LegalizeDAG.cpp revision 5194d6dd9575845cf1cbb2f10a0c769634d116a9
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SelectionDAG::Legalize method.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Analysis/DebugInfo.h"
15#include "llvm/CodeGen/Analysis.h"
16#include "llvm/CodeGen/MachineFunction.h"
17#include "llvm/CodeGen/MachineJumpTableInfo.h"
18#include "llvm/CodeGen/SelectionDAG.h"
19#include "llvm/Target/TargetFrameLowering.h"
20#include "llvm/Target/TargetLowering.h"
21#include "llvm/Target/TargetData.h"
22#include "llvm/Target/TargetMachine.h"
23#include "llvm/CallingConv.h"
24#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/LLVMContext.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/Support/ErrorHandling.h"
29#include "llvm/Support/MathExtras.h"
30#include "llvm/Support/raw_ostream.h"
31#include "llvm/ADT/DenseMap.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/SmallPtrSet.h"
34using namespace llvm;
35
36//===----------------------------------------------------------------------===//
37/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
38/// hacks on it until the target machine can handle it.  This involves
39/// eliminating value sizes the machine cannot handle (promoting small sizes to
40/// large sizes or splitting up large values into small values) as well as
41/// eliminating operations the machine cannot handle.
42///
43/// This code also does a small amount of optimization and recognition of idioms
44/// as part of its processing.  For example, if a target does not support a
45/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
46/// will attempt merge setcc and brc instructions into brcc's.
47///
48namespace {
49class SelectionDAGLegalize : public SelectionDAG::DAGUpdateListener {
50  const TargetMachine &TM;
51  const TargetLowering &TLI;
52  SelectionDAG &DAG;
53
54  /// LegalizePosition - The iterator for walking through the node list.
55  SelectionDAG::allnodes_iterator LegalizePosition;
56
57  /// LegalizedNodes - The set of nodes which have already been legalized.
58  SmallPtrSet<SDNode *, 16> LegalizedNodes;
59
60  // Libcall insertion helpers.
61
62public:
63  explicit SelectionDAGLegalize(SelectionDAG &DAG);
64
65  void LegalizeDAG();
66
67private:
68  /// LegalizeOp - Legalizes the given operation.
69  void LegalizeOp(SDNode *Node);
70
71  SDValue OptimizeFloatStore(StoreSDNode *ST);
72
73  /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
74  /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
75  /// is necessary to spill the vector being inserted into to memory, perform
76  /// the insert there, and then read the result back.
77  SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
78                                         SDValue Idx, DebugLoc dl);
79  SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
80                                  SDValue Idx, DebugLoc dl);
81
82  /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
83  /// performs the same shuffe in terms of order or result bytes, but on a type
84  /// whose vector element type is narrower than the original shuffle type.
85  /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
86  SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl,
87                                     SDValue N1, SDValue N2,
88                                     ArrayRef<int> Mask) const;
89
90  void LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
91                             DebugLoc dl);
92
93  SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
94  SDValue ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, const SDValue *Ops,
95                        unsigned NumOps, bool isSigned, DebugLoc dl);
96
97  std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC,
98                                                 SDNode *Node, bool isSigned);
99  SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
100                          RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
101                          RTLIB::Libcall Call_PPCF128);
102  SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
103                           RTLIB::Libcall Call_I8,
104                           RTLIB::Libcall Call_I16,
105                           RTLIB::Libcall Call_I32,
106                           RTLIB::Libcall Call_I64,
107                           RTLIB::Libcall Call_I128);
108  void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
109
110  SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, DebugLoc dl);
111  SDValue ExpandBUILD_VECTOR(SDNode *Node);
112  SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
113  void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
114                                SmallVectorImpl<SDValue> &Results);
115  SDValue ExpandFCOPYSIGN(SDNode *Node);
116  SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT,
117                               DebugLoc dl);
118  SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned,
119                                DebugLoc dl);
120  SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned,
121                                DebugLoc dl);
122
123  SDValue ExpandBSWAP(SDValue Op, DebugLoc dl);
124  SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl);
125
126  SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
127  SDValue ExpandInsertToVectorThroughStack(SDValue Op);
128  SDValue ExpandVectorBuildThroughStack(SDNode* Node);
129
130  SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP);
131
132  std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node);
133
134  void ExpandNode(SDNode *Node);
135  void PromoteNode(SDNode *Node);
136
137  void ForgetNode(SDNode *N) {
138    LegalizedNodes.erase(N);
139    if (LegalizePosition == SelectionDAG::allnodes_iterator(N))
140      ++LegalizePosition;
141  }
142
143public:
144  // DAGUpdateListener implementation.
145  virtual void NodeDeleted(SDNode *N, SDNode *E) {
146    ForgetNode(N);
147  }
148  virtual void NodeUpdated(SDNode *N) {}
149
150  // Node replacement helpers
151  void ReplacedNode(SDNode *N) {
152    if (N->use_empty()) {
153      DAG.RemoveDeadNode(N, this);
154    } else {
155      ForgetNode(N);
156    }
157  }
158  void ReplaceNode(SDNode *Old, SDNode *New) {
159    DAG.ReplaceAllUsesWith(Old, New, this);
160    ReplacedNode(Old);
161  }
162  void ReplaceNode(SDValue Old, SDValue New) {
163    DAG.ReplaceAllUsesWith(Old, New, this);
164    ReplacedNode(Old.getNode());
165  }
166  void ReplaceNode(SDNode *Old, const SDValue *New) {
167    DAG.ReplaceAllUsesWith(Old, New, this);
168    ReplacedNode(Old);
169  }
170};
171}
172
173/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
174/// performs the same shuffe in terms of order or result bytes, but on a type
175/// whose vector element type is narrower than the original shuffle type.
176/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
177SDValue
178SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT,  DebugLoc dl,
179                                                 SDValue N1, SDValue N2,
180                                                 ArrayRef<int> Mask) const {
181  unsigned NumMaskElts = VT.getVectorNumElements();
182  unsigned NumDestElts = NVT.getVectorNumElements();
183  unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
184
185  assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
186
187  if (NumEltsGrowth == 1)
188    return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
189
190  SmallVector<int, 8> NewMask;
191  for (unsigned i = 0; i != NumMaskElts; ++i) {
192    int Idx = Mask[i];
193    for (unsigned j = 0; j != NumEltsGrowth; ++j) {
194      if (Idx < 0)
195        NewMask.push_back(-1);
196      else
197        NewMask.push_back(Idx * NumEltsGrowth + j);
198    }
199  }
200  assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
201  assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
202  return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
203}
204
205SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag)
206  : TM(dag.getTarget()), TLI(dag.getTargetLoweringInfo()),
207    DAG(dag) {
208}
209
210void SelectionDAGLegalize::LegalizeDAG() {
211  DAG.AssignTopologicalOrder();
212
213  // Visit all the nodes. We start in topological order, so that we see
214  // nodes with their original operands intact. Legalization can produce
215  // new nodes which may themselves need to be legalized. Iterate until all
216  // nodes have been legalized.
217  for (;;) {
218    bool AnyLegalized = false;
219    for (LegalizePosition = DAG.allnodes_end();
220         LegalizePosition != DAG.allnodes_begin(); ) {
221      --LegalizePosition;
222
223      SDNode *N = LegalizePosition;
224      if (LegalizedNodes.insert(N)) {
225        AnyLegalized = true;
226        LegalizeOp(N);
227      }
228    }
229    if (!AnyLegalized)
230      break;
231
232  }
233
234  // Remove dead nodes now.
235  DAG.RemoveDeadNodes();
236}
237
238/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
239/// a load from the constant pool.
240SDValue
241SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) {
242  bool Extend = false;
243  DebugLoc dl = CFP->getDebugLoc();
244
245  // If a FP immediate is precise when represented as a float and if the
246  // target can do an extending load from float to double, we put it into
247  // the constant pool as a float, even if it's is statically typed as a
248  // double.  This shrinks FP constants and canonicalizes them for targets where
249  // an FP extending load is the same cost as a normal load (such as on the x87
250  // fp stack or PPC FP unit).
251  EVT VT = CFP->getValueType(0);
252  ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
253  if (!UseCP) {
254    assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
255    return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(),
256                           (VT == MVT::f64) ? MVT::i64 : MVT::i32);
257  }
258
259  EVT OrigVT = VT;
260  EVT SVT = VT;
261  while (SVT != MVT::f32) {
262    SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
263    if (ConstantFPSDNode::isValueValidForType(SVT, CFP->getValueAPF()) &&
264        // Only do this if the target has a native EXTLOAD instruction from
265        // smaller type.
266        TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
267        TLI.ShouldShrinkFPConstant(OrigVT)) {
268      Type *SType = SVT.getTypeForEVT(*DAG.getContext());
269      LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
270      VT = SVT;
271      Extend = true;
272    }
273  }
274
275  SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
276  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
277  if (Extend) {
278    SDValue Result =
279      DAG.getExtLoad(ISD::EXTLOAD, dl, OrigVT,
280                     DAG.getEntryNode(),
281                     CPIdx, MachinePointerInfo::getConstantPool(),
282                     VT, false, false, Alignment);
283    return Result;
284  }
285  SDValue Result =
286    DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
287                MachinePointerInfo::getConstantPool(), false, false, false,
288                Alignment);
289  return Result;
290}
291
292/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
293static void ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
294                                 const TargetLowering &TLI,
295                                 SelectionDAGLegalize *DAGLegalize) {
296  assert(ST->getAddressingMode() == ISD::UNINDEXED &&
297         "unaligned indexed stores not implemented!");
298  SDValue Chain = ST->getChain();
299  SDValue Ptr = ST->getBasePtr();
300  SDValue Val = ST->getValue();
301  EVT VT = Val.getValueType();
302  int Alignment = ST->getAlignment();
303  DebugLoc dl = ST->getDebugLoc();
304  if (ST->getMemoryVT().isFloatingPoint() ||
305      ST->getMemoryVT().isVector()) {
306    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
307    if (TLI.isTypeLegal(intVT)) {
308      // Expand to a bitconvert of the value to the integer type of the
309      // same size, then a (misaligned) int store.
310      // FIXME: Does not handle truncating floating point stores!
311      SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
312      Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
313                           ST->isVolatile(), ST->isNonTemporal(), Alignment);
314      DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
315      return;
316    }
317    // Do a (aligned) store to a stack slot, then copy from the stack slot
318    // to the final destination using (unaligned) integer loads and stores.
319    EVT StoredVT = ST->getMemoryVT();
320    EVT RegVT =
321      TLI.getRegisterType(*DAG.getContext(),
322                          EVT::getIntegerVT(*DAG.getContext(),
323                                            StoredVT.getSizeInBits()));
324    unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
325    unsigned RegBytes = RegVT.getSizeInBits() / 8;
326    unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
327
328    // Make sure the stack slot is also aligned for the register type.
329    SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
330
331    // Perform the original store, only redirected to the stack slot.
332    SDValue Store = DAG.getTruncStore(Chain, dl,
333                                      Val, StackPtr, MachinePointerInfo(),
334                                      StoredVT, false, false, 0);
335    SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
336    SmallVector<SDValue, 8> Stores;
337    unsigned Offset = 0;
338
339    // Do all but one copies using the full register width.
340    for (unsigned i = 1; i < NumRegs; i++) {
341      // Load one integer register's worth from the stack slot.
342      SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr,
343                                 MachinePointerInfo(),
344                                 false, false, false, 0);
345      // Store it to the final location.  Remember the store.
346      Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
347                                  ST->getPointerInfo().getWithOffset(Offset),
348                                    ST->isVolatile(), ST->isNonTemporal(),
349                                    MinAlign(ST->getAlignment(), Offset)));
350      // Increment the pointers.
351      Offset += RegBytes;
352      StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
353                             Increment);
354      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
355    }
356
357    // The last store may be partial.  Do a truncating store.  On big-endian
358    // machines this requires an extending load from the stack slot to ensure
359    // that the bits are in the right place.
360    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
361                                  8 * (StoredBytes - Offset));
362
363    // Load from the stack slot.
364    SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
365                                  MachinePointerInfo(),
366                                  MemVT, false, false, 0);
367
368    Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
369                                       ST->getPointerInfo()
370                                         .getWithOffset(Offset),
371                                       MemVT, ST->isVolatile(),
372                                       ST->isNonTemporal(),
373                                       MinAlign(ST->getAlignment(), Offset)));
374    // The order of the stores doesn't matter - say it with a TokenFactor.
375    SDValue Result =
376      DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
377                  Stores.size());
378    DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
379    return;
380  }
381  assert(ST->getMemoryVT().isInteger() &&
382         !ST->getMemoryVT().isVector() &&
383         "Unaligned store of unknown type.");
384  // Get the half-size VT
385  EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
386  int NumBits = NewStoredVT.getSizeInBits();
387  int IncrementSize = NumBits / 8;
388
389  // Divide the stored value in two parts.
390  SDValue ShiftAmount = DAG.getConstant(NumBits,
391                                      TLI.getShiftAmountTy(Val.getValueType()));
392  SDValue Lo = Val;
393  SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
394
395  // Store the two parts
396  SDValue Store1, Store2;
397  Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
398                             ST->getPointerInfo(), NewStoredVT,
399                             ST->isVolatile(), ST->isNonTemporal(), Alignment);
400  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
401                    DAG.getConstant(IncrementSize, TLI.getPointerTy()));
402  Alignment = MinAlign(Alignment, IncrementSize);
403  Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
404                             ST->getPointerInfo().getWithOffset(IncrementSize),
405                             NewStoredVT, ST->isVolatile(), ST->isNonTemporal(),
406                             Alignment);
407
408  SDValue Result =
409    DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
410  DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
411}
412
413/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
414static void
415ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
416                    const TargetLowering &TLI,
417                    SDValue &ValResult, SDValue &ChainResult) {
418  assert(LD->getAddressingMode() == ISD::UNINDEXED &&
419         "unaligned indexed loads not implemented!");
420  SDValue Chain = LD->getChain();
421  SDValue Ptr = LD->getBasePtr();
422  EVT VT = LD->getValueType(0);
423  EVT LoadedVT = LD->getMemoryVT();
424  DebugLoc dl = LD->getDebugLoc();
425  if (VT.isFloatingPoint() || VT.isVector()) {
426    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
427    if (TLI.isTypeLegal(intVT)) {
428      // Expand to a (misaligned) integer load of the same size,
429      // then bitconvert to floating point or vector.
430      SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getPointerInfo(),
431                                    LD->isVolatile(),
432                                    LD->isNonTemporal(),
433                                    LD->isInvariant(), LD->getAlignment());
434      SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
435      if (VT.isFloatingPoint() && LoadedVT != VT)
436        Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result);
437
438      ValResult = Result;
439      ChainResult = Chain;
440      return;
441    }
442
443    // Copy the value to a (aligned) stack slot using (unaligned) integer
444    // loads and stores, then do a (aligned) load from the stack slot.
445    EVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT);
446    unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
447    unsigned RegBytes = RegVT.getSizeInBits() / 8;
448    unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
449
450    // Make sure the stack slot is also aligned for the register type.
451    SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
452
453    SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
454    SmallVector<SDValue, 8> Stores;
455    SDValue StackPtr = StackBase;
456    unsigned Offset = 0;
457
458    // Do all but one copies using the full register width.
459    for (unsigned i = 1; i < NumRegs; i++) {
460      // Load one integer register's worth from the original location.
461      SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr,
462                                 LD->getPointerInfo().getWithOffset(Offset),
463                                 LD->isVolatile(), LD->isNonTemporal(),
464                                 LD->isInvariant(),
465                                 MinAlign(LD->getAlignment(), Offset));
466      // Follow the load with a store to the stack slot.  Remember the store.
467      Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
468                                    MachinePointerInfo(), false, false, 0));
469      // Increment the pointers.
470      Offset += RegBytes;
471      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
472      StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
473                             Increment);
474    }
475
476    // The last copy may be partial.  Do an extending load.
477    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
478                                  8 * (LoadedBytes - Offset));
479    SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
480                                  LD->getPointerInfo().getWithOffset(Offset),
481                                  MemVT, LD->isVolatile(),
482                                  LD->isNonTemporal(),
483                                  MinAlign(LD->getAlignment(), Offset));
484    // Follow the load with a store to the stack slot.  Remember the store.
485    // On big-endian machines this requires a truncating store to ensure
486    // that the bits end up in the right place.
487    Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
488                                       MachinePointerInfo(), MemVT,
489                                       false, false, 0));
490
491    // The order of the stores doesn't matter - say it with a TokenFactor.
492    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
493                             Stores.size());
494
495    // Finally, perform the original load only redirected to the stack slot.
496    Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
497                          MachinePointerInfo(), LoadedVT, false, false, 0);
498
499    // Callers expect a MERGE_VALUES node.
500    ValResult = Load;
501    ChainResult = TF;
502    return;
503  }
504  assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
505         "Unaligned load of unsupported type.");
506
507  // Compute the new VT that is half the size of the old one.  This is an
508  // integer MVT.
509  unsigned NumBits = LoadedVT.getSizeInBits();
510  EVT NewLoadedVT;
511  NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
512  NumBits >>= 1;
513
514  unsigned Alignment = LD->getAlignment();
515  unsigned IncrementSize = NumBits / 8;
516  ISD::LoadExtType HiExtType = LD->getExtensionType();
517
518  // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
519  if (HiExtType == ISD::NON_EXTLOAD)
520    HiExtType = ISD::ZEXTLOAD;
521
522  // Load the value in two parts
523  SDValue Lo, Hi;
524  if (TLI.isLittleEndian()) {
525    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
526                        NewLoadedVT, LD->isVolatile(),
527                        LD->isNonTemporal(), Alignment);
528    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
529                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
530    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
531                        LD->getPointerInfo().getWithOffset(IncrementSize),
532                        NewLoadedVT, LD->isVolatile(),
533                        LD->isNonTemporal(), MinAlign(Alignment,IncrementSize));
534  } else {
535    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
536                        NewLoadedVT, LD->isVolatile(),
537                        LD->isNonTemporal(), Alignment);
538    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
539                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
540    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
541                        LD->getPointerInfo().getWithOffset(IncrementSize),
542                        NewLoadedVT, LD->isVolatile(),
543                        LD->isNonTemporal(), MinAlign(Alignment,IncrementSize));
544  }
545
546  // aggregate the two parts
547  SDValue ShiftAmount = DAG.getConstant(NumBits,
548                                       TLI.getShiftAmountTy(Hi.getValueType()));
549  SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
550  Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
551
552  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
553                             Hi.getValue(1));
554
555  ValResult = Result;
556  ChainResult = TF;
557}
558
559/// PerformInsertVectorEltInMemory - Some target cannot handle a variable
560/// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
561/// is necessary to spill the vector being inserted into to memory, perform
562/// the insert there, and then read the result back.
563SDValue SelectionDAGLegalize::
564PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
565                               DebugLoc dl) {
566  SDValue Tmp1 = Vec;
567  SDValue Tmp2 = Val;
568  SDValue Tmp3 = Idx;
569
570  // If the target doesn't support this, we have to spill the input vector
571  // to a temporary stack slot, update the element, then reload it.  This is
572  // badness.  We could also load the value into a vector register (either
573  // with a "move to register" or "extload into register" instruction, then
574  // permute it into place, if the idx is a constant and if the idx is
575  // supported by the target.
576  EVT VT    = Tmp1.getValueType();
577  EVT EltVT = VT.getVectorElementType();
578  EVT IdxVT = Tmp3.getValueType();
579  EVT PtrVT = TLI.getPointerTy();
580  SDValue StackPtr = DAG.CreateStackTemporary(VT);
581
582  int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
583
584  // Store the vector.
585  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr,
586                            MachinePointerInfo::getFixedStack(SPFI),
587                            false, false, 0);
588
589  // Truncate or zero extend offset to target pointer type.
590  unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
591  Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3);
592  // Add the offset to the index.
593  unsigned EltSize = EltVT.getSizeInBits()/8;
594  Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
595  SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
596  // Store the scalar value.
597  Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT,
598                         false, false, 0);
599  // Load the updated vector.
600  return DAG.getLoad(VT, dl, Ch, StackPtr,
601                     MachinePointerInfo::getFixedStack(SPFI), false, false,
602                     false, 0);
603}
604
605
606SDValue SelectionDAGLegalize::
607ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) {
608  if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
609    // SCALAR_TO_VECTOR requires that the type of the value being inserted
610    // match the element type of the vector being created, except for
611    // integers in which case the inserted value can be over width.
612    EVT EltVT = Vec.getValueType().getVectorElementType();
613    if (Val.getValueType() == EltVT ||
614        (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
615      SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
616                                  Vec.getValueType(), Val);
617
618      unsigned NumElts = Vec.getValueType().getVectorNumElements();
619      // We generate a shuffle of InVec and ScVec, so the shuffle mask
620      // should be 0,1,2,3,4,5... with the appropriate element replaced with
621      // elt 0 of the RHS.
622      SmallVector<int, 8> ShufOps;
623      for (unsigned i = 0; i != NumElts; ++i)
624        ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
625
626      return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
627                                  &ShufOps[0]);
628    }
629  }
630  return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
631}
632
633SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
634  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
635  // FIXME: We shouldn't do this for TargetConstantFP's.
636  // FIXME: move this to the DAG Combiner!  Note that we can't regress due
637  // to phase ordering between legalized code and the dag combiner.  This
638  // probably means that we need to integrate dag combiner and legalizer
639  // together.
640  // We generally can't do this one for long doubles.
641  SDValue Tmp1 = ST->getChain();
642  SDValue Tmp2 = ST->getBasePtr();
643  SDValue Tmp3;
644  unsigned Alignment = ST->getAlignment();
645  bool isVolatile = ST->isVolatile();
646  bool isNonTemporal = ST->isNonTemporal();
647  DebugLoc dl = ST->getDebugLoc();
648  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
649    if (CFP->getValueType(0) == MVT::f32 &&
650        TLI.isTypeLegal(MVT::i32)) {
651      Tmp3 = DAG.getConstant(CFP->getValueAPF().
652                                      bitcastToAPInt().zextOrTrunc(32),
653                              MVT::i32);
654      return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
655                          isVolatile, isNonTemporal, Alignment);
656    }
657
658    if (CFP->getValueType(0) == MVT::f64) {
659      // If this target supports 64-bit registers, do a single 64-bit store.
660      if (TLI.isTypeLegal(MVT::i64)) {
661        Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
662                                  zextOrTrunc(64), MVT::i64);
663        return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
664                            isVolatile, isNonTemporal, Alignment);
665      }
666
667      if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) {
668        // Otherwise, if the target supports 32-bit registers, use 2 32-bit
669        // stores.  If the target supports neither 32- nor 64-bits, this
670        // xform is certainly not worth it.
671        const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt();
672        SDValue Lo = DAG.getConstant(IntVal.trunc(32), MVT::i32);
673        SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32);
674        if (TLI.isBigEndian()) std::swap(Lo, Hi);
675
676        Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getPointerInfo(), isVolatile,
677                          isNonTemporal, Alignment);
678        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
679                            DAG.getIntPtrConstant(4));
680        Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2,
681                          ST->getPointerInfo().getWithOffset(4),
682                          isVolatile, isNonTemporal, MinAlign(Alignment, 4U));
683
684        return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
685      }
686    }
687  }
688  return SDValue(0, 0);
689}
690
691/// LegalizeOp - Return a legal replacement for the given operation, with
692/// all legal operands.
693void SelectionDAGLegalize::LegalizeOp(SDNode *Node) {
694  if (Node->getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
695    return;
696
697  DebugLoc dl = Node->getDebugLoc();
698
699  for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
700    assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) ==
701             TargetLowering::TypeLegal &&
702           "Unexpected illegal type!");
703
704  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
705    assert((TLI.getTypeAction(*DAG.getContext(),
706                              Node->getOperand(i).getValueType()) ==
707              TargetLowering::TypeLegal ||
708            Node->getOperand(i).getOpcode() == ISD::TargetConstant) &&
709           "Unexpected illegal type!");
710
711  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
712  bool isCustom = false;
713
714  // Figure out the correct action; the way to query this varies by opcode
715  TargetLowering::LegalizeAction Action = TargetLowering::Legal;
716  bool SimpleFinishLegalizing = true;
717  switch (Node->getOpcode()) {
718  case ISD::INTRINSIC_W_CHAIN:
719  case ISD::INTRINSIC_WO_CHAIN:
720  case ISD::INTRINSIC_VOID:
721  case ISD::STACKSAVE:
722    Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
723    break;
724  case ISD::VAARG:
725    Action = TLI.getOperationAction(Node->getOpcode(),
726                                    Node->getValueType(0));
727    if (Action != TargetLowering::Promote)
728      Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
729    break;
730  case ISD::SINT_TO_FP:
731  case ISD::UINT_TO_FP:
732  case ISD::EXTRACT_VECTOR_ELT:
733    Action = TLI.getOperationAction(Node->getOpcode(),
734                                    Node->getOperand(0).getValueType());
735    break;
736  case ISD::FP_ROUND_INREG:
737  case ISD::SIGN_EXTEND_INREG: {
738    EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
739    Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
740    break;
741  }
742  case ISD::ATOMIC_STORE: {
743    Action = TLI.getOperationAction(Node->getOpcode(),
744                                    Node->getOperand(2).getValueType());
745    break;
746  }
747  case ISD::SELECT_CC:
748  case ISD::SETCC:
749  case ISD::BR_CC: {
750    unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
751                         Node->getOpcode() == ISD::SETCC ? 2 : 1;
752    unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
753    EVT OpVT = Node->getOperand(CompareOperand).getValueType();
754    ISD::CondCode CCCode =
755        cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
756    Action = TLI.getCondCodeAction(CCCode, OpVT);
757    if (Action == TargetLowering::Legal) {
758      if (Node->getOpcode() == ISD::SELECT_CC)
759        Action = TLI.getOperationAction(Node->getOpcode(),
760                                        Node->getValueType(0));
761      else
762        Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
763    }
764    break;
765  }
766  case ISD::LOAD:
767  case ISD::STORE:
768    // FIXME: Model these properly.  LOAD and STORE are complicated, and
769    // STORE expects the unlegalized operand in some cases.
770    SimpleFinishLegalizing = false;
771    break;
772  case ISD::CALLSEQ_START:
773  case ISD::CALLSEQ_END:
774    // FIXME: This shouldn't be necessary.  These nodes have special properties
775    // dealing with the recursive nature of legalization.  Removing this
776    // special case should be done as part of making LegalizeDAG non-recursive.
777    SimpleFinishLegalizing = false;
778    break;
779  case ISD::EXTRACT_ELEMENT:
780  case ISD::FLT_ROUNDS_:
781  case ISD::SADDO:
782  case ISD::SSUBO:
783  case ISD::UADDO:
784  case ISD::USUBO:
785  case ISD::SMULO:
786  case ISD::UMULO:
787  case ISD::FPOWI:
788  case ISD::MERGE_VALUES:
789  case ISD::EH_RETURN:
790  case ISD::FRAME_TO_ARGS_OFFSET:
791  case ISD::EH_SJLJ_SETJMP:
792  case ISD::EH_SJLJ_LONGJMP:
793    // These operations lie about being legal: when they claim to be legal,
794    // they should actually be expanded.
795    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
796    if (Action == TargetLowering::Legal)
797      Action = TargetLowering::Expand;
798    break;
799  case ISD::INIT_TRAMPOLINE:
800  case ISD::ADJUST_TRAMPOLINE:
801  case ISD::FRAMEADDR:
802  case ISD::RETURNADDR:
803    // These operations lie about being legal: when they claim to be legal,
804    // they should actually be custom-lowered.
805    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
806    if (Action == TargetLowering::Legal)
807      Action = TargetLowering::Custom;
808    break;
809  default:
810    if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
811      Action = TargetLowering::Legal;
812    } else {
813      Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
814    }
815    break;
816  }
817
818  if (SimpleFinishLegalizing) {
819    SmallVector<SDValue, 8> Ops;
820    for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
821      Ops.push_back(Node->getOperand(i));
822    switch (Node->getOpcode()) {
823    default: break;
824    case ISD::SHL:
825    case ISD::SRL:
826    case ISD::SRA:
827    case ISD::ROTL:
828    case ISD::ROTR:
829      // Legalizing shifts/rotates requires adjusting the shift amount
830      // to the appropriate width.
831      if (!Ops[1].getValueType().isVector()) {
832        SDValue SAO = DAG.getShiftAmountOperand(Ops[0].getValueType(), Ops[1]);
833        HandleSDNode Handle(SAO);
834        LegalizeOp(SAO.getNode());
835        Ops[1] = Handle.getValue();
836      }
837      break;
838    case ISD::SRL_PARTS:
839    case ISD::SRA_PARTS:
840    case ISD::SHL_PARTS:
841      // Legalizing shifts/rotates requires adjusting the shift amount
842      // to the appropriate width.
843      if (!Ops[2].getValueType().isVector()) {
844        SDValue SAO = DAG.getShiftAmountOperand(Ops[0].getValueType(), Ops[2]);
845        HandleSDNode Handle(SAO);
846        LegalizeOp(SAO.getNode());
847        Ops[2] = Handle.getValue();
848      }
849      break;
850    }
851
852    SDNode *NewNode = DAG.UpdateNodeOperands(Node, Ops.data(), Ops.size());
853    if (NewNode != Node) {
854      DAG.ReplaceAllUsesWith(Node, NewNode, this);
855      for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
856        DAG.TransferDbgValues(SDValue(Node, i), SDValue(NewNode, i));
857      ReplacedNode(Node);
858      Node = NewNode;
859    }
860    switch (Action) {
861    case TargetLowering::Legal:
862      return;
863    case TargetLowering::Custom:
864      // FIXME: The handling for custom lowering with multiple results is
865      // a complete mess.
866      Tmp1 = TLI.LowerOperation(SDValue(Node, 0), DAG);
867      if (Tmp1.getNode()) {
868        SmallVector<SDValue, 8> ResultVals;
869        for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
870          if (e == 1)
871            ResultVals.push_back(Tmp1);
872          else
873            ResultVals.push_back(Tmp1.getValue(i));
874        }
875        if (Tmp1.getNode() != Node || Tmp1.getResNo() != 0) {
876          DAG.ReplaceAllUsesWith(Node, ResultVals.data(), this);
877          for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
878            DAG.TransferDbgValues(SDValue(Node, i), ResultVals[i]);
879          ReplacedNode(Node);
880        }
881        return;
882      }
883
884      // FALL THROUGH
885    case TargetLowering::Expand:
886      ExpandNode(Node);
887      return;
888    case TargetLowering::Promote:
889      PromoteNode(Node);
890      return;
891    }
892  }
893
894  switch (Node->getOpcode()) {
895  default:
896#ifndef NDEBUG
897    dbgs() << "NODE: ";
898    Node->dump( &DAG);
899    dbgs() << "\n";
900#endif
901    llvm_unreachable("Do not know how to legalize this operator!");
902
903  case ISD::CALLSEQ_START:
904  case ISD::CALLSEQ_END:
905    break;
906  case ISD::LOAD: {
907    LoadSDNode *LD = cast<LoadSDNode>(Node);
908    Tmp1 = LD->getChain();   // Legalize the chain.
909    Tmp2 = LD->getBasePtr(); // Legalize the base pointer.
910
911    ISD::LoadExtType ExtType = LD->getExtensionType();
912    if (ExtType == ISD::NON_EXTLOAD) {
913      EVT VT = Node->getValueType(0);
914      Tmp3 = SDValue(Node, 0);
915      Tmp4 = SDValue(Node, 1);
916
917      switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
918      default: llvm_unreachable("This action is not supported yet!");
919      case TargetLowering::Legal:
920        // If this is an unaligned load and the target doesn't support it,
921        // expand it.
922        if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
923          Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
924          unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
925          if (LD->getAlignment() < ABIAlignment){
926            ExpandUnalignedLoad(cast<LoadSDNode>(Node),
927                                DAG, TLI, Tmp3, Tmp4);
928          }
929        }
930        break;
931      case TargetLowering::Custom:
932        Tmp1 = TLI.LowerOperation(Tmp3, DAG);
933        if (Tmp1.getNode()) {
934          Tmp3 = Tmp1;
935          Tmp4 = Tmp1.getValue(1);
936        }
937        break;
938      case TargetLowering::Promote: {
939        // Only promote a load of vector type to another.
940        assert(VT.isVector() && "Cannot promote this load!");
941        // Change base type to a different vector type.
942        EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
943
944        Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getPointerInfo(),
945                           LD->isVolatile(), LD->isNonTemporal(),
946                           LD->isInvariant(), LD->getAlignment());
947        Tmp3 = DAG.getNode(ISD::BITCAST, dl, VT, Tmp1);
948        Tmp4 = Tmp1.getValue(1);
949        break;
950      }
951      }
952      if (Tmp4.getNode() != Node) {
953        assert(Tmp3.getNode() != Node && "Load must be completely replaced");
954        DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp3);
955        DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Tmp4);
956        ReplacedNode(Node);
957      }
958      return;
959    }
960
961    EVT SrcVT = LD->getMemoryVT();
962    unsigned SrcWidth = SrcVT.getSizeInBits();
963    unsigned Alignment = LD->getAlignment();
964    bool isVolatile = LD->isVolatile();
965    bool isNonTemporal = LD->isNonTemporal();
966
967    if (SrcWidth != SrcVT.getStoreSizeInBits() &&
968        // Some targets pretend to have an i1 loading operation, and actually
969        // load an i8.  This trick is correct for ZEXTLOAD because the top 7
970        // bits are guaranteed to be zero; it helps the optimizers understand
971        // that these bits are zero.  It is also useful for EXTLOAD, since it
972        // tells the optimizers that those bits are undefined.  It would be
973        // nice to have an effective generic way of getting these benefits...
974        // Until such a way is found, don't insist on promoting i1 here.
975        (SrcVT != MVT::i1 ||
976         TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
977      // Promote to a byte-sized load if not loading an integral number of
978      // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
979      unsigned NewWidth = SrcVT.getStoreSizeInBits();
980      EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
981      SDValue Ch;
982
983      // The extra bits are guaranteed to be zero, since we stored them that
984      // way.  A zext load from NVT thus automatically gives zext from SrcVT.
985
986      ISD::LoadExtType NewExtType =
987        ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
988
989      SDValue Result =
990        DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
991                       Tmp1, Tmp2, LD->getPointerInfo(),
992                       NVT, isVolatile, isNonTemporal, Alignment);
993
994      Ch = Result.getValue(1); // The chain.
995
996      if (ExtType == ISD::SEXTLOAD)
997        // Having the top bits zero doesn't help when sign extending.
998        Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
999                             Result.getValueType(),
1000                             Result, DAG.getValueType(SrcVT));
1001      else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
1002        // All the top bits are guaranteed to be zero - inform the optimizers.
1003        Result = DAG.getNode(ISD::AssertZext, dl,
1004                             Result.getValueType(), Result,
1005                             DAG.getValueType(SrcVT));
1006
1007      Tmp1 = Result;
1008      Tmp2 = Ch;
1009    } else if (SrcWidth & (SrcWidth - 1)) {
1010      // If not loading a power-of-2 number of bits, expand as two loads.
1011      assert(!SrcVT.isVector() && "Unsupported extload!");
1012      unsigned RoundWidth = 1 << Log2_32(SrcWidth);
1013      assert(RoundWidth < SrcWidth);
1014      unsigned ExtraWidth = SrcWidth - RoundWidth;
1015      assert(ExtraWidth < RoundWidth);
1016      assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1017             "Load size not an integral number of bytes!");
1018      EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1019      EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1020      SDValue Lo, Hi, Ch;
1021      unsigned IncrementSize;
1022
1023      if (TLI.isLittleEndian()) {
1024        // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
1025        // Load the bottom RoundWidth bits.
1026        Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0),
1027                            Tmp1, Tmp2,
1028                            LD->getPointerInfo(), RoundVT, isVolatile,
1029                            isNonTemporal, Alignment);
1030
1031        // Load the remaining ExtraWidth bits.
1032        IncrementSize = RoundWidth / 8;
1033        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1034                           DAG.getIntPtrConstant(IncrementSize));
1035        Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1036                            LD->getPointerInfo().getWithOffset(IncrementSize),
1037                            ExtraVT, isVolatile, isNonTemporal,
1038                            MinAlign(Alignment, IncrementSize));
1039
1040        // Build a factor node to remember that this load is independent of
1041        // the other one.
1042        Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1043                         Hi.getValue(1));
1044
1045        // Move the top bits to the right place.
1046        Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1047                         DAG.getConstant(RoundWidth,
1048                                      TLI.getShiftAmountTy(Hi.getValueType())));
1049
1050        // Join the hi and lo parts.
1051        Tmp1 = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1052      } else {
1053        // Big endian - avoid unaligned loads.
1054        // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
1055        // Load the top RoundWidth bits.
1056        Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1057                            LD->getPointerInfo(), RoundVT, isVolatile,
1058                            isNonTemporal, Alignment);
1059
1060        // Load the remaining ExtraWidth bits.
1061        IncrementSize = RoundWidth / 8;
1062        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1063                           DAG.getIntPtrConstant(IncrementSize));
1064        Lo = DAG.getExtLoad(ISD::ZEXTLOAD,
1065                            dl, Node->getValueType(0), Tmp1, Tmp2,
1066                            LD->getPointerInfo().getWithOffset(IncrementSize),
1067                            ExtraVT, isVolatile, isNonTemporal,
1068                            MinAlign(Alignment, IncrementSize));
1069
1070        // Build a factor node to remember that this load is independent of
1071        // the other one.
1072        Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1073                         Hi.getValue(1));
1074
1075        // Move the top bits to the right place.
1076        Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1077                         DAG.getConstant(ExtraWidth,
1078                                      TLI.getShiftAmountTy(Hi.getValueType())));
1079
1080        // Join the hi and lo parts.
1081        Tmp1 = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1082      }
1083
1084      Tmp2 = Ch;
1085    } else {
1086      switch (TLI.getLoadExtAction(ExtType, SrcVT)) {
1087      default: llvm_unreachable("This action is not supported yet!");
1088      case TargetLowering::Custom:
1089        isCustom = true;
1090        // FALLTHROUGH
1091      case TargetLowering::Legal:
1092        Tmp1 = SDValue(Node, 0);
1093        Tmp2 = SDValue(Node, 1);
1094
1095        if (isCustom) {
1096          Tmp3 = TLI.LowerOperation(SDValue(Node, 0), DAG);
1097          if (Tmp3.getNode()) {
1098            Tmp1 = Tmp3;
1099            Tmp2 = Tmp3.getValue(1);
1100          }
1101        } else {
1102          // If this is an unaligned load and the target doesn't support it,
1103          // expand it.
1104          if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1105            Type *Ty =
1106              LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1107            unsigned ABIAlignment =
1108              TLI.getTargetData()->getABITypeAlignment(Ty);
1109            if (LD->getAlignment() < ABIAlignment){
1110              ExpandUnalignedLoad(cast<LoadSDNode>(Node),
1111                                  DAG, TLI, Tmp1, Tmp2);
1112            }
1113          }
1114        }
1115        break;
1116      case TargetLowering::Expand:
1117        if (!TLI.isLoadExtLegal(ISD::EXTLOAD, SrcVT) && TLI.isTypeLegal(SrcVT)) {
1118          SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2,
1119                                     LD->getPointerInfo(),
1120                                     LD->isVolatile(), LD->isNonTemporal(),
1121                                     LD->isInvariant(), LD->getAlignment());
1122          unsigned ExtendOp;
1123          switch (ExtType) {
1124          case ISD::EXTLOAD:
1125            ExtendOp = (SrcVT.isFloatingPoint() ?
1126                        ISD::FP_EXTEND : ISD::ANY_EXTEND);
1127            break;
1128          case ISD::SEXTLOAD: ExtendOp = ISD::SIGN_EXTEND; break;
1129          case ISD::ZEXTLOAD: ExtendOp = ISD::ZERO_EXTEND; break;
1130          default: llvm_unreachable("Unexpected extend load type!");
1131          }
1132          Tmp1 = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load);
1133          Tmp2 = Load.getValue(1);
1134          break;
1135        }
1136
1137        assert(!SrcVT.isVector() &&
1138               "Vector Loads are handled in LegalizeVectorOps");
1139
1140        // FIXME: This does not work for vectors on most targets.  Sign- and
1141        // zero-extend operations are currently folded into extending loads,
1142        // whether they are legal or not, and then we end up here without any
1143        // support for legalizing them.
1144        assert(ExtType != ISD::EXTLOAD &&
1145               "EXTLOAD should always be supported!");
1146        // Turn the unsupported load into an EXTLOAD followed by an explicit
1147        // zero/sign extend inreg.
1148        SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0),
1149                                        Tmp1, Tmp2, LD->getPointerInfo(), SrcVT,
1150                                        LD->isVolatile(), LD->isNonTemporal(),
1151                                        LD->getAlignment());
1152        SDValue ValRes;
1153        if (ExtType == ISD::SEXTLOAD)
1154          ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1155                               Result.getValueType(),
1156                               Result, DAG.getValueType(SrcVT));
1157        else
1158          ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType());
1159        Tmp1 = ValRes;
1160        Tmp2 = Result.getValue(1);
1161        break;
1162      }
1163    }
1164
1165    // Since loads produce two values, make sure to remember that we legalized
1166    // both of them.
1167    if (Tmp2.getNode() != Node) {
1168      assert(Tmp1.getNode() != Node && "Load must be completely replaced");
1169      DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp1);
1170      DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Tmp2);
1171      ReplacedNode(Node);
1172    }
1173    break;
1174  }
1175  case ISD::STORE: {
1176    StoreSDNode *ST = cast<StoreSDNode>(Node);
1177    Tmp1 = ST->getChain();
1178    Tmp2 = ST->getBasePtr();
1179    unsigned Alignment = ST->getAlignment();
1180    bool isVolatile = ST->isVolatile();
1181    bool isNonTemporal = ST->isNonTemporal();
1182
1183    if (!ST->isTruncatingStore()) {
1184      if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
1185        ReplaceNode(ST, OptStore);
1186        break;
1187      }
1188
1189      {
1190        Tmp3 = ST->getValue();
1191        EVT VT = Tmp3.getValueType();
1192        switch (TLI.getOperationAction(ISD::STORE, VT)) {
1193        default: llvm_unreachable("This action is not supported yet!");
1194        case TargetLowering::Legal:
1195          // If this is an unaligned store and the target doesn't support it,
1196          // expand it.
1197          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1198            Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1199            unsigned ABIAlignment= TLI.getTargetData()->getABITypeAlignment(Ty);
1200            if (ST->getAlignment() < ABIAlignment)
1201              ExpandUnalignedStore(cast<StoreSDNode>(Node),
1202                                   DAG, TLI, this);
1203          }
1204          break;
1205        case TargetLowering::Custom:
1206          Tmp1 = TLI.LowerOperation(SDValue(Node, 0), DAG);
1207          if (Tmp1.getNode())
1208            ReplaceNode(SDValue(Node, 0), Tmp1);
1209          break;
1210        case TargetLowering::Promote: {
1211          assert(VT.isVector() && "Unknown legal promote case!");
1212          Tmp3 = DAG.getNode(ISD::BITCAST, dl,
1213                             TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3);
1214          SDValue Result =
1215            DAG.getStore(Tmp1, dl, Tmp3, Tmp2,
1216                         ST->getPointerInfo(), isVolatile,
1217                         isNonTemporal, Alignment);
1218          ReplaceNode(SDValue(Node, 0), Result);
1219          break;
1220        }
1221        }
1222        break;
1223      }
1224    } else {
1225      Tmp3 = ST->getValue();
1226
1227      EVT StVT = ST->getMemoryVT();
1228      unsigned StWidth = StVT.getSizeInBits();
1229
1230      if (StWidth != StVT.getStoreSizeInBits()) {
1231        // Promote to a byte-sized store with upper bits zero if not
1232        // storing an integral number of bytes.  For example, promote
1233        // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
1234        EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
1235                                    StVT.getStoreSizeInBits());
1236        Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT);
1237        SDValue Result =
1238          DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
1239                            NVT, isVolatile, isNonTemporal, Alignment);
1240        ReplaceNode(SDValue(Node, 0), Result);
1241      } else if (StWidth & (StWidth - 1)) {
1242        // If not storing a power-of-2 number of bits, expand as two stores.
1243        assert(!StVT.isVector() && "Unsupported truncstore!");
1244        unsigned RoundWidth = 1 << Log2_32(StWidth);
1245        assert(RoundWidth < StWidth);
1246        unsigned ExtraWidth = StWidth - RoundWidth;
1247        assert(ExtraWidth < RoundWidth);
1248        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1249               "Store size not an integral number of bytes!");
1250        EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1251        EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1252        SDValue Lo, Hi;
1253        unsigned IncrementSize;
1254
1255        if (TLI.isLittleEndian()) {
1256          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
1257          // Store the bottom RoundWidth bits.
1258          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
1259                                 RoundVT,
1260                                 isVolatile, isNonTemporal, Alignment);
1261
1262          // Store the remaining ExtraWidth bits.
1263          IncrementSize = RoundWidth / 8;
1264          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1265                             DAG.getIntPtrConstant(IncrementSize));
1266          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1267                           DAG.getConstant(RoundWidth,
1268                                    TLI.getShiftAmountTy(Tmp3.getValueType())));
1269          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2,
1270                             ST->getPointerInfo().getWithOffset(IncrementSize),
1271                                 ExtraVT, isVolatile, isNonTemporal,
1272                                 MinAlign(Alignment, IncrementSize));
1273        } else {
1274          // Big endian - avoid unaligned stores.
1275          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
1276          // Store the top RoundWidth bits.
1277          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1278                           DAG.getConstant(ExtraWidth,
1279                                    TLI.getShiftAmountTy(Tmp3.getValueType())));
1280          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getPointerInfo(),
1281                                 RoundVT, isVolatile, isNonTemporal, Alignment);
1282
1283          // Store the remaining ExtraWidth bits.
1284          IncrementSize = RoundWidth / 8;
1285          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1286                             DAG.getIntPtrConstant(IncrementSize));
1287          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2,
1288                              ST->getPointerInfo().getWithOffset(IncrementSize),
1289                                 ExtraVT, isVolatile, isNonTemporal,
1290                                 MinAlign(Alignment, IncrementSize));
1291        }
1292
1293        // The order of the stores doesn't matter.
1294        SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
1295        ReplaceNode(SDValue(Node, 0), Result);
1296      } else {
1297        switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
1298        default: llvm_unreachable("This action is not supported yet!");
1299        case TargetLowering::Legal:
1300          // If this is an unaligned store and the target doesn't support it,
1301          // expand it.
1302          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1303            Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1304            unsigned ABIAlignment= TLI.getTargetData()->getABITypeAlignment(Ty);
1305            if (ST->getAlignment() < ABIAlignment)
1306              ExpandUnalignedStore(cast<StoreSDNode>(Node), DAG, TLI, this);
1307          }
1308          break;
1309        case TargetLowering::Custom:
1310          ReplaceNode(SDValue(Node, 0),
1311                      TLI.LowerOperation(SDValue(Node, 0), DAG));
1312          break;
1313        case TargetLowering::Expand:
1314          assert(!StVT.isVector() &&
1315                 "Vector Stores are handled in LegalizeVectorOps");
1316
1317          // TRUNCSTORE:i16 i32 -> STORE i16
1318          assert(TLI.isTypeLegal(StVT) && "Do not know how to expand this store!");
1319          Tmp3 = DAG.getNode(ISD::TRUNCATE, dl, StVT, Tmp3);
1320          SDValue Result =
1321            DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
1322                         isVolatile, isNonTemporal, Alignment);
1323          ReplaceNode(SDValue(Node, 0), Result);
1324          break;
1325        }
1326      }
1327    }
1328    break;
1329  }
1330  }
1331}
1332
1333SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1334  SDValue Vec = Op.getOperand(0);
1335  SDValue Idx = Op.getOperand(1);
1336  DebugLoc dl = Op.getDebugLoc();
1337  // Store the value to a temporary stack slot, then LOAD the returned part.
1338  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1339  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
1340                            MachinePointerInfo(), false, false, 0);
1341
1342  // Add the offset to the index.
1343  unsigned EltSize =
1344      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1345  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1346                    DAG.getConstant(EltSize, Idx.getValueType()));
1347
1348  if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1349    Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1350  else
1351    Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1352
1353  StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
1354
1355  if (Op.getValueType().isVector())
1356    return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr,MachinePointerInfo(),
1357                       false, false, false, 0);
1358  return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
1359                        MachinePointerInfo(),
1360                        Vec.getValueType().getVectorElementType(),
1361                        false, false, 0);
1362}
1363
1364SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) {
1365  assert(Op.getValueType().isVector() && "Non-vector insert subvector!");
1366
1367  SDValue Vec  = Op.getOperand(0);
1368  SDValue Part = Op.getOperand(1);
1369  SDValue Idx  = Op.getOperand(2);
1370  DebugLoc dl  = Op.getDebugLoc();
1371
1372  // Store the value to a temporary stack slot, then LOAD the returned part.
1373
1374  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1375  int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1376  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI);
1377
1378  // First store the whole vector.
1379  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo,
1380                            false, false, 0);
1381
1382  // Then store the inserted part.
1383
1384  // Add the offset to the index.
1385  unsigned EltSize =
1386      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1387
1388  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1389                    DAG.getConstant(EltSize, Idx.getValueType()));
1390
1391  if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1392    Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1393  else
1394    Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1395
1396  SDValue SubStackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx,
1397                                    StackPtr);
1398
1399  // Store the subvector.
1400  Ch = DAG.getStore(DAG.getEntryNode(), dl, Part, SubStackPtr,
1401                    MachinePointerInfo(), false, false, 0);
1402
1403  // Finally, load the updated vector.
1404  return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo,
1405                     false, false, false, 0);
1406}
1407
1408SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1409  // We can't handle this case efficiently.  Allocate a sufficiently
1410  // aligned object on the stack, store each element into it, then load
1411  // the result as a vector.
1412  // Create the stack frame object.
1413  EVT VT = Node->getValueType(0);
1414  EVT EltVT = VT.getVectorElementType();
1415  DebugLoc dl = Node->getDebugLoc();
1416  SDValue FIPtr = DAG.CreateStackTemporary(VT);
1417  int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1418  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI);
1419
1420  // Emit a store of each element to the stack slot.
1421  SmallVector<SDValue, 8> Stores;
1422  unsigned TypeByteSize = EltVT.getSizeInBits() / 8;
1423  // Store (in the right endianness) the elements to memory.
1424  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1425    // Ignore undef elements.
1426    if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1427
1428    unsigned Offset = TypeByteSize*i;
1429
1430    SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType());
1431    Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
1432
1433    // If the destination vector element type is narrower than the source
1434    // element type, only store the bits necessary.
1435    if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) {
1436      Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
1437                                         Node->getOperand(i), Idx,
1438                                         PtrInfo.getWithOffset(Offset),
1439                                         EltVT, false, false, 0));
1440    } else
1441      Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl,
1442                                    Node->getOperand(i), Idx,
1443                                    PtrInfo.getWithOffset(Offset),
1444                                    false, false, 0));
1445  }
1446
1447  SDValue StoreChain;
1448  if (!Stores.empty())    // Not all undef elements?
1449    StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1450                             &Stores[0], Stores.size());
1451  else
1452    StoreChain = DAG.getEntryNode();
1453
1454  // Result is a load from the stack slot.
1455  return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo,
1456                     false, false, false, 0);
1457}
1458
1459SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) {
1460  DebugLoc dl = Node->getDebugLoc();
1461  SDValue Tmp1 = Node->getOperand(0);
1462  SDValue Tmp2 = Node->getOperand(1);
1463
1464  // Get the sign bit of the RHS.  First obtain a value that has the same
1465  // sign as the sign bit, i.e. negative if and only if the sign bit is 1.
1466  SDValue SignBit;
1467  EVT FloatVT = Tmp2.getValueType();
1468  EVT IVT = EVT::getIntegerVT(*DAG.getContext(), FloatVT.getSizeInBits());
1469  if (TLI.isTypeLegal(IVT)) {
1470    // Convert to an integer with the same sign bit.
1471    SignBit = DAG.getNode(ISD::BITCAST, dl, IVT, Tmp2);
1472  } else {
1473    // Store the float to memory, then load the sign part out as an integer.
1474    MVT LoadTy = TLI.getPointerTy();
1475    // First create a temporary that is aligned for both the load and store.
1476    SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
1477    // Then store the float to it.
1478    SDValue Ch =
1479      DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StackPtr, MachinePointerInfo(),
1480                   false, false, 0);
1481    if (TLI.isBigEndian()) {
1482      assert(FloatVT.isByteSized() && "Unsupported floating point type!");
1483      // Load out a legal integer with the same sign bit as the float.
1484      SignBit = DAG.getLoad(LoadTy, dl, Ch, StackPtr, MachinePointerInfo(),
1485                            false, false, false, 0);
1486    } else { // Little endian
1487      SDValue LoadPtr = StackPtr;
1488      // The float may be wider than the integer we are going to load.  Advance
1489      // the pointer so that the loaded integer will contain the sign bit.
1490      unsigned Strides = (FloatVT.getSizeInBits()-1)/LoadTy.getSizeInBits();
1491      unsigned ByteOffset = (Strides * LoadTy.getSizeInBits()) / 8;
1492      LoadPtr = DAG.getNode(ISD::ADD, dl, LoadPtr.getValueType(),
1493                            LoadPtr, DAG.getIntPtrConstant(ByteOffset));
1494      // Load a legal integer containing the sign bit.
1495      SignBit = DAG.getLoad(LoadTy, dl, Ch, LoadPtr, MachinePointerInfo(),
1496                            false, false, false, 0);
1497      // Move the sign bit to the top bit of the loaded integer.
1498      unsigned BitShift = LoadTy.getSizeInBits() -
1499        (FloatVT.getSizeInBits() - 8 * ByteOffset);
1500      assert(BitShift < LoadTy.getSizeInBits() && "Pointer advanced wrong?");
1501      if (BitShift)
1502        SignBit = DAG.getNode(ISD::SHL, dl, LoadTy, SignBit,
1503                              DAG.getConstant(BitShift,
1504                                 TLI.getShiftAmountTy(SignBit.getValueType())));
1505    }
1506  }
1507  // Now get the sign bit proper, by seeing whether the value is negative.
1508  SignBit = DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()),
1509                         SignBit, DAG.getConstant(0, SignBit.getValueType()),
1510                         ISD::SETLT);
1511  // Get the absolute value of the result.
1512  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1);
1513  // Select between the nabs and abs value based on the sign bit of
1514  // the input.
1515  return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit,
1516                     DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal),
1517                     AbsVal);
1518}
1519
1520void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1521                                           SmallVectorImpl<SDValue> &Results) {
1522  unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1523  assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1524          " not tell us which reg is the stack pointer!");
1525  DebugLoc dl = Node->getDebugLoc();
1526  EVT VT = Node->getValueType(0);
1527  SDValue Tmp1 = SDValue(Node, 0);
1528  SDValue Tmp2 = SDValue(Node, 1);
1529  SDValue Tmp3 = Node->getOperand(2);
1530  SDValue Chain = Tmp1.getOperand(0);
1531
1532  // Chain the dynamic stack allocation so that it doesn't modify the stack
1533  // pointer when other instructions are using the stack.
1534  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
1535
1536  SDValue Size  = Tmp2.getOperand(1);
1537  SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1538  Chain = SP.getValue(1);
1539  unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1540  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
1541  if (Align > StackAlign)
1542    SP = DAG.getNode(ISD::AND, dl, VT, SP,
1543                      DAG.getConstant(-(uint64_t)Align, VT));
1544  Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size);       // Value
1545  Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain
1546
1547  Tmp2 = DAG.getCALLSEQ_END(Chain,  DAG.getIntPtrConstant(0, true),
1548                            DAG.getIntPtrConstant(0, true), SDValue());
1549
1550  Results.push_back(Tmp1);
1551  Results.push_back(Tmp2);
1552}
1553
1554/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
1555/// condition code CC on the current target. This routine expands SETCC with
1556/// illegal condition code into AND / OR of multiple SETCC values.
1557void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT,
1558                                                 SDValue &LHS, SDValue &RHS,
1559                                                 SDValue &CC,
1560                                                 DebugLoc dl) {
1561  EVT OpVT = LHS.getValueType();
1562  ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1563  switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1564  default: llvm_unreachable("Unknown condition code action!");
1565  case TargetLowering::Legal:
1566    // Nothing to do.
1567    break;
1568  case TargetLowering::Expand: {
1569    ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1570    unsigned Opc = 0;
1571    switch (CCCode) {
1572    default: llvm_unreachable("Don't know how to expand this condition!");
1573    case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1574    case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1575    case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1576    case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1577    case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1578    case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1579    case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1580    case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1581    case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1582    case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1583    case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1584    case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1585    // FIXME: Implement more expansions.
1586    }
1587
1588    SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1589    SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
1590    LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1591    RHS = SDValue();
1592    CC  = SDValue();
1593    break;
1594  }
1595  }
1596}
1597
1598/// EmitStackConvert - Emit a store/load combination to the stack.  This stores
1599/// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
1600/// a load from the stack slot to DestVT, extending it if needed.
1601/// The resultant code need not be legal.
1602SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
1603                                               EVT SlotVT,
1604                                               EVT DestVT,
1605                                               DebugLoc dl) {
1606  // Create the stack frame object.
1607  unsigned SrcAlign =
1608    TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType().
1609                                              getTypeForEVT(*DAG.getContext()));
1610  SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1611
1612  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1613  int SPFI = StackPtrFI->getIndex();
1614  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(SPFI);
1615
1616  unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
1617  unsigned SlotSize = SlotVT.getSizeInBits();
1618  unsigned DestSize = DestVT.getSizeInBits();
1619  Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
1620  unsigned DestAlign = TLI.getTargetData()->getPrefTypeAlignment(DestType);
1621
1622  // Emit a store to the stack slot.  Use a truncstore if the input value is
1623  // later than DestVT.
1624  SDValue Store;
1625
1626  if (SrcSize > SlotSize)
1627    Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1628                              PtrInfo, SlotVT, false, false, SrcAlign);
1629  else {
1630    assert(SrcSize == SlotSize && "Invalid store");
1631    Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1632                         PtrInfo, false, false, SrcAlign);
1633  }
1634
1635  // Result is a load from the stack slot.
1636  if (SlotSize == DestSize)
1637    return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo,
1638                       false, false, false, DestAlign);
1639
1640  assert(SlotSize < DestSize && "Unknown extension!");
1641  return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr,
1642                        PtrInfo, SlotVT, false, false, DestAlign);
1643}
1644
1645SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1646  DebugLoc dl = Node->getDebugLoc();
1647  // Create a vector sized/aligned stack slot, store the value to element #0,
1648  // then load the whole vector back out.
1649  SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1650
1651  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1652  int SPFI = StackPtrFI->getIndex();
1653
1654  SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0),
1655                                 StackPtr,
1656                                 MachinePointerInfo::getFixedStack(SPFI),
1657                                 Node->getValueType(0).getVectorElementType(),
1658                                 false, false, 0);
1659  return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr,
1660                     MachinePointerInfo::getFixedStack(SPFI),
1661                     false, false, false, 0);
1662}
1663
1664
1665/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
1666/// support the operation, but do support the resultant vector type.
1667SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1668  unsigned NumElems = Node->getNumOperands();
1669  SDValue Value1, Value2;
1670  DebugLoc dl = Node->getDebugLoc();
1671  EVT VT = Node->getValueType(0);
1672  EVT OpVT = Node->getOperand(0).getValueType();
1673  EVT EltVT = VT.getVectorElementType();
1674
1675  // If the only non-undef value is the low element, turn this into a
1676  // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
1677  bool isOnlyLowElement = true;
1678  bool MoreThanTwoValues = false;
1679  bool isConstant = true;
1680  for (unsigned i = 0; i < NumElems; ++i) {
1681    SDValue V = Node->getOperand(i);
1682    if (V.getOpcode() == ISD::UNDEF)
1683      continue;
1684    if (i > 0)
1685      isOnlyLowElement = false;
1686    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1687      isConstant = false;
1688
1689    if (!Value1.getNode()) {
1690      Value1 = V;
1691    } else if (!Value2.getNode()) {
1692      if (V != Value1)
1693        Value2 = V;
1694    } else if (V != Value1 && V != Value2) {
1695      MoreThanTwoValues = true;
1696    }
1697  }
1698
1699  if (!Value1.getNode())
1700    return DAG.getUNDEF(VT);
1701
1702  if (isOnlyLowElement)
1703    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1704
1705  // If all elements are constants, create a load from the constant pool.
1706  if (isConstant) {
1707    SmallVector<Constant*, 16> CV;
1708    for (unsigned i = 0, e = NumElems; i != e; ++i) {
1709      if (ConstantFPSDNode *V =
1710          dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1711        CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1712      } else if (ConstantSDNode *V =
1713                 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1714        if (OpVT==EltVT)
1715          CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1716        else {
1717          // If OpVT and EltVT don't match, EltVT is not legal and the
1718          // element values have been promoted/truncated earlier.  Undo this;
1719          // we don't want a v16i8 to become a v16i32 for example.
1720          const ConstantInt *CI = V->getConstantIntValue();
1721          CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
1722                                        CI->getZExtValue()));
1723        }
1724      } else {
1725        assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
1726        Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
1727        CV.push_back(UndefValue::get(OpNTy));
1728      }
1729    }
1730    Constant *CP = ConstantVector::get(CV);
1731    SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
1732    unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
1733    return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
1734                       MachinePointerInfo::getConstantPool(),
1735                       false, false, false, Alignment);
1736  }
1737
1738  if (!MoreThanTwoValues) {
1739    SmallVector<int, 8> ShuffleVec(NumElems, -1);
1740    for (unsigned i = 0; i < NumElems; ++i) {
1741      SDValue V = Node->getOperand(i);
1742      if (V.getOpcode() == ISD::UNDEF)
1743        continue;
1744      ShuffleVec[i] = V == Value1 ? 0 : NumElems;
1745    }
1746    if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
1747      // Get the splatted value into the low element of a vector register.
1748      SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
1749      SDValue Vec2;
1750      if (Value2.getNode())
1751        Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
1752      else
1753        Vec2 = DAG.getUNDEF(VT);
1754
1755      // Return shuffle(LowValVec, undef, <0,0,0,0>)
1756      return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
1757    }
1758  }
1759
1760  // Otherwise, we can't handle this case efficiently.
1761  return ExpandVectorBuildThroughStack(Node);
1762}
1763
1764// ExpandLibCall - Expand a node into a call to a libcall.  If the result value
1765// does not fit into a register, return the lo part and set the hi part to the
1766// by-reg argument.  If it does fit into a single register, return the result
1767// and leave the Hi part unset.
1768SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
1769                                            bool isSigned) {
1770  // The input chain to this libcall is the entry node of the function.
1771  // Legalizing the call will automatically add the previous call to the
1772  // dependence.
1773  SDValue InChain = DAG.getEntryNode();
1774
1775  TargetLowering::ArgListTy Args;
1776  TargetLowering::ArgListEntry Entry;
1777  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1778    EVT ArgVT = Node->getOperand(i).getValueType();
1779    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1780    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
1781    Entry.isSExt = isSigned;
1782    Entry.isZExt = !isSigned;
1783    Args.push_back(Entry);
1784  }
1785  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1786                                         TLI.getPointerTy());
1787
1788  Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1789
1790  // isTailCall may be true since the callee does not reference caller stack
1791  // frame. Check if it's in the right position.
1792  bool isTailCall = isInTailCallPosition(DAG, Node, TLI);
1793  std::pair<SDValue, SDValue> CallInfo =
1794    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
1795                    0, TLI.getLibcallCallingConv(LC), isTailCall,
1796                    /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
1797                    Callee, Args, DAG, Node->getDebugLoc());
1798
1799  if (!CallInfo.second.getNode())
1800    // It's a tailcall, return the chain (which is the DAG root).
1801    return DAG.getRoot();
1802
1803  return CallInfo.first;
1804}
1805
1806/// ExpandLibCall - Generate a libcall taking the given operands as arguments
1807/// and returning a result of type RetVT.
1808SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, EVT RetVT,
1809                                            const SDValue *Ops, unsigned NumOps,
1810                                            bool isSigned, DebugLoc dl) {
1811  TargetLowering::ArgListTy Args;
1812  Args.reserve(NumOps);
1813
1814  TargetLowering::ArgListEntry Entry;
1815  for (unsigned i = 0; i != NumOps; ++i) {
1816    Entry.Node = Ops[i];
1817    Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
1818    Entry.isSExt = isSigned;
1819    Entry.isZExt = !isSigned;
1820    Args.push_back(Entry);
1821  }
1822  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1823                                         TLI.getPointerTy());
1824
1825  Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
1826  std::pair<SDValue,SDValue> CallInfo =
1827  TLI.LowerCallTo(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false,
1828                  false, 0, TLI.getLibcallCallingConv(LC), false,
1829                  /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
1830                  Callee, Args, DAG, dl);
1831
1832  return CallInfo.first;
1833}
1834
1835// ExpandChainLibCall - Expand a node into a call to a libcall. Similar to
1836// ExpandLibCall except that the first operand is the in-chain.
1837std::pair<SDValue, SDValue>
1838SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC,
1839                                         SDNode *Node,
1840                                         bool isSigned) {
1841  SDValue InChain = Node->getOperand(0);
1842
1843  TargetLowering::ArgListTy Args;
1844  TargetLowering::ArgListEntry Entry;
1845  for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) {
1846    EVT ArgVT = Node->getOperand(i).getValueType();
1847    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1848    Entry.Node = Node->getOperand(i);
1849    Entry.Ty = ArgTy;
1850    Entry.isSExt = isSigned;
1851    Entry.isZExt = !isSigned;
1852    Args.push_back(Entry);
1853  }
1854  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1855                                         TLI.getPointerTy());
1856
1857  Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1858  std::pair<SDValue, SDValue> CallInfo =
1859    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
1860                    0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false,
1861                    /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
1862                    Callee, Args, DAG, Node->getDebugLoc());
1863
1864  return CallInfo;
1865}
1866
1867SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
1868                                              RTLIB::Libcall Call_F32,
1869                                              RTLIB::Libcall Call_F64,
1870                                              RTLIB::Libcall Call_F80,
1871                                              RTLIB::Libcall Call_PPCF128) {
1872  RTLIB::Libcall LC;
1873  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1874  default: llvm_unreachable("Unexpected request for libcall!");
1875  case MVT::f32: LC = Call_F32; break;
1876  case MVT::f64: LC = Call_F64; break;
1877  case MVT::f80: LC = Call_F80; break;
1878  case MVT::ppcf128: LC = Call_PPCF128; break;
1879  }
1880  return ExpandLibCall(LC, Node, false);
1881}
1882
1883SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
1884                                               RTLIB::Libcall Call_I8,
1885                                               RTLIB::Libcall Call_I16,
1886                                               RTLIB::Libcall Call_I32,
1887                                               RTLIB::Libcall Call_I64,
1888                                               RTLIB::Libcall Call_I128) {
1889  RTLIB::Libcall LC;
1890  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1891  default: llvm_unreachable("Unexpected request for libcall!");
1892  case MVT::i8:   LC = Call_I8; break;
1893  case MVT::i16:  LC = Call_I16; break;
1894  case MVT::i32:  LC = Call_I32; break;
1895  case MVT::i64:  LC = Call_I64; break;
1896  case MVT::i128: LC = Call_I128; break;
1897  }
1898  return ExpandLibCall(LC, Node, isSigned);
1899}
1900
1901/// isDivRemLibcallAvailable - Return true if divmod libcall is available.
1902static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned,
1903                                     const TargetLowering &TLI) {
1904  RTLIB::Libcall LC;
1905  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1906  default: llvm_unreachable("Unexpected request for libcall!");
1907  case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
1908  case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
1909  case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
1910  case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
1911  case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
1912  }
1913
1914  return TLI.getLibcallName(LC) != 0;
1915}
1916
1917/// UseDivRem - Only issue divrem libcall if both quotient and remainder are
1918/// needed.
1919static bool UseDivRem(SDNode *Node, bool isSigned, bool isDIV) {
1920  unsigned OtherOpcode = 0;
1921  if (isSigned)
1922    OtherOpcode = isDIV ? ISD::SREM : ISD::SDIV;
1923  else
1924    OtherOpcode = isDIV ? ISD::UREM : ISD::UDIV;
1925
1926  SDValue Op0 = Node->getOperand(0);
1927  SDValue Op1 = Node->getOperand(1);
1928  for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
1929         UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
1930    SDNode *User = *UI;
1931    if (User == Node)
1932      continue;
1933    if (User->getOpcode() == OtherOpcode &&
1934        User->getOperand(0) == Op0 &&
1935        User->getOperand(1) == Op1)
1936      return true;
1937  }
1938  return false;
1939}
1940
1941/// ExpandDivRemLibCall - Issue libcalls to __{u}divmod to compute div / rem
1942/// pairs.
1943void
1944SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node,
1945                                          SmallVectorImpl<SDValue> &Results) {
1946  unsigned Opcode = Node->getOpcode();
1947  bool isSigned = Opcode == ISD::SDIVREM;
1948
1949  RTLIB::Libcall LC;
1950  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1951  default: llvm_unreachable("Unexpected request for libcall!");
1952  case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
1953  case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
1954  case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
1955  case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
1956  case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
1957  }
1958
1959  // The input chain to this libcall is the entry node of the function.
1960  // Legalizing the call will automatically add the previous call to the
1961  // dependence.
1962  SDValue InChain = DAG.getEntryNode();
1963
1964  EVT RetVT = Node->getValueType(0);
1965  Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
1966
1967  TargetLowering::ArgListTy Args;
1968  TargetLowering::ArgListEntry Entry;
1969  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1970    EVT ArgVT = Node->getOperand(i).getValueType();
1971    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1972    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
1973    Entry.isSExt = isSigned;
1974    Entry.isZExt = !isSigned;
1975    Args.push_back(Entry);
1976  }
1977
1978  // Also pass the return address of the remainder.
1979  SDValue FIPtr = DAG.CreateStackTemporary(RetVT);
1980  Entry.Node = FIPtr;
1981  Entry.Ty = RetTy->getPointerTo();
1982  Entry.isSExt = isSigned;
1983  Entry.isZExt = !isSigned;
1984  Args.push_back(Entry);
1985
1986  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1987                                         TLI.getPointerTy());
1988
1989  DebugLoc dl = Node->getDebugLoc();
1990  std::pair<SDValue, SDValue> CallInfo =
1991    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
1992                    0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false,
1993                    /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
1994                    Callee, Args, DAG, dl);
1995
1996  // Remainder is loaded back from the stack frame.
1997  SDValue Rem = DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr,
1998                            MachinePointerInfo(), false, false, false, 0);
1999  Results.push_back(CallInfo.first);
2000  Results.push_back(Rem);
2001}
2002
2003/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
2004/// INT_TO_FP operation of the specified operand when the target requests that
2005/// we expand it.  At this point, we know that the result and operand types are
2006/// legal for the target.
2007SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
2008                                                   SDValue Op0,
2009                                                   EVT DestVT,
2010                                                   DebugLoc dl) {
2011  if (Op0.getValueType() == MVT::i32) {
2012    // simple 32-bit [signed|unsigned] integer to float/double expansion
2013
2014    // Get the stack frame index of a 8 byte buffer.
2015    SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
2016
2017    // word offset constant for Hi/Lo address computation
2018    SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy());
2019    // set up Hi and Lo (into buffer) address based on endian
2020    SDValue Hi = StackSlot;
2021    SDValue Lo = DAG.getNode(ISD::ADD, dl,
2022                             TLI.getPointerTy(), StackSlot, WordOff);
2023    if (TLI.isLittleEndian())
2024      std::swap(Hi, Lo);
2025
2026    // if signed map to unsigned space
2027    SDValue Op0Mapped;
2028    if (isSigned) {
2029      // constant used to invert sign bit (signed to unsigned mapping)
2030      SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32);
2031      Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
2032    } else {
2033      Op0Mapped = Op0;
2034    }
2035    // store the lo of the constructed double - based on integer input
2036    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
2037                                  Op0Mapped, Lo, MachinePointerInfo(),
2038                                  false, false, 0);
2039    // initial hi portion of constructed double
2040    SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
2041    // store the hi of the constructed double - biased exponent
2042    SDValue Store2 = DAG.getStore(Store1, dl, InitialHi, Hi,
2043                                  MachinePointerInfo(),
2044                                  false, false, 0);
2045    // load the constructed double
2046    SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot,
2047                               MachinePointerInfo(), false, false, false, 0);
2048    // FP constant to bias correct the final result
2049    SDValue Bias = DAG.getConstantFP(isSigned ?
2050                                     BitsToDouble(0x4330000080000000ULL) :
2051                                     BitsToDouble(0x4330000000000000ULL),
2052                                     MVT::f64);
2053    // subtract the bias
2054    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2055    // final result
2056    SDValue Result;
2057    // handle final rounding
2058    if (DestVT == MVT::f64) {
2059      // do nothing
2060      Result = Sub;
2061    } else if (DestVT.bitsLT(MVT::f64)) {
2062      Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
2063                           DAG.getIntPtrConstant(0));
2064    } else if (DestVT.bitsGT(MVT::f64)) {
2065      Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
2066    }
2067    return Result;
2068  }
2069  assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2070  // Code below here assumes !isSigned without checking again.
2071
2072  // Implementation of unsigned i64 to f64 following the algorithm in
2073  // __floatundidf in compiler_rt. This implementation has the advantage
2074  // of performing rounding correctly, both in the default rounding mode
2075  // and in all alternate rounding modes.
2076  // TODO: Generalize this for use with other types.
2077  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) {
2078    SDValue TwoP52 =
2079      DAG.getConstant(UINT64_C(0x4330000000000000), MVT::i64);
2080    SDValue TwoP84PlusTwoP52 =
2081      DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), MVT::f64);
2082    SDValue TwoP84 =
2083      DAG.getConstant(UINT64_C(0x4530000000000000), MVT::i64);
2084
2085    SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32);
2086    SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0,
2087                             DAG.getConstant(32, MVT::i64));
2088    SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52);
2089    SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84);
2090    SDValue LoFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, LoOr);
2091    SDValue HiFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, HiOr);
2092    SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt,
2093                                TwoP84PlusTwoP52);
2094    return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub);
2095  }
2096
2097  // Implementation of unsigned i64 to f32.
2098  // TODO: Generalize this for use with other types.
2099  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) {
2100    // For unsigned conversions, convert them to signed conversions using the
2101    // algorithm from the x86_64 __floatundidf in compiler_rt.
2102    if (!isSigned) {
2103      SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Op0);
2104
2105      SDValue ShiftConst =
2106          DAG.getConstant(1, TLI.getShiftAmountTy(Op0.getValueType()));
2107      SDValue Shr = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, ShiftConst);
2108      SDValue AndConst = DAG.getConstant(1, MVT::i64);
2109      SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, AndConst);
2110      SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, Shr);
2111
2112      SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Or);
2113      SDValue Slow = DAG.getNode(ISD::FADD, dl, MVT::f32, SignCvt, SignCvt);
2114
2115      // TODO: This really should be implemented using a branch rather than a
2116      // select.  We happen to get lucky and machinesink does the right
2117      // thing most of the time.  This would be a good candidate for a
2118      //pseudo-op, or, even better, for whole-function isel.
2119      SDValue SignBitTest = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2120        Op0, DAG.getConstant(0, MVT::i64), ISD::SETLT);
2121      return DAG.getNode(ISD::SELECT, dl, MVT::f32, SignBitTest, Slow, Fast);
2122    }
2123
2124    // Otherwise, implement the fully general conversion.
2125
2126    SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2127         DAG.getConstant(UINT64_C(0xfffffffffffff800), MVT::i64));
2128    SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And,
2129         DAG.getConstant(UINT64_C(0x800), MVT::i64));
2130    SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2131         DAG.getConstant(UINT64_C(0x7ff), MVT::i64));
2132    SDValue Ne = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2133                   And2, DAG.getConstant(UINT64_C(0), MVT::i64), ISD::SETNE);
2134    SDValue Sel = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ne, Or, Op0);
2135    SDValue Ge = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2136                   Op0, DAG.getConstant(UINT64_C(0x0020000000000000), MVT::i64),
2137                   ISD::SETUGE);
2138    SDValue Sel2 = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ge, Sel, Op0);
2139    EVT SHVT = TLI.getShiftAmountTy(Sel2.getValueType());
2140
2141    SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2,
2142                             DAG.getConstant(32, SHVT));
2143    SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh);
2144    SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc);
2145    SDValue TwoP32 =
2146      DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), MVT::f64);
2147    SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt);
2148    SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2);
2149    SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo);
2150    SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2);
2151    return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd,
2152                       DAG.getIntPtrConstant(0));
2153  }
2154
2155  SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2156
2157  SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()),
2158                                 Op0, DAG.getConstant(0, Op0.getValueType()),
2159                                 ISD::SETLT);
2160  SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
2161  SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(),
2162                                    SignSet, Four, Zero);
2163
2164  // If the sign bit of the integer is set, the large number will be treated
2165  // as a negative number.  To counteract this, the dynamic code adds an
2166  // offset depending on the data type.
2167  uint64_t FF;
2168  switch (Op0.getValueType().getSimpleVT().SimpleTy) {
2169  default: llvm_unreachable("Unsupported integer type!");
2170  case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
2171  case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
2172  case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
2173  case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
2174  }
2175  if (TLI.isLittleEndian()) FF <<= 32;
2176  Constant *FudgeFactor = ConstantInt::get(
2177                                       Type::getInt64Ty(*DAG.getContext()), FF);
2178
2179  SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
2180  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2181  CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset);
2182  Alignment = std::min(Alignment, 4u);
2183  SDValue FudgeInReg;
2184  if (DestVT == MVT::f32)
2185    FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2186                             MachinePointerInfo::getConstantPool(),
2187                             false, false, false, Alignment);
2188  else {
2189    SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT,
2190                                  DAG.getEntryNode(), CPIdx,
2191                                  MachinePointerInfo::getConstantPool(),
2192                                  MVT::f32, false, false, Alignment);
2193    HandleSDNode Handle(Load);
2194    LegalizeOp(Load.getNode());
2195    FudgeInReg = Handle.getValue();
2196  }
2197
2198  return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2199}
2200
2201/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
2202/// *INT_TO_FP operation of the specified operand when the target requests that
2203/// we promote it.  At this point, we know that the result and operand types are
2204/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2205/// operation that takes a larger input.
2206SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
2207                                                    EVT DestVT,
2208                                                    bool isSigned,
2209                                                    DebugLoc dl) {
2210  // First step, figure out the appropriate *INT_TO_FP operation to use.
2211  EVT NewInTy = LegalOp.getValueType();
2212
2213  unsigned OpToUse = 0;
2214
2215  // Scan for the appropriate larger type to use.
2216  while (1) {
2217    NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2218    assert(NewInTy.isInteger() && "Ran out of possibilities!");
2219
2220    // If the target supports SINT_TO_FP of this type, use it.
2221    if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2222      OpToUse = ISD::SINT_TO_FP;
2223      break;
2224    }
2225    if (isSigned) continue;
2226
2227    // If the target supports UINT_TO_FP of this type, use it.
2228    if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2229      OpToUse = ISD::UINT_TO_FP;
2230      break;
2231    }
2232
2233    // Otherwise, try a larger type.
2234  }
2235
2236  // Okay, we found the operation and type to use.  Zero extend our input to the
2237  // desired type then run the operation on it.
2238  return DAG.getNode(OpToUse, dl, DestVT,
2239                     DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2240                                 dl, NewInTy, LegalOp));
2241}
2242
2243/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
2244/// FP_TO_*INT operation of the specified operand when the target requests that
2245/// we promote it.  At this point, we know that the result and operand types are
2246/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2247/// operation that returns a larger result.
2248SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
2249                                                    EVT DestVT,
2250                                                    bool isSigned,
2251                                                    DebugLoc dl) {
2252  // First step, figure out the appropriate FP_TO*INT operation to use.
2253  EVT NewOutTy = DestVT;
2254
2255  unsigned OpToUse = 0;
2256
2257  // Scan for the appropriate larger type to use.
2258  while (1) {
2259    NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2260    assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2261
2262    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2263      OpToUse = ISD::FP_TO_SINT;
2264      break;
2265    }
2266
2267    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
2268      OpToUse = ISD::FP_TO_UINT;
2269      break;
2270    }
2271
2272    // Otherwise, try a larger type.
2273  }
2274
2275
2276  // Okay, we found the operation and type to use.
2277  SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2278
2279  // Truncate the result of the extended FP_TO_*INT operation to the desired
2280  // size.
2281  return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2282}
2283
2284/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
2285///
2286SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) {
2287  EVT VT = Op.getValueType();
2288  EVT SHVT = TLI.getShiftAmountTy(VT);
2289  SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2290  switch (VT.getSimpleVT().SimpleTy) {
2291  default: llvm_unreachable("Unhandled Expand type in BSWAP!");
2292  case MVT::i16:
2293    Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2294    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2295    return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2296  case MVT::i32:
2297    Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2298    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2299    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2300    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2301    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
2302    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT));
2303    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2304    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2305    return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2306  case MVT::i64:
2307    Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT));
2308    Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT));
2309    Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2310    Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2311    Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2312    Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2313    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT));
2314    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT));
2315    Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
2316    Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
2317    Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
2318    Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
2319    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
2320    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
2321    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2322    Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2323    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2324    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2325    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2326    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2327    return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2328  }
2329}
2330
2331/// SplatByte - Distribute ByteVal over NumBits bits.
2332// FIXME: Move this helper to a common place.
2333static APInt SplatByte(unsigned NumBits, uint8_t ByteVal) {
2334  APInt Val = APInt(NumBits, ByteVal);
2335  unsigned Shift = 8;
2336  for (unsigned i = NumBits; i > 8; i >>= 1) {
2337    Val = (Val << Shift) | Val;
2338    Shift <<= 1;
2339  }
2340  return Val;
2341}
2342
2343/// ExpandBitCount - Expand the specified bitcount instruction into operations.
2344///
2345SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
2346                                             DebugLoc dl) {
2347  switch (Opc) {
2348  default: llvm_unreachable("Cannot expand this yet!");
2349  case ISD::CTPOP: {
2350    EVT VT = Op.getValueType();
2351    EVT ShVT = TLI.getShiftAmountTy(VT);
2352    unsigned Len = VT.getSizeInBits();
2353
2354    assert(VT.isInteger() && Len <= 128 && Len % 8 == 0 &&
2355           "CTPOP not implemented for this type.");
2356
2357    // This is the "best" algorithm from
2358    // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
2359
2360    SDValue Mask55 = DAG.getConstant(SplatByte(Len, 0x55), VT);
2361    SDValue Mask33 = DAG.getConstant(SplatByte(Len, 0x33), VT);
2362    SDValue Mask0F = DAG.getConstant(SplatByte(Len, 0x0F), VT);
2363    SDValue Mask01 = DAG.getConstant(SplatByte(Len, 0x01), VT);
2364
2365    // v = v - ((v >> 1) & 0x55555555...)
2366    Op = DAG.getNode(ISD::SUB, dl, VT, Op,
2367                     DAG.getNode(ISD::AND, dl, VT,
2368                                 DAG.getNode(ISD::SRL, dl, VT, Op,
2369                                             DAG.getConstant(1, ShVT)),
2370                                 Mask55));
2371    // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
2372    Op = DAG.getNode(ISD::ADD, dl, VT,
2373                     DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
2374                     DAG.getNode(ISD::AND, dl, VT,
2375                                 DAG.getNode(ISD::SRL, dl, VT, Op,
2376                                             DAG.getConstant(2, ShVT)),
2377                                 Mask33));
2378    // v = (v + (v >> 4)) & 0x0F0F0F0F...
2379    Op = DAG.getNode(ISD::AND, dl, VT,
2380                     DAG.getNode(ISD::ADD, dl, VT, Op,
2381                                 DAG.getNode(ISD::SRL, dl, VT, Op,
2382                                             DAG.getConstant(4, ShVT))),
2383                     Mask0F);
2384    // v = (v * 0x01010101...) >> (Len - 8)
2385    Op = DAG.getNode(ISD::SRL, dl, VT,
2386                     DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
2387                     DAG.getConstant(Len - 8, ShVT));
2388
2389    return Op;
2390  }
2391  case ISD::CTLZ_ZERO_UNDEF:
2392    // This trivially expands to CTLZ.
2393    return DAG.getNode(ISD::CTLZ, dl, Op.getValueType(), Op);
2394  case ISD::CTLZ: {
2395    // for now, we do this:
2396    // x = x | (x >> 1);
2397    // x = x | (x >> 2);
2398    // ...
2399    // x = x | (x >>16);
2400    // x = x | (x >>32); // for 64-bit input
2401    // return popcount(~x);
2402    //
2403    // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
2404    EVT VT = Op.getValueType();
2405    EVT ShVT = TLI.getShiftAmountTy(VT);
2406    unsigned len = VT.getSizeInBits();
2407    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2408      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2409      Op = DAG.getNode(ISD::OR, dl, VT, Op,
2410                       DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
2411    }
2412    Op = DAG.getNOT(dl, Op, VT);
2413    return DAG.getNode(ISD::CTPOP, dl, VT, Op);
2414  }
2415  case ISD::CTTZ_ZERO_UNDEF:
2416    // This trivially expands to CTTZ.
2417    return DAG.getNode(ISD::CTTZ, dl, Op.getValueType(), Op);
2418  case ISD::CTTZ: {
2419    // for now, we use: { return popcount(~x & (x - 1)); }
2420    // unless the target has ctlz but not ctpop, in which case we use:
2421    // { return 32 - nlz(~x & (x-1)); }
2422    // see also http://www.hackersdelight.org/HDcode/ntz.cc
2423    EVT VT = Op.getValueType();
2424    SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
2425                               DAG.getNOT(dl, Op, VT),
2426                               DAG.getNode(ISD::SUB, dl, VT, Op,
2427                                           DAG.getConstant(1, VT)));
2428    // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
2429    if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
2430        TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
2431      return DAG.getNode(ISD::SUB, dl, VT,
2432                         DAG.getConstant(VT.getSizeInBits(), VT),
2433                         DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
2434    return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
2435  }
2436  }
2437}
2438
2439std::pair <SDValue, SDValue> SelectionDAGLegalize::ExpandAtomic(SDNode *Node) {
2440  unsigned Opc = Node->getOpcode();
2441  MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
2442  RTLIB::Libcall LC;
2443
2444  switch (Opc) {
2445  default:
2446    llvm_unreachable("Unhandled atomic intrinsic Expand!");
2447  case ISD::ATOMIC_SWAP:
2448    switch (VT.SimpleTy) {
2449    default: llvm_unreachable("Unexpected value type for atomic!");
2450    case MVT::i8:  LC = RTLIB::SYNC_LOCK_TEST_AND_SET_1; break;
2451    case MVT::i16: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_2; break;
2452    case MVT::i32: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_4; break;
2453    case MVT::i64: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_8; break;
2454    }
2455    break;
2456  case ISD::ATOMIC_CMP_SWAP:
2457    switch (VT.SimpleTy) {
2458    default: llvm_unreachable("Unexpected value type for atomic!");
2459    case MVT::i8:  LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1; break;
2460    case MVT::i16: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2; break;
2461    case MVT::i32: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4; break;
2462    case MVT::i64: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8; break;
2463    }
2464    break;
2465  case ISD::ATOMIC_LOAD_ADD:
2466    switch (VT.SimpleTy) {
2467    default: llvm_unreachable("Unexpected value type for atomic!");
2468    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_ADD_1; break;
2469    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_ADD_2; break;
2470    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_ADD_4; break;
2471    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_ADD_8; break;
2472    }
2473    break;
2474  case ISD::ATOMIC_LOAD_SUB:
2475    switch (VT.SimpleTy) {
2476    default: llvm_unreachable("Unexpected value type for atomic!");
2477    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_SUB_1; break;
2478    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_SUB_2; break;
2479    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_SUB_4; break;
2480    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_SUB_8; break;
2481    }
2482    break;
2483  case ISD::ATOMIC_LOAD_AND:
2484    switch (VT.SimpleTy) {
2485    default: llvm_unreachable("Unexpected value type for atomic!");
2486    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_AND_1; break;
2487    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_AND_2; break;
2488    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_AND_4; break;
2489    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_AND_8; break;
2490    }
2491    break;
2492  case ISD::ATOMIC_LOAD_OR:
2493    switch (VT.SimpleTy) {
2494    default: llvm_unreachable("Unexpected value type for atomic!");
2495    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_OR_1; break;
2496    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_OR_2; break;
2497    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_OR_4; break;
2498    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_OR_8; break;
2499    }
2500    break;
2501  case ISD::ATOMIC_LOAD_XOR:
2502    switch (VT.SimpleTy) {
2503    default: llvm_unreachable("Unexpected value type for atomic!");
2504    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_XOR_1; break;
2505    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_XOR_2; break;
2506    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_XOR_4; break;
2507    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_XOR_8; break;
2508    }
2509    break;
2510  case ISD::ATOMIC_LOAD_NAND:
2511    switch (VT.SimpleTy) {
2512    default: llvm_unreachable("Unexpected value type for atomic!");
2513    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_NAND_1; break;
2514    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_NAND_2; break;
2515    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_NAND_4; break;
2516    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_NAND_8; break;
2517    }
2518    break;
2519  }
2520
2521  return ExpandChainLibCall(LC, Node, false);
2522}
2523
2524void SelectionDAGLegalize::ExpandNode(SDNode *Node) {
2525  SmallVector<SDValue, 8> Results;
2526  DebugLoc dl = Node->getDebugLoc();
2527  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2528  switch (Node->getOpcode()) {
2529  case ISD::CTPOP:
2530  case ISD::CTLZ:
2531  case ISD::CTLZ_ZERO_UNDEF:
2532  case ISD::CTTZ:
2533  case ISD::CTTZ_ZERO_UNDEF:
2534    Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
2535    Results.push_back(Tmp1);
2536    break;
2537  case ISD::BSWAP:
2538    Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2539    break;
2540  case ISD::FRAMEADDR:
2541  case ISD::RETURNADDR:
2542  case ISD::FRAME_TO_ARGS_OFFSET:
2543    Results.push_back(DAG.getConstant(0, Node->getValueType(0)));
2544    break;
2545  case ISD::FLT_ROUNDS_:
2546    Results.push_back(DAG.getConstant(1, Node->getValueType(0)));
2547    break;
2548  case ISD::EH_RETURN:
2549  case ISD::EH_LABEL:
2550  case ISD::PREFETCH:
2551  case ISD::VAEND:
2552  case ISD::EH_SJLJ_LONGJMP:
2553    // If the target didn't expand these, there's nothing to do, so just
2554    // preserve the chain and be done.
2555    Results.push_back(Node->getOperand(0));
2556    break;
2557  case ISD::EH_SJLJ_SETJMP:
2558    // If the target didn't expand this, just return 'zero' and preserve the
2559    // chain.
2560    Results.push_back(DAG.getConstant(0, MVT::i32));
2561    Results.push_back(Node->getOperand(0));
2562    break;
2563  case ISD::ATOMIC_FENCE:
2564  case ISD::MEMBARRIER: {
2565    // If the target didn't lower this, lower it to '__sync_synchronize()' call
2566    // FIXME: handle "fence singlethread" more efficiently.
2567    TargetLowering::ArgListTy Args;
2568    std::pair<SDValue, SDValue> CallResult =
2569      TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()),
2570                      false, false, false, false, 0, CallingConv::C,
2571                      /*isTailCall=*/false,
2572                      /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
2573                      DAG.getExternalSymbol("__sync_synchronize",
2574                                            TLI.getPointerTy()),
2575                      Args, DAG, dl);
2576    Results.push_back(CallResult.second);
2577    break;
2578  }
2579  case ISD::ATOMIC_LOAD: {
2580    // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP.
2581    SDValue Zero = DAG.getConstant(0, Node->getValueType(0));
2582    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
2583                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
2584                                 Node->getOperand(0),
2585                                 Node->getOperand(1), Zero, Zero,
2586                                 cast<AtomicSDNode>(Node)->getMemOperand(),
2587                                 cast<AtomicSDNode>(Node)->getOrdering(),
2588                                 cast<AtomicSDNode>(Node)->getSynchScope());
2589    Results.push_back(Swap.getValue(0));
2590    Results.push_back(Swap.getValue(1));
2591    break;
2592  }
2593  case ISD::ATOMIC_STORE: {
2594    // There is no libcall for atomic store; fake it with ATOMIC_SWAP.
2595    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
2596                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
2597                                 Node->getOperand(0),
2598                                 Node->getOperand(1), Node->getOperand(2),
2599                                 cast<AtomicSDNode>(Node)->getMemOperand(),
2600                                 cast<AtomicSDNode>(Node)->getOrdering(),
2601                                 cast<AtomicSDNode>(Node)->getSynchScope());
2602    Results.push_back(Swap.getValue(1));
2603    break;
2604  }
2605  // By default, atomic intrinsics are marked Legal and lowered. Targets
2606  // which don't support them directly, however, may want libcalls, in which
2607  // case they mark them Expand, and we get here.
2608  case ISD::ATOMIC_SWAP:
2609  case ISD::ATOMIC_LOAD_ADD:
2610  case ISD::ATOMIC_LOAD_SUB:
2611  case ISD::ATOMIC_LOAD_AND:
2612  case ISD::ATOMIC_LOAD_OR:
2613  case ISD::ATOMIC_LOAD_XOR:
2614  case ISD::ATOMIC_LOAD_NAND:
2615  case ISD::ATOMIC_LOAD_MIN:
2616  case ISD::ATOMIC_LOAD_MAX:
2617  case ISD::ATOMIC_LOAD_UMIN:
2618  case ISD::ATOMIC_LOAD_UMAX:
2619  case ISD::ATOMIC_CMP_SWAP: {
2620    std::pair<SDValue, SDValue> Tmp = ExpandAtomic(Node);
2621    Results.push_back(Tmp.first);
2622    Results.push_back(Tmp.second);
2623    break;
2624  }
2625  case ISD::DYNAMIC_STACKALLOC:
2626    ExpandDYNAMIC_STACKALLOC(Node, Results);
2627    break;
2628  case ISD::MERGE_VALUES:
2629    for (unsigned i = 0; i < Node->getNumValues(); i++)
2630      Results.push_back(Node->getOperand(i));
2631    break;
2632  case ISD::UNDEF: {
2633    EVT VT = Node->getValueType(0);
2634    if (VT.isInteger())
2635      Results.push_back(DAG.getConstant(0, VT));
2636    else {
2637      assert(VT.isFloatingPoint() && "Unknown value type!");
2638      Results.push_back(DAG.getConstantFP(0, VT));
2639    }
2640    break;
2641  }
2642  case ISD::TRAP: {
2643    // If this operation is not supported, lower it to 'abort()' call
2644    TargetLowering::ArgListTy Args;
2645    std::pair<SDValue, SDValue> CallResult =
2646      TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()),
2647                      false, false, false, false, 0, CallingConv::C,
2648                      /*isTailCall=*/false,
2649                      /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
2650                      DAG.getExternalSymbol("abort", TLI.getPointerTy()),
2651                      Args, DAG, dl);
2652    Results.push_back(CallResult.second);
2653    break;
2654  }
2655  case ISD::FP_ROUND:
2656  case ISD::BITCAST:
2657    Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
2658                            Node->getValueType(0), dl);
2659    Results.push_back(Tmp1);
2660    break;
2661  case ISD::FP_EXTEND:
2662    Tmp1 = EmitStackConvert(Node->getOperand(0),
2663                            Node->getOperand(0).getValueType(),
2664                            Node->getValueType(0), dl);
2665    Results.push_back(Tmp1);
2666    break;
2667  case ISD::SIGN_EXTEND_INREG: {
2668    // NOTE: we could fall back on load/store here too for targets without
2669    // SAR.  However, it is doubtful that any exist.
2670    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2671    EVT VT = Node->getValueType(0);
2672    EVT ShiftAmountTy = TLI.getShiftAmountTy(VT);
2673    if (VT.isVector())
2674      ShiftAmountTy = VT;
2675    unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
2676                        ExtraVT.getScalarType().getSizeInBits();
2677    SDValue ShiftCst = DAG.getConstant(BitsDiff, ShiftAmountTy);
2678    Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
2679                       Node->getOperand(0), ShiftCst);
2680    Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
2681    Results.push_back(Tmp1);
2682    break;
2683  }
2684  case ISD::FP_ROUND_INREG: {
2685    // The only way we can lower this is to turn it into a TRUNCSTORE,
2686    // EXTLOAD pair, targeting a temporary location (a stack slot).
2687
2688    // NOTE: there is a choice here between constantly creating new stack
2689    // slots and always reusing the same one.  We currently always create
2690    // new ones, as reuse may inhibit scheduling.
2691    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2692    Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
2693                            Node->getValueType(0), dl);
2694    Results.push_back(Tmp1);
2695    break;
2696  }
2697  case ISD::SINT_TO_FP:
2698  case ISD::UINT_TO_FP:
2699    Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
2700                                Node->getOperand(0), Node->getValueType(0), dl);
2701    Results.push_back(Tmp1);
2702    break;
2703  case ISD::FP_TO_UINT: {
2704    SDValue True, False;
2705    EVT VT =  Node->getOperand(0).getValueType();
2706    EVT NVT = Node->getValueType(0);
2707    APFloat apf(APInt::getNullValue(VT.getSizeInBits()));
2708    APInt x = APInt::getSignBit(NVT.getSizeInBits());
2709    (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
2710    Tmp1 = DAG.getConstantFP(apf, VT);
2711    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT),
2712                        Node->getOperand(0),
2713                        Tmp1, ISD::SETLT);
2714    True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
2715    False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
2716                        DAG.getNode(ISD::FSUB, dl, VT,
2717                                    Node->getOperand(0), Tmp1));
2718    False = DAG.getNode(ISD::XOR, dl, NVT, False,
2719                        DAG.getConstant(x, NVT));
2720    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False);
2721    Results.push_back(Tmp1);
2722    break;
2723  }
2724  case ISD::VAARG: {
2725    const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2726    EVT VT = Node->getValueType(0);
2727    Tmp1 = Node->getOperand(0);
2728    Tmp2 = Node->getOperand(1);
2729    unsigned Align = Node->getConstantOperandVal(3);
2730
2731    SDValue VAListLoad = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2,
2732                                     MachinePointerInfo(V),
2733                                     false, false, false, 0);
2734    SDValue VAList = VAListLoad;
2735
2736    if (Align > TLI.getMinStackArgumentAlignment()) {
2737      assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
2738
2739      VAList = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2740                           DAG.getConstant(Align - 1,
2741                                           TLI.getPointerTy()));
2742
2743      VAList = DAG.getNode(ISD::AND, dl, TLI.getPointerTy(), VAList,
2744                           DAG.getConstant(-(int64_t)Align,
2745                                           TLI.getPointerTy()));
2746    }
2747
2748    // Increment the pointer, VAList, to the next vaarg
2749    Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2750                       DAG.getConstant(TLI.getTargetData()->
2751                          getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())),
2752                                       TLI.getPointerTy()));
2753    // Store the incremented VAList to the legalized pointer
2754    Tmp3 = DAG.getStore(VAListLoad.getValue(1), dl, Tmp3, Tmp2,
2755                        MachinePointerInfo(V), false, false, 0);
2756    // Load the actual argument out of the pointer VAList
2757    Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, MachinePointerInfo(),
2758                                  false, false, false, 0));
2759    Results.push_back(Results[0].getValue(1));
2760    break;
2761  }
2762  case ISD::VACOPY: {
2763    // This defaults to loading a pointer from the input and storing it to the
2764    // output, returning the chain.
2765    const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2766    const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2767    Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0),
2768                       Node->getOperand(2), MachinePointerInfo(VS),
2769                       false, false, false, 0);
2770    Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2771                        MachinePointerInfo(VD), false, false, 0);
2772    Results.push_back(Tmp1);
2773    break;
2774  }
2775  case ISD::EXTRACT_VECTOR_ELT:
2776    if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
2777      // This must be an access of the only element.  Return it.
2778      Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0),
2779                         Node->getOperand(0));
2780    else
2781      Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
2782    Results.push_back(Tmp1);
2783    break;
2784  case ISD::EXTRACT_SUBVECTOR:
2785    Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
2786    break;
2787  case ISD::INSERT_SUBVECTOR:
2788    Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0)));
2789    break;
2790  case ISD::CONCAT_VECTORS: {
2791    Results.push_back(ExpandVectorBuildThroughStack(Node));
2792    break;
2793  }
2794  case ISD::SCALAR_TO_VECTOR:
2795    Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
2796    break;
2797  case ISD::INSERT_VECTOR_ELT:
2798    Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
2799                                              Node->getOperand(1),
2800                                              Node->getOperand(2), dl));
2801    break;
2802  case ISD::VECTOR_SHUFFLE: {
2803    SmallVector<int, 32> NewMask;
2804    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
2805
2806    EVT VT = Node->getValueType(0);
2807    EVT EltVT = VT.getVectorElementType();
2808    SDValue Op0 = Node->getOperand(0);
2809    SDValue Op1 = Node->getOperand(1);
2810    if (!TLI.isTypeLegal(EltVT)) {
2811
2812      EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT);
2813
2814      // BUILD_VECTOR operands are allowed to be wider than the element type.
2815      // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept it
2816      if (NewEltVT.bitsLT(EltVT)) {
2817
2818        // Convert shuffle node.
2819        // If original node was v4i64 and the new EltVT is i32,
2820        // cast operands to v8i32 and re-build the mask.
2821
2822        // Calculate new VT, the size of the new VT should be equal to original.
2823        EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltVT,
2824                                      VT.getSizeInBits()/NewEltVT.getSizeInBits());
2825        assert(NewVT.bitsEq(VT));
2826
2827        // cast operands to new VT
2828        Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0);
2829        Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1);
2830
2831        // Convert the shuffle mask
2832        unsigned int factor = NewVT.getVectorNumElements()/VT.getVectorNumElements();
2833
2834        // EltVT gets smaller
2835        assert(factor > 0);
2836
2837        for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
2838          if (Mask[i] < 0) {
2839            for (unsigned fi = 0; fi < factor; ++fi)
2840              NewMask.push_back(Mask[i]);
2841          }
2842          else {
2843            for (unsigned fi = 0; fi < factor; ++fi)
2844              NewMask.push_back(Mask[i]*factor+fi);
2845          }
2846        }
2847        Mask = NewMask;
2848        VT = NewVT;
2849      }
2850      EltVT = NewEltVT;
2851    }
2852    unsigned NumElems = VT.getVectorNumElements();
2853    SmallVector<SDValue, 16> Ops;
2854    for (unsigned i = 0; i != NumElems; ++i) {
2855      if (Mask[i] < 0) {
2856        Ops.push_back(DAG.getUNDEF(EltVT));
2857        continue;
2858      }
2859      unsigned Idx = Mask[i];
2860      if (Idx < NumElems)
2861        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2862                                  Op0,
2863                                  DAG.getIntPtrConstant(Idx)));
2864      else
2865        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2866                                  Op1,
2867                                  DAG.getIntPtrConstant(Idx - NumElems)));
2868    }
2869
2870    Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size());
2871    // We may have changed the BUILD_VECTOR type. Cast it back to the Node type.
2872    Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1);
2873    Results.push_back(Tmp1);
2874    break;
2875  }
2876  case ISD::EXTRACT_ELEMENT: {
2877    EVT OpTy = Node->getOperand(0).getValueType();
2878    if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
2879      // 1 -> Hi
2880      Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
2881                         DAG.getConstant(OpTy.getSizeInBits()/2,
2882                    TLI.getShiftAmountTy(Node->getOperand(0).getValueType())));
2883      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
2884    } else {
2885      // 0 -> Lo
2886      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
2887                         Node->getOperand(0));
2888    }
2889    Results.push_back(Tmp1);
2890    break;
2891  }
2892  case ISD::STACKSAVE:
2893    // Expand to CopyFromReg if the target set
2894    // StackPointerRegisterToSaveRestore.
2895    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2896      Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
2897                                           Node->getValueType(0)));
2898      Results.push_back(Results[0].getValue(1));
2899    } else {
2900      Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
2901      Results.push_back(Node->getOperand(0));
2902    }
2903    break;
2904  case ISD::STACKRESTORE:
2905    // Expand to CopyToReg if the target set
2906    // StackPointerRegisterToSaveRestore.
2907    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2908      Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
2909                                         Node->getOperand(1)));
2910    } else {
2911      Results.push_back(Node->getOperand(0));
2912    }
2913    break;
2914  case ISD::FCOPYSIGN:
2915    Results.push_back(ExpandFCOPYSIGN(Node));
2916    break;
2917  case ISD::FNEG:
2918    // Expand Y = FNEG(X) ->  Y = SUB -0.0, X
2919    Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0));
2920    Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
2921                       Node->getOperand(0));
2922    Results.push_back(Tmp1);
2923    break;
2924  case ISD::FABS: {
2925    // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
2926    EVT VT = Node->getValueType(0);
2927    Tmp1 = Node->getOperand(0);
2928    Tmp2 = DAG.getConstantFP(0.0, VT);
2929    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
2930                        Tmp1, Tmp2, ISD::SETUGT);
2931    Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1);
2932    Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3);
2933    Results.push_back(Tmp1);
2934    break;
2935  }
2936  case ISD::FSQRT:
2937    Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
2938                                      RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128));
2939    break;
2940  case ISD::FSIN:
2941    Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
2942                                      RTLIB::SIN_F80, RTLIB::SIN_PPCF128));
2943    break;
2944  case ISD::FCOS:
2945    Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
2946                                      RTLIB::COS_F80, RTLIB::COS_PPCF128));
2947    break;
2948  case ISD::FLOG:
2949    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
2950                                      RTLIB::LOG_F80, RTLIB::LOG_PPCF128));
2951    break;
2952  case ISD::FLOG2:
2953    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
2954                                      RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128));
2955    break;
2956  case ISD::FLOG10:
2957    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
2958                                      RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128));
2959    break;
2960  case ISD::FEXP:
2961    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
2962                                      RTLIB::EXP_F80, RTLIB::EXP_PPCF128));
2963    break;
2964  case ISD::FEXP2:
2965    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
2966                                      RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128));
2967    break;
2968  case ISD::FTRUNC:
2969    Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
2970                                      RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128));
2971    break;
2972  case ISD::FFLOOR:
2973    Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
2974                                      RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128));
2975    break;
2976  case ISD::FCEIL:
2977    Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
2978                                      RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128));
2979    break;
2980  case ISD::FRINT:
2981    Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
2982                                      RTLIB::RINT_F80, RTLIB::RINT_PPCF128));
2983    break;
2984  case ISD::FNEARBYINT:
2985    Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
2986                                      RTLIB::NEARBYINT_F64,
2987                                      RTLIB::NEARBYINT_F80,
2988                                      RTLIB::NEARBYINT_PPCF128));
2989    break;
2990  case ISD::FPOWI:
2991    Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
2992                                      RTLIB::POWI_F80, RTLIB::POWI_PPCF128));
2993    break;
2994  case ISD::FPOW:
2995    Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
2996                                      RTLIB::POW_F80, RTLIB::POW_PPCF128));
2997    break;
2998  case ISD::FDIV:
2999    Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
3000                                      RTLIB::DIV_F80, RTLIB::DIV_PPCF128));
3001    break;
3002  case ISD::FREM:
3003    Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
3004                                      RTLIB::REM_F80, RTLIB::REM_PPCF128));
3005    break;
3006  case ISD::FMA:
3007    Results.push_back(ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64,
3008                                      RTLIB::FMA_F80, RTLIB::FMA_PPCF128));
3009    break;
3010  case ISD::FP16_TO_FP32:
3011    Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
3012    break;
3013  case ISD::FP32_TO_FP16:
3014    Results.push_back(ExpandLibCall(RTLIB::FPROUND_F32_F16, Node, false));
3015    break;
3016  case ISD::ConstantFP: {
3017    ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
3018    // Check to see if this FP immediate is already legal.
3019    // If this is a legal constant, turn it into a TargetConstantFP node.
3020    if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0)))
3021      Results.push_back(ExpandConstantFP(CFP, true));
3022    break;
3023  }
3024  case ISD::EHSELECTION: {
3025    unsigned Reg = TLI.getExceptionSelectorRegister();
3026    assert(Reg && "Can't expand to unknown register!");
3027    Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg,
3028                                         Node->getValueType(0)));
3029    Results.push_back(Results[0].getValue(1));
3030    break;
3031  }
3032  case ISD::EXCEPTIONADDR: {
3033    unsigned Reg = TLI.getExceptionPointerRegister();
3034    assert(Reg && "Can't expand to unknown register!");
3035    Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg,
3036                                         Node->getValueType(0)));
3037    Results.push_back(Results[0].getValue(1));
3038    break;
3039  }
3040  case ISD::FSUB: {
3041    EVT VT = Node->getValueType(0);
3042    assert(TLI.isOperationLegalOrCustom(ISD::FADD, VT) &&
3043           TLI.isOperationLegalOrCustom(ISD::FNEG, VT) &&
3044           "Don't know how to expand this FP subtraction!");
3045    Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1));
3046    Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1);
3047    Results.push_back(Tmp1);
3048    break;
3049  }
3050  case ISD::SUB: {
3051    EVT VT = Node->getValueType(0);
3052    assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
3053           TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
3054           "Don't know how to expand this subtraction!");
3055    Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
3056               DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT));
3057    Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp2, DAG.getConstant(1, VT));
3058    Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
3059    break;
3060  }
3061  case ISD::UREM:
3062  case ISD::SREM: {
3063    EVT VT = Node->getValueType(0);
3064    SDVTList VTs = DAG.getVTList(VT, VT);
3065    bool isSigned = Node->getOpcode() == ISD::SREM;
3066    unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
3067    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3068    Tmp2 = Node->getOperand(0);
3069    Tmp3 = Node->getOperand(1);
3070    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) ||
3071        (isDivRemLibcallAvailable(Node, isSigned, TLI) &&
3072         UseDivRem(Node, isSigned, false))) {
3073      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
3074    } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
3075      // X % Y -> X-X/Y*Y
3076      Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
3077      Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
3078      Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
3079    } else if (isSigned)
3080      Tmp1 = ExpandIntLibCall(Node, true,
3081                              RTLIB::SREM_I8,
3082                              RTLIB::SREM_I16, RTLIB::SREM_I32,
3083                              RTLIB::SREM_I64, RTLIB::SREM_I128);
3084    else
3085      Tmp1 = ExpandIntLibCall(Node, false,
3086                              RTLIB::UREM_I8,
3087                              RTLIB::UREM_I16, RTLIB::UREM_I32,
3088                              RTLIB::UREM_I64, RTLIB::UREM_I128);
3089    Results.push_back(Tmp1);
3090    break;
3091  }
3092  case ISD::UDIV:
3093  case ISD::SDIV: {
3094    bool isSigned = Node->getOpcode() == ISD::SDIV;
3095    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3096    EVT VT = Node->getValueType(0);
3097    SDVTList VTs = DAG.getVTList(VT, VT);
3098    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) ||
3099        (isDivRemLibcallAvailable(Node, isSigned, TLI) &&
3100         UseDivRem(Node, isSigned, true)))
3101      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
3102                         Node->getOperand(1));
3103    else if (isSigned)
3104      Tmp1 = ExpandIntLibCall(Node, true,
3105                              RTLIB::SDIV_I8,
3106                              RTLIB::SDIV_I16, RTLIB::SDIV_I32,
3107                              RTLIB::SDIV_I64, RTLIB::SDIV_I128);
3108    else
3109      Tmp1 = ExpandIntLibCall(Node, false,
3110                              RTLIB::UDIV_I8,
3111                              RTLIB::UDIV_I16, RTLIB::UDIV_I32,
3112                              RTLIB::UDIV_I64, RTLIB::UDIV_I128);
3113    Results.push_back(Tmp1);
3114    break;
3115  }
3116  case ISD::MULHU:
3117  case ISD::MULHS: {
3118    unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
3119                                                              ISD::SMUL_LOHI;
3120    EVT VT = Node->getValueType(0);
3121    SDVTList VTs = DAG.getVTList(VT, VT);
3122    assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
3123           "If this wasn't legal, it shouldn't have been created!");
3124    Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
3125                       Node->getOperand(1));
3126    Results.push_back(Tmp1.getValue(1));
3127    break;
3128  }
3129  case ISD::SDIVREM:
3130  case ISD::UDIVREM:
3131    // Expand into divrem libcall
3132    ExpandDivRemLibCall(Node, Results);
3133    break;
3134  case ISD::MUL: {
3135    EVT VT = Node->getValueType(0);
3136    SDVTList VTs = DAG.getVTList(VT, VT);
3137    // See if multiply or divide can be lowered using two-result operations.
3138    // We just need the low half of the multiply; try both the signed
3139    // and unsigned forms. If the target supports both SMUL_LOHI and
3140    // UMUL_LOHI, form a preference by checking which forms of plain
3141    // MULH it supports.
3142    bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
3143    bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
3144    bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
3145    bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
3146    unsigned OpToUse = 0;
3147    if (HasSMUL_LOHI && !HasMULHS) {
3148      OpToUse = ISD::SMUL_LOHI;
3149    } else if (HasUMUL_LOHI && !HasMULHU) {
3150      OpToUse = ISD::UMUL_LOHI;
3151    } else if (HasSMUL_LOHI) {
3152      OpToUse = ISD::SMUL_LOHI;
3153    } else if (HasUMUL_LOHI) {
3154      OpToUse = ISD::UMUL_LOHI;
3155    }
3156    if (OpToUse) {
3157      Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
3158                                    Node->getOperand(1)));
3159      break;
3160    }
3161    Tmp1 = ExpandIntLibCall(Node, false,
3162                            RTLIB::MUL_I8,
3163                            RTLIB::MUL_I16, RTLIB::MUL_I32,
3164                            RTLIB::MUL_I64, RTLIB::MUL_I128);
3165    Results.push_back(Tmp1);
3166    break;
3167  }
3168  case ISD::SADDO:
3169  case ISD::SSUBO: {
3170    SDValue LHS = Node->getOperand(0);
3171    SDValue RHS = Node->getOperand(1);
3172    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
3173                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3174                              LHS, RHS);
3175    Results.push_back(Sum);
3176    EVT OType = Node->getValueType(1);
3177
3178    SDValue Zero = DAG.getConstant(0, LHS.getValueType());
3179
3180    //   LHSSign -> LHS >= 0
3181    //   RHSSign -> RHS >= 0
3182    //   SumSign -> Sum >= 0
3183    //
3184    //   Add:
3185    //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
3186    //   Sub:
3187    //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
3188    //
3189    SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
3190    SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
3191    SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
3192                                      Node->getOpcode() == ISD::SADDO ?
3193                                      ISD::SETEQ : ISD::SETNE);
3194
3195    SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
3196    SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
3197
3198    SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
3199    Results.push_back(Cmp);
3200    break;
3201  }
3202  case ISD::UADDO:
3203  case ISD::USUBO: {
3204    SDValue LHS = Node->getOperand(0);
3205    SDValue RHS = Node->getOperand(1);
3206    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
3207                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3208                              LHS, RHS);
3209    Results.push_back(Sum);
3210    Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS,
3211                                   Node->getOpcode () == ISD::UADDO ?
3212                                   ISD::SETULT : ISD::SETUGT));
3213    break;
3214  }
3215  case ISD::UMULO:
3216  case ISD::SMULO: {
3217    EVT VT = Node->getValueType(0);
3218    EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
3219    SDValue LHS = Node->getOperand(0);
3220    SDValue RHS = Node->getOperand(1);
3221    SDValue BottomHalf;
3222    SDValue TopHalf;
3223    static const unsigned Ops[2][3] =
3224        { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
3225          { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
3226    bool isSigned = Node->getOpcode() == ISD::SMULO;
3227    if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
3228      BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
3229      TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
3230    } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
3231      BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
3232                               RHS);
3233      TopHalf = BottomHalf.getValue(1);
3234    } else if (TLI.isTypeLegal(EVT::getIntegerVT(*DAG.getContext(),
3235                                                 VT.getSizeInBits() * 2))) {
3236      LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
3237      RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
3238      Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
3239      BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3240                               DAG.getIntPtrConstant(0));
3241      TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3242                            DAG.getIntPtrConstant(1));
3243    } else {
3244      // We can fall back to a libcall with an illegal type for the MUL if we
3245      // have a libcall big enough.
3246      // Also, we can fall back to a division in some cases, but that's a big
3247      // performance hit in the general case.
3248      RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
3249      if (WideVT == MVT::i16)
3250        LC = RTLIB::MUL_I16;
3251      else if (WideVT == MVT::i32)
3252        LC = RTLIB::MUL_I32;
3253      else if (WideVT == MVT::i64)
3254        LC = RTLIB::MUL_I64;
3255      else if (WideVT == MVT::i128)
3256        LC = RTLIB::MUL_I128;
3257      assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
3258
3259      // The high part is obtained by SRA'ing all but one of the bits of low
3260      // part.
3261      unsigned LoSize = VT.getSizeInBits();
3262      SDValue HiLHS = DAG.getNode(ISD::SRA, dl, VT, RHS,
3263                                DAG.getConstant(LoSize-1, TLI.getPointerTy()));
3264      SDValue HiRHS = DAG.getNode(ISD::SRA, dl, VT, LHS,
3265                                DAG.getConstant(LoSize-1, TLI.getPointerTy()));
3266
3267      // Here we're passing the 2 arguments explicitly as 4 arguments that are
3268      // pre-lowered to the correct types. This all depends upon WideVT not
3269      // being a legal type for the architecture and thus has to be split to
3270      // two arguments.
3271      SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
3272      SDValue Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl);
3273      BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret,
3274                               DAG.getIntPtrConstant(0));
3275      TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret,
3276                            DAG.getIntPtrConstant(1));
3277      // Ret is a node with an illegal type. Because such things are not
3278      // generally permitted during this phase of legalization, delete the
3279      // node. The above EXTRACT_ELEMENT nodes should have been folded.
3280      DAG.DeleteNode(Ret.getNode());
3281    }
3282
3283    if (isSigned) {
3284      Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1,
3285                             TLI.getShiftAmountTy(BottomHalf.getValueType()));
3286      Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1);
3287      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1,
3288                             ISD::SETNE);
3289    } else {
3290      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf,
3291                             DAG.getConstant(0, VT), ISD::SETNE);
3292    }
3293    Results.push_back(BottomHalf);
3294    Results.push_back(TopHalf);
3295    break;
3296  }
3297  case ISD::BUILD_PAIR: {
3298    EVT PairTy = Node->getValueType(0);
3299    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
3300    Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
3301    Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
3302                       DAG.getConstant(PairTy.getSizeInBits()/2,
3303                                       TLI.getShiftAmountTy(PairTy)));
3304    Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
3305    break;
3306  }
3307  case ISD::SELECT:
3308    Tmp1 = Node->getOperand(0);
3309    Tmp2 = Node->getOperand(1);
3310    Tmp3 = Node->getOperand(2);
3311    if (Tmp1.getOpcode() == ISD::SETCC) {
3312      Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
3313                             Tmp2, Tmp3,
3314                             cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
3315    } else {
3316      Tmp1 = DAG.getSelectCC(dl, Tmp1,
3317                             DAG.getConstant(0, Tmp1.getValueType()),
3318                             Tmp2, Tmp3, ISD::SETNE);
3319    }
3320    Results.push_back(Tmp1);
3321    break;
3322  case ISD::BR_JT: {
3323    SDValue Chain = Node->getOperand(0);
3324    SDValue Table = Node->getOperand(1);
3325    SDValue Index = Node->getOperand(2);
3326
3327    EVT PTy = TLI.getPointerTy();
3328
3329    const TargetData &TD = *TLI.getTargetData();
3330    unsigned EntrySize =
3331      DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
3332
3333    Index = DAG.getNode(ISD::MUL, dl, PTy,
3334                        Index, DAG.getConstant(EntrySize, PTy));
3335    SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
3336
3337    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
3338    SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr,
3339                                MachinePointerInfo::getJumpTable(), MemVT,
3340                                false, false, 0);
3341    Addr = LD;
3342    if (TM.getRelocationModel() == Reloc::PIC_) {
3343      // For PIC, the sequence is:
3344      // BRIND(load(Jumptable + index) + RelocBase)
3345      // RelocBase can be JumpTable, GOT or some sort of global base.
3346      Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
3347                          TLI.getPICJumpTableRelocBase(Table, DAG));
3348    }
3349    Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
3350    Results.push_back(Tmp1);
3351    break;
3352  }
3353  case ISD::BRCOND:
3354    // Expand brcond's setcc into its constituent parts and create a BR_CC
3355    // Node.
3356    Tmp1 = Node->getOperand(0);
3357    Tmp2 = Node->getOperand(1);
3358    if (Tmp2.getOpcode() == ISD::SETCC) {
3359      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
3360                         Tmp1, Tmp2.getOperand(2),
3361                         Tmp2.getOperand(0), Tmp2.getOperand(1),
3362                         Node->getOperand(2));
3363    } else {
3364      // We test only the i1 bit.  Skip the AND if UNDEF.
3365      Tmp3 = (Tmp2.getOpcode() == ISD::UNDEF) ? Tmp2 :
3366        DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2,
3367                    DAG.getConstant(1, Tmp2.getValueType()));
3368      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
3369                         DAG.getCondCode(ISD::SETNE), Tmp3,
3370                         DAG.getConstant(0, Tmp3.getValueType()),
3371                         Node->getOperand(2));
3372    }
3373    Results.push_back(Tmp1);
3374    break;
3375  case ISD::SETCC: {
3376    Tmp1 = Node->getOperand(0);
3377    Tmp2 = Node->getOperand(1);
3378    Tmp3 = Node->getOperand(2);
3379    LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl);
3380
3381    // If we expanded the SETCC into an AND/OR, return the new node
3382    if (Tmp2.getNode() == 0) {
3383      Results.push_back(Tmp1);
3384      break;
3385    }
3386
3387    // Otherwise, SETCC for the given comparison type must be completely
3388    // illegal; expand it into a SELECT_CC.
3389    EVT VT = Node->getValueType(0);
3390    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
3391                       DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3);
3392    Results.push_back(Tmp1);
3393    break;
3394  }
3395  case ISD::SELECT_CC: {
3396    Tmp1 = Node->getOperand(0);   // LHS
3397    Tmp2 = Node->getOperand(1);   // RHS
3398    Tmp3 = Node->getOperand(2);   // True
3399    Tmp4 = Node->getOperand(3);   // False
3400    SDValue CC = Node->getOperand(4);
3401
3402    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()),
3403                          Tmp1, Tmp2, CC, dl);
3404
3405    assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!");
3406    Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
3407    CC = DAG.getCondCode(ISD::SETNE);
3408    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2,
3409                       Tmp3, Tmp4, CC);
3410    Results.push_back(Tmp1);
3411    break;
3412  }
3413  case ISD::BR_CC: {
3414    Tmp1 = Node->getOperand(0);              // Chain
3415    Tmp2 = Node->getOperand(2);              // LHS
3416    Tmp3 = Node->getOperand(3);              // RHS
3417    Tmp4 = Node->getOperand(1);              // CC
3418
3419    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()),
3420                          Tmp2, Tmp3, Tmp4, dl);
3421
3422    assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!");
3423    Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
3424    Tmp4 = DAG.getCondCode(ISD::SETNE);
3425    Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2,
3426                       Tmp3, Node->getOperand(4));
3427    Results.push_back(Tmp1);
3428    break;
3429  }
3430  case ISD::BUILD_VECTOR:
3431    Results.push_back(ExpandBUILD_VECTOR(Node));
3432    break;
3433  case ISD::SRA:
3434  case ISD::SRL:
3435  case ISD::SHL: {
3436    // Scalarize vector SRA/SRL/SHL.
3437    EVT VT = Node->getValueType(0);
3438    assert(VT.isVector() && "Unable to legalize non-vector shift");
3439    assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal");
3440    unsigned NumElem = VT.getVectorNumElements();
3441
3442    SmallVector<SDValue, 8> Scalars;
3443    for (unsigned Idx = 0; Idx < NumElem; Idx++) {
3444      SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
3445                               VT.getScalarType(),
3446                               Node->getOperand(0), DAG.getIntPtrConstant(Idx));
3447      SDValue Sh = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
3448                               VT.getScalarType(),
3449                               Node->getOperand(1), DAG.getIntPtrConstant(Idx));
3450      Scalars.push_back(DAG.getNode(Node->getOpcode(), dl,
3451                                    VT.getScalarType(), Ex, Sh));
3452    }
3453    SDValue Result =
3454      DAG.getNode(ISD::BUILD_VECTOR, dl, Node->getValueType(0),
3455                  &Scalars[0], Scalars.size());
3456    ReplaceNode(SDValue(Node, 0), Result);
3457    break;
3458  }
3459  case ISD::GLOBAL_OFFSET_TABLE:
3460  case ISD::GlobalAddress:
3461  case ISD::GlobalTLSAddress:
3462  case ISD::ExternalSymbol:
3463  case ISD::ConstantPool:
3464  case ISD::JumpTable:
3465  case ISD::INTRINSIC_W_CHAIN:
3466  case ISD::INTRINSIC_WO_CHAIN:
3467  case ISD::INTRINSIC_VOID:
3468    // FIXME: Custom lowering for these operations shouldn't return null!
3469    break;
3470  }
3471
3472  // Replace the original node with the legalized result.
3473  if (!Results.empty())
3474    ReplaceNode(Node, Results.data());
3475}
3476
3477void SelectionDAGLegalize::PromoteNode(SDNode *Node) {
3478  SmallVector<SDValue, 8> Results;
3479  EVT OVT = Node->getValueType(0);
3480  if (Node->getOpcode() == ISD::UINT_TO_FP ||
3481      Node->getOpcode() == ISD::SINT_TO_FP ||
3482      Node->getOpcode() == ISD::SETCC) {
3483    OVT = Node->getOperand(0).getValueType();
3484  }
3485  EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
3486  DebugLoc dl = Node->getDebugLoc();
3487  SDValue Tmp1, Tmp2, Tmp3;
3488  switch (Node->getOpcode()) {
3489  case ISD::CTTZ:
3490  case ISD::CTTZ_ZERO_UNDEF:
3491  case ISD::CTLZ:
3492  case ISD::CTLZ_ZERO_UNDEF:
3493  case ISD::CTPOP:
3494    // Zero extend the argument.
3495    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3496    // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is
3497    // already the correct result.
3498    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
3499    if (Node->getOpcode() == ISD::CTTZ) {
3500      // FIXME: This should set a bit in the zero extended value instead.
3501      Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT),
3502                          Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT),
3503                          ISD::SETEQ);
3504      Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2,
3505                          DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1);
3506    } else if (Node->getOpcode() == ISD::CTLZ ||
3507               Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) {
3508      // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
3509      Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
3510                          DAG.getConstant(NVT.getSizeInBits() -
3511                                          OVT.getSizeInBits(), NVT));
3512    }
3513    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
3514    break;
3515  case ISD::BSWAP: {
3516    unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
3517    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3518    Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
3519    Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
3520                          DAG.getConstant(DiffBits, TLI.getShiftAmountTy(NVT)));
3521    Results.push_back(Tmp1);
3522    break;
3523  }
3524  case ISD::FP_TO_UINT:
3525  case ISD::FP_TO_SINT:
3526    Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
3527                                 Node->getOpcode() == ISD::FP_TO_SINT, dl);
3528    Results.push_back(Tmp1);
3529    break;
3530  case ISD::UINT_TO_FP:
3531  case ISD::SINT_TO_FP:
3532    Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
3533                                 Node->getOpcode() == ISD::SINT_TO_FP, dl);
3534    Results.push_back(Tmp1);
3535    break;
3536  case ISD::VAARG: {
3537    SDValue Chain = Node->getOperand(0); // Get the chain.
3538    SDValue Ptr = Node->getOperand(1); // Get the pointer.
3539
3540    unsigned TruncOp;
3541    if (OVT.isVector()) {
3542      TruncOp = ISD::BITCAST;
3543    } else {
3544      assert(OVT.isInteger()
3545        && "VAARG promotion is supported only for vectors or integer types");
3546      TruncOp = ISD::TRUNCATE;
3547    }
3548
3549    // Perform the larger operation, then convert back
3550    Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2),
3551             Node->getConstantOperandVal(3));
3552    Chain = Tmp1.getValue(1);
3553
3554    Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1);
3555
3556    // Modified the chain result - switch anything that used the old chain to
3557    // use the new one.
3558    DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2);
3559    DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
3560    ReplacedNode(Node);
3561    break;
3562  }
3563  case ISD::AND:
3564  case ISD::OR:
3565  case ISD::XOR: {
3566    unsigned ExtOp, TruncOp;
3567    if (OVT.isVector()) {
3568      ExtOp   = ISD::BITCAST;
3569      TruncOp = ISD::BITCAST;
3570    } else {
3571      assert(OVT.isInteger() && "Cannot promote logic operation");
3572      ExtOp   = ISD::ANY_EXTEND;
3573      TruncOp = ISD::TRUNCATE;
3574    }
3575    // Promote each of the values to the new type.
3576    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3577    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3578    // Perform the larger operation, then convert back
3579    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3580    Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
3581    break;
3582  }
3583  case ISD::SELECT: {
3584    unsigned ExtOp, TruncOp;
3585    if (Node->getValueType(0).isVector()) {
3586      ExtOp   = ISD::BITCAST;
3587      TruncOp = ISD::BITCAST;
3588    } else if (Node->getValueType(0).isInteger()) {
3589      ExtOp   = ISD::ANY_EXTEND;
3590      TruncOp = ISD::TRUNCATE;
3591    } else {
3592      ExtOp   = ISD::FP_EXTEND;
3593      TruncOp = ISD::FP_ROUND;
3594    }
3595    Tmp1 = Node->getOperand(0);
3596    // Promote each of the values to the new type.
3597    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3598    Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
3599    // Perform the larger operation, then round down.
3600    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3);
3601    if (TruncOp != ISD::FP_ROUND)
3602      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
3603    else
3604      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
3605                         DAG.getIntPtrConstant(0));
3606    Results.push_back(Tmp1);
3607    break;
3608  }
3609  case ISD::VECTOR_SHUFFLE: {
3610    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
3611
3612    // Cast the two input vectors.
3613    Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0));
3614    Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1));
3615
3616    // Convert the shuffle mask to the right # elements.
3617    Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
3618    Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1);
3619    Results.push_back(Tmp1);
3620    break;
3621  }
3622  case ISD::SETCC: {
3623    unsigned ExtOp = ISD::FP_EXTEND;
3624    if (NVT.isInteger()) {
3625      ISD::CondCode CCCode =
3626        cast<CondCodeSDNode>(Node->getOperand(2))->get();
3627      ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3628    }
3629    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3630    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3631    Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3632                                  Tmp1, Tmp2, Node->getOperand(2)));
3633    break;
3634  }
3635  case ISD::FDIV:
3636  case ISD::FPOW: {
3637    Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
3638    Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
3639    Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3640    Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
3641                                  Tmp3, DAG.getIntPtrConstant(0)));
3642    break;
3643  }
3644  case ISD::FLOG2:
3645  case ISD::FEXP2:
3646  case ISD::FLOG:
3647  case ISD::FEXP: {
3648    Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
3649    Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
3650    Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
3651                                  Tmp2, DAG.getIntPtrConstant(0)));
3652    break;
3653  }
3654  }
3655
3656  // Replace the original node with the legalized result.
3657  if (!Results.empty())
3658    ReplaceNode(Node, Results.data());
3659}
3660
3661// SelectionDAG::Legalize - This is the entry point for the file.
3662//
3663void SelectionDAG::Legalize() {
3664  /// run - This is the main entry point to this class.
3665  ///
3666  SelectionDAGLegalize(*this).LegalizeDAG();
3667}
3668