LegalizeDAG.cpp revision 5194d6dd9575845cf1cbb2f10a0c769634d116a9
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the SelectionDAG::Legalize method. 11// 12//===----------------------------------------------------------------------===// 13 14#include "llvm/Analysis/DebugInfo.h" 15#include "llvm/CodeGen/Analysis.h" 16#include "llvm/CodeGen/MachineFunction.h" 17#include "llvm/CodeGen/MachineJumpTableInfo.h" 18#include "llvm/CodeGen/SelectionDAG.h" 19#include "llvm/Target/TargetFrameLowering.h" 20#include "llvm/Target/TargetLowering.h" 21#include "llvm/Target/TargetData.h" 22#include "llvm/Target/TargetMachine.h" 23#include "llvm/CallingConv.h" 24#include "llvm/Constants.h" 25#include "llvm/DerivedTypes.h" 26#include "llvm/LLVMContext.h" 27#include "llvm/Support/Debug.h" 28#include "llvm/Support/ErrorHandling.h" 29#include "llvm/Support/MathExtras.h" 30#include "llvm/Support/raw_ostream.h" 31#include "llvm/ADT/DenseMap.h" 32#include "llvm/ADT/SmallVector.h" 33#include "llvm/ADT/SmallPtrSet.h" 34using namespace llvm; 35 36//===----------------------------------------------------------------------===// 37/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and 38/// hacks on it until the target machine can handle it. This involves 39/// eliminating value sizes the machine cannot handle (promoting small sizes to 40/// large sizes or splitting up large values into small values) as well as 41/// eliminating operations the machine cannot handle. 42/// 43/// This code also does a small amount of optimization and recognition of idioms 44/// as part of its processing. For example, if a target does not support a 45/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this 46/// will attempt merge setcc and brc instructions into brcc's. 47/// 48namespace { 49class SelectionDAGLegalize : public SelectionDAG::DAGUpdateListener { 50 const TargetMachine &TM; 51 const TargetLowering &TLI; 52 SelectionDAG &DAG; 53 54 /// LegalizePosition - The iterator for walking through the node list. 55 SelectionDAG::allnodes_iterator LegalizePosition; 56 57 /// LegalizedNodes - The set of nodes which have already been legalized. 58 SmallPtrSet<SDNode *, 16> LegalizedNodes; 59 60 // Libcall insertion helpers. 61 62public: 63 explicit SelectionDAGLegalize(SelectionDAG &DAG); 64 65 void LegalizeDAG(); 66 67private: 68 /// LegalizeOp - Legalizes the given operation. 69 void LegalizeOp(SDNode *Node); 70 71 SDValue OptimizeFloatStore(StoreSDNode *ST); 72 73 /// PerformInsertVectorEltInMemory - Some target cannot handle a variable 74 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 75 /// is necessary to spill the vector being inserted into to memory, perform 76 /// the insert there, and then read the result back. 77 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, 78 SDValue Idx, DebugLoc dl); 79 SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, 80 SDValue Idx, DebugLoc dl); 81 82 /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which 83 /// performs the same shuffe in terms of order or result bytes, but on a type 84 /// whose vector element type is narrower than the original shuffle type. 85 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 86 SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl, 87 SDValue N1, SDValue N2, 88 ArrayRef<int> Mask) const; 89 90 void LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, 91 DebugLoc dl); 92 93 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned); 94 SDValue ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, const SDValue *Ops, 95 unsigned NumOps, bool isSigned, DebugLoc dl); 96 97 std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC, 98 SDNode *Node, bool isSigned); 99 SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32, 100 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, 101 RTLIB::Libcall Call_PPCF128); 102 SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, 103 RTLIB::Libcall Call_I8, 104 RTLIB::Libcall Call_I16, 105 RTLIB::Libcall Call_I32, 106 RTLIB::Libcall Call_I64, 107 RTLIB::Libcall Call_I128); 108 void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 109 110 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, DebugLoc dl); 111 SDValue ExpandBUILD_VECTOR(SDNode *Node); 112 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); 113 void ExpandDYNAMIC_STACKALLOC(SDNode *Node, 114 SmallVectorImpl<SDValue> &Results); 115 SDValue ExpandFCOPYSIGN(SDNode *Node); 116 SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT, 117 DebugLoc dl); 118 SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned, 119 DebugLoc dl); 120 SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned, 121 DebugLoc dl); 122 123 SDValue ExpandBSWAP(SDValue Op, DebugLoc dl); 124 SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl); 125 126 SDValue ExpandExtractFromVectorThroughStack(SDValue Op); 127 SDValue ExpandInsertToVectorThroughStack(SDValue Op); 128 SDValue ExpandVectorBuildThroughStack(SDNode* Node); 129 130 SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP); 131 132 std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node); 133 134 void ExpandNode(SDNode *Node); 135 void PromoteNode(SDNode *Node); 136 137 void ForgetNode(SDNode *N) { 138 LegalizedNodes.erase(N); 139 if (LegalizePosition == SelectionDAG::allnodes_iterator(N)) 140 ++LegalizePosition; 141 } 142 143public: 144 // DAGUpdateListener implementation. 145 virtual void NodeDeleted(SDNode *N, SDNode *E) { 146 ForgetNode(N); 147 } 148 virtual void NodeUpdated(SDNode *N) {} 149 150 // Node replacement helpers 151 void ReplacedNode(SDNode *N) { 152 if (N->use_empty()) { 153 DAG.RemoveDeadNode(N, this); 154 } else { 155 ForgetNode(N); 156 } 157 } 158 void ReplaceNode(SDNode *Old, SDNode *New) { 159 DAG.ReplaceAllUsesWith(Old, New, this); 160 ReplacedNode(Old); 161 } 162 void ReplaceNode(SDValue Old, SDValue New) { 163 DAG.ReplaceAllUsesWith(Old, New, this); 164 ReplacedNode(Old.getNode()); 165 } 166 void ReplaceNode(SDNode *Old, const SDValue *New) { 167 DAG.ReplaceAllUsesWith(Old, New, this); 168 ReplacedNode(Old); 169 } 170}; 171} 172 173/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which 174/// performs the same shuffe in terms of order or result bytes, but on a type 175/// whose vector element type is narrower than the original shuffle type. 176/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 177SDValue 178SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl, 179 SDValue N1, SDValue N2, 180 ArrayRef<int> Mask) const { 181 unsigned NumMaskElts = VT.getVectorNumElements(); 182 unsigned NumDestElts = NVT.getVectorNumElements(); 183 unsigned NumEltsGrowth = NumDestElts / NumMaskElts; 184 185 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); 186 187 if (NumEltsGrowth == 1) 188 return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]); 189 190 SmallVector<int, 8> NewMask; 191 for (unsigned i = 0; i != NumMaskElts; ++i) { 192 int Idx = Mask[i]; 193 for (unsigned j = 0; j != NumEltsGrowth; ++j) { 194 if (Idx < 0) 195 NewMask.push_back(-1); 196 else 197 NewMask.push_back(Idx * NumEltsGrowth + j); 198 } 199 } 200 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?"); 201 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?"); 202 return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]); 203} 204 205SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag) 206 : TM(dag.getTarget()), TLI(dag.getTargetLoweringInfo()), 207 DAG(dag) { 208} 209 210void SelectionDAGLegalize::LegalizeDAG() { 211 DAG.AssignTopologicalOrder(); 212 213 // Visit all the nodes. We start in topological order, so that we see 214 // nodes with their original operands intact. Legalization can produce 215 // new nodes which may themselves need to be legalized. Iterate until all 216 // nodes have been legalized. 217 for (;;) { 218 bool AnyLegalized = false; 219 for (LegalizePosition = DAG.allnodes_end(); 220 LegalizePosition != DAG.allnodes_begin(); ) { 221 --LegalizePosition; 222 223 SDNode *N = LegalizePosition; 224 if (LegalizedNodes.insert(N)) { 225 AnyLegalized = true; 226 LegalizeOp(N); 227 } 228 } 229 if (!AnyLegalized) 230 break; 231 232 } 233 234 // Remove dead nodes now. 235 DAG.RemoveDeadNodes(); 236} 237 238/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or 239/// a load from the constant pool. 240SDValue 241SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) { 242 bool Extend = false; 243 DebugLoc dl = CFP->getDebugLoc(); 244 245 // If a FP immediate is precise when represented as a float and if the 246 // target can do an extending load from float to double, we put it into 247 // the constant pool as a float, even if it's is statically typed as a 248 // double. This shrinks FP constants and canonicalizes them for targets where 249 // an FP extending load is the same cost as a normal load (such as on the x87 250 // fp stack or PPC FP unit). 251 EVT VT = CFP->getValueType(0); 252 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue()); 253 if (!UseCP) { 254 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion"); 255 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), 256 (VT == MVT::f64) ? MVT::i64 : MVT::i32); 257 } 258 259 EVT OrigVT = VT; 260 EVT SVT = VT; 261 while (SVT != MVT::f32) { 262 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1); 263 if (ConstantFPSDNode::isValueValidForType(SVT, CFP->getValueAPF()) && 264 // Only do this if the target has a native EXTLOAD instruction from 265 // smaller type. 266 TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) && 267 TLI.ShouldShrinkFPConstant(OrigVT)) { 268 Type *SType = SVT.getTypeForEVT(*DAG.getContext()); 269 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType)); 270 VT = SVT; 271 Extend = true; 272 } 273 } 274 275 SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy()); 276 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 277 if (Extend) { 278 SDValue Result = 279 DAG.getExtLoad(ISD::EXTLOAD, dl, OrigVT, 280 DAG.getEntryNode(), 281 CPIdx, MachinePointerInfo::getConstantPool(), 282 VT, false, false, Alignment); 283 return Result; 284 } 285 SDValue Result = 286 DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx, 287 MachinePointerInfo::getConstantPool(), false, false, false, 288 Alignment); 289 return Result; 290} 291 292/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores. 293static void ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG, 294 const TargetLowering &TLI, 295 SelectionDAGLegalize *DAGLegalize) { 296 assert(ST->getAddressingMode() == ISD::UNINDEXED && 297 "unaligned indexed stores not implemented!"); 298 SDValue Chain = ST->getChain(); 299 SDValue Ptr = ST->getBasePtr(); 300 SDValue Val = ST->getValue(); 301 EVT VT = Val.getValueType(); 302 int Alignment = ST->getAlignment(); 303 DebugLoc dl = ST->getDebugLoc(); 304 if (ST->getMemoryVT().isFloatingPoint() || 305 ST->getMemoryVT().isVector()) { 306 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 307 if (TLI.isTypeLegal(intVT)) { 308 // Expand to a bitconvert of the value to the integer type of the 309 // same size, then a (misaligned) int store. 310 // FIXME: Does not handle truncating floating point stores! 311 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 312 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 313 ST->isVolatile(), ST->isNonTemporal(), Alignment); 314 DAGLegalize->ReplaceNode(SDValue(ST, 0), Result); 315 return; 316 } 317 // Do a (aligned) store to a stack slot, then copy from the stack slot 318 // to the final destination using (unaligned) integer loads and stores. 319 EVT StoredVT = ST->getMemoryVT(); 320 EVT RegVT = 321 TLI.getRegisterType(*DAG.getContext(), 322 EVT::getIntegerVT(*DAG.getContext(), 323 StoredVT.getSizeInBits())); 324 unsigned StoredBytes = StoredVT.getSizeInBits() / 8; 325 unsigned RegBytes = RegVT.getSizeInBits() / 8; 326 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 327 328 // Make sure the stack slot is also aligned for the register type. 329 SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT); 330 331 // Perform the original store, only redirected to the stack slot. 332 SDValue Store = DAG.getTruncStore(Chain, dl, 333 Val, StackPtr, MachinePointerInfo(), 334 StoredVT, false, false, 0); 335 SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy()); 336 SmallVector<SDValue, 8> Stores; 337 unsigned Offset = 0; 338 339 // Do all but one copies using the full register width. 340 for (unsigned i = 1; i < NumRegs; i++) { 341 // Load one integer register's worth from the stack slot. 342 SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr, 343 MachinePointerInfo(), 344 false, false, false, 0); 345 // Store it to the final location. Remember the store. 346 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 347 ST->getPointerInfo().getWithOffset(Offset), 348 ST->isVolatile(), ST->isNonTemporal(), 349 MinAlign(ST->getAlignment(), Offset))); 350 // Increment the pointers. 351 Offset += RegBytes; 352 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr, 353 Increment); 354 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 355 } 356 357 // The last store may be partial. Do a truncating store. On big-endian 358 // machines this requires an extending load from the stack slot to ensure 359 // that the bits are in the right place. 360 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 361 8 * (StoredBytes - Offset)); 362 363 // Load from the stack slot. 364 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 365 MachinePointerInfo(), 366 MemVT, false, false, 0); 367 368 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 369 ST->getPointerInfo() 370 .getWithOffset(Offset), 371 MemVT, ST->isVolatile(), 372 ST->isNonTemporal(), 373 MinAlign(ST->getAlignment(), Offset))); 374 // The order of the stores doesn't matter - say it with a TokenFactor. 375 SDValue Result = 376 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0], 377 Stores.size()); 378 DAGLegalize->ReplaceNode(SDValue(ST, 0), Result); 379 return; 380 } 381 assert(ST->getMemoryVT().isInteger() && 382 !ST->getMemoryVT().isVector() && 383 "Unaligned store of unknown type."); 384 // Get the half-size VT 385 EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext()); 386 int NumBits = NewStoredVT.getSizeInBits(); 387 int IncrementSize = NumBits / 8; 388 389 // Divide the stored value in two parts. 390 SDValue ShiftAmount = DAG.getConstant(NumBits, 391 TLI.getShiftAmountTy(Val.getValueType())); 392 SDValue Lo = Val; 393 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 394 395 // Store the two parts 396 SDValue Store1, Store2; 397 Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr, 398 ST->getPointerInfo(), NewStoredVT, 399 ST->isVolatile(), ST->isNonTemporal(), Alignment); 400 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 401 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 402 Alignment = MinAlign(Alignment, IncrementSize); 403 Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr, 404 ST->getPointerInfo().getWithOffset(IncrementSize), 405 NewStoredVT, ST->isVolatile(), ST->isNonTemporal(), 406 Alignment); 407 408 SDValue Result = 409 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 410 DAGLegalize->ReplaceNode(SDValue(ST, 0), Result); 411} 412 413/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads. 414static void 415ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG, 416 const TargetLowering &TLI, 417 SDValue &ValResult, SDValue &ChainResult) { 418 assert(LD->getAddressingMode() == ISD::UNINDEXED && 419 "unaligned indexed loads not implemented!"); 420 SDValue Chain = LD->getChain(); 421 SDValue Ptr = LD->getBasePtr(); 422 EVT VT = LD->getValueType(0); 423 EVT LoadedVT = LD->getMemoryVT(); 424 DebugLoc dl = LD->getDebugLoc(); 425 if (VT.isFloatingPoint() || VT.isVector()) { 426 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 427 if (TLI.isTypeLegal(intVT)) { 428 // Expand to a (misaligned) integer load of the same size, 429 // then bitconvert to floating point or vector. 430 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getPointerInfo(), 431 LD->isVolatile(), 432 LD->isNonTemporal(), 433 LD->isInvariant(), LD->getAlignment()); 434 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 435 if (VT.isFloatingPoint() && LoadedVT != VT) 436 Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result); 437 438 ValResult = Result; 439 ChainResult = Chain; 440 return; 441 } 442 443 // Copy the value to a (aligned) stack slot using (unaligned) integer 444 // loads and stores, then do a (aligned) load from the stack slot. 445 EVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT); 446 unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8; 447 unsigned RegBytes = RegVT.getSizeInBits() / 8; 448 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 449 450 // Make sure the stack slot is also aligned for the register type. 451 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 452 453 SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy()); 454 SmallVector<SDValue, 8> Stores; 455 SDValue StackPtr = StackBase; 456 unsigned Offset = 0; 457 458 // Do all but one copies using the full register width. 459 for (unsigned i = 1; i < NumRegs; i++) { 460 // Load one integer register's worth from the original location. 461 SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr, 462 LD->getPointerInfo().getWithOffset(Offset), 463 LD->isVolatile(), LD->isNonTemporal(), 464 LD->isInvariant(), 465 MinAlign(LD->getAlignment(), Offset)); 466 // Follow the load with a store to the stack slot. Remember the store. 467 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr, 468 MachinePointerInfo(), false, false, 0)); 469 // Increment the pointers. 470 Offset += RegBytes; 471 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 472 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr, 473 Increment); 474 } 475 476 // The last copy may be partial. Do an extending load. 477 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 478 8 * (LoadedBytes - Offset)); 479 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 480 LD->getPointerInfo().getWithOffset(Offset), 481 MemVT, LD->isVolatile(), 482 LD->isNonTemporal(), 483 MinAlign(LD->getAlignment(), Offset)); 484 // Follow the load with a store to the stack slot. Remember the store. 485 // On big-endian machines this requires a truncating store to ensure 486 // that the bits end up in the right place. 487 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr, 488 MachinePointerInfo(), MemVT, 489 false, false, 0)); 490 491 // The order of the stores doesn't matter - say it with a TokenFactor. 492 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0], 493 Stores.size()); 494 495 // Finally, perform the original load only redirected to the stack slot. 496 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 497 MachinePointerInfo(), LoadedVT, false, false, 0); 498 499 // Callers expect a MERGE_VALUES node. 500 ValResult = Load; 501 ChainResult = TF; 502 return; 503 } 504 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 505 "Unaligned load of unsupported type."); 506 507 // Compute the new VT that is half the size of the old one. This is an 508 // integer MVT. 509 unsigned NumBits = LoadedVT.getSizeInBits(); 510 EVT NewLoadedVT; 511 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 512 NumBits >>= 1; 513 514 unsigned Alignment = LD->getAlignment(); 515 unsigned IncrementSize = NumBits / 8; 516 ISD::LoadExtType HiExtType = LD->getExtensionType(); 517 518 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 519 if (HiExtType == ISD::NON_EXTLOAD) 520 HiExtType = ISD::ZEXTLOAD; 521 522 // Load the value in two parts 523 SDValue Lo, Hi; 524 if (TLI.isLittleEndian()) { 525 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 526 NewLoadedVT, LD->isVolatile(), 527 LD->isNonTemporal(), Alignment); 528 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 529 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 530 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 531 LD->getPointerInfo().getWithOffset(IncrementSize), 532 NewLoadedVT, LD->isVolatile(), 533 LD->isNonTemporal(), MinAlign(Alignment,IncrementSize)); 534 } else { 535 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 536 NewLoadedVT, LD->isVolatile(), 537 LD->isNonTemporal(), Alignment); 538 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 539 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 540 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 541 LD->getPointerInfo().getWithOffset(IncrementSize), 542 NewLoadedVT, LD->isVolatile(), 543 LD->isNonTemporal(), MinAlign(Alignment,IncrementSize)); 544 } 545 546 // aggregate the two parts 547 SDValue ShiftAmount = DAG.getConstant(NumBits, 548 TLI.getShiftAmountTy(Hi.getValueType())); 549 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 550 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 551 552 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 553 Hi.getValue(1)); 554 555 ValResult = Result; 556 ChainResult = TF; 557} 558 559/// PerformInsertVectorEltInMemory - Some target cannot handle a variable 560/// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 561/// is necessary to spill the vector being inserted into to memory, perform 562/// the insert there, and then read the result back. 563SDValue SelectionDAGLegalize:: 564PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx, 565 DebugLoc dl) { 566 SDValue Tmp1 = Vec; 567 SDValue Tmp2 = Val; 568 SDValue Tmp3 = Idx; 569 570 // If the target doesn't support this, we have to spill the input vector 571 // to a temporary stack slot, update the element, then reload it. This is 572 // badness. We could also load the value into a vector register (either 573 // with a "move to register" or "extload into register" instruction, then 574 // permute it into place, if the idx is a constant and if the idx is 575 // supported by the target. 576 EVT VT = Tmp1.getValueType(); 577 EVT EltVT = VT.getVectorElementType(); 578 EVT IdxVT = Tmp3.getValueType(); 579 EVT PtrVT = TLI.getPointerTy(); 580 SDValue StackPtr = DAG.CreateStackTemporary(VT); 581 582 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 583 584 // Store the vector. 585 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr, 586 MachinePointerInfo::getFixedStack(SPFI), 587 false, false, 0); 588 589 // Truncate or zero extend offset to target pointer type. 590 unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND; 591 Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3); 592 // Add the offset to the index. 593 unsigned EltSize = EltVT.getSizeInBits()/8; 594 Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT)); 595 SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr); 596 // Store the scalar value. 597 Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT, 598 false, false, 0); 599 // Load the updated vector. 600 return DAG.getLoad(VT, dl, Ch, StackPtr, 601 MachinePointerInfo::getFixedStack(SPFI), false, false, 602 false, 0); 603} 604 605 606SDValue SelectionDAGLegalize:: 607ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) { 608 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) { 609 // SCALAR_TO_VECTOR requires that the type of the value being inserted 610 // match the element type of the vector being created, except for 611 // integers in which case the inserted value can be over width. 612 EVT EltVT = Vec.getValueType().getVectorElementType(); 613 if (Val.getValueType() == EltVT || 614 (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) { 615 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, 616 Vec.getValueType(), Val); 617 618 unsigned NumElts = Vec.getValueType().getVectorNumElements(); 619 // We generate a shuffle of InVec and ScVec, so the shuffle mask 620 // should be 0,1,2,3,4,5... with the appropriate element replaced with 621 // elt 0 of the RHS. 622 SmallVector<int, 8> ShufOps; 623 for (unsigned i = 0; i != NumElts; ++i) 624 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts); 625 626 return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, 627 &ShufOps[0]); 628 } 629 } 630 return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl); 631} 632 633SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) { 634 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 635 // FIXME: We shouldn't do this for TargetConstantFP's. 636 // FIXME: move this to the DAG Combiner! Note that we can't regress due 637 // to phase ordering between legalized code and the dag combiner. This 638 // probably means that we need to integrate dag combiner and legalizer 639 // together. 640 // We generally can't do this one for long doubles. 641 SDValue Tmp1 = ST->getChain(); 642 SDValue Tmp2 = ST->getBasePtr(); 643 SDValue Tmp3; 644 unsigned Alignment = ST->getAlignment(); 645 bool isVolatile = ST->isVolatile(); 646 bool isNonTemporal = ST->isNonTemporal(); 647 DebugLoc dl = ST->getDebugLoc(); 648 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) { 649 if (CFP->getValueType(0) == MVT::f32 && 650 TLI.isTypeLegal(MVT::i32)) { 651 Tmp3 = DAG.getConstant(CFP->getValueAPF(). 652 bitcastToAPInt().zextOrTrunc(32), 653 MVT::i32); 654 return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(), 655 isVolatile, isNonTemporal, Alignment); 656 } 657 658 if (CFP->getValueType(0) == MVT::f64) { 659 // If this target supports 64-bit registers, do a single 64-bit store. 660 if (TLI.isTypeLegal(MVT::i64)) { 661 Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 662 zextOrTrunc(64), MVT::i64); 663 return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(), 664 isVolatile, isNonTemporal, Alignment); 665 } 666 667 if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) { 668 // Otherwise, if the target supports 32-bit registers, use 2 32-bit 669 // stores. If the target supports neither 32- nor 64-bits, this 670 // xform is certainly not worth it. 671 const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt(); 672 SDValue Lo = DAG.getConstant(IntVal.trunc(32), MVT::i32); 673 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32); 674 if (TLI.isBigEndian()) std::swap(Lo, Hi); 675 676 Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getPointerInfo(), isVolatile, 677 isNonTemporal, Alignment); 678 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, 679 DAG.getIntPtrConstant(4)); 680 Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2, 681 ST->getPointerInfo().getWithOffset(4), 682 isVolatile, isNonTemporal, MinAlign(Alignment, 4U)); 683 684 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 685 } 686 } 687 } 688 return SDValue(0, 0); 689} 690 691/// LegalizeOp - Return a legal replacement for the given operation, with 692/// all legal operands. 693void SelectionDAGLegalize::LegalizeOp(SDNode *Node) { 694 if (Node->getOpcode() == ISD::TargetConstant) // Allow illegal target nodes. 695 return; 696 697 DebugLoc dl = Node->getDebugLoc(); 698 699 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 700 assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) == 701 TargetLowering::TypeLegal && 702 "Unexpected illegal type!"); 703 704 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 705 assert((TLI.getTypeAction(*DAG.getContext(), 706 Node->getOperand(i).getValueType()) == 707 TargetLowering::TypeLegal || 708 Node->getOperand(i).getOpcode() == ISD::TargetConstant) && 709 "Unexpected illegal type!"); 710 711 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 712 bool isCustom = false; 713 714 // Figure out the correct action; the way to query this varies by opcode 715 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 716 bool SimpleFinishLegalizing = true; 717 switch (Node->getOpcode()) { 718 case ISD::INTRINSIC_W_CHAIN: 719 case ISD::INTRINSIC_WO_CHAIN: 720 case ISD::INTRINSIC_VOID: 721 case ISD::STACKSAVE: 722 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 723 break; 724 case ISD::VAARG: 725 Action = TLI.getOperationAction(Node->getOpcode(), 726 Node->getValueType(0)); 727 if (Action != TargetLowering::Promote) 728 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 729 break; 730 case ISD::SINT_TO_FP: 731 case ISD::UINT_TO_FP: 732 case ISD::EXTRACT_VECTOR_ELT: 733 Action = TLI.getOperationAction(Node->getOpcode(), 734 Node->getOperand(0).getValueType()); 735 break; 736 case ISD::FP_ROUND_INREG: 737 case ISD::SIGN_EXTEND_INREG: { 738 EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 739 Action = TLI.getOperationAction(Node->getOpcode(), InnerType); 740 break; 741 } 742 case ISD::ATOMIC_STORE: { 743 Action = TLI.getOperationAction(Node->getOpcode(), 744 Node->getOperand(2).getValueType()); 745 break; 746 } 747 case ISD::SELECT_CC: 748 case ISD::SETCC: 749 case ISD::BR_CC: { 750 unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 : 751 Node->getOpcode() == ISD::SETCC ? 2 : 1; 752 unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0; 753 EVT OpVT = Node->getOperand(CompareOperand).getValueType(); 754 ISD::CondCode CCCode = 755 cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get(); 756 Action = TLI.getCondCodeAction(CCCode, OpVT); 757 if (Action == TargetLowering::Legal) { 758 if (Node->getOpcode() == ISD::SELECT_CC) 759 Action = TLI.getOperationAction(Node->getOpcode(), 760 Node->getValueType(0)); 761 else 762 Action = TLI.getOperationAction(Node->getOpcode(), OpVT); 763 } 764 break; 765 } 766 case ISD::LOAD: 767 case ISD::STORE: 768 // FIXME: Model these properly. LOAD and STORE are complicated, and 769 // STORE expects the unlegalized operand in some cases. 770 SimpleFinishLegalizing = false; 771 break; 772 case ISD::CALLSEQ_START: 773 case ISD::CALLSEQ_END: 774 // FIXME: This shouldn't be necessary. These nodes have special properties 775 // dealing with the recursive nature of legalization. Removing this 776 // special case should be done as part of making LegalizeDAG non-recursive. 777 SimpleFinishLegalizing = false; 778 break; 779 case ISD::EXTRACT_ELEMENT: 780 case ISD::FLT_ROUNDS_: 781 case ISD::SADDO: 782 case ISD::SSUBO: 783 case ISD::UADDO: 784 case ISD::USUBO: 785 case ISD::SMULO: 786 case ISD::UMULO: 787 case ISD::FPOWI: 788 case ISD::MERGE_VALUES: 789 case ISD::EH_RETURN: 790 case ISD::FRAME_TO_ARGS_OFFSET: 791 case ISD::EH_SJLJ_SETJMP: 792 case ISD::EH_SJLJ_LONGJMP: 793 // These operations lie about being legal: when they claim to be legal, 794 // they should actually be expanded. 795 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 796 if (Action == TargetLowering::Legal) 797 Action = TargetLowering::Expand; 798 break; 799 case ISD::INIT_TRAMPOLINE: 800 case ISD::ADJUST_TRAMPOLINE: 801 case ISD::FRAMEADDR: 802 case ISD::RETURNADDR: 803 // These operations lie about being legal: when they claim to be legal, 804 // they should actually be custom-lowered. 805 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 806 if (Action == TargetLowering::Legal) 807 Action = TargetLowering::Custom; 808 break; 809 default: 810 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { 811 Action = TargetLowering::Legal; 812 } else { 813 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 814 } 815 break; 816 } 817 818 if (SimpleFinishLegalizing) { 819 SmallVector<SDValue, 8> Ops; 820 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 821 Ops.push_back(Node->getOperand(i)); 822 switch (Node->getOpcode()) { 823 default: break; 824 case ISD::SHL: 825 case ISD::SRL: 826 case ISD::SRA: 827 case ISD::ROTL: 828 case ISD::ROTR: 829 // Legalizing shifts/rotates requires adjusting the shift amount 830 // to the appropriate width. 831 if (!Ops[1].getValueType().isVector()) { 832 SDValue SAO = DAG.getShiftAmountOperand(Ops[0].getValueType(), Ops[1]); 833 HandleSDNode Handle(SAO); 834 LegalizeOp(SAO.getNode()); 835 Ops[1] = Handle.getValue(); 836 } 837 break; 838 case ISD::SRL_PARTS: 839 case ISD::SRA_PARTS: 840 case ISD::SHL_PARTS: 841 // Legalizing shifts/rotates requires adjusting the shift amount 842 // to the appropriate width. 843 if (!Ops[2].getValueType().isVector()) { 844 SDValue SAO = DAG.getShiftAmountOperand(Ops[0].getValueType(), Ops[2]); 845 HandleSDNode Handle(SAO); 846 LegalizeOp(SAO.getNode()); 847 Ops[2] = Handle.getValue(); 848 } 849 break; 850 } 851 852 SDNode *NewNode = DAG.UpdateNodeOperands(Node, Ops.data(), Ops.size()); 853 if (NewNode != Node) { 854 DAG.ReplaceAllUsesWith(Node, NewNode, this); 855 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 856 DAG.TransferDbgValues(SDValue(Node, i), SDValue(NewNode, i)); 857 ReplacedNode(Node); 858 Node = NewNode; 859 } 860 switch (Action) { 861 case TargetLowering::Legal: 862 return; 863 case TargetLowering::Custom: 864 // FIXME: The handling for custom lowering with multiple results is 865 // a complete mess. 866 Tmp1 = TLI.LowerOperation(SDValue(Node, 0), DAG); 867 if (Tmp1.getNode()) { 868 SmallVector<SDValue, 8> ResultVals; 869 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) { 870 if (e == 1) 871 ResultVals.push_back(Tmp1); 872 else 873 ResultVals.push_back(Tmp1.getValue(i)); 874 } 875 if (Tmp1.getNode() != Node || Tmp1.getResNo() != 0) { 876 DAG.ReplaceAllUsesWith(Node, ResultVals.data(), this); 877 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 878 DAG.TransferDbgValues(SDValue(Node, i), ResultVals[i]); 879 ReplacedNode(Node); 880 } 881 return; 882 } 883 884 // FALL THROUGH 885 case TargetLowering::Expand: 886 ExpandNode(Node); 887 return; 888 case TargetLowering::Promote: 889 PromoteNode(Node); 890 return; 891 } 892 } 893 894 switch (Node->getOpcode()) { 895 default: 896#ifndef NDEBUG 897 dbgs() << "NODE: "; 898 Node->dump( &DAG); 899 dbgs() << "\n"; 900#endif 901 llvm_unreachable("Do not know how to legalize this operator!"); 902 903 case ISD::CALLSEQ_START: 904 case ISD::CALLSEQ_END: 905 break; 906 case ISD::LOAD: { 907 LoadSDNode *LD = cast<LoadSDNode>(Node); 908 Tmp1 = LD->getChain(); // Legalize the chain. 909 Tmp2 = LD->getBasePtr(); // Legalize the base pointer. 910 911 ISD::LoadExtType ExtType = LD->getExtensionType(); 912 if (ExtType == ISD::NON_EXTLOAD) { 913 EVT VT = Node->getValueType(0); 914 Tmp3 = SDValue(Node, 0); 915 Tmp4 = SDValue(Node, 1); 916 917 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 918 default: llvm_unreachable("This action is not supported yet!"); 919 case TargetLowering::Legal: 920 // If this is an unaligned load and the target doesn't support it, 921 // expand it. 922 if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) { 923 Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext()); 924 unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty); 925 if (LD->getAlignment() < ABIAlignment){ 926 ExpandUnalignedLoad(cast<LoadSDNode>(Node), 927 DAG, TLI, Tmp3, Tmp4); 928 } 929 } 930 break; 931 case TargetLowering::Custom: 932 Tmp1 = TLI.LowerOperation(Tmp3, DAG); 933 if (Tmp1.getNode()) { 934 Tmp3 = Tmp1; 935 Tmp4 = Tmp1.getValue(1); 936 } 937 break; 938 case TargetLowering::Promote: { 939 // Only promote a load of vector type to another. 940 assert(VT.isVector() && "Cannot promote this load!"); 941 // Change base type to a different vector type. 942 EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 943 944 Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getPointerInfo(), 945 LD->isVolatile(), LD->isNonTemporal(), 946 LD->isInvariant(), LD->getAlignment()); 947 Tmp3 = DAG.getNode(ISD::BITCAST, dl, VT, Tmp1); 948 Tmp4 = Tmp1.getValue(1); 949 break; 950 } 951 } 952 if (Tmp4.getNode() != Node) { 953 assert(Tmp3.getNode() != Node && "Load must be completely replaced"); 954 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp3); 955 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Tmp4); 956 ReplacedNode(Node); 957 } 958 return; 959 } 960 961 EVT SrcVT = LD->getMemoryVT(); 962 unsigned SrcWidth = SrcVT.getSizeInBits(); 963 unsigned Alignment = LD->getAlignment(); 964 bool isVolatile = LD->isVolatile(); 965 bool isNonTemporal = LD->isNonTemporal(); 966 967 if (SrcWidth != SrcVT.getStoreSizeInBits() && 968 // Some targets pretend to have an i1 loading operation, and actually 969 // load an i8. This trick is correct for ZEXTLOAD because the top 7 970 // bits are guaranteed to be zero; it helps the optimizers understand 971 // that these bits are zero. It is also useful for EXTLOAD, since it 972 // tells the optimizers that those bits are undefined. It would be 973 // nice to have an effective generic way of getting these benefits... 974 // Until such a way is found, don't insist on promoting i1 here. 975 (SrcVT != MVT::i1 || 976 TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) { 977 // Promote to a byte-sized load if not loading an integral number of 978 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 979 unsigned NewWidth = SrcVT.getStoreSizeInBits(); 980 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth); 981 SDValue Ch; 982 983 // The extra bits are guaranteed to be zero, since we stored them that 984 // way. A zext load from NVT thus automatically gives zext from SrcVT. 985 986 ISD::LoadExtType NewExtType = 987 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; 988 989 SDValue Result = 990 DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), 991 Tmp1, Tmp2, LD->getPointerInfo(), 992 NVT, isVolatile, isNonTemporal, Alignment); 993 994 Ch = Result.getValue(1); // The chain. 995 996 if (ExtType == ISD::SEXTLOAD) 997 // Having the top bits zero doesn't help when sign extending. 998 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 999 Result.getValueType(), 1000 Result, DAG.getValueType(SrcVT)); 1001 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) 1002 // All the top bits are guaranteed to be zero - inform the optimizers. 1003 Result = DAG.getNode(ISD::AssertZext, dl, 1004 Result.getValueType(), Result, 1005 DAG.getValueType(SrcVT)); 1006 1007 Tmp1 = Result; 1008 Tmp2 = Ch; 1009 } else if (SrcWidth & (SrcWidth - 1)) { 1010 // If not loading a power-of-2 number of bits, expand as two loads. 1011 assert(!SrcVT.isVector() && "Unsupported extload!"); 1012 unsigned RoundWidth = 1 << Log2_32(SrcWidth); 1013 assert(RoundWidth < SrcWidth); 1014 unsigned ExtraWidth = SrcWidth - RoundWidth; 1015 assert(ExtraWidth < RoundWidth); 1016 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 1017 "Load size not an integral number of bytes!"); 1018 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 1019 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 1020 SDValue Lo, Hi, Ch; 1021 unsigned IncrementSize; 1022 1023 if (TLI.isLittleEndian()) { 1024 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) 1025 // Load the bottom RoundWidth bits. 1026 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), 1027 Tmp1, Tmp2, 1028 LD->getPointerInfo(), RoundVT, isVolatile, 1029 isNonTemporal, Alignment); 1030 1031 // Load the remaining ExtraWidth bits. 1032 IncrementSize = RoundWidth / 8; 1033 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, 1034 DAG.getIntPtrConstant(IncrementSize)); 1035 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2, 1036 LD->getPointerInfo().getWithOffset(IncrementSize), 1037 ExtraVT, isVolatile, isNonTemporal, 1038 MinAlign(Alignment, IncrementSize)); 1039 1040 // Build a factor node to remember that this load is independent of 1041 // the other one. 1042 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 1043 Hi.getValue(1)); 1044 1045 // Move the top bits to the right place. 1046 Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi, 1047 DAG.getConstant(RoundWidth, 1048 TLI.getShiftAmountTy(Hi.getValueType()))); 1049 1050 // Join the hi and lo parts. 1051 Tmp1 = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 1052 } else { 1053 // Big endian - avoid unaligned loads. 1054 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 1055 // Load the top RoundWidth bits. 1056 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2, 1057 LD->getPointerInfo(), RoundVT, isVolatile, 1058 isNonTemporal, Alignment); 1059 1060 // Load the remaining ExtraWidth bits. 1061 IncrementSize = RoundWidth / 8; 1062 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, 1063 DAG.getIntPtrConstant(IncrementSize)); 1064 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, 1065 dl, Node->getValueType(0), Tmp1, Tmp2, 1066 LD->getPointerInfo().getWithOffset(IncrementSize), 1067 ExtraVT, isVolatile, isNonTemporal, 1068 MinAlign(Alignment, IncrementSize)); 1069 1070 // Build a factor node to remember that this load is independent of 1071 // the other one. 1072 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 1073 Hi.getValue(1)); 1074 1075 // Move the top bits to the right place. 1076 Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi, 1077 DAG.getConstant(ExtraWidth, 1078 TLI.getShiftAmountTy(Hi.getValueType()))); 1079 1080 // Join the hi and lo parts. 1081 Tmp1 = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 1082 } 1083 1084 Tmp2 = Ch; 1085 } else { 1086 switch (TLI.getLoadExtAction(ExtType, SrcVT)) { 1087 default: llvm_unreachable("This action is not supported yet!"); 1088 case TargetLowering::Custom: 1089 isCustom = true; 1090 // FALLTHROUGH 1091 case TargetLowering::Legal: 1092 Tmp1 = SDValue(Node, 0); 1093 Tmp2 = SDValue(Node, 1); 1094 1095 if (isCustom) { 1096 Tmp3 = TLI.LowerOperation(SDValue(Node, 0), DAG); 1097 if (Tmp3.getNode()) { 1098 Tmp1 = Tmp3; 1099 Tmp2 = Tmp3.getValue(1); 1100 } 1101 } else { 1102 // If this is an unaligned load and the target doesn't support it, 1103 // expand it. 1104 if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) { 1105 Type *Ty = 1106 LD->getMemoryVT().getTypeForEVT(*DAG.getContext()); 1107 unsigned ABIAlignment = 1108 TLI.getTargetData()->getABITypeAlignment(Ty); 1109 if (LD->getAlignment() < ABIAlignment){ 1110 ExpandUnalignedLoad(cast<LoadSDNode>(Node), 1111 DAG, TLI, Tmp1, Tmp2); 1112 } 1113 } 1114 } 1115 break; 1116 case TargetLowering::Expand: 1117 if (!TLI.isLoadExtLegal(ISD::EXTLOAD, SrcVT) && TLI.isTypeLegal(SrcVT)) { 1118 SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2, 1119 LD->getPointerInfo(), 1120 LD->isVolatile(), LD->isNonTemporal(), 1121 LD->isInvariant(), LD->getAlignment()); 1122 unsigned ExtendOp; 1123 switch (ExtType) { 1124 case ISD::EXTLOAD: 1125 ExtendOp = (SrcVT.isFloatingPoint() ? 1126 ISD::FP_EXTEND : ISD::ANY_EXTEND); 1127 break; 1128 case ISD::SEXTLOAD: ExtendOp = ISD::SIGN_EXTEND; break; 1129 case ISD::ZEXTLOAD: ExtendOp = ISD::ZERO_EXTEND; break; 1130 default: llvm_unreachable("Unexpected extend load type!"); 1131 } 1132 Tmp1 = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load); 1133 Tmp2 = Load.getValue(1); 1134 break; 1135 } 1136 1137 assert(!SrcVT.isVector() && 1138 "Vector Loads are handled in LegalizeVectorOps"); 1139 1140 // FIXME: This does not work for vectors on most targets. Sign- and 1141 // zero-extend operations are currently folded into extending loads, 1142 // whether they are legal or not, and then we end up here without any 1143 // support for legalizing them. 1144 assert(ExtType != ISD::EXTLOAD && 1145 "EXTLOAD should always be supported!"); 1146 // Turn the unsupported load into an EXTLOAD followed by an explicit 1147 // zero/sign extend inreg. 1148 SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0), 1149 Tmp1, Tmp2, LD->getPointerInfo(), SrcVT, 1150 LD->isVolatile(), LD->isNonTemporal(), 1151 LD->getAlignment()); 1152 SDValue ValRes; 1153 if (ExtType == ISD::SEXTLOAD) 1154 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 1155 Result.getValueType(), 1156 Result, DAG.getValueType(SrcVT)); 1157 else 1158 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType()); 1159 Tmp1 = ValRes; 1160 Tmp2 = Result.getValue(1); 1161 break; 1162 } 1163 } 1164 1165 // Since loads produce two values, make sure to remember that we legalized 1166 // both of them. 1167 if (Tmp2.getNode() != Node) { 1168 assert(Tmp1.getNode() != Node && "Load must be completely replaced"); 1169 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp1); 1170 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Tmp2); 1171 ReplacedNode(Node); 1172 } 1173 break; 1174 } 1175 case ISD::STORE: { 1176 StoreSDNode *ST = cast<StoreSDNode>(Node); 1177 Tmp1 = ST->getChain(); 1178 Tmp2 = ST->getBasePtr(); 1179 unsigned Alignment = ST->getAlignment(); 1180 bool isVolatile = ST->isVolatile(); 1181 bool isNonTemporal = ST->isNonTemporal(); 1182 1183 if (!ST->isTruncatingStore()) { 1184 if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) { 1185 ReplaceNode(ST, OptStore); 1186 break; 1187 } 1188 1189 { 1190 Tmp3 = ST->getValue(); 1191 EVT VT = Tmp3.getValueType(); 1192 switch (TLI.getOperationAction(ISD::STORE, VT)) { 1193 default: llvm_unreachable("This action is not supported yet!"); 1194 case TargetLowering::Legal: 1195 // If this is an unaligned store and the target doesn't support it, 1196 // expand it. 1197 if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) { 1198 Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext()); 1199 unsigned ABIAlignment= TLI.getTargetData()->getABITypeAlignment(Ty); 1200 if (ST->getAlignment() < ABIAlignment) 1201 ExpandUnalignedStore(cast<StoreSDNode>(Node), 1202 DAG, TLI, this); 1203 } 1204 break; 1205 case TargetLowering::Custom: 1206 Tmp1 = TLI.LowerOperation(SDValue(Node, 0), DAG); 1207 if (Tmp1.getNode()) 1208 ReplaceNode(SDValue(Node, 0), Tmp1); 1209 break; 1210 case TargetLowering::Promote: { 1211 assert(VT.isVector() && "Unknown legal promote case!"); 1212 Tmp3 = DAG.getNode(ISD::BITCAST, dl, 1213 TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3); 1214 SDValue Result = 1215 DAG.getStore(Tmp1, dl, Tmp3, Tmp2, 1216 ST->getPointerInfo(), isVolatile, 1217 isNonTemporal, Alignment); 1218 ReplaceNode(SDValue(Node, 0), Result); 1219 break; 1220 } 1221 } 1222 break; 1223 } 1224 } else { 1225 Tmp3 = ST->getValue(); 1226 1227 EVT StVT = ST->getMemoryVT(); 1228 unsigned StWidth = StVT.getSizeInBits(); 1229 1230 if (StWidth != StVT.getStoreSizeInBits()) { 1231 // Promote to a byte-sized store with upper bits zero if not 1232 // storing an integral number of bytes. For example, promote 1233 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 1234 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), 1235 StVT.getStoreSizeInBits()); 1236 Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT); 1237 SDValue Result = 1238 DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(), 1239 NVT, isVolatile, isNonTemporal, Alignment); 1240 ReplaceNode(SDValue(Node, 0), Result); 1241 } else if (StWidth & (StWidth - 1)) { 1242 // If not storing a power-of-2 number of bits, expand as two stores. 1243 assert(!StVT.isVector() && "Unsupported truncstore!"); 1244 unsigned RoundWidth = 1 << Log2_32(StWidth); 1245 assert(RoundWidth < StWidth); 1246 unsigned ExtraWidth = StWidth - RoundWidth; 1247 assert(ExtraWidth < RoundWidth); 1248 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 1249 "Store size not an integral number of bytes!"); 1250 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 1251 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 1252 SDValue Lo, Hi; 1253 unsigned IncrementSize; 1254 1255 if (TLI.isLittleEndian()) { 1256 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) 1257 // Store the bottom RoundWidth bits. 1258 Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(), 1259 RoundVT, 1260 isVolatile, isNonTemporal, Alignment); 1261 1262 // Store the remaining ExtraWidth bits. 1263 IncrementSize = RoundWidth / 8; 1264 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, 1265 DAG.getIntPtrConstant(IncrementSize)); 1266 Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3, 1267 DAG.getConstant(RoundWidth, 1268 TLI.getShiftAmountTy(Tmp3.getValueType()))); 1269 Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, 1270 ST->getPointerInfo().getWithOffset(IncrementSize), 1271 ExtraVT, isVolatile, isNonTemporal, 1272 MinAlign(Alignment, IncrementSize)); 1273 } else { 1274 // Big endian - avoid unaligned stores. 1275 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X 1276 // Store the top RoundWidth bits. 1277 Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3, 1278 DAG.getConstant(ExtraWidth, 1279 TLI.getShiftAmountTy(Tmp3.getValueType()))); 1280 Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getPointerInfo(), 1281 RoundVT, isVolatile, isNonTemporal, Alignment); 1282 1283 // Store the remaining ExtraWidth bits. 1284 IncrementSize = RoundWidth / 8; 1285 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, 1286 DAG.getIntPtrConstant(IncrementSize)); 1287 Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, 1288 ST->getPointerInfo().getWithOffset(IncrementSize), 1289 ExtraVT, isVolatile, isNonTemporal, 1290 MinAlign(Alignment, IncrementSize)); 1291 } 1292 1293 // The order of the stores doesn't matter. 1294 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 1295 ReplaceNode(SDValue(Node, 0), Result); 1296 } else { 1297 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { 1298 default: llvm_unreachable("This action is not supported yet!"); 1299 case TargetLowering::Legal: 1300 // If this is an unaligned store and the target doesn't support it, 1301 // expand it. 1302 if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) { 1303 Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext()); 1304 unsigned ABIAlignment= TLI.getTargetData()->getABITypeAlignment(Ty); 1305 if (ST->getAlignment() < ABIAlignment) 1306 ExpandUnalignedStore(cast<StoreSDNode>(Node), DAG, TLI, this); 1307 } 1308 break; 1309 case TargetLowering::Custom: 1310 ReplaceNode(SDValue(Node, 0), 1311 TLI.LowerOperation(SDValue(Node, 0), DAG)); 1312 break; 1313 case TargetLowering::Expand: 1314 assert(!StVT.isVector() && 1315 "Vector Stores are handled in LegalizeVectorOps"); 1316 1317 // TRUNCSTORE:i16 i32 -> STORE i16 1318 assert(TLI.isTypeLegal(StVT) && "Do not know how to expand this store!"); 1319 Tmp3 = DAG.getNode(ISD::TRUNCATE, dl, StVT, Tmp3); 1320 SDValue Result = 1321 DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(), 1322 isVolatile, isNonTemporal, Alignment); 1323 ReplaceNode(SDValue(Node, 0), Result); 1324 break; 1325 } 1326 } 1327 } 1328 break; 1329 } 1330 } 1331} 1332 1333SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) { 1334 SDValue Vec = Op.getOperand(0); 1335 SDValue Idx = Op.getOperand(1); 1336 DebugLoc dl = Op.getDebugLoc(); 1337 // Store the value to a temporary stack slot, then LOAD the returned part. 1338 SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType()); 1339 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, 1340 MachinePointerInfo(), false, false, 0); 1341 1342 // Add the offset to the index. 1343 unsigned EltSize = 1344 Vec.getValueType().getVectorElementType().getSizeInBits()/8; 1345 Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx, 1346 DAG.getConstant(EltSize, Idx.getValueType())); 1347 1348 if (Idx.getValueType().bitsGT(TLI.getPointerTy())) 1349 Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx); 1350 else 1351 Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx); 1352 1353 StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr); 1354 1355 if (Op.getValueType().isVector()) 1356 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr,MachinePointerInfo(), 1357 false, false, false, 0); 1358 return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr, 1359 MachinePointerInfo(), 1360 Vec.getValueType().getVectorElementType(), 1361 false, false, 0); 1362} 1363 1364SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) { 1365 assert(Op.getValueType().isVector() && "Non-vector insert subvector!"); 1366 1367 SDValue Vec = Op.getOperand(0); 1368 SDValue Part = Op.getOperand(1); 1369 SDValue Idx = Op.getOperand(2); 1370 DebugLoc dl = Op.getDebugLoc(); 1371 1372 // Store the value to a temporary stack slot, then LOAD the returned part. 1373 1374 SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType()); 1375 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1376 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI); 1377 1378 // First store the whole vector. 1379 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo, 1380 false, false, 0); 1381 1382 // Then store the inserted part. 1383 1384 // Add the offset to the index. 1385 unsigned EltSize = 1386 Vec.getValueType().getVectorElementType().getSizeInBits()/8; 1387 1388 Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx, 1389 DAG.getConstant(EltSize, Idx.getValueType())); 1390 1391 if (Idx.getValueType().bitsGT(TLI.getPointerTy())) 1392 Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx); 1393 else 1394 Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx); 1395 1396 SDValue SubStackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, 1397 StackPtr); 1398 1399 // Store the subvector. 1400 Ch = DAG.getStore(DAG.getEntryNode(), dl, Part, SubStackPtr, 1401 MachinePointerInfo(), false, false, 0); 1402 1403 // Finally, load the updated vector. 1404 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo, 1405 false, false, false, 0); 1406} 1407 1408SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) { 1409 // We can't handle this case efficiently. Allocate a sufficiently 1410 // aligned object on the stack, store each element into it, then load 1411 // the result as a vector. 1412 // Create the stack frame object. 1413 EVT VT = Node->getValueType(0); 1414 EVT EltVT = VT.getVectorElementType(); 1415 DebugLoc dl = Node->getDebugLoc(); 1416 SDValue FIPtr = DAG.CreateStackTemporary(VT); 1417 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex(); 1418 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI); 1419 1420 // Emit a store of each element to the stack slot. 1421 SmallVector<SDValue, 8> Stores; 1422 unsigned TypeByteSize = EltVT.getSizeInBits() / 8; 1423 // Store (in the right endianness) the elements to memory. 1424 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 1425 // Ignore undef elements. 1426 if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue; 1427 1428 unsigned Offset = TypeByteSize*i; 1429 1430 SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType()); 1431 Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx); 1432 1433 // If the destination vector element type is narrower than the source 1434 // element type, only store the bits necessary. 1435 if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) { 1436 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, 1437 Node->getOperand(i), Idx, 1438 PtrInfo.getWithOffset(Offset), 1439 EltVT, false, false, 0)); 1440 } else 1441 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, 1442 Node->getOperand(i), Idx, 1443 PtrInfo.getWithOffset(Offset), 1444 false, false, 0)); 1445 } 1446 1447 SDValue StoreChain; 1448 if (!Stores.empty()) // Not all undef elements? 1449 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 1450 &Stores[0], Stores.size()); 1451 else 1452 StoreChain = DAG.getEntryNode(); 1453 1454 // Result is a load from the stack slot. 1455 return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo, 1456 false, false, false, 0); 1457} 1458 1459SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) { 1460 DebugLoc dl = Node->getDebugLoc(); 1461 SDValue Tmp1 = Node->getOperand(0); 1462 SDValue Tmp2 = Node->getOperand(1); 1463 1464 // Get the sign bit of the RHS. First obtain a value that has the same 1465 // sign as the sign bit, i.e. negative if and only if the sign bit is 1. 1466 SDValue SignBit; 1467 EVT FloatVT = Tmp2.getValueType(); 1468 EVT IVT = EVT::getIntegerVT(*DAG.getContext(), FloatVT.getSizeInBits()); 1469 if (TLI.isTypeLegal(IVT)) { 1470 // Convert to an integer with the same sign bit. 1471 SignBit = DAG.getNode(ISD::BITCAST, dl, IVT, Tmp2); 1472 } else { 1473 // Store the float to memory, then load the sign part out as an integer. 1474 MVT LoadTy = TLI.getPointerTy(); 1475 // First create a temporary that is aligned for both the load and store. 1476 SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy); 1477 // Then store the float to it. 1478 SDValue Ch = 1479 DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StackPtr, MachinePointerInfo(), 1480 false, false, 0); 1481 if (TLI.isBigEndian()) { 1482 assert(FloatVT.isByteSized() && "Unsupported floating point type!"); 1483 // Load out a legal integer with the same sign bit as the float. 1484 SignBit = DAG.getLoad(LoadTy, dl, Ch, StackPtr, MachinePointerInfo(), 1485 false, false, false, 0); 1486 } else { // Little endian 1487 SDValue LoadPtr = StackPtr; 1488 // The float may be wider than the integer we are going to load. Advance 1489 // the pointer so that the loaded integer will contain the sign bit. 1490 unsigned Strides = (FloatVT.getSizeInBits()-1)/LoadTy.getSizeInBits(); 1491 unsigned ByteOffset = (Strides * LoadTy.getSizeInBits()) / 8; 1492 LoadPtr = DAG.getNode(ISD::ADD, dl, LoadPtr.getValueType(), 1493 LoadPtr, DAG.getIntPtrConstant(ByteOffset)); 1494 // Load a legal integer containing the sign bit. 1495 SignBit = DAG.getLoad(LoadTy, dl, Ch, LoadPtr, MachinePointerInfo(), 1496 false, false, false, 0); 1497 // Move the sign bit to the top bit of the loaded integer. 1498 unsigned BitShift = LoadTy.getSizeInBits() - 1499 (FloatVT.getSizeInBits() - 8 * ByteOffset); 1500 assert(BitShift < LoadTy.getSizeInBits() && "Pointer advanced wrong?"); 1501 if (BitShift) 1502 SignBit = DAG.getNode(ISD::SHL, dl, LoadTy, SignBit, 1503 DAG.getConstant(BitShift, 1504 TLI.getShiftAmountTy(SignBit.getValueType()))); 1505 } 1506 } 1507 // Now get the sign bit proper, by seeing whether the value is negative. 1508 SignBit = DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()), 1509 SignBit, DAG.getConstant(0, SignBit.getValueType()), 1510 ISD::SETLT); 1511 // Get the absolute value of the result. 1512 SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1); 1513 // Select between the nabs and abs value based on the sign bit of 1514 // the input. 1515 return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit, 1516 DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal), 1517 AbsVal); 1518} 1519 1520void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node, 1521 SmallVectorImpl<SDValue> &Results) { 1522 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1523 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" 1524 " not tell us which reg is the stack pointer!"); 1525 DebugLoc dl = Node->getDebugLoc(); 1526 EVT VT = Node->getValueType(0); 1527 SDValue Tmp1 = SDValue(Node, 0); 1528 SDValue Tmp2 = SDValue(Node, 1); 1529 SDValue Tmp3 = Node->getOperand(2); 1530 SDValue Chain = Tmp1.getOperand(0); 1531 1532 // Chain the dynamic stack allocation so that it doesn't modify the stack 1533 // pointer when other instructions are using the stack. 1534 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true)); 1535 1536 SDValue Size = Tmp2.getOperand(1); 1537 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 1538 Chain = SP.getValue(1); 1539 unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue(); 1540 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); 1541 if (Align > StackAlign) 1542 SP = DAG.getNode(ISD::AND, dl, VT, SP, 1543 DAG.getConstant(-(uint64_t)Align, VT)); 1544 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value 1545 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain 1546 1547 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, true), 1548 DAG.getIntPtrConstant(0, true), SDValue()); 1549 1550 Results.push_back(Tmp1); 1551 Results.push_back(Tmp2); 1552} 1553 1554/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and 1555/// condition code CC on the current target. This routine expands SETCC with 1556/// illegal condition code into AND / OR of multiple SETCC values. 1557void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT, 1558 SDValue &LHS, SDValue &RHS, 1559 SDValue &CC, 1560 DebugLoc dl) { 1561 EVT OpVT = LHS.getValueType(); 1562 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 1563 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 1564 default: llvm_unreachable("Unknown condition code action!"); 1565 case TargetLowering::Legal: 1566 // Nothing to do. 1567 break; 1568 case TargetLowering::Expand: { 1569 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 1570 unsigned Opc = 0; 1571 switch (CCCode) { 1572 default: llvm_unreachable("Don't know how to expand this condition!"); 1573 case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO; Opc = ISD::AND; break; 1574 case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO; Opc = ISD::AND; break; 1575 case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO; Opc = ISD::AND; break; 1576 case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO; Opc = ISD::AND; break; 1577 case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO; Opc = ISD::AND; break; 1578 case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO; Opc = ISD::AND; break; 1579 case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR; break; 1580 case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR; break; 1581 case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR; break; 1582 case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR; break; 1583 case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR; break; 1584 case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR; break; 1585 // FIXME: Implement more expansions. 1586 } 1587 1588 SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1); 1589 SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2); 1590 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 1591 RHS = SDValue(); 1592 CC = SDValue(); 1593 break; 1594 } 1595 } 1596} 1597 1598/// EmitStackConvert - Emit a store/load combination to the stack. This stores 1599/// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does 1600/// a load from the stack slot to DestVT, extending it if needed. 1601/// The resultant code need not be legal. 1602SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, 1603 EVT SlotVT, 1604 EVT DestVT, 1605 DebugLoc dl) { 1606 // Create the stack frame object. 1607 unsigned SrcAlign = 1608 TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType(). 1609 getTypeForEVT(*DAG.getContext())); 1610 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign); 1611 1612 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); 1613 int SPFI = StackPtrFI->getIndex(); 1614 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(SPFI); 1615 1616 unsigned SrcSize = SrcOp.getValueType().getSizeInBits(); 1617 unsigned SlotSize = SlotVT.getSizeInBits(); 1618 unsigned DestSize = DestVT.getSizeInBits(); 1619 Type *DestType = DestVT.getTypeForEVT(*DAG.getContext()); 1620 unsigned DestAlign = TLI.getTargetData()->getPrefTypeAlignment(DestType); 1621 1622 // Emit a store to the stack slot. Use a truncstore if the input value is 1623 // later than DestVT. 1624 SDValue Store; 1625 1626 if (SrcSize > SlotSize) 1627 Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, 1628 PtrInfo, SlotVT, false, false, SrcAlign); 1629 else { 1630 assert(SrcSize == SlotSize && "Invalid store"); 1631 Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, 1632 PtrInfo, false, false, SrcAlign); 1633 } 1634 1635 // Result is a load from the stack slot. 1636 if (SlotSize == DestSize) 1637 return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, 1638 false, false, false, DestAlign); 1639 1640 assert(SlotSize < DestSize && "Unknown extension!"); 1641 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, 1642 PtrInfo, SlotVT, false, false, DestAlign); 1643} 1644 1645SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { 1646 DebugLoc dl = Node->getDebugLoc(); 1647 // Create a vector sized/aligned stack slot, store the value to element #0, 1648 // then load the whole vector back out. 1649 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); 1650 1651 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); 1652 int SPFI = StackPtrFI->getIndex(); 1653 1654 SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0), 1655 StackPtr, 1656 MachinePointerInfo::getFixedStack(SPFI), 1657 Node->getValueType(0).getVectorElementType(), 1658 false, false, 0); 1659 return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr, 1660 MachinePointerInfo::getFixedStack(SPFI), 1661 false, false, false, 0); 1662} 1663 1664 1665/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't 1666/// support the operation, but do support the resultant vector type. 1667SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { 1668 unsigned NumElems = Node->getNumOperands(); 1669 SDValue Value1, Value2; 1670 DebugLoc dl = Node->getDebugLoc(); 1671 EVT VT = Node->getValueType(0); 1672 EVT OpVT = Node->getOperand(0).getValueType(); 1673 EVT EltVT = VT.getVectorElementType(); 1674 1675 // If the only non-undef value is the low element, turn this into a 1676 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. 1677 bool isOnlyLowElement = true; 1678 bool MoreThanTwoValues = false; 1679 bool isConstant = true; 1680 for (unsigned i = 0; i < NumElems; ++i) { 1681 SDValue V = Node->getOperand(i); 1682 if (V.getOpcode() == ISD::UNDEF) 1683 continue; 1684 if (i > 0) 1685 isOnlyLowElement = false; 1686 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) 1687 isConstant = false; 1688 1689 if (!Value1.getNode()) { 1690 Value1 = V; 1691 } else if (!Value2.getNode()) { 1692 if (V != Value1) 1693 Value2 = V; 1694 } else if (V != Value1 && V != Value2) { 1695 MoreThanTwoValues = true; 1696 } 1697 } 1698 1699 if (!Value1.getNode()) 1700 return DAG.getUNDEF(VT); 1701 1702 if (isOnlyLowElement) 1703 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0)); 1704 1705 // If all elements are constants, create a load from the constant pool. 1706 if (isConstant) { 1707 SmallVector<Constant*, 16> CV; 1708 for (unsigned i = 0, e = NumElems; i != e; ++i) { 1709 if (ConstantFPSDNode *V = 1710 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { 1711 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue())); 1712 } else if (ConstantSDNode *V = 1713 dyn_cast<ConstantSDNode>(Node->getOperand(i))) { 1714 if (OpVT==EltVT) 1715 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue())); 1716 else { 1717 // If OpVT and EltVT don't match, EltVT is not legal and the 1718 // element values have been promoted/truncated earlier. Undo this; 1719 // we don't want a v16i8 to become a v16i32 for example. 1720 const ConstantInt *CI = V->getConstantIntValue(); 1721 CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()), 1722 CI->getZExtValue())); 1723 } 1724 } else { 1725 assert(Node->getOperand(i).getOpcode() == ISD::UNDEF); 1726 Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext()); 1727 CV.push_back(UndefValue::get(OpNTy)); 1728 } 1729 } 1730 Constant *CP = ConstantVector::get(CV); 1731 SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy()); 1732 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 1733 return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx, 1734 MachinePointerInfo::getConstantPool(), 1735 false, false, false, Alignment); 1736 } 1737 1738 if (!MoreThanTwoValues) { 1739 SmallVector<int, 8> ShuffleVec(NumElems, -1); 1740 for (unsigned i = 0; i < NumElems; ++i) { 1741 SDValue V = Node->getOperand(i); 1742 if (V.getOpcode() == ISD::UNDEF) 1743 continue; 1744 ShuffleVec[i] = V == Value1 ? 0 : NumElems; 1745 } 1746 if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) { 1747 // Get the splatted value into the low element of a vector register. 1748 SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1); 1749 SDValue Vec2; 1750 if (Value2.getNode()) 1751 Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2); 1752 else 1753 Vec2 = DAG.getUNDEF(VT); 1754 1755 // Return shuffle(LowValVec, undef, <0,0,0,0>) 1756 return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data()); 1757 } 1758 } 1759 1760 // Otherwise, we can't handle this case efficiently. 1761 return ExpandVectorBuildThroughStack(Node); 1762} 1763 1764// ExpandLibCall - Expand a node into a call to a libcall. If the result value 1765// does not fit into a register, return the lo part and set the hi part to the 1766// by-reg argument. If it does fit into a single register, return the result 1767// and leave the Hi part unset. 1768SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, 1769 bool isSigned) { 1770 // The input chain to this libcall is the entry node of the function. 1771 // Legalizing the call will automatically add the previous call to the 1772 // dependence. 1773 SDValue InChain = DAG.getEntryNode(); 1774 1775 TargetLowering::ArgListTy Args; 1776 TargetLowering::ArgListEntry Entry; 1777 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 1778 EVT ArgVT = Node->getOperand(i).getValueType(); 1779 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 1780 Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy; 1781 Entry.isSExt = isSigned; 1782 Entry.isZExt = !isSigned; 1783 Args.push_back(Entry); 1784 } 1785 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 1786 TLI.getPointerTy()); 1787 1788 Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext()); 1789 1790 // isTailCall may be true since the callee does not reference caller stack 1791 // frame. Check if it's in the right position. 1792 bool isTailCall = isInTailCallPosition(DAG, Node, TLI); 1793 std::pair<SDValue, SDValue> CallInfo = 1794 TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false, 1795 0, TLI.getLibcallCallingConv(LC), isTailCall, 1796 /*doesNotReturn=*/false, /*isReturnValueUsed=*/true, 1797 Callee, Args, DAG, Node->getDebugLoc()); 1798 1799 if (!CallInfo.second.getNode()) 1800 // It's a tailcall, return the chain (which is the DAG root). 1801 return DAG.getRoot(); 1802 1803 return CallInfo.first; 1804} 1805 1806/// ExpandLibCall - Generate a libcall taking the given operands as arguments 1807/// and returning a result of type RetVT. 1808SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, 1809 const SDValue *Ops, unsigned NumOps, 1810 bool isSigned, DebugLoc dl) { 1811 TargetLowering::ArgListTy Args; 1812 Args.reserve(NumOps); 1813 1814 TargetLowering::ArgListEntry Entry; 1815 for (unsigned i = 0; i != NumOps; ++i) { 1816 Entry.Node = Ops[i]; 1817 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 1818 Entry.isSExt = isSigned; 1819 Entry.isZExt = !isSigned; 1820 Args.push_back(Entry); 1821 } 1822 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 1823 TLI.getPointerTy()); 1824 1825 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 1826 std::pair<SDValue,SDValue> CallInfo = 1827 TLI.LowerCallTo(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false, 1828 false, 0, TLI.getLibcallCallingConv(LC), false, 1829 /*doesNotReturn=*/false, /*isReturnValueUsed=*/true, 1830 Callee, Args, DAG, dl); 1831 1832 return CallInfo.first; 1833} 1834 1835// ExpandChainLibCall - Expand a node into a call to a libcall. Similar to 1836// ExpandLibCall except that the first operand is the in-chain. 1837std::pair<SDValue, SDValue> 1838SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC, 1839 SDNode *Node, 1840 bool isSigned) { 1841 SDValue InChain = Node->getOperand(0); 1842 1843 TargetLowering::ArgListTy Args; 1844 TargetLowering::ArgListEntry Entry; 1845 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) { 1846 EVT ArgVT = Node->getOperand(i).getValueType(); 1847 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 1848 Entry.Node = Node->getOperand(i); 1849 Entry.Ty = ArgTy; 1850 Entry.isSExt = isSigned; 1851 Entry.isZExt = !isSigned; 1852 Args.push_back(Entry); 1853 } 1854 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 1855 TLI.getPointerTy()); 1856 1857 Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext()); 1858 std::pair<SDValue, SDValue> CallInfo = 1859 TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false, 1860 0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false, 1861 /*doesNotReturn=*/false, /*isReturnValueUsed=*/true, 1862 Callee, Args, DAG, Node->getDebugLoc()); 1863 1864 return CallInfo; 1865} 1866 1867SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, 1868 RTLIB::Libcall Call_F32, 1869 RTLIB::Libcall Call_F64, 1870 RTLIB::Libcall Call_F80, 1871 RTLIB::Libcall Call_PPCF128) { 1872 RTLIB::Libcall LC; 1873 switch (Node->getValueType(0).getSimpleVT().SimpleTy) { 1874 default: llvm_unreachable("Unexpected request for libcall!"); 1875 case MVT::f32: LC = Call_F32; break; 1876 case MVT::f64: LC = Call_F64; break; 1877 case MVT::f80: LC = Call_F80; break; 1878 case MVT::ppcf128: LC = Call_PPCF128; break; 1879 } 1880 return ExpandLibCall(LC, Node, false); 1881} 1882 1883SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned, 1884 RTLIB::Libcall Call_I8, 1885 RTLIB::Libcall Call_I16, 1886 RTLIB::Libcall Call_I32, 1887 RTLIB::Libcall Call_I64, 1888 RTLIB::Libcall Call_I128) { 1889 RTLIB::Libcall LC; 1890 switch (Node->getValueType(0).getSimpleVT().SimpleTy) { 1891 default: llvm_unreachable("Unexpected request for libcall!"); 1892 case MVT::i8: LC = Call_I8; break; 1893 case MVT::i16: LC = Call_I16; break; 1894 case MVT::i32: LC = Call_I32; break; 1895 case MVT::i64: LC = Call_I64; break; 1896 case MVT::i128: LC = Call_I128; break; 1897 } 1898 return ExpandLibCall(LC, Node, isSigned); 1899} 1900 1901/// isDivRemLibcallAvailable - Return true if divmod libcall is available. 1902static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned, 1903 const TargetLowering &TLI) { 1904 RTLIB::Libcall LC; 1905 switch (Node->getValueType(0).getSimpleVT().SimpleTy) { 1906 default: llvm_unreachable("Unexpected request for libcall!"); 1907 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 1908 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 1909 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 1910 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 1911 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 1912 } 1913 1914 return TLI.getLibcallName(LC) != 0; 1915} 1916 1917/// UseDivRem - Only issue divrem libcall if both quotient and remainder are 1918/// needed. 1919static bool UseDivRem(SDNode *Node, bool isSigned, bool isDIV) { 1920 unsigned OtherOpcode = 0; 1921 if (isSigned) 1922 OtherOpcode = isDIV ? ISD::SREM : ISD::SDIV; 1923 else 1924 OtherOpcode = isDIV ? ISD::UREM : ISD::UDIV; 1925 1926 SDValue Op0 = Node->getOperand(0); 1927 SDValue Op1 = Node->getOperand(1); 1928 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), 1929 UE = Op0.getNode()->use_end(); UI != UE; ++UI) { 1930 SDNode *User = *UI; 1931 if (User == Node) 1932 continue; 1933 if (User->getOpcode() == OtherOpcode && 1934 User->getOperand(0) == Op0 && 1935 User->getOperand(1) == Op1) 1936 return true; 1937 } 1938 return false; 1939} 1940 1941/// ExpandDivRemLibCall - Issue libcalls to __{u}divmod to compute div / rem 1942/// pairs. 1943void 1944SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node, 1945 SmallVectorImpl<SDValue> &Results) { 1946 unsigned Opcode = Node->getOpcode(); 1947 bool isSigned = Opcode == ISD::SDIVREM; 1948 1949 RTLIB::Libcall LC; 1950 switch (Node->getValueType(0).getSimpleVT().SimpleTy) { 1951 default: llvm_unreachable("Unexpected request for libcall!"); 1952 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 1953 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 1954 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 1955 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 1956 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 1957 } 1958 1959 // The input chain to this libcall is the entry node of the function. 1960 // Legalizing the call will automatically add the previous call to the 1961 // dependence. 1962 SDValue InChain = DAG.getEntryNode(); 1963 1964 EVT RetVT = Node->getValueType(0); 1965 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 1966 1967 TargetLowering::ArgListTy Args; 1968 TargetLowering::ArgListEntry Entry; 1969 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 1970 EVT ArgVT = Node->getOperand(i).getValueType(); 1971 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 1972 Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy; 1973 Entry.isSExt = isSigned; 1974 Entry.isZExt = !isSigned; 1975 Args.push_back(Entry); 1976 } 1977 1978 // Also pass the return address of the remainder. 1979 SDValue FIPtr = DAG.CreateStackTemporary(RetVT); 1980 Entry.Node = FIPtr; 1981 Entry.Ty = RetTy->getPointerTo(); 1982 Entry.isSExt = isSigned; 1983 Entry.isZExt = !isSigned; 1984 Args.push_back(Entry); 1985 1986 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 1987 TLI.getPointerTy()); 1988 1989 DebugLoc dl = Node->getDebugLoc(); 1990 std::pair<SDValue, SDValue> CallInfo = 1991 TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false, 1992 0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false, 1993 /*doesNotReturn=*/false, /*isReturnValueUsed=*/true, 1994 Callee, Args, DAG, dl); 1995 1996 // Remainder is loaded back from the stack frame. 1997 SDValue Rem = DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, 1998 MachinePointerInfo(), false, false, false, 0); 1999 Results.push_back(CallInfo.first); 2000 Results.push_back(Rem); 2001} 2002 2003/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a 2004/// INT_TO_FP operation of the specified operand when the target requests that 2005/// we expand it. At this point, we know that the result and operand types are 2006/// legal for the target. 2007SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned, 2008 SDValue Op0, 2009 EVT DestVT, 2010 DebugLoc dl) { 2011 if (Op0.getValueType() == MVT::i32) { 2012 // simple 32-bit [signed|unsigned] integer to float/double expansion 2013 2014 // Get the stack frame index of a 8 byte buffer. 2015 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); 2016 2017 // word offset constant for Hi/Lo address computation 2018 SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy()); 2019 // set up Hi and Lo (into buffer) address based on endian 2020 SDValue Hi = StackSlot; 2021 SDValue Lo = DAG.getNode(ISD::ADD, dl, 2022 TLI.getPointerTy(), StackSlot, WordOff); 2023 if (TLI.isLittleEndian()) 2024 std::swap(Hi, Lo); 2025 2026 // if signed map to unsigned space 2027 SDValue Op0Mapped; 2028 if (isSigned) { 2029 // constant used to invert sign bit (signed to unsigned mapping) 2030 SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32); 2031 Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit); 2032 } else { 2033 Op0Mapped = Op0; 2034 } 2035 // store the lo of the constructed double - based on integer input 2036 SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, 2037 Op0Mapped, Lo, MachinePointerInfo(), 2038 false, false, 0); 2039 // initial hi portion of constructed double 2040 SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32); 2041 // store the hi of the constructed double - biased exponent 2042 SDValue Store2 = DAG.getStore(Store1, dl, InitialHi, Hi, 2043 MachinePointerInfo(), 2044 false, false, 0); 2045 // load the constructed double 2046 SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot, 2047 MachinePointerInfo(), false, false, false, 0); 2048 // FP constant to bias correct the final result 2049 SDValue Bias = DAG.getConstantFP(isSigned ? 2050 BitsToDouble(0x4330000080000000ULL) : 2051 BitsToDouble(0x4330000000000000ULL), 2052 MVT::f64); 2053 // subtract the bias 2054 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias); 2055 // final result 2056 SDValue Result; 2057 // handle final rounding 2058 if (DestVT == MVT::f64) { 2059 // do nothing 2060 Result = Sub; 2061 } else if (DestVT.bitsLT(MVT::f64)) { 2062 Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub, 2063 DAG.getIntPtrConstant(0)); 2064 } else if (DestVT.bitsGT(MVT::f64)) { 2065 Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub); 2066 } 2067 return Result; 2068 } 2069 assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet"); 2070 // Code below here assumes !isSigned without checking again. 2071 2072 // Implementation of unsigned i64 to f64 following the algorithm in 2073 // __floatundidf in compiler_rt. This implementation has the advantage 2074 // of performing rounding correctly, both in the default rounding mode 2075 // and in all alternate rounding modes. 2076 // TODO: Generalize this for use with other types. 2077 if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) { 2078 SDValue TwoP52 = 2079 DAG.getConstant(UINT64_C(0x4330000000000000), MVT::i64); 2080 SDValue TwoP84PlusTwoP52 = 2081 DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), MVT::f64); 2082 SDValue TwoP84 = 2083 DAG.getConstant(UINT64_C(0x4530000000000000), MVT::i64); 2084 2085 SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32); 2086 SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, 2087 DAG.getConstant(32, MVT::i64)); 2088 SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52); 2089 SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84); 2090 SDValue LoFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, LoOr); 2091 SDValue HiFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, HiOr); 2092 SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt, 2093 TwoP84PlusTwoP52); 2094 return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub); 2095 } 2096 2097 // Implementation of unsigned i64 to f32. 2098 // TODO: Generalize this for use with other types. 2099 if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) { 2100 // For unsigned conversions, convert them to signed conversions using the 2101 // algorithm from the x86_64 __floatundidf in compiler_rt. 2102 if (!isSigned) { 2103 SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Op0); 2104 2105 SDValue ShiftConst = 2106 DAG.getConstant(1, TLI.getShiftAmountTy(Op0.getValueType())); 2107 SDValue Shr = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, ShiftConst); 2108 SDValue AndConst = DAG.getConstant(1, MVT::i64); 2109 SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, AndConst); 2110 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, Shr); 2111 2112 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Or); 2113 SDValue Slow = DAG.getNode(ISD::FADD, dl, MVT::f32, SignCvt, SignCvt); 2114 2115 // TODO: This really should be implemented using a branch rather than a 2116 // select. We happen to get lucky and machinesink does the right 2117 // thing most of the time. This would be a good candidate for a 2118 //pseudo-op, or, even better, for whole-function isel. 2119 SDValue SignBitTest = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64), 2120 Op0, DAG.getConstant(0, MVT::i64), ISD::SETLT); 2121 return DAG.getNode(ISD::SELECT, dl, MVT::f32, SignBitTest, Slow, Fast); 2122 } 2123 2124 // Otherwise, implement the fully general conversion. 2125 2126 SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, 2127 DAG.getConstant(UINT64_C(0xfffffffffffff800), MVT::i64)); 2128 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, 2129 DAG.getConstant(UINT64_C(0x800), MVT::i64)); 2130 SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, 2131 DAG.getConstant(UINT64_C(0x7ff), MVT::i64)); 2132 SDValue Ne = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64), 2133 And2, DAG.getConstant(UINT64_C(0), MVT::i64), ISD::SETNE); 2134 SDValue Sel = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ne, Or, Op0); 2135 SDValue Ge = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64), 2136 Op0, DAG.getConstant(UINT64_C(0x0020000000000000), MVT::i64), 2137 ISD::SETUGE); 2138 SDValue Sel2 = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ge, Sel, Op0); 2139 EVT SHVT = TLI.getShiftAmountTy(Sel2.getValueType()); 2140 2141 SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2, 2142 DAG.getConstant(32, SHVT)); 2143 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh); 2144 SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc); 2145 SDValue TwoP32 = 2146 DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), MVT::f64); 2147 SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt); 2148 SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2); 2149 SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo); 2150 SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2); 2151 return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd, 2152 DAG.getIntPtrConstant(0)); 2153 } 2154 2155 SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2156 2157 SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()), 2158 Op0, DAG.getConstant(0, Op0.getValueType()), 2159 ISD::SETLT); 2160 SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4); 2161 SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), 2162 SignSet, Four, Zero); 2163 2164 // If the sign bit of the integer is set, the large number will be treated 2165 // as a negative number. To counteract this, the dynamic code adds an 2166 // offset depending on the data type. 2167 uint64_t FF; 2168 switch (Op0.getValueType().getSimpleVT().SimpleTy) { 2169 default: llvm_unreachable("Unsupported integer type!"); 2170 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) 2171 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) 2172 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) 2173 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) 2174 } 2175 if (TLI.isLittleEndian()) FF <<= 32; 2176 Constant *FudgeFactor = ConstantInt::get( 2177 Type::getInt64Ty(*DAG.getContext()), FF); 2178 2179 SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy()); 2180 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 2181 CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset); 2182 Alignment = std::min(Alignment, 4u); 2183 SDValue FudgeInReg; 2184 if (DestVT == MVT::f32) 2185 FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx, 2186 MachinePointerInfo::getConstantPool(), 2187 false, false, false, Alignment); 2188 else { 2189 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, 2190 DAG.getEntryNode(), CPIdx, 2191 MachinePointerInfo::getConstantPool(), 2192 MVT::f32, false, false, Alignment); 2193 HandleSDNode Handle(Load); 2194 LegalizeOp(Load.getNode()); 2195 FudgeInReg = Handle.getValue(); 2196 } 2197 2198 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg); 2199} 2200 2201/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a 2202/// *INT_TO_FP operation of the specified operand when the target requests that 2203/// we promote it. At this point, we know that the result and operand types are 2204/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP 2205/// operation that takes a larger input. 2206SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp, 2207 EVT DestVT, 2208 bool isSigned, 2209 DebugLoc dl) { 2210 // First step, figure out the appropriate *INT_TO_FP operation to use. 2211 EVT NewInTy = LegalOp.getValueType(); 2212 2213 unsigned OpToUse = 0; 2214 2215 // Scan for the appropriate larger type to use. 2216 while (1) { 2217 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1); 2218 assert(NewInTy.isInteger() && "Ran out of possibilities!"); 2219 2220 // If the target supports SINT_TO_FP of this type, use it. 2221 if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) { 2222 OpToUse = ISD::SINT_TO_FP; 2223 break; 2224 } 2225 if (isSigned) continue; 2226 2227 // If the target supports UINT_TO_FP of this type, use it. 2228 if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) { 2229 OpToUse = ISD::UINT_TO_FP; 2230 break; 2231 } 2232 2233 // Otherwise, try a larger type. 2234 } 2235 2236 // Okay, we found the operation and type to use. Zero extend our input to the 2237 // desired type then run the operation on it. 2238 return DAG.getNode(OpToUse, dl, DestVT, 2239 DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2240 dl, NewInTy, LegalOp)); 2241} 2242 2243/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a 2244/// FP_TO_*INT operation of the specified operand when the target requests that 2245/// we promote it. At this point, we know that the result and operand types are 2246/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT 2247/// operation that returns a larger result. 2248SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp, 2249 EVT DestVT, 2250 bool isSigned, 2251 DebugLoc dl) { 2252 // First step, figure out the appropriate FP_TO*INT operation to use. 2253 EVT NewOutTy = DestVT; 2254 2255 unsigned OpToUse = 0; 2256 2257 // Scan for the appropriate larger type to use. 2258 while (1) { 2259 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1); 2260 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 2261 2262 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) { 2263 OpToUse = ISD::FP_TO_SINT; 2264 break; 2265 } 2266 2267 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) { 2268 OpToUse = ISD::FP_TO_UINT; 2269 break; 2270 } 2271 2272 // Otherwise, try a larger type. 2273 } 2274 2275 2276 // Okay, we found the operation and type to use. 2277 SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp); 2278 2279 // Truncate the result of the extended FP_TO_*INT operation to the desired 2280 // size. 2281 return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation); 2282} 2283 2284/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation. 2285/// 2286SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) { 2287 EVT VT = Op.getValueType(); 2288 EVT SHVT = TLI.getShiftAmountTy(VT); 2289 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 2290 switch (VT.getSimpleVT().SimpleTy) { 2291 default: llvm_unreachable("Unhandled Expand type in BSWAP!"); 2292 case MVT::i16: 2293 Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2294 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2295 return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); 2296 case MVT::i32: 2297 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT)); 2298 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2299 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2300 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT)); 2301 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT)); 2302 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT)); 2303 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2304 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2305 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2306 case MVT::i64: 2307 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT)); 2308 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT)); 2309 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT)); 2310 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2311 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2312 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT)); 2313 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT)); 2314 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT)); 2315 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT)); 2316 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT)); 2317 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT)); 2318 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT)); 2319 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT)); 2320 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT)); 2321 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 2322 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 2323 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2324 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2325 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 2326 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2327 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 2328 } 2329} 2330 2331/// SplatByte - Distribute ByteVal over NumBits bits. 2332// FIXME: Move this helper to a common place. 2333static APInt SplatByte(unsigned NumBits, uint8_t ByteVal) { 2334 APInt Val = APInt(NumBits, ByteVal); 2335 unsigned Shift = 8; 2336 for (unsigned i = NumBits; i > 8; i >>= 1) { 2337 Val = (Val << Shift) | Val; 2338 Shift <<= 1; 2339 } 2340 return Val; 2341} 2342 2343/// ExpandBitCount - Expand the specified bitcount instruction into operations. 2344/// 2345SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op, 2346 DebugLoc dl) { 2347 switch (Opc) { 2348 default: llvm_unreachable("Cannot expand this yet!"); 2349 case ISD::CTPOP: { 2350 EVT VT = Op.getValueType(); 2351 EVT ShVT = TLI.getShiftAmountTy(VT); 2352 unsigned Len = VT.getSizeInBits(); 2353 2354 assert(VT.isInteger() && Len <= 128 && Len % 8 == 0 && 2355 "CTPOP not implemented for this type."); 2356 2357 // This is the "best" algorithm from 2358 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 2359 2360 SDValue Mask55 = DAG.getConstant(SplatByte(Len, 0x55), VT); 2361 SDValue Mask33 = DAG.getConstant(SplatByte(Len, 0x33), VT); 2362 SDValue Mask0F = DAG.getConstant(SplatByte(Len, 0x0F), VT); 2363 SDValue Mask01 = DAG.getConstant(SplatByte(Len, 0x01), VT); 2364 2365 // v = v - ((v >> 1) & 0x55555555...) 2366 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 2367 DAG.getNode(ISD::AND, dl, VT, 2368 DAG.getNode(ISD::SRL, dl, VT, Op, 2369 DAG.getConstant(1, ShVT)), 2370 Mask55)); 2371 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 2372 Op = DAG.getNode(ISD::ADD, dl, VT, 2373 DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 2374 DAG.getNode(ISD::AND, dl, VT, 2375 DAG.getNode(ISD::SRL, dl, VT, Op, 2376 DAG.getConstant(2, ShVT)), 2377 Mask33)); 2378 // v = (v + (v >> 4)) & 0x0F0F0F0F... 2379 Op = DAG.getNode(ISD::AND, dl, VT, 2380 DAG.getNode(ISD::ADD, dl, VT, Op, 2381 DAG.getNode(ISD::SRL, dl, VT, Op, 2382 DAG.getConstant(4, ShVT))), 2383 Mask0F); 2384 // v = (v * 0x01010101...) >> (Len - 8) 2385 Op = DAG.getNode(ISD::SRL, dl, VT, 2386 DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 2387 DAG.getConstant(Len - 8, ShVT)); 2388 2389 return Op; 2390 } 2391 case ISD::CTLZ_ZERO_UNDEF: 2392 // This trivially expands to CTLZ. 2393 return DAG.getNode(ISD::CTLZ, dl, Op.getValueType(), Op); 2394 case ISD::CTLZ: { 2395 // for now, we do this: 2396 // x = x | (x >> 1); 2397 // x = x | (x >> 2); 2398 // ... 2399 // x = x | (x >>16); 2400 // x = x | (x >>32); // for 64-bit input 2401 // return popcount(~x); 2402 // 2403 // but see also: http://www.hackersdelight.org/HDcode/nlz.cc 2404 EVT VT = Op.getValueType(); 2405 EVT ShVT = TLI.getShiftAmountTy(VT); 2406 unsigned len = VT.getSizeInBits(); 2407 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) { 2408 SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT); 2409 Op = DAG.getNode(ISD::OR, dl, VT, Op, 2410 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3)); 2411 } 2412 Op = DAG.getNOT(dl, Op, VT); 2413 return DAG.getNode(ISD::CTPOP, dl, VT, Op); 2414 } 2415 case ISD::CTTZ_ZERO_UNDEF: 2416 // This trivially expands to CTTZ. 2417 return DAG.getNode(ISD::CTTZ, dl, Op.getValueType(), Op); 2418 case ISD::CTTZ: { 2419 // for now, we use: { return popcount(~x & (x - 1)); } 2420 // unless the target has ctlz but not ctpop, in which case we use: 2421 // { return 32 - nlz(~x & (x-1)); } 2422 // see also http://www.hackersdelight.org/HDcode/ntz.cc 2423 EVT VT = Op.getValueType(); 2424 SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT, 2425 DAG.getNOT(dl, Op, VT), 2426 DAG.getNode(ISD::SUB, dl, VT, Op, 2427 DAG.getConstant(1, VT))); 2428 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 2429 if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) && 2430 TLI.isOperationLegalOrCustom(ISD::CTLZ, VT)) 2431 return DAG.getNode(ISD::SUB, dl, VT, 2432 DAG.getConstant(VT.getSizeInBits(), VT), 2433 DAG.getNode(ISD::CTLZ, dl, VT, Tmp3)); 2434 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3); 2435 } 2436 } 2437} 2438 2439std::pair <SDValue, SDValue> SelectionDAGLegalize::ExpandAtomic(SDNode *Node) { 2440 unsigned Opc = Node->getOpcode(); 2441 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT(); 2442 RTLIB::Libcall LC; 2443 2444 switch (Opc) { 2445 default: 2446 llvm_unreachable("Unhandled atomic intrinsic Expand!"); 2447 case ISD::ATOMIC_SWAP: 2448 switch (VT.SimpleTy) { 2449 default: llvm_unreachable("Unexpected value type for atomic!"); 2450 case MVT::i8: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_1; break; 2451 case MVT::i16: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_2; break; 2452 case MVT::i32: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_4; break; 2453 case MVT::i64: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_8; break; 2454 } 2455 break; 2456 case ISD::ATOMIC_CMP_SWAP: 2457 switch (VT.SimpleTy) { 2458 default: llvm_unreachable("Unexpected value type for atomic!"); 2459 case MVT::i8: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1; break; 2460 case MVT::i16: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2; break; 2461 case MVT::i32: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4; break; 2462 case MVT::i64: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8; break; 2463 } 2464 break; 2465 case ISD::ATOMIC_LOAD_ADD: 2466 switch (VT.SimpleTy) { 2467 default: llvm_unreachable("Unexpected value type for atomic!"); 2468 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_ADD_1; break; 2469 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_ADD_2; break; 2470 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_ADD_4; break; 2471 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_ADD_8; break; 2472 } 2473 break; 2474 case ISD::ATOMIC_LOAD_SUB: 2475 switch (VT.SimpleTy) { 2476 default: llvm_unreachable("Unexpected value type for atomic!"); 2477 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_SUB_1; break; 2478 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_SUB_2; break; 2479 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_SUB_4; break; 2480 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_SUB_8; break; 2481 } 2482 break; 2483 case ISD::ATOMIC_LOAD_AND: 2484 switch (VT.SimpleTy) { 2485 default: llvm_unreachable("Unexpected value type for atomic!"); 2486 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_AND_1; break; 2487 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_AND_2; break; 2488 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_AND_4; break; 2489 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_AND_8; break; 2490 } 2491 break; 2492 case ISD::ATOMIC_LOAD_OR: 2493 switch (VT.SimpleTy) { 2494 default: llvm_unreachable("Unexpected value type for atomic!"); 2495 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_OR_1; break; 2496 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_OR_2; break; 2497 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_OR_4; break; 2498 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_OR_8; break; 2499 } 2500 break; 2501 case ISD::ATOMIC_LOAD_XOR: 2502 switch (VT.SimpleTy) { 2503 default: llvm_unreachable("Unexpected value type for atomic!"); 2504 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_XOR_1; break; 2505 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_XOR_2; break; 2506 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_XOR_4; break; 2507 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_XOR_8; break; 2508 } 2509 break; 2510 case ISD::ATOMIC_LOAD_NAND: 2511 switch (VT.SimpleTy) { 2512 default: llvm_unreachable("Unexpected value type for atomic!"); 2513 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_NAND_1; break; 2514 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_NAND_2; break; 2515 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_NAND_4; break; 2516 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_NAND_8; break; 2517 } 2518 break; 2519 } 2520 2521 return ExpandChainLibCall(LC, Node, false); 2522} 2523 2524void SelectionDAGLegalize::ExpandNode(SDNode *Node) { 2525 SmallVector<SDValue, 8> Results; 2526 DebugLoc dl = Node->getDebugLoc(); 2527 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 2528 switch (Node->getOpcode()) { 2529 case ISD::CTPOP: 2530 case ISD::CTLZ: 2531 case ISD::CTLZ_ZERO_UNDEF: 2532 case ISD::CTTZ: 2533 case ISD::CTTZ_ZERO_UNDEF: 2534 Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl); 2535 Results.push_back(Tmp1); 2536 break; 2537 case ISD::BSWAP: 2538 Results.push_back(ExpandBSWAP(Node->getOperand(0), dl)); 2539 break; 2540 case ISD::FRAMEADDR: 2541 case ISD::RETURNADDR: 2542 case ISD::FRAME_TO_ARGS_OFFSET: 2543 Results.push_back(DAG.getConstant(0, Node->getValueType(0))); 2544 break; 2545 case ISD::FLT_ROUNDS_: 2546 Results.push_back(DAG.getConstant(1, Node->getValueType(0))); 2547 break; 2548 case ISD::EH_RETURN: 2549 case ISD::EH_LABEL: 2550 case ISD::PREFETCH: 2551 case ISD::VAEND: 2552 case ISD::EH_SJLJ_LONGJMP: 2553 // If the target didn't expand these, there's nothing to do, so just 2554 // preserve the chain and be done. 2555 Results.push_back(Node->getOperand(0)); 2556 break; 2557 case ISD::EH_SJLJ_SETJMP: 2558 // If the target didn't expand this, just return 'zero' and preserve the 2559 // chain. 2560 Results.push_back(DAG.getConstant(0, MVT::i32)); 2561 Results.push_back(Node->getOperand(0)); 2562 break; 2563 case ISD::ATOMIC_FENCE: 2564 case ISD::MEMBARRIER: { 2565 // If the target didn't lower this, lower it to '__sync_synchronize()' call 2566 // FIXME: handle "fence singlethread" more efficiently. 2567 TargetLowering::ArgListTy Args; 2568 std::pair<SDValue, SDValue> CallResult = 2569 TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()), 2570 false, false, false, false, 0, CallingConv::C, 2571 /*isTailCall=*/false, 2572 /*doesNotReturn=*/false, /*isReturnValueUsed=*/true, 2573 DAG.getExternalSymbol("__sync_synchronize", 2574 TLI.getPointerTy()), 2575 Args, DAG, dl); 2576 Results.push_back(CallResult.second); 2577 break; 2578 } 2579 case ISD::ATOMIC_LOAD: { 2580 // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP. 2581 SDValue Zero = DAG.getConstant(0, Node->getValueType(0)); 2582 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, 2583 cast<AtomicSDNode>(Node)->getMemoryVT(), 2584 Node->getOperand(0), 2585 Node->getOperand(1), Zero, Zero, 2586 cast<AtomicSDNode>(Node)->getMemOperand(), 2587 cast<AtomicSDNode>(Node)->getOrdering(), 2588 cast<AtomicSDNode>(Node)->getSynchScope()); 2589 Results.push_back(Swap.getValue(0)); 2590 Results.push_back(Swap.getValue(1)); 2591 break; 2592 } 2593 case ISD::ATOMIC_STORE: { 2594 // There is no libcall for atomic store; fake it with ATOMIC_SWAP. 2595 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl, 2596 cast<AtomicSDNode>(Node)->getMemoryVT(), 2597 Node->getOperand(0), 2598 Node->getOperand(1), Node->getOperand(2), 2599 cast<AtomicSDNode>(Node)->getMemOperand(), 2600 cast<AtomicSDNode>(Node)->getOrdering(), 2601 cast<AtomicSDNode>(Node)->getSynchScope()); 2602 Results.push_back(Swap.getValue(1)); 2603 break; 2604 } 2605 // By default, atomic intrinsics are marked Legal and lowered. Targets 2606 // which don't support them directly, however, may want libcalls, in which 2607 // case they mark them Expand, and we get here. 2608 case ISD::ATOMIC_SWAP: 2609 case ISD::ATOMIC_LOAD_ADD: 2610 case ISD::ATOMIC_LOAD_SUB: 2611 case ISD::ATOMIC_LOAD_AND: 2612 case ISD::ATOMIC_LOAD_OR: 2613 case ISD::ATOMIC_LOAD_XOR: 2614 case ISD::ATOMIC_LOAD_NAND: 2615 case ISD::ATOMIC_LOAD_MIN: 2616 case ISD::ATOMIC_LOAD_MAX: 2617 case ISD::ATOMIC_LOAD_UMIN: 2618 case ISD::ATOMIC_LOAD_UMAX: 2619 case ISD::ATOMIC_CMP_SWAP: { 2620 std::pair<SDValue, SDValue> Tmp = ExpandAtomic(Node); 2621 Results.push_back(Tmp.first); 2622 Results.push_back(Tmp.second); 2623 break; 2624 } 2625 case ISD::DYNAMIC_STACKALLOC: 2626 ExpandDYNAMIC_STACKALLOC(Node, Results); 2627 break; 2628 case ISD::MERGE_VALUES: 2629 for (unsigned i = 0; i < Node->getNumValues(); i++) 2630 Results.push_back(Node->getOperand(i)); 2631 break; 2632 case ISD::UNDEF: { 2633 EVT VT = Node->getValueType(0); 2634 if (VT.isInteger()) 2635 Results.push_back(DAG.getConstant(0, VT)); 2636 else { 2637 assert(VT.isFloatingPoint() && "Unknown value type!"); 2638 Results.push_back(DAG.getConstantFP(0, VT)); 2639 } 2640 break; 2641 } 2642 case ISD::TRAP: { 2643 // If this operation is not supported, lower it to 'abort()' call 2644 TargetLowering::ArgListTy Args; 2645 std::pair<SDValue, SDValue> CallResult = 2646 TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()), 2647 false, false, false, false, 0, CallingConv::C, 2648 /*isTailCall=*/false, 2649 /*doesNotReturn=*/false, /*isReturnValueUsed=*/true, 2650 DAG.getExternalSymbol("abort", TLI.getPointerTy()), 2651 Args, DAG, dl); 2652 Results.push_back(CallResult.second); 2653 break; 2654 } 2655 case ISD::FP_ROUND: 2656 case ISD::BITCAST: 2657 Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 2658 Node->getValueType(0), dl); 2659 Results.push_back(Tmp1); 2660 break; 2661 case ISD::FP_EXTEND: 2662 Tmp1 = EmitStackConvert(Node->getOperand(0), 2663 Node->getOperand(0).getValueType(), 2664 Node->getValueType(0), dl); 2665 Results.push_back(Tmp1); 2666 break; 2667 case ISD::SIGN_EXTEND_INREG: { 2668 // NOTE: we could fall back on load/store here too for targets without 2669 // SAR. However, it is doubtful that any exist. 2670 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 2671 EVT VT = Node->getValueType(0); 2672 EVT ShiftAmountTy = TLI.getShiftAmountTy(VT); 2673 if (VT.isVector()) 2674 ShiftAmountTy = VT; 2675 unsigned BitsDiff = VT.getScalarType().getSizeInBits() - 2676 ExtraVT.getScalarType().getSizeInBits(); 2677 SDValue ShiftCst = DAG.getConstant(BitsDiff, ShiftAmountTy); 2678 Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0), 2679 Node->getOperand(0), ShiftCst); 2680 Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst); 2681 Results.push_back(Tmp1); 2682 break; 2683 } 2684 case ISD::FP_ROUND_INREG: { 2685 // The only way we can lower this is to turn it into a TRUNCSTORE, 2686 // EXTLOAD pair, targeting a temporary location (a stack slot). 2687 2688 // NOTE: there is a choice here between constantly creating new stack 2689 // slots and always reusing the same one. We currently always create 2690 // new ones, as reuse may inhibit scheduling. 2691 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 2692 Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT, 2693 Node->getValueType(0), dl); 2694 Results.push_back(Tmp1); 2695 break; 2696 } 2697 case ISD::SINT_TO_FP: 2698 case ISD::UINT_TO_FP: 2699 Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP, 2700 Node->getOperand(0), Node->getValueType(0), dl); 2701 Results.push_back(Tmp1); 2702 break; 2703 case ISD::FP_TO_UINT: { 2704 SDValue True, False; 2705 EVT VT = Node->getOperand(0).getValueType(); 2706 EVT NVT = Node->getValueType(0); 2707 APFloat apf(APInt::getNullValue(VT.getSizeInBits())); 2708 APInt x = APInt::getSignBit(NVT.getSizeInBits()); 2709 (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven); 2710 Tmp1 = DAG.getConstantFP(apf, VT); 2711 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), 2712 Node->getOperand(0), 2713 Tmp1, ISD::SETLT); 2714 True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0)); 2715 False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, 2716 DAG.getNode(ISD::FSUB, dl, VT, 2717 Node->getOperand(0), Tmp1)); 2718 False = DAG.getNode(ISD::XOR, dl, NVT, False, 2719 DAG.getConstant(x, NVT)); 2720 Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False); 2721 Results.push_back(Tmp1); 2722 break; 2723 } 2724 case ISD::VAARG: { 2725 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2726 EVT VT = Node->getValueType(0); 2727 Tmp1 = Node->getOperand(0); 2728 Tmp2 = Node->getOperand(1); 2729 unsigned Align = Node->getConstantOperandVal(3); 2730 2731 SDValue VAListLoad = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2, 2732 MachinePointerInfo(V), 2733 false, false, false, 0); 2734 SDValue VAList = VAListLoad; 2735 2736 if (Align > TLI.getMinStackArgumentAlignment()) { 2737 assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2"); 2738 2739 VAList = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList, 2740 DAG.getConstant(Align - 1, 2741 TLI.getPointerTy())); 2742 2743 VAList = DAG.getNode(ISD::AND, dl, TLI.getPointerTy(), VAList, 2744 DAG.getConstant(-(int64_t)Align, 2745 TLI.getPointerTy())); 2746 } 2747 2748 // Increment the pointer, VAList, to the next vaarg 2749 Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList, 2750 DAG.getConstant(TLI.getTargetData()-> 2751 getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())), 2752 TLI.getPointerTy())); 2753 // Store the incremented VAList to the legalized pointer 2754 Tmp3 = DAG.getStore(VAListLoad.getValue(1), dl, Tmp3, Tmp2, 2755 MachinePointerInfo(V), false, false, 0); 2756 // Load the actual argument out of the pointer VAList 2757 Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, MachinePointerInfo(), 2758 false, false, false, 0)); 2759 Results.push_back(Results[0].getValue(1)); 2760 break; 2761 } 2762 case ISD::VACOPY: { 2763 // This defaults to loading a pointer from the input and storing it to the 2764 // output, returning the chain. 2765 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 2766 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 2767 Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0), 2768 Node->getOperand(2), MachinePointerInfo(VS), 2769 false, false, false, 0); 2770 Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 2771 MachinePointerInfo(VD), false, false, 0); 2772 Results.push_back(Tmp1); 2773 break; 2774 } 2775 case ISD::EXTRACT_VECTOR_ELT: 2776 if (Node->getOperand(0).getValueType().getVectorNumElements() == 1) 2777 // This must be an access of the only element. Return it. 2778 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), 2779 Node->getOperand(0)); 2780 else 2781 Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0)); 2782 Results.push_back(Tmp1); 2783 break; 2784 case ISD::EXTRACT_SUBVECTOR: 2785 Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0))); 2786 break; 2787 case ISD::INSERT_SUBVECTOR: 2788 Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0))); 2789 break; 2790 case ISD::CONCAT_VECTORS: { 2791 Results.push_back(ExpandVectorBuildThroughStack(Node)); 2792 break; 2793 } 2794 case ISD::SCALAR_TO_VECTOR: 2795 Results.push_back(ExpandSCALAR_TO_VECTOR(Node)); 2796 break; 2797 case ISD::INSERT_VECTOR_ELT: 2798 Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0), 2799 Node->getOperand(1), 2800 Node->getOperand(2), dl)); 2801 break; 2802 case ISD::VECTOR_SHUFFLE: { 2803 SmallVector<int, 32> NewMask; 2804 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 2805 2806 EVT VT = Node->getValueType(0); 2807 EVT EltVT = VT.getVectorElementType(); 2808 SDValue Op0 = Node->getOperand(0); 2809 SDValue Op1 = Node->getOperand(1); 2810 if (!TLI.isTypeLegal(EltVT)) { 2811 2812 EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT); 2813 2814 // BUILD_VECTOR operands are allowed to be wider than the element type. 2815 // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept it 2816 if (NewEltVT.bitsLT(EltVT)) { 2817 2818 // Convert shuffle node. 2819 // If original node was v4i64 and the new EltVT is i32, 2820 // cast operands to v8i32 and re-build the mask. 2821 2822 // Calculate new VT, the size of the new VT should be equal to original. 2823 EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltVT, 2824 VT.getSizeInBits()/NewEltVT.getSizeInBits()); 2825 assert(NewVT.bitsEq(VT)); 2826 2827 // cast operands to new VT 2828 Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0); 2829 Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1); 2830 2831 // Convert the shuffle mask 2832 unsigned int factor = NewVT.getVectorNumElements()/VT.getVectorNumElements(); 2833 2834 // EltVT gets smaller 2835 assert(factor > 0); 2836 2837 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { 2838 if (Mask[i] < 0) { 2839 for (unsigned fi = 0; fi < factor; ++fi) 2840 NewMask.push_back(Mask[i]); 2841 } 2842 else { 2843 for (unsigned fi = 0; fi < factor; ++fi) 2844 NewMask.push_back(Mask[i]*factor+fi); 2845 } 2846 } 2847 Mask = NewMask; 2848 VT = NewVT; 2849 } 2850 EltVT = NewEltVT; 2851 } 2852 unsigned NumElems = VT.getVectorNumElements(); 2853 SmallVector<SDValue, 16> Ops; 2854 for (unsigned i = 0; i != NumElems; ++i) { 2855 if (Mask[i] < 0) { 2856 Ops.push_back(DAG.getUNDEF(EltVT)); 2857 continue; 2858 } 2859 unsigned Idx = Mask[i]; 2860 if (Idx < NumElems) 2861 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, 2862 Op0, 2863 DAG.getIntPtrConstant(Idx))); 2864 else 2865 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, 2866 Op1, 2867 DAG.getIntPtrConstant(Idx - NumElems))); 2868 } 2869 2870 Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size()); 2871 // We may have changed the BUILD_VECTOR type. Cast it back to the Node type. 2872 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1); 2873 Results.push_back(Tmp1); 2874 break; 2875 } 2876 case ISD::EXTRACT_ELEMENT: { 2877 EVT OpTy = Node->getOperand(0).getValueType(); 2878 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { 2879 // 1 -> Hi 2880 Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0), 2881 DAG.getConstant(OpTy.getSizeInBits()/2, 2882 TLI.getShiftAmountTy(Node->getOperand(0).getValueType()))); 2883 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1); 2884 } else { 2885 // 0 -> Lo 2886 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), 2887 Node->getOperand(0)); 2888 } 2889 Results.push_back(Tmp1); 2890 break; 2891 } 2892 case ISD::STACKSAVE: 2893 // Expand to CopyFromReg if the target set 2894 // StackPointerRegisterToSaveRestore. 2895 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 2896 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP, 2897 Node->getValueType(0))); 2898 Results.push_back(Results[0].getValue(1)); 2899 } else { 2900 Results.push_back(DAG.getUNDEF(Node->getValueType(0))); 2901 Results.push_back(Node->getOperand(0)); 2902 } 2903 break; 2904 case ISD::STACKRESTORE: 2905 // Expand to CopyToReg if the target set 2906 // StackPointerRegisterToSaveRestore. 2907 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 2908 Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP, 2909 Node->getOperand(1))); 2910 } else { 2911 Results.push_back(Node->getOperand(0)); 2912 } 2913 break; 2914 case ISD::FCOPYSIGN: 2915 Results.push_back(ExpandFCOPYSIGN(Node)); 2916 break; 2917 case ISD::FNEG: 2918 // Expand Y = FNEG(X) -> Y = SUB -0.0, X 2919 Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0)); 2920 Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1, 2921 Node->getOperand(0)); 2922 Results.push_back(Tmp1); 2923 break; 2924 case ISD::FABS: { 2925 // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X). 2926 EVT VT = Node->getValueType(0); 2927 Tmp1 = Node->getOperand(0); 2928 Tmp2 = DAG.getConstantFP(0.0, VT); 2929 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()), 2930 Tmp1, Tmp2, ISD::SETUGT); 2931 Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1); 2932 Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3); 2933 Results.push_back(Tmp1); 2934 break; 2935 } 2936 case ISD::FSQRT: 2937 Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 2938 RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128)); 2939 break; 2940 case ISD::FSIN: 2941 Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64, 2942 RTLIB::SIN_F80, RTLIB::SIN_PPCF128)); 2943 break; 2944 case ISD::FCOS: 2945 Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64, 2946 RTLIB::COS_F80, RTLIB::COS_PPCF128)); 2947 break; 2948 case ISD::FLOG: 2949 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, 2950 RTLIB::LOG_F80, RTLIB::LOG_PPCF128)); 2951 break; 2952 case ISD::FLOG2: 2953 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, 2954 RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128)); 2955 break; 2956 case ISD::FLOG10: 2957 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, 2958 RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128)); 2959 break; 2960 case ISD::FEXP: 2961 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, 2962 RTLIB::EXP_F80, RTLIB::EXP_PPCF128)); 2963 break; 2964 case ISD::FEXP2: 2965 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, 2966 RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128)); 2967 break; 2968 case ISD::FTRUNC: 2969 Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, 2970 RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128)); 2971 break; 2972 case ISD::FFLOOR: 2973 Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, 2974 RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128)); 2975 break; 2976 case ISD::FCEIL: 2977 Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64, 2978 RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128)); 2979 break; 2980 case ISD::FRINT: 2981 Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64, 2982 RTLIB::RINT_F80, RTLIB::RINT_PPCF128)); 2983 break; 2984 case ISD::FNEARBYINT: 2985 Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32, 2986 RTLIB::NEARBYINT_F64, 2987 RTLIB::NEARBYINT_F80, 2988 RTLIB::NEARBYINT_PPCF128)); 2989 break; 2990 case ISD::FPOWI: 2991 Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64, 2992 RTLIB::POWI_F80, RTLIB::POWI_PPCF128)); 2993 break; 2994 case ISD::FPOW: 2995 Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, 2996 RTLIB::POW_F80, RTLIB::POW_PPCF128)); 2997 break; 2998 case ISD::FDIV: 2999 Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64, 3000 RTLIB::DIV_F80, RTLIB::DIV_PPCF128)); 3001 break; 3002 case ISD::FREM: 3003 Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64, 3004 RTLIB::REM_F80, RTLIB::REM_PPCF128)); 3005 break; 3006 case ISD::FMA: 3007 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64, 3008 RTLIB::FMA_F80, RTLIB::FMA_PPCF128)); 3009 break; 3010 case ISD::FP16_TO_FP32: 3011 Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false)); 3012 break; 3013 case ISD::FP32_TO_FP16: 3014 Results.push_back(ExpandLibCall(RTLIB::FPROUND_F32_F16, Node, false)); 3015 break; 3016 case ISD::ConstantFP: { 3017 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 3018 // Check to see if this FP immediate is already legal. 3019 // If this is a legal constant, turn it into a TargetConstantFP node. 3020 if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0))) 3021 Results.push_back(ExpandConstantFP(CFP, true)); 3022 break; 3023 } 3024 case ISD::EHSELECTION: { 3025 unsigned Reg = TLI.getExceptionSelectorRegister(); 3026 assert(Reg && "Can't expand to unknown register!"); 3027 Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg, 3028 Node->getValueType(0))); 3029 Results.push_back(Results[0].getValue(1)); 3030 break; 3031 } 3032 case ISD::EXCEPTIONADDR: { 3033 unsigned Reg = TLI.getExceptionPointerRegister(); 3034 assert(Reg && "Can't expand to unknown register!"); 3035 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg, 3036 Node->getValueType(0))); 3037 Results.push_back(Results[0].getValue(1)); 3038 break; 3039 } 3040 case ISD::FSUB: { 3041 EVT VT = Node->getValueType(0); 3042 assert(TLI.isOperationLegalOrCustom(ISD::FADD, VT) && 3043 TLI.isOperationLegalOrCustom(ISD::FNEG, VT) && 3044 "Don't know how to expand this FP subtraction!"); 3045 Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1)); 3046 Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1); 3047 Results.push_back(Tmp1); 3048 break; 3049 } 3050 case ISD::SUB: { 3051 EVT VT = Node->getValueType(0); 3052 assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 3053 TLI.isOperationLegalOrCustom(ISD::XOR, VT) && 3054 "Don't know how to expand this subtraction!"); 3055 Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1), 3056 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT)); 3057 Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp2, DAG.getConstant(1, VT)); 3058 Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1)); 3059 break; 3060 } 3061 case ISD::UREM: 3062 case ISD::SREM: { 3063 EVT VT = Node->getValueType(0); 3064 SDVTList VTs = DAG.getVTList(VT, VT); 3065 bool isSigned = Node->getOpcode() == ISD::SREM; 3066 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 3067 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3068 Tmp2 = Node->getOperand(0); 3069 Tmp3 = Node->getOperand(1); 3070 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) || 3071 (isDivRemLibcallAvailable(Node, isSigned, TLI) && 3072 UseDivRem(Node, isSigned, false))) { 3073 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1); 3074 } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) { 3075 // X % Y -> X-X/Y*Y 3076 Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3); 3077 Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3); 3078 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1); 3079 } else if (isSigned) 3080 Tmp1 = ExpandIntLibCall(Node, true, 3081 RTLIB::SREM_I8, 3082 RTLIB::SREM_I16, RTLIB::SREM_I32, 3083 RTLIB::SREM_I64, RTLIB::SREM_I128); 3084 else 3085 Tmp1 = ExpandIntLibCall(Node, false, 3086 RTLIB::UREM_I8, 3087 RTLIB::UREM_I16, RTLIB::UREM_I32, 3088 RTLIB::UREM_I64, RTLIB::UREM_I128); 3089 Results.push_back(Tmp1); 3090 break; 3091 } 3092 case ISD::UDIV: 3093 case ISD::SDIV: { 3094 bool isSigned = Node->getOpcode() == ISD::SDIV; 3095 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3096 EVT VT = Node->getValueType(0); 3097 SDVTList VTs = DAG.getVTList(VT, VT); 3098 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) || 3099 (isDivRemLibcallAvailable(Node, isSigned, TLI) && 3100 UseDivRem(Node, isSigned, true))) 3101 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0), 3102 Node->getOperand(1)); 3103 else if (isSigned) 3104 Tmp1 = ExpandIntLibCall(Node, true, 3105 RTLIB::SDIV_I8, 3106 RTLIB::SDIV_I16, RTLIB::SDIV_I32, 3107 RTLIB::SDIV_I64, RTLIB::SDIV_I128); 3108 else 3109 Tmp1 = ExpandIntLibCall(Node, false, 3110 RTLIB::UDIV_I8, 3111 RTLIB::UDIV_I16, RTLIB::UDIV_I32, 3112 RTLIB::UDIV_I64, RTLIB::UDIV_I128); 3113 Results.push_back(Tmp1); 3114 break; 3115 } 3116 case ISD::MULHU: 3117 case ISD::MULHS: { 3118 unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : 3119 ISD::SMUL_LOHI; 3120 EVT VT = Node->getValueType(0); 3121 SDVTList VTs = DAG.getVTList(VT, VT); 3122 assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) && 3123 "If this wasn't legal, it shouldn't have been created!"); 3124 Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0), 3125 Node->getOperand(1)); 3126 Results.push_back(Tmp1.getValue(1)); 3127 break; 3128 } 3129 case ISD::SDIVREM: 3130 case ISD::UDIVREM: 3131 // Expand into divrem libcall 3132 ExpandDivRemLibCall(Node, Results); 3133 break; 3134 case ISD::MUL: { 3135 EVT VT = Node->getValueType(0); 3136 SDVTList VTs = DAG.getVTList(VT, VT); 3137 // See if multiply or divide can be lowered using two-result operations. 3138 // We just need the low half of the multiply; try both the signed 3139 // and unsigned forms. If the target supports both SMUL_LOHI and 3140 // UMUL_LOHI, form a preference by checking which forms of plain 3141 // MULH it supports. 3142 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT); 3143 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT); 3144 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT); 3145 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT); 3146 unsigned OpToUse = 0; 3147 if (HasSMUL_LOHI && !HasMULHS) { 3148 OpToUse = ISD::SMUL_LOHI; 3149 } else if (HasUMUL_LOHI && !HasMULHU) { 3150 OpToUse = ISD::UMUL_LOHI; 3151 } else if (HasSMUL_LOHI) { 3152 OpToUse = ISD::SMUL_LOHI; 3153 } else if (HasUMUL_LOHI) { 3154 OpToUse = ISD::UMUL_LOHI; 3155 } 3156 if (OpToUse) { 3157 Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0), 3158 Node->getOperand(1))); 3159 break; 3160 } 3161 Tmp1 = ExpandIntLibCall(Node, false, 3162 RTLIB::MUL_I8, 3163 RTLIB::MUL_I16, RTLIB::MUL_I32, 3164 RTLIB::MUL_I64, RTLIB::MUL_I128); 3165 Results.push_back(Tmp1); 3166 break; 3167 } 3168 case ISD::SADDO: 3169 case ISD::SSUBO: { 3170 SDValue LHS = Node->getOperand(0); 3171 SDValue RHS = Node->getOperand(1); 3172 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ? 3173 ISD::ADD : ISD::SUB, dl, LHS.getValueType(), 3174 LHS, RHS); 3175 Results.push_back(Sum); 3176 EVT OType = Node->getValueType(1); 3177 3178 SDValue Zero = DAG.getConstant(0, LHS.getValueType()); 3179 3180 // LHSSign -> LHS >= 0 3181 // RHSSign -> RHS >= 0 3182 // SumSign -> Sum >= 0 3183 // 3184 // Add: 3185 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign) 3186 // Sub: 3187 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign) 3188 // 3189 SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE); 3190 SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE); 3191 SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign, 3192 Node->getOpcode() == ISD::SADDO ? 3193 ISD::SETEQ : ISD::SETNE); 3194 3195 SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE); 3196 SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE); 3197 3198 SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE); 3199 Results.push_back(Cmp); 3200 break; 3201 } 3202 case ISD::UADDO: 3203 case ISD::USUBO: { 3204 SDValue LHS = Node->getOperand(0); 3205 SDValue RHS = Node->getOperand(1); 3206 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ? 3207 ISD::ADD : ISD::SUB, dl, LHS.getValueType(), 3208 LHS, RHS); 3209 Results.push_back(Sum); 3210 Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS, 3211 Node->getOpcode () == ISD::UADDO ? 3212 ISD::SETULT : ISD::SETUGT)); 3213 break; 3214 } 3215 case ISD::UMULO: 3216 case ISD::SMULO: { 3217 EVT VT = Node->getValueType(0); 3218 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2); 3219 SDValue LHS = Node->getOperand(0); 3220 SDValue RHS = Node->getOperand(1); 3221 SDValue BottomHalf; 3222 SDValue TopHalf; 3223 static const unsigned Ops[2][3] = 3224 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 3225 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 3226 bool isSigned = Node->getOpcode() == ISD::SMULO; 3227 if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 3228 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 3229 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 3230 } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 3231 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 3232 RHS); 3233 TopHalf = BottomHalf.getValue(1); 3234 } else if (TLI.isTypeLegal(EVT::getIntegerVT(*DAG.getContext(), 3235 VT.getSizeInBits() * 2))) { 3236 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 3237 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 3238 Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 3239 BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1, 3240 DAG.getIntPtrConstant(0)); 3241 TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1, 3242 DAG.getIntPtrConstant(1)); 3243 } else { 3244 // We can fall back to a libcall with an illegal type for the MUL if we 3245 // have a libcall big enough. 3246 // Also, we can fall back to a division in some cases, but that's a big 3247 // performance hit in the general case. 3248 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 3249 if (WideVT == MVT::i16) 3250 LC = RTLIB::MUL_I16; 3251 else if (WideVT == MVT::i32) 3252 LC = RTLIB::MUL_I32; 3253 else if (WideVT == MVT::i64) 3254 LC = RTLIB::MUL_I64; 3255 else if (WideVT == MVT::i128) 3256 LC = RTLIB::MUL_I128; 3257 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 3258 3259 // The high part is obtained by SRA'ing all but one of the bits of low 3260 // part. 3261 unsigned LoSize = VT.getSizeInBits(); 3262 SDValue HiLHS = DAG.getNode(ISD::SRA, dl, VT, RHS, 3263 DAG.getConstant(LoSize-1, TLI.getPointerTy())); 3264 SDValue HiRHS = DAG.getNode(ISD::SRA, dl, VT, LHS, 3265 DAG.getConstant(LoSize-1, TLI.getPointerTy())); 3266 3267 // Here we're passing the 2 arguments explicitly as 4 arguments that are 3268 // pre-lowered to the correct types. This all depends upon WideVT not 3269 // being a legal type for the architecture and thus has to be split to 3270 // two arguments. 3271 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 3272 SDValue Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl); 3273 BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret, 3274 DAG.getIntPtrConstant(0)); 3275 TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret, 3276 DAG.getIntPtrConstant(1)); 3277 // Ret is a node with an illegal type. Because such things are not 3278 // generally permitted during this phase of legalization, delete the 3279 // node. The above EXTRACT_ELEMENT nodes should have been folded. 3280 DAG.DeleteNode(Ret.getNode()); 3281 } 3282 3283 if (isSigned) { 3284 Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1, 3285 TLI.getShiftAmountTy(BottomHalf.getValueType())); 3286 Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1); 3287 TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1, 3288 ISD::SETNE); 3289 } else { 3290 TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, 3291 DAG.getConstant(0, VT), ISD::SETNE); 3292 } 3293 Results.push_back(BottomHalf); 3294 Results.push_back(TopHalf); 3295 break; 3296 } 3297 case ISD::BUILD_PAIR: { 3298 EVT PairTy = Node->getValueType(0); 3299 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0)); 3300 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1)); 3301 Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2, 3302 DAG.getConstant(PairTy.getSizeInBits()/2, 3303 TLI.getShiftAmountTy(PairTy))); 3304 Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2)); 3305 break; 3306 } 3307 case ISD::SELECT: 3308 Tmp1 = Node->getOperand(0); 3309 Tmp2 = Node->getOperand(1); 3310 Tmp3 = Node->getOperand(2); 3311 if (Tmp1.getOpcode() == ISD::SETCC) { 3312 Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1), 3313 Tmp2, Tmp3, 3314 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); 3315 } else { 3316 Tmp1 = DAG.getSelectCC(dl, Tmp1, 3317 DAG.getConstant(0, Tmp1.getValueType()), 3318 Tmp2, Tmp3, ISD::SETNE); 3319 } 3320 Results.push_back(Tmp1); 3321 break; 3322 case ISD::BR_JT: { 3323 SDValue Chain = Node->getOperand(0); 3324 SDValue Table = Node->getOperand(1); 3325 SDValue Index = Node->getOperand(2); 3326 3327 EVT PTy = TLI.getPointerTy(); 3328 3329 const TargetData &TD = *TLI.getTargetData(); 3330 unsigned EntrySize = 3331 DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD); 3332 3333 Index = DAG.getNode(ISD::MUL, dl, PTy, 3334 Index, DAG.getConstant(EntrySize, PTy)); 3335 SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table); 3336 3337 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8); 3338 SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr, 3339 MachinePointerInfo::getJumpTable(), MemVT, 3340 false, false, 0); 3341 Addr = LD; 3342 if (TM.getRelocationModel() == Reloc::PIC_) { 3343 // For PIC, the sequence is: 3344 // BRIND(load(Jumptable + index) + RelocBase) 3345 // RelocBase can be JumpTable, GOT or some sort of global base. 3346 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, 3347 TLI.getPICJumpTableRelocBase(Table, DAG)); 3348 } 3349 Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr); 3350 Results.push_back(Tmp1); 3351 break; 3352 } 3353 case ISD::BRCOND: 3354 // Expand brcond's setcc into its constituent parts and create a BR_CC 3355 // Node. 3356 Tmp1 = Node->getOperand(0); 3357 Tmp2 = Node->getOperand(1); 3358 if (Tmp2.getOpcode() == ISD::SETCC) { 3359 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, 3360 Tmp1, Tmp2.getOperand(2), 3361 Tmp2.getOperand(0), Tmp2.getOperand(1), 3362 Node->getOperand(2)); 3363 } else { 3364 // We test only the i1 bit. Skip the AND if UNDEF. 3365 Tmp3 = (Tmp2.getOpcode() == ISD::UNDEF) ? Tmp2 : 3366 DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2, 3367 DAG.getConstant(1, Tmp2.getValueType())); 3368 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, 3369 DAG.getCondCode(ISD::SETNE), Tmp3, 3370 DAG.getConstant(0, Tmp3.getValueType()), 3371 Node->getOperand(2)); 3372 } 3373 Results.push_back(Tmp1); 3374 break; 3375 case ISD::SETCC: { 3376 Tmp1 = Node->getOperand(0); 3377 Tmp2 = Node->getOperand(1); 3378 Tmp3 = Node->getOperand(2); 3379 LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl); 3380 3381 // If we expanded the SETCC into an AND/OR, return the new node 3382 if (Tmp2.getNode() == 0) { 3383 Results.push_back(Tmp1); 3384 break; 3385 } 3386 3387 // Otherwise, SETCC for the given comparison type must be completely 3388 // illegal; expand it into a SELECT_CC. 3389 EVT VT = Node->getValueType(0); 3390 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2, 3391 DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3); 3392 Results.push_back(Tmp1); 3393 break; 3394 } 3395 case ISD::SELECT_CC: { 3396 Tmp1 = Node->getOperand(0); // LHS 3397 Tmp2 = Node->getOperand(1); // RHS 3398 Tmp3 = Node->getOperand(2); // True 3399 Tmp4 = Node->getOperand(3); // False 3400 SDValue CC = Node->getOperand(4); 3401 3402 LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()), 3403 Tmp1, Tmp2, CC, dl); 3404 3405 assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!"); 3406 Tmp2 = DAG.getConstant(0, Tmp1.getValueType()); 3407 CC = DAG.getCondCode(ISD::SETNE); 3408 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2, 3409 Tmp3, Tmp4, CC); 3410 Results.push_back(Tmp1); 3411 break; 3412 } 3413 case ISD::BR_CC: { 3414 Tmp1 = Node->getOperand(0); // Chain 3415 Tmp2 = Node->getOperand(2); // LHS 3416 Tmp3 = Node->getOperand(3); // RHS 3417 Tmp4 = Node->getOperand(1); // CC 3418 3419 LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()), 3420 Tmp2, Tmp3, Tmp4, dl); 3421 3422 assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!"); 3423 Tmp3 = DAG.getConstant(0, Tmp2.getValueType()); 3424 Tmp4 = DAG.getCondCode(ISD::SETNE); 3425 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2, 3426 Tmp3, Node->getOperand(4)); 3427 Results.push_back(Tmp1); 3428 break; 3429 } 3430 case ISD::BUILD_VECTOR: 3431 Results.push_back(ExpandBUILD_VECTOR(Node)); 3432 break; 3433 case ISD::SRA: 3434 case ISD::SRL: 3435 case ISD::SHL: { 3436 // Scalarize vector SRA/SRL/SHL. 3437 EVT VT = Node->getValueType(0); 3438 assert(VT.isVector() && "Unable to legalize non-vector shift"); 3439 assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal"); 3440 unsigned NumElem = VT.getVectorNumElements(); 3441 3442 SmallVector<SDValue, 8> Scalars; 3443 for (unsigned Idx = 0; Idx < NumElem; Idx++) { 3444 SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 3445 VT.getScalarType(), 3446 Node->getOperand(0), DAG.getIntPtrConstant(Idx)); 3447 SDValue Sh = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 3448 VT.getScalarType(), 3449 Node->getOperand(1), DAG.getIntPtrConstant(Idx)); 3450 Scalars.push_back(DAG.getNode(Node->getOpcode(), dl, 3451 VT.getScalarType(), Ex, Sh)); 3452 } 3453 SDValue Result = 3454 DAG.getNode(ISD::BUILD_VECTOR, dl, Node->getValueType(0), 3455 &Scalars[0], Scalars.size()); 3456 ReplaceNode(SDValue(Node, 0), Result); 3457 break; 3458 } 3459 case ISD::GLOBAL_OFFSET_TABLE: 3460 case ISD::GlobalAddress: 3461 case ISD::GlobalTLSAddress: 3462 case ISD::ExternalSymbol: 3463 case ISD::ConstantPool: 3464 case ISD::JumpTable: 3465 case ISD::INTRINSIC_W_CHAIN: 3466 case ISD::INTRINSIC_WO_CHAIN: 3467 case ISD::INTRINSIC_VOID: 3468 // FIXME: Custom lowering for these operations shouldn't return null! 3469 break; 3470 } 3471 3472 // Replace the original node with the legalized result. 3473 if (!Results.empty()) 3474 ReplaceNode(Node, Results.data()); 3475} 3476 3477void SelectionDAGLegalize::PromoteNode(SDNode *Node) { 3478 SmallVector<SDValue, 8> Results; 3479 EVT OVT = Node->getValueType(0); 3480 if (Node->getOpcode() == ISD::UINT_TO_FP || 3481 Node->getOpcode() == ISD::SINT_TO_FP || 3482 Node->getOpcode() == ISD::SETCC) { 3483 OVT = Node->getOperand(0).getValueType(); 3484 } 3485 EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 3486 DebugLoc dl = Node->getDebugLoc(); 3487 SDValue Tmp1, Tmp2, Tmp3; 3488 switch (Node->getOpcode()) { 3489 case ISD::CTTZ: 3490 case ISD::CTTZ_ZERO_UNDEF: 3491 case ISD::CTLZ: 3492 case ISD::CTLZ_ZERO_UNDEF: 3493 case ISD::CTPOP: 3494 // Zero extend the argument. 3495 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 3496 // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is 3497 // already the correct result. 3498 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 3499 if (Node->getOpcode() == ISD::CTTZ) { 3500 // FIXME: This should set a bit in the zero extended value instead. 3501 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT), 3502 Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT), 3503 ISD::SETEQ); 3504 Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, 3505 DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1); 3506 } else if (Node->getOpcode() == ISD::CTLZ || 3507 Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) { 3508 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 3509 Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, 3510 DAG.getConstant(NVT.getSizeInBits() - 3511 OVT.getSizeInBits(), NVT)); 3512 } 3513 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 3514 break; 3515 case ISD::BSWAP: { 3516 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); 3517 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 3518 Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1); 3519 Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1, 3520 DAG.getConstant(DiffBits, TLI.getShiftAmountTy(NVT))); 3521 Results.push_back(Tmp1); 3522 break; 3523 } 3524 case ISD::FP_TO_UINT: 3525 case ISD::FP_TO_SINT: 3526 Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0), 3527 Node->getOpcode() == ISD::FP_TO_SINT, dl); 3528 Results.push_back(Tmp1); 3529 break; 3530 case ISD::UINT_TO_FP: 3531 case ISD::SINT_TO_FP: 3532 Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0), 3533 Node->getOpcode() == ISD::SINT_TO_FP, dl); 3534 Results.push_back(Tmp1); 3535 break; 3536 case ISD::VAARG: { 3537 SDValue Chain = Node->getOperand(0); // Get the chain. 3538 SDValue Ptr = Node->getOperand(1); // Get the pointer. 3539 3540 unsigned TruncOp; 3541 if (OVT.isVector()) { 3542 TruncOp = ISD::BITCAST; 3543 } else { 3544 assert(OVT.isInteger() 3545 && "VAARG promotion is supported only for vectors or integer types"); 3546 TruncOp = ISD::TRUNCATE; 3547 } 3548 3549 // Perform the larger operation, then convert back 3550 Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2), 3551 Node->getConstantOperandVal(3)); 3552 Chain = Tmp1.getValue(1); 3553 3554 Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1); 3555 3556 // Modified the chain result - switch anything that used the old chain to 3557 // use the new one. 3558 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2); 3559 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 3560 ReplacedNode(Node); 3561 break; 3562 } 3563 case ISD::AND: 3564 case ISD::OR: 3565 case ISD::XOR: { 3566 unsigned ExtOp, TruncOp; 3567 if (OVT.isVector()) { 3568 ExtOp = ISD::BITCAST; 3569 TruncOp = ISD::BITCAST; 3570 } else { 3571 assert(OVT.isInteger() && "Cannot promote logic operation"); 3572 ExtOp = ISD::ANY_EXTEND; 3573 TruncOp = ISD::TRUNCATE; 3574 } 3575 // Promote each of the values to the new type. 3576 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 3577 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 3578 // Perform the larger operation, then convert back 3579 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 3580 Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1)); 3581 break; 3582 } 3583 case ISD::SELECT: { 3584 unsigned ExtOp, TruncOp; 3585 if (Node->getValueType(0).isVector()) { 3586 ExtOp = ISD::BITCAST; 3587 TruncOp = ISD::BITCAST; 3588 } else if (Node->getValueType(0).isInteger()) { 3589 ExtOp = ISD::ANY_EXTEND; 3590 TruncOp = ISD::TRUNCATE; 3591 } else { 3592 ExtOp = ISD::FP_EXTEND; 3593 TruncOp = ISD::FP_ROUND; 3594 } 3595 Tmp1 = Node->getOperand(0); 3596 // Promote each of the values to the new type. 3597 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 3598 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 3599 // Perform the larger operation, then round down. 3600 Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3); 3601 if (TruncOp != ISD::FP_ROUND) 3602 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1); 3603 else 3604 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1, 3605 DAG.getIntPtrConstant(0)); 3606 Results.push_back(Tmp1); 3607 break; 3608 } 3609 case ISD::VECTOR_SHUFFLE: { 3610 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 3611 3612 // Cast the two input vectors. 3613 Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0)); 3614 Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1)); 3615 3616 // Convert the shuffle mask to the right # elements. 3617 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask); 3618 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1); 3619 Results.push_back(Tmp1); 3620 break; 3621 } 3622 case ISD::SETCC: { 3623 unsigned ExtOp = ISD::FP_EXTEND; 3624 if (NVT.isInteger()) { 3625 ISD::CondCode CCCode = 3626 cast<CondCodeSDNode>(Node->getOperand(2))->get(); 3627 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 3628 } 3629 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 3630 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 3631 Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), 3632 Tmp1, Tmp2, Node->getOperand(2))); 3633 break; 3634 } 3635 case ISD::FDIV: 3636 case ISD::FPOW: { 3637 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 3638 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 3639 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 3640 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 3641 Tmp3, DAG.getIntPtrConstant(0))); 3642 break; 3643 } 3644 case ISD::FLOG2: 3645 case ISD::FEXP2: 3646 case ISD::FLOG: 3647 case ISD::FEXP: { 3648 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 3649 Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 3650 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 3651 Tmp2, DAG.getIntPtrConstant(0))); 3652 break; 3653 } 3654 } 3655 3656 // Replace the original node with the legalized result. 3657 if (!Results.empty()) 3658 ReplaceNode(Node, Results.data()); 3659} 3660 3661// SelectionDAG::Legalize - This is the entry point for the file. 3662// 3663void SelectionDAG::Legalize() { 3664 /// run - This is the main entry point to this class. 3665 /// 3666 SelectionDAGLegalize(*this).LegalizeDAG(); 3667} 3668