LegalizeDAG.cpp revision 54f616304240fcbc41ca9b9b2af38eeb1171e8a8
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SelectionDAG::Legalize method.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/CodeGen/MachineFunction.h"
16#include "llvm/CodeGen/MachineFrameInfo.h"
17#include "llvm/CodeGen/MachineJumpTableInfo.h"
18#include "llvm/CodeGen/MachineModuleInfo.h"
19#include "llvm/Analysis/DebugInfo.h"
20#include "llvm/CodeGen/PseudoSourceValue.h"
21#include "llvm/Target/TargetFrameInfo.h"
22#include "llvm/Target/TargetLowering.h"
23#include "llvm/Target/TargetData.h"
24#include "llvm/Target/TargetMachine.h"
25#include "llvm/Target/TargetOptions.h"
26#include "llvm/CallingConv.h"
27#include "llvm/Constants.h"
28#include "llvm/DerivedTypes.h"
29#include "llvm/Function.h"
30#include "llvm/GlobalVariable.h"
31#include "llvm/LLVMContext.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/ErrorHandling.h"
35#include "llvm/Support/MathExtras.h"
36#include "llvm/Support/raw_ostream.h"
37#include "llvm/ADT/DenseMap.h"
38#include "llvm/ADT/SmallVector.h"
39#include "llvm/ADT/SmallPtrSet.h"
40using namespace llvm;
41
42//===----------------------------------------------------------------------===//
43/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
44/// hacks on it until the target machine can handle it.  This involves
45/// eliminating value sizes the machine cannot handle (promoting small sizes to
46/// large sizes or splitting up large values into small values) as well as
47/// eliminating operations the machine cannot handle.
48///
49/// This code also does a small amount of optimization and recognition of idioms
50/// as part of its processing.  For example, if a target does not support a
51/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
52/// will attempt merge setcc and brc instructions into brcc's.
53///
54namespace {
55class SelectionDAGLegalize {
56  const TargetMachine &TM;
57  const TargetLowering &TLI;
58  SelectionDAG &DAG;
59  CodeGenOpt::Level OptLevel;
60
61  // Libcall insertion helpers.
62
63  /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been
64  /// legalized.  We use this to ensure that calls are properly serialized
65  /// against each other, including inserted libcalls.
66  SDValue LastCALLSEQ_END;
67
68  /// IsLegalizingCall - This member is used *only* for purposes of providing
69  /// helpful assertions that a libcall isn't created while another call is
70  /// being legalized (which could lead to non-serialized call sequences).
71  bool IsLegalizingCall;
72
73  enum LegalizeAction {
74    Legal,      // The target natively supports this operation.
75    Promote,    // This operation should be executed in a larger type.
76    Expand      // Try to expand this to other ops, otherwise use a libcall.
77  };
78
79  /// ValueTypeActions - This is a bitvector that contains two bits for each
80  /// value type, where the two bits correspond to the LegalizeAction enum.
81  /// This can be queried with "getTypeAction(VT)".
82  TargetLowering::ValueTypeActionImpl ValueTypeActions;
83
84  /// LegalizedNodes - For nodes that are of legal width, and that have more
85  /// than one use, this map indicates what regularized operand to use.  This
86  /// allows us to avoid legalizing the same thing more than once.
87  DenseMap<SDValue, SDValue> LegalizedNodes;
88
89  void AddLegalizedOperand(SDValue From, SDValue To) {
90    LegalizedNodes.insert(std::make_pair(From, To));
91    // If someone requests legalization of the new node, return itself.
92    if (From != To)
93      LegalizedNodes.insert(std::make_pair(To, To));
94  }
95
96public:
97  SelectionDAGLegalize(SelectionDAG &DAG, CodeGenOpt::Level ol);
98
99  /// getTypeAction - Return how we should legalize values of this type, either
100  /// it is already legal or we need to expand it into multiple registers of
101  /// smaller integer type, or we need to promote it to a larger type.
102  LegalizeAction getTypeAction(EVT VT) const {
103    return
104        (LegalizeAction)ValueTypeActions.getTypeAction(*DAG.getContext(), VT);
105  }
106
107  /// isTypeLegal - Return true if this type is legal on this target.
108  ///
109  bool isTypeLegal(EVT VT) const {
110    return getTypeAction(VT) == Legal;
111  }
112
113  void LegalizeDAG();
114
115private:
116  /// LegalizeOp - We know that the specified value has a legal type.
117  /// Recursively ensure that the operands have legal types, then return the
118  /// result.
119  SDValue LegalizeOp(SDValue O);
120
121  SDValue OptimizeFloatStore(StoreSDNode *ST);
122
123  /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
124  /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
125  /// is necessary to spill the vector being inserted into to memory, perform
126  /// the insert there, and then read the result back.
127  SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
128                                         SDValue Idx, DebugLoc dl);
129  SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
130                                  SDValue Idx, DebugLoc dl);
131
132  /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
133  /// performs the same shuffe in terms of order or result bytes, but on a type
134  /// whose vector element type is narrower than the original shuffle type.
135  /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
136  SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl,
137                                     SDValue N1, SDValue N2,
138                                     SmallVectorImpl<int> &Mask) const;
139
140  bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
141                                    SmallPtrSet<SDNode*, 32> &NodesLeadingTo);
142
143  void LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
144                             DebugLoc dl);
145
146  SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
147  std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC,
148                                                 SDNode *Node, bool isSigned);
149  SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
150                          RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
151                          RTLIB::Libcall Call_PPCF128);
152  SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
153                           RTLIB::Libcall Call_I8,
154                           RTLIB::Libcall Call_I16,
155                           RTLIB::Libcall Call_I32,
156                           RTLIB::Libcall Call_I64,
157                           RTLIB::Libcall Call_I128);
158
159  SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, DebugLoc dl);
160  SDValue ExpandBUILD_VECTOR(SDNode *Node);
161  SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
162  void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
163                                SmallVectorImpl<SDValue> &Results);
164  SDValue ExpandFCOPYSIGN(SDNode *Node);
165  SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT,
166                               DebugLoc dl);
167  SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned,
168                                DebugLoc dl);
169  SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned,
170                                DebugLoc dl);
171
172  SDValue ExpandBSWAP(SDValue Op, DebugLoc dl);
173  SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl);
174
175  SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
176  SDValue ExpandVectorBuildThroughStack(SDNode* Node);
177
178  std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node);
179
180  void ExpandNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
181  void PromoteNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
182};
183}
184
185/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
186/// performs the same shuffe in terms of order or result bytes, but on a type
187/// whose vector element type is narrower than the original shuffle type.
188/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
189SDValue
190SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT,  DebugLoc dl,
191                                                 SDValue N1, SDValue N2,
192                                             SmallVectorImpl<int> &Mask) const {
193  unsigned NumMaskElts = VT.getVectorNumElements();
194  unsigned NumDestElts = NVT.getVectorNumElements();
195  unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
196
197  assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
198
199  if (NumEltsGrowth == 1)
200    return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
201
202  SmallVector<int, 8> NewMask;
203  for (unsigned i = 0; i != NumMaskElts; ++i) {
204    int Idx = Mask[i];
205    for (unsigned j = 0; j != NumEltsGrowth; ++j) {
206      if (Idx < 0)
207        NewMask.push_back(-1);
208      else
209        NewMask.push_back(Idx * NumEltsGrowth + j);
210    }
211  }
212  assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
213  assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
214  return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
215}
216
217SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag,
218                                           CodeGenOpt::Level ol)
219  : TM(dag.getTarget()), TLI(dag.getTargetLoweringInfo()),
220    DAG(dag), OptLevel(ol),
221    ValueTypeActions(TLI.getValueTypeActions()) {
222  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
223         "Too many value types for ValueTypeActions to hold!");
224}
225
226void SelectionDAGLegalize::LegalizeDAG() {
227  LastCALLSEQ_END = DAG.getEntryNode();
228  IsLegalizingCall = false;
229
230  // The legalize process is inherently a bottom-up recursive process (users
231  // legalize their uses before themselves).  Given infinite stack space, we
232  // could just start legalizing on the root and traverse the whole graph.  In
233  // practice however, this causes us to run out of stack space on large basic
234  // blocks.  To avoid this problem, compute an ordering of the nodes where each
235  // node is only legalized after all of its operands are legalized.
236  DAG.AssignTopologicalOrder();
237  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
238       E = prior(DAG.allnodes_end()); I != llvm::next(E); ++I)
239    LegalizeOp(SDValue(I, 0));
240
241  // Finally, it's possible the root changed.  Get the new root.
242  SDValue OldRoot = DAG.getRoot();
243  assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
244  DAG.setRoot(LegalizedNodes[OldRoot]);
245
246  LegalizedNodes.clear();
247
248  // Remove dead nodes now.
249  DAG.RemoveDeadNodes();
250}
251
252
253/// FindCallEndFromCallStart - Given a chained node that is part of a call
254/// sequence, find the CALLSEQ_END node that terminates the call sequence.
255static SDNode *FindCallEndFromCallStart(SDNode *Node) {
256  if (Node->getOpcode() == ISD::CALLSEQ_END)
257    return Node;
258  if (Node->use_empty())
259    return 0;   // No CallSeqEnd
260
261  // The chain is usually at the end.
262  SDValue TheChain(Node, Node->getNumValues()-1);
263  if (TheChain.getValueType() != MVT::Other) {
264    // Sometimes it's at the beginning.
265    TheChain = SDValue(Node, 0);
266    if (TheChain.getValueType() != MVT::Other) {
267      // Otherwise, hunt for it.
268      for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i)
269        if (Node->getValueType(i) == MVT::Other) {
270          TheChain = SDValue(Node, i);
271          break;
272        }
273
274      // Otherwise, we walked into a node without a chain.
275      if (TheChain.getValueType() != MVT::Other)
276        return 0;
277    }
278  }
279
280  for (SDNode::use_iterator UI = Node->use_begin(),
281       E = Node->use_end(); UI != E; ++UI) {
282
283    // Make sure to only follow users of our token chain.
284    SDNode *User = *UI;
285    for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
286      if (User->getOperand(i) == TheChain)
287        if (SDNode *Result = FindCallEndFromCallStart(User))
288          return Result;
289  }
290  return 0;
291}
292
293/// FindCallStartFromCallEnd - Given a chained node that is part of a call
294/// sequence, find the CALLSEQ_START node that initiates the call sequence.
295static SDNode *FindCallStartFromCallEnd(SDNode *Node) {
296  assert(Node && "Didn't find callseq_start for a call??");
297  if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
298
299  assert(Node->getOperand(0).getValueType() == MVT::Other &&
300         "Node doesn't have a token chain argument!");
301  return FindCallStartFromCallEnd(Node->getOperand(0).getNode());
302}
303
304/// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to
305/// see if any uses can reach Dest.  If no dest operands can get to dest,
306/// legalize them, legalize ourself, and return false, otherwise, return true.
307///
308/// Keep track of the nodes we fine that actually do lead to Dest in
309/// NodesLeadingTo.  This avoids retraversing them exponential number of times.
310///
311bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
312                                     SmallPtrSet<SDNode*, 32> &NodesLeadingTo) {
313  if (N == Dest) return true;  // N certainly leads to Dest :)
314
315  // If we've already processed this node and it does lead to Dest, there is no
316  // need to reprocess it.
317  if (NodesLeadingTo.count(N)) return true;
318
319  // If the first result of this node has been already legalized, then it cannot
320  // reach N.
321  if (LegalizedNodes.count(SDValue(N, 0))) return false;
322
323  // Okay, this node has not already been legalized.  Check and legalize all
324  // operands.  If none lead to Dest, then we can legalize this node.
325  bool OperandsLeadToDest = false;
326  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
327    OperandsLeadToDest |=     // If an operand leads to Dest, so do we.
328      LegalizeAllNodesNotLeadingTo(N->getOperand(i).getNode(), Dest,
329                                   NodesLeadingTo);
330
331  if (OperandsLeadToDest) {
332    NodesLeadingTo.insert(N);
333    return true;
334  }
335
336  // Okay, this node looks safe, legalize it and return false.
337  LegalizeOp(SDValue(N, 0));
338  return false;
339}
340
341/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
342/// a load from the constant pool.
343static SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP,
344                                SelectionDAG &DAG, const TargetLowering &TLI) {
345  bool Extend = false;
346  DebugLoc dl = CFP->getDebugLoc();
347
348  // If a FP immediate is precise when represented as a float and if the
349  // target can do an extending load from float to double, we put it into
350  // the constant pool as a float, even if it's is statically typed as a
351  // double.  This shrinks FP constants and canonicalizes them for targets where
352  // an FP extending load is the same cost as a normal load (such as on the x87
353  // fp stack or PPC FP unit).
354  EVT VT = CFP->getValueType(0);
355  ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
356  if (!UseCP) {
357    assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
358    return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(),
359                           (VT == MVT::f64) ? MVT::i64 : MVT::i32);
360  }
361
362  EVT OrigVT = VT;
363  EVT SVT = VT;
364  while (SVT != MVT::f32) {
365    SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
366    if (ConstantFPSDNode::isValueValidForType(SVT, CFP->getValueAPF()) &&
367        // Only do this if the target has a native EXTLOAD instruction from
368        // smaller type.
369        TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
370        TLI.ShouldShrinkFPConstant(OrigVT)) {
371      const Type *SType = SVT.getTypeForEVT(*DAG.getContext());
372      LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
373      VT = SVT;
374      Extend = true;
375    }
376  }
377
378  SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
379  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
380  if (Extend)
381    return DAG.getExtLoad(ISD::EXTLOAD, OrigVT, dl,
382                          DAG.getEntryNode(),
383                          CPIdx, PseudoSourceValue::getConstantPool(),
384                          0, VT, false, false, Alignment);
385  return DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
386                     PseudoSourceValue::getConstantPool(), 0, false, false,
387                     Alignment);
388}
389
390/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
391static
392SDValue ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
393                             const TargetLowering &TLI) {
394  SDValue Chain = ST->getChain();
395  SDValue Ptr = ST->getBasePtr();
396  SDValue Val = ST->getValue();
397  EVT VT = Val.getValueType();
398  int Alignment = ST->getAlignment();
399  int SVOffset = ST->getSrcValueOffset();
400  DebugLoc dl = ST->getDebugLoc();
401  if (ST->getMemoryVT().isFloatingPoint() ||
402      ST->getMemoryVT().isVector()) {
403    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
404    if (TLI.isTypeLegal(intVT)) {
405      // Expand to a bitconvert of the value to the integer type of the
406      // same size, then a (misaligned) int store.
407      // FIXME: Does not handle truncating floating point stores!
408      SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, intVT, Val);
409      return DAG.getStore(Chain, dl, Result, Ptr, ST->getSrcValue(),
410                          SVOffset, ST->isVolatile(), ST->isNonTemporal(),
411                          Alignment);
412    } else {
413      // Do a (aligned) store to a stack slot, then copy from the stack slot
414      // to the final destination using (unaligned) integer loads and stores.
415      EVT StoredVT = ST->getMemoryVT();
416      EVT RegVT =
417        TLI.getRegisterType(*DAG.getContext(),
418                            EVT::getIntegerVT(*DAG.getContext(),
419                                              StoredVT.getSizeInBits()));
420      unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
421      unsigned RegBytes = RegVT.getSizeInBits() / 8;
422      unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
423
424      // Make sure the stack slot is also aligned for the register type.
425      SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
426
427      // Perform the original store, only redirected to the stack slot.
428      SDValue Store = DAG.getTruncStore(Chain, dl,
429                                        Val, StackPtr, NULL, 0, StoredVT,
430                                        false, false, 0);
431      SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
432      SmallVector<SDValue, 8> Stores;
433      unsigned Offset = 0;
434
435      // Do all but one copies using the full register width.
436      for (unsigned i = 1; i < NumRegs; i++) {
437        // Load one integer register's worth from the stack slot.
438        SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr, NULL, 0,
439                                   false, false, 0);
440        // Store it to the final location.  Remember the store.
441        Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
442                                      ST->getSrcValue(), SVOffset + Offset,
443                                      ST->isVolatile(), ST->isNonTemporal(),
444                                      MinAlign(ST->getAlignment(), Offset)));
445        // Increment the pointers.
446        Offset += RegBytes;
447        StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
448                               Increment);
449        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
450      }
451
452      // The last store may be partial.  Do a truncating store.  On big-endian
453      // machines this requires an extending load from the stack slot to ensure
454      // that the bits are in the right place.
455      EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
456                                    8 * (StoredBytes - Offset));
457
458      // Load from the stack slot.
459      SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, RegVT, dl, Store, StackPtr,
460                                    NULL, 0, MemVT, false, false, 0);
461
462      Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
463                                         ST->getSrcValue(), SVOffset + Offset,
464                                         MemVT, ST->isVolatile(),
465                                         ST->isNonTemporal(),
466                                         MinAlign(ST->getAlignment(), Offset)));
467      // The order of the stores doesn't matter - say it with a TokenFactor.
468      return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
469                         Stores.size());
470    }
471  }
472  assert(ST->getMemoryVT().isInteger() &&
473         !ST->getMemoryVT().isVector() &&
474         "Unaligned store of unknown type.");
475  // Get the half-size VT
476  EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
477  int NumBits = NewStoredVT.getSizeInBits();
478  int IncrementSize = NumBits / 8;
479
480  // Divide the stored value in two parts.
481  SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
482  SDValue Lo = Val;
483  SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
484
485  // Store the two parts
486  SDValue Store1, Store2;
487  Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
488                             ST->getSrcValue(), SVOffset, NewStoredVT,
489                             ST->isVolatile(), ST->isNonTemporal(), Alignment);
490  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
491                    DAG.getConstant(IncrementSize, TLI.getPointerTy()));
492  Alignment = MinAlign(Alignment, IncrementSize);
493  Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
494                             ST->getSrcValue(), SVOffset + IncrementSize,
495                             NewStoredVT, ST->isVolatile(), ST->isNonTemporal(),
496                             Alignment);
497
498  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
499}
500
501/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
502static
503SDValue ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
504                            const TargetLowering &TLI) {
505  int SVOffset = LD->getSrcValueOffset();
506  SDValue Chain = LD->getChain();
507  SDValue Ptr = LD->getBasePtr();
508  EVT VT = LD->getValueType(0);
509  EVT LoadedVT = LD->getMemoryVT();
510  DebugLoc dl = LD->getDebugLoc();
511  if (VT.isFloatingPoint() || VT.isVector()) {
512    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
513    if (TLI.isTypeLegal(intVT)) {
514      // Expand to a (misaligned) integer load of the same size,
515      // then bitconvert to floating point or vector.
516      SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getSrcValue(),
517                                    SVOffset, LD->isVolatile(),
518                                    LD->isNonTemporal(), LD->getAlignment());
519      SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, LoadedVT, newLoad);
520      if (VT.isFloatingPoint() && LoadedVT != VT)
521        Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result);
522
523      SDValue Ops[] = { Result, Chain };
524      return DAG.getMergeValues(Ops, 2, dl);
525    } else {
526      // Copy the value to a (aligned) stack slot using (unaligned) integer
527      // loads and stores, then do a (aligned) load from the stack slot.
528      EVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT);
529      unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
530      unsigned RegBytes = RegVT.getSizeInBits() / 8;
531      unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
532
533      // Make sure the stack slot is also aligned for the register type.
534      SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
535
536      SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
537      SmallVector<SDValue, 8> Stores;
538      SDValue StackPtr = StackBase;
539      unsigned Offset = 0;
540
541      // Do all but one copies using the full register width.
542      for (unsigned i = 1; i < NumRegs; i++) {
543        // Load one integer register's worth from the original location.
544        SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr, LD->getSrcValue(),
545                                   SVOffset + Offset, LD->isVolatile(),
546                                   LD->isNonTemporal(),
547                                   MinAlign(LD->getAlignment(), Offset));
548        // Follow the load with a store to the stack slot.  Remember the store.
549        Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
550                                      NULL, 0, false, false, 0));
551        // Increment the pointers.
552        Offset += RegBytes;
553        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
554        StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
555                               Increment);
556      }
557
558      // The last copy may be partial.  Do an extending load.
559      EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
560                                    8 * (LoadedBytes - Offset));
561      SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, RegVT, dl, Chain, Ptr,
562                                    LD->getSrcValue(), SVOffset + Offset,
563                                    MemVT, LD->isVolatile(),
564                                    LD->isNonTemporal(),
565                                    MinAlign(LD->getAlignment(), Offset));
566      // Follow the load with a store to the stack slot.  Remember the store.
567      // On big-endian machines this requires a truncating store to ensure
568      // that the bits end up in the right place.
569      Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
570                                         NULL, 0, MemVT, false, false, 0));
571
572      // The order of the stores doesn't matter - say it with a TokenFactor.
573      SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
574                               Stores.size());
575
576      // Finally, perform the original load only redirected to the stack slot.
577      Load = DAG.getExtLoad(LD->getExtensionType(), VT, dl, TF, StackBase,
578                            NULL, 0, LoadedVT, false, false, 0);
579
580      // Callers expect a MERGE_VALUES node.
581      SDValue Ops[] = { Load, TF };
582      return DAG.getMergeValues(Ops, 2, dl);
583    }
584  }
585  assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
586         "Unaligned load of unsupported type.");
587
588  // Compute the new VT that is half the size of the old one.  This is an
589  // integer MVT.
590  unsigned NumBits = LoadedVT.getSizeInBits();
591  EVT NewLoadedVT;
592  NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
593  NumBits >>= 1;
594
595  unsigned Alignment = LD->getAlignment();
596  unsigned IncrementSize = NumBits / 8;
597  ISD::LoadExtType HiExtType = LD->getExtensionType();
598
599  // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
600  if (HiExtType == ISD::NON_EXTLOAD)
601    HiExtType = ISD::ZEXTLOAD;
602
603  // Load the value in two parts
604  SDValue Lo, Hi;
605  if (TLI.isLittleEndian()) {
606    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, VT, dl, Chain, Ptr, LD->getSrcValue(),
607                        SVOffset, NewLoadedVT, LD->isVolatile(),
608                        LD->isNonTemporal(), Alignment);
609    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
610                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
611    Hi = DAG.getExtLoad(HiExtType, VT, dl, Chain, Ptr, LD->getSrcValue(),
612                        SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
613                        LD->isNonTemporal(), MinAlign(Alignment,IncrementSize));
614  } else {
615    Hi = DAG.getExtLoad(HiExtType, VT, dl, Chain, Ptr, LD->getSrcValue(),
616                        SVOffset, NewLoadedVT, LD->isVolatile(),
617                        LD->isNonTemporal(), Alignment);
618    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
619                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
620    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, VT, dl, Chain, Ptr, LD->getSrcValue(),
621                        SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
622                        LD->isNonTemporal(), MinAlign(Alignment,IncrementSize));
623  }
624
625  // aggregate the two parts
626  SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
627  SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
628  Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
629
630  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
631                             Hi.getValue(1));
632
633  SDValue Ops[] = { Result, TF };
634  return DAG.getMergeValues(Ops, 2, dl);
635}
636
637/// PerformInsertVectorEltInMemory - Some target cannot handle a variable
638/// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
639/// is necessary to spill the vector being inserted into to memory, perform
640/// the insert there, and then read the result back.
641SDValue SelectionDAGLegalize::
642PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
643                               DebugLoc dl) {
644  SDValue Tmp1 = Vec;
645  SDValue Tmp2 = Val;
646  SDValue Tmp3 = Idx;
647
648  // If the target doesn't support this, we have to spill the input vector
649  // to a temporary stack slot, update the element, then reload it.  This is
650  // badness.  We could also load the value into a vector register (either
651  // with a "move to register" or "extload into register" instruction, then
652  // permute it into place, if the idx is a constant and if the idx is
653  // supported by the target.
654  EVT VT    = Tmp1.getValueType();
655  EVT EltVT = VT.getVectorElementType();
656  EVT IdxVT = Tmp3.getValueType();
657  EVT PtrVT = TLI.getPointerTy();
658  SDValue StackPtr = DAG.CreateStackTemporary(VT);
659
660  int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
661
662  // Store the vector.
663  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr,
664                            PseudoSourceValue::getFixedStack(SPFI), 0,
665                            false, false, 0);
666
667  // Truncate or zero extend offset to target pointer type.
668  unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
669  Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3);
670  // Add the offset to the index.
671  unsigned EltSize = EltVT.getSizeInBits()/8;
672  Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
673  SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
674  // Store the scalar value.
675  Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2,
676                         PseudoSourceValue::getFixedStack(SPFI), 0, EltVT,
677                         false, false, 0);
678  // Load the updated vector.
679  return DAG.getLoad(VT, dl, Ch, StackPtr,
680                     PseudoSourceValue::getFixedStack(SPFI), 0,
681                     false, false, 0);
682}
683
684
685SDValue SelectionDAGLegalize::
686ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) {
687  if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
688    // SCALAR_TO_VECTOR requires that the type of the value being inserted
689    // match the element type of the vector being created, except for
690    // integers in which case the inserted value can be over width.
691    EVT EltVT = Vec.getValueType().getVectorElementType();
692    if (Val.getValueType() == EltVT ||
693        (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
694      SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
695                                  Vec.getValueType(), Val);
696
697      unsigned NumElts = Vec.getValueType().getVectorNumElements();
698      // We generate a shuffle of InVec and ScVec, so the shuffle mask
699      // should be 0,1,2,3,4,5... with the appropriate element replaced with
700      // elt 0 of the RHS.
701      SmallVector<int, 8> ShufOps;
702      for (unsigned i = 0; i != NumElts; ++i)
703        ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
704
705      return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
706                                  &ShufOps[0]);
707    }
708  }
709  return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
710}
711
712SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
713  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
714  // FIXME: We shouldn't do this for TargetConstantFP's.
715  // FIXME: move this to the DAG Combiner!  Note that we can't regress due
716  // to phase ordering between legalized code and the dag combiner.  This
717  // probably means that we need to integrate dag combiner and legalizer
718  // together.
719  // We generally can't do this one for long doubles.
720  SDValue Tmp1 = ST->getChain();
721  SDValue Tmp2 = ST->getBasePtr();
722  SDValue Tmp3;
723  int SVOffset = ST->getSrcValueOffset();
724  unsigned Alignment = ST->getAlignment();
725  bool isVolatile = ST->isVolatile();
726  bool isNonTemporal = ST->isNonTemporal();
727  DebugLoc dl = ST->getDebugLoc();
728  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
729    if (CFP->getValueType(0) == MVT::f32 &&
730        getTypeAction(MVT::i32) == Legal) {
731      Tmp3 = DAG.getConstant(CFP->getValueAPF().
732                                      bitcastToAPInt().zextOrTrunc(32),
733                              MVT::i32);
734      return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
735                          SVOffset, isVolatile, isNonTemporal, Alignment);
736    } else if (CFP->getValueType(0) == MVT::f64) {
737      // If this target supports 64-bit registers, do a single 64-bit store.
738      if (getTypeAction(MVT::i64) == Legal) {
739        Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
740                                  zextOrTrunc(64), MVT::i64);
741        return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
742                            SVOffset, isVolatile, isNonTemporal, Alignment);
743      } else if (getTypeAction(MVT::i32) == Legal && !ST->isVolatile()) {
744        // Otherwise, if the target supports 32-bit registers, use 2 32-bit
745        // stores.  If the target supports neither 32- nor 64-bits, this
746        // xform is certainly not worth it.
747        const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt();
748        SDValue Lo = DAG.getConstant(APInt(IntVal).trunc(32), MVT::i32);
749        SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32);
750        if (TLI.isBigEndian()) std::swap(Lo, Hi);
751
752        Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getSrcValue(),
753                          SVOffset, isVolatile, isNonTemporal, Alignment);
754        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
755                            DAG.getIntPtrConstant(4));
756        Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(), SVOffset+4,
757                          isVolatile, isNonTemporal, MinAlign(Alignment, 4U));
758
759        return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
760      }
761    }
762  }
763  return SDValue();
764}
765
766/// LegalizeOp - We know that the specified value has a legal type, and
767/// that its operands are legal.  Now ensure that the operation itself
768/// is legal, recursively ensuring that the operands' operations remain
769/// legal.
770SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
771  if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
772    return Op;
773
774  SDNode *Node = Op.getNode();
775  DebugLoc dl = Node->getDebugLoc();
776
777  for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
778    assert(getTypeAction(Node->getValueType(i)) == Legal &&
779           "Unexpected illegal type!");
780
781  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
782    assert((isTypeLegal(Node->getOperand(i).getValueType()) ||
783            Node->getOperand(i).getOpcode() == ISD::TargetConstant) &&
784           "Unexpected illegal type!");
785
786  // Note that LegalizeOp may be reentered even from single-use nodes, which
787  // means that we always must cache transformed nodes.
788  DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
789  if (I != LegalizedNodes.end()) return I->second;
790
791  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
792  SDValue Result = Op;
793  bool isCustom = false;
794
795  // Figure out the correct action; the way to query this varies by opcode
796  TargetLowering::LegalizeAction Action;
797  bool SimpleFinishLegalizing = true;
798  switch (Node->getOpcode()) {
799  case ISD::INTRINSIC_W_CHAIN:
800  case ISD::INTRINSIC_WO_CHAIN:
801  case ISD::INTRINSIC_VOID:
802  case ISD::VAARG:
803  case ISD::STACKSAVE:
804    Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
805    break;
806  case ISD::SINT_TO_FP:
807  case ISD::UINT_TO_FP:
808  case ISD::EXTRACT_VECTOR_ELT:
809    Action = TLI.getOperationAction(Node->getOpcode(),
810                                    Node->getOperand(0).getValueType());
811    break;
812  case ISD::FP_ROUND_INREG:
813  case ISD::SIGN_EXTEND_INREG: {
814    EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
815    Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
816    break;
817  }
818  case ISD::SELECT_CC:
819  case ISD::SETCC:
820  case ISD::BR_CC: {
821    unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
822                         Node->getOpcode() == ISD::SETCC ? 2 : 1;
823    unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
824    EVT OpVT = Node->getOperand(CompareOperand).getValueType();
825    ISD::CondCode CCCode =
826        cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
827    Action = TLI.getCondCodeAction(CCCode, OpVT);
828    if (Action == TargetLowering::Legal) {
829      if (Node->getOpcode() == ISD::SELECT_CC)
830        Action = TLI.getOperationAction(Node->getOpcode(),
831                                        Node->getValueType(0));
832      else
833        Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
834    }
835    break;
836  }
837  case ISD::LOAD:
838  case ISD::STORE:
839    // FIXME: Model these properly.  LOAD and STORE are complicated, and
840    // STORE expects the unlegalized operand in some cases.
841    SimpleFinishLegalizing = false;
842    break;
843  case ISD::CALLSEQ_START:
844  case ISD::CALLSEQ_END:
845    // FIXME: This shouldn't be necessary.  These nodes have special properties
846    // dealing with the recursive nature of legalization.  Removing this
847    // special case should be done as part of making LegalizeDAG non-recursive.
848    SimpleFinishLegalizing = false;
849    break;
850  case ISD::EXTRACT_ELEMENT:
851  case ISD::FLT_ROUNDS_:
852  case ISD::SADDO:
853  case ISD::SSUBO:
854  case ISD::UADDO:
855  case ISD::USUBO:
856  case ISD::SMULO:
857  case ISD::UMULO:
858  case ISD::FPOWI:
859  case ISD::MERGE_VALUES:
860  case ISD::EH_RETURN:
861  case ISD::FRAME_TO_ARGS_OFFSET:
862  case ISD::EH_SJLJ_SETJMP:
863  case ISD::EH_SJLJ_LONGJMP:
864    // These operations lie about being legal: when they claim to be legal,
865    // they should actually be expanded.
866    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
867    if (Action == TargetLowering::Legal)
868      Action = TargetLowering::Expand;
869    break;
870  case ISD::TRAMPOLINE:
871  case ISD::FRAMEADDR:
872  case ISD::RETURNADDR:
873    // These operations lie about being legal: when they claim to be legal,
874    // they should actually be custom-lowered.
875    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
876    if (Action == TargetLowering::Legal)
877      Action = TargetLowering::Custom;
878    break;
879  case ISD::BUILD_VECTOR:
880    // A weird case: legalization for BUILD_VECTOR never legalizes the
881    // operands!
882    // FIXME: This really sucks... changing it isn't semantically incorrect,
883    // but it massively pessimizes the code for floating-point BUILD_VECTORs
884    // because ConstantFP operands get legalized into constant pool loads
885    // before the BUILD_VECTOR code can see them.  It doesn't usually bite,
886    // though, because BUILD_VECTORS usually get lowered into other nodes
887    // which get legalized properly.
888    SimpleFinishLegalizing = false;
889    break;
890  default:
891    if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
892      Action = TargetLowering::Legal;
893    } else {
894      Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
895    }
896    break;
897  }
898
899  if (SimpleFinishLegalizing) {
900    SmallVector<SDValue, 8> Ops, ResultVals;
901    for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
902      Ops.push_back(LegalizeOp(Node->getOperand(i)));
903    switch (Node->getOpcode()) {
904    default: break;
905    case ISD::BR:
906    case ISD::BRIND:
907    case ISD::BR_JT:
908    case ISD::BR_CC:
909    case ISD::BRCOND:
910      // Branches tweak the chain to include LastCALLSEQ_END
911      Ops[0] = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ops[0],
912                            LastCALLSEQ_END);
913      Ops[0] = LegalizeOp(Ops[0]);
914      LastCALLSEQ_END = DAG.getEntryNode();
915      break;
916    case ISD::SHL:
917    case ISD::SRL:
918    case ISD::SRA:
919    case ISD::ROTL:
920    case ISD::ROTR:
921      // Legalizing shifts/rotates requires adjusting the shift amount
922      // to the appropriate width.
923      if (!Ops[1].getValueType().isVector())
924        Ops[1] = LegalizeOp(DAG.getShiftAmountOperand(Ops[1]));
925      break;
926    case ISD::SRL_PARTS:
927    case ISD::SRA_PARTS:
928    case ISD::SHL_PARTS:
929      // Legalizing shifts/rotates requires adjusting the shift amount
930      // to the appropriate width.
931      if (!Ops[2].getValueType().isVector())
932        Ops[2] = LegalizeOp(DAG.getShiftAmountOperand(Ops[2]));
933      break;
934    }
935
936    Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), Ops.data(),
937                                            Ops.size()), 0);
938    switch (Action) {
939    case TargetLowering::Legal:
940      for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
941        ResultVals.push_back(Result.getValue(i));
942      break;
943    case TargetLowering::Custom:
944      // FIXME: The handling for custom lowering with multiple results is
945      // a complete mess.
946      Tmp1 = TLI.LowerOperation(Result, DAG);
947      if (Tmp1.getNode()) {
948        for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
949          if (e == 1)
950            ResultVals.push_back(Tmp1);
951          else
952            ResultVals.push_back(Tmp1.getValue(i));
953        }
954        break;
955      }
956
957      // FALL THROUGH
958    case TargetLowering::Expand:
959      ExpandNode(Result.getNode(), ResultVals);
960      break;
961    case TargetLowering::Promote:
962      PromoteNode(Result.getNode(), ResultVals);
963      break;
964    }
965    if (!ResultVals.empty()) {
966      for (unsigned i = 0, e = ResultVals.size(); i != e; ++i) {
967        if (ResultVals[i] != SDValue(Node, i))
968          ResultVals[i] = LegalizeOp(ResultVals[i]);
969        AddLegalizedOperand(SDValue(Node, i), ResultVals[i]);
970      }
971      return ResultVals[Op.getResNo()];
972    }
973  }
974
975  switch (Node->getOpcode()) {
976  default:
977#ifndef NDEBUG
978    dbgs() << "NODE: ";
979    Node->dump( &DAG);
980    dbgs() << "\n";
981#endif
982    assert(0 && "Do not know how to legalize this operator!");
983
984  case ISD::BUILD_VECTOR:
985    switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) {
986    default: assert(0 && "This action is not supported yet!");
987    case TargetLowering::Custom:
988      Tmp3 = TLI.LowerOperation(Result, DAG);
989      if (Tmp3.getNode()) {
990        Result = Tmp3;
991        break;
992      }
993      // FALLTHROUGH
994    case TargetLowering::Expand:
995      Result = ExpandBUILD_VECTOR(Result.getNode());
996      break;
997    }
998    break;
999  case ISD::CALLSEQ_START: {
1000    SDNode *CallEnd = FindCallEndFromCallStart(Node);
1001
1002    // Recursively Legalize all of the inputs of the call end that do not lead
1003    // to this call start.  This ensures that any libcalls that need be inserted
1004    // are inserted *before* the CALLSEQ_START.
1005    {SmallPtrSet<SDNode*, 32> NodesLeadingTo;
1006    for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i)
1007      LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).getNode(), Node,
1008                                   NodesLeadingTo);
1009    }
1010
1011    // Now that we have legalized all of the inputs (which may have inserted
1012    // libcalls), create the new CALLSEQ_START node.
1013    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1014
1015    // Merge in the last call to ensure that this call starts after the last
1016    // call ended.
1017    if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) {
1018      Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1019                         Tmp1, LastCALLSEQ_END);
1020      Tmp1 = LegalizeOp(Tmp1);
1021    }
1022
1023    // Do not try to legalize the target-specific arguments (#1+).
1024    if (Tmp1 != Node->getOperand(0)) {
1025      SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1026      Ops[0] = Tmp1;
1027      Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), &Ops[0],
1028                                              Ops.size()), Result.getResNo());
1029    }
1030
1031    // Remember that the CALLSEQ_START is legalized.
1032    AddLegalizedOperand(Op.getValue(0), Result);
1033    if (Node->getNumValues() == 2)    // If this has a flag result, remember it.
1034      AddLegalizedOperand(Op.getValue(1), Result.getValue(1));
1035
1036    // Now that the callseq_start and all of the non-call nodes above this call
1037    // sequence have been legalized, legalize the call itself.  During this
1038    // process, no libcalls can/will be inserted, guaranteeing that no calls
1039    // can overlap.
1040    assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!");
1041    // Note that we are selecting this call!
1042    LastCALLSEQ_END = SDValue(CallEnd, 0);
1043    IsLegalizingCall = true;
1044
1045    // Legalize the call, starting from the CALLSEQ_END.
1046    LegalizeOp(LastCALLSEQ_END);
1047    assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!");
1048    return Result;
1049  }
1050  case ISD::CALLSEQ_END:
1051    // If the CALLSEQ_START node hasn't been legalized first, legalize it.  This
1052    // will cause this node to be legalized as well as handling libcalls right.
1053    if (LastCALLSEQ_END.getNode() != Node) {
1054      LegalizeOp(SDValue(FindCallStartFromCallEnd(Node), 0));
1055      DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
1056      assert(I != LegalizedNodes.end() &&
1057             "Legalizing the call start should have legalized this node!");
1058      return I->second;
1059    }
1060
1061    // Otherwise, the call start has been legalized and everything is going
1062    // according to plan.  Just legalize ourselves normally here.
1063    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1064    // Do not try to legalize the target-specific arguments (#1+), except for
1065    // an optional flag input.
1066    if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Flag){
1067      if (Tmp1 != Node->getOperand(0)) {
1068        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1069        Ops[0] = Tmp1;
1070        Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1071                                                &Ops[0], Ops.size()),
1072                         Result.getResNo());
1073      }
1074    } else {
1075      Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1));
1076      if (Tmp1 != Node->getOperand(0) ||
1077          Tmp2 != Node->getOperand(Node->getNumOperands()-1)) {
1078        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1079        Ops[0] = Tmp1;
1080        Ops.back() = Tmp2;
1081        Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1082                                                &Ops[0], Ops.size()),
1083                         Result.getResNo());
1084      }
1085    }
1086    assert(IsLegalizingCall && "Call sequence imbalance between start/end?");
1087    // This finishes up call legalization.
1088    IsLegalizingCall = false;
1089
1090    // If the CALLSEQ_END node has a flag, remember that we legalized it.
1091    AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0));
1092    if (Node->getNumValues() == 2)
1093      AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1));
1094    return Result.getValue(Op.getResNo());
1095  case ISD::LOAD: {
1096    LoadSDNode *LD = cast<LoadSDNode>(Node);
1097    Tmp1 = LegalizeOp(LD->getChain());   // Legalize the chain.
1098    Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer.
1099
1100    ISD::LoadExtType ExtType = LD->getExtensionType();
1101    if (ExtType == ISD::NON_EXTLOAD) {
1102      EVT VT = Node->getValueType(0);
1103      Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1104                                              Tmp1, Tmp2, LD->getOffset()),
1105                       Result.getResNo());
1106      Tmp3 = Result.getValue(0);
1107      Tmp4 = Result.getValue(1);
1108
1109      switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
1110      default: assert(0 && "This action is not supported yet!");
1111      case TargetLowering::Legal:
1112        // If this is an unaligned load and the target doesn't support it,
1113        // expand it.
1114        if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1115          const Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1116          unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1117          if (LD->getAlignment() < ABIAlignment){
1118            Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
1119                                         DAG, TLI);
1120            Tmp3 = Result.getOperand(0);
1121            Tmp4 = Result.getOperand(1);
1122            Tmp3 = LegalizeOp(Tmp3);
1123            Tmp4 = LegalizeOp(Tmp4);
1124          }
1125        }
1126        break;
1127      case TargetLowering::Custom:
1128        Tmp1 = TLI.LowerOperation(Tmp3, DAG);
1129        if (Tmp1.getNode()) {
1130          Tmp3 = LegalizeOp(Tmp1);
1131          Tmp4 = LegalizeOp(Tmp1.getValue(1));
1132        }
1133        break;
1134      case TargetLowering::Promote: {
1135        // Only promote a load of vector type to another.
1136        assert(VT.isVector() && "Cannot promote this load!");
1137        // Change base type to a different vector type.
1138        EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
1139
1140        Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
1141                           LD->getSrcValueOffset(),
1142                           LD->isVolatile(), LD->isNonTemporal(),
1143                           LD->getAlignment());
1144        Tmp3 = LegalizeOp(DAG.getNode(ISD::BIT_CONVERT, dl, VT, Tmp1));
1145        Tmp4 = LegalizeOp(Tmp1.getValue(1));
1146        break;
1147      }
1148      }
1149      // Since loads produce two values, make sure to remember that we
1150      // legalized both of them.
1151      AddLegalizedOperand(SDValue(Node, 0), Tmp3);
1152      AddLegalizedOperand(SDValue(Node, 1), Tmp4);
1153      return Op.getResNo() ? Tmp4 : Tmp3;
1154    } else {
1155      EVT SrcVT = LD->getMemoryVT();
1156      unsigned SrcWidth = SrcVT.getSizeInBits();
1157      int SVOffset = LD->getSrcValueOffset();
1158      unsigned Alignment = LD->getAlignment();
1159      bool isVolatile = LD->isVolatile();
1160      bool isNonTemporal = LD->isNonTemporal();
1161
1162      if (SrcWidth != SrcVT.getStoreSizeInBits() &&
1163          // Some targets pretend to have an i1 loading operation, and actually
1164          // load an i8.  This trick is correct for ZEXTLOAD because the top 7
1165          // bits are guaranteed to be zero; it helps the optimizers understand
1166          // that these bits are zero.  It is also useful for EXTLOAD, since it
1167          // tells the optimizers that those bits are undefined.  It would be
1168          // nice to have an effective generic way of getting these benefits...
1169          // Until such a way is found, don't insist on promoting i1 here.
1170          (SrcVT != MVT::i1 ||
1171           TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
1172        // Promote to a byte-sized load if not loading an integral number of
1173        // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
1174        unsigned NewWidth = SrcVT.getStoreSizeInBits();
1175        EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
1176        SDValue Ch;
1177
1178        // The extra bits are guaranteed to be zero, since we stored them that
1179        // way.  A zext load from NVT thus automatically gives zext from SrcVT.
1180
1181        ISD::LoadExtType NewExtType =
1182          ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
1183
1184        Result = DAG.getExtLoad(NewExtType, Node->getValueType(0), dl,
1185                                Tmp1, Tmp2, LD->getSrcValue(), SVOffset,
1186                                NVT, isVolatile, isNonTemporal, Alignment);
1187
1188        Ch = Result.getValue(1); // The chain.
1189
1190        if (ExtType == ISD::SEXTLOAD)
1191          // Having the top bits zero doesn't help when sign extending.
1192          Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1193                               Result.getValueType(),
1194                               Result, DAG.getValueType(SrcVT));
1195        else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
1196          // All the top bits are guaranteed to be zero - inform the optimizers.
1197          Result = DAG.getNode(ISD::AssertZext, dl,
1198                               Result.getValueType(), Result,
1199                               DAG.getValueType(SrcVT));
1200
1201        Tmp1 = LegalizeOp(Result);
1202        Tmp2 = LegalizeOp(Ch);
1203      } else if (SrcWidth & (SrcWidth - 1)) {
1204        // If not loading a power-of-2 number of bits, expand as two loads.
1205        assert(!SrcVT.isVector() && "Unsupported extload!");
1206        unsigned RoundWidth = 1 << Log2_32(SrcWidth);
1207        assert(RoundWidth < SrcWidth);
1208        unsigned ExtraWidth = SrcWidth - RoundWidth;
1209        assert(ExtraWidth < RoundWidth);
1210        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1211               "Load size not an integral number of bytes!");
1212        EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1213        EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1214        SDValue Lo, Hi, Ch;
1215        unsigned IncrementSize;
1216
1217        if (TLI.isLittleEndian()) {
1218          // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
1219          // Load the bottom RoundWidth bits.
1220          Lo = DAG.getExtLoad(ISD::ZEXTLOAD, Node->getValueType(0), dl,
1221                              Tmp1, Tmp2,
1222                              LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
1223                              isNonTemporal, Alignment);
1224
1225          // Load the remaining ExtraWidth bits.
1226          IncrementSize = RoundWidth / 8;
1227          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1228                             DAG.getIntPtrConstant(IncrementSize));
1229          Hi = DAG.getExtLoad(ExtType, Node->getValueType(0), dl, Tmp1, Tmp2,
1230                              LD->getSrcValue(), SVOffset + IncrementSize,
1231                              ExtraVT, isVolatile, isNonTemporal,
1232                              MinAlign(Alignment, IncrementSize));
1233
1234          // Build a factor node to remember that this load is independent of
1235          // the other one.
1236          Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1237                           Hi.getValue(1));
1238
1239          // Move the top bits to the right place.
1240          Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1241                           DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1242
1243          // Join the hi and lo parts.
1244          Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1245        } else {
1246          // Big endian - avoid unaligned loads.
1247          // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
1248          // Load the top RoundWidth bits.
1249          Hi = DAG.getExtLoad(ExtType, Node->getValueType(0), dl, Tmp1, Tmp2,
1250                              LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
1251                              isNonTemporal, Alignment);
1252
1253          // Load the remaining ExtraWidth bits.
1254          IncrementSize = RoundWidth / 8;
1255          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1256                             DAG.getIntPtrConstant(IncrementSize));
1257          Lo = DAG.getExtLoad(ISD::ZEXTLOAD,
1258                              Node->getValueType(0), dl, Tmp1, Tmp2,
1259                              LD->getSrcValue(), SVOffset + IncrementSize,
1260                              ExtraVT, isVolatile, isNonTemporal,
1261                              MinAlign(Alignment, IncrementSize));
1262
1263          // Build a factor node to remember that this load is independent of
1264          // the other one.
1265          Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1266                           Hi.getValue(1));
1267
1268          // Move the top bits to the right place.
1269          Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1270                           DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1271
1272          // Join the hi and lo parts.
1273          Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1274        }
1275
1276        Tmp1 = LegalizeOp(Result);
1277        Tmp2 = LegalizeOp(Ch);
1278      } else {
1279        switch (TLI.getLoadExtAction(ExtType, SrcVT)) {
1280        default: assert(0 && "This action is not supported yet!");
1281        case TargetLowering::Custom:
1282          isCustom = true;
1283          // FALLTHROUGH
1284        case TargetLowering::Legal:
1285          Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1286                                                  Tmp1, Tmp2, LD->getOffset()),
1287                           Result.getResNo());
1288          Tmp1 = Result.getValue(0);
1289          Tmp2 = Result.getValue(1);
1290
1291          if (isCustom) {
1292            Tmp3 = TLI.LowerOperation(Result, DAG);
1293            if (Tmp3.getNode()) {
1294              Tmp1 = LegalizeOp(Tmp3);
1295              Tmp2 = LegalizeOp(Tmp3.getValue(1));
1296            }
1297          } else {
1298            // If this is an unaligned load and the target doesn't support it,
1299            // expand it.
1300            if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1301              const Type *Ty =
1302                LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1303              unsigned ABIAlignment =
1304                TLI.getTargetData()->getABITypeAlignment(Ty);
1305              if (LD->getAlignment() < ABIAlignment){
1306                Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
1307                                             DAG, TLI);
1308                Tmp1 = Result.getOperand(0);
1309                Tmp2 = Result.getOperand(1);
1310                Tmp1 = LegalizeOp(Tmp1);
1311                Tmp2 = LegalizeOp(Tmp2);
1312              }
1313            }
1314          }
1315          break;
1316        case TargetLowering::Expand:
1317          if (!TLI.isLoadExtLegal(ISD::EXTLOAD, SrcVT)) {
1318            SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
1319                                       LD->getSrcValueOffset(),
1320                                       LD->isVolatile(), LD->isNonTemporal(),
1321                                       LD->getAlignment());
1322            unsigned ExtendOp;
1323            switch (ExtType) {
1324            case ISD::EXTLOAD:
1325              ExtendOp = (SrcVT.isFloatingPoint() ?
1326                          ISD::FP_EXTEND : ISD::ANY_EXTEND);
1327              break;
1328            case ISD::SEXTLOAD: ExtendOp = ISD::SIGN_EXTEND; break;
1329            case ISD::ZEXTLOAD: ExtendOp = ISD::ZERO_EXTEND; break;
1330            default: llvm_unreachable("Unexpected extend load type!");
1331            }
1332            Result = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load);
1333            Tmp1 = LegalizeOp(Result);  // Relegalize new nodes.
1334            Tmp2 = LegalizeOp(Load.getValue(1));
1335            break;
1336          }
1337          assert(ExtType != ISD::EXTLOAD &&
1338                 "EXTLOAD should always be supported!");
1339          // Turn the unsupported load into an EXTLOAD followed by an explicit
1340          // zero/sign extend inreg.
1341          Result = DAG.getExtLoad(ISD::EXTLOAD, Node->getValueType(0), dl,
1342                                  Tmp1, Tmp2, LD->getSrcValue(),
1343                                  LD->getSrcValueOffset(), SrcVT,
1344                                  LD->isVolatile(), LD->isNonTemporal(),
1345                                  LD->getAlignment());
1346          SDValue ValRes;
1347          if (ExtType == ISD::SEXTLOAD)
1348            ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1349                                 Result.getValueType(),
1350                                 Result, DAG.getValueType(SrcVT));
1351          else
1352            ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT);
1353          Tmp1 = LegalizeOp(ValRes);  // Relegalize new nodes.
1354          Tmp2 = LegalizeOp(Result.getValue(1));  // Relegalize new nodes.
1355          break;
1356        }
1357      }
1358
1359      // Since loads produce two values, make sure to remember that we legalized
1360      // both of them.
1361      AddLegalizedOperand(SDValue(Node, 0), Tmp1);
1362      AddLegalizedOperand(SDValue(Node, 1), Tmp2);
1363      return Op.getResNo() ? Tmp2 : Tmp1;
1364    }
1365  }
1366  case ISD::STORE: {
1367    StoreSDNode *ST = cast<StoreSDNode>(Node);
1368    Tmp1 = LegalizeOp(ST->getChain());    // Legalize the chain.
1369    Tmp2 = LegalizeOp(ST->getBasePtr());  // Legalize the pointer.
1370    int SVOffset = ST->getSrcValueOffset();
1371    unsigned Alignment = ST->getAlignment();
1372    bool isVolatile = ST->isVolatile();
1373    bool isNonTemporal = ST->isNonTemporal();
1374
1375    if (!ST->isTruncatingStore()) {
1376      if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
1377        Result = SDValue(OptStore, 0);
1378        break;
1379      }
1380
1381      {
1382        Tmp3 = LegalizeOp(ST->getValue());
1383        Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1384                                                Tmp1, Tmp3, Tmp2,
1385                                                ST->getOffset()),
1386                         Result.getResNo());
1387
1388        EVT VT = Tmp3.getValueType();
1389        switch (TLI.getOperationAction(ISD::STORE, VT)) {
1390        default: assert(0 && "This action is not supported yet!");
1391        case TargetLowering::Legal:
1392          // If this is an unaligned store and the target doesn't support it,
1393          // expand it.
1394          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1395            const Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1396            unsigned ABIAlignment= TLI.getTargetData()->getABITypeAlignment(Ty);
1397            if (ST->getAlignment() < ABIAlignment)
1398              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()),
1399                                            DAG, TLI);
1400          }
1401          break;
1402        case TargetLowering::Custom:
1403          Tmp1 = TLI.LowerOperation(Result, DAG);
1404          if (Tmp1.getNode()) Result = Tmp1;
1405          break;
1406        case TargetLowering::Promote:
1407          assert(VT.isVector() && "Unknown legal promote case!");
1408          Tmp3 = DAG.getNode(ISD::BIT_CONVERT, dl,
1409                             TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3);
1410          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2,
1411                                ST->getSrcValue(), SVOffset, isVolatile,
1412                                isNonTemporal, Alignment);
1413          break;
1414        }
1415        break;
1416      }
1417    } else {
1418      Tmp3 = LegalizeOp(ST->getValue());
1419
1420      EVT StVT = ST->getMemoryVT();
1421      unsigned StWidth = StVT.getSizeInBits();
1422
1423      if (StWidth != StVT.getStoreSizeInBits()) {
1424        // Promote to a byte-sized store with upper bits zero if not
1425        // storing an integral number of bytes.  For example, promote
1426        // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
1427        EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
1428                                    StVT.getStoreSizeInBits());
1429        Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT);
1430        Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1431                                   SVOffset, NVT, isVolatile, isNonTemporal,
1432                                   Alignment);
1433      } else if (StWidth & (StWidth - 1)) {
1434        // If not storing a power-of-2 number of bits, expand as two stores.
1435        assert(!StVT.isVector() && "Unsupported truncstore!");
1436        unsigned RoundWidth = 1 << Log2_32(StWidth);
1437        assert(RoundWidth < StWidth);
1438        unsigned ExtraWidth = StWidth - RoundWidth;
1439        assert(ExtraWidth < RoundWidth);
1440        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1441               "Store size not an integral number of bytes!");
1442        EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1443        EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1444        SDValue Lo, Hi;
1445        unsigned IncrementSize;
1446
1447        if (TLI.isLittleEndian()) {
1448          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
1449          // Store the bottom RoundWidth bits.
1450          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1451                                 SVOffset, RoundVT,
1452                                 isVolatile, isNonTemporal, Alignment);
1453
1454          // Store the remaining ExtraWidth bits.
1455          IncrementSize = RoundWidth / 8;
1456          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1457                             DAG.getIntPtrConstant(IncrementSize));
1458          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1459                           DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1460          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
1461                                 SVOffset + IncrementSize, ExtraVT, isVolatile,
1462                                 isNonTemporal,
1463                                 MinAlign(Alignment, IncrementSize));
1464        } else {
1465          // Big endian - avoid unaligned stores.
1466          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
1467          // Store the top RoundWidth bits.
1468          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1469                           DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1470          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
1471                                 SVOffset, RoundVT, isVolatile, isNonTemporal,
1472                                 Alignment);
1473
1474          // Store the remaining ExtraWidth bits.
1475          IncrementSize = RoundWidth / 8;
1476          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1477                             DAG.getIntPtrConstant(IncrementSize));
1478          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1479                                 SVOffset + IncrementSize, ExtraVT, isVolatile,
1480                                 isNonTemporal,
1481                                 MinAlign(Alignment, IncrementSize));
1482        }
1483
1484        // The order of the stores doesn't matter.
1485        Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
1486      } else {
1487        if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() ||
1488            Tmp2 != ST->getBasePtr())
1489          Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1490                                                  Tmp1, Tmp3, Tmp2,
1491                                                  ST->getOffset()),
1492                           Result.getResNo());
1493
1494        switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
1495        default: assert(0 && "This action is not supported yet!");
1496        case TargetLowering::Legal:
1497          // If this is an unaligned store and the target doesn't support it,
1498          // expand it.
1499          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1500            const Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1501            unsigned ABIAlignment= TLI.getTargetData()->getABITypeAlignment(Ty);
1502            if (ST->getAlignment() < ABIAlignment)
1503              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()),
1504                                            DAG, TLI);
1505          }
1506          break;
1507        case TargetLowering::Custom:
1508          Result = TLI.LowerOperation(Result, DAG);
1509          break;
1510        case Expand:
1511          // TRUNCSTORE:i16 i32 -> STORE i16
1512          assert(isTypeLegal(StVT) && "Do not know how to expand this store!");
1513          Tmp3 = DAG.getNode(ISD::TRUNCATE, dl, StVT, Tmp3);
1514          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1515                                SVOffset, isVolatile, isNonTemporal,
1516                                Alignment);
1517          break;
1518        }
1519      }
1520    }
1521    break;
1522  }
1523  }
1524  assert(Result.getValueType() == Op.getValueType() &&
1525         "Bad legalization!");
1526
1527  // Make sure that the generated code is itself legal.
1528  if (Result != Op)
1529    Result = LegalizeOp(Result);
1530
1531  // Note that LegalizeOp may be reentered even from single-use nodes, which
1532  // means that we always must cache transformed nodes.
1533  AddLegalizedOperand(Op, Result);
1534  return Result;
1535}
1536
1537SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1538  SDValue Vec = Op.getOperand(0);
1539  SDValue Idx = Op.getOperand(1);
1540  DebugLoc dl = Op.getDebugLoc();
1541  // Store the value to a temporary stack slot, then LOAD the returned part.
1542  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1543  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, NULL, 0,
1544                            false, false, 0);
1545
1546  // Add the offset to the index.
1547  unsigned EltSize =
1548      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1549  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1550                    DAG.getConstant(EltSize, Idx.getValueType()));
1551
1552  if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1553    Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1554  else
1555    Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1556
1557  StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
1558
1559  if (Op.getValueType().isVector())
1560    return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, NULL, 0,
1561                       false, false, 0);
1562  else
1563    return DAG.getExtLoad(ISD::EXTLOAD, Op.getValueType(), dl, Ch, StackPtr,
1564                          NULL, 0, Vec.getValueType().getVectorElementType(),
1565                          false, false, 0);
1566}
1567
1568SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1569  // We can't handle this case efficiently.  Allocate a sufficiently
1570  // aligned object on the stack, store each element into it, then load
1571  // the result as a vector.
1572  // Create the stack frame object.
1573  EVT VT = Node->getValueType(0);
1574  EVT EltVT = VT.getVectorElementType();
1575  DebugLoc dl = Node->getDebugLoc();
1576  SDValue FIPtr = DAG.CreateStackTemporary(VT);
1577  int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1578  const Value *SV = PseudoSourceValue::getFixedStack(FI);
1579
1580  // Emit a store of each element to the stack slot.
1581  SmallVector<SDValue, 8> Stores;
1582  unsigned TypeByteSize = EltVT.getSizeInBits() / 8;
1583  // Store (in the right endianness) the elements to memory.
1584  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1585    // Ignore undef elements.
1586    if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1587
1588    unsigned Offset = TypeByteSize*i;
1589
1590    SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType());
1591    Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
1592
1593    // If the destination vector element type is narrower than the source
1594    // element type, only store the bits necessary.
1595    if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) {
1596      Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
1597                                         Node->getOperand(i), Idx, SV, Offset,
1598                                         EltVT, false, false, 0));
1599    } else
1600      Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl,
1601                                    Node->getOperand(i), Idx, SV, Offset,
1602                                    false, false, 0));
1603  }
1604
1605  SDValue StoreChain;
1606  if (!Stores.empty())    // Not all undef elements?
1607    StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1608                             &Stores[0], Stores.size());
1609  else
1610    StoreChain = DAG.getEntryNode();
1611
1612  // Result is a load from the stack slot.
1613  return DAG.getLoad(VT, dl, StoreChain, FIPtr, SV, 0, false, false, 0);
1614}
1615
1616SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) {
1617  DebugLoc dl = Node->getDebugLoc();
1618  SDValue Tmp1 = Node->getOperand(0);
1619  SDValue Tmp2 = Node->getOperand(1);
1620
1621  // Get the sign bit of the RHS.  First obtain a value that has the same
1622  // sign as the sign bit, i.e. negative if and only if the sign bit is 1.
1623  SDValue SignBit;
1624  EVT FloatVT = Tmp2.getValueType();
1625  EVT IVT = EVT::getIntegerVT(*DAG.getContext(), FloatVT.getSizeInBits());
1626  if (isTypeLegal(IVT)) {
1627    // Convert to an integer with the same sign bit.
1628    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, IVT, Tmp2);
1629  } else {
1630    // Store the float to memory, then load the sign part out as an integer.
1631    MVT LoadTy = TLI.getPointerTy();
1632    // First create a temporary that is aligned for both the load and store.
1633    SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
1634    // Then store the float to it.
1635    SDValue Ch =
1636      DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StackPtr, NULL, 0,
1637                   false, false, 0);
1638    if (TLI.isBigEndian()) {
1639      assert(FloatVT.isByteSized() && "Unsupported floating point type!");
1640      // Load out a legal integer with the same sign bit as the float.
1641      SignBit = DAG.getLoad(LoadTy, dl, Ch, StackPtr, NULL, 0, false, false, 0);
1642    } else { // Little endian
1643      SDValue LoadPtr = StackPtr;
1644      // The float may be wider than the integer we are going to load.  Advance
1645      // the pointer so that the loaded integer will contain the sign bit.
1646      unsigned Strides = (FloatVT.getSizeInBits()-1)/LoadTy.getSizeInBits();
1647      unsigned ByteOffset = (Strides * LoadTy.getSizeInBits()) / 8;
1648      LoadPtr = DAG.getNode(ISD::ADD, dl, LoadPtr.getValueType(),
1649                            LoadPtr, DAG.getIntPtrConstant(ByteOffset));
1650      // Load a legal integer containing the sign bit.
1651      SignBit = DAG.getLoad(LoadTy, dl, Ch, LoadPtr, NULL, 0, false, false, 0);
1652      // Move the sign bit to the top bit of the loaded integer.
1653      unsigned BitShift = LoadTy.getSizeInBits() -
1654        (FloatVT.getSizeInBits() - 8 * ByteOffset);
1655      assert(BitShift < LoadTy.getSizeInBits() && "Pointer advanced wrong?");
1656      if (BitShift)
1657        SignBit = DAG.getNode(ISD::SHL, dl, LoadTy, SignBit,
1658                              DAG.getConstant(BitShift,TLI.getShiftAmountTy()));
1659    }
1660  }
1661  // Now get the sign bit proper, by seeing whether the value is negative.
1662  SignBit = DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()),
1663                         SignBit, DAG.getConstant(0, SignBit.getValueType()),
1664                         ISD::SETLT);
1665  // Get the absolute value of the result.
1666  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1);
1667  // Select between the nabs and abs value based on the sign bit of
1668  // the input.
1669  return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit,
1670                     DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal),
1671                     AbsVal);
1672}
1673
1674void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1675                                           SmallVectorImpl<SDValue> &Results) {
1676  unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1677  assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1678          " not tell us which reg is the stack pointer!");
1679  DebugLoc dl = Node->getDebugLoc();
1680  EVT VT = Node->getValueType(0);
1681  SDValue Tmp1 = SDValue(Node, 0);
1682  SDValue Tmp2 = SDValue(Node, 1);
1683  SDValue Tmp3 = Node->getOperand(2);
1684  SDValue Chain = Tmp1.getOperand(0);
1685
1686  // Chain the dynamic stack allocation so that it doesn't modify the stack
1687  // pointer when other instructions are using the stack.
1688  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
1689
1690  SDValue Size  = Tmp2.getOperand(1);
1691  SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1692  Chain = SP.getValue(1);
1693  unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1694  unsigned StackAlign = TM.getFrameInfo()->getStackAlignment();
1695  if (Align > StackAlign)
1696    SP = DAG.getNode(ISD::AND, dl, VT, SP,
1697                      DAG.getConstant(-(uint64_t)Align, VT));
1698  Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size);       // Value
1699  Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain
1700
1701  Tmp2 = DAG.getCALLSEQ_END(Chain,  DAG.getIntPtrConstant(0, true),
1702                            DAG.getIntPtrConstant(0, true), SDValue());
1703
1704  Results.push_back(Tmp1);
1705  Results.push_back(Tmp2);
1706}
1707
1708/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
1709/// condition code CC on the current target. This routine expands SETCC with
1710/// illegal condition code into AND / OR of multiple SETCC values.
1711void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT,
1712                                                 SDValue &LHS, SDValue &RHS,
1713                                                 SDValue &CC,
1714                                                 DebugLoc dl) {
1715  EVT OpVT = LHS.getValueType();
1716  ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1717  switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1718  default: assert(0 && "Unknown condition code action!");
1719  case TargetLowering::Legal:
1720    // Nothing to do.
1721    break;
1722  case TargetLowering::Expand: {
1723    ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1724    unsigned Opc = 0;
1725    switch (CCCode) {
1726    default: assert(0 && "Don't know how to expand this condition!");
1727    case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1728    case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1729    case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1730    case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1731    case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1732    case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1733    case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1734    case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1735    case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1736    case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1737    case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1738    case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1739    // FIXME: Implement more expansions.
1740    }
1741
1742    SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1743    SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
1744    LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1745    RHS = SDValue();
1746    CC  = SDValue();
1747    break;
1748  }
1749  }
1750}
1751
1752/// EmitStackConvert - Emit a store/load combination to the stack.  This stores
1753/// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
1754/// a load from the stack slot to DestVT, extending it if needed.
1755/// The resultant code need not be legal.
1756SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
1757                                               EVT SlotVT,
1758                                               EVT DestVT,
1759                                               DebugLoc dl) {
1760  // Create the stack frame object.
1761  unsigned SrcAlign =
1762    TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType().
1763                                              getTypeForEVT(*DAG.getContext()));
1764  SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1765
1766  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1767  int SPFI = StackPtrFI->getIndex();
1768  const Value *SV = PseudoSourceValue::getFixedStack(SPFI);
1769
1770  unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
1771  unsigned SlotSize = SlotVT.getSizeInBits();
1772  unsigned DestSize = DestVT.getSizeInBits();
1773  const Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
1774  unsigned DestAlign = TLI.getTargetData()->getPrefTypeAlignment(DestType);
1775
1776  // Emit a store to the stack slot.  Use a truncstore if the input value is
1777  // later than DestVT.
1778  SDValue Store;
1779
1780  if (SrcSize > SlotSize)
1781    Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1782                              SV, 0, SlotVT, false, false, SrcAlign);
1783  else {
1784    assert(SrcSize == SlotSize && "Invalid store");
1785    Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1786                         SV, 0, false, false, SrcAlign);
1787  }
1788
1789  // Result is a load from the stack slot.
1790  if (SlotSize == DestSize)
1791    return DAG.getLoad(DestVT, dl, Store, FIPtr, SV, 0, false, false,
1792                       DestAlign);
1793
1794  assert(SlotSize < DestSize && "Unknown extension!");
1795  return DAG.getExtLoad(ISD::EXTLOAD, DestVT, dl, Store, FIPtr, SV, 0, SlotVT,
1796                        false, false, DestAlign);
1797}
1798
1799SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1800  DebugLoc dl = Node->getDebugLoc();
1801  // Create a vector sized/aligned stack slot, store the value to element #0,
1802  // then load the whole vector back out.
1803  SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1804
1805  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1806  int SPFI = StackPtrFI->getIndex();
1807
1808  SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0),
1809                                 StackPtr,
1810                                 PseudoSourceValue::getFixedStack(SPFI), 0,
1811                                 Node->getValueType(0).getVectorElementType(),
1812                                 false, false, 0);
1813  return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr,
1814                     PseudoSourceValue::getFixedStack(SPFI), 0,
1815                     false, false, 0);
1816}
1817
1818
1819/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
1820/// support the operation, but do support the resultant vector type.
1821SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1822  unsigned NumElems = Node->getNumOperands();
1823  SDValue Value1, Value2;
1824  DebugLoc dl = Node->getDebugLoc();
1825  EVT VT = Node->getValueType(0);
1826  EVT OpVT = Node->getOperand(0).getValueType();
1827  EVT EltVT = VT.getVectorElementType();
1828
1829  // If the only non-undef value is the low element, turn this into a
1830  // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
1831  bool isOnlyLowElement = true;
1832  bool MoreThanTwoValues = false;
1833  bool isConstant = true;
1834  for (unsigned i = 0; i < NumElems; ++i) {
1835    SDValue V = Node->getOperand(i);
1836    if (V.getOpcode() == ISD::UNDEF)
1837      continue;
1838    if (i > 0)
1839      isOnlyLowElement = false;
1840    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1841      isConstant = false;
1842
1843    if (!Value1.getNode()) {
1844      Value1 = V;
1845    } else if (!Value2.getNode()) {
1846      if (V != Value1)
1847        Value2 = V;
1848    } else if (V != Value1 && V != Value2) {
1849      MoreThanTwoValues = true;
1850    }
1851  }
1852
1853  if (!Value1.getNode())
1854    return DAG.getUNDEF(VT);
1855
1856  if (isOnlyLowElement)
1857    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1858
1859  // If all elements are constants, create a load from the constant pool.
1860  if (isConstant) {
1861    std::vector<Constant*> CV;
1862    for (unsigned i = 0, e = NumElems; i != e; ++i) {
1863      if (ConstantFPSDNode *V =
1864          dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1865        CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1866      } else if (ConstantSDNode *V =
1867                 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1868        if (OpVT==EltVT)
1869          CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1870        else {
1871          // If OpVT and EltVT don't match, EltVT is not legal and the
1872          // element values have been promoted/truncated earlier.  Undo this;
1873          // we don't want a v16i8 to become a v16i32 for example.
1874          const ConstantInt *CI = V->getConstantIntValue();
1875          CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
1876                                        CI->getZExtValue()));
1877        }
1878      } else {
1879        assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
1880        const Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
1881        CV.push_back(UndefValue::get(OpNTy));
1882      }
1883    }
1884    Constant *CP = ConstantVector::get(CV);
1885    SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
1886    unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
1887    return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
1888                       PseudoSourceValue::getConstantPool(), 0,
1889                       false, false, Alignment);
1890  }
1891
1892  if (!MoreThanTwoValues) {
1893    SmallVector<int, 8> ShuffleVec(NumElems, -1);
1894    for (unsigned i = 0; i < NumElems; ++i) {
1895      SDValue V = Node->getOperand(i);
1896      if (V.getOpcode() == ISD::UNDEF)
1897        continue;
1898      ShuffleVec[i] = V == Value1 ? 0 : NumElems;
1899    }
1900    if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
1901      // Get the splatted value into the low element of a vector register.
1902      SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
1903      SDValue Vec2;
1904      if (Value2.getNode())
1905        Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
1906      else
1907        Vec2 = DAG.getUNDEF(VT);
1908
1909      // Return shuffle(LowValVec, undef, <0,0,0,0>)
1910      return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
1911    }
1912  }
1913
1914  // Otherwise, we can't handle this case efficiently.
1915  return ExpandVectorBuildThroughStack(Node);
1916}
1917
1918// ExpandLibCall - Expand a node into a call to a libcall.  If the result value
1919// does not fit into a register, return the lo part and set the hi part to the
1920// by-reg argument.  If it does fit into a single register, return the result
1921// and leave the Hi part unset.
1922SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
1923                                            bool isSigned) {
1924  assert(!IsLegalizingCall && "Cannot overlap legalization of calls!");
1925  // The input chain to this libcall is the entry node of the function.
1926  // Legalizing the call will automatically add the previous call to the
1927  // dependence.
1928  SDValue InChain = DAG.getEntryNode();
1929
1930  TargetLowering::ArgListTy Args;
1931  TargetLowering::ArgListEntry Entry;
1932  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1933    EVT ArgVT = Node->getOperand(i).getValueType();
1934    const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1935    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
1936    Entry.isSExt = isSigned;
1937    Entry.isZExt = !isSigned;
1938    Args.push_back(Entry);
1939  }
1940  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1941                                         TLI.getPointerTy());
1942
1943  // Splice the libcall in wherever FindInputOutputChains tells us to.
1944  const Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1945  std::pair<SDValue, SDValue> CallInfo =
1946    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
1947                    0, TLI.getLibcallCallingConv(LC), false,
1948                    /*isReturnValueUsed=*/true,
1949                    Callee, Args, DAG, Node->getDebugLoc());
1950
1951  // Legalize the call sequence, starting with the chain.  This will advance
1952  // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
1953  // was added by LowerCallTo (guaranteeing proper serialization of calls).
1954  LegalizeOp(CallInfo.second);
1955  return CallInfo.first;
1956}
1957
1958// ExpandChainLibCall - Expand a node into a call to a libcall. Similar to
1959// ExpandLibCall except that the first operand is the in-chain.
1960std::pair<SDValue, SDValue>
1961SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC,
1962                                         SDNode *Node,
1963                                         bool isSigned) {
1964  assert(!IsLegalizingCall && "Cannot overlap legalization of calls!");
1965  SDValue InChain = Node->getOperand(0);
1966
1967  TargetLowering::ArgListTy Args;
1968  TargetLowering::ArgListEntry Entry;
1969  for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) {
1970    EVT ArgVT = Node->getOperand(i).getValueType();
1971    const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1972    Entry.Node = Node->getOperand(i);
1973    Entry.Ty = ArgTy;
1974    Entry.isSExt = isSigned;
1975    Entry.isZExt = !isSigned;
1976    Args.push_back(Entry);
1977  }
1978  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1979                                         TLI.getPointerTy());
1980
1981  // Splice the libcall in wherever FindInputOutputChains tells us to.
1982  const Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1983  std::pair<SDValue, SDValue> CallInfo =
1984    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
1985                    0, TLI.getLibcallCallingConv(LC), false,
1986                    /*isReturnValueUsed=*/true,
1987                    Callee, Args, DAG, Node->getDebugLoc());
1988
1989  // Legalize the call sequence, starting with the chain.  This will advance
1990  // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
1991  // was added by LowerCallTo (guaranteeing proper serialization of calls).
1992  LegalizeOp(CallInfo.second);
1993  return CallInfo;
1994}
1995
1996SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
1997                                              RTLIB::Libcall Call_F32,
1998                                              RTLIB::Libcall Call_F64,
1999                                              RTLIB::Libcall Call_F80,
2000                                              RTLIB::Libcall Call_PPCF128) {
2001  RTLIB::Libcall LC;
2002  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
2003  default: assert(0 && "Unexpected request for libcall!");
2004  case MVT::f32: LC = Call_F32; break;
2005  case MVT::f64: LC = Call_F64; break;
2006  case MVT::f80: LC = Call_F80; break;
2007  case MVT::ppcf128: LC = Call_PPCF128; break;
2008  }
2009  return ExpandLibCall(LC, Node, false);
2010}
2011
2012SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
2013                                               RTLIB::Libcall Call_I8,
2014                                               RTLIB::Libcall Call_I16,
2015                                               RTLIB::Libcall Call_I32,
2016                                               RTLIB::Libcall Call_I64,
2017                                               RTLIB::Libcall Call_I128) {
2018  RTLIB::Libcall LC;
2019  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
2020  default: assert(0 && "Unexpected request for libcall!");
2021  case MVT::i8:   LC = Call_I8; break;
2022  case MVT::i16:  LC = Call_I16; break;
2023  case MVT::i32:  LC = Call_I32; break;
2024  case MVT::i64:  LC = Call_I64; break;
2025  case MVT::i128: LC = Call_I128; break;
2026  }
2027  return ExpandLibCall(LC, Node, isSigned);
2028}
2029
2030/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
2031/// INT_TO_FP operation of the specified operand when the target requests that
2032/// we expand it.  At this point, we know that the result and operand types are
2033/// legal for the target.
2034SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
2035                                                   SDValue Op0,
2036                                                   EVT DestVT,
2037                                                   DebugLoc dl) {
2038  if (Op0.getValueType() == MVT::i32) {
2039    // simple 32-bit [signed|unsigned] integer to float/double expansion
2040
2041    // Get the stack frame index of a 8 byte buffer.
2042    SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
2043
2044    // word offset constant for Hi/Lo address computation
2045    SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy());
2046    // set up Hi and Lo (into buffer) address based on endian
2047    SDValue Hi = StackSlot;
2048    SDValue Lo = DAG.getNode(ISD::ADD, dl,
2049                             TLI.getPointerTy(), StackSlot, WordOff);
2050    if (TLI.isLittleEndian())
2051      std::swap(Hi, Lo);
2052
2053    // if signed map to unsigned space
2054    SDValue Op0Mapped;
2055    if (isSigned) {
2056      // constant used to invert sign bit (signed to unsigned mapping)
2057      SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32);
2058      Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
2059    } else {
2060      Op0Mapped = Op0;
2061    }
2062    // store the lo of the constructed double - based on integer input
2063    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
2064                                  Op0Mapped, Lo, NULL, 0,
2065                                  false, false, 0);
2066    // initial hi portion of constructed double
2067    SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
2068    // store the hi of the constructed double - biased exponent
2069    SDValue Store2=DAG.getStore(Store1, dl, InitialHi, Hi, NULL, 0,
2070                                false, false, 0);
2071    // load the constructed double
2072    SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot, NULL, 0,
2073                               false, false, 0);
2074    // FP constant to bias correct the final result
2075    SDValue Bias = DAG.getConstantFP(isSigned ?
2076                                     BitsToDouble(0x4330000080000000ULL) :
2077                                     BitsToDouble(0x4330000000000000ULL),
2078                                     MVT::f64);
2079    // subtract the bias
2080    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2081    // final result
2082    SDValue Result;
2083    // handle final rounding
2084    if (DestVT == MVT::f64) {
2085      // do nothing
2086      Result = Sub;
2087    } else if (DestVT.bitsLT(MVT::f64)) {
2088      Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
2089                           DAG.getIntPtrConstant(0));
2090    } else if (DestVT.bitsGT(MVT::f64)) {
2091      Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
2092    }
2093    return Result;
2094  }
2095  assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2096  // Code below here assumes !isSigned without checking again.
2097
2098  // Implementation of unsigned i64 to f64 following the algorithm in
2099  // __floatundidf in compiler_rt. This implementation has the advantage
2100  // of performing rounding correctly, both in the default rounding mode
2101  // and in all alternate rounding modes.
2102  // TODO: Generalize this for use with other types.
2103  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) {
2104    SDValue TwoP52 =
2105      DAG.getConstant(UINT64_C(0x4330000000000000), MVT::i64);
2106    SDValue TwoP84PlusTwoP52 =
2107      DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), MVT::f64);
2108    SDValue TwoP84 =
2109      DAG.getConstant(UINT64_C(0x4530000000000000), MVT::i64);
2110
2111    SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32);
2112    SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0,
2113                             DAG.getConstant(32, MVT::i64));
2114    SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52);
2115    SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84);
2116    SDValue LoFlt = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, LoOr);
2117    SDValue HiFlt = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, HiOr);
2118    SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt,
2119                                TwoP84PlusTwoP52);
2120    return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub);
2121  }
2122
2123  // Implementation of unsigned i64 to f32.  This implementation has the
2124  // advantage of performing rounding correctly.
2125  // TODO: Generalize this for use with other types.
2126  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) {
2127    EVT SHVT = TLI.getShiftAmountTy();
2128
2129    SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2130         DAG.getConstant(UINT64_C(0xfffffffffffff800), MVT::i64));
2131    SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And,
2132         DAG.getConstant(UINT64_C(0x800), MVT::i64));
2133    SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2134         DAG.getConstant(UINT64_C(0x7ff), MVT::i64));
2135    SDValue Ne = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2136                   And2, DAG.getConstant(UINT64_C(0), MVT::i64), ISD::SETNE);
2137    SDValue Sel = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ne, Or, Op0);
2138    SDValue Ge = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2139                   Op0, DAG.getConstant(UINT64_C(0x0020000000000000), MVT::i64),
2140                    ISD::SETUGE);
2141    SDValue Sel2 = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ge, Sel, Op0);
2142
2143    SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2,
2144                             DAG.getConstant(32, SHVT));
2145    SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh);
2146    SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc);
2147    SDValue TwoP32 =
2148      DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), MVT::f64);
2149    SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt);
2150    SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2);
2151    SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo);
2152    SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2);
2153    return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd,
2154                       DAG.getIntPtrConstant(0));
2155
2156  }
2157
2158  SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2159
2160  SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()),
2161                                 Op0, DAG.getConstant(0, Op0.getValueType()),
2162                                 ISD::SETLT);
2163  SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
2164  SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(),
2165                                    SignSet, Four, Zero);
2166
2167  // If the sign bit of the integer is set, the large number will be treated
2168  // as a negative number.  To counteract this, the dynamic code adds an
2169  // offset depending on the data type.
2170  uint64_t FF;
2171  switch (Op0.getValueType().getSimpleVT().SimpleTy) {
2172  default: assert(0 && "Unsupported integer type!");
2173  case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
2174  case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
2175  case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
2176  case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
2177  }
2178  if (TLI.isLittleEndian()) FF <<= 32;
2179  Constant *FudgeFactor = ConstantInt::get(
2180                                       Type::getInt64Ty(*DAG.getContext()), FF);
2181
2182  SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
2183  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2184  CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset);
2185  Alignment = std::min(Alignment, 4u);
2186  SDValue FudgeInReg;
2187  if (DestVT == MVT::f32)
2188    FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2189                             PseudoSourceValue::getConstantPool(), 0,
2190                             false, false, Alignment);
2191  else {
2192    FudgeInReg =
2193      LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, DestVT, dl,
2194                                DAG.getEntryNode(), CPIdx,
2195                                PseudoSourceValue::getConstantPool(), 0,
2196                                MVT::f32, false, false, Alignment));
2197  }
2198
2199  return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2200}
2201
2202/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
2203/// *INT_TO_FP operation of the specified operand when the target requests that
2204/// we promote it.  At this point, we know that the result and operand types are
2205/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2206/// operation that takes a larger input.
2207SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
2208                                                    EVT DestVT,
2209                                                    bool isSigned,
2210                                                    DebugLoc dl) {
2211  // First step, figure out the appropriate *INT_TO_FP operation to use.
2212  EVT NewInTy = LegalOp.getValueType();
2213
2214  unsigned OpToUse = 0;
2215
2216  // Scan for the appropriate larger type to use.
2217  while (1) {
2218    NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2219    assert(NewInTy.isInteger() && "Ran out of possibilities!");
2220
2221    // If the target supports SINT_TO_FP of this type, use it.
2222    if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2223      OpToUse = ISD::SINT_TO_FP;
2224      break;
2225    }
2226    if (isSigned) continue;
2227
2228    // If the target supports UINT_TO_FP of this type, use it.
2229    if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2230      OpToUse = ISD::UINT_TO_FP;
2231      break;
2232    }
2233
2234    // Otherwise, try a larger type.
2235  }
2236
2237  // Okay, we found the operation and type to use.  Zero extend our input to the
2238  // desired type then run the operation on it.
2239  return DAG.getNode(OpToUse, dl, DestVT,
2240                     DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2241                                 dl, NewInTy, LegalOp));
2242}
2243
2244/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
2245/// FP_TO_*INT operation of the specified operand when the target requests that
2246/// we promote it.  At this point, we know that the result and operand types are
2247/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2248/// operation that returns a larger result.
2249SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
2250                                                    EVT DestVT,
2251                                                    bool isSigned,
2252                                                    DebugLoc dl) {
2253  // First step, figure out the appropriate FP_TO*INT operation to use.
2254  EVT NewOutTy = DestVT;
2255
2256  unsigned OpToUse = 0;
2257
2258  // Scan for the appropriate larger type to use.
2259  while (1) {
2260    NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2261    assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2262
2263    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2264      OpToUse = ISD::FP_TO_SINT;
2265      break;
2266    }
2267
2268    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
2269      OpToUse = ISD::FP_TO_UINT;
2270      break;
2271    }
2272
2273    // Otherwise, try a larger type.
2274  }
2275
2276
2277  // Okay, we found the operation and type to use.
2278  SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2279
2280  // Truncate the result of the extended FP_TO_*INT operation to the desired
2281  // size.
2282  return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2283}
2284
2285/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
2286///
2287SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) {
2288  EVT VT = Op.getValueType();
2289  EVT SHVT = TLI.getShiftAmountTy();
2290  SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2291  switch (VT.getSimpleVT().SimpleTy) {
2292  default: assert(0 && "Unhandled Expand type in BSWAP!");
2293  case MVT::i16:
2294    Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2295    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2296    return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2297  case MVT::i32:
2298    Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2299    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2300    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2301    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2302    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
2303    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT));
2304    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2305    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2306    return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2307  case MVT::i64:
2308    Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT));
2309    Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT));
2310    Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2311    Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2312    Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2313    Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2314    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT));
2315    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT));
2316    Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
2317    Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
2318    Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
2319    Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
2320    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
2321    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
2322    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2323    Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2324    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2325    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2326    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2327    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2328    return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2329  }
2330}
2331
2332/// ExpandBitCount - Expand the specified bitcount instruction into operations.
2333///
2334SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
2335                                             DebugLoc dl) {
2336  switch (Opc) {
2337  default: assert(0 && "Cannot expand this yet!");
2338  case ISD::CTPOP: {
2339    static const uint64_t mask[6] = {
2340      0x5555555555555555ULL, 0x3333333333333333ULL,
2341      0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL,
2342      0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL
2343    };
2344    EVT VT = Op.getValueType();
2345    EVT ShVT = TLI.getShiftAmountTy();
2346    unsigned len = VT.getSizeInBits();
2347    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2348      //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8])
2349      unsigned EltSize = VT.isVector() ?
2350        VT.getVectorElementType().getSizeInBits() : len;
2351      SDValue Tmp2 = DAG.getConstant(APInt(EltSize, mask[i]), VT);
2352      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2353      Op = DAG.getNode(ISD::ADD, dl, VT,
2354                       DAG.getNode(ISD::AND, dl, VT, Op, Tmp2),
2355                       DAG.getNode(ISD::AND, dl, VT,
2356                                   DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3),
2357                                   Tmp2));
2358    }
2359    return Op;
2360  }
2361  case ISD::CTLZ: {
2362    // for now, we do this:
2363    // x = x | (x >> 1);
2364    // x = x | (x >> 2);
2365    // ...
2366    // x = x | (x >>16);
2367    // x = x | (x >>32); // for 64-bit input
2368    // return popcount(~x);
2369    //
2370    // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
2371    EVT VT = Op.getValueType();
2372    EVT ShVT = TLI.getShiftAmountTy();
2373    unsigned len = VT.getSizeInBits();
2374    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2375      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2376      Op = DAG.getNode(ISD::OR, dl, VT, Op,
2377                       DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
2378    }
2379    Op = DAG.getNOT(dl, Op, VT);
2380    return DAG.getNode(ISD::CTPOP, dl, VT, Op);
2381  }
2382  case ISD::CTTZ: {
2383    // for now, we use: { return popcount(~x & (x - 1)); }
2384    // unless the target has ctlz but not ctpop, in which case we use:
2385    // { return 32 - nlz(~x & (x-1)); }
2386    // see also http://www.hackersdelight.org/HDcode/ntz.cc
2387    EVT VT = Op.getValueType();
2388    SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
2389                               DAG.getNOT(dl, Op, VT),
2390                               DAG.getNode(ISD::SUB, dl, VT, Op,
2391                                           DAG.getConstant(1, VT)));
2392    // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
2393    if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
2394        TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
2395      return DAG.getNode(ISD::SUB, dl, VT,
2396                         DAG.getConstant(VT.getSizeInBits(), VT),
2397                         DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
2398    return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
2399  }
2400  }
2401}
2402
2403std::pair <SDValue, SDValue> SelectionDAGLegalize::ExpandAtomic(SDNode *Node) {
2404  unsigned Opc = Node->getOpcode();
2405  MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
2406  RTLIB::Libcall LC;
2407
2408  switch (Opc) {
2409  default:
2410    llvm_unreachable("Unhandled atomic intrinsic Expand!");
2411    break;
2412  case ISD::ATOMIC_SWAP:
2413    switch (VT.SimpleTy) {
2414    default: llvm_unreachable("Unexpected value type for atomic!");
2415    case MVT::i8:  LC = RTLIB::SYNC_LOCK_TEST_AND_SET_1; break;
2416    case MVT::i16: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_2; break;
2417    case MVT::i32: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_4; break;
2418    case MVT::i64: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_8; break;
2419    }
2420    break;
2421  case ISD::ATOMIC_CMP_SWAP:
2422    switch (VT.SimpleTy) {
2423    default: llvm_unreachable("Unexpected value type for atomic!");
2424    case MVT::i8:  LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1; break;
2425    case MVT::i16: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2; break;
2426    case MVT::i32: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4; break;
2427    case MVT::i64: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8; break;
2428    }
2429    break;
2430  case ISD::ATOMIC_LOAD_ADD:
2431    switch (VT.SimpleTy) {
2432    default: llvm_unreachable("Unexpected value type for atomic!");
2433    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_ADD_1; break;
2434    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_ADD_2; break;
2435    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_ADD_4; break;
2436    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_ADD_8; break;
2437    }
2438    break;
2439  case ISD::ATOMIC_LOAD_SUB:
2440    switch (VT.SimpleTy) {
2441    default: llvm_unreachable("Unexpected value type for atomic!");
2442    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_SUB_1; break;
2443    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_SUB_2; break;
2444    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_SUB_4; break;
2445    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_SUB_8; break;
2446    }
2447    break;
2448  case ISD::ATOMIC_LOAD_AND:
2449    switch (VT.SimpleTy) {
2450    default: llvm_unreachable("Unexpected value type for atomic!");
2451    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_AND_1; break;
2452    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_AND_2; break;
2453    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_AND_4; break;
2454    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_AND_8; break;
2455    }
2456    break;
2457  case ISD::ATOMIC_LOAD_OR:
2458    switch (VT.SimpleTy) {
2459    default: llvm_unreachable("Unexpected value type for atomic!");
2460    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_OR_1; break;
2461    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_OR_2; break;
2462    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_OR_4; break;
2463    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_OR_8; break;
2464    }
2465    break;
2466  case ISD::ATOMIC_LOAD_XOR:
2467    switch (VT.SimpleTy) {
2468    default: llvm_unreachable("Unexpected value type for atomic!");
2469    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_XOR_1; break;
2470    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_XOR_2; break;
2471    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_XOR_4; break;
2472    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_XOR_8; break;
2473    }
2474    break;
2475  case ISD::ATOMIC_LOAD_NAND:
2476    switch (VT.SimpleTy) {
2477    default: llvm_unreachable("Unexpected value type for atomic!");
2478    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_NAND_1; break;
2479    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_NAND_2; break;
2480    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_NAND_4; break;
2481    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_NAND_8; break;
2482    }
2483    break;
2484  }
2485
2486  return ExpandChainLibCall(LC, Node, false);
2487}
2488
2489void SelectionDAGLegalize::ExpandNode(SDNode *Node,
2490                                      SmallVectorImpl<SDValue> &Results) {
2491  DebugLoc dl = Node->getDebugLoc();
2492  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2493  switch (Node->getOpcode()) {
2494  case ISD::CTPOP:
2495  case ISD::CTLZ:
2496  case ISD::CTTZ:
2497    Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
2498    Results.push_back(Tmp1);
2499    break;
2500  case ISD::BSWAP:
2501    Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2502    break;
2503  case ISD::FRAMEADDR:
2504  case ISD::RETURNADDR:
2505  case ISD::FRAME_TO_ARGS_OFFSET:
2506    Results.push_back(DAG.getConstant(0, Node->getValueType(0)));
2507    break;
2508  case ISD::FLT_ROUNDS_:
2509    Results.push_back(DAG.getConstant(1, Node->getValueType(0)));
2510    break;
2511  case ISD::EH_RETURN:
2512  case ISD::EH_LABEL:
2513  case ISD::PREFETCH:
2514  case ISD::VAEND:
2515  case ISD::EH_SJLJ_LONGJMP:
2516    Results.push_back(Node->getOperand(0));
2517    break;
2518  case ISD::EH_SJLJ_SETJMP:
2519    Results.push_back(DAG.getConstant(0, MVT::i32));
2520    Results.push_back(Node->getOperand(0));
2521    break;
2522  case ISD::MEMBARRIER: {
2523    // If the target didn't lower this, lower it to '__sync_synchronize()' call
2524    TargetLowering::ArgListTy Args;
2525    std::pair<SDValue, SDValue> CallResult =
2526      TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()),
2527                      false, false, false, false, 0, CallingConv::C, false,
2528                      /*isReturnValueUsed=*/true,
2529                      DAG.getExternalSymbol("__sync_synchronize",
2530                                            TLI.getPointerTy()),
2531                      Args, DAG, dl);
2532    Results.push_back(CallResult.second);
2533    break;
2534  }
2535  // By default, atomic intrinsics are marked Legal and lowered. Targets
2536  // which don't support them directly, however, may want libcalls, in which
2537  // case they mark them Expand, and we get here.
2538  // FIXME: Unimplemented for now. Add libcalls.
2539  case ISD::ATOMIC_SWAP:
2540  case ISD::ATOMIC_LOAD_ADD:
2541  case ISD::ATOMIC_LOAD_SUB:
2542  case ISD::ATOMIC_LOAD_AND:
2543  case ISD::ATOMIC_LOAD_OR:
2544  case ISD::ATOMIC_LOAD_XOR:
2545  case ISD::ATOMIC_LOAD_NAND:
2546  case ISD::ATOMIC_LOAD_MIN:
2547  case ISD::ATOMIC_LOAD_MAX:
2548  case ISD::ATOMIC_LOAD_UMIN:
2549  case ISD::ATOMIC_LOAD_UMAX:
2550  case ISD::ATOMIC_CMP_SWAP: {
2551    std::pair<SDValue, SDValue> Tmp = ExpandAtomic(Node);
2552    Results.push_back(Tmp.first);
2553    Results.push_back(Tmp.second);
2554    break;
2555  }
2556  case ISD::DYNAMIC_STACKALLOC:
2557    ExpandDYNAMIC_STACKALLOC(Node, Results);
2558    break;
2559  case ISD::MERGE_VALUES:
2560    for (unsigned i = 0; i < Node->getNumValues(); i++)
2561      Results.push_back(Node->getOperand(i));
2562    break;
2563  case ISD::UNDEF: {
2564    EVT VT = Node->getValueType(0);
2565    if (VT.isInteger())
2566      Results.push_back(DAG.getConstant(0, VT));
2567    else {
2568      assert(VT.isFloatingPoint() && "Unknown value type!");
2569      Results.push_back(DAG.getConstantFP(0, VT));
2570    }
2571    break;
2572  }
2573  case ISD::TRAP: {
2574    // If this operation is not supported, lower it to 'abort()' call
2575    TargetLowering::ArgListTy Args;
2576    std::pair<SDValue, SDValue> CallResult =
2577      TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()),
2578                      false, false, false, false, 0, CallingConv::C, false,
2579                      /*isReturnValueUsed=*/true,
2580                      DAG.getExternalSymbol("abort", TLI.getPointerTy()),
2581                      Args, DAG, dl);
2582    Results.push_back(CallResult.second);
2583    break;
2584  }
2585  case ISD::FP_ROUND:
2586  case ISD::BIT_CONVERT:
2587    Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
2588                            Node->getValueType(0), dl);
2589    Results.push_back(Tmp1);
2590    break;
2591  case ISD::FP_EXTEND:
2592    Tmp1 = EmitStackConvert(Node->getOperand(0),
2593                            Node->getOperand(0).getValueType(),
2594                            Node->getValueType(0), dl);
2595    Results.push_back(Tmp1);
2596    break;
2597  case ISD::SIGN_EXTEND_INREG: {
2598    // NOTE: we could fall back on load/store here too for targets without
2599    // SAR.  However, it is doubtful that any exist.
2600    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2601    EVT VT = Node->getValueType(0);
2602    EVT ShiftAmountTy = TLI.getShiftAmountTy();
2603    if (VT.isVector())
2604      ShiftAmountTy = VT;
2605    unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
2606                        ExtraVT.getScalarType().getSizeInBits();
2607    SDValue ShiftCst = DAG.getConstant(BitsDiff, ShiftAmountTy);
2608    Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
2609                       Node->getOperand(0), ShiftCst);
2610    Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
2611    Results.push_back(Tmp1);
2612    break;
2613  }
2614  case ISD::FP_ROUND_INREG: {
2615    // The only way we can lower this is to turn it into a TRUNCSTORE,
2616    // EXTLOAD pair, targetting a temporary location (a stack slot).
2617
2618    // NOTE: there is a choice here between constantly creating new stack
2619    // slots and always reusing the same one.  We currently always create
2620    // new ones, as reuse may inhibit scheduling.
2621    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2622    Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
2623                            Node->getValueType(0), dl);
2624    Results.push_back(Tmp1);
2625    break;
2626  }
2627  case ISD::SINT_TO_FP:
2628  case ISD::UINT_TO_FP:
2629    Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
2630                                Node->getOperand(0), Node->getValueType(0), dl);
2631    Results.push_back(Tmp1);
2632    break;
2633  case ISD::FP_TO_UINT: {
2634    SDValue True, False;
2635    EVT VT =  Node->getOperand(0).getValueType();
2636    EVT NVT = Node->getValueType(0);
2637    const uint64_t zero[] = {0, 0};
2638    APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
2639    APInt x = APInt::getSignBit(NVT.getSizeInBits());
2640    (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
2641    Tmp1 = DAG.getConstantFP(apf, VT);
2642    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT),
2643                        Node->getOperand(0),
2644                        Tmp1, ISD::SETLT);
2645    True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
2646    False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
2647                        DAG.getNode(ISD::FSUB, dl, VT,
2648                                    Node->getOperand(0), Tmp1));
2649    False = DAG.getNode(ISD::XOR, dl, NVT, False,
2650                        DAG.getConstant(x, NVT));
2651    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False);
2652    Results.push_back(Tmp1);
2653    break;
2654  }
2655  case ISD::VAARG: {
2656    const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2657    EVT VT = Node->getValueType(0);
2658    Tmp1 = Node->getOperand(0);
2659    Tmp2 = Node->getOperand(1);
2660    unsigned Align = Node->getConstantOperandVal(3);
2661
2662    SDValue VAListLoad = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2, V, 0,
2663                                     false, false, 0);
2664    SDValue VAList = VAListLoad;
2665
2666    if (Align > TLI.getMinStackArgumentAlignment()) {
2667      assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
2668
2669      VAList = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2670                           DAG.getConstant(Align - 1,
2671                                           TLI.getPointerTy()));
2672
2673      VAList = DAG.getNode(ISD::AND, dl, TLI.getPointerTy(), VAList,
2674                           DAG.getConstant(-Align,
2675                                           TLI.getPointerTy()));
2676    }
2677
2678    // Increment the pointer, VAList, to the next vaarg
2679    Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2680                       DAG.getConstant(TLI.getTargetData()->
2681                          getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())),
2682                                       TLI.getPointerTy()));
2683    // Store the incremented VAList to the legalized pointer
2684    Tmp3 = DAG.getStore(VAListLoad.getValue(1), dl, Tmp3, Tmp2, V, 0,
2685                        false, false, 0);
2686    // Load the actual argument out of the pointer VAList
2687    Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, NULL, 0,
2688                                  false, false, 0));
2689    Results.push_back(Results[0].getValue(1));
2690    break;
2691  }
2692  case ISD::VACOPY: {
2693    // This defaults to loading a pointer from the input and storing it to the
2694    // output, returning the chain.
2695    const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2696    const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2697    Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0),
2698                       Node->getOperand(2), VS, 0, false, false, 0);
2699    Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), VD, 0,
2700                        false, false, 0);
2701    Results.push_back(Tmp1);
2702    break;
2703  }
2704  case ISD::EXTRACT_VECTOR_ELT:
2705    if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
2706      // This must be an access of the only element.  Return it.
2707      Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, Node->getValueType(0),
2708                         Node->getOperand(0));
2709    else
2710      Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
2711    Results.push_back(Tmp1);
2712    break;
2713  case ISD::EXTRACT_SUBVECTOR:
2714    Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
2715    break;
2716  case ISD::CONCAT_VECTORS: {
2717    Results.push_back(ExpandVectorBuildThroughStack(Node));
2718    break;
2719  }
2720  case ISD::SCALAR_TO_VECTOR:
2721    Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
2722    break;
2723  case ISD::INSERT_VECTOR_ELT:
2724    Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
2725                                              Node->getOperand(1),
2726                                              Node->getOperand(2), dl));
2727    break;
2728  case ISD::VECTOR_SHUFFLE: {
2729    SmallVector<int, 8> Mask;
2730    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
2731
2732    EVT VT = Node->getValueType(0);
2733    EVT EltVT = VT.getVectorElementType();
2734    if (getTypeAction(EltVT) == Promote)
2735      EltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT);
2736    unsigned NumElems = VT.getVectorNumElements();
2737    SmallVector<SDValue, 8> Ops;
2738    for (unsigned i = 0; i != NumElems; ++i) {
2739      if (Mask[i] < 0) {
2740        Ops.push_back(DAG.getUNDEF(EltVT));
2741        continue;
2742      }
2743      unsigned Idx = Mask[i];
2744      if (Idx < NumElems)
2745        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2746                                  Node->getOperand(0),
2747                                  DAG.getIntPtrConstant(Idx)));
2748      else
2749        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2750                                  Node->getOperand(1),
2751                                  DAG.getIntPtrConstant(Idx - NumElems)));
2752    }
2753    Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size());
2754    Results.push_back(Tmp1);
2755    break;
2756  }
2757  case ISD::EXTRACT_ELEMENT: {
2758    EVT OpTy = Node->getOperand(0).getValueType();
2759    if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
2760      // 1 -> Hi
2761      Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
2762                         DAG.getConstant(OpTy.getSizeInBits()/2,
2763                                         TLI.getShiftAmountTy()));
2764      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
2765    } else {
2766      // 0 -> Lo
2767      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
2768                         Node->getOperand(0));
2769    }
2770    Results.push_back(Tmp1);
2771    break;
2772  }
2773  case ISD::STACKSAVE:
2774    // Expand to CopyFromReg if the target set
2775    // StackPointerRegisterToSaveRestore.
2776    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2777      Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
2778                                           Node->getValueType(0)));
2779      Results.push_back(Results[0].getValue(1));
2780    } else {
2781      Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
2782      Results.push_back(Node->getOperand(0));
2783    }
2784    break;
2785  case ISD::STACKRESTORE:
2786    // Expand to CopyToReg if the target set
2787    // StackPointerRegisterToSaveRestore.
2788    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2789      Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
2790                                         Node->getOperand(1)));
2791    } else {
2792      Results.push_back(Node->getOperand(0));
2793    }
2794    break;
2795  case ISD::FCOPYSIGN:
2796    Results.push_back(ExpandFCOPYSIGN(Node));
2797    break;
2798  case ISD::FNEG:
2799    // Expand Y = FNEG(X) ->  Y = SUB -0.0, X
2800    Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0));
2801    Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
2802                       Node->getOperand(0));
2803    Results.push_back(Tmp1);
2804    break;
2805  case ISD::FABS: {
2806    // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
2807    EVT VT = Node->getValueType(0);
2808    Tmp1 = Node->getOperand(0);
2809    Tmp2 = DAG.getConstantFP(0.0, VT);
2810    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
2811                        Tmp1, Tmp2, ISD::SETUGT);
2812    Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1);
2813    Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3);
2814    Results.push_back(Tmp1);
2815    break;
2816  }
2817  case ISD::FSQRT:
2818    Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
2819                                      RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128));
2820    break;
2821  case ISD::FSIN:
2822    Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
2823                                      RTLIB::SIN_F80, RTLIB::SIN_PPCF128));
2824    break;
2825  case ISD::FCOS:
2826    Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
2827                                      RTLIB::COS_F80, RTLIB::COS_PPCF128));
2828    break;
2829  case ISD::FLOG:
2830    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
2831                                      RTLIB::LOG_F80, RTLIB::LOG_PPCF128));
2832    break;
2833  case ISD::FLOG2:
2834    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
2835                                      RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128));
2836    break;
2837  case ISD::FLOG10:
2838    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
2839                                      RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128));
2840    break;
2841  case ISD::FEXP:
2842    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
2843                                      RTLIB::EXP_F80, RTLIB::EXP_PPCF128));
2844    break;
2845  case ISD::FEXP2:
2846    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
2847                                      RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128));
2848    break;
2849  case ISD::FTRUNC:
2850    Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
2851                                      RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128));
2852    break;
2853  case ISD::FFLOOR:
2854    Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
2855                                      RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128));
2856    break;
2857  case ISD::FCEIL:
2858    Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
2859                                      RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128));
2860    break;
2861  case ISD::FRINT:
2862    Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
2863                                      RTLIB::RINT_F80, RTLIB::RINT_PPCF128));
2864    break;
2865  case ISD::FNEARBYINT:
2866    Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
2867                                      RTLIB::NEARBYINT_F64,
2868                                      RTLIB::NEARBYINT_F80,
2869                                      RTLIB::NEARBYINT_PPCF128));
2870    break;
2871  case ISD::FPOWI:
2872    Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
2873                                      RTLIB::POWI_F80, RTLIB::POWI_PPCF128));
2874    break;
2875  case ISD::FPOW:
2876    Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
2877                                      RTLIB::POW_F80, RTLIB::POW_PPCF128));
2878    break;
2879  case ISD::FDIV:
2880    Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
2881                                      RTLIB::DIV_F80, RTLIB::DIV_PPCF128));
2882    break;
2883  case ISD::FREM:
2884    Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
2885                                      RTLIB::REM_F80, RTLIB::REM_PPCF128));
2886    break;
2887  case ISD::FP16_TO_FP32:
2888    Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
2889    break;
2890  case ISD::FP32_TO_FP16:
2891    Results.push_back(ExpandLibCall(RTLIB::FPROUND_F32_F16, Node, false));
2892    break;
2893  case ISD::ConstantFP: {
2894    ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
2895    // Check to see if this FP immediate is already legal.
2896    // If this is a legal constant, turn it into a TargetConstantFP node.
2897    if (TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0)))
2898      Results.push_back(SDValue(Node, 0));
2899    else
2900      Results.push_back(ExpandConstantFP(CFP, true, DAG, TLI));
2901    break;
2902  }
2903  case ISD::EHSELECTION: {
2904    unsigned Reg = TLI.getExceptionSelectorRegister();
2905    assert(Reg && "Can't expand to unknown register!");
2906    Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg,
2907                                         Node->getValueType(0)));
2908    Results.push_back(Results[0].getValue(1));
2909    break;
2910  }
2911  case ISD::EXCEPTIONADDR: {
2912    unsigned Reg = TLI.getExceptionAddressRegister();
2913    assert(Reg && "Can't expand to unknown register!");
2914    Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg,
2915                                         Node->getValueType(0)));
2916    Results.push_back(Results[0].getValue(1));
2917    break;
2918  }
2919  case ISD::SUB: {
2920    EVT VT = Node->getValueType(0);
2921    assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
2922           TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
2923           "Don't know how to expand this subtraction!");
2924    Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
2925               DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT));
2926    Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp2, DAG.getConstant(1, VT));
2927    Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
2928    break;
2929  }
2930  case ISD::UREM:
2931  case ISD::SREM: {
2932    EVT VT = Node->getValueType(0);
2933    SDVTList VTs = DAG.getVTList(VT, VT);
2934    bool isSigned = Node->getOpcode() == ISD::SREM;
2935    unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
2936    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2937    Tmp2 = Node->getOperand(0);
2938    Tmp3 = Node->getOperand(1);
2939    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
2940      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
2941    } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
2942      // X % Y -> X-X/Y*Y
2943      Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
2944      Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
2945      Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
2946    } else if (isSigned) {
2947      Tmp1 = ExpandIntLibCall(Node, true,
2948                              RTLIB::SREM_I8,
2949                              RTLIB::SREM_I16, RTLIB::SREM_I32,
2950                              RTLIB::SREM_I64, RTLIB::SREM_I128);
2951    } else {
2952      Tmp1 = ExpandIntLibCall(Node, false,
2953                              RTLIB::UREM_I8,
2954                              RTLIB::UREM_I16, RTLIB::UREM_I32,
2955                              RTLIB::UREM_I64, RTLIB::UREM_I128);
2956    }
2957    Results.push_back(Tmp1);
2958    break;
2959  }
2960  case ISD::UDIV:
2961  case ISD::SDIV: {
2962    bool isSigned = Node->getOpcode() == ISD::SDIV;
2963    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2964    EVT VT = Node->getValueType(0);
2965    SDVTList VTs = DAG.getVTList(VT, VT);
2966    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT))
2967      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
2968                         Node->getOperand(1));
2969    else if (isSigned)
2970      Tmp1 = ExpandIntLibCall(Node, true,
2971                              RTLIB::SDIV_I8,
2972                              RTLIB::SDIV_I16, RTLIB::SDIV_I32,
2973                              RTLIB::SDIV_I64, RTLIB::SDIV_I128);
2974    else
2975      Tmp1 = ExpandIntLibCall(Node, false,
2976                              RTLIB::UDIV_I8,
2977                              RTLIB::UDIV_I16, RTLIB::UDIV_I32,
2978                              RTLIB::UDIV_I64, RTLIB::UDIV_I128);
2979    Results.push_back(Tmp1);
2980    break;
2981  }
2982  case ISD::MULHU:
2983  case ISD::MULHS: {
2984    unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
2985                                                              ISD::SMUL_LOHI;
2986    EVT VT = Node->getValueType(0);
2987    SDVTList VTs = DAG.getVTList(VT, VT);
2988    assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
2989           "If this wasn't legal, it shouldn't have been created!");
2990    Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
2991                       Node->getOperand(1));
2992    Results.push_back(Tmp1.getValue(1));
2993    break;
2994  }
2995  case ISD::MUL: {
2996    EVT VT = Node->getValueType(0);
2997    SDVTList VTs = DAG.getVTList(VT, VT);
2998    // See if multiply or divide can be lowered using two-result operations.
2999    // We just need the low half of the multiply; try both the signed
3000    // and unsigned forms. If the target supports both SMUL_LOHI and
3001    // UMUL_LOHI, form a preference by checking which forms of plain
3002    // MULH it supports.
3003    bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
3004    bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
3005    bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
3006    bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
3007    unsigned OpToUse = 0;
3008    if (HasSMUL_LOHI && !HasMULHS) {
3009      OpToUse = ISD::SMUL_LOHI;
3010    } else if (HasUMUL_LOHI && !HasMULHU) {
3011      OpToUse = ISD::UMUL_LOHI;
3012    } else if (HasSMUL_LOHI) {
3013      OpToUse = ISD::SMUL_LOHI;
3014    } else if (HasUMUL_LOHI) {
3015      OpToUse = ISD::UMUL_LOHI;
3016    }
3017    if (OpToUse) {
3018      Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
3019                                    Node->getOperand(1)));
3020      break;
3021    }
3022    Tmp1 = ExpandIntLibCall(Node, false,
3023                            RTLIB::MUL_I8,
3024                            RTLIB::MUL_I16, RTLIB::MUL_I32,
3025                            RTLIB::MUL_I64, RTLIB::MUL_I128);
3026    Results.push_back(Tmp1);
3027    break;
3028  }
3029  case ISD::SADDO:
3030  case ISD::SSUBO: {
3031    SDValue LHS = Node->getOperand(0);
3032    SDValue RHS = Node->getOperand(1);
3033    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
3034                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3035                              LHS, RHS);
3036    Results.push_back(Sum);
3037    EVT OType = Node->getValueType(1);
3038
3039    SDValue Zero = DAG.getConstant(0, LHS.getValueType());
3040
3041    //   LHSSign -> LHS >= 0
3042    //   RHSSign -> RHS >= 0
3043    //   SumSign -> Sum >= 0
3044    //
3045    //   Add:
3046    //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
3047    //   Sub:
3048    //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
3049    //
3050    SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
3051    SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
3052    SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
3053                                      Node->getOpcode() == ISD::SADDO ?
3054                                      ISD::SETEQ : ISD::SETNE);
3055
3056    SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
3057    SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
3058
3059    SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
3060    Results.push_back(Cmp);
3061    break;
3062  }
3063  case ISD::UADDO:
3064  case ISD::USUBO: {
3065    SDValue LHS = Node->getOperand(0);
3066    SDValue RHS = Node->getOperand(1);
3067    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
3068                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3069                              LHS, RHS);
3070    Results.push_back(Sum);
3071    Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS,
3072                                   Node->getOpcode () == ISD::UADDO ?
3073                                   ISD::SETULT : ISD::SETUGT));
3074    break;
3075  }
3076  case ISD::UMULO:
3077  case ISD::SMULO: {
3078    EVT VT = Node->getValueType(0);
3079    SDValue LHS = Node->getOperand(0);
3080    SDValue RHS = Node->getOperand(1);
3081    SDValue BottomHalf;
3082    SDValue TopHalf;
3083    static const unsigned Ops[2][3] =
3084        { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
3085          { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
3086    bool isSigned = Node->getOpcode() == ISD::SMULO;
3087    if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
3088      BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
3089      TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
3090    } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
3091      BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
3092                               RHS);
3093      TopHalf = BottomHalf.getValue(1);
3094    } else {
3095      // FIXME: We should be able to fall back to a libcall with an illegal
3096      // type in some cases.
3097      // Also, we can fall back to a division in some cases, but that's a big
3098      // performance hit in the general case.
3099      assert(TLI.isTypeLegal(EVT::getIntegerVT(*DAG.getContext(),
3100                                               VT.getSizeInBits() * 2)) &&
3101             "Don't know how to expand this operation yet!");
3102      EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
3103      LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
3104      RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
3105      Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
3106      BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3107                               DAG.getIntPtrConstant(0));
3108      TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3109                            DAG.getIntPtrConstant(1));
3110    }
3111    if (isSigned) {
3112      Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1, TLI.getShiftAmountTy());
3113      Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1);
3114      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1,
3115                             ISD::SETNE);
3116    } else {
3117      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf,
3118                             DAG.getConstant(0, VT), ISD::SETNE);
3119    }
3120    Results.push_back(BottomHalf);
3121    Results.push_back(TopHalf);
3122    break;
3123  }
3124  case ISD::BUILD_PAIR: {
3125    EVT PairTy = Node->getValueType(0);
3126    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
3127    Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
3128    Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
3129                       DAG.getConstant(PairTy.getSizeInBits()/2,
3130                                       TLI.getShiftAmountTy()));
3131    Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
3132    break;
3133  }
3134  case ISD::SELECT:
3135    Tmp1 = Node->getOperand(0);
3136    Tmp2 = Node->getOperand(1);
3137    Tmp3 = Node->getOperand(2);
3138    if (Tmp1.getOpcode() == ISD::SETCC) {
3139      Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
3140                             Tmp2, Tmp3,
3141                             cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
3142    } else {
3143      Tmp1 = DAG.getSelectCC(dl, Tmp1,
3144                             DAG.getConstant(0, Tmp1.getValueType()),
3145                             Tmp2, Tmp3, ISD::SETNE);
3146    }
3147    Results.push_back(Tmp1);
3148    break;
3149  case ISD::BR_JT: {
3150    SDValue Chain = Node->getOperand(0);
3151    SDValue Table = Node->getOperand(1);
3152    SDValue Index = Node->getOperand(2);
3153
3154    EVT PTy = TLI.getPointerTy();
3155
3156    const TargetData &TD = *TLI.getTargetData();
3157    unsigned EntrySize =
3158      DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
3159
3160    Index = DAG.getNode(ISD::MUL, dl, PTy,
3161                        Index, DAG.getConstant(EntrySize, PTy));
3162    SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
3163
3164    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
3165    SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, PTy, dl, Chain, Addr,
3166                                PseudoSourceValue::getJumpTable(), 0, MemVT,
3167                                false, false, 0);
3168    Addr = LD;
3169    if (TM.getRelocationModel() == Reloc::PIC_) {
3170      // For PIC, the sequence is:
3171      // BRIND(load(Jumptable + index) + RelocBase)
3172      // RelocBase can be JumpTable, GOT or some sort of global base.
3173      Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
3174                          TLI.getPICJumpTableRelocBase(Table, DAG));
3175    }
3176    Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
3177    Results.push_back(Tmp1);
3178    break;
3179  }
3180  case ISD::BRCOND:
3181    // Expand brcond's setcc into its constituent parts and create a BR_CC
3182    // Node.
3183    Tmp1 = Node->getOperand(0);
3184    Tmp2 = Node->getOperand(1);
3185    if (Tmp2.getOpcode() == ISD::SETCC) {
3186      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
3187                         Tmp1, Tmp2.getOperand(2),
3188                         Tmp2.getOperand(0), Tmp2.getOperand(1),
3189                         Node->getOperand(2));
3190    } else {
3191      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
3192                         DAG.getCondCode(ISD::SETNE), Tmp2,
3193                         DAG.getConstant(0, Tmp2.getValueType()),
3194                         Node->getOperand(2));
3195    }
3196    Results.push_back(Tmp1);
3197    break;
3198  case ISD::SETCC: {
3199    Tmp1 = Node->getOperand(0);
3200    Tmp2 = Node->getOperand(1);
3201    Tmp3 = Node->getOperand(2);
3202    LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl);
3203
3204    // If we expanded the SETCC into an AND/OR, return the new node
3205    if (Tmp2.getNode() == 0) {
3206      Results.push_back(Tmp1);
3207      break;
3208    }
3209
3210    // Otherwise, SETCC for the given comparison type must be completely
3211    // illegal; expand it into a SELECT_CC.
3212    EVT VT = Node->getValueType(0);
3213    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
3214                       DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3);
3215    Results.push_back(Tmp1);
3216    break;
3217  }
3218  case ISD::SELECT_CC: {
3219    Tmp1 = Node->getOperand(0);   // LHS
3220    Tmp2 = Node->getOperand(1);   // RHS
3221    Tmp3 = Node->getOperand(2);   // True
3222    Tmp4 = Node->getOperand(3);   // False
3223    SDValue CC = Node->getOperand(4);
3224
3225    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()),
3226                          Tmp1, Tmp2, CC, dl);
3227
3228    assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!");
3229    Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
3230    CC = DAG.getCondCode(ISD::SETNE);
3231    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2,
3232                       Tmp3, Tmp4, CC);
3233    Results.push_back(Tmp1);
3234    break;
3235  }
3236  case ISD::BR_CC: {
3237    Tmp1 = Node->getOperand(0);              // Chain
3238    Tmp2 = Node->getOperand(2);              // LHS
3239    Tmp3 = Node->getOperand(3);              // RHS
3240    Tmp4 = Node->getOperand(1);              // CC
3241
3242    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()),
3243                          Tmp2, Tmp3, Tmp4, dl);
3244    LastCALLSEQ_END = DAG.getEntryNode();
3245
3246    assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!");
3247    Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
3248    Tmp4 = DAG.getCondCode(ISD::SETNE);
3249    Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2,
3250                       Tmp3, Node->getOperand(4));
3251    Results.push_back(Tmp1);
3252    break;
3253  }
3254  case ISD::GLOBAL_OFFSET_TABLE:
3255  case ISD::GlobalAddress:
3256  case ISD::GlobalTLSAddress:
3257  case ISD::ExternalSymbol:
3258  case ISD::ConstantPool:
3259  case ISD::JumpTable:
3260  case ISD::INTRINSIC_W_CHAIN:
3261  case ISD::INTRINSIC_WO_CHAIN:
3262  case ISD::INTRINSIC_VOID:
3263    // FIXME: Custom lowering for these operations shouldn't return null!
3264    for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
3265      Results.push_back(SDValue(Node, i));
3266    break;
3267  }
3268}
3269void SelectionDAGLegalize::PromoteNode(SDNode *Node,
3270                                       SmallVectorImpl<SDValue> &Results) {
3271  EVT OVT = Node->getValueType(0);
3272  if (Node->getOpcode() == ISD::UINT_TO_FP ||
3273      Node->getOpcode() == ISD::SINT_TO_FP ||
3274      Node->getOpcode() == ISD::SETCC) {
3275    OVT = Node->getOperand(0).getValueType();
3276  }
3277  EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
3278  DebugLoc dl = Node->getDebugLoc();
3279  SDValue Tmp1, Tmp2, Tmp3;
3280  switch (Node->getOpcode()) {
3281  case ISD::CTTZ:
3282  case ISD::CTLZ:
3283  case ISD::CTPOP:
3284    // Zero extend the argument.
3285    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3286    // Perform the larger operation.
3287    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
3288    if (Node->getOpcode() == ISD::CTTZ) {
3289      //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT)
3290      Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT),
3291                          Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT),
3292                          ISD::SETEQ);
3293      Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2,
3294                          DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1);
3295    } else if (Node->getOpcode() == ISD::CTLZ) {
3296      // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
3297      Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
3298                          DAG.getConstant(NVT.getSizeInBits() -
3299                                          OVT.getSizeInBits(), NVT));
3300    }
3301    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
3302    break;
3303  case ISD::BSWAP: {
3304    unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
3305    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3306    Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
3307    Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
3308                          DAG.getConstant(DiffBits, TLI.getShiftAmountTy()));
3309    Results.push_back(Tmp1);
3310    break;
3311  }
3312  case ISD::FP_TO_UINT:
3313  case ISD::FP_TO_SINT:
3314    Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
3315                                 Node->getOpcode() == ISD::FP_TO_SINT, dl);
3316    Results.push_back(Tmp1);
3317    break;
3318  case ISD::UINT_TO_FP:
3319  case ISD::SINT_TO_FP:
3320    Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
3321                                 Node->getOpcode() == ISD::SINT_TO_FP, dl);
3322    Results.push_back(Tmp1);
3323    break;
3324  case ISD::AND:
3325  case ISD::OR:
3326  case ISD::XOR: {
3327    unsigned ExtOp, TruncOp;
3328    if (OVT.isVector()) {
3329      ExtOp   = ISD::BIT_CONVERT;
3330      TruncOp = ISD::BIT_CONVERT;
3331    } else {
3332      assert(OVT.isInteger() && "Cannot promote logic operation");
3333      ExtOp   = ISD::ANY_EXTEND;
3334      TruncOp = ISD::TRUNCATE;
3335    }
3336    // Promote each of the values to the new type.
3337    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3338    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3339    // Perform the larger operation, then convert back
3340    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3341    Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
3342    break;
3343  }
3344  case ISD::SELECT: {
3345    unsigned ExtOp, TruncOp;
3346    if (Node->getValueType(0).isVector()) {
3347      ExtOp   = ISD::BIT_CONVERT;
3348      TruncOp = ISD::BIT_CONVERT;
3349    } else if (Node->getValueType(0).isInteger()) {
3350      ExtOp   = ISD::ANY_EXTEND;
3351      TruncOp = ISD::TRUNCATE;
3352    } else {
3353      ExtOp   = ISD::FP_EXTEND;
3354      TruncOp = ISD::FP_ROUND;
3355    }
3356    Tmp1 = Node->getOperand(0);
3357    // Promote each of the values to the new type.
3358    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3359    Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
3360    // Perform the larger operation, then round down.
3361    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3);
3362    if (TruncOp != ISD::FP_ROUND)
3363      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
3364    else
3365      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
3366                         DAG.getIntPtrConstant(0));
3367    Results.push_back(Tmp1);
3368    break;
3369  }
3370  case ISD::VECTOR_SHUFFLE: {
3371    SmallVector<int, 8> Mask;
3372    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
3373
3374    // Cast the two input vectors.
3375    Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0));
3376    Tmp2 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(1));
3377
3378    // Convert the shuffle mask to the right # elements.
3379    Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
3380    Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, OVT, Tmp1);
3381    Results.push_back(Tmp1);
3382    break;
3383  }
3384  case ISD::SETCC: {
3385    unsigned ExtOp = ISD::FP_EXTEND;
3386    if (NVT.isInteger()) {
3387      ISD::CondCode CCCode =
3388        cast<CondCodeSDNode>(Node->getOperand(2))->get();
3389      ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3390    }
3391    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3392    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3393    Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3394                                  Tmp1, Tmp2, Node->getOperand(2)));
3395    break;
3396  }
3397  }
3398}
3399
3400// SelectionDAG::Legalize - This is the entry point for the file.
3401//
3402void SelectionDAG::Legalize(CodeGenOpt::Level OptLevel) {
3403  /// run - This is the main entry point to this class.
3404  ///
3405  SelectionDAGLegalize(*this, OptLevel).LegalizeDAG();
3406}
3407
3408