result, 3846 DAG.getValueType(Node->getOperand(0).getValueType())); 3847 else 3848 Result = DAG.getZeroExtendInReg(Result, 3849 Node->getOperand(0).getValueType()); 3850 // No extra round required here. 3851 Result = DAG.getNode(Node->getOpcode(), NVT, Result); 3852 break; 3853 case Expand: 3854 Result = ExpandIntToFP(Node->getOpcode() == ISD::SINT_TO_FP, NVT, 3855 Node->getOperand(0)); 3856 // Round if we cannot tolerate excess precision. 3857 if (NoExcessFPPrecision) 3858 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 3859 DAG.getValueType(VT)); 3860 break; 3861 } 3862 break; 3863 3864 case ISD::SIGN_EXTEND_INREG: 3865 Result = PromoteOp(Node->getOperand(0)); 3866 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Result, 3867 Node->getOperand(1)); 3868 break; 3869 case ISD::FP_TO_SINT: 3870 case ISD::FP_TO_UINT: 3871 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3872 case Legal: 3873 case Expand: 3874 Tmp1 = Node->getOperand(0); 3875 break; 3876 case Promote: 3877 // The input result is prerounded, so we don't have to do anything 3878 // special. 3879 Tmp1 = PromoteOp(Node->getOperand(0)); 3880 break; 3881 } 3882 // If we're promoting a UINT to a larger size, check to see if the new node 3883 // will be legal. If it isn't, check to see if FP_TO_SINT is legal, since 3884 // we can use that instead. This allows us to generate better code for 3885 // FP_TO_UINT for small destination sizes on targets where FP_TO_UINT is not 3886 // legal, such as PowerPC. 3887 if (Node->getOpcode() == ISD::FP_TO_UINT && 3888 !TLI.isOperationLegal(ISD::FP_TO_UINT, NVT) && 3889 (TLI.isOperationLegal(ISD::FP_TO_SINT, NVT) || 3890 TLI.getOperationAction(ISD::FP_TO_SINT, NVT)==TargetLowering::Custom)){ 3891 Result = DAG.getNode(ISD::FP_TO_SINT, NVT, Tmp1); 3892 } else { 3893 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1); 3894 } 3895 break; 3896 3897 case ISD::FABS: 3898 case ISD::FNEG: 3899 Tmp1 = PromoteOp(Node->getOperand(0)); 3900 assert(Tmp1.getValueType() == NVT); 3901 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1); 3902 // NOTE: we do not have to do any extra rounding here for 3903 // NoExcessFPPrecision, because we know the input will have the appropriate 3904 // precision, and these operations don't modify precision at all. 3905 break; 3906 3907 case ISD::FSQRT: 3908 case ISD::FSIN: 3909 case ISD::FCOS: 3910 Tmp1 = PromoteOp(Node->getOperand(0)); 3911 assert(Tmp1.getValueType() == NVT); 3912 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1); 3913 if (NoExcessFPPrecision) 3914 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 3915 DAG.getValueType(VT)); 3916 break; 3917 3918 case ISD::FPOWI: { 3919 // Promote f32 powi to f64 powi. Note that this could insert a libcall 3920 // directly as well, which may be better. 3921 Tmp1 = PromoteOp(Node->getOperand(0)); 3922 assert(Tmp1.getValueType() == NVT); 3923 Result = DAG.getNode(ISD::FPOWI, NVT, Tmp1, Node->getOperand(1)); 3924 if (NoExcessFPPrecision) 3925 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 3926 DAG.getValueType(VT)); 3927 break; 3928 } 3929 3930 case ISD::AND: 3931 case ISD::OR: 3932 case ISD::XOR: 3933 case ISD::ADD: 3934 case ISD::SUB: 3935 case ISD::MUL: 3936 // The input may have strange things in the top bits of the registers, but 3937 // these operations don't care. They may have weird bits going out, but 3938 // that too is okay if they are integer operations. 3939 Tmp1 = PromoteOp(Node->getOperand(0)); 3940 Tmp2 = PromoteOp(Node->getOperand(1)); 3941 assert(Tmp1.getValueType() == NVT && Tmp2.getValueType() == NVT); 3942 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 3943 break; 3944 case ISD::FADD: 3945 case ISD::FSUB: 3946 case ISD::FMUL: 3947 Tmp1 = PromoteOp(Node->getOperand(0)); 3948 Tmp2 = PromoteOp(Node->getOperand(1)); 3949 assert(Tmp1.getValueType() == NVT && Tmp2.getValueType() == NVT); 3950 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 3951 3952 // Floating point operations will give excess precision that we may not be 3953 // able to tolerate. If we DO allow excess precision, just leave it, 3954 // otherwise excise it. 3955 // FIXME: Why would we need to round FP ops more than integer ones? 3956 // Is Round(Add(Add(A,B),C)) != Round(Add(Round(Add(A,B)), C)) 3957 if (NoExcessFPPrecision) 3958 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 3959 DAG.getValueType(VT)); 3960 break; 3961 3962 case ISD::SDIV: 3963 case ISD::SREM: 3964 // These operators require that their input be sign extended. 3965 Tmp1 = PromoteOp(Node->getOperand(0)); 3966 Tmp2 = PromoteOp(Node->getOperand(1)); 3967 if (MVT::isInteger(NVT)) { 3968 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp1, 3969 DAG.getValueType(VT)); 3970 Tmp2 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp2, 3971 DAG.getValueType(VT)); 3972 } 3973 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 3974 3975 // Perform FP_ROUND: this is probably overly pessimistic. 3976 if (MVT::isFloatingPoint(NVT) && NoExcessFPPrecision) 3977 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 3978 DAG.getValueType(VT)); 3979 break; 3980 case ISD::FDIV: 3981 case ISD::FREM: 3982 case ISD::FCOPYSIGN: 3983 // These operators require that their input be fp extended. 3984 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3985 case Legal: 3986 Tmp1 = LegalizeOp(Node->getOperand(0)); 3987 break; 3988 case Promote: 3989 Tmp1 = PromoteOp(Node->getOperand(0)); 3990 break; 3991 case Expand: 3992 assert(0 && "not implemented"); 3993 } 3994 switch (getTypeAction(Node->getOperand(1).getValueType())) { 3995 case Legal: 3996 Tmp2 = LegalizeOp(Node->getOperand(1)); 3997 break; 3998 case Promote: 3999 Tmp2 = PromoteOp(Node->getOperand(1)); 4000 break; 4001 case Expand: 4002 assert(0 && "not implemented"); 4003 } 4004 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 4005 4006 // Perform FP_ROUND: this is probably overly pessimistic. 4007 if (NoExcessFPPrecision && Node->getOpcode() != ISD::FCOPYSIGN) 4008 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 4009 DAG.getValueType(VT)); 4010 break; 4011 4012 case ISD::UDIV: 4013 case ISD::UREM: 4014 // These operators require that their input be zero extended. 4015 Tmp1 = PromoteOp(Node->getOperand(0)); 4016 Tmp2 = PromoteOp(Node->getOperand(1)); 4017 assert(MVT::isInteger(NVT) && "Operators don't apply to FP!"); 4018 Tmp1 = DAG.getZeroExtendInReg(Tmp1, VT); 4019 Tmp2 = DAG.getZeroExtendInReg(Tmp2, VT); 4020 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 4021 break; 4022 4023 case ISD::SHL: 4024 Tmp1 = PromoteOp(Node->getOperand(0)); 4025 Result = DAG.getNode(ISD::SHL, NVT, Tmp1, Node->getOperand(1)); 4026 break; 4027 case ISD::SRA: 4028 // The input value must be properly sign extended. 4029 Tmp1 = PromoteOp(Node->getOperand(0)); 4030 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp1, 4031 DAG.getValueType(VT)); 4032 Result = DAG.getNode(ISD::SRA, NVT, Tmp1, Node->getOperand(1)); 4033 break; 4034 case ISD::SRL: 4035 // The input value must be properly zero extended. 4036 Tmp1 = PromoteOp(Node->getOperand(0)); 4037 Tmp1 = DAG.getZeroExtendInReg(Tmp1, VT); 4038 Result = DAG.getNode(ISD::SRL, NVT, Tmp1, Node->getOperand(1)); 4039 break; 4040 4041 case ISD::VAARG: 4042 Tmp1 = Node->getOperand(0); // Get the chain. 4043 Tmp2 = Node->getOperand(1); // Get the pointer. 4044 if (TLI.getOperationAction(ISD::VAARG, VT) == TargetLowering::Custom) { 4045 Tmp3 = DAG.getVAArg(VT, Tmp1, Tmp2, Node->getOperand(2)); 4046 Result = TLI.CustomPromoteOperation(Tmp3, DAG); 4047 } else { 4048 SrcValueSDNode *SV = cast<SrcValueSDNode>(Node->getOperand(2)); 4049 SDOperand VAList = DAG.getLoad(TLI.getPointerTy(), Tmp1, Tmp2, 4050 SV->getValue(), SV->getOffset()); 4051 // Increment the pointer, VAList, to the next vaarg 4052 Tmp3 = DAG.getNode(ISD::ADD, TLI.getPointerTy(), VAList, 4053 DAG.getConstant(MVT::getSizeInBits(VT)/8, 4054 TLI.getPointerTy())); 4055 // Store the incremented VAList to the legalized pointer 4056 Tmp3 = DAG.getStore(VAList.getValue(1), Tmp3, Tmp2, SV->getValue(), 4057 SV->getOffset()); 4058 // Load the actual argument out of the pointer VAList 4059 Result = DAG.getExtLoad(ISD::EXTLOAD, NVT, Tmp3, VAList, NULL, 0, VT); 4060 } 4061 // Remember that we legalized the chain. 4062 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); 4063 break; 4064 4065 case ISD::LOAD: { 4066 LoadSDNode *LD = cast<LoadSDNode>(Node); 4067 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(Node) 4068 ? ISD::EXTLOAD : LD->getExtensionType(); 4069 Result = DAG.getExtLoad(ExtType, NVT, 4070 LD->getChain(), LD->getBasePtr(), 4071 LD->getSrcValue(), LD->getSrcValueOffset(), 4072 LD->getLoadedVT(), 4073 LD->isVolatile(), 4074 LD->getAlignment()); 4075 // Remember that we legalized the chain. 4076 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); 4077 break; 4078 } 4079 case ISD::SELECT: 4080 Tmp2 = PromoteOp(Node->getOperand(1)); // Legalize the op0 4081 Tmp3 = PromoteOp(Node->getOperand(2)); // Legalize the op1 4082 Result = DAG.getNode(ISD::SELECT, NVT, Node->getOperand(0), Tmp2, Tmp3); 4083 break; 4084 case ISD::SELECT_CC: 4085 Tmp2 = PromoteOp(Node->getOperand(2)); // True 4086 Tmp3 = PromoteOp(Node->getOperand(3)); // False 4087 Result = DAG.getNode(ISD::SELECT_CC, NVT, Node->getOperand(0), 4088 Node->getOperand(1), Tmp2, Tmp3, Node->getOperand(4)); 4089 break; 4090 case ISD::BSWAP: 4091 Tmp1 = Node->getOperand(0); 4092 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Tmp1); 4093 Tmp1 = DAG.getNode(ISD::BSWAP, NVT, Tmp1); 4094 Result = DAG.getNode(ISD::SRL, NVT, Tmp1, 4095 DAG.getConstant(MVT::getSizeInBits(NVT) - 4096 MVT::getSizeInBits(VT), 4097 TLI.getShiftAmountTy())); 4098 break; 4099 case ISD::CTPOP: 4100 case ISD::CTTZ: 4101 case ISD::CTLZ: 4102 // Zero extend the argument 4103 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Node->getOperand(0)); 4104 // Perform the larger operation, then subtract if needed. 4105 Tmp1 = DAG.getNode(Node->getOpcode(), NVT, Tmp1); 4106 switch(Node->getOpcode()) { 4107 case ISD::CTPOP: 4108 Result = Tmp1; 4109 break; 4110 case ISD::CTTZ: 4111 // if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT) 4112 Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), Tmp1, 4113 DAG.getConstant(MVT::getSizeInBits(NVT), NVT), 4114 ISD::SETEQ); 4115 Result = DAG.getNode(ISD::SELECT, NVT, Tmp2, 4116 DAG.getConstant(MVT::getSizeInBits(VT), NVT), Tmp1); 4117 break; 4118 case ISD::CTLZ: 4119 //Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 4120 Result = DAG.getNode(ISD::SUB, NVT, Tmp1, 4121 DAG.getConstant(MVT::getSizeInBits(NVT) - 4122 MVT::getSizeInBits(VT), NVT)); 4123 break; 4124 } 4125 break; 4126 case ISD::EXTRACT_SUBVECTOR: 4127 Result = PromoteOp(ExpandEXTRACT_SUBVECTOR(Op)); 4128 break; 4129 case ISD::EXTRACT_VECTOR_ELT: 4130 Result = PromoteOp(ExpandEXTRACT_VECTOR_ELT(Op)); 4131 break; 4132 } 4133 4134 assert(Result.Val && "Didn't set a result!"); 4135 4136 // Make sure the result is itself legal. 4137 Result = LegalizeOp(Result); 4138 4139 // Remember that we promoted this! 4140 AddPromotedOperand(Op, Result); 4141 return Result; 4142} 4143 4144/// ExpandEXTRACT_VECTOR_ELT - Expand an EXTRACT_VECTOR_ELT operation into 4145/// a legal EXTRACT_VECTOR_ELT operation, scalar code, or memory traffic, 4146/// based on the vector type. The return type of this matches the element type 4147/// of the vector, which may not be legal for the target. 4148SDOperand SelectionDAGLegalize::ExpandEXTRACT_VECTOR_ELT(SDOperand Op) { 4149 // We know that operand #0 is the Vec vector. If the index is a constant 4150 // or if the invec is a supported hardware type, we can use it. Otherwise, 4151 // lower to a store then an indexed load. 4152 SDOperand Vec = Op.getOperand(0); 4153 SDOperand Idx = Op.getOperand(1); 4154 4155 MVT::ValueType TVT = Vec.getValueType(); 4156 unsigned NumElems = MVT::getVectorNumElements(TVT); 4157 4158 switch (TLI.getOperationAction(ISD::EXTRACT_VECTOR_ELT, TVT)) { 4159 default: assert(0 && "This action is not supported yet!"); 4160 case TargetLowering::Custom: { 4161 Vec = LegalizeOp(Vec); 4162 Op = DAG.UpdateNodeOperands(Op, Vec, Idx); 4163 SDOperand Tmp3 = TLI.LowerOperation(Op, DAG); 4164 if (Tmp3.Val) 4165 return Tmp3; 4166 break; 4167 } 4168 case TargetLowering::Legal: 4169 if (isTypeLegal(TVT)) { 4170 Vec = LegalizeOp(Vec); 4171 Op = DAG.UpdateNodeOperands(Op, Vec, Idx); 4172 return Op; 4173 } 4174 break; 4175 case TargetLowering::Expand: 4176 break; 4177 } 4178 4179 if (NumElems == 1) { 4180 // This must be an access of the only element. Return it. 4181 Op = ScalarizeVectorOp(Vec); 4182 } else if (!TLI.isTypeLegal(TVT) && isa<ConstantSDNode>(Idx)) { 4183 ConstantSDNode *CIdx = cast<ConstantSDNode>(Idx); 4184 SDOperand Lo, Hi; 4185 SplitVectorOp(Vec, Lo, Hi); 4186 if (CIdx->getValue() < NumElems/2) { 4187 Vec = Lo; 4188 } else { 4189 Vec = Hi; 4190 Idx = DAG.getConstant(CIdx->getValue() - NumElems/2, 4191 Idx.getValueType()); 4192 } 4193 4194 // It's now an extract from the appropriate high or low part. Recurse. 4195 Op = DAG.UpdateNodeOperands(Op, Vec, Idx); 4196 Op = ExpandEXTRACT_VECTOR_ELT(Op); 4197 } else { 4198 // Store the value to a temporary stack slot, then LOAD the scalar 4199 // element back out. 4200 SDOperand StackPtr = DAG.CreateStackTemporary(Vec.getValueType()); 4201 SDOperand Ch = DAG.getStore(DAG.getEntryNode(), Vec, StackPtr, NULL, 0); 4202 4203 // Add the offset to the index. 4204 unsigned EltSize = MVT::getSizeInBits(Op.getValueType())/8; 4205 Idx = DAG.getNode(ISD::MUL, Idx.getValueType(), Idx, 4206 DAG.getConstant(EltSize, Idx.getValueType())); 4207 4208 if (MVT::getSizeInBits(Idx.getValueType()) > 4209 MVT::getSizeInBits(TLI.getPointerTy())) 4210 Idx = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), Idx); 4211 else 4212 Idx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), Idx); 4213 4214 StackPtr = DAG.getNode(ISD::ADD, Idx.getValueType(), Idx, StackPtr); 4215 4216 Op = DAG.getLoad(Op.getValueType(), Ch, StackPtr, NULL, 0); 4217 } 4218 return Op; 4219} 4220 4221/// ExpandEXTRACT_SUBVECTOR - Expand a EXTRACT_SUBVECTOR operation. For now 4222/// we assume the operation can be split if it is not already legal. 4223SDOperand SelectionDAGLegalize::ExpandEXTRACT_SUBVECTOR(SDOperand Op) { 4224 // We know that operand #0 is the Vec vector. For now we assume the index 4225 // is a constant and that the extracted result is a supported hardware type. 4226 SDOperand Vec = Op.getOperand(0); 4227 SDOperand Idx = LegalizeOp(Op.getOperand(1)); 4228 4229 unsigned NumElems = MVT::getVectorNumElements(Vec.getValueType()); 4230 4231 if (NumElems == MVT::getVectorNumElements(Op.getValueType())) { 4232 // This must be an access of the desired vector length. Return it. 4233 return Vec; 4234 } 4235 4236 ConstantSDNode *CIdx = cast<ConstantSDNode>(Idx); 4237 SDOperand Lo, Hi; 4238 SplitVectorOp(Vec, Lo, Hi); 4239 if (CIdx->getValue() < NumElems/2) { 4240 Vec = Lo; 4241 } else { 4242 Vec = Hi; 4243 Idx = DAG.getConstant(CIdx->getValue() - NumElems/2, Idx.getValueType()); 4244 } 4245 4246 // It's now an extract from the appropriate high or low part. Recurse. 4247 Op = DAG.UpdateNodeOperands(Op, Vec, Idx); 4248 return ExpandEXTRACT_SUBVECTOR(Op); 4249} 4250 4251/// LegalizeSetCCOperands - Attempts to create a legal LHS and RHS for a SETCC 4252/// with condition CC on the current target. This usually involves legalizing 4253/// or promoting the arguments. In the case where LHS and RHS must be expanded, 4254/// there may be no choice but to create a new SetCC node to represent the 4255/// legalized value of setcc lhs, rhs. In this case, the value is returned in 4256/// LHS, and the SDOperand returned in RHS has a nil SDNode value. 4257void SelectionDAGLegalize::LegalizeSetCCOperands(SDOperand &LHS, 4258 SDOperand &RHS, 4259 SDOperand &CC) { 4260 SDOperand Tmp1, Tmp2, Tmp3, Result; 4261 4262 switch (getTypeAction(LHS.getValueType())) { 4263 case Legal: 4264 Tmp1 = LegalizeOp(LHS); // LHS 4265 Tmp2 = LegalizeOp(RHS); // RHS 4266 break; 4267 case Promote: 4268 Tmp1 = PromoteOp(LHS); // LHS 4269 Tmp2 = PromoteOp(RHS); // RHS 4270 4271 // If this is an FP compare, the operands have already been extended. 4272 if (MVT::isInteger(LHS.getValueType())) { 4273 MVT::ValueType VT = LHS.getValueType(); 4274 MVT::ValueType NVT = TLI.getTypeToTransformTo(VT); 4275 4276 // Otherwise, we have to insert explicit sign or zero extends. Note 4277 // that we could insert sign extends for ALL conditions, but zero extend 4278 // is cheaper on many machines (an AND instead of two shifts), so prefer 4279 // it. 4280 switch (cast<CondCodeSDNode>(CC)->get()) { 4281 default: assert(0 && "Unknown integer comparison!"); 4282 case ISD::SETEQ: 4283 case ISD::SETNE: 4284 case ISD::SETUGE: 4285 case ISD::SETUGT: 4286 case ISD::SETULE: 4287 case ISD::SETULT: 4288 // ALL of these operations will work if we either sign or zero extend 4289 // the operands (including the unsigned comparisons!). Zero extend is 4290 // usually a simpler/cheaper operation, so prefer it. 4291 Tmp1 = DAG.getZeroExtendInReg(Tmp1, VT); 4292 Tmp2 = DAG.getZeroExtendInReg(Tmp2, VT); 4293 break; 4294 case ISD::SETGE: 4295 case ISD::SETGT: 4296 case ISD::SETLT: 4297 case ISD::SETLE: 4298 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp1, 4299 DAG.getValueType(VT)); 4300 Tmp2 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp2, 4301 DAG.getValueType(VT)); 4302 break; 4303 } 4304 } 4305 break; 4306 case Expand: { 4307 MVT::ValueType VT = LHS.getValueType(); 4308 if (VT == MVT::f32 || VT == MVT::f64) { 4309 // Expand into one or more soft-fp libcall(s). 4310 RTLIB::Libcall LC1, LC2 = RTLIB::UNKNOWN_LIBCALL; 4311 switch (cast<CondCodeSDNode>(CC)->get()) { 4312 case ISD::SETEQ: 4313 case ISD::SETOEQ: 4314 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : RTLIB::OEQ_F64; 4315 break; 4316 case ISD::SETNE: 4317 case ISD::SETUNE: 4318 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : RTLIB::UNE_F64; 4319 break; 4320 case ISD::SETGE: 4321 case ISD::SETOGE: 4322 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : RTLIB::OGE_F64; 4323 break; 4324 case ISD::SETLT: 4325 case ISD::SETOLT: 4326 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64; 4327 break; 4328 case ISD::SETLE: 4329 case ISD::SETOLE: 4330 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : RTLIB::OLE_F64; 4331 break; 4332 case ISD::SETGT: 4333 case ISD::SETOGT: 4334 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : RTLIB::OGT_F64; 4335 break; 4336 case ISD::SETUO: 4337 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : RTLIB::UO_F64; 4338 break; 4339 case ISD::SETO: 4340 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : RTLIB::O_F64; 4341 break; 4342 default: 4343 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : RTLIB::UO_F64; 4344 switch (cast<CondCodeSDNode>(CC)->get()) { 4345 case ISD::SETONE: 4346 // SETONE = SETOLT | SETOGT 4347 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64; 4348 // Fallthrough 4349 case ISD::SETUGT: 4350 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : RTLIB::OGT_F64; 4351 break; 4352 case ISD::SETUGE: 4353 LC2 = (VT == MVT::f32) ? RTLIB::OGE_F32 : RTLIB::OGE_F64; 4354 break; 4355 case ISD::SETULT: 4356 LC2 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64; 4357 break; 4358 case ISD::SETULE: 4359 LC2 = (VT == MVT::f32) ? RTLIB::OLE_F32 : RTLIB::OLE_F64; 4360 break; 4361 case ISD::SETUEQ: 4362 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : RTLIB::OEQ_F64; 4363 break; 4364 default: assert(0 && "Unsupported FP setcc!"); 4365 } 4366 } 4367 4368 SDOperand Dummy; 4369 Tmp1 = ExpandLibCall(TLI.getLibcallName(LC1), 4370 DAG.getNode(ISD::MERGE_VALUES, VT, LHS, RHS).Val, 4371 false /*sign irrelevant*/, Dummy); 4372 Tmp2 = DAG.getConstant(0, MVT::i32); 4373 CC = DAG.getCondCode(TLI.getCmpLibcallCC(LC1)); 4374 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 4375 Tmp1 = DAG.getNode(ISD::SETCC, TLI.getSetCCResultTy(), Tmp1, Tmp2, CC); 4376 LHS = ExpandLibCall(TLI.getLibcallName(LC2), 4377 DAG.getNode(ISD::MERGE_VALUES, VT, LHS, RHS).Val, 4378 false /*sign irrelevant*/, Dummy); 4379 Tmp2 = DAG.getNode(ISD::SETCC, TLI.getSetCCResultTy(), LHS, Tmp2, 4380 DAG.getCondCode(TLI.getCmpLibcallCC(LC2))); 4381 Tmp1 = DAG.getNode(ISD::OR, Tmp1.getValueType(), Tmp1, Tmp2); 4382 Tmp2 = SDOperand(); 4383 } 4384 LHS = Tmp1; 4385 RHS = Tmp2; 4386 return; 4387 } 4388 4389 SDOperand LHSLo, LHSHi, RHSLo, RHSHi; 4390 ExpandOp(LHS, LHSLo, LHSHi); 4391 ExpandOp(RHS, RHSLo, RHSHi); 4392 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 4393 4394 if (VT==MVT::ppcf128) { 4395 // FIXME: This generated code sucks. We want to generate 4396 // FCMP crN, hi1, hi2 4397 // BNE crN, L: 4398 // FCMP crN, lo1, lo2 4399 // The following can be improved, but not that much. 4400 Tmp1 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, ISD::SETEQ); 4401 Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSLo, RHSLo, CCCode); 4402 Tmp3 = DAG.getNode(ISD::AND, Tmp1.getValueType(), Tmp1, Tmp2); 4403 Tmp1 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, ISD::SETNE); 4404 Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, CCCode); 4405 Tmp1 = DAG.getNode(ISD::AND, Tmp1.getValueType(), Tmp1, Tmp2); 4406 Tmp1 = DAG.getNode(ISD::OR, Tmp1.getValueType(), Tmp1, Tmp3); 4407 Tmp2 = SDOperand(); 4408 break; 4409 } 4410 4411 switch (CCCode) { 4412 case ISD::SETEQ: 4413 case ISD::SETNE: 4414 if (RHSLo == RHSHi) 4415 if (ConstantSDNode *RHSCST = dyn_cast<ConstantSDNode>(RHSLo)) 4416 if (RHSCST->isAllOnesValue()) { 4417 // Comparison to -1. 4418 Tmp1 = DAG.getNode(ISD::AND, LHSLo.getValueType(), LHSLo, LHSHi); 4419 Tmp2 = RHSLo; 4420 break; 4421 } 4422 4423 Tmp1 = DAG.getNode(ISD::XOR, LHSLo.getValueType(), LHSLo, RHSLo); 4424 Tmp2 = DAG.getNode(ISD::XOR, LHSLo.getValueType(), LHSHi, RHSHi); 4425 Tmp1 = DAG.getNode(ISD::OR, Tmp1.getValueType(), Tmp1, Tmp2); 4426 Tmp2 = DAG.getConstant(0, Tmp1.getValueType()); 4427 break; 4428 default: 4429 // If this is a comparison of the sign bit, just look at the top part. 4430 // X > -1, x < 0 4431 if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(RHS)) 4432 if ((cast<CondCodeSDNode>(CC)->get() == ISD::SETLT && 4433 CST->getValue() == 0) || // X < 0 4434 (cast<CondCodeSDNode>(CC)->get() == ISD::SETGT && 4435 CST->isAllOnesValue())) { // X > -1 4436 Tmp1 = LHSHi; 4437 Tmp2 = RHSHi; 4438 break; 4439 } 4440 4441 // FIXME: This generated code sucks. 4442 ISD::CondCode LowCC; 4443 switch (CCCode) { 4444 default: assert(0 && "Unknown integer setcc!"); 4445 case ISD::SETLT: 4446 case ISD::SETULT: LowCC = ISD::SETULT; break; 4447 case ISD::SETGT: 4448 case ISD::SETUGT: LowCC = ISD::SETUGT; break; 4449 case ISD::SETLE: 4450 case ISD::SETULE: LowCC = ISD::SETULE; break; 4451 case ISD::SETGE: 4452 case ISD::SETUGE: LowCC = ISD::SETUGE; break; 4453 } 4454 4455 // Tmp1 = lo(op1) < lo(op2) // Always unsigned comparison 4456 // Tmp2 = hi(op1) < hi(op2) // Signedness depends on operands 4457 // dest = hi(op1) == hi(op2) ? Tmp1 : Tmp2; 4458 4459 // NOTE: on targets without efficient SELECT of bools, we can always use 4460 // this identity: (B1 ? B2 : B3) --> (B1 & B2)|(!B1&B3) 4461 TargetLowering::DAGCombinerInfo DagCombineInfo(DAG, false, true, NULL); 4462 Tmp1 = TLI.SimplifySetCC(TLI.getSetCCResultTy(), LHSLo, RHSLo, LowCC, 4463 false, DagCombineInfo); 4464 if (!Tmp1.Val) 4465 Tmp1 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSLo, RHSLo, LowCC); 4466 Tmp2 = TLI.SimplifySetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, 4467 CCCode, false, DagCombineInfo); 4468 if (!Tmp2.Val) 4469 Tmp2 = DAG.getNode(ISD::SETCC, TLI.getSetCCResultTy(), LHSHi, RHSHi,CC); 4470 4471 ConstantSDNode *Tmp1C = dyn_cast<ConstantSDNode>(Tmp1.Val); 4472 ConstantSDNode *Tmp2C = dyn_cast<ConstantSDNode>(Tmp2.Val); 4473 if ((Tmp1C && Tmp1C->getValue() == 0) || 4474 (Tmp2C && Tmp2C->getValue() == 0 && 4475 (CCCode == ISD::SETLE || CCCode == ISD::SETGE || 4476 CCCode == ISD::SETUGE || CCCode == ISD::SETULE)) || 4477 (Tmp2C && Tmp2C->getValue() == 1 && 4478 (CCCode == ISD::SETLT || CCCode == ISD::SETGT || 4479 CCCode == ISD::SETUGT || CCCode == ISD::SETULT))) { 4480 // low part is known false, returns high part. 4481 // For LE / GE, if high part is known false, ignore the low part. 4482 // For LT / GT, if high part is known true, ignore the low part. 4483 Tmp1 = Tmp2; 4484 Tmp2 = SDOperand(); 4485 } else { 4486 Result = TLI.SimplifySetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, 4487 ISD::SETEQ, false, DagCombineInfo); 4488 if (!Result.Val) 4489 Result=DAG.getSetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, ISD::SETEQ); 4490 Result = LegalizeOp(DAG.getNode(ISD::SELECT, Tmp1.getValueType(), 4491 Result, Tmp1, Tmp2)); 4492 Tmp1 = Result; 4493 Tmp2 = SDOperand(); 4494 } 4495 } 4496 } 4497 } 4498 LHS = Tmp1; 4499 RHS = Tmp2; 4500} 4501 4502/// ExpandBIT_CONVERT - Expand a BIT_CONVERT node into a store/load combination. 4503/// The resultant code need not be legal. Note that SrcOp is the input operand 4504/// to the BIT_CONVERT, not the BIT_CONVERT node itself. 4505SDOperand SelectionDAGLegalize::ExpandBIT_CONVERT(MVT::ValueType DestVT, 4506 SDOperand SrcOp) { 4507 // Create the stack frame object. 4508 SDOperand FIPtr = DAG.CreateStackTemporary(DestVT); 4509 4510 // Emit a store to the stack slot. 4511 SDOperand Store = DAG.getStore(DAG.getEntryNode(), SrcOp, FIPtr, NULL, 0); 4512 // Result is a load from the stack slot. 4513 return DAG.getLoad(DestVT, Store, FIPtr, NULL, 0); 4514} 4515 4516SDOperand SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { 4517 // Create a vector sized/aligned stack slot, store the value to element #0, 4518 // then load the whole vector back out. 4519 SDOperand StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); 4520 SDOperand Ch = DAG.getStore(DAG.getEntryNode(), Node->getOperand(0), StackPtr, 4521 NULL, 0); 4522 return DAG.getLoad(Node->getValueType(0), Ch, StackPtr, NULL, 0); 4523} 4524 4525 4526/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't 4527/// support the operation, but do support the resultant vector type. 4528SDOperand SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { 4529 4530 // If the only non-undef value is the low element, turn this into a 4531 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. 4532 unsigned NumElems = Node->getNumOperands(); 4533 bool isOnlyLowElement = true; 4534 SDOperand SplatValue = Node->getOperand(0); 4535 std::map<SDOperand, std::vector<unsigned> > Values; 4536 Values[SplatValue].push_back(0); 4537 bool isConstant = true; 4538 if (!isa<ConstantFPSDNode>(SplatValue) && !isa<ConstantSDNode>(SplatValue) && 4539 SplatValue.getOpcode() != ISD::UNDEF) 4540 isConstant = false; 4541 4542 for (unsigned i = 1; i < NumElems; ++i) { 4543 SDOperand V = Node->getOperand(i); 4544 Values[V].push_back(i); 4545 if (V.getOpcode() != ISD::UNDEF) 4546 isOnlyLowElement = false; 4547 if (SplatValue != V) 4548 SplatValue = SDOperand(0,0); 4549 4550 // If this isn't a constant element or an undef, we can't use a constant 4551 // pool load. 4552 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V) && 4553 V.getOpcode() != ISD::UNDEF) 4554 isConstant = false; 4555 } 4556 4557 if (isOnlyLowElement) { 4558 // If the low element is an undef too, then this whole things is an undef. 4559 if (Node->getOperand(0).getOpcode() == ISD::UNDEF) 4560 return DAG.getNode(ISD::UNDEF, Node->getValueType(0)); 4561 // Otherwise, turn this into a scalar_to_vector node. 4562 return DAG.getNode(ISD::SCALAR_TO_VECTOR, Node->getValueType(0), 4563 Node->getOperand(0)); 4564 } 4565 4566 // If all elements are constants, create a load from the constant pool. 4567 if (isConstant) { 4568 MVT::ValueType VT = Node->getValueType(0); 4569 const Type *OpNTy = 4570 MVT::getTypeForValueType(Node->getOperand(0).getValueType()); 4571 std::vector<Constant*> CV; 4572 for (unsigned i = 0, e = NumElems; i != e; ++i) { 4573 if (ConstantFPSDNode *V = 4574 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { 4575 CV.push_back(ConstantFP::get(OpNTy, V->getValueAPF())); 4576 } else if (ConstantSDNode *V = 4577 dyn_cast<ConstantSDNode>(Node->getOperand(i))) { 4578 CV.push_back(ConstantInt::get(OpNTy, V->getValue())); 4579 } else { 4580 assert(Node->getOperand(i).getOpcode() == ISD::UNDEF); 4581 CV.push_back(UndefValue::get(OpNTy)); 4582 } 4583 } 4584 Constant *CP = ConstantVector::get(CV); 4585 SDOperand CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy()); 4586 return DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0); 4587 } 4588 4589 if (SplatValue.Val) { // Splat of one value? 4590 // Build the shuffle constant vector: <0, 0, 0, 0> 4591 MVT::ValueType MaskVT = 4592 MVT::getIntVectorWithNumElements(NumElems); 4593 SDOperand Zero = DAG.getConstant(0, MVT::getVectorElementType(MaskVT)); 4594 std::vector<SDOperand> ZeroVec(NumElems, Zero); 4595 SDOperand SplatMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 4596 &ZeroVec[0], ZeroVec.size()); 4597 4598 // If the target supports VECTOR_SHUFFLE and this shuffle mask, use it. 4599 if (isShuffleLegal(Node->getValueType(0), SplatMask)) { 4600 // Get the splatted value into the low element of a vector register. 4601 SDOperand LowValVec = 4602 DAG.getNode(ISD::SCALAR_TO_VECTOR, Node->getValueType(0), SplatValue); 4603 4604 // Return shuffle(LowValVec, undef, <0,0,0,0>) 4605 return DAG.getNode(ISD::VECTOR_SHUFFLE, Node->getValueType(0), LowValVec, 4606 DAG.getNode(ISD::UNDEF, Node->getValueType(0)), 4607 SplatMask); 4608 } 4609 } 4610 4611 // If there are only two unique elements, we may be able to turn this into a 4612 // vector shuffle. 4613 if (Values.size() == 2) { 4614 // Build the shuffle constant vector: e.g. <0, 4, 0, 4> 4615 MVT::ValueType MaskVT = 4616 MVT::getIntVectorWithNumElements(NumElems); 4617 std::vector<SDOperand> MaskVec(NumElems); 4618 unsigned i = 0; 4619 for (std::map<SDOperand,std::vector<unsigned> >::iterator I=Values.begin(), 4620 E = Values.end(); I != E; ++I) { 4621 for (std::vector<unsigned>::iterator II = I->second.begin(), 4622 EE = I->second.end(); II != EE; ++II) 4623 MaskVec[*II] = DAG.getConstant(i, MVT::getVectorElementType(MaskVT)); 4624 i += NumElems; 4625 } 4626 SDOperand ShuffleMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 4627 &MaskVec[0], MaskVec.size()); 4628 4629 // If the target supports VECTOR_SHUFFLE and this shuffle mask, use it. 4630 if (TLI.isOperationLegal(ISD::SCALAR_TO_VECTOR, Node->getValueType(0)) && 4631 isShuffleLegal(Node->getValueType(0), ShuffleMask)) { 4632 SmallVector<SDOperand, 8> Ops; 4633 for(std::map<SDOperand,std::vector<unsigned> >::iterator I=Values.begin(), 4634 E = Values.end(); I != E; ++I) { 4635 SDOperand Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, Node->getValueType(0), 4636 I->first); 4637 Ops.push_back(Op); 4638 } 4639 Ops.push_back(ShuffleMask); 4640 4641 // Return shuffle(LoValVec, HiValVec, <0,1,0,1>) 4642 return DAG.getNode(ISD::VECTOR_SHUFFLE, Node->getValueType(0), 4643 &Ops[0], Ops.size()); 4644 } 4645 } 4646 4647 // Otherwise, we can't handle this case efficiently. Allocate a sufficiently 4648 // aligned object on the stack, store each element into it, then load 4649 // the result as a vector. 4650 MVT::ValueType VT = Node->getValueType(0); 4651 // Create the stack frame object. 4652 SDOperand FIPtr = DAG.CreateStackTemporary(VT); 4653 4654 // Emit a store of each element to the stack slot. 4655 SmallVector<SDOperand, 8> Stores; 4656 unsigned TypeByteSize = 4657 MVT::getSizeInBits(Node->getOperand(0).getValueType())/8; 4658 // Store (in the right endianness) the elements to memory. 4659 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 4660 // Ignore undef elements. 4661 if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue; 4662 4663 unsigned Offset = TypeByteSize*i; 4664 4665 SDOperand Idx = DAG.getConstant(Offset, FIPtr.getValueType()); 4666 Idx = DAG.getNode(ISD::ADD, FIPtr.getValueType(), FIPtr, Idx); 4667 4668 Stores.push_back(DAG.getStore(DAG.getEntryNode(), Node->getOperand(i), Idx, 4669 NULL, 0)); 4670 } 4671 4672 SDOperand StoreChain; 4673 if (!Stores.empty()) // Not all undef elements? 4674 StoreChain = DAG.getNode(ISD::TokenFactor, MVT::Other, 4675 &Stores[0], Stores.size()); 4676 else 4677 StoreChain = DAG.getEntryNode(); 4678 4679 // Result is a load from the stack slot. 4680 return DAG.getLoad(VT, StoreChain, FIPtr, NULL, 0); 4681} 4682 4683void SelectionDAGLegalize::ExpandShiftParts(unsigned NodeOp, 4684 SDOperand Op, SDOperand Amt, 4685 SDOperand &Lo, SDOperand &Hi) { 4686 // Expand the subcomponents. 4687 SDOperand LHSL, LHSH; 4688 ExpandOp(Op, LHSL, LHSH); 4689 4690 SDOperand Ops[] = { LHSL, LHSH, Amt }; 4691 MVT::ValueType VT = LHSL.getValueType(); 4692 Lo = DAG.getNode(NodeOp, DAG.getNodeValueTypes(VT, VT), 2, Ops, 3); 4693 Hi = Lo.getValue(1); 4694} 4695 4696 4697/// ExpandShift - Try to find a clever way to expand this shift operation out to 4698/// smaller elements. If we can't find a way that is more efficient than a 4699/// libcall on this target, return false. Otherwise, return true with the 4700/// low-parts expanded into Lo and Hi. 4701bool SelectionDAGLegalize::ExpandShift(unsigned Opc, SDOperand Op,SDOperand Amt, 4702 SDOperand &Lo, SDOperand &Hi) { 4703 assert((Opc == ISD::SHL || Opc == ISD::SRA || Opc == ISD::SRL) && 4704 "This is not a shift!"); 4705 4706 MVT::ValueType NVT = TLI.getTypeToTransformTo(Op.getValueType()); 4707 SDOperand ShAmt = LegalizeOp(Amt); 4708 MVT::ValueType ShTy = ShAmt.getValueType(); 4709 unsigned VTBits = MVT::getSizeInBits(Op.getValueType()); 4710 unsigned NVTBits = MVT::getSizeInBits(NVT); 4711 4712 // Handle the case when Amt is an immediate. 4713 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Amt.Val)) { 4714 unsigned Cst = CN->getValue(); 4715 // Expand the incoming operand to be shifted, so that we have its parts 4716 SDOperand InL, InH; 4717 ExpandOp(Op, InL, InH); 4718 switch(Opc) { 4719 case ISD::SHL: 4720 if (Cst > VTBits) { 4721 Lo = DAG.getConstant(0, NVT); 4722 Hi = DAG.getConstant(0, NVT); 4723 } else if (Cst > NVTBits) { 4724 Lo = DAG.getConstant(0, NVT); 4725 Hi = DAG.getNode(ISD::SHL, NVT, InL, DAG.getConstant(Cst-NVTBits,ShTy)); 4726 } else if (Cst == NVTBits) { 4727 Lo = DAG.getConstant(0, NVT); 4728 Hi = InL; 4729 } else { 4730 Lo = DAG.getNode(ISD::SHL, NVT, InL, DAG.getConstant(Cst, ShTy)); 4731 Hi = DAG.getNode(ISD::OR, NVT, 4732 DAG.getNode(ISD::SHL, NVT, InH, DAG.getConstant(Cst, ShTy)), 4733 DAG.getNode(ISD::SRL, NVT, InL, DAG.getConstant(NVTBits-Cst, ShTy))); 4734 } 4735 return true; 4736 case ISD::SRL: 4737 if (Cst > VTBits) { 4738 Lo = DAG.getConstant(0, NVT); 4739 Hi = DAG.getConstant(0, NVT); 4740 } else if (Cst > NVTBits) { 4741 Lo = DAG.getNode(ISD::SRL, NVT, InH, DAG.getConstant(Cst-NVTBits,ShTy)); 4742 Hi = DAG.getConstant(0, NVT); 4743 } else if (Cst == NVTBits) { 4744 Lo = InH; 4745 Hi = DAG.getConstant(0, NVT); 4746 } else { 4747 Lo = DAG.getNode(ISD::OR, NVT, 4748 DAG.getNode(ISD::SRL, NVT, InL, DAG.getConstant(Cst, ShTy)), 4749 DAG.getNode(ISD::SHL, NVT, InH, DAG.getConstant(NVTBits-Cst, ShTy))); 4750 Hi = DAG.getNode(ISD::SRL, NVT, InH, DAG.getConstant(Cst, ShTy)); 4751 } 4752 return true; 4753 case ISD::SRA: 4754 if (Cst > VTBits) { 4755 Hi = Lo = DAG.getNode(ISD::SRA, NVT, InH, 4756 DAG.getConstant(NVTBits-1, ShTy)); 4757 } else if (Cst > NVTBits) { 4758 Lo = DAG.getNode(ISD::SRA, NVT, InH, 4759 DAG.getConstant(Cst-NVTBits, ShTy)); 4760 Hi = DAG.getNode(ISD::SRA, NVT, InH, 4761 DAG.getConstant(NVTBits-1, ShTy)); 4762 } else if (Cst == NVTBits) { 4763 Lo = InH; 4764 Hi = DAG.getNode(ISD::SRA, NVT, InH, 4765 DAG.getConstant(NVTBits-1, ShTy)); 4766 } else { 4767 Lo = DAG.getNode(ISD::OR, NVT, 4768 DAG.getNode(ISD::SRL, NVT, InL, DAG.getConstant(Cst, ShTy)), 4769 DAG.getNode(ISD::SHL, NVT, InH, DAG.getConstant(NVTBits-Cst, ShTy))); 4770 Hi = DAG.getNode(ISD::SRA, NVT, InH, DAG.getConstant(Cst, ShTy)); 4771 } 4772 return true; 4773 } 4774 } 4775 4776 // Okay, the shift amount isn't constant. However, if we can tell that it is 4777 // >= 32 or < 32, we can still simplify it, without knowing the actual value. 4778 uint64_t Mask = NVTBits, KnownZero, KnownOne; 4779 DAG.ComputeMaskedBits(Amt, Mask, KnownZero, KnownOne); 4780 4781 // If we know that the high bit of the shift amount is one, then we can do 4782 // this as a couple of simple shifts. 4783 if (KnownOne & Mask) { 4784 // Mask out the high bit, which we know is set. 4785 Amt = DAG.getNode(ISD::AND, Amt.getValueType(), Amt, 4786 DAG.getConstant(NVTBits-1, Amt.getValueType())); 4787 4788 // Expand the incoming operand to be shifted, so that we have its parts 4789 SDOperand InL, InH; 4790 ExpandOp(Op, InL, InH); 4791 switch(Opc) { 4792 case ISD::SHL: 4793 Lo = DAG.getConstant(0, NVT); // Low part is zero. 4794 Hi = DAG.getNode(ISD::SHL, NVT, InL, Amt); // High part from Lo part. 4795 return true; 4796 case ISD::SRL: 4797 Hi = DAG.getConstant(0, NVT); // Hi part is zero. 4798 Lo = DAG.getNode(ISD::SRL, NVT, InH, Amt); // Lo part from Hi part. 4799 return true; 4800 case ISD::SRA: 4801 Hi = DAG.getNode(ISD::SRA, NVT, InH, // Sign extend high part. 4802 DAG.getConstant(NVTBits-1, Amt.getValueType())); 4803 Lo = DAG.getNode(ISD::SRA, NVT, InH, Amt); // Lo part from Hi part. 4804 return true; 4805 } 4806 } 4807 4808 // If we know that the high bit of the shift amount is zero, then we can do 4809 // this as a couple of simple shifts. 4810 if (KnownZero & Mask) { 4811 // Compute 32-amt. 4812 SDOperand Amt2 = DAG.getNode(ISD::SUB, Amt.getValueType(), 4813 DAG.getConstant(NVTBits, Amt.getValueType()), 4814 Amt); 4815 4816 // Expand the incoming operand to be shifted, so that we have its parts 4817 SDOperand InL, InH; 4818 ExpandOp(Op, InL, InH); 4819 switch(Opc) { 4820 case ISD::SHL: 4821 Lo = DAG.getNode(ISD::SHL, NVT, InL, Amt); 4822 Hi = DAG.getNode(ISD::OR, NVT, 4823 DAG.getNode(ISD::SHL, NVT, InH, Amt), 4824 DAG.getNode(ISD::SRL, NVT, InL, Amt2)); 4825 return true; 4826 case ISD::SRL: 4827 Hi = DAG.getNode(ISD::SRL, NVT, InH, Amt); 4828 Lo = DAG.getNode(ISD::OR, NVT, 4829 DAG.getNode(ISD::SRL, NVT, InL, Amt), 4830 DAG.getNode(ISD::SHL, NVT, InH, Amt2)); 4831 return true; 4832 case ISD::SRA: 4833 Hi = DAG.getNode(ISD::SRA, NVT, InH, Amt); 4834 Lo = DAG.getNode(ISD::OR, NVT, 4835 DAG.getNode(ISD::SRL, NVT, InL, Amt), 4836 DAG.getNode(ISD::SHL, NVT, InH, Amt2)); 4837 return true; 4838 } 4839 } 4840 4841 return false; 4842} 4843 4844 4845// ExpandLibCall - Expand a node into a call to a libcall. If the result value 4846// does not fit into a register, return the lo part and set the hi part to the 4847// by-reg argument. If it does fit into a single register, return the result 4848// and leave the Hi part unset. 4849SDOperand SelectionDAGLegalize::ExpandLibCall(const char *Name, SDNode *Node, 4850 bool isSigned, SDOperand &Hi) { 4851 assert(!IsLegalizingCall && "Cannot overlap legalization of calls!"); 4852 // The input chain to this libcall is the entry node of the function. 4853 // Legalizing the call will automatically add the previous call to the 4854 // dependence. 4855 SDOperand InChain = DAG.getEntryNode(); 4856 4857 TargetLowering::ArgListTy Args; 4858 TargetLowering::ArgListEntry Entry; 4859 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 4860 MVT::ValueType ArgVT = Node->getOperand(i).getValueType(); 4861 const Type *ArgTy = MVT::getTypeForValueType(ArgVT); 4862 Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy; 4863 Entry.isSExt = isSigned; 4864 Args.push_back(Entry); 4865 } 4866 SDOperand Callee = DAG.getExternalSymbol(Name, TLI.getPointerTy()); 4867 4868 // Splice the libcall in wherever FindInputOutputChains tells us to. 4869 const Type *RetTy = MVT::getTypeForValueType(Node->getValueType(0)); 4870 std::pair<SDOperand,SDOperand> CallInfo = 4871 TLI.LowerCallTo(InChain, RetTy, isSigned, false, CallingConv::C, false, 4872 Callee, Args, DAG); 4873 4874 // Legalize the call sequence, starting with the chain. This will advance 4875 // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that 4876 // was added by LowerCallTo (guaranteeing proper serialization of calls). 4877 LegalizeOp(CallInfo.second); 4878 SDOperand Result; 4879 switch (getTypeAction(CallInfo.first.getValueType())) { 4880 default: assert(0 && "Unknown thing"); 4881 case Legal: 4882 Result = CallInfo.first; 4883 break; 4884 case Expand: 4885 ExpandOp(CallInfo.first, Result, Hi); 4886 break; 4887 } 4888 return Result; 4889} 4890 4891 4892/// ExpandIntToFP - Expand a [US]INT_TO_FP operation. 4893/// 4894SDOperand SelectionDAGLegalize:: 4895ExpandIntToFP(bool isSigned, MVT::ValueType DestTy, SDOperand Source) { 4896 assert(getTypeAction(Source.getValueType()) == Expand && 4897 "This is not an expansion!"); 4898 assert(Source.getValueType() == MVT::i64 && "Only handle expand from i64!"); 4899 4900 if (!isSigned) { 4901 assert(Source.getValueType() == MVT::i64 && 4902 "This only works for 64-bit -> FP"); 4903 // The 64-bit value loaded will be incorrectly if the 'sign bit' of the 4904 // incoming integer is set. To handle this, we dynamically test to see if 4905 // it is set, and, if so, add a fudge factor. 4906 SDOperand Lo, Hi; 4907 ExpandOp(Source, Lo, Hi); 4908 4909 // If this is unsigned, and not supported, first perform the conversion to 4910 // signed, then adjust the result if the sign bit is set. 4911 SDOperand SignedConv = ExpandIntToFP(true, DestTy, 4912 DAG.getNode(ISD::BUILD_PAIR, Source.getValueType(), Lo, Hi)); 4913 4914 SDOperand SignSet = DAG.getSetCC(TLI.getSetCCResultTy(), Hi, 4915 DAG.getConstant(0, Hi.getValueType()), 4916 ISD::SETLT); 4917 SDOperand Zero = getIntPtrConstant(0), Four = getIntPtrConstant(4); 4918 SDOperand CstOffset = DAG.getNode(ISD::SELECT, Zero.getValueType(), 4919 SignSet, Four, Zero); 4920 uint64_t FF = 0x5f800000ULL; 4921 if (TLI.isLittleEndian()) FF <<= 32; 4922 static Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF); 4923 4924 SDOperand CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy()); 4925 CPIdx = DAG.getNode(ISD::ADD, TLI.getPointerTy(), CPIdx, CstOffset); 4926 SDOperand FudgeInReg; 4927 if (DestTy == MVT::f32) 4928 FudgeInReg = DAG.getLoad(MVT::f32, DAG.getEntryNode(), CPIdx, NULL, 0); 4929 else if (MVT::getSizeInBits(DestTy) > MVT::getSizeInBits(MVT::f32)) 4930 // FIXME: Avoid the extend by construction the right constantpool? 4931 FudgeInReg = DAG.getExtLoad(ISD::EXTLOAD, DestTy, DAG.getEntryNode(), 4932 CPIdx, NULL, 0, MVT::f32); 4933 else 4934 assert(0 && "Unexpected conversion"); 4935 4936 MVT::ValueType SCVT = SignedConv.getValueType(); 4937 if (SCVT != DestTy) { 4938 // Destination type needs to be expanded as well. The FADD now we are 4939 // constructing will be expanded into a libcall. 4940 if (MVT::getSizeInBits(SCVT) != MVT::getSizeInBits(DestTy)) { 4941 assert(SCVT == MVT::i32 && DestTy == MVT::f64); 4942 SignedConv = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, 4943 SignedConv, SignedConv.getValue(1)); 4944 } 4945 SignedConv = DAG.getNode(ISD::BIT_CONVERT, DestTy, SignedConv); 4946 } 4947 return DAG.getNode(ISD::FADD, DestTy, SignedConv, FudgeInReg); 4948 } 4949 4950 // Check to see if the target has a custom way to lower this. If so, use it. 4951 switch (TLI.getOperationAction(ISD::SINT_TO_FP, Source.getValueType())) { 4952 default: assert(0 && "This action not implemented for this operation!"); 4953 case TargetLowering::Legal: 4954 case TargetLowering::Expand: 4955 break; // This case is handled below. 4956 case TargetLowering::Custom: { 4957 SDOperand NV = TLI.LowerOperation(DAG.getNode(ISD::SINT_TO_FP, DestTy, 4958 Source), DAG); 4959 if (NV.Val) 4960 return LegalizeOp(NV); 4961 break; // The target decided this was legal after all 4962 } 4963 } 4964 4965 // Expand the source, then glue it back together for the call. We must expand 4966 // the source in case it is shared (this pass of legalize must traverse it). 4967 SDOperand SrcLo, SrcHi; 4968 ExpandOp(Source, SrcLo, SrcHi); 4969 Source = DAG.getNode(ISD::BUILD_PAIR, Source.getValueType(), SrcLo, SrcHi); 4970 4971 RTLIB::Libcall LC; 4972 if (DestTy == MVT::f32) 4973 LC = RTLIB::SINTTOFP_I64_F32; 4974 else { 4975 assert(DestTy == MVT::f64 && "Unknown fp value type!"); 4976 LC = RTLIB::SINTTOFP_I64_F64; 4977 } 4978 4979 assert(TLI.getLibcallName(LC) && "Don't know how to expand this SINT_TO_FP!"); 4980 Source = DAG.getNode(ISD::SINT_TO_FP, DestTy, Source); 4981 SDOperand UnusedHiPart; 4982 return ExpandLibCall(TLI.getLibcallName(LC), Source.Val, isSigned, 4983 UnusedHiPart); 4984} 4985 4986/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a 4987/// INT_TO_FP operation of the specified operand when the target requests that 4988/// we expand it. At this point, we know that the result and operand types are 4989/// legal for the target. 4990SDOperand SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned, 4991 SDOperand Op0, 4992 MVT::ValueType DestVT) { 4993 if (Op0.getValueType() == MVT::i32) { 4994 // simple 32-bit [signed|unsigned] integer to float/double expansion 4995 4996 // get the stack frame index of a 8 byte buffer, pessimistically aligned 4997 MachineFunction &MF = DAG.getMachineFunction(); 4998 const Type *F64Type = MVT::getTypeForValueType(MVT::f64); 4999 unsigned StackAlign = 5000 (unsigned)TLI.getTargetData()->getPrefTypeAlignment(F64Type); 5001 int SSFI = MF.getFrameInfo()->CreateStackObject(8, StackAlign); 5002 // get address of 8 byte buffer 5003 SDOperand StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 5004 // word offset constant for Hi/Lo address computation 5005 SDOperand WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy()); 5006 // set up Hi and Lo (into buffer) address based on endian 5007 SDOperand Hi = StackSlot; 5008 SDOperand Lo = DAG.getNode(ISD::ADD, TLI.getPointerTy(), StackSlot,WordOff); 5009 if (TLI.isLittleEndian()) 5010 std::swap(Hi, Lo); 5011 5012 // if signed map to unsigned space 5013 SDOperand Op0Mapped; 5014 if (isSigned) { 5015 // constant used to invert sign bit (signed to unsigned mapping) 5016 SDOperand SignBit = DAG.getConstant(0x80000000u, MVT::i32); 5017 Op0Mapped = DAG.getNode(ISD::XOR, MVT::i32, Op0, SignBit); 5018 } else { 5019 Op0Mapped = Op0; 5020 } 5021 // store the lo of the constructed double - based on integer input 5022 SDOperand Store1 = DAG.getStore(DAG.getEntryNode(), 5023 Op0Mapped, Lo, NULL, 0); 5024 // initial hi portion of constructed double 5025 SDOperand InitialHi = DAG.getConstant(0x43300000u, MVT::i32); 5026 // store the hi of the constructed double - biased exponent 5027 SDOperand Store2=DAG.getStore(Store1, InitialHi, Hi, NULL, 0); 5028 // load the constructed double 5029 SDOperand Load = DAG.getLoad(MVT::f64, Store2, StackSlot, NULL, 0); 5030 // FP constant to bias correct the final result 5031 SDOperand Bias = DAG.getConstantFP(isSigned ? 5032 BitsToDouble(0x4330000080000000ULL) 5033 : BitsToDouble(0x4330000000000000ULL), 5034 MVT::f64); 5035 // subtract the bias 5036 SDOperand Sub = DAG.getNode(ISD::FSUB, MVT::f64, Load, Bias); 5037 // final result 5038 SDOperand Result; 5039 // handle final rounding 5040 if (DestVT == MVT::f64) { 5041 // do nothing 5042 Result = Sub; 5043 } else if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(MVT::f64)) { 5044 Result = DAG.getNode(ISD::FP_ROUND, DestVT, Sub); 5045 } else if (MVT::getSizeInBits(DestVT) > MVT::getSizeInBits(MVT::f64)) { 5046 Result = DAG.getNode(ISD::FP_EXTEND, DestVT, Sub); 5047 } 5048 return Result; 5049 } 5050 assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet"); 5051 SDOperand Tmp1 = DAG.getNode(ISD::SINT_TO_FP, DestVT, Op0); 5052 5053 SDOperand SignSet = DAG.getSetCC(TLI.getSetCCResultTy(), Op0, 5054 DAG.getConstant(0, Op0.getValueType()), 5055 ISD::SETLT); 5056 SDOperand Zero = getIntPtrConstant(0), Four = getIntPtrConstant(4); 5057 SDOperand CstOffset = DAG.getNode(ISD::SELECT, Zero.getValueType(), 5058 SignSet, Four, Zero); 5059 5060 // If the sign bit of the integer is set, the large number will be treated 5061 // as a negative number. To counteract this, the dynamic code adds an 5062 // offset depending on the data type. 5063 uint64_t FF; 5064 switch (Op0.getValueType()) { 5065 default: assert(0 && "Unsupported integer type!"); 5066 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) 5067 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) 5068 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) 5069 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) 5070 } 5071 if (TLI.isLittleEndian()) FF <<= 32; 5072 static Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF); 5073 5074 SDOperand CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy()); 5075 CPIdx = DAG.getNode(ISD::ADD, TLI.getPointerTy(), CPIdx, CstOffset); 5076 SDOperand FudgeInReg; 5077 if (DestVT == MVT::f32) 5078 FudgeInReg = DAG.getLoad(MVT::f32, DAG.getEntryNode(), CPIdx, NULL, 0); 5079 else { 5080 FudgeInReg = LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, DestVT, 5081 DAG.getEntryNode(), CPIdx, 5082 NULL, 0, MVT::f32)); 5083 } 5084 5085 return DAG.getNode(ISD::FADD, DestVT, Tmp1, FudgeInReg); 5086} 5087 5088/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a 5089/// *INT_TO_FP operation of the specified operand when the target requests that 5090/// we promote it. At this point, we know that the result and operand types are 5091/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP 5092/// operation that takes a larger input. 5093SDOperand SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDOperand LegalOp, 5094 MVT::ValueType DestVT, 5095 bool isSigned) { 5096 // First step, figure out the appropriate *INT_TO_FP operation to use. 5097 MVT::ValueType NewInTy = LegalOp.getValueType(); 5098 5099 unsigned OpToUse = 0; 5100 5101 // Scan for the appropriate larger type to use. 5102 while (1) { 5103 NewInTy = (MVT::ValueType)(NewInTy+1); 5104 assert(MVT::isInteger(NewInTy) && "Ran out of possibilities!"); 5105 5106 // If the target supports SINT_TO_FP of this type, use it. 5107 switch (TLI.getOperationAction(ISD::SINT_TO_FP, NewInTy)) { 5108 default: break; 5109 case TargetLowering::Legal: 5110 if (!TLI.isTypeLegal(NewInTy)) 5111 break; // Can't use this datatype. 5112 // FALL THROUGH. 5113 case TargetLowering::Custom: 5114 OpToUse = ISD::SINT_TO_FP; 5115 break; 5116 } 5117 if (OpToUse) break; 5118 if (isSigned) continue; 5119 5120 // If the target supports UINT_TO_FP of this type, use it. 5121 switch (TLI.getOperationAction(ISD::UINT_TO_FP, NewInTy)) { 5122 default: break; 5123 case TargetLowering::Legal: 5124 if (!TLI.isTypeLegal(NewInTy)) 5125 break; // Can't use this datatype. 5126 // FALL THROUGH. 5127 case TargetLowering::Custom: 5128 OpToUse = ISD::UINT_TO_FP; 5129 break; 5130 } 5131 if (OpToUse) break; 5132 5133 // Otherwise, try a larger type. 5134 } 5135 5136 // Okay, we found the operation and type to use. Zero extend our input to the 5137 // desired type then run the operation on it. 5138 return DAG.getNode(OpToUse, DestVT, 5139 DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 5140 NewInTy, LegalOp)); 5141} 5142 5143/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a 5144/// FP_TO_*INT operation of the specified operand when the target requests that 5145/// we promote it. At this point, we know that the result and operand types are 5146/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT 5147/// operation that returns a larger result. 5148SDOperand SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDOperand LegalOp, 5149 MVT::ValueType DestVT, 5150 bool isSigned) { 5151 // First step, figure out the appropriate FP_TO*INT operation to use. 5152 MVT::ValueType NewOutTy = DestVT; 5153 5154 unsigned OpToUse = 0; 5155 5156 // Scan for the appropriate larger type to use. 5157 while (1) { 5158 NewOutTy = (MVT::ValueType)(NewOutTy+1); 5159 assert(MVT::isInteger(NewOutTy) && "Ran out of possibilities!"); 5160 5161 // If the target supports FP_TO_SINT returning this type, use it. 5162 switch (TLI.getOperationAction(ISD::FP_TO_SINT, NewOutTy)) { 5163 default: break; 5164 case TargetLowering::Legal: 5165 if (!TLI.isTypeLegal(NewOutTy)) 5166 break; // Can't use this datatype. 5167 // FALL THROUGH. 5168 case TargetLowering::Custom: 5169 OpToUse = ISD::FP_TO_SINT; 5170 break; 5171 } 5172 if (OpToUse) break; 5173 5174 // If the target supports FP_TO_UINT of this type, use it. 5175 switch (TLI.getOperationAction(ISD::FP_TO_UINT, NewOutTy)) { 5176 default: break; 5177 case TargetLowering::Legal: 5178 if (!TLI.isTypeLegal(NewOutTy)) 5179 break; // Can't use this datatype. 5180 // FALL THROUGH. 5181 case TargetLowering::Custom: 5182 OpToUse = ISD::FP_TO_UINT; 5183 break; 5184 } 5185 if (OpToUse) break; 5186 5187 // Otherwise, try a larger type. 5188 } 5189 5190 5191 // Okay, we found the operation and type to use. 5192 SDOperand Operation = DAG.getNode(OpToUse, NewOutTy, LegalOp); 5193 5194 // If the operation produces an invalid type, it must be custom lowered. Use 5195 // the target lowering hooks to expand it. Just keep the low part of the 5196 // expanded operation, we know that we're truncating anyway. 5197 if (getTypeAction(NewOutTy) == Expand) { 5198 Operation = SDOperand(TLI.ExpandOperationResult(Operation.Val, DAG), 0); 5199 assert(Operation.Val && "Didn't return anything"); 5200 } 5201 5202 // Truncate the result of the extended FP_TO_*INT operation to the desired 5203 // size. 5204 return DAG.getNode(ISD::TRUNCATE, DestVT, Operation); 5205} 5206 5207/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation. 5208/// 5209SDOperand SelectionDAGLegalize::ExpandBSWAP(SDOperand Op) { 5210 MVT::ValueType VT = Op.getValueType(); 5211 MVT::ValueType SHVT = TLI.getShiftAmountTy(); 5212 SDOperand Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 5213 switch (VT) { 5214 default: assert(0 && "Unhandled Expand type in BSWAP!"); abort(); 5215 case MVT::i16: 5216 Tmp2 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(8, SHVT)); 5217 Tmp1 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(8, SHVT)); 5218 return DAG.getNode(ISD::OR, VT, Tmp1, Tmp2); 5219 case MVT::i32: 5220 Tmp4 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(24, SHVT)); 5221 Tmp3 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(8, SHVT)); 5222 Tmp2 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(8, SHVT)); 5223 Tmp1 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(24, SHVT)); 5224 Tmp3 = DAG.getNode(ISD::AND, VT, Tmp3, DAG.getConstant(0xFF0000, VT)); 5225 Tmp2 = DAG.getNode(ISD::AND, VT, Tmp2, DAG.getConstant(0xFF00, VT)); 5226 Tmp4 = DAG.getNode(ISD::OR, VT, Tmp4, Tmp3); 5227 Tmp2 = DAG.getNode(ISD::OR, VT, Tmp2, Tmp1); 5228 return DAG.getNode(ISD::OR, VT, Tmp4, Tmp2); 5229 case MVT::i64: 5230 Tmp8 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(56, SHVT)); 5231 Tmp7 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(40, SHVT)); 5232 Tmp6 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(24, SHVT)); 5233 Tmp5 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(8, SHVT)); 5234 Tmp4 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(8, SHVT)); 5235 Tmp3 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(24, SHVT)); 5236 Tmp2 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(40, SHVT)); 5237 Tmp1 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(56, SHVT)); 5238 Tmp7 = DAG.getNode(ISD::AND, VT, Tmp7, DAG.getConstant(255ULL<<48, VT)); 5239 Tmp6 = DAG.getNode(ISD::AND, VT, Tmp6, DAG.getConstant(255ULL<<40, VT)); 5240 Tmp5 = DAG.getNode(ISD::AND, VT, Tmp5, DAG.getConstant(255ULL<<32, VT)); 5241 Tmp4 = DAG.getNode(ISD::AND, VT, Tmp4, DAG.getConstant(255ULL<<24, VT)); 5242 Tmp3 = DAG.getNode(ISD::AND, VT, Tmp3, DAG.getConstant(255ULL<<16, VT)); 5243 Tmp2 = DAG.getNode(ISD::AND, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT)); 5244 Tmp8 = DAG.getNode(ISD::OR, VT, Tmp8, Tmp7); 5245 Tmp6 = DAG.getNode(ISD::OR, VT, Tmp6, Tmp5); 5246 Tmp4 = DAG.getNode(ISD::OR, VT, Tmp4, Tmp3); 5247 Tmp2 = DAG.getNode(ISD::OR, VT, Tmp2, Tmp1); 5248 Tmp8 = DAG.getNode(ISD::OR, VT, Tmp8, Tmp6); 5249 Tmp4 = DAG.getNode(ISD::OR, VT, Tmp4, Tmp2); 5250 return DAG.getNode(ISD::OR, VT, Tmp8, Tmp4); 5251 } 5252} 5253 5254/// ExpandBitCount - Expand the specified bitcount instruction into operations. 5255/// 5256SDOperand SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDOperand Op) { 5257 switch (Opc) { 5258 default: assert(0 && "Cannot expand this yet!"); 5259 case ISD::CTPOP: { 5260 static const uint64_t mask[6] = { 5261 0x5555555555555555ULL, 0x3333333333333333ULL, 5262 0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL, 5263 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL 5264 }; 5265 MVT::ValueType VT = Op.getValueType(); 5266 MVT::ValueType ShVT = TLI.getShiftAmountTy(); 5267 unsigned len = MVT::getSizeInBits(VT); 5268 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) { 5269 //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8]) 5270 SDOperand Tmp2 = DAG.getConstant(mask[i], VT); 5271 SDOperand Tmp3 = DAG.getConstant(1ULL << i, ShVT); 5272 Op = DAG.getNode(ISD::ADD, VT, DAG.getNode(ISD::AND, VT, Op, Tmp2), 5273 DAG.getNode(ISD::AND, VT, 5274 DAG.getNode(ISD::SRL, VT, Op, Tmp3),Tmp2)); 5275 } 5276 return Op; 5277 } 5278 case ISD::CTLZ: { 5279 // for now, we do this: 5280 // x = x | (x >> 1); 5281 // x = x | (x >> 2); 5282 // ... 5283 // x = x | (x >>16); 5284 // x = x | (x >>32); // for 64-bit input 5285 // return popcount(~x); 5286 // 5287 // but see also: http://www.hackersdelight.org/HDcode/nlz.cc 5288 MVT::ValueType VT = Op.getValueType(); 5289 MVT::ValueType ShVT = TLI.getShiftAmountTy(); 5290 unsigned len = MVT::getSizeInBits(VT); 5291 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) { 5292 SDOperand Tmp3 = DAG.getConstant(1ULL << i, ShVT); 5293 Op = DAG.getNode(ISD::OR, VT, Op, DAG.getNode(ISD::SRL, VT, Op, Tmp3)); 5294 } 5295 Op = DAG.getNode(ISD::XOR, VT, Op, DAG.getConstant(~0ULL, VT)); 5296 return DAG.getNode(ISD::CTPOP, VT, Op); 5297 } 5298 case ISD::CTTZ: { 5299 // for now, we use: { return popcount(~x & (x - 1)); } 5300 // unless the target has ctlz but not ctpop, in which case we use: 5301 // { return 32 - nlz(~x & (x-1)); } 5302 // see also http://www.hackersdelight.org/HDcode/ntz.cc 5303 MVT::ValueType VT = Op.getValueType(); 5304 SDOperand Tmp2 = DAG.getConstant(~0ULL, VT); 5305 SDOperand Tmp3 = DAG.getNode(ISD::AND, VT, 5306 DAG.getNode(ISD::XOR, VT, Op, Tmp2), 5307 DAG.getNode(ISD::SUB, VT, Op, DAG.getConstant(1, VT))); 5308 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 5309 if (!TLI.isOperationLegal(ISD::CTPOP, VT) && 5310 TLI.isOperationLegal(ISD::CTLZ, VT)) 5311 return DAG.getNode(ISD::SUB, VT, 5312 DAG.getConstant(MVT::getSizeInBits(VT), VT), 5313 DAG.getNode(ISD::CTLZ, VT, Tmp3)); 5314 return DAG.getNode(ISD::CTPOP, VT, Tmp3); 5315 } 5316 } 5317} 5318 5319/// ExpandOp - Expand the specified SDOperand into its two component pieces 5320/// Lo&Hi. Note that the Op MUST be an expanded type. As a result of this, the 5321/// LegalizeNodes map is filled in for any results that are not expanded, the 5322/// ExpandedNodes map is filled in for any results that are expanded, and the 5323/// Lo/Hi values are returned. 5324void SelectionDAGLegalize::ExpandOp(SDOperand Op, SDOperand &Lo, SDOperand &Hi){ 5325 MVT::ValueType VT = Op.getValueType(); 5326 MVT::ValueType NVT = TLI.getTypeToTransformTo(VT); 5327 SDNode *Node = Op.Val; 5328 assert(getTypeAction(VT) == Expand && "Not an expanded type!"); 5329 assert(((MVT::isInteger(NVT) && NVT < VT) || MVT::isFloatingPoint(VT) || 5330 MVT::isVector(VT)) && 5331 "Cannot expand to FP value or to larger int value!"); 5332 5333 // See if we already expanded it. 5334 DenseMap<SDOperand, std::pair<SDOperand, SDOperand> >::iterator I 5335 = ExpandedNodes.find(Op); 5336 if (I != ExpandedNodes.end()) { 5337 Lo = I->second.first; 5338 Hi = I->second.second; 5339 return; 5340 } 5341 5342 switch (Node->getOpcode()) { 5343 case ISD::CopyFromReg: 5344 assert(0 && "CopyFromReg must be legal!"); 5345 case ISD::FP_ROUND_INREG: 5346 if (VT == MVT::ppcf128 && 5347 TLI.getOperationAction(ISD::FP_ROUND_INREG, VT) == 5348 TargetLowering::Custom) { 5349 SDOperand SrcLo, SrcHi, Src; 5350 ExpandOp(Op.getOperand(0), SrcLo, SrcHi); 5351 Src = DAG.getNode(ISD::BUILD_PAIR, VT, SrcLo, SrcHi); 5352 SDOperand Result = TLI.LowerOperation( 5353 DAG.getNode(ISD::FP_ROUND_INREG, VT, Src, Op.getOperand(1)), DAG); 5354 assert(Result.Val->getOpcode() == ISD::BUILD_PAIR); 5355 Lo = Result.Val->getOperand(0); 5356 Hi = Result.Val->getOperand(1); 5357 break; 5358 } 5359 // fall through 5360 default: 5361#ifndef NDEBUG 5362 cerr << "NODE: "; Node->dump(&DAG); cerr << "\n"; 5363#endif 5364 assert(0 && "Do not know how to expand this operator!"); 5365 abort(); 5366 case ISD::EXTRACT_VECTOR_ELT: 5367 assert(VT==MVT::i64 && "Do not know how to expand this operator!"); 5368 // ExpandEXTRACT_VECTOR_ELT tolerates invalid result types. 5369 Lo = ExpandEXTRACT_VECTOR_ELT(Op); 5370 return ExpandOp(Lo, Lo, Hi); 5371 case ISD::UNDEF: 5372 NVT = TLI.getTypeToExpandTo(VT); 5373 Lo = DAG.getNode(ISD::UNDEF, NVT); 5374 Hi = DAG.getNode(ISD::UNDEF, NVT); 5375 break; 5376 case ISD::Constant: { 5377 uint64_t Cst = cast<ConstantSDNode>(Node)->getValue(); 5378 Lo = DAG.getConstant(Cst, NVT); 5379 Hi = DAG.getConstant(Cst >> MVT::getSizeInBits(NVT), NVT); 5380 break; 5381 } 5382 case ISD::ConstantFP: { 5383 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 5384 if (CFP->getValueType(0) == MVT::ppcf128) { 5385 APInt api = CFP->getValueAPF().convertToAPInt(); 5386 Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &api.getRawData()[1])), 5387 MVT::f64); 5388 Hi = DAG.getConstantFP(APFloat(APInt(64, 1, &api.getRawData()[0])), 5389 MVT::f64); 5390 break; 5391 } 5392 Lo = ExpandConstantFP(CFP, false, DAG, TLI); 5393 if (getTypeAction(Lo.getValueType()) == Expand) 5394 ExpandOp(Lo, Lo, Hi); 5395 break; 5396 } 5397 case ISD::BUILD_PAIR: 5398 // Return the operands. 5399 Lo = Node->getOperand(0); 5400 Hi = Node->getOperand(1); 5401 break; 5402 5403 case ISD::MERGE_VALUES: 5404 if (Node->getNumValues() == 1) { 5405 ExpandOp(Op.getOperand(0), Lo, Hi); 5406 break; 5407 } 5408 // FIXME: For now only expand i64,chain = MERGE_VALUES (x, y) 5409 assert(Op.ResNo == 0 && Node->getNumValues() == 2 && 5410 Op.getValue(1).getValueType() == MVT::Other && 5411 "unhandled MERGE_VALUES"); 5412 ExpandOp(Op.getOperand(0), Lo, Hi); 5413 // Remember that we legalized the chain. 5414 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Op.getOperand(1))); 5415 break; 5416 5417 case ISD::SIGN_EXTEND_INREG: 5418 ExpandOp(Node->getOperand(0), Lo, Hi); 5419 // sext_inreg the low part if needed. 5420 Lo = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Lo, Node->getOperand(1)); 5421 5422 // The high part gets the sign extension from the lo-part. This handles 5423 // things like sextinreg V:i64 from i8. 5424 Hi = DAG.getNode(ISD::SRA, NVT, Lo, 5425 DAG.getConstant(MVT::getSizeInBits(NVT)-1, 5426 TLI.getShiftAmountTy())); 5427 break; 5428 5429 case ISD::BSWAP: { 5430 ExpandOp(Node->getOperand(0), Lo, Hi); 5431 SDOperand TempLo = DAG.getNode(ISD::BSWAP, NVT, Hi); 5432 Hi = DAG.getNode(ISD::BSWAP, NVT, Lo); 5433 Lo = TempLo; 5434 break; 5435 } 5436 5437 case ISD::CTPOP: 5438 ExpandOp(Node->getOperand(0), Lo, Hi); 5439 Lo = DAG.getNode(ISD::ADD, NVT, // ctpop(HL) -> ctpop(H)+ctpop(L) 5440 DAG.getNode(ISD::CTPOP, NVT, Lo), 5441 DAG.getNode(ISD::CTPOP, NVT, Hi)); 5442 Hi = DAG.getConstant(0, NVT); 5443 break; 5444 5445 case ISD::CTLZ: { 5446 // ctlz (HL) -> ctlz(H) != 32 ? ctlz(H) : (ctlz(L)+32) 5447 ExpandOp(Node->getOperand(0), Lo, Hi); 5448 SDOperand BitsC = DAG.getConstant(MVT::getSizeInBits(NVT), NVT); 5449 SDOperand HLZ = DAG.getNode(ISD::CTLZ, NVT, Hi); 5450 SDOperand TopNotZero = DAG.getSetCC(TLI.getSetCCResultTy(), HLZ, BitsC, 5451 ISD::SETNE); 5452 SDOperand LowPart = DAG.getNode(ISD::CTLZ, NVT, Lo); 5453 LowPart = DAG.getNode(ISD::ADD, NVT, LowPart, BitsC); 5454 5455 Lo = DAG.getNode(ISD::SELECT, NVT, TopNotZero, HLZ, LowPart); 5456 Hi = DAG.getConstant(0, NVT); 5457 break; 5458 } 5459 5460 case ISD::CTTZ: { 5461 // cttz (HL) -> cttz(L) != 32 ? cttz(L) : (cttz(H)+32) 5462 ExpandOp(Node->getOperand(0), Lo, Hi); 5463 SDOperand BitsC = DAG.getConstant(MVT::getSizeInBits(NVT), NVT); 5464 SDOperand LTZ = DAG.getNode(ISD::CTTZ, NVT, Lo); 5465 SDOperand BotNotZero = DAG.getSetCC(TLI.getSetCCResultTy(), LTZ, BitsC, 5466 ISD::SETNE); 5467 SDOperand HiPart = DAG.getNode(ISD::CTTZ, NVT, Hi); 5468 HiPart = DAG.getNode(ISD::ADD, NVT, HiPart, BitsC); 5469 5470 Lo = DAG.getNode(ISD::SELECT, NVT, BotNotZero, LTZ, HiPart); 5471 Hi = DAG.getConstant(0, NVT); 5472 break; 5473 } 5474 5475 case ISD::VAARG: { 5476 SDOperand Ch = Node->getOperand(0); // Legalize the chain. 5477 SDOperand Ptr = Node->getOperand(1); // Legalize the pointer. 5478 Lo = DAG.getVAArg(NVT, Ch, Ptr, Node->getOperand(2)); 5479 Hi = DAG.getVAArg(NVT, Lo.getValue(1), Ptr, Node->getOperand(2)); 5480 5481 // Remember that we legalized the chain. 5482 Hi = LegalizeOp(Hi); 5483 AddLegalizedOperand(Op.getValue(1), Hi.getValue(1)); 5484 if (!TLI.isLittleEndian()) 5485 std::swap(Lo, Hi); 5486 break; 5487 } 5488 5489 case ISD::LOAD: { 5490 LoadSDNode *LD = cast<LoadSDNode>(Node); 5491 SDOperand Ch = LD->getChain(); // Legalize the chain. 5492 SDOperand Ptr = LD->getBasePtr(); // Legalize the pointer. 5493 ISD::LoadExtType ExtType = LD->getExtensionType(); 5494 int SVOffset = LD->getSrcValueOffset(); 5495 unsigned Alignment = LD->getAlignment(); 5496 bool isVolatile = LD->isVolatile(); 5497 5498 if (ExtType == ISD::NON_EXTLOAD) { 5499 Lo = DAG.getLoad(NVT, Ch, Ptr, LD->getSrcValue(), SVOffset, 5500 isVolatile, Alignment); 5501 if (VT == MVT::f32 || VT == MVT::f64) { 5502 // f32->i32 or f64->i64 one to one expansion. 5503 // Remember that we legalized the chain. 5504 AddLegalizedOperand(SDOperand(Node, 1), LegalizeOp(Lo.getValue(1))); 5505 // Recursively expand the new load. 5506 if (getTypeAction(NVT) == Expand) 5507 ExpandOp(Lo, Lo, Hi); 5508 break; 5509 } 5510 5511 // Increment the pointer to the other half. 5512 unsigned IncrementSize = MVT::getSizeInBits(Lo.getValueType())/8; 5513 Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, 5514 getIntPtrConstant(IncrementSize)); 5515 SVOffset += IncrementSize; 5516 Alignment = MinAlign(Alignment, IncrementSize); 5517 Hi = DAG.getLoad(NVT, Ch, Ptr, LD->getSrcValue(), SVOffset, 5518 isVolatile, Alignment); 5519 5520 // Build a factor node to remember that this load is independent of the 5521 // other one. 5522 SDOperand TF = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), 5523 Hi.getValue(1)); 5524 5525 // Remember that we legalized the chain. 5526 AddLegalizedOperand(Op.getValue(1), LegalizeOp(TF)); 5527 if (!TLI.isLittleEndian()) 5528 std::swap(Lo, Hi); 5529 } else { 5530 MVT::ValueType EVT = LD->getLoadedVT(); 5531 5532 if ((VT == MVT::f64 && EVT == MVT::f32) || 5533 (VT == MVT::ppcf128 && (EVT==MVT::f64 || EVT==MVT::f32))) { 5534 // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND 5535 SDOperand Load = DAG.getLoad(EVT, Ch, Ptr, LD->getSrcValue(), 5536 SVOffset, isVolatile, Alignment); 5537 // Remember that we legalized the chain. 5538 AddLegalizedOperand(SDOperand(Node, 1), LegalizeOp(Load.getValue(1))); 5539 ExpandOp(DAG.getNode(ISD::FP_EXTEND, VT, Load), Lo, Hi); 5540 break; 5541 } 5542 5543 if (EVT == NVT) 5544 Lo = DAG.getLoad(NVT, Ch, Ptr, LD->getSrcValue(), 5545 SVOffset, isVolatile, Alignment); 5546 else 5547 Lo = DAG.getExtLoad(ExtType, NVT, Ch, Ptr, LD->getSrcValue(), 5548 SVOffset, EVT, isVolatile, 5549 Alignment); 5550 5551 // Remember that we legalized the chain. 5552 AddLegalizedOperand(SDOperand(Node, 1), LegalizeOp(Lo.getValue(1))); 5553 5554 if (ExtType == ISD::SEXTLOAD) { 5555 // The high part is obtained by SRA'ing all but one of the bits of the 5556 // lo part. 5557 unsigned LoSize = MVT::getSizeInBits(Lo.getValueType()); 5558 Hi = DAG.getNode(ISD::SRA, NVT, Lo, 5559 DAG.getConstant(LoSize-1, TLI.getShiftAmountTy())); 5560 } else if (ExtType == ISD::ZEXTLOAD) { 5561 // The high part is just a zero. 5562 Hi = DAG.getConstant(0, NVT); 5563 } else /* if (ExtType == ISD::EXTLOAD) */ { 5564 // The high part is undefined. 5565 Hi = DAG.getNode(ISD::UNDEF, NVT); 5566 } 5567 } 5568 break; 5569 } 5570 case ISD::AND: 5571 case ISD::OR: 5572 case ISD::XOR: { // Simple logical operators -> two trivial pieces. 5573 SDOperand LL, LH, RL, RH; 5574 ExpandOp(Node->getOperand(0), LL, LH); 5575 ExpandOp(Node->getOperand(1), RL, RH); 5576 Lo = DAG.getNode(Node->getOpcode(), NVT, LL, RL); 5577 Hi = DAG.getNode(Node->getOpcode(), NVT, LH, RH); 5578 break; 5579 } 5580 case ISD::SELECT: { 5581 SDOperand LL, LH, RL, RH; 5582 ExpandOp(Node->getOperand(1), LL, LH); 5583 ExpandOp(Node->getOperand(2), RL, RH); 5584 if (getTypeAction(NVT) == Expand) 5585 NVT = TLI.getTypeToExpandTo(NVT); 5586 Lo = DAG.getNode(ISD::SELECT, NVT, Node->getOperand(0), LL, RL); 5587 if (VT != MVT::f32) 5588 Hi = DAG.getNode(ISD::SELECT, NVT, Node->getOperand(0), LH, RH); 5589 break; 5590 } 5591 case ISD::SELECT_CC: { 5592 SDOperand TL, TH, FL, FH; 5593 ExpandOp(Node->getOperand(2), TL, TH); 5594 ExpandOp(Node->getOperand(3), FL, FH); 5595 if (getTypeAction(NVT) == Expand) 5596 NVT = TLI.getTypeToExpandTo(NVT); 5597 Lo = DAG.getNode(ISD::SELECT_CC, NVT, Node->getOperand(0), 5598 Node->getOperand(1), TL, FL, Node->getOperand(4)); 5599 if (VT != MVT::f32) 5600 Hi = DAG.getNode(ISD::SELECT_CC, NVT, Node->getOperand(0), 5601 Node->getOperand(1), TH, FH, Node->getOperand(4)); 5602 break; 5603 } 5604 case ISD::ANY_EXTEND: 5605 // The low part is any extension of the input (which degenerates to a copy). 5606 Lo = DAG.getNode(ISD::ANY_EXTEND, NVT, Node->getOperand(0)); 5607 // The high part is undefined. 5608 Hi = DAG.getNode(ISD::UNDEF, NVT); 5609 break; 5610 case ISD::SIGN_EXTEND: { 5611 // The low part is just a sign extension of the input (which degenerates to 5612 // a copy). 5613 Lo = DAG.getNode(ISD::SIGN_EXTEND, NVT, Node->getOperand(0)); 5614 5615 // The high part is obtained by SRA'ing all but one of the bits of the lo 5616 // part. 5617 unsigned LoSize = MVT::getSizeInBits(Lo.getValueType()); 5618 Hi = DAG.getNode(ISD::SRA, NVT, Lo, 5619 DAG.getConstant(LoSize-1, TLI.getShiftAmountTy())); 5620 break; 5621 } 5622 case ISD::ZERO_EXTEND: 5623 // The low part is just a zero extension of the input (which degenerates to 5624 // a copy). 5625 Lo = DAG.getNode(ISD::ZERO_EXTEND, NVT, Node->getOperand(0)); 5626 5627 // The high part is just a zero. 5628 Hi = DAG.getConstant(0, NVT); 5629 break; 5630 5631 case ISD::TRUNCATE: { 5632 // The input value must be larger than this value. Expand *it*. 5633 SDOperand NewLo; 5634 ExpandOp(Node->getOperand(0), NewLo, Hi); 5635 5636 // The low part is now either the right size, or it is closer. If not the 5637 // right size, make an illegal truncate so we recursively expand it. 5638 if (NewLo.getValueType() != Node->getValueType(0)) 5639 NewLo = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), NewLo); 5640 ExpandOp(NewLo, Lo, Hi); 5641 break; 5642 } 5643 5644 case ISD::BIT_CONVERT: { 5645 SDOperand Tmp; 5646 if (TLI.getOperationAction(ISD::BIT_CONVERT, VT) == TargetLowering::Custom){ 5647 // If the target wants to, allow it to lower this itself. 5648 switch (getTypeAction(Node->getOperand(0).getValueType())) { 5649 case Expand: assert(0 && "cannot expand FP!"); 5650 case Legal: Tmp = LegalizeOp(Node->getOperand(0)); break; 5651 case Promote: Tmp = PromoteOp (Node->getOperand(0)); break; 5652 } 5653 Tmp = TLI.LowerOperation(DAG.getNode(ISD::BIT_CONVERT, VT, Tmp), DAG); 5654 } 5655 5656 // f32 / f64 must be expanded to i32 / i64. 5657 if (VT == MVT::f32 || VT == MVT::f64) { 5658 Lo = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0)); 5659 if (getTypeAction(NVT) == Expand) 5660 ExpandOp(Lo, Lo, Hi); 5661 break; 5662 } 5663 5664 // If source operand will be expanded to the same type as VT, i.e. 5665 // i64 <- f64, i32 <- f32, expand the source operand instead. 5666 MVT::ValueType VT0 = Node->getOperand(0).getValueType(); 5667 if (getTypeAction(VT0) == Expand && TLI.getTypeToTransformTo(VT0) == VT) { 5668 ExpandOp(Node->getOperand(0), Lo, Hi); 5669 break; 5670 } 5671 5672 // Turn this into a load/store pair by default. 5673 if (Tmp.Val == 0) 5674 Tmp = ExpandBIT_CONVERT(VT, Node->getOperand(0)); 5675 5676 ExpandOp(Tmp, Lo, Hi); 5677 break; 5678 } 5679 5680 case ISD::READCYCLECOUNTER: { 5681 assert(TLI.getOperationAction(ISD::READCYCLECOUNTER, VT) == 5682 TargetLowering::Custom && 5683 "Must custom expand ReadCycleCounter"); 5684 SDOperand Tmp = TLI.LowerOperation(Op, DAG); 5685 assert(Tmp.Val && "Node must be custom expanded!"); 5686 ExpandOp(Tmp.getValue(0), Lo, Hi); 5687 AddLegalizedOperand(SDOperand(Node, 1), // Remember we legalized the chain. 5688 LegalizeOp(Tmp.getValue(1))); 5689 break; 5690 } 5691 5692 // These operators cannot be expanded directly, emit them as calls to 5693 // library functions. 5694 case ISD::FP_TO_SINT: { 5695 if (TLI.getOperationAction(ISD::FP_TO_SINT, VT) == TargetLowering::Custom) { 5696 SDOperand Op; 5697 switch (getTypeAction(Node->getOperand(0).getValueType())) { 5698 case Expand: assert(0 && "cannot expand FP!"); 5699 case Legal: Op = LegalizeOp(Node->getOperand(0)); break; 5700 case Promote: Op = PromoteOp (Node->getOperand(0)); break; 5701 } 5702 5703 Op = TLI.LowerOperation(DAG.getNode(ISD::FP_TO_SINT, VT, Op), DAG); 5704 5705 // Now that the custom expander is done, expand the result, which is still 5706 // VT. 5707 if (Op.Val) { 5708 ExpandOp(Op, Lo, Hi); 5709 break; 5710 } 5711 } 5712 5713 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 5714 if (Node->getOperand(0).getValueType() == MVT::f32) 5715 LC = RTLIB::FPTOSINT_F32_I64; 5716 else if (Node->getOperand(0).getValueType() == MVT::f64) 5717 LC = RTLIB::FPTOSINT_F64_I64; 5718 else if (Node->getOperand(0).getValueType() == MVT::f80) 5719 LC = RTLIB::FPTOSINT_F80_I64; 5720 else if (Node->getOperand(0).getValueType() == MVT::ppcf128) 5721 LC = RTLIB::FPTOSINT_PPCF128_I64; 5722 Lo = ExpandLibCall(TLI.getLibcallName(LC), Node, 5723 false/*sign irrelevant*/, Hi); 5724 break; 5725 } 5726 5727 case ISD::FP_TO_UINT: { 5728 if (TLI.getOperationAction(ISD::FP_TO_UINT, VT) == TargetLowering::Custom) { 5729 SDOperand Op; 5730 switch (getTypeAction(Node->getOperand(0).getValueType())) { 5731 case Expand: assert(0 && "cannot expand FP!"); 5732 case Legal: Op = LegalizeOp(Node->getOperand(0)); break; 5733 case Promote: Op = PromoteOp (Node->getOperand(0)); break; 5734 } 5735 5736 Op = TLI.LowerOperation(DAG.getNode(ISD::FP_TO_UINT, VT, Op), DAG); 5737 5738 // Now that the custom expander is done, expand the result. 5739 if (Op.Val) { 5740 ExpandOp(Op, Lo, Hi); 5741 break; 5742 } 5743 } 5744 5745 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 5746 if (Node->getOperand(0).getValueType() == MVT::f32) 5747 LC = RTLIB::FPTOUINT_F32_I64; 5748 else if (Node->getOperand(0).getValueType() == MVT::f64) 5749 LC = RTLIB::FPTOUINT_F64_I64; 5750 else if (Node->getOperand(0).getValueType() == MVT::f80) 5751 LC = RTLIB::FPTOUINT_F80_I64; 5752 else if (Node->getOperand(0).getValueType() == MVT::ppcf128) 5753 LC = RTLIB::FPTOUINT_PPCF128_I64; 5754 Lo = ExpandLibCall(TLI.getLibcallName(LC), Node, 5755 false/*sign irrelevant*/, Hi); 5756 break; 5757 } 5758 5759 case ISD::SHL: { 5760 // If the target wants custom lowering, do so. 5761 SDOperand ShiftAmt = LegalizeOp(Node->getOperand(1)); 5762 if (TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Custom) { 5763 SDOperand Op = DAG.getNode(ISD::SHL, VT, Node->getOperand(0), ShiftAmt); 5764 Op = TLI.LowerOperation(Op, DAG); 5765 if (Op.Val) { 5766 // Now that the custom expander is done, expand the result, which is 5767 // still VT. 5768 ExpandOp(Op, Lo, Hi); 5769 break; 5770 } 5771 } 5772 5773 // If ADDC/ADDE are supported and if the shift amount is a constant 1, emit 5774 // this X << 1 as X+X. 5775 if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(ShiftAmt)) { 5776 if (ShAmt->getValue() == 1 && TLI.isOperationLegal(ISD::ADDC, NVT) && 5777 TLI.isOperationLegal(ISD::ADDE, NVT)) { 5778 SDOperand LoOps[2], HiOps[3]; 5779 ExpandOp(Node->getOperand(0), LoOps[0], HiOps[0]); 5780 SDVTList VTList = DAG.getVTList(LoOps[0].getValueType(), MVT::Flag); 5781 LoOps[1] = LoOps[0]; 5782 Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2); 5783 5784 HiOps[1] = HiOps[0]; 5785 HiOps[2] = Lo.getValue(1); 5786 Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3); 5787 break; 5788 } 5789 } 5790 5791 // If we can emit an efficient shift operation, do so now. 5792 if (ExpandShift(ISD::SHL, Node->getOperand(0), ShiftAmt, Lo, Hi)) 5793 break; 5794 5795 // If this target supports SHL_PARTS, use it. 5796 TargetLowering::LegalizeAction Action = 5797 TLI.getOperationAction(ISD::SHL_PARTS, NVT); 5798 if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) || 5799 Action == TargetLowering::Custom) { 5800 ExpandShiftParts(ISD::SHL_PARTS, Node->getOperand(0), ShiftAmt, Lo, Hi); 5801 break; 5802 } 5803 5804 // Otherwise, emit a libcall. 5805 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SHL_I64), Node, 5806 false/*left shift=unsigned*/, Hi); 5807 break; 5808 } 5809 5810 case ISD::SRA: { 5811 // If the target wants custom lowering, do so. 5812 SDOperand ShiftAmt = LegalizeOp(Node->getOperand(1)); 5813 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Custom) { 5814 SDOperand Op = DAG.getNode(ISD::SRA, VT, Node->getOperand(0), ShiftAmt); 5815 Op = TLI.LowerOperation(Op, DAG); 5816 if (Op.Val) { 5817 // Now that the custom expander is done, expand the result, which is 5818 // still VT. 5819 ExpandOp(Op, Lo, Hi); 5820 break; 5821 } 5822 } 5823 5824 // If we can emit an efficient shift operation, do so now. 5825 if (ExpandShift(ISD::SRA, Node->getOperand(0), ShiftAmt, Lo, Hi)) 5826 break; 5827 5828 // If this target supports SRA_PARTS, use it. 5829 TargetLowering::LegalizeAction Action = 5830 TLI.getOperationAction(ISD::SRA_PARTS, NVT); 5831 if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) || 5832 Action == TargetLowering::Custom) { 5833 ExpandShiftParts(ISD::SRA_PARTS, Node->getOperand(0), ShiftAmt, Lo, Hi); 5834 break; 5835 } 5836 5837 // Otherwise, emit a libcall. 5838 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SRA_I64), Node, 5839 true/*ashr is signed*/, Hi); 5840 break; 5841 } 5842 5843 case ISD::SRL: { 5844 // If the target wants custom lowering, do so. 5845 SDOperand ShiftAmt = LegalizeOp(Node->getOperand(1)); 5846 if (TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Custom) { 5847 SDOperand Op = DAG.getNode(ISD::SRL, VT, Node->getOperand(0), ShiftAmt); 5848 Op = TLI.LowerOperation(Op, DAG); 5849 if (Op.Val) { 5850 // Now that the custom expander is done, expand the result, which is 5851 // still VT. 5852 ExpandOp(Op, Lo, Hi); 5853 break; 5854 } 5855 } 5856 5857 // If we can emit an efficient shift operation, do so now. 5858 if (ExpandShift(ISD::SRL, Node->getOperand(0), ShiftAmt, Lo, Hi)) 5859 break; 5860 5861 // If this target supports SRL_PARTS, use it. 5862 TargetLowering::LegalizeAction Action = 5863 TLI.getOperationAction(ISD::SRL_PARTS, NVT); 5864 if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) || 5865 Action == TargetLowering::Custom) { 5866 ExpandShiftParts(ISD::SRL_PARTS, Node->getOperand(0), ShiftAmt, Lo, Hi); 5867 break; 5868 } 5869 5870 // Otherwise, emit a libcall. 5871 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SRL_I64), Node, 5872 false/*lshr is unsigned*/, Hi); 5873 break; 5874 } 5875 5876 case ISD::ADD: 5877 case ISD::SUB: { 5878 // If the target wants to custom expand this, let them. 5879 if (TLI.getOperationAction(Node->getOpcode(), VT) == 5880 TargetLowering::Custom) { 5881 Op = TLI.LowerOperation(Op, DAG); 5882 if (Op.Val) { 5883 ExpandOp(Op, Lo, Hi); 5884 break; 5885 } 5886 } 5887 5888 // Expand the subcomponents. 5889 SDOperand LHSL, LHSH, RHSL, RHSH; 5890 ExpandOp(Node->getOperand(0), LHSL, LHSH); 5891 ExpandOp(Node->getOperand(1), RHSL, RHSH); 5892 SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); 5893 SDOperand LoOps[2], HiOps[3]; 5894 LoOps[0] = LHSL; 5895 LoOps[1] = RHSL; 5896 HiOps[0] = LHSH; 5897 HiOps[1] = RHSH; 5898 if (Node->getOpcode() == ISD::ADD) { 5899 Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2); 5900 HiOps[2] = Lo.getValue(1); 5901 Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3); 5902 } else { 5903 Lo = DAG.getNode(ISD::SUBC, VTList, LoOps, 2); 5904 HiOps[2] = Lo.getValue(1); 5905 Hi = DAG.getNode(ISD::SUBE, VTList, HiOps, 3); 5906 } 5907 break; 5908 } 5909 5910 case ISD::ADDC: 5911 case ISD::SUBC: { 5912 // Expand the subcomponents. 5913 SDOperand LHSL, LHSH, RHSL, RHSH; 5914 ExpandOp(Node->getOperand(0), LHSL, LHSH); 5915 ExpandOp(Node->getOperand(1), RHSL, RHSH); 5916 SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); 5917 SDOperand LoOps[2] = { LHSL, RHSL }; 5918 SDOperand HiOps[3] = { LHSH, RHSH }; 5919 5920 if (Node->getOpcode() == ISD::ADDC) { 5921 Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2); 5922 HiOps[2] = Lo.getValue(1); 5923 Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3); 5924 } else { 5925 Lo = DAG.getNode(ISD::SUBC, VTList, LoOps, 2); 5926 HiOps[2] = Lo.getValue(1); 5927 Hi = DAG.getNode(ISD::SUBE, VTList, HiOps, 3); 5928 } 5929 // Remember that we legalized the flag. 5930 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Hi.getValue(1))); 5931 break; 5932 } 5933 case ISD::ADDE: 5934 case ISD::SUBE: { 5935 // Expand the subcomponents. 5936 SDOperand LHSL, LHSH, RHSL, RHSH; 5937 ExpandOp(Node->getOperand(0), LHSL, LHSH); 5938 ExpandOp(Node->getOperand(1), RHSL, RHSH); 5939 SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); 5940 SDOperand LoOps[3] = { LHSL, RHSL, Node->getOperand(2) }; 5941 SDOperand HiOps[3] = { LHSH, RHSH }; 5942 5943 Lo = DAG.getNode(Node->getOpcode(), VTList, LoOps, 3); 5944 HiOps[2] = Lo.getValue(1); 5945 Hi = DAG.getNode(Node->getOpcode(), VTList, HiOps, 3); 5946 5947 // Remember that we legalized the flag. 5948 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Hi.getValue(1))); 5949 break; 5950 } 5951 case ISD::MUL: { 5952 // If the target wants to custom expand this, let them. 5953 if (TLI.getOperationAction(ISD::MUL, VT) == TargetLowering::Custom) { 5954 SDOperand New = TLI.LowerOperation(Op, DAG); 5955 if (New.Val) { 5956 ExpandOp(New, Lo, Hi); 5957 break; 5958 } 5959 } 5960 5961 bool HasMULHS = TLI.isOperationLegal(ISD::MULHS, NVT); 5962 bool HasMULHU = TLI.isOperationLegal(ISD::MULHU, NVT); 5963 bool HasSMUL_LOHI = TLI.isOperationLegal(ISD::SMUL_LOHI, NVT); 5964 bool HasUMUL_LOHI = TLI.isOperationLegal(ISD::UMUL_LOHI, NVT); 5965 if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) { 5966 SDOperand LL, LH, RL, RH; 5967 ExpandOp(Node->getOperand(0), LL, LH); 5968 ExpandOp(Node->getOperand(1), RL, RH); 5969 unsigned BitSize = MVT::getSizeInBits(RH.getValueType()); 5970 unsigned LHSSB = DAG.ComputeNumSignBits(Op.getOperand(0)); 5971 unsigned RHSSB = DAG.ComputeNumSignBits(Op.getOperand(1)); 5972 // FIXME: generalize this to handle other bit sizes 5973 if (LHSSB == 32 && RHSSB == 32 && 5974 DAG.MaskedValueIsZero(Op.getOperand(0), 0xFFFFFFFF00000000ULL) && 5975 DAG.MaskedValueIsZero(Op.getOperand(1), 0xFFFFFFFF00000000ULL)) { 5976 // The inputs are both zero-extended. 5977 if (HasUMUL_LOHI) { 5978 // We can emit a umul_lohi. 5979 Lo = DAG.getNode(ISD::UMUL_LOHI, DAG.getVTList(NVT, NVT), LL, RL); 5980 Hi = SDOperand(Lo.Val, 1); 5981 break; 5982 } 5983 if (HasMULHU) { 5984 // We can emit a mulhu+mul. 5985 Lo = DAG.getNode(ISD::MUL, NVT, LL, RL); 5986 Hi = DAG.getNode(ISD::MULHU, NVT, LL, RL); 5987 break; 5988 } 5989 } 5990 if (LHSSB > BitSize && RHSSB > BitSize) { 5991 // The input values are both sign-extended. 5992 if (HasSMUL_LOHI) { 5993 // We can emit a smul_lohi. 5994 Lo = DAG.getNode(ISD::SMUL_LOHI, DAG.getVTList(NVT, NVT), LL, RL); 5995 Hi = SDOperand(Lo.Val, 1); 5996 break; 5997 } 5998 if (HasMULHS) { 5999 // We can emit a mulhs+mul. 6000 Lo = DAG.getNode(ISD::MUL, NVT, LL, RL); 6001 Hi = DAG.getNode(ISD::MULHS, NVT, LL, RL); 6002 break; 6003 } 6004 } 6005 if (HasUMUL_LOHI) { 6006 // Lo,Hi = umul LHS, RHS. 6007 SDOperand UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, 6008 DAG.getVTList(NVT, NVT), LL, RL); 6009 Lo = UMulLOHI; 6010 Hi = UMulLOHI.getValue(1); 6011 RH = DAG.getNode(ISD::MUL, NVT, LL, RH); 6012 LH = DAG.getNode(ISD::MUL, NVT, LH, RL); 6013 Hi = DAG.getNode(ISD::ADD, NVT, Hi, RH); 6014 Hi = DAG.getNode(ISD::ADD, NVT, Hi, LH); 6015 break; 6016 } 6017 if (HasMULHU) { 6018 Lo = DAG.getNode(ISD::MUL, NVT, LL, RL); 6019 Hi = DAG.getNode(ISD::MULHU, NVT, LL, RL); 6020 RH = DAG.getNode(ISD::MUL, NVT, LL, RH); 6021 LH = DAG.getNode(ISD::MUL, NVT, LH, RL); 6022 Hi = DAG.getNode(ISD::ADD, NVT, Hi, RH); 6023 Hi = DAG.getNode(ISD::ADD, NVT, Hi, LH); 6024 break; 6025 } 6026 } 6027 6028 // If nothing else, we can make a libcall. 6029 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::MUL_I64), Node, 6030 false/*sign irrelevant*/, Hi); 6031 break; 6032 } 6033 case ISD::SDIV: 6034 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SDIV_I64), Node, true, Hi); 6035 break; 6036 case ISD::UDIV: 6037 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::UDIV_I64), Node, true, Hi); 6038 break; 6039 case ISD::SREM: 6040 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SREM_I64), Node, true, Hi); 6041 break; 6042 case ISD::UREM: 6043 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::UREM_I64), Node, true, Hi); 6044 break; 6045 6046 case ISD::FADD: 6047 Lo = ExpandLibCall(TLI.getLibcallName(VT == MVT::f32 ? RTLIB::ADD_F32 : 6048 VT == MVT::f64 ? RTLIB::ADD_F64 : 6049 VT == MVT::ppcf128 ? 6050 RTLIB::ADD_PPCF128 : 6051 RTLIB::UNKNOWN_LIBCALL), 6052 Node, false, Hi); 6053 break; 6054 case ISD::FSUB: 6055 Lo = ExpandLibCall(TLI.getLibcallName(VT == MVT::f32 ? RTLIB::SUB_F32 : 6056 VT == MVT::f64 ? RTLIB::SUB_F64 : 6057 VT == MVT::ppcf128 ? 6058 RTLIB::SUB_PPCF128 : 6059 RTLIB::UNKNOWN_LIBCALL), 6060 Node, false, Hi); 6061 break; 6062 case ISD::FMUL: 6063 Lo = ExpandLibCall(TLI.getLibcallName(VT == MVT::f32 ? RTLIB::MUL_F32 : 6064 VT == MVT::f64 ? RTLIB::MUL_F64 : 6065 VT == MVT::ppcf128 ? 6066 RTLIB::MUL_PPCF128 : 6067 RTLIB::UNKNOWN_LIBCALL), 6068 Node, false, Hi); 6069 break; 6070 case ISD::FDIV: 6071 Lo = ExpandLibCall(TLI.getLibcallName(VT == MVT::f32 ? RTLIB::DIV_F32 : 6072 VT == MVT::f64 ? RTLIB::DIV_F64 : 6073 VT == MVT::ppcf128 ? 6074 RTLIB::DIV_PPCF128 : 6075 RTLIB::UNKNOWN_LIBCALL), 6076 Node, false, Hi); 6077 break; 6078 case ISD::FP_EXTEND: 6079 if (VT == MVT::ppcf128) { 6080 assert(Node->getOperand(0).getValueType()==MVT::f32 || 6081 Node->getOperand(0).getValueType()==MVT::f64); 6082 const uint64_t zero = 0; 6083 if (Node->getOperand(0).getValueType()==MVT::f32) 6084 Hi = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Node->getOperand(0)); 6085 else 6086 Hi = Node->getOperand(0); 6087 Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &zero)), MVT::f64); 6088 break; 6089 } 6090 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::FPEXT_F32_F64), Node, true,Hi); 6091 break; 6092 case ISD::FP_ROUND: 6093 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::FPROUND_F64_F32),Node,true,Hi); 6094 break; 6095 case ISD::FPOWI: 6096 Lo = ExpandLibCall(TLI.getLibcallName((VT == MVT::f32) ? RTLIB::POWI_F32 : 6097 (VT == MVT::f64) ? RTLIB::POWI_F64 : 6098 (VT == MVT::f80) ? RTLIB::POWI_F80 : 6099 (VT == MVT::ppcf128) ? 6100 RTLIB::POWI_PPCF128 : 6101 RTLIB::UNKNOWN_LIBCALL), 6102 Node, false, Hi); 6103 break; 6104 case ISD::FSQRT: 6105 case ISD::FSIN: 6106 case ISD::FCOS: { 6107 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 6108 switch(Node->getOpcode()) { 6109 case ISD::FSQRT: 6110 LC = (VT == MVT::f32) ? RTLIB::SQRT_F32 : 6111 (VT == MVT::f64) ? RTLIB::SQRT_F64 : 6112 (VT == MVT::f80) ? RTLIB::SQRT_F80 : 6113 (VT == MVT::ppcf128) ? RTLIB::SQRT_PPCF128 : 6114 RTLIB::UNKNOWN_LIBCALL; 6115 break; 6116 case ISD::FSIN: 6117 LC = (VT == MVT::f32) ? RTLIB::SIN_F32 : RTLIB::SIN_F64; 6118 break; 6119 case ISD::FCOS: 6120 LC = (VT == MVT::f32) ? RTLIB::COS_F32 : RTLIB::COS_F64; 6121 break; 6122 default: assert(0 && "Unreachable!"); 6123 } 6124 Lo = ExpandLibCall(TLI.getLibcallName(LC), Node, false, Hi); 6125 break; 6126 } 6127 case ISD::FABS: { 6128 if (VT == MVT::ppcf128) { 6129 SDOperand Tmp; 6130 ExpandOp(Node->getOperand(0), Lo, Tmp); 6131 Hi = DAG.getNode(ISD::FABS, NVT, Tmp); 6132 // lo = hi==fabs(hi) ? lo : -lo; 6133 Lo = DAG.getNode(ISD::SELECT_CC, NVT, Hi, Tmp, 6134 Lo, DAG.getNode(ISD::FNEG, NVT, Lo), 6135 DAG.getCondCode(ISD::SETEQ)); 6136 break; 6137 } 6138 SDOperand Mask = (VT == MVT::f64) 6139 ? DAG.getConstantFP(BitsToDouble(~(1ULL << 63)), VT) 6140 : DAG.getConstantFP(BitsToFloat(~(1U << 31)), VT); 6141 Mask = DAG.getNode(ISD::BIT_CONVERT, NVT, Mask); 6142 Lo = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0)); 6143 Lo = DAG.getNode(ISD::AND, NVT, Lo, Mask); 6144 if (getTypeAction(NVT) == Expand) 6145 ExpandOp(Lo, Lo, Hi); 6146 break; 6147 } 6148 case ISD::FNEG: { 6149 if (VT == MVT::ppcf128) { 6150 ExpandOp(Node->getOperand(0), Lo, Hi); 6151 Lo = DAG.getNode(ISD::FNEG, MVT::f64, Lo); 6152 Hi = DAG.getNode(ISD::FNEG, MVT::f64, Hi); 6153 break; 6154 } 6155 SDOperand Mask = (VT == MVT::f64) 6156 ? DAG.getConstantFP(BitsToDouble(1ULL << 63), VT) 6157 : DAG.getConstantFP(BitsToFloat(1U << 31), VT); 6158 Mask = DAG.getNode(ISD::BIT_CONVERT, NVT, Mask); 6159 Lo = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0)); 6160 Lo = DAG.getNode(ISD::XOR, NVT, Lo, Mask); 6161 if (getTypeAction(NVT) == Expand) 6162 ExpandOp(Lo, Lo, Hi); 6163 break; 6164 } 6165 case ISD::FCOPYSIGN: { 6166 Lo = ExpandFCOPYSIGNToBitwiseOps(Node, NVT, DAG, TLI); 6167 if (getTypeAction(NVT) == Expand) 6168 ExpandOp(Lo, Lo, Hi); 6169 break; 6170 } 6171 case ISD::SINT_TO_FP: 6172 case ISD::UINT_TO_FP: { 6173 bool isSigned = Node->getOpcode() == ISD::SINT_TO_FP; 6174 MVT::ValueType SrcVT = Node->getOperand(0).getValueType(); 6175 if (VT == MVT::ppcf128 && SrcVT != MVT::i64) { 6176 static uint64_t zero = 0; 6177 if (isSigned) { 6178 Hi = LegalizeOp(DAG.getNode(ISD::SINT_TO_FP, MVT::f64, 6179 Node->getOperand(0))); 6180 Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &zero)), MVT::f64); 6181 } else { 6182 static uint64_t TwoE32[] = { 0x41f0000000000000LL, 0 }; 6183 Hi = LegalizeOp(DAG.getNode(ISD::SINT_TO_FP, MVT::f64, 6184 Node->getOperand(0))); 6185 Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &zero)), MVT::f64); 6186 Hi = DAG.getNode(ISD::BUILD_PAIR, VT, Lo, Hi); 6187 // X>=0 ? {(f64)x, 0} : {(f64)x, 0} + 2^32 6188 ExpandOp(DAG.getNode(ISD::SELECT_CC, MVT::ppcf128, Node->getOperand(0), 6189 DAG.getConstant(0, MVT::i32), 6190 DAG.getNode(ISD::FADD, MVT::ppcf128, Hi, 6191 DAG.getConstantFP( 6192 APFloat(APInt(128, 2, TwoE32)), 6193 MVT::ppcf128)), 6194 Hi, 6195 DAG.getCondCode(ISD::SETLT)), 6196 Lo, Hi); 6197 } 6198 break; 6199 } 6200 if (VT == MVT::ppcf128 && SrcVT == MVT::i64 && !isSigned) { 6201 // si64->ppcf128 done by libcall, below 6202 static uint64_t TwoE64[] = { 0x43f0000000000000LL, 0 }; 6203 ExpandOp(DAG.getNode(ISD::SINT_TO_FP, MVT::ppcf128, Node->getOperand(0)), 6204 Lo, Hi); 6205 Hi = DAG.getNode(ISD::BUILD_PAIR, VT, Lo, Hi); 6206 // x>=0 ? (ppcf128)(i64)x : (ppcf128)(i64)x + 2^64 6207 ExpandOp(DAG.getNode(ISD::SELECT_CC, MVT::ppcf128, Node->getOperand(0), 6208 DAG.getConstant(0, MVT::i64), 6209 DAG.getNode(ISD::FADD, MVT::ppcf128, Hi, 6210 DAG.getConstantFP( 6211 APFloat(APInt(128, 2, TwoE64)), 6212 MVT::ppcf128)), 6213 Hi, 6214 DAG.getCondCode(ISD::SETLT)), 6215 Lo, Hi); 6216 break; 6217 } 6218 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 6219 if (Node->getOperand(0).getValueType() == MVT::i64) { 6220 if (VT == MVT::f32) 6221 LC = isSigned ? RTLIB::SINTTOFP_I64_F32 : RTLIB::UINTTOFP_I64_F32; 6222 else if (VT == MVT::f64) 6223 LC = isSigned ? RTLIB::SINTTOFP_I64_F64 : RTLIB::UINTTOFP_I64_F64; 6224 else if (VT == MVT::f80) { 6225 assert(isSigned); 6226 LC = RTLIB::SINTTOFP_I64_F80; 6227 } 6228 else if (VT == MVT::ppcf128) { 6229 assert(isSigned); 6230 LC = RTLIB::SINTTOFP_I64_PPCF128; 6231 } 6232 } else { 6233 if (VT == MVT::f32) 6234 LC = isSigned ? RTLIB::SINTTOFP_I32_F32 : RTLIB::UINTTOFP_I32_F32; 6235 else 6236 LC = isSigned ? RTLIB::SINTTOFP_I32_F64 : RTLIB::UINTTOFP_I32_F64; 6237 } 6238 6239 // Promote the operand if needed. 6240 if (getTypeAction(SrcVT) == Promote) { 6241 SDOperand Tmp = PromoteOp(Node->getOperand(0)); 6242 Tmp = isSigned 6243 ? DAG.getNode(ISD::SIGN_EXTEND_INREG, Tmp.getValueType(), Tmp, 6244 DAG.getValueType(SrcVT)) 6245 : DAG.getZeroExtendInReg(Tmp, SrcVT); 6246 Node = DAG.UpdateNodeOperands(Op, Tmp).Val; 6247 } 6248 6249 const char *LibCall = TLI.getLibcallName(LC); 6250 if (LibCall) 6251 Lo = ExpandLibCall(TLI.getLibcallName(LC), Node, isSigned, Hi); 6252 else { 6253 Lo = ExpandIntToFP(Node->getOpcode() == ISD::SINT_TO_FP, VT, 6254 Node->getOperand(0)); 6255 if (getTypeAction(Lo.getValueType()) == Expand) 6256 ExpandOp(Lo, Lo, Hi); 6257 } 6258 break; 6259 } 6260 } 6261 6262 // Make sure the resultant values have been legalized themselves, unless this 6263 // is a type that requires multi-step expansion. 6264 if (getTypeAction(NVT) != Expand && NVT != MVT::isVoid) { 6265 Lo = LegalizeOp(Lo); 6266 if (Hi.Val) 6267 // Don't legalize the high part if it is expanded to a single node. 6268 Hi = LegalizeOp(Hi); 6269 } 6270 6271 // Remember in a map if the values will be reused later. 6272 bool isNew = ExpandedNodes.insert(std::make_pair(Op, std::make_pair(Lo, Hi))); 6273 assert(isNew && "Value already expanded?!?"); 6274} 6275 6276/// SplitVectorOp - Given an operand of vector type, break it down into 6277/// two smaller values, still of vector type. 6278void SelectionDAGLegalize::SplitVectorOp(SDOperand Op, SDOperand &Lo, 6279 SDOperand &Hi) { 6280 assert(MVT::isVector(Op.getValueType()) && "Cannot split non-vector type!"); 6281 SDNode *Node = Op.Val; 6282 unsigned NumElements = MVT::getVectorNumElements(Op.getValueType()); 6283 assert(NumElements > 1 && "Cannot split a single element vector!"); 6284 6285 MVT::ValueType NewEltVT = MVT::getVectorElementType(Op.getValueType()); 6286 6287 unsigned NewNumElts_Lo = 1 << Log2_32(NumElements-1); 6288 unsigned NewNumElts_Hi = NumElements - NewNumElts_Lo; 6289 6290 MVT::ValueType NewVT_Lo = MVT::getVectorType(NewEltVT, NewNumElts_Lo); 6291 MVT::ValueType NewVT_Hi = MVT::getVectorType(NewEltVT, NewNumElts_Hi); 6292 6293 // See if we already split it. 6294 std::map<SDOperand, std::pair<SDOperand, SDOperand> >::iterator I 6295 = SplitNodes.find(Op); 6296 if (I != SplitNodes.end()) { 6297 Lo = I->second.first; 6298 Hi = I->second.second; 6299 return; 6300 } 6301 6302 switch (Node->getOpcode()) { 6303 default: 6304#ifndef NDEBUG 6305 Node->dump(&DAG); 6306#endif 6307 assert(0 && "Unhandled operation in SplitVectorOp!"); 6308 case ISD::UNDEF: 6309 Lo = DAG.getNode(ISD::UNDEF, NewVT_Lo); 6310 Hi = DAG.getNode(ISD::UNDEF, NewVT_Hi); 6311 break; 6312 case ISD::BUILD_PAIR: 6313 Lo = Node->getOperand(0); 6314 Hi = Node->getOperand(1); 6315 break; 6316 case ISD::INSERT_VECTOR_ELT: { 6317 SplitVectorOp(Node->getOperand(0), Lo, Hi); 6318 unsigned Index = cast<ConstantSDNode>(Node->getOperand(2))->getValue(); 6319 SDOperand ScalarOp = Node->getOperand(1); 6320 if (Index < NewNumElts_Lo) 6321 Lo = DAG.getNode(ISD::INSERT_VECTOR_ELT, NewVT_Lo, Lo, ScalarOp, 6322 DAG.getConstant(Index, TLI.getPointerTy())); 6323 else 6324 Hi = DAG.getNode(ISD::INSERT_VECTOR_ELT, NewVT_Hi, Hi, ScalarOp, 6325 DAG.getConstant(Index - NewNumElts_Lo, 6326 TLI.getPointerTy())); 6327 break; 6328 } 6329 case ISD::VECTOR_SHUFFLE: { 6330 // Build the low part. 6331 SDOperand Mask = Node->getOperand(2); 6332 SmallVector<SDOperand, 8> Ops; 6333 MVT::ValueType PtrVT = TLI.getPointerTy(); 6334 6335 // Insert all of the elements from the input that are needed. We use 6336 // buildvector of extractelement here because the input vectors will have 6337 // to be legalized, so this makes the code simpler. 6338 for (unsigned i = 0; i != NewNumElts_Lo; ++i) { 6339 unsigned Idx = cast<ConstantSDNode>(Mask.getOperand(i))->getValue(); 6340 SDOperand InVec = Node->getOperand(0); 6341 if (Idx >= NumElements) { 6342 InVec = Node->getOperand(1); 6343 Idx -= NumElements; 6344 } 6345 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, NewEltVT, InVec, 6346 DAG.getConstant(Idx, PtrVT))); 6347 } 6348 Lo = DAG.getNode(ISD::BUILD_VECTOR, NewVT_Lo, &Ops[0], Ops.size()); 6349 Ops.clear(); 6350 6351 for (unsigned i = NewNumElts_Lo; i != NumElements; ++i) { 6352 unsigned Idx = cast<ConstantSDNode>(Mask.getOperand(i))->getValue(); 6353 SDOperand InVec = Node->getOperand(0); 6354 if (Idx >= NumElements) { 6355 InVec = Node->getOperand(1); 6356 Idx -= NumElements; 6357 } 6358 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, NewEltVT, InVec, 6359 DAG.getConstant(Idx, PtrVT))); 6360 } 6361 Hi = DAG.getNode(ISD::BUILD_VECTOR, NewVT_Lo, &Ops[0], Ops.size()); 6362 break; 6363 } 6364 case ISD::BUILD_VECTOR: { 6365 SmallVector<SDOperand, 8> LoOps(Node->op_begin(), 6366 Node->op_begin()+NewNumElts_Lo); 6367 Lo = DAG.getNode(ISD::BUILD_VECTOR, NewVT_Lo, &LoOps[0], LoOps.size()); 6368 6369 SmallVector<SDOperand, 8> HiOps(Node->op_begin()+NewNumElts_Lo, 6370 Node->op_end()); 6371 Hi = DAG.getNode(ISD::BUILD_VECTOR, NewVT_Hi, &HiOps[0], HiOps.size()); 6372 break; 6373 } 6374 case ISD::CONCAT_VECTORS: { 6375 // FIXME: Handle non-power-of-two vectors? 6376 unsigned NewNumSubvectors = Node->getNumOperands() / 2; 6377 if (NewNumSubvectors == 1) { 6378 Lo = Node->getOperand(0); 6379 Hi = Node->getOperand(1); 6380 } else { 6381 SmallVector<SDOperand, 8> LoOps(Node->op_begin(), 6382 Node->op_begin()+NewNumSubvectors); 6383 Lo = DAG.getNode(ISD::CONCAT_VECTORS, NewVT_Lo, &LoOps[0], LoOps.size()); 6384 6385 SmallVector<SDOperand, 8> HiOps(Node->op_begin()+NewNumSubvectors, 6386 Node->op_end()); 6387 Hi = DAG.getNode(ISD::CONCAT_VECTORS, NewVT_Hi, &HiOps[0], HiOps.size()); 6388 } 6389 break; 6390 } 6391 case ISD::SELECT: { 6392 SDOperand Cond = Node->getOperand(0); 6393 6394 SDOperand LL, LH, RL, RH; 6395 SplitVectorOp(Node->getOperand(1), LL, LH); 6396 SplitVectorOp(Node->getOperand(2), RL, RH); 6397 6398 if (MVT::isVector(Cond.getValueType())) { 6399 // Handle a vector merge. 6400 SDOperand CL, CH; 6401 SplitVectorOp(Cond, CL, CH); 6402 Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, CL, LL, RL); 6403 Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, CH, LH, RH); 6404 } else { 6405 // Handle a simple select with vector operands. 6406 Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, Cond, LL, RL); 6407 Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, Cond, LH, RH); 6408 } 6409 break; 6410 } 6411 case ISD::ADD: 6412 case ISD::SUB: 6413 case ISD::MUL: 6414 case ISD::FADD: 6415 case ISD::FSUB: 6416 case ISD::FMUL: 6417 case ISD::SDIV: 6418 case ISD::UDIV: 6419 case ISD::FDIV: 6420 case ISD::FPOW: 6421 case ISD::AND: 6422 case ISD::OR: 6423 case ISD::XOR: 6424 case ISD::UREM: 6425 case ISD::SREM: 6426 case ISD::FREM: { 6427 SDOperand LL, LH, RL, RH; 6428 SplitVectorOp(Node->getOperand(0), LL, LH); 6429 SplitVectorOp(Node->getOperand(1), RL, RH); 6430 6431 Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, LL, RL); 6432 Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, LH, RH); 6433 break; 6434 } 6435 case ISD::FPOWI: { 6436 SDOperand L, H; 6437 SplitVectorOp(Node->getOperand(0), L, H); 6438 6439 Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, L, Node->getOperand(1)); 6440 Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, H, Node->getOperand(1)); 6441 break; 6442 } 6443 case ISD::CTTZ: 6444 case ISD::CTLZ: 6445 case ISD::CTPOP: 6446 case ISD::FNEG: 6447 case ISD::FABS: 6448 case ISD::FSQRT: 6449 case ISD::FSIN: 6450 case ISD::FCOS: 6451 case ISD::FP_TO_SINT: 6452 case ISD::FP_TO_UINT: 6453 case ISD::SINT_TO_FP: 6454 case ISD::UINT_TO_FP: { 6455 SDOperand L, H; 6456 SplitVectorOp(Node->getOperand(0), L, H); 6457 6458 Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, L); 6459 Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, H); 6460 break; 6461 } 6462 case ISD::LOAD: { 6463 LoadSDNode *LD = cast<LoadSDNode>(Node); 6464 SDOperand Ch = LD->getChain(); 6465 SDOperand Ptr = LD->getBasePtr(); 6466 const Value *SV = LD->getSrcValue(); 6467 int SVOffset = LD->getSrcValueOffset(); 6468 unsigned Alignment = LD->getAlignment(); 6469 bool isVolatile = LD->isVolatile(); 6470 6471 Lo = DAG.getLoad(NewVT_Lo, Ch, Ptr, SV, SVOffset, isVolatile, Alignment); 6472 unsigned IncrementSize = NewNumElts_Lo * MVT::getSizeInBits(NewEltVT)/8; 6473 Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, 6474 getIntPtrConstant(IncrementSize)); 6475 SVOffset += IncrementSize; 6476 Alignment = MinAlign(Alignment, IncrementSize); 6477 Hi = DAG.getLoad(NewVT_Hi, Ch, Ptr, SV, SVOffset, isVolatile, Alignment); 6478 6479 // Build a factor node to remember that this load is independent of the 6480 // other one. 6481 SDOperand TF = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), 6482 Hi.getValue(1)); 6483 6484 // Remember that we legalized the chain. 6485 AddLegalizedOperand(Op.getValue(1), LegalizeOp(TF)); 6486 break; 6487 } 6488 case ISD::BIT_CONVERT: { 6489 // We know the result is a vector. The input may be either a vector or a 6490 // scalar value. 6491 SDOperand InOp = Node->getOperand(0); 6492 if (!MVT::isVector(InOp.getValueType()) || 6493 MVT::getVectorNumElements(InOp.getValueType()) == 1) { 6494 // The input is a scalar or single-element vector. 6495 // Lower to a store/load so that it can be split. 6496 // FIXME: this could be improved probably. 6497 SDOperand Ptr = DAG.CreateStackTemporary(InOp.getValueType()); 6498 6499 SDOperand St = DAG.getStore(DAG.getEntryNode(), 6500 InOp, Ptr, NULL, 0); 6501 InOp = DAG.getLoad(Op.getValueType(), St, Ptr, NULL, 0); 6502 } 6503 // Split the vector and convert each of the pieces now. 6504 SplitVectorOp(InOp, Lo, Hi); 6505 Lo = DAG.getNode(ISD::BIT_CONVERT, NewVT_Lo, Lo); 6506 Hi = DAG.getNode(ISD::BIT_CONVERT, NewVT_Hi, Hi); 6507 break; 6508 } 6509 } 6510 6511 // Remember in a map if the values will be reused later. 6512 bool isNew = 6513 SplitNodes.insert(std::make_pair(Op, std::make_pair(Lo, Hi))).second; 6514 assert(isNew && "Value already split?!?"); 6515} 6516 6517 6518/// ScalarizeVectorOp - Given an operand of single-element vector type 6519/// (e.g. v1f32), convert it into the equivalent operation that returns a 6520/// scalar (e.g. f32) value. 6521SDOperand SelectionDAGLegalize::ScalarizeVectorOp(SDOperand Op) { 6522 assert(MVT::isVector(Op.getValueType()) && 6523 "Bad ScalarizeVectorOp invocation!"); 6524 SDNode *Node = Op.Val; 6525 MVT::ValueType NewVT = MVT::getVectorElementType(Op.getValueType()); 6526 assert(MVT::getVectorNumElements(Op.getValueType()) == 1); 6527 6528 // See if we already scalarized it. 6529 std::map<SDOperand, SDOperand>::iterator I = ScalarizedNodes.find(Op); 6530 if (I != ScalarizedNodes.end()) return I->second; 6531 6532 SDOperand Result; 6533 switch (Node->getOpcode()) { 6534 default: 6535#ifndef NDEBUG 6536 Node->dump(&DAG); cerr << "\n"; 6537#endif 6538 assert(0 && "Unknown vector operation in ScalarizeVectorOp!"); 6539 case ISD::ADD: 6540 case ISD::FADD: 6541 case ISD::SUB: 6542 case ISD::FSUB: 6543 case ISD::MUL: 6544 case ISD::FMUL: 6545 case ISD::SDIV: 6546 case ISD::UDIV: 6547 case ISD::FDIV: 6548 case ISD::SREM: 6549 case ISD::UREM: 6550 case ISD::FREM: 6551 case ISD::FPOW: 6552 case ISD::AND: 6553 case ISD::OR: 6554 case ISD::XOR: 6555 Result = DAG.getNode(Node->getOpcode(), 6556 NewVT, 6557 ScalarizeVectorOp(Node->getOperand(0)), 6558 ScalarizeVectorOp(Node->getOperand(1))); 6559 break; 6560 case ISD::FNEG: 6561 case ISD::FABS: 6562 case ISD::FSQRT: 6563 case ISD::FSIN: 6564 case ISD::FCOS: 6565 Result = DAG.getNode(Node->getOpcode(), 6566 NewVT, 6567 ScalarizeVectorOp(Node->getOperand(0))); 6568 break; 6569 case ISD::FPOWI: 6570 Result = DAG.getNode(Node->getOpcode(), 6571 NewVT, 6572 ScalarizeVectorOp(Node->getOperand(0)), 6573 Node->getOperand(1)); 6574 break; 6575 case ISD::LOAD: { 6576 LoadSDNode *LD = cast<LoadSDNode>(Node); 6577 SDOperand Ch = LegalizeOp(LD->getChain()); // Legalize the chain. 6578 SDOperand Ptr = LegalizeOp(LD->getBasePtr()); // Legalize the pointer. 6579 6580 const Value *SV = LD->getSrcValue(); 6581 int SVOffset = LD->getSrcValueOffset(); 6582 Result = DAG.getLoad(NewVT, Ch, Ptr, SV, SVOffset, 6583 LD->isVolatile(), LD->getAlignment()); 6584 6585 // Remember that we legalized the chain. 6586 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); 6587 break; 6588 } 6589 case ISD::BUILD_VECTOR: 6590 Result = Node->getOperand(0); 6591 break; 6592 case ISD::INSERT_VECTOR_ELT: 6593 // Returning the inserted scalar element. 6594 Result = Node->getOperand(1); 6595 break; 6596 case ISD::CONCAT_VECTORS: 6597 assert(Node->getOperand(0).getValueType() == NewVT && 6598 "Concat of non-legal vectors not yet supported!"); 6599 Result = Node->getOperand(0); 6600 break; 6601 case ISD::VECTOR_SHUFFLE: { 6602 // Figure out if the scalar is the LHS or RHS and return it. 6603 SDOperand EltNum = Node->getOperand(2).getOperand(0); 6604 if (cast<ConstantSDNode>(EltNum)->getValue()) 6605 Result = ScalarizeVectorOp(Node->getOperand(1)); 6606 else 6607 Result = ScalarizeVectorOp(Node->getOperand(0)); 6608 break; 6609 } 6610 case ISD::EXTRACT_SUBVECTOR: 6611 Result = Node->getOperand(0); 6612 assert(Result.getValueType() == NewVT); 6613 break; 6614 case ISD::BIT_CONVERT: 6615 Result = DAG.getNode(ISD::BIT_CONVERT, NewVT, Op.getOperand(0)); 6616 break; 6617 case ISD::SELECT: 6618 Result = DAG.getNode(ISD::SELECT, NewVT, Op.getOperand(0), 6619 ScalarizeVectorOp(Op.getOperand(1)), 6620 ScalarizeVectorOp(Op.getOperand(2))); 6621 break; 6622 } 6623 6624 if (TLI.isTypeLegal(NewVT)) 6625 Result = LegalizeOp(Result); 6626 bool isNew = ScalarizedNodes.insert(std::make_pair(Op, Result)).second; 6627 assert(isNew && "Value already scalarized?"); 6628 return Result; 6629} 6630 6631 6632// SelectionDAG::Legalize - This is the entry point for the file. 6633// 6634void SelectionDAG::Legalize() { 6635 if (ViewLegalizeDAGs) viewGraph(); 6636 6637 /// run - This is the main entry point to this class. 6638 /// 6639 SelectionDAGLegalize(*this).LegalizeDAG(); 6640} 6641 6642