LegalizeDAG.cpp revision 6265d5c91a18b2fb6499eb581c488315880c044d
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the SelectionDAG::Legalize method. 11// 12//===----------------------------------------------------------------------===// 13 14#include "llvm/CodeGen/SelectionDAG.h" 15#include "llvm/ADT/SmallPtrSet.h" 16#include "llvm/ADT/SmallVector.h" 17#include "llvm/ADT/Triple.h" 18#include "llvm/CodeGen/Analysis.h" 19#include "llvm/CodeGen/MachineFunction.h" 20#include "llvm/CodeGen/MachineJumpTableInfo.h" 21#include "llvm/DebugInfo.h" 22#include "llvm/IR/CallingConv.h" 23#include "llvm/IR/Constants.h" 24#include "llvm/IR/DataLayout.h" 25#include "llvm/IR/DerivedTypes.h" 26#include "llvm/IR/Function.h" 27#include "llvm/IR/LLVMContext.h" 28#include "llvm/Support/Debug.h" 29#include "llvm/Support/ErrorHandling.h" 30#include "llvm/Support/MathExtras.h" 31#include "llvm/Support/raw_ostream.h" 32#include "llvm/Target/TargetFrameLowering.h" 33#include "llvm/Target/TargetLowering.h" 34#include "llvm/Target/TargetMachine.h" 35using namespace llvm; 36 37//===----------------------------------------------------------------------===// 38/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and 39/// hacks on it until the target machine can handle it. This involves 40/// eliminating value sizes the machine cannot handle (promoting small sizes to 41/// large sizes or splitting up large values into small values) as well as 42/// eliminating operations the machine cannot handle. 43/// 44/// This code also does a small amount of optimization and recognition of idioms 45/// as part of its processing. For example, if a target does not support a 46/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this 47/// will attempt merge setcc and brc instructions into brcc's. 48/// 49namespace { 50class SelectionDAGLegalize : public SelectionDAG::DAGUpdateListener { 51 const TargetMachine &TM; 52 const TargetLowering &TLI; 53 SelectionDAG &DAG; 54 55 /// LegalizePosition - The iterator for walking through the node list. 56 SelectionDAG::allnodes_iterator LegalizePosition; 57 58 /// LegalizedNodes - The set of nodes which have already been legalized. 59 SmallPtrSet<SDNode *, 16> LegalizedNodes; 60 61 // Libcall insertion helpers. 62 63public: 64 explicit SelectionDAGLegalize(SelectionDAG &DAG); 65 66 void LegalizeDAG(); 67 68private: 69 /// LegalizeOp - Legalizes the given operation. 70 void LegalizeOp(SDNode *Node); 71 72 SDValue OptimizeFloatStore(StoreSDNode *ST); 73 74 void LegalizeLoadOps(SDNode *Node); 75 void LegalizeStoreOps(SDNode *Node); 76 77 /// PerformInsertVectorEltInMemory - Some target cannot handle a variable 78 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 79 /// is necessary to spill the vector being inserted into to memory, perform 80 /// the insert there, and then read the result back. 81 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, 82 SDValue Idx, DebugLoc dl); 83 SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, 84 SDValue Idx, DebugLoc dl); 85 86 /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which 87 /// performs the same shuffe in terms of order or result bytes, but on a type 88 /// whose vector element type is narrower than the original shuffle type. 89 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 90 SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl, 91 SDValue N1, SDValue N2, 92 ArrayRef<int> Mask) const; 93 94 void LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, 95 DebugLoc dl); 96 97 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned); 98 SDValue ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, const SDValue *Ops, 99 unsigned NumOps, bool isSigned, DebugLoc dl); 100 101 std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC, 102 SDNode *Node, bool isSigned); 103 SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32, 104 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, 105 RTLIB::Libcall Call_F128, 106 RTLIB::Libcall Call_PPCF128); 107 SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, 108 RTLIB::Libcall Call_I8, 109 RTLIB::Libcall Call_I16, 110 RTLIB::Libcall Call_I32, 111 RTLIB::Libcall Call_I64, 112 RTLIB::Libcall Call_I128); 113 void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 114 void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 115 116 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, DebugLoc dl); 117 SDValue ExpandBUILD_VECTOR(SDNode *Node); 118 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); 119 void ExpandDYNAMIC_STACKALLOC(SDNode *Node, 120 SmallVectorImpl<SDValue> &Results); 121 SDValue ExpandFCOPYSIGN(SDNode *Node); 122 SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT, 123 DebugLoc dl); 124 SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned, 125 DebugLoc dl); 126 SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned, 127 DebugLoc dl); 128 129 SDValue ExpandBSWAP(SDValue Op, DebugLoc dl); 130 SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl); 131 132 SDValue ExpandExtractFromVectorThroughStack(SDValue Op); 133 SDValue ExpandInsertToVectorThroughStack(SDValue Op); 134 SDValue ExpandVectorBuildThroughStack(SDNode* Node); 135 136 SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP); 137 138 std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node); 139 140 void ExpandNode(SDNode *Node); 141 void PromoteNode(SDNode *Node); 142 143 void ForgetNode(SDNode *N) { 144 LegalizedNodes.erase(N); 145 if (LegalizePosition == SelectionDAG::allnodes_iterator(N)) 146 ++LegalizePosition; 147 } 148 149public: 150 // DAGUpdateListener implementation. 151 virtual void NodeDeleted(SDNode *N, SDNode *E) { 152 ForgetNode(N); 153 } 154 virtual void NodeUpdated(SDNode *N) {} 155 156 // Node replacement helpers 157 void ReplacedNode(SDNode *N) { 158 if (N->use_empty()) { 159 DAG.RemoveDeadNode(N); 160 } else { 161 ForgetNode(N); 162 } 163 } 164 void ReplaceNode(SDNode *Old, SDNode *New) { 165 DAG.ReplaceAllUsesWith(Old, New); 166 ReplacedNode(Old); 167 } 168 void ReplaceNode(SDValue Old, SDValue New) { 169 DAG.ReplaceAllUsesWith(Old, New); 170 ReplacedNode(Old.getNode()); 171 } 172 void ReplaceNode(SDNode *Old, const SDValue *New) { 173 DAG.ReplaceAllUsesWith(Old, New); 174 ReplacedNode(Old); 175 } 176}; 177} 178 179/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which 180/// performs the same shuffe in terms of order or result bytes, but on a type 181/// whose vector element type is narrower than the original shuffle type. 182/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 183SDValue 184SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl, 185 SDValue N1, SDValue N2, 186 ArrayRef<int> Mask) const { 187 unsigned NumMaskElts = VT.getVectorNumElements(); 188 unsigned NumDestElts = NVT.getVectorNumElements(); 189 unsigned NumEltsGrowth = NumDestElts / NumMaskElts; 190 191 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); 192 193 if (NumEltsGrowth == 1) 194 return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]); 195 196 SmallVector<int, 8> NewMask; 197 for (unsigned i = 0; i != NumMaskElts; ++i) { 198 int Idx = Mask[i]; 199 for (unsigned j = 0; j != NumEltsGrowth; ++j) { 200 if (Idx < 0) 201 NewMask.push_back(-1); 202 else 203 NewMask.push_back(Idx * NumEltsGrowth + j); 204 } 205 } 206 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?"); 207 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?"); 208 return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]); 209} 210 211SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag) 212 : SelectionDAG::DAGUpdateListener(dag), 213 TM(dag.getTarget()), TLI(dag.getTargetLoweringInfo()), 214 DAG(dag) { 215} 216 217void SelectionDAGLegalize::LegalizeDAG() { 218 DAG.AssignTopologicalOrder(); 219 220 // Visit all the nodes. We start in topological order, so that we see 221 // nodes with their original operands intact. Legalization can produce 222 // new nodes which may themselves need to be legalized. Iterate until all 223 // nodes have been legalized. 224 for (;;) { 225 bool AnyLegalized = false; 226 for (LegalizePosition = DAG.allnodes_end(); 227 LegalizePosition != DAG.allnodes_begin(); ) { 228 --LegalizePosition; 229 230 SDNode *N = LegalizePosition; 231 if (LegalizedNodes.insert(N)) { 232 AnyLegalized = true; 233 LegalizeOp(N); 234 } 235 } 236 if (!AnyLegalized) 237 break; 238 239 } 240 241 // Remove dead nodes now. 242 DAG.RemoveDeadNodes(); 243} 244 245/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or 246/// a load from the constant pool. 247SDValue 248SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) { 249 bool Extend = false; 250 DebugLoc dl = CFP->getDebugLoc(); 251 252 // If a FP immediate is precise when represented as a float and if the 253 // target can do an extending load from float to double, we put it into 254 // the constant pool as a float, even if it's is statically typed as a 255 // double. This shrinks FP constants and canonicalizes them for targets where 256 // an FP extending load is the same cost as a normal load (such as on the x87 257 // fp stack or PPC FP unit). 258 EVT VT = CFP->getValueType(0); 259 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue()); 260 if (!UseCP) { 261 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion"); 262 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), 263 (VT == MVT::f64) ? MVT::i64 : MVT::i32); 264 } 265 266 EVT OrigVT = VT; 267 EVT SVT = VT; 268 while (SVT != MVT::f32) { 269 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1); 270 if (ConstantFPSDNode::isValueValidForType(SVT, CFP->getValueAPF()) && 271 // Only do this if the target has a native EXTLOAD instruction from 272 // smaller type. 273 TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) && 274 TLI.ShouldShrinkFPConstant(OrigVT)) { 275 Type *SType = SVT.getTypeForEVT(*DAG.getContext()); 276 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType)); 277 VT = SVT; 278 Extend = true; 279 } 280 } 281 282 SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy()); 283 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 284 if (Extend) { 285 SDValue Result = 286 DAG.getExtLoad(ISD::EXTLOAD, dl, OrigVT, 287 DAG.getEntryNode(), 288 CPIdx, MachinePointerInfo::getConstantPool(), 289 VT, false, false, Alignment); 290 return Result; 291 } 292 SDValue Result = 293 DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx, 294 MachinePointerInfo::getConstantPool(), false, false, false, 295 Alignment); 296 return Result; 297} 298 299/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores. 300static void ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG, 301 const TargetLowering &TLI, 302 SelectionDAGLegalize *DAGLegalize) { 303 assert(ST->getAddressingMode() == ISD::UNINDEXED && 304 "unaligned indexed stores not implemented!"); 305 SDValue Chain = ST->getChain(); 306 SDValue Ptr = ST->getBasePtr(); 307 SDValue Val = ST->getValue(); 308 EVT VT = Val.getValueType(); 309 int Alignment = ST->getAlignment(); 310 DebugLoc dl = ST->getDebugLoc(); 311 if (ST->getMemoryVT().isFloatingPoint() || 312 ST->getMemoryVT().isVector()) { 313 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 314 if (TLI.isTypeLegal(intVT)) { 315 // Expand to a bitconvert of the value to the integer type of the 316 // same size, then a (misaligned) int store. 317 // FIXME: Does not handle truncating floating point stores! 318 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 319 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 320 ST->isVolatile(), ST->isNonTemporal(), Alignment); 321 DAGLegalize->ReplaceNode(SDValue(ST, 0), Result); 322 return; 323 } 324 // Do a (aligned) store to a stack slot, then copy from the stack slot 325 // to the final destination using (unaligned) integer loads and stores. 326 EVT StoredVT = ST->getMemoryVT(); 327 MVT RegVT = 328 TLI.getRegisterType(*DAG.getContext(), 329 EVT::getIntegerVT(*DAG.getContext(), 330 StoredVT.getSizeInBits())); 331 unsigned StoredBytes = StoredVT.getSizeInBits() / 8; 332 unsigned RegBytes = RegVT.getSizeInBits() / 8; 333 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 334 335 // Make sure the stack slot is also aligned for the register type. 336 SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT); 337 338 // Perform the original store, only redirected to the stack slot. 339 SDValue Store = DAG.getTruncStore(Chain, dl, 340 Val, StackPtr, MachinePointerInfo(), 341 StoredVT, false, false, 0); 342 SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy()); 343 SmallVector<SDValue, 8> Stores; 344 unsigned Offset = 0; 345 346 // Do all but one copies using the full register width. 347 for (unsigned i = 1; i < NumRegs; i++) { 348 // Load one integer register's worth from the stack slot. 349 SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr, 350 MachinePointerInfo(), 351 false, false, false, 0); 352 // Store it to the final location. Remember the store. 353 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 354 ST->getPointerInfo().getWithOffset(Offset), 355 ST->isVolatile(), ST->isNonTemporal(), 356 MinAlign(ST->getAlignment(), Offset))); 357 // Increment the pointers. 358 Offset += RegBytes; 359 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr, 360 Increment); 361 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 362 } 363 364 // The last store may be partial. Do a truncating store. On big-endian 365 // machines this requires an extending load from the stack slot to ensure 366 // that the bits are in the right place. 367 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 368 8 * (StoredBytes - Offset)); 369 370 // Load from the stack slot. 371 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 372 MachinePointerInfo(), 373 MemVT, false, false, 0); 374 375 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 376 ST->getPointerInfo() 377 .getWithOffset(Offset), 378 MemVT, ST->isVolatile(), 379 ST->isNonTemporal(), 380 MinAlign(ST->getAlignment(), Offset))); 381 // The order of the stores doesn't matter - say it with a TokenFactor. 382 SDValue Result = 383 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0], 384 Stores.size()); 385 DAGLegalize->ReplaceNode(SDValue(ST, 0), Result); 386 return; 387 } 388 assert(ST->getMemoryVT().isInteger() && 389 !ST->getMemoryVT().isVector() && 390 "Unaligned store of unknown type."); 391 // Get the half-size VT 392 EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext()); 393 int NumBits = NewStoredVT.getSizeInBits(); 394 int IncrementSize = NumBits / 8; 395 396 // Divide the stored value in two parts. 397 SDValue ShiftAmount = DAG.getConstant(NumBits, 398 TLI.getShiftAmountTy(Val.getValueType())); 399 SDValue Lo = Val; 400 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 401 402 // Store the two parts 403 SDValue Store1, Store2; 404 Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr, 405 ST->getPointerInfo(), NewStoredVT, 406 ST->isVolatile(), ST->isNonTemporal(), Alignment); 407 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 408 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 409 Alignment = MinAlign(Alignment, IncrementSize); 410 Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr, 411 ST->getPointerInfo().getWithOffset(IncrementSize), 412 NewStoredVT, ST->isVolatile(), ST->isNonTemporal(), 413 Alignment); 414 415 SDValue Result = 416 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 417 DAGLegalize->ReplaceNode(SDValue(ST, 0), Result); 418} 419 420/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads. 421static void 422ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG, 423 const TargetLowering &TLI, 424 SDValue &ValResult, SDValue &ChainResult) { 425 assert(LD->getAddressingMode() == ISD::UNINDEXED && 426 "unaligned indexed loads not implemented!"); 427 SDValue Chain = LD->getChain(); 428 SDValue Ptr = LD->getBasePtr(); 429 EVT VT = LD->getValueType(0); 430 EVT LoadedVT = LD->getMemoryVT(); 431 DebugLoc dl = LD->getDebugLoc(); 432 if (VT.isFloatingPoint() || VT.isVector()) { 433 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 434 if (TLI.isTypeLegal(intVT) && TLI.isTypeLegal(LoadedVT)) { 435 // Expand to a (misaligned) integer load of the same size, 436 // then bitconvert to floating point or vector. 437 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getPointerInfo(), 438 LD->isVolatile(), 439 LD->isNonTemporal(), 440 LD->isInvariant(), LD->getAlignment()); 441 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 442 if (LoadedVT != VT) 443 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 444 ISD::ANY_EXTEND, dl, VT, Result); 445 446 ValResult = Result; 447 ChainResult = Chain; 448 return; 449 } 450 451 // Copy the value to a (aligned) stack slot using (unaligned) integer 452 // loads and stores, then do a (aligned) load from the stack slot. 453 MVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT); 454 unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8; 455 unsigned RegBytes = RegVT.getSizeInBits() / 8; 456 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 457 458 // Make sure the stack slot is also aligned for the register type. 459 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 460 461 SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy()); 462 SmallVector<SDValue, 8> Stores; 463 SDValue StackPtr = StackBase; 464 unsigned Offset = 0; 465 466 // Do all but one copies using the full register width. 467 for (unsigned i = 1; i < NumRegs; i++) { 468 // Load one integer register's worth from the original location. 469 SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr, 470 LD->getPointerInfo().getWithOffset(Offset), 471 LD->isVolatile(), LD->isNonTemporal(), 472 LD->isInvariant(), 473 MinAlign(LD->getAlignment(), Offset)); 474 // Follow the load with a store to the stack slot. Remember the store. 475 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr, 476 MachinePointerInfo(), false, false, 0)); 477 // Increment the pointers. 478 Offset += RegBytes; 479 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 480 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr, 481 Increment); 482 } 483 484 // The last copy may be partial. Do an extending load. 485 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 486 8 * (LoadedBytes - Offset)); 487 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 488 LD->getPointerInfo().getWithOffset(Offset), 489 MemVT, LD->isVolatile(), 490 LD->isNonTemporal(), 491 MinAlign(LD->getAlignment(), Offset)); 492 // Follow the load with a store to the stack slot. Remember the store. 493 // On big-endian machines this requires a truncating store to ensure 494 // that the bits end up in the right place. 495 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr, 496 MachinePointerInfo(), MemVT, 497 false, false, 0)); 498 499 // The order of the stores doesn't matter - say it with a TokenFactor. 500 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0], 501 Stores.size()); 502 503 // Finally, perform the original load only redirected to the stack slot. 504 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 505 MachinePointerInfo(), LoadedVT, false, false, 0); 506 507 // Callers expect a MERGE_VALUES node. 508 ValResult = Load; 509 ChainResult = TF; 510 return; 511 } 512 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 513 "Unaligned load of unsupported type."); 514 515 // Compute the new VT that is half the size of the old one. This is an 516 // integer MVT. 517 unsigned NumBits = LoadedVT.getSizeInBits(); 518 EVT NewLoadedVT; 519 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 520 NumBits >>= 1; 521 522 unsigned Alignment = LD->getAlignment(); 523 unsigned IncrementSize = NumBits / 8; 524 ISD::LoadExtType HiExtType = LD->getExtensionType(); 525 526 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 527 if (HiExtType == ISD::NON_EXTLOAD) 528 HiExtType = ISD::ZEXTLOAD; 529 530 // Load the value in two parts 531 SDValue Lo, Hi; 532 if (TLI.isLittleEndian()) { 533 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 534 NewLoadedVT, LD->isVolatile(), 535 LD->isNonTemporal(), Alignment); 536 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 537 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 538 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 539 LD->getPointerInfo().getWithOffset(IncrementSize), 540 NewLoadedVT, LD->isVolatile(), 541 LD->isNonTemporal(), MinAlign(Alignment,IncrementSize)); 542 } else { 543 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 544 NewLoadedVT, LD->isVolatile(), 545 LD->isNonTemporal(), Alignment); 546 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 547 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 548 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 549 LD->getPointerInfo().getWithOffset(IncrementSize), 550 NewLoadedVT, LD->isVolatile(), 551 LD->isNonTemporal(), MinAlign(Alignment,IncrementSize)); 552 } 553 554 // aggregate the two parts 555 SDValue ShiftAmount = DAG.getConstant(NumBits, 556 TLI.getShiftAmountTy(Hi.getValueType())); 557 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 558 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 559 560 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 561 Hi.getValue(1)); 562 563 ValResult = Result; 564 ChainResult = TF; 565} 566 567/// PerformInsertVectorEltInMemory - Some target cannot handle a variable 568/// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 569/// is necessary to spill the vector being inserted into to memory, perform 570/// the insert there, and then read the result back. 571SDValue SelectionDAGLegalize:: 572PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx, 573 DebugLoc dl) { 574 SDValue Tmp1 = Vec; 575 SDValue Tmp2 = Val; 576 SDValue Tmp3 = Idx; 577 578 // If the target doesn't support this, we have to spill the input vector 579 // to a temporary stack slot, update the element, then reload it. This is 580 // badness. We could also load the value into a vector register (either 581 // with a "move to register" or "extload into register" instruction, then 582 // permute it into place, if the idx is a constant and if the idx is 583 // supported by the target. 584 EVT VT = Tmp1.getValueType(); 585 EVT EltVT = VT.getVectorElementType(); 586 EVT IdxVT = Tmp3.getValueType(); 587 EVT PtrVT = TLI.getPointerTy(); 588 SDValue StackPtr = DAG.CreateStackTemporary(VT); 589 590 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 591 592 // Store the vector. 593 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr, 594 MachinePointerInfo::getFixedStack(SPFI), 595 false, false, 0); 596 597 // Truncate or zero extend offset to target pointer type. 598 unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND; 599 Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3); 600 // Add the offset to the index. 601 unsigned EltSize = EltVT.getSizeInBits()/8; 602 Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT)); 603 SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr); 604 // Store the scalar value. 605 Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT, 606 false, false, 0); 607 // Load the updated vector. 608 return DAG.getLoad(VT, dl, Ch, StackPtr, 609 MachinePointerInfo::getFixedStack(SPFI), false, false, 610 false, 0); 611} 612 613 614SDValue SelectionDAGLegalize:: 615ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) { 616 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) { 617 // SCALAR_TO_VECTOR requires that the type of the value being inserted 618 // match the element type of the vector being created, except for 619 // integers in which case the inserted value can be over width. 620 EVT EltVT = Vec.getValueType().getVectorElementType(); 621 if (Val.getValueType() == EltVT || 622 (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) { 623 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, 624 Vec.getValueType(), Val); 625 626 unsigned NumElts = Vec.getValueType().getVectorNumElements(); 627 // We generate a shuffle of InVec and ScVec, so the shuffle mask 628 // should be 0,1,2,3,4,5... with the appropriate element replaced with 629 // elt 0 of the RHS. 630 SmallVector<int, 8> ShufOps; 631 for (unsigned i = 0; i != NumElts; ++i) 632 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts); 633 634 return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, 635 &ShufOps[0]); 636 } 637 } 638 return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl); 639} 640 641SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) { 642 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 643 // FIXME: We shouldn't do this for TargetConstantFP's. 644 // FIXME: move this to the DAG Combiner! Note that we can't regress due 645 // to phase ordering between legalized code and the dag combiner. This 646 // probably means that we need to integrate dag combiner and legalizer 647 // together. 648 // We generally can't do this one for long doubles. 649 SDValue Chain = ST->getChain(); 650 SDValue Ptr = ST->getBasePtr(); 651 unsigned Alignment = ST->getAlignment(); 652 bool isVolatile = ST->isVolatile(); 653 bool isNonTemporal = ST->isNonTemporal(); 654 DebugLoc dl = ST->getDebugLoc(); 655 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) { 656 if (CFP->getValueType(0) == MVT::f32 && 657 TLI.isTypeLegal(MVT::i32)) { 658 SDValue Con = DAG.getConstant(CFP->getValueAPF(). 659 bitcastToAPInt().zextOrTrunc(32), 660 MVT::i32); 661 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 662 isVolatile, isNonTemporal, Alignment); 663 } 664 665 if (CFP->getValueType(0) == MVT::f64) { 666 // If this target supports 64-bit registers, do a single 64-bit store. 667 if (TLI.isTypeLegal(MVT::i64)) { 668 SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 669 zextOrTrunc(64), MVT::i64); 670 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 671 isVolatile, isNonTemporal, Alignment); 672 } 673 674 if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) { 675 // Otherwise, if the target supports 32-bit registers, use 2 32-bit 676 // stores. If the target supports neither 32- nor 64-bits, this 677 // xform is certainly not worth it. 678 const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt(); 679 SDValue Lo = DAG.getConstant(IntVal.trunc(32), MVT::i32); 680 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32); 681 if (TLI.isBigEndian()) std::swap(Lo, Hi); 682 683 Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), isVolatile, 684 isNonTemporal, Alignment); 685 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 686 DAG.getIntPtrConstant(4)); 687 Hi = DAG.getStore(Chain, dl, Hi, Ptr, 688 ST->getPointerInfo().getWithOffset(4), 689 isVolatile, isNonTemporal, MinAlign(Alignment, 4U)); 690 691 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 692 } 693 } 694 } 695 return SDValue(0, 0); 696} 697 698void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) { 699 StoreSDNode *ST = cast<StoreSDNode>(Node); 700 SDValue Chain = ST->getChain(); 701 SDValue Ptr = ST->getBasePtr(); 702 DebugLoc dl = Node->getDebugLoc(); 703 704 unsigned Alignment = ST->getAlignment(); 705 bool isVolatile = ST->isVolatile(); 706 bool isNonTemporal = ST->isNonTemporal(); 707 708 if (!ST->isTruncatingStore()) { 709 if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) { 710 ReplaceNode(ST, OptStore); 711 return; 712 } 713 714 { 715 SDValue Value = ST->getValue(); 716 MVT VT = Value.getSimpleValueType(); 717 switch (TLI.getOperationAction(ISD::STORE, VT)) { 718 default: llvm_unreachable("This action is not supported yet!"); 719 case TargetLowering::Legal: 720 // If this is an unaligned store and the target doesn't support it, 721 // expand it. 722 if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) { 723 Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext()); 724 unsigned ABIAlignment= TLI.getDataLayout()->getABITypeAlignment(Ty); 725 if (ST->getAlignment() < ABIAlignment) 726 ExpandUnalignedStore(cast<StoreSDNode>(Node), 727 DAG, TLI, this); 728 } 729 break; 730 case TargetLowering::Custom: { 731 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 732 if (Res.getNode()) 733 ReplaceNode(SDValue(Node, 0), Res); 734 return; 735 } 736 case TargetLowering::Promote: { 737 MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT); 738 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 739 "Can only promote stores to same size type"); 740 Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value); 741 SDValue Result = 742 DAG.getStore(Chain, dl, Value, Ptr, 743 ST->getPointerInfo(), isVolatile, 744 isNonTemporal, Alignment); 745 ReplaceNode(SDValue(Node, 0), Result); 746 break; 747 } 748 } 749 return; 750 } 751 } else { 752 SDValue Value = ST->getValue(); 753 754 EVT StVT = ST->getMemoryVT(); 755 unsigned StWidth = StVT.getSizeInBits(); 756 757 if (StWidth != StVT.getStoreSizeInBits()) { 758 // Promote to a byte-sized store with upper bits zero if not 759 // storing an integral number of bytes. For example, promote 760 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 761 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), 762 StVT.getStoreSizeInBits()); 763 Value = DAG.getZeroExtendInReg(Value, dl, StVT); 764 SDValue Result = 765 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 766 NVT, isVolatile, isNonTemporal, Alignment); 767 ReplaceNode(SDValue(Node, 0), Result); 768 } else if (StWidth & (StWidth - 1)) { 769 // If not storing a power-of-2 number of bits, expand as two stores. 770 assert(!StVT.isVector() && "Unsupported truncstore!"); 771 unsigned RoundWidth = 1 << Log2_32(StWidth); 772 assert(RoundWidth < StWidth); 773 unsigned ExtraWidth = StWidth - RoundWidth; 774 assert(ExtraWidth < RoundWidth); 775 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 776 "Store size not an integral number of bytes!"); 777 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 778 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 779 SDValue Lo, Hi; 780 unsigned IncrementSize; 781 782 if (TLI.isLittleEndian()) { 783 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) 784 // Store the bottom RoundWidth bits. 785 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 786 RoundVT, 787 isVolatile, isNonTemporal, Alignment); 788 789 // Store the remaining ExtraWidth bits. 790 IncrementSize = RoundWidth / 8; 791 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 792 DAG.getIntPtrConstant(IncrementSize)); 793 Hi = DAG.getNode(ISD::SRL, dl, Value.getValueType(), Value, 794 DAG.getConstant(RoundWidth, 795 TLI.getShiftAmountTy(Value.getValueType()))); 796 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, 797 ST->getPointerInfo().getWithOffset(IncrementSize), 798 ExtraVT, isVolatile, isNonTemporal, 799 MinAlign(Alignment, IncrementSize)); 800 } else { 801 // Big endian - avoid unaligned stores. 802 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X 803 // Store the top RoundWidth bits. 804 Hi = DAG.getNode(ISD::SRL, dl, Value.getValueType(), Value, 805 DAG.getConstant(ExtraWidth, 806 TLI.getShiftAmountTy(Value.getValueType()))); 807 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(), 808 RoundVT, isVolatile, isNonTemporal, Alignment); 809 810 // Store the remaining ExtraWidth bits. 811 IncrementSize = RoundWidth / 8; 812 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 813 DAG.getIntPtrConstant(IncrementSize)); 814 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, 815 ST->getPointerInfo().getWithOffset(IncrementSize), 816 ExtraVT, isVolatile, isNonTemporal, 817 MinAlign(Alignment, IncrementSize)); 818 } 819 820 // The order of the stores doesn't matter. 821 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 822 ReplaceNode(SDValue(Node, 0), Result); 823 } else { 824 switch (TLI.getTruncStoreAction(ST->getValue().getSimpleValueType(), 825 StVT.getSimpleVT())) { 826 default: llvm_unreachable("This action is not supported yet!"); 827 case TargetLowering::Legal: 828 // If this is an unaligned store and the target doesn't support it, 829 // expand it. 830 if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) { 831 Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext()); 832 unsigned ABIAlignment= TLI.getDataLayout()->getABITypeAlignment(Ty); 833 if (ST->getAlignment() < ABIAlignment) 834 ExpandUnalignedStore(cast<StoreSDNode>(Node), DAG, TLI, this); 835 } 836 break; 837 case TargetLowering::Custom: { 838 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 839 if (Res.getNode()) 840 ReplaceNode(SDValue(Node, 0), Res); 841 return; 842 } 843 case TargetLowering::Expand: 844 assert(!StVT.isVector() && 845 "Vector Stores are handled in LegalizeVectorOps"); 846 847 // TRUNCSTORE:i16 i32 -> STORE i16 848 assert(TLI.isTypeLegal(StVT) && 849 "Do not know how to expand this store!"); 850 Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value); 851 SDValue Result = 852 DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 853 isVolatile, isNonTemporal, Alignment); 854 ReplaceNode(SDValue(Node, 0), Result); 855 break; 856 } 857 } 858 } 859} 860 861void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) { 862 LoadSDNode *LD = cast<LoadSDNode>(Node); 863 SDValue Chain = LD->getChain(); // The chain. 864 SDValue Ptr = LD->getBasePtr(); // The base pointer. 865 SDValue Value; // The value returned by the load op. 866 DebugLoc dl = Node->getDebugLoc(); 867 868 ISD::LoadExtType ExtType = LD->getExtensionType(); 869 if (ExtType == ISD::NON_EXTLOAD) { 870 MVT VT = Node->getSimpleValueType(0); 871 SDValue RVal = SDValue(Node, 0); 872 SDValue RChain = SDValue(Node, 1); 873 874 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 875 default: llvm_unreachable("This action is not supported yet!"); 876 case TargetLowering::Legal: 877 // If this is an unaligned load and the target doesn't support it, 878 // expand it. 879 if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) { 880 Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext()); 881 unsigned ABIAlignment = 882 TLI.getDataLayout()->getABITypeAlignment(Ty); 883 if (LD->getAlignment() < ABIAlignment){ 884 ExpandUnalignedLoad(cast<LoadSDNode>(Node), DAG, TLI, RVal, RChain); 885 } 886 } 887 break; 888 case TargetLowering::Custom: { 889 SDValue Res = TLI.LowerOperation(RVal, DAG); 890 if (Res.getNode()) { 891 RVal = Res; 892 RChain = Res.getValue(1); 893 } 894 break; 895 } 896 case TargetLowering::Promote: { 897 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 898 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 899 "Can only promote loads to same size type"); 900 901 SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getPointerInfo(), 902 LD->isVolatile(), LD->isNonTemporal(), 903 LD->isInvariant(), LD->getAlignment()); 904 RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res); 905 RChain = Res.getValue(1); 906 break; 907 } 908 } 909 if (RChain.getNode() != Node) { 910 assert(RVal.getNode() != Node && "Load must be completely replaced"); 911 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal); 912 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain); 913 ReplacedNode(Node); 914 } 915 return; 916 } 917 918 EVT SrcVT = LD->getMemoryVT(); 919 unsigned SrcWidth = SrcVT.getSizeInBits(); 920 unsigned Alignment = LD->getAlignment(); 921 bool isVolatile = LD->isVolatile(); 922 bool isNonTemporal = LD->isNonTemporal(); 923 924 if (SrcWidth != SrcVT.getStoreSizeInBits() && 925 // Some targets pretend to have an i1 loading operation, and actually 926 // load an i8. This trick is correct for ZEXTLOAD because the top 7 927 // bits are guaranteed to be zero; it helps the optimizers understand 928 // that these bits are zero. It is also useful for EXTLOAD, since it 929 // tells the optimizers that those bits are undefined. It would be 930 // nice to have an effective generic way of getting these benefits... 931 // Until such a way is found, don't insist on promoting i1 here. 932 (SrcVT != MVT::i1 || 933 TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) { 934 // Promote to a byte-sized load if not loading an integral number of 935 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 936 unsigned NewWidth = SrcVT.getStoreSizeInBits(); 937 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth); 938 SDValue Ch; 939 940 // The extra bits are guaranteed to be zero, since we stored them that 941 // way. A zext load from NVT thus automatically gives zext from SrcVT. 942 943 ISD::LoadExtType NewExtType = 944 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; 945 946 SDValue Result = 947 DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), 948 Chain, Ptr, LD->getPointerInfo(), 949 NVT, isVolatile, isNonTemporal, Alignment); 950 951 Ch = Result.getValue(1); // The chain. 952 953 if (ExtType == ISD::SEXTLOAD) 954 // Having the top bits zero doesn't help when sign extending. 955 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 956 Result.getValueType(), 957 Result, DAG.getValueType(SrcVT)); 958 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) 959 // All the top bits are guaranteed to be zero - inform the optimizers. 960 Result = DAG.getNode(ISD::AssertZext, dl, 961 Result.getValueType(), Result, 962 DAG.getValueType(SrcVT)); 963 964 Value = Result; 965 Chain = Ch; 966 } else if (SrcWidth & (SrcWidth - 1)) { 967 // If not loading a power-of-2 number of bits, expand as two loads. 968 assert(!SrcVT.isVector() && "Unsupported extload!"); 969 unsigned RoundWidth = 1 << Log2_32(SrcWidth); 970 assert(RoundWidth < SrcWidth); 971 unsigned ExtraWidth = SrcWidth - RoundWidth; 972 assert(ExtraWidth < RoundWidth); 973 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 974 "Load size not an integral number of bytes!"); 975 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 976 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 977 SDValue Lo, Hi, Ch; 978 unsigned IncrementSize; 979 980 if (TLI.isLittleEndian()) { 981 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) 982 // Load the bottom RoundWidth bits. 983 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), 984 Chain, Ptr, 985 LD->getPointerInfo(), RoundVT, isVolatile, 986 isNonTemporal, Alignment); 987 988 // Load the remaining ExtraWidth bits. 989 IncrementSize = RoundWidth / 8; 990 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 991 DAG.getIntPtrConstant(IncrementSize)); 992 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 993 LD->getPointerInfo().getWithOffset(IncrementSize), 994 ExtraVT, isVolatile, isNonTemporal, 995 MinAlign(Alignment, IncrementSize)); 996 997 // Build a factor node to remember that this load is independent of 998 // the other one. 999 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 1000 Hi.getValue(1)); 1001 1002 // Move the top bits to the right place. 1003 Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi, 1004 DAG.getConstant(RoundWidth, 1005 TLI.getShiftAmountTy(Hi.getValueType()))); 1006 1007 // Join the hi and lo parts. 1008 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 1009 } else { 1010 // Big endian - avoid unaligned loads. 1011 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 1012 // Load the top RoundWidth bits. 1013 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 1014 LD->getPointerInfo(), RoundVT, isVolatile, 1015 isNonTemporal, Alignment); 1016 1017 // Load the remaining ExtraWidth bits. 1018 IncrementSize = RoundWidth / 8; 1019 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 1020 DAG.getIntPtrConstant(IncrementSize)); 1021 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, 1022 dl, Node->getValueType(0), Chain, Ptr, 1023 LD->getPointerInfo().getWithOffset(IncrementSize), 1024 ExtraVT, isVolatile, isNonTemporal, 1025 MinAlign(Alignment, IncrementSize)); 1026 1027 // Build a factor node to remember that this load is independent of 1028 // the other one. 1029 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 1030 Hi.getValue(1)); 1031 1032 // Move the top bits to the right place. 1033 Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi, 1034 DAG.getConstant(ExtraWidth, 1035 TLI.getShiftAmountTy(Hi.getValueType()))); 1036 1037 // Join the hi and lo parts. 1038 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 1039 } 1040 1041 Chain = Ch; 1042 } else { 1043 bool isCustom = false; 1044 switch (TLI.getLoadExtAction(ExtType, SrcVT.getSimpleVT())) { 1045 default: llvm_unreachable("This action is not supported yet!"); 1046 case TargetLowering::Custom: 1047 isCustom = true; 1048 // FALLTHROUGH 1049 case TargetLowering::Legal: { 1050 Value = SDValue(Node, 0); 1051 Chain = SDValue(Node, 1); 1052 1053 if (isCustom) { 1054 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 1055 if (Res.getNode()) { 1056 Value = Res; 1057 Chain = Res.getValue(1); 1058 } 1059 } else { 1060 // If this is an unaligned load and the target doesn't support it, 1061 // expand it. 1062 if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) { 1063 Type *Ty = 1064 LD->getMemoryVT().getTypeForEVT(*DAG.getContext()); 1065 unsigned ABIAlignment = 1066 TLI.getDataLayout()->getABITypeAlignment(Ty); 1067 if (LD->getAlignment() < ABIAlignment){ 1068 ExpandUnalignedLoad(cast<LoadSDNode>(Node), 1069 DAG, TLI, Value, Chain); 1070 } 1071 } 1072 } 1073 break; 1074 } 1075 case TargetLowering::Expand: 1076 if (!TLI.isLoadExtLegal(ISD::EXTLOAD, SrcVT) && TLI.isTypeLegal(SrcVT)) { 1077 SDValue Load = DAG.getLoad(SrcVT, dl, Chain, Ptr, 1078 LD->getPointerInfo(), 1079 LD->isVolatile(), LD->isNonTemporal(), 1080 LD->isInvariant(), LD->getAlignment()); 1081 unsigned ExtendOp; 1082 switch (ExtType) { 1083 case ISD::EXTLOAD: 1084 ExtendOp = (SrcVT.isFloatingPoint() ? 1085 ISD::FP_EXTEND : ISD::ANY_EXTEND); 1086 break; 1087 case ISD::SEXTLOAD: ExtendOp = ISD::SIGN_EXTEND; break; 1088 case ISD::ZEXTLOAD: ExtendOp = ISD::ZERO_EXTEND; break; 1089 default: llvm_unreachable("Unexpected extend load type!"); 1090 } 1091 Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load); 1092 Chain = Load.getValue(1); 1093 break; 1094 } 1095 1096 assert(!SrcVT.isVector() && 1097 "Vector Loads are handled in LegalizeVectorOps"); 1098 1099 // FIXME: This does not work for vectors on most targets. Sign- and 1100 // zero-extend operations are currently folded into extending loads, 1101 // whether they are legal or not, and then we end up here without any 1102 // support for legalizing them. 1103 assert(ExtType != ISD::EXTLOAD && 1104 "EXTLOAD should always be supported!"); 1105 // Turn the unsupported load into an EXTLOAD followed by an explicit 1106 // zero/sign extend inreg. 1107 SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0), 1108 Chain, Ptr, LD->getPointerInfo(), SrcVT, 1109 LD->isVolatile(), LD->isNonTemporal(), 1110 LD->getAlignment()); 1111 SDValue ValRes; 1112 if (ExtType == ISD::SEXTLOAD) 1113 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 1114 Result.getValueType(), 1115 Result, DAG.getValueType(SrcVT)); 1116 else 1117 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType()); 1118 Value = ValRes; 1119 Chain = Result.getValue(1); 1120 break; 1121 } 1122 } 1123 1124 // Since loads produce two values, make sure to remember that we legalized 1125 // both of them. 1126 if (Chain.getNode() != Node) { 1127 assert(Value.getNode() != Node && "Load must be completely replaced"); 1128 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value); 1129 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 1130 ReplacedNode(Node); 1131 } 1132} 1133 1134/// LegalizeOp - Return a legal replacement for the given operation, with 1135/// all legal operands. 1136void SelectionDAGLegalize::LegalizeOp(SDNode *Node) { 1137 if (Node->getOpcode() == ISD::TargetConstant) // Allow illegal target nodes. 1138 return; 1139 1140 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 1141 assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) == 1142 TargetLowering::TypeLegal && 1143 "Unexpected illegal type!"); 1144 1145 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 1146 assert((TLI.getTypeAction(*DAG.getContext(), 1147 Node->getOperand(i).getValueType()) == 1148 TargetLowering::TypeLegal || 1149 Node->getOperand(i).getOpcode() == ISD::TargetConstant) && 1150 "Unexpected illegal type!"); 1151 1152 // Figure out the correct action; the way to query this varies by opcode 1153 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 1154 bool SimpleFinishLegalizing = true; 1155 switch (Node->getOpcode()) { 1156 case ISD::INTRINSIC_W_CHAIN: 1157 case ISD::INTRINSIC_WO_CHAIN: 1158 case ISD::INTRINSIC_VOID: 1159 case ISD::STACKSAVE: 1160 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 1161 break; 1162 case ISD::VAARG: 1163 Action = TLI.getOperationAction(Node->getOpcode(), 1164 Node->getValueType(0)); 1165 if (Action != TargetLowering::Promote) 1166 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 1167 break; 1168 case ISD::SINT_TO_FP: 1169 case ISD::UINT_TO_FP: 1170 case ISD::EXTRACT_VECTOR_ELT: 1171 Action = TLI.getOperationAction(Node->getOpcode(), 1172 Node->getOperand(0).getValueType()); 1173 break; 1174 case ISD::FP_ROUND_INREG: 1175 case ISD::SIGN_EXTEND_INREG: { 1176 EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 1177 Action = TLI.getOperationAction(Node->getOpcode(), InnerType); 1178 break; 1179 } 1180 case ISD::ATOMIC_STORE: { 1181 Action = TLI.getOperationAction(Node->getOpcode(), 1182 Node->getOperand(2).getValueType()); 1183 break; 1184 } 1185 case ISD::SELECT_CC: 1186 case ISD::SETCC: 1187 case ISD::BR_CC: { 1188 unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 : 1189 Node->getOpcode() == ISD::SETCC ? 2 : 1; 1190 unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0; 1191 MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType(); 1192 ISD::CondCode CCCode = 1193 cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get(); 1194 Action = TLI.getCondCodeAction(CCCode, OpVT); 1195 if (Action == TargetLowering::Legal) { 1196 if (Node->getOpcode() == ISD::SELECT_CC) 1197 Action = TLI.getOperationAction(Node->getOpcode(), 1198 Node->getValueType(0)); 1199 else 1200 Action = TLI.getOperationAction(Node->getOpcode(), OpVT); 1201 } 1202 break; 1203 } 1204 case ISD::LOAD: 1205 case ISD::STORE: 1206 // FIXME: Model these properly. LOAD and STORE are complicated, and 1207 // STORE expects the unlegalized operand in some cases. 1208 SimpleFinishLegalizing = false; 1209 break; 1210 case ISD::CALLSEQ_START: 1211 case ISD::CALLSEQ_END: 1212 // FIXME: This shouldn't be necessary. These nodes have special properties 1213 // dealing with the recursive nature of legalization. Removing this 1214 // special case should be done as part of making LegalizeDAG non-recursive. 1215 SimpleFinishLegalizing = false; 1216 break; 1217 case ISD::EXTRACT_ELEMENT: 1218 case ISD::FLT_ROUNDS_: 1219 case ISD::SADDO: 1220 case ISD::SSUBO: 1221 case ISD::UADDO: 1222 case ISD::USUBO: 1223 case ISD::SMULO: 1224 case ISD::UMULO: 1225 case ISD::FPOWI: 1226 case ISD::MERGE_VALUES: 1227 case ISD::EH_RETURN: 1228 case ISD::FRAME_TO_ARGS_OFFSET: 1229 case ISD::EH_SJLJ_SETJMP: 1230 case ISD::EH_SJLJ_LONGJMP: 1231 // These operations lie about being legal: when they claim to be legal, 1232 // they should actually be expanded. 1233 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1234 if (Action == TargetLowering::Legal) 1235 Action = TargetLowering::Expand; 1236 break; 1237 case ISD::INIT_TRAMPOLINE: 1238 case ISD::ADJUST_TRAMPOLINE: 1239 case ISD::FRAMEADDR: 1240 case ISD::RETURNADDR: 1241 // These operations lie about being legal: when they claim to be legal, 1242 // they should actually be custom-lowered. 1243 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1244 if (Action == TargetLowering::Legal) 1245 Action = TargetLowering::Custom; 1246 break; 1247 case ISD::DEBUGTRAP: 1248 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1249 if (Action == TargetLowering::Expand) { 1250 // replace ISD::DEBUGTRAP with ISD::TRAP 1251 SDValue NewVal; 1252 NewVal = DAG.getNode(ISD::TRAP, Node->getDebugLoc(), Node->getVTList(), 1253 Node->getOperand(0)); 1254 ReplaceNode(Node, NewVal.getNode()); 1255 LegalizeOp(NewVal.getNode()); 1256 return; 1257 } 1258 break; 1259 1260 default: 1261 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { 1262 Action = TargetLowering::Legal; 1263 } else { 1264 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1265 } 1266 break; 1267 } 1268 1269 if (SimpleFinishLegalizing) { 1270 SDNode *NewNode = Node; 1271 switch (Node->getOpcode()) { 1272 default: break; 1273 case ISD::SHL: 1274 case ISD::SRL: 1275 case ISD::SRA: 1276 case ISD::ROTL: 1277 case ISD::ROTR: 1278 // Legalizing shifts/rotates requires adjusting the shift amount 1279 // to the appropriate width. 1280 if (!Node->getOperand(1).getValueType().isVector()) { 1281 SDValue SAO = 1282 DAG.getShiftAmountOperand(Node->getOperand(0).getValueType(), 1283 Node->getOperand(1)); 1284 HandleSDNode Handle(SAO); 1285 LegalizeOp(SAO.getNode()); 1286 NewNode = DAG.UpdateNodeOperands(Node, Node->getOperand(0), 1287 Handle.getValue()); 1288 } 1289 break; 1290 case ISD::SRL_PARTS: 1291 case ISD::SRA_PARTS: 1292 case ISD::SHL_PARTS: 1293 // Legalizing shifts/rotates requires adjusting the shift amount 1294 // to the appropriate width. 1295 if (!Node->getOperand(2).getValueType().isVector()) { 1296 SDValue SAO = 1297 DAG.getShiftAmountOperand(Node->getOperand(0).getValueType(), 1298 Node->getOperand(2)); 1299 HandleSDNode Handle(SAO); 1300 LegalizeOp(SAO.getNode()); 1301 NewNode = DAG.UpdateNodeOperands(Node, Node->getOperand(0), 1302 Node->getOperand(1), 1303 Handle.getValue()); 1304 } 1305 break; 1306 } 1307 1308 if (NewNode != Node) { 1309 DAG.ReplaceAllUsesWith(Node, NewNode); 1310 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 1311 DAG.TransferDbgValues(SDValue(Node, i), SDValue(NewNode, i)); 1312 ReplacedNode(Node); 1313 Node = NewNode; 1314 } 1315 switch (Action) { 1316 case TargetLowering::Legal: 1317 return; 1318 case TargetLowering::Custom: { 1319 // FIXME: The handling for custom lowering with multiple results is 1320 // a complete mess. 1321 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 1322 if (Res.getNode()) { 1323 SmallVector<SDValue, 8> ResultVals; 1324 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) { 1325 if (e == 1) 1326 ResultVals.push_back(Res); 1327 else 1328 ResultVals.push_back(Res.getValue(i)); 1329 } 1330 if (Res.getNode() != Node || Res.getResNo() != 0) { 1331 DAG.ReplaceAllUsesWith(Node, ResultVals.data()); 1332 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 1333 DAG.TransferDbgValues(SDValue(Node, i), ResultVals[i]); 1334 ReplacedNode(Node); 1335 } 1336 return; 1337 } 1338 } 1339 // FALL THROUGH 1340 case TargetLowering::Expand: 1341 ExpandNode(Node); 1342 return; 1343 case TargetLowering::Promote: 1344 PromoteNode(Node); 1345 return; 1346 } 1347 } 1348 1349 switch (Node->getOpcode()) { 1350 default: 1351#ifndef NDEBUG 1352 dbgs() << "NODE: "; 1353 Node->dump( &DAG); 1354 dbgs() << "\n"; 1355#endif 1356 llvm_unreachable("Do not know how to legalize this operator!"); 1357 1358 case ISD::CALLSEQ_START: 1359 case ISD::CALLSEQ_END: 1360 break; 1361 case ISD::LOAD: { 1362 return LegalizeLoadOps(Node); 1363 } 1364 case ISD::STORE: { 1365 return LegalizeStoreOps(Node); 1366 } 1367 } 1368} 1369 1370SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) { 1371 SDValue Vec = Op.getOperand(0); 1372 SDValue Idx = Op.getOperand(1); 1373 DebugLoc dl = Op.getDebugLoc(); 1374 // Store the value to a temporary stack slot, then LOAD the returned part. 1375 SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType()); 1376 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, 1377 MachinePointerInfo(), false, false, 0); 1378 1379 // Add the offset to the index. 1380 unsigned EltSize = 1381 Vec.getValueType().getVectorElementType().getSizeInBits()/8; 1382 Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx, 1383 DAG.getConstant(EltSize, Idx.getValueType())); 1384 1385 if (Idx.getValueType().bitsGT(TLI.getPointerTy())) 1386 Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx); 1387 else 1388 Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx); 1389 1390 StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr); 1391 1392 if (Op.getValueType().isVector()) 1393 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr,MachinePointerInfo(), 1394 false, false, false, 0); 1395 return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr, 1396 MachinePointerInfo(), 1397 Vec.getValueType().getVectorElementType(), 1398 false, false, 0); 1399} 1400 1401SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) { 1402 assert(Op.getValueType().isVector() && "Non-vector insert subvector!"); 1403 1404 SDValue Vec = Op.getOperand(0); 1405 SDValue Part = Op.getOperand(1); 1406 SDValue Idx = Op.getOperand(2); 1407 DebugLoc dl = Op.getDebugLoc(); 1408 1409 // Store the value to a temporary stack slot, then LOAD the returned part. 1410 1411 SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType()); 1412 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1413 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI); 1414 1415 // First store the whole vector. 1416 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo, 1417 false, false, 0); 1418 1419 // Then store the inserted part. 1420 1421 // Add the offset to the index. 1422 unsigned EltSize = 1423 Vec.getValueType().getVectorElementType().getSizeInBits()/8; 1424 1425 Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx, 1426 DAG.getConstant(EltSize, Idx.getValueType())); 1427 1428 if (Idx.getValueType().bitsGT(TLI.getPointerTy())) 1429 Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx); 1430 else 1431 Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx); 1432 1433 SDValue SubStackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, 1434 StackPtr); 1435 1436 // Store the subvector. 1437 Ch = DAG.getStore(DAG.getEntryNode(), dl, Part, SubStackPtr, 1438 MachinePointerInfo(), false, false, 0); 1439 1440 // Finally, load the updated vector. 1441 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo, 1442 false, false, false, 0); 1443} 1444 1445SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) { 1446 // We can't handle this case efficiently. Allocate a sufficiently 1447 // aligned object on the stack, store each element into it, then load 1448 // the result as a vector. 1449 // Create the stack frame object. 1450 EVT VT = Node->getValueType(0); 1451 EVT EltVT = VT.getVectorElementType(); 1452 DebugLoc dl = Node->getDebugLoc(); 1453 SDValue FIPtr = DAG.CreateStackTemporary(VT); 1454 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex(); 1455 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI); 1456 1457 // Emit a store of each element to the stack slot. 1458 SmallVector<SDValue, 8> Stores; 1459 unsigned TypeByteSize = EltVT.getSizeInBits() / 8; 1460 // Store (in the right endianness) the elements to memory. 1461 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 1462 // Ignore undef elements. 1463 if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue; 1464 1465 unsigned Offset = TypeByteSize*i; 1466 1467 SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType()); 1468 Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx); 1469 1470 // If the destination vector element type is narrower than the source 1471 // element type, only store the bits necessary. 1472 if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) { 1473 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, 1474 Node->getOperand(i), Idx, 1475 PtrInfo.getWithOffset(Offset), 1476 EltVT, false, false, 0)); 1477 } else 1478 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, 1479 Node->getOperand(i), Idx, 1480 PtrInfo.getWithOffset(Offset), 1481 false, false, 0)); 1482 } 1483 1484 SDValue StoreChain; 1485 if (!Stores.empty()) // Not all undef elements? 1486 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 1487 &Stores[0], Stores.size()); 1488 else 1489 StoreChain = DAG.getEntryNode(); 1490 1491 // Result is a load from the stack slot. 1492 return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo, 1493 false, false, false, 0); 1494} 1495 1496SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) { 1497 DebugLoc dl = Node->getDebugLoc(); 1498 SDValue Tmp1 = Node->getOperand(0); 1499 SDValue Tmp2 = Node->getOperand(1); 1500 1501 // Get the sign bit of the RHS. First obtain a value that has the same 1502 // sign as the sign bit, i.e. negative if and only if the sign bit is 1. 1503 SDValue SignBit; 1504 EVT FloatVT = Tmp2.getValueType(); 1505 EVT IVT = EVT::getIntegerVT(*DAG.getContext(), FloatVT.getSizeInBits()); 1506 if (TLI.isTypeLegal(IVT)) { 1507 // Convert to an integer with the same sign bit. 1508 SignBit = DAG.getNode(ISD::BITCAST, dl, IVT, Tmp2); 1509 } else { 1510 // Store the float to memory, then load the sign part out as an integer. 1511 MVT LoadTy = TLI.getPointerTy(); 1512 // First create a temporary that is aligned for both the load and store. 1513 SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy); 1514 // Then store the float to it. 1515 SDValue Ch = 1516 DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StackPtr, MachinePointerInfo(), 1517 false, false, 0); 1518 if (TLI.isBigEndian()) { 1519 assert(FloatVT.isByteSized() && "Unsupported floating point type!"); 1520 // Load out a legal integer with the same sign bit as the float. 1521 SignBit = DAG.getLoad(LoadTy, dl, Ch, StackPtr, MachinePointerInfo(), 1522 false, false, false, 0); 1523 } else { // Little endian 1524 SDValue LoadPtr = StackPtr; 1525 // The float may be wider than the integer we are going to load. Advance 1526 // the pointer so that the loaded integer will contain the sign bit. 1527 unsigned Strides = (FloatVT.getSizeInBits()-1)/LoadTy.getSizeInBits(); 1528 unsigned ByteOffset = (Strides * LoadTy.getSizeInBits()) / 8; 1529 LoadPtr = DAG.getNode(ISD::ADD, dl, LoadPtr.getValueType(), 1530 LoadPtr, DAG.getIntPtrConstant(ByteOffset)); 1531 // Load a legal integer containing the sign bit. 1532 SignBit = DAG.getLoad(LoadTy, dl, Ch, LoadPtr, MachinePointerInfo(), 1533 false, false, false, 0); 1534 // Move the sign bit to the top bit of the loaded integer. 1535 unsigned BitShift = LoadTy.getSizeInBits() - 1536 (FloatVT.getSizeInBits() - 8 * ByteOffset); 1537 assert(BitShift < LoadTy.getSizeInBits() && "Pointer advanced wrong?"); 1538 if (BitShift) 1539 SignBit = DAG.getNode(ISD::SHL, dl, LoadTy, SignBit, 1540 DAG.getConstant(BitShift, 1541 TLI.getShiftAmountTy(SignBit.getValueType()))); 1542 } 1543 } 1544 // Now get the sign bit proper, by seeing whether the value is negative. 1545 SignBit = DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()), 1546 SignBit, DAG.getConstant(0, SignBit.getValueType()), 1547 ISD::SETLT); 1548 // Get the absolute value of the result. 1549 SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1); 1550 // Select between the nabs and abs value based on the sign bit of 1551 // the input. 1552 return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit, 1553 DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal), 1554 AbsVal); 1555} 1556 1557void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node, 1558 SmallVectorImpl<SDValue> &Results) { 1559 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1560 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" 1561 " not tell us which reg is the stack pointer!"); 1562 DebugLoc dl = Node->getDebugLoc(); 1563 EVT VT = Node->getValueType(0); 1564 SDValue Tmp1 = SDValue(Node, 0); 1565 SDValue Tmp2 = SDValue(Node, 1); 1566 SDValue Tmp3 = Node->getOperand(2); 1567 SDValue Chain = Tmp1.getOperand(0); 1568 1569 // Chain the dynamic stack allocation so that it doesn't modify the stack 1570 // pointer when other instructions are using the stack. 1571 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true)); 1572 1573 SDValue Size = Tmp2.getOperand(1); 1574 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 1575 Chain = SP.getValue(1); 1576 unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue(); 1577 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); 1578 if (Align > StackAlign) 1579 SP = DAG.getNode(ISD::AND, dl, VT, SP, 1580 DAG.getConstant(-(uint64_t)Align, VT)); 1581 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value 1582 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain 1583 1584 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, true), 1585 DAG.getIntPtrConstant(0, true), SDValue()); 1586 1587 Results.push_back(Tmp1); 1588 Results.push_back(Tmp2); 1589} 1590 1591/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and 1592/// condition code CC on the current target. This routine expands SETCC with 1593/// illegal condition code into AND / OR of multiple SETCC values. 1594void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT, 1595 SDValue &LHS, SDValue &RHS, 1596 SDValue &CC, 1597 DebugLoc dl) { 1598 MVT OpVT = LHS.getSimpleValueType(); 1599 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 1600 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 1601 default: llvm_unreachable("Unknown condition code action!"); 1602 case TargetLowering::Legal: 1603 // Nothing to do. 1604 break; 1605 case TargetLowering::Expand: { 1606 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 1607 ISD::CondCode InvCC = ISD::SETCC_INVALID; 1608 unsigned Opc = 0; 1609 switch (CCCode) { 1610 default: llvm_unreachable("Don't know how to expand this condition!"); 1611 case ISD::SETO: 1612 assert(TLI.getCondCodeAction(ISD::SETOEQ, OpVT) 1613 == TargetLowering::Legal 1614 && "If SETO is expanded, SETOEQ must be legal!"); 1615 CC1 = ISD::SETOEQ; CC2 = ISD::SETOEQ; Opc = ISD::AND; break; 1616 case ISD::SETUO: 1617 assert(TLI.getCondCodeAction(ISD::SETUNE, OpVT) 1618 == TargetLowering::Legal 1619 && "If SETUO is expanded, SETUNE must be legal!"); 1620 CC1 = ISD::SETUNE; CC2 = ISD::SETUNE; Opc = ISD::OR; break; 1621 case ISD::SETOEQ: 1622 case ISD::SETOGT: 1623 case ISD::SETOGE: 1624 case ISD::SETOLT: 1625 case ISD::SETOLE: 1626 case ISD::SETONE: 1627 case ISD::SETUEQ: 1628 case ISD::SETUNE: 1629 case ISD::SETUGT: 1630 case ISD::SETUGE: 1631 case ISD::SETULT: 1632 case ISD::SETULE: 1633 // If we are floating point, assign and break, otherwise fall through. 1634 if (!OpVT.isInteger()) { 1635 // We can use the 4th bit to tell if we are the unordered 1636 // or ordered version of the opcode. 1637 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 1638 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 1639 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 1640 break; 1641 } 1642 // Fallthrough if we are unsigned integer. 1643 case ISD::SETLE: 1644 case ISD::SETGT: 1645 case ISD::SETGE: 1646 case ISD::SETLT: 1647 case ISD::SETNE: 1648 case ISD::SETEQ: 1649 InvCC = ISD::getSetCCSwappedOperands(CCCode); 1650 if (TLI.getCondCodeAction(InvCC, OpVT) == TargetLowering::Expand) { 1651 // We only support using the inverted operation and not a 1652 // different manner of supporting expanding these cases. 1653 llvm_unreachable("Don't know how to expand this condition!"); 1654 } 1655 LHS = DAG.getSetCC(dl, VT, RHS, LHS, InvCC); 1656 RHS = SDValue(); 1657 CC = SDValue(); 1658 return; 1659 } 1660 1661 SDValue SetCC1, SetCC2; 1662 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 1663 // If we aren't the ordered or unorder operation, 1664 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 1665 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1); 1666 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2); 1667 } else { 1668 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 1669 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1); 1670 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2); 1671 } 1672 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 1673 RHS = SDValue(); 1674 CC = SDValue(); 1675 break; 1676 } 1677 } 1678} 1679 1680/// EmitStackConvert - Emit a store/load combination to the stack. This stores 1681/// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does 1682/// a load from the stack slot to DestVT, extending it if needed. 1683/// The resultant code need not be legal. 1684SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, 1685 EVT SlotVT, 1686 EVT DestVT, 1687 DebugLoc dl) { 1688 // Create the stack frame object. 1689 unsigned SrcAlign = 1690 TLI.getDataLayout()->getPrefTypeAlignment(SrcOp.getValueType(). 1691 getTypeForEVT(*DAG.getContext())); 1692 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign); 1693 1694 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); 1695 int SPFI = StackPtrFI->getIndex(); 1696 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(SPFI); 1697 1698 unsigned SrcSize = SrcOp.getValueType().getSizeInBits(); 1699 unsigned SlotSize = SlotVT.getSizeInBits(); 1700 unsigned DestSize = DestVT.getSizeInBits(); 1701 Type *DestType = DestVT.getTypeForEVT(*DAG.getContext()); 1702 unsigned DestAlign = TLI.getDataLayout()->getPrefTypeAlignment(DestType); 1703 1704 // Emit a store to the stack slot. Use a truncstore if the input value is 1705 // later than DestVT. 1706 SDValue Store; 1707 1708 if (SrcSize > SlotSize) 1709 Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, 1710 PtrInfo, SlotVT, false, false, SrcAlign); 1711 else { 1712 assert(SrcSize == SlotSize && "Invalid store"); 1713 Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, 1714 PtrInfo, false, false, SrcAlign); 1715 } 1716 1717 // Result is a load from the stack slot. 1718 if (SlotSize == DestSize) 1719 return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, 1720 false, false, false, DestAlign); 1721 1722 assert(SlotSize < DestSize && "Unknown extension!"); 1723 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, 1724 PtrInfo, SlotVT, false, false, DestAlign); 1725} 1726 1727SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { 1728 DebugLoc dl = Node->getDebugLoc(); 1729 // Create a vector sized/aligned stack slot, store the value to element #0, 1730 // then load the whole vector back out. 1731 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); 1732 1733 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); 1734 int SPFI = StackPtrFI->getIndex(); 1735 1736 SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0), 1737 StackPtr, 1738 MachinePointerInfo::getFixedStack(SPFI), 1739 Node->getValueType(0).getVectorElementType(), 1740 false, false, 0); 1741 return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr, 1742 MachinePointerInfo::getFixedStack(SPFI), 1743 false, false, false, 0); 1744} 1745 1746 1747/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't 1748/// support the operation, but do support the resultant vector type. 1749SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { 1750 unsigned NumElems = Node->getNumOperands(); 1751 SDValue Value1, Value2; 1752 DebugLoc dl = Node->getDebugLoc(); 1753 EVT VT = Node->getValueType(0); 1754 EVT OpVT = Node->getOperand(0).getValueType(); 1755 EVT EltVT = VT.getVectorElementType(); 1756 1757 // If the only non-undef value is the low element, turn this into a 1758 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. 1759 bool isOnlyLowElement = true; 1760 bool MoreThanTwoValues = false; 1761 bool isConstant = true; 1762 for (unsigned i = 0; i < NumElems; ++i) { 1763 SDValue V = Node->getOperand(i); 1764 if (V.getOpcode() == ISD::UNDEF) 1765 continue; 1766 if (i > 0) 1767 isOnlyLowElement = false; 1768 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) 1769 isConstant = false; 1770 1771 if (!Value1.getNode()) { 1772 Value1 = V; 1773 } else if (!Value2.getNode()) { 1774 if (V != Value1) 1775 Value2 = V; 1776 } else if (V != Value1 && V != Value2) { 1777 MoreThanTwoValues = true; 1778 } 1779 } 1780 1781 if (!Value1.getNode()) 1782 return DAG.getUNDEF(VT); 1783 1784 if (isOnlyLowElement) 1785 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0)); 1786 1787 // If all elements are constants, create a load from the constant pool. 1788 if (isConstant) { 1789 SmallVector<Constant*, 16> CV; 1790 for (unsigned i = 0, e = NumElems; i != e; ++i) { 1791 if (ConstantFPSDNode *V = 1792 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { 1793 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue())); 1794 } else if (ConstantSDNode *V = 1795 dyn_cast<ConstantSDNode>(Node->getOperand(i))) { 1796 if (OpVT==EltVT) 1797 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue())); 1798 else { 1799 // If OpVT and EltVT don't match, EltVT is not legal and the 1800 // element values have been promoted/truncated earlier. Undo this; 1801 // we don't want a v16i8 to become a v16i32 for example. 1802 const ConstantInt *CI = V->getConstantIntValue(); 1803 CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()), 1804 CI->getZExtValue())); 1805 } 1806 } else { 1807 assert(Node->getOperand(i).getOpcode() == ISD::UNDEF); 1808 Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext()); 1809 CV.push_back(UndefValue::get(OpNTy)); 1810 } 1811 } 1812 Constant *CP = ConstantVector::get(CV); 1813 SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy()); 1814 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 1815 return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx, 1816 MachinePointerInfo::getConstantPool(), 1817 false, false, false, Alignment); 1818 } 1819 1820 if (!MoreThanTwoValues) { 1821 SmallVector<int, 8> ShuffleVec(NumElems, -1); 1822 for (unsigned i = 0; i < NumElems; ++i) { 1823 SDValue V = Node->getOperand(i); 1824 if (V.getOpcode() == ISD::UNDEF) 1825 continue; 1826 ShuffleVec[i] = V == Value1 ? 0 : NumElems; 1827 } 1828 if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) { 1829 // Get the splatted value into the low element of a vector register. 1830 SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1); 1831 SDValue Vec2; 1832 if (Value2.getNode()) 1833 Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2); 1834 else 1835 Vec2 = DAG.getUNDEF(VT); 1836 1837 // Return shuffle(LowValVec, undef, <0,0,0,0>) 1838 return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data()); 1839 } 1840 } 1841 1842 // Otherwise, we can't handle this case efficiently. 1843 return ExpandVectorBuildThroughStack(Node); 1844} 1845 1846// ExpandLibCall - Expand a node into a call to a libcall. If the result value 1847// does not fit into a register, return the lo part and set the hi part to the 1848// by-reg argument. If it does fit into a single register, return the result 1849// and leave the Hi part unset. 1850SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, 1851 bool isSigned) { 1852 TargetLowering::ArgListTy Args; 1853 TargetLowering::ArgListEntry Entry; 1854 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 1855 EVT ArgVT = Node->getOperand(i).getValueType(); 1856 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 1857 Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy; 1858 Entry.isSExt = isSigned; 1859 Entry.isZExt = !isSigned; 1860 Args.push_back(Entry); 1861 } 1862 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 1863 TLI.getPointerTy()); 1864 1865 Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext()); 1866 1867 // By default, the input chain to this libcall is the entry node of the 1868 // function. If the libcall is going to be emitted as a tail call then 1869 // TLI.isUsedByReturnOnly will change it to the right chain if the return 1870 // node which is being folded has a non-entry input chain. 1871 SDValue InChain = DAG.getEntryNode(); 1872 1873 // isTailCall may be true since the callee does not reference caller stack 1874 // frame. Check if it's in the right position. 1875 SDValue TCChain = InChain; 1876 bool isTailCall = TLI.isInTailCallPosition(DAG, Node, TCChain); 1877 if (isTailCall) 1878 InChain = TCChain; 1879 1880 TargetLowering:: 1881 CallLoweringInfo CLI(InChain, RetTy, isSigned, !isSigned, false, false, 1882 0, TLI.getLibcallCallingConv(LC), isTailCall, 1883 /*doesNotReturn=*/false, /*isReturnValueUsed=*/true, 1884 Callee, Args, DAG, Node->getDebugLoc()); 1885 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 1886 1887 1888 if (!CallInfo.second.getNode()) 1889 // It's a tailcall, return the chain (which is the DAG root). 1890 return DAG.getRoot(); 1891 1892 return CallInfo.first; 1893} 1894 1895/// ExpandLibCall - Generate a libcall taking the given operands as arguments 1896/// and returning a result of type RetVT. 1897SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, 1898 const SDValue *Ops, unsigned NumOps, 1899 bool isSigned, DebugLoc dl) { 1900 TargetLowering::ArgListTy Args; 1901 Args.reserve(NumOps); 1902 1903 TargetLowering::ArgListEntry Entry; 1904 for (unsigned i = 0; i != NumOps; ++i) { 1905 Entry.Node = Ops[i]; 1906 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 1907 Entry.isSExt = isSigned; 1908 Entry.isZExt = !isSigned; 1909 Args.push_back(Entry); 1910 } 1911 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 1912 TLI.getPointerTy()); 1913 1914 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 1915 TargetLowering:: 1916 CallLoweringInfo CLI(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false, 1917 false, 0, TLI.getLibcallCallingConv(LC), 1918 /*isTailCall=*/false, 1919 /*doesNotReturn=*/false, /*isReturnValueUsed=*/true, 1920 Callee, Args, DAG, dl); 1921 std::pair<SDValue,SDValue> CallInfo = TLI.LowerCallTo(CLI); 1922 1923 return CallInfo.first; 1924} 1925 1926// ExpandChainLibCall - Expand a node into a call to a libcall. Similar to 1927// ExpandLibCall except that the first operand is the in-chain. 1928std::pair<SDValue, SDValue> 1929SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC, 1930 SDNode *Node, 1931 bool isSigned) { 1932 SDValue InChain = Node->getOperand(0); 1933 1934 TargetLowering::ArgListTy Args; 1935 TargetLowering::ArgListEntry Entry; 1936 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) { 1937 EVT ArgVT = Node->getOperand(i).getValueType(); 1938 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 1939 Entry.Node = Node->getOperand(i); 1940 Entry.Ty = ArgTy; 1941 Entry.isSExt = isSigned; 1942 Entry.isZExt = !isSigned; 1943 Args.push_back(Entry); 1944 } 1945 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 1946 TLI.getPointerTy()); 1947 1948 Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext()); 1949 TargetLowering:: 1950 CallLoweringInfo CLI(InChain, RetTy, isSigned, !isSigned, false, false, 1951 0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false, 1952 /*doesNotReturn=*/false, /*isReturnValueUsed=*/true, 1953 Callee, Args, DAG, Node->getDebugLoc()); 1954 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 1955 1956 return CallInfo; 1957} 1958 1959SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, 1960 RTLIB::Libcall Call_F32, 1961 RTLIB::Libcall Call_F64, 1962 RTLIB::Libcall Call_F80, 1963 RTLIB::Libcall Call_F128, 1964 RTLIB::Libcall Call_PPCF128) { 1965 RTLIB::Libcall LC; 1966 switch (Node->getValueType(0).getSimpleVT().SimpleTy) { 1967 default: llvm_unreachable("Unexpected request for libcall!"); 1968 case MVT::f32: LC = Call_F32; break; 1969 case MVT::f64: LC = Call_F64; break; 1970 case MVT::f80: LC = Call_F80; break; 1971 case MVT::f128: LC = Call_F128; break; 1972 case MVT::ppcf128: LC = Call_PPCF128; break; 1973 } 1974 return ExpandLibCall(LC, Node, false); 1975} 1976 1977SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned, 1978 RTLIB::Libcall Call_I8, 1979 RTLIB::Libcall Call_I16, 1980 RTLIB::Libcall Call_I32, 1981 RTLIB::Libcall Call_I64, 1982 RTLIB::Libcall Call_I128) { 1983 RTLIB::Libcall LC; 1984 switch (Node->getValueType(0).getSimpleVT().SimpleTy) { 1985 default: llvm_unreachable("Unexpected request for libcall!"); 1986 case MVT::i8: LC = Call_I8; break; 1987 case MVT::i16: LC = Call_I16; break; 1988 case MVT::i32: LC = Call_I32; break; 1989 case MVT::i64: LC = Call_I64; break; 1990 case MVT::i128: LC = Call_I128; break; 1991 } 1992 return ExpandLibCall(LC, Node, isSigned); 1993} 1994 1995/// isDivRemLibcallAvailable - Return true if divmod libcall is available. 1996static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned, 1997 const TargetLowering &TLI) { 1998 RTLIB::Libcall LC; 1999 switch (Node->getValueType(0).getSimpleVT().SimpleTy) { 2000 default: llvm_unreachable("Unexpected request for libcall!"); 2001 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 2002 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 2003 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 2004 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 2005 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 2006 } 2007 2008 return TLI.getLibcallName(LC) != 0; 2009} 2010 2011/// useDivRem - Only issue divrem libcall if both quotient and remainder are 2012/// needed. 2013static bool useDivRem(SDNode *Node, bool isSigned, bool isDIV) { 2014 // The other use might have been replaced with a divrem already. 2015 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 2016 unsigned OtherOpcode = 0; 2017 if (isSigned) 2018 OtherOpcode = isDIV ? ISD::SREM : ISD::SDIV; 2019 else 2020 OtherOpcode = isDIV ? ISD::UREM : ISD::UDIV; 2021 2022 SDValue Op0 = Node->getOperand(0); 2023 SDValue Op1 = Node->getOperand(1); 2024 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), 2025 UE = Op0.getNode()->use_end(); UI != UE; ++UI) { 2026 SDNode *User = *UI; 2027 if (User == Node) 2028 continue; 2029 if ((User->getOpcode() == OtherOpcode || User->getOpcode() == DivRemOpc) && 2030 User->getOperand(0) == Op0 && 2031 User->getOperand(1) == Op1) 2032 return true; 2033 } 2034 return false; 2035} 2036 2037/// ExpandDivRemLibCall - Issue libcalls to __{u}divmod to compute div / rem 2038/// pairs. 2039void 2040SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node, 2041 SmallVectorImpl<SDValue> &Results) { 2042 unsigned Opcode = Node->getOpcode(); 2043 bool isSigned = Opcode == ISD::SDIVREM; 2044 2045 RTLIB::Libcall LC; 2046 switch (Node->getValueType(0).getSimpleVT().SimpleTy) { 2047 default: llvm_unreachable("Unexpected request for libcall!"); 2048 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 2049 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 2050 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 2051 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 2052 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 2053 } 2054 2055 // The input chain to this libcall is the entry node of the function. 2056 // Legalizing the call will automatically add the previous call to the 2057 // dependence. 2058 SDValue InChain = DAG.getEntryNode(); 2059 2060 EVT RetVT = Node->getValueType(0); 2061 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2062 2063 TargetLowering::ArgListTy Args; 2064 TargetLowering::ArgListEntry Entry; 2065 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 2066 EVT ArgVT = Node->getOperand(i).getValueType(); 2067 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2068 Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy; 2069 Entry.isSExt = isSigned; 2070 Entry.isZExt = !isSigned; 2071 Args.push_back(Entry); 2072 } 2073 2074 // Also pass the return address of the remainder. 2075 SDValue FIPtr = DAG.CreateStackTemporary(RetVT); 2076 Entry.Node = FIPtr; 2077 Entry.Ty = RetTy->getPointerTo(); 2078 Entry.isSExt = isSigned; 2079 Entry.isZExt = !isSigned; 2080 Args.push_back(Entry); 2081 2082 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2083 TLI.getPointerTy()); 2084 2085 DebugLoc dl = Node->getDebugLoc(); 2086 TargetLowering:: 2087 CallLoweringInfo CLI(InChain, RetTy, isSigned, !isSigned, false, false, 2088 0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false, 2089 /*doesNotReturn=*/false, /*isReturnValueUsed=*/true, 2090 Callee, Args, DAG, dl); 2091 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2092 2093 // Remainder is loaded back from the stack frame. 2094 SDValue Rem = DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, 2095 MachinePointerInfo(), false, false, false, 0); 2096 Results.push_back(CallInfo.first); 2097 Results.push_back(Rem); 2098} 2099 2100/// isSinCosLibcallAvailable - Return true if sincos libcall is available. 2101static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) { 2102 RTLIB::Libcall LC; 2103 switch (Node->getValueType(0).getSimpleVT().SimpleTy) { 2104 default: llvm_unreachable("Unexpected request for libcall!"); 2105 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2106 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2107 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2108 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2109 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2110 } 2111 return TLI.getLibcallName(LC) != 0; 2112} 2113 2114/// canCombineSinCosLibcall - Return true if sincos libcall is available and 2115/// can be used to combine sin and cos. 2116static bool canCombineSinCosLibcall(SDNode *Node, const TargetLowering &TLI, 2117 const TargetMachine &TM) { 2118 if (!isSinCosLibcallAvailable(Node, TLI)) 2119 return false; 2120 // GNU sin/cos functions set errno while sincos does not. Therefore 2121 // combining sin and cos is only safe if unsafe-fpmath is enabled. 2122 bool isGNU = Triple(TM.getTargetTriple()).getEnvironment() == Triple::GNU; 2123 if (isGNU && !TM.Options.UnsafeFPMath) 2124 return false; 2125 return true; 2126} 2127 2128/// useSinCos - Only issue sincos libcall if both sin and cos are 2129/// needed. 2130static bool useSinCos(SDNode *Node) { 2131 unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN 2132 ? ISD::FCOS : ISD::FSIN; 2133 2134 SDValue Op0 = Node->getOperand(0); 2135 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), 2136 UE = Op0.getNode()->use_end(); UI != UE; ++UI) { 2137 SDNode *User = *UI; 2138 if (User == Node) 2139 continue; 2140 // The other user might have been turned into sincos already. 2141 if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS) 2142 return true; 2143 } 2144 return false; 2145} 2146 2147/// ExpandSinCosLibCall - Issue libcalls to sincos to compute sin / cos 2148/// pairs. 2149void 2150SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node, 2151 SmallVectorImpl<SDValue> &Results) { 2152 RTLIB::Libcall LC; 2153 switch (Node->getValueType(0).getSimpleVT().SimpleTy) { 2154 default: llvm_unreachable("Unexpected request for libcall!"); 2155 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2156 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2157 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2158 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2159 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2160 } 2161 2162 // The input chain to this libcall is the entry node of the function. 2163 // Legalizing the call will automatically add the previous call to the 2164 // dependence. 2165 SDValue InChain = DAG.getEntryNode(); 2166 2167 EVT RetVT = Node->getValueType(0); 2168 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2169 2170 TargetLowering::ArgListTy Args; 2171 TargetLowering::ArgListEntry Entry; 2172 2173 // Pass the argument. 2174 Entry.Node = Node->getOperand(0); 2175 Entry.Ty = RetTy; 2176 Entry.isSExt = false; 2177 Entry.isZExt = false; 2178 Args.push_back(Entry); 2179 2180 // Pass the return address of sin. 2181 SDValue SinPtr = DAG.CreateStackTemporary(RetVT); 2182 Entry.Node = SinPtr; 2183 Entry.Ty = RetTy->getPointerTo(); 2184 Entry.isSExt = false; 2185 Entry.isZExt = false; 2186 Args.push_back(Entry); 2187 2188 // Also pass the return address of the cos. 2189 SDValue CosPtr = DAG.CreateStackTemporary(RetVT); 2190 Entry.Node = CosPtr; 2191 Entry.Ty = RetTy->getPointerTo(); 2192 Entry.isSExt = false; 2193 Entry.isZExt = false; 2194 Args.push_back(Entry); 2195 2196 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2197 TLI.getPointerTy()); 2198 2199 DebugLoc dl = Node->getDebugLoc(); 2200 TargetLowering:: 2201 CallLoweringInfo CLI(InChain, Type::getVoidTy(*DAG.getContext()), 2202 false, false, false, false, 2203 0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false, 2204 /*doesNotReturn=*/false, /*isReturnValueUsed=*/true, 2205 Callee, Args, DAG, dl); 2206 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2207 2208 Results.push_back(DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, 2209 MachinePointerInfo(), false, false, false, 0)); 2210 Results.push_back(DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, 2211 MachinePointerInfo(), false, false, false, 0)); 2212} 2213 2214/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a 2215/// INT_TO_FP operation of the specified operand when the target requests that 2216/// we expand it. At this point, we know that the result and operand types are 2217/// legal for the target. 2218SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned, 2219 SDValue Op0, 2220 EVT DestVT, 2221 DebugLoc dl) { 2222 if (Op0.getValueType() == MVT::i32 && TLI.isTypeLegal(MVT::f64)) { 2223 // simple 32-bit [signed|unsigned] integer to float/double expansion 2224 2225 // Get the stack frame index of a 8 byte buffer. 2226 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); 2227 2228 // word offset constant for Hi/Lo address computation 2229 SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy()); 2230 // set up Hi and Lo (into buffer) address based on endian 2231 SDValue Hi = StackSlot; 2232 SDValue Lo = DAG.getNode(ISD::ADD, dl, 2233 TLI.getPointerTy(), StackSlot, WordOff); 2234 if (TLI.isLittleEndian()) 2235 std::swap(Hi, Lo); 2236 2237 // if signed map to unsigned space 2238 SDValue Op0Mapped; 2239 if (isSigned) { 2240 // constant used to invert sign bit (signed to unsigned mapping) 2241 SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32); 2242 Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit); 2243 } else { 2244 Op0Mapped = Op0; 2245 } 2246 // store the lo of the constructed double - based on integer input 2247 SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, 2248 Op0Mapped, Lo, MachinePointerInfo(), 2249 false, false, 0); 2250 // initial hi portion of constructed double 2251 SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32); 2252 // store the hi of the constructed double - biased exponent 2253 SDValue Store2 = DAG.getStore(Store1, dl, InitialHi, Hi, 2254 MachinePointerInfo(), 2255 false, false, 0); 2256 // load the constructed double 2257 SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot, 2258 MachinePointerInfo(), false, false, false, 0); 2259 // FP constant to bias correct the final result 2260 SDValue Bias = DAG.getConstantFP(isSigned ? 2261 BitsToDouble(0x4330000080000000ULL) : 2262 BitsToDouble(0x4330000000000000ULL), 2263 MVT::f64); 2264 // subtract the bias 2265 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias); 2266 // final result 2267 SDValue Result; 2268 // handle final rounding 2269 if (DestVT == MVT::f64) { 2270 // do nothing 2271 Result = Sub; 2272 } else if (DestVT.bitsLT(MVT::f64)) { 2273 Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub, 2274 DAG.getIntPtrConstant(0)); 2275 } else if (DestVT.bitsGT(MVT::f64)) { 2276 Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub); 2277 } 2278 return Result; 2279 } 2280 assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet"); 2281 // Code below here assumes !isSigned without checking again. 2282 2283 // Implementation of unsigned i64 to f64 following the algorithm in 2284 // __floatundidf in compiler_rt. This implementation has the advantage 2285 // of performing rounding correctly, both in the default rounding mode 2286 // and in all alternate rounding modes. 2287 // TODO: Generalize this for use with other types. 2288 if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) { 2289 SDValue TwoP52 = 2290 DAG.getConstant(UINT64_C(0x4330000000000000), MVT::i64); 2291 SDValue TwoP84PlusTwoP52 = 2292 DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), MVT::f64); 2293 SDValue TwoP84 = 2294 DAG.getConstant(UINT64_C(0x4530000000000000), MVT::i64); 2295 2296 SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32); 2297 SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, 2298 DAG.getConstant(32, MVT::i64)); 2299 SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52); 2300 SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84); 2301 SDValue LoFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, LoOr); 2302 SDValue HiFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, HiOr); 2303 SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt, 2304 TwoP84PlusTwoP52); 2305 return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub); 2306 } 2307 2308 // Implementation of unsigned i64 to f32. 2309 // TODO: Generalize this for use with other types. 2310 if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) { 2311 // For unsigned conversions, convert them to signed conversions using the 2312 // algorithm from the x86_64 __floatundidf in compiler_rt. 2313 if (!isSigned) { 2314 SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Op0); 2315 2316 SDValue ShiftConst = 2317 DAG.getConstant(1, TLI.getShiftAmountTy(Op0.getValueType())); 2318 SDValue Shr = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, ShiftConst); 2319 SDValue AndConst = DAG.getConstant(1, MVT::i64); 2320 SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, AndConst); 2321 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, Shr); 2322 2323 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Or); 2324 SDValue Slow = DAG.getNode(ISD::FADD, dl, MVT::f32, SignCvt, SignCvt); 2325 2326 // TODO: This really should be implemented using a branch rather than a 2327 // select. We happen to get lucky and machinesink does the right 2328 // thing most of the time. This would be a good candidate for a 2329 //pseudo-op, or, even better, for whole-function isel. 2330 SDValue SignBitTest = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64), 2331 Op0, DAG.getConstant(0, MVT::i64), ISD::SETLT); 2332 return DAG.getNode(ISD::SELECT, dl, MVT::f32, SignBitTest, Slow, Fast); 2333 } 2334 2335 // Otherwise, implement the fully general conversion. 2336 2337 SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, 2338 DAG.getConstant(UINT64_C(0xfffffffffffff800), MVT::i64)); 2339 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, 2340 DAG.getConstant(UINT64_C(0x800), MVT::i64)); 2341 SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, 2342 DAG.getConstant(UINT64_C(0x7ff), MVT::i64)); 2343 SDValue Ne = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64), 2344 And2, DAG.getConstant(UINT64_C(0), MVT::i64), ISD::SETNE); 2345 SDValue Sel = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ne, Or, Op0); 2346 SDValue Ge = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64), 2347 Op0, DAG.getConstant(UINT64_C(0x0020000000000000), MVT::i64), 2348 ISD::SETUGE); 2349 SDValue Sel2 = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ge, Sel, Op0); 2350 EVT SHVT = TLI.getShiftAmountTy(Sel2.getValueType()); 2351 2352 SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2, 2353 DAG.getConstant(32, SHVT)); 2354 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh); 2355 SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc); 2356 SDValue TwoP32 = 2357 DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), MVT::f64); 2358 SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt); 2359 SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2); 2360 SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo); 2361 SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2); 2362 return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd, 2363 DAG.getIntPtrConstant(0)); 2364 } 2365 2366 SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2367 2368 SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()), 2369 Op0, DAG.getConstant(0, Op0.getValueType()), 2370 ISD::SETLT); 2371 SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4); 2372 SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), 2373 SignSet, Four, Zero); 2374 2375 // If the sign bit of the integer is set, the large number will be treated 2376 // as a negative number. To counteract this, the dynamic code adds an 2377 // offset depending on the data type. 2378 uint64_t FF; 2379 switch (Op0.getValueType().getSimpleVT().SimpleTy) { 2380 default: llvm_unreachable("Unsupported integer type!"); 2381 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) 2382 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) 2383 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) 2384 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) 2385 } 2386 if (TLI.isLittleEndian()) FF <<= 32; 2387 Constant *FudgeFactor = ConstantInt::get( 2388 Type::getInt64Ty(*DAG.getContext()), FF); 2389 2390 SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy()); 2391 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 2392 CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset); 2393 Alignment = std::min(Alignment, 4u); 2394 SDValue FudgeInReg; 2395 if (DestVT == MVT::f32) 2396 FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx, 2397 MachinePointerInfo::getConstantPool(), 2398 false, false, false, Alignment); 2399 else { 2400 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, 2401 DAG.getEntryNode(), CPIdx, 2402 MachinePointerInfo::getConstantPool(), 2403 MVT::f32, false, false, Alignment); 2404 HandleSDNode Handle(Load); 2405 LegalizeOp(Load.getNode()); 2406 FudgeInReg = Handle.getValue(); 2407 } 2408 2409 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg); 2410} 2411 2412/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a 2413/// *INT_TO_FP operation of the specified operand when the target requests that 2414/// we promote it. At this point, we know that the result and operand types are 2415/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP 2416/// operation that takes a larger input. 2417SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp, 2418 EVT DestVT, 2419 bool isSigned, 2420 DebugLoc dl) { 2421 // First step, figure out the appropriate *INT_TO_FP operation to use. 2422 EVT NewInTy = LegalOp.getValueType(); 2423 2424 unsigned OpToUse = 0; 2425 2426 // Scan for the appropriate larger type to use. 2427 while (1) { 2428 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1); 2429 assert(NewInTy.isInteger() && "Ran out of possibilities!"); 2430 2431 // If the target supports SINT_TO_FP of this type, use it. 2432 if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) { 2433 OpToUse = ISD::SINT_TO_FP; 2434 break; 2435 } 2436 if (isSigned) continue; 2437 2438 // If the target supports UINT_TO_FP of this type, use it. 2439 if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) { 2440 OpToUse = ISD::UINT_TO_FP; 2441 break; 2442 } 2443 2444 // Otherwise, try a larger type. 2445 } 2446 2447 // Okay, we found the operation and type to use. Zero extend our input to the 2448 // desired type then run the operation on it. 2449 return DAG.getNode(OpToUse, dl, DestVT, 2450 DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2451 dl, NewInTy, LegalOp)); 2452} 2453 2454/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a 2455/// FP_TO_*INT operation of the specified operand when the target requests that 2456/// we promote it. At this point, we know that the result and operand types are 2457/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT 2458/// operation that returns a larger result. 2459SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp, 2460 EVT DestVT, 2461 bool isSigned, 2462 DebugLoc dl) { 2463 // First step, figure out the appropriate FP_TO*INT operation to use. 2464 EVT NewOutTy = DestVT; 2465 2466 unsigned OpToUse = 0; 2467 2468 // Scan for the appropriate larger type to use. 2469 while (1) { 2470 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1); 2471 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 2472 2473 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) { 2474 OpToUse = ISD::FP_TO_SINT; 2475 break; 2476 } 2477 2478 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) { 2479 OpToUse = ISD::FP_TO_UINT; 2480 break; 2481 } 2482 2483 // Otherwise, try a larger type. 2484 } 2485 2486 2487 // Okay, we found the operation and type to use. 2488 SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp); 2489 2490 // Truncate the result of the extended FP_TO_*INT operation to the desired 2491 // size. 2492 return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation); 2493} 2494 2495/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation. 2496/// 2497SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) { 2498 EVT VT = Op.getValueType(); 2499 EVT SHVT = TLI.getShiftAmountTy(VT); 2500 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 2501 switch (VT.getSimpleVT().SimpleTy) { 2502 default: llvm_unreachable("Unhandled Expand type in BSWAP!"); 2503 case MVT::i16: 2504 Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2505 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2506 return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); 2507 case MVT::i32: 2508 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT)); 2509 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2510 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2511 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT)); 2512 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT)); 2513 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT)); 2514 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2515 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2516 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2517 case MVT::i64: 2518 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT)); 2519 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT)); 2520 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT)); 2521 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2522 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2523 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT)); 2524 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT)); 2525 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT)); 2526 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT)); 2527 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT)); 2528 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT)); 2529 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT)); 2530 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT)); 2531 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT)); 2532 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 2533 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 2534 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2535 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2536 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 2537 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2538 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 2539 } 2540} 2541 2542/// ExpandBitCount - Expand the specified bitcount instruction into operations. 2543/// 2544SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op, 2545 DebugLoc dl) { 2546 switch (Opc) { 2547 default: llvm_unreachable("Cannot expand this yet!"); 2548 case ISD::CTPOP: { 2549 EVT VT = Op.getValueType(); 2550 EVT ShVT = TLI.getShiftAmountTy(VT); 2551 unsigned Len = VT.getSizeInBits(); 2552 2553 assert(VT.isInteger() && Len <= 128 && Len % 8 == 0 && 2554 "CTPOP not implemented for this type."); 2555 2556 // This is the "best" algorithm from 2557 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 2558 2559 SDValue Mask55 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), VT); 2560 SDValue Mask33 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), VT); 2561 SDValue Mask0F = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), VT); 2562 SDValue Mask01 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), VT); 2563 2564 // v = v - ((v >> 1) & 0x55555555...) 2565 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 2566 DAG.getNode(ISD::AND, dl, VT, 2567 DAG.getNode(ISD::SRL, dl, VT, Op, 2568 DAG.getConstant(1, ShVT)), 2569 Mask55)); 2570 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 2571 Op = DAG.getNode(ISD::ADD, dl, VT, 2572 DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 2573 DAG.getNode(ISD::AND, dl, VT, 2574 DAG.getNode(ISD::SRL, dl, VT, Op, 2575 DAG.getConstant(2, ShVT)), 2576 Mask33)); 2577 // v = (v + (v >> 4)) & 0x0F0F0F0F... 2578 Op = DAG.getNode(ISD::AND, dl, VT, 2579 DAG.getNode(ISD::ADD, dl, VT, Op, 2580 DAG.getNode(ISD::SRL, dl, VT, Op, 2581 DAG.getConstant(4, ShVT))), 2582 Mask0F); 2583 // v = (v * 0x01010101...) >> (Len - 8) 2584 Op = DAG.getNode(ISD::SRL, dl, VT, 2585 DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 2586 DAG.getConstant(Len - 8, ShVT)); 2587 2588 return Op; 2589 } 2590 case ISD::CTLZ_ZERO_UNDEF: 2591 // This trivially expands to CTLZ. 2592 return DAG.getNode(ISD::CTLZ, dl, Op.getValueType(), Op); 2593 case ISD::CTLZ: { 2594 // for now, we do this: 2595 // x = x | (x >> 1); 2596 // x = x | (x >> 2); 2597 // ... 2598 // x = x | (x >>16); 2599 // x = x | (x >>32); // for 64-bit input 2600 // return popcount(~x); 2601 // 2602 // but see also: http://www.hackersdelight.org/HDcode/nlz.cc 2603 EVT VT = Op.getValueType(); 2604 EVT ShVT = TLI.getShiftAmountTy(VT); 2605 unsigned len = VT.getSizeInBits(); 2606 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) { 2607 SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT); 2608 Op = DAG.getNode(ISD::OR, dl, VT, Op, 2609 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3)); 2610 } 2611 Op = DAG.getNOT(dl, Op, VT); 2612 return DAG.getNode(ISD::CTPOP, dl, VT, Op); 2613 } 2614 case ISD::CTTZ_ZERO_UNDEF: 2615 // This trivially expands to CTTZ. 2616 return DAG.getNode(ISD::CTTZ, dl, Op.getValueType(), Op); 2617 case ISD::CTTZ: { 2618 // for now, we use: { return popcount(~x & (x - 1)); } 2619 // unless the target has ctlz but not ctpop, in which case we use: 2620 // { return 32 - nlz(~x & (x-1)); } 2621 // see also http://www.hackersdelight.org/HDcode/ntz.cc 2622 EVT VT = Op.getValueType(); 2623 SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT, 2624 DAG.getNOT(dl, Op, VT), 2625 DAG.getNode(ISD::SUB, dl, VT, Op, 2626 DAG.getConstant(1, VT))); 2627 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 2628 if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) && 2629 TLI.isOperationLegalOrCustom(ISD::CTLZ, VT)) 2630 return DAG.getNode(ISD::SUB, dl, VT, 2631 DAG.getConstant(VT.getSizeInBits(), VT), 2632 DAG.getNode(ISD::CTLZ, dl, VT, Tmp3)); 2633 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3); 2634 } 2635 } 2636} 2637 2638std::pair <SDValue, SDValue> SelectionDAGLegalize::ExpandAtomic(SDNode *Node) { 2639 unsigned Opc = Node->getOpcode(); 2640 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT(); 2641 RTLIB::Libcall LC; 2642 2643 switch (Opc) { 2644 default: 2645 llvm_unreachable("Unhandled atomic intrinsic Expand!"); 2646 case ISD::ATOMIC_SWAP: 2647 switch (VT.SimpleTy) { 2648 default: llvm_unreachable("Unexpected value type for atomic!"); 2649 case MVT::i8: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_1; break; 2650 case MVT::i16: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_2; break; 2651 case MVT::i32: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_4; break; 2652 case MVT::i64: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_8; break; 2653 } 2654 break; 2655 case ISD::ATOMIC_CMP_SWAP: 2656 switch (VT.SimpleTy) { 2657 default: llvm_unreachable("Unexpected value type for atomic!"); 2658 case MVT::i8: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1; break; 2659 case MVT::i16: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2; break; 2660 case MVT::i32: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4; break; 2661 case MVT::i64: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8; break; 2662 } 2663 break; 2664 case ISD::ATOMIC_LOAD_ADD: 2665 switch (VT.SimpleTy) { 2666 default: llvm_unreachable("Unexpected value type for atomic!"); 2667 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_ADD_1; break; 2668 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_ADD_2; break; 2669 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_ADD_4; break; 2670 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_ADD_8; break; 2671 } 2672 break; 2673 case ISD::ATOMIC_LOAD_SUB: 2674 switch (VT.SimpleTy) { 2675 default: llvm_unreachable("Unexpected value type for atomic!"); 2676 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_SUB_1; break; 2677 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_SUB_2; break; 2678 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_SUB_4; break; 2679 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_SUB_8; break; 2680 } 2681 break; 2682 case ISD::ATOMIC_LOAD_AND: 2683 switch (VT.SimpleTy) { 2684 default: llvm_unreachable("Unexpected value type for atomic!"); 2685 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_AND_1; break; 2686 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_AND_2; break; 2687 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_AND_4; break; 2688 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_AND_8; break; 2689 } 2690 break; 2691 case ISD::ATOMIC_LOAD_OR: 2692 switch (VT.SimpleTy) { 2693 default: llvm_unreachable("Unexpected value type for atomic!"); 2694 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_OR_1; break; 2695 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_OR_2; break; 2696 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_OR_4; break; 2697 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_OR_8; break; 2698 } 2699 break; 2700 case ISD::ATOMIC_LOAD_XOR: 2701 switch (VT.SimpleTy) { 2702 default: llvm_unreachable("Unexpected value type for atomic!"); 2703 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_XOR_1; break; 2704 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_XOR_2; break; 2705 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_XOR_4; break; 2706 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_XOR_8; break; 2707 } 2708 break; 2709 case ISD::ATOMIC_LOAD_NAND: 2710 switch (VT.SimpleTy) { 2711 default: llvm_unreachable("Unexpected value type for atomic!"); 2712 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_NAND_1; break; 2713 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_NAND_2; break; 2714 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_NAND_4; break; 2715 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_NAND_8; break; 2716 } 2717 break; 2718 } 2719 2720 return ExpandChainLibCall(LC, Node, false); 2721} 2722 2723void SelectionDAGLegalize::ExpandNode(SDNode *Node) { 2724 SmallVector<SDValue, 8> Results; 2725 DebugLoc dl = Node->getDebugLoc(); 2726 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 2727 switch (Node->getOpcode()) { 2728 case ISD::CTPOP: 2729 case ISD::CTLZ: 2730 case ISD::CTLZ_ZERO_UNDEF: 2731 case ISD::CTTZ: 2732 case ISD::CTTZ_ZERO_UNDEF: 2733 Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl); 2734 Results.push_back(Tmp1); 2735 break; 2736 case ISD::BSWAP: 2737 Results.push_back(ExpandBSWAP(Node->getOperand(0), dl)); 2738 break; 2739 case ISD::FRAMEADDR: 2740 case ISD::RETURNADDR: 2741 case ISD::FRAME_TO_ARGS_OFFSET: 2742 Results.push_back(DAG.getConstant(0, Node->getValueType(0))); 2743 break; 2744 case ISD::FLT_ROUNDS_: 2745 Results.push_back(DAG.getConstant(1, Node->getValueType(0))); 2746 break; 2747 case ISD::EH_RETURN: 2748 case ISD::EH_LABEL: 2749 case ISD::PREFETCH: 2750 case ISD::VAEND: 2751 case ISD::EH_SJLJ_LONGJMP: 2752 // If the target didn't expand these, there's nothing to do, so just 2753 // preserve the chain and be done. 2754 Results.push_back(Node->getOperand(0)); 2755 break; 2756 case ISD::EH_SJLJ_SETJMP: 2757 // If the target didn't expand this, just return 'zero' and preserve the 2758 // chain. 2759 Results.push_back(DAG.getConstant(0, MVT::i32)); 2760 Results.push_back(Node->getOperand(0)); 2761 break; 2762 case ISD::ATOMIC_FENCE: { 2763 // If the target didn't lower this, lower it to '__sync_synchronize()' call 2764 // FIXME: handle "fence singlethread" more efficiently. 2765 TargetLowering::ArgListTy Args; 2766 TargetLowering:: 2767 CallLoweringInfo CLI(Node->getOperand(0), 2768 Type::getVoidTy(*DAG.getContext()), 2769 false, false, false, false, 0, CallingConv::C, 2770 /*isTailCall=*/false, 2771 /*doesNotReturn=*/false, /*isReturnValueUsed=*/true, 2772 DAG.getExternalSymbol("__sync_synchronize", 2773 TLI.getPointerTy()), 2774 Args, DAG, dl); 2775 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 2776 2777 Results.push_back(CallResult.second); 2778 break; 2779 } 2780 case ISD::ATOMIC_LOAD: { 2781 // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP. 2782 SDValue Zero = DAG.getConstant(0, Node->getValueType(0)); 2783 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, 2784 cast<AtomicSDNode>(Node)->getMemoryVT(), 2785 Node->getOperand(0), 2786 Node->getOperand(1), Zero, Zero, 2787 cast<AtomicSDNode>(Node)->getMemOperand(), 2788 cast<AtomicSDNode>(Node)->getOrdering(), 2789 cast<AtomicSDNode>(Node)->getSynchScope()); 2790 Results.push_back(Swap.getValue(0)); 2791 Results.push_back(Swap.getValue(1)); 2792 break; 2793 } 2794 case ISD::ATOMIC_STORE: { 2795 // There is no libcall for atomic store; fake it with ATOMIC_SWAP. 2796 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl, 2797 cast<AtomicSDNode>(Node)->getMemoryVT(), 2798 Node->getOperand(0), 2799 Node->getOperand(1), Node->getOperand(2), 2800 cast<AtomicSDNode>(Node)->getMemOperand(), 2801 cast<AtomicSDNode>(Node)->getOrdering(), 2802 cast<AtomicSDNode>(Node)->getSynchScope()); 2803 Results.push_back(Swap.getValue(1)); 2804 break; 2805 } 2806 // By default, atomic intrinsics are marked Legal and lowered. Targets 2807 // which don't support them directly, however, may want libcalls, in which 2808 // case they mark them Expand, and we get here. 2809 case ISD::ATOMIC_SWAP: 2810 case ISD::ATOMIC_LOAD_ADD: 2811 case ISD::ATOMIC_LOAD_SUB: 2812 case ISD::ATOMIC_LOAD_AND: 2813 case ISD::ATOMIC_LOAD_OR: 2814 case ISD::ATOMIC_LOAD_XOR: 2815 case ISD::ATOMIC_LOAD_NAND: 2816 case ISD::ATOMIC_LOAD_MIN: 2817 case ISD::ATOMIC_LOAD_MAX: 2818 case ISD::ATOMIC_LOAD_UMIN: 2819 case ISD::ATOMIC_LOAD_UMAX: 2820 case ISD::ATOMIC_CMP_SWAP: { 2821 std::pair<SDValue, SDValue> Tmp = ExpandAtomic(Node); 2822 Results.push_back(Tmp.first); 2823 Results.push_back(Tmp.second); 2824 break; 2825 } 2826 case ISD::DYNAMIC_STACKALLOC: 2827 ExpandDYNAMIC_STACKALLOC(Node, Results); 2828 break; 2829 case ISD::MERGE_VALUES: 2830 for (unsigned i = 0; i < Node->getNumValues(); i++) 2831 Results.push_back(Node->getOperand(i)); 2832 break; 2833 case ISD::UNDEF: { 2834 EVT VT = Node->getValueType(0); 2835 if (VT.isInteger()) 2836 Results.push_back(DAG.getConstant(0, VT)); 2837 else { 2838 assert(VT.isFloatingPoint() && "Unknown value type!"); 2839 Results.push_back(DAG.getConstantFP(0, VT)); 2840 } 2841 break; 2842 } 2843 case ISD::TRAP: { 2844 // If this operation is not supported, lower it to 'abort()' call 2845 TargetLowering::ArgListTy Args; 2846 TargetLowering:: 2847 CallLoweringInfo CLI(Node->getOperand(0), 2848 Type::getVoidTy(*DAG.getContext()), 2849 false, false, false, false, 0, CallingConv::C, 2850 /*isTailCall=*/false, 2851 /*doesNotReturn=*/false, /*isReturnValueUsed=*/true, 2852 DAG.getExternalSymbol("abort", TLI.getPointerTy()), 2853 Args, DAG, dl); 2854 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 2855 2856 Results.push_back(CallResult.second); 2857 break; 2858 } 2859 case ISD::FP_ROUND: 2860 case ISD::BITCAST: 2861 Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 2862 Node->getValueType(0), dl); 2863 Results.push_back(Tmp1); 2864 break; 2865 case ISD::FP_EXTEND: 2866 Tmp1 = EmitStackConvert(Node->getOperand(0), 2867 Node->getOperand(0).getValueType(), 2868 Node->getValueType(0), dl); 2869 Results.push_back(Tmp1); 2870 break; 2871 case ISD::SIGN_EXTEND_INREG: { 2872 // NOTE: we could fall back on load/store here too for targets without 2873 // SAR. However, it is doubtful that any exist. 2874 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 2875 EVT VT = Node->getValueType(0); 2876 EVT ShiftAmountTy = TLI.getShiftAmountTy(VT); 2877 if (VT.isVector()) 2878 ShiftAmountTy = VT; 2879 unsigned BitsDiff = VT.getScalarType().getSizeInBits() - 2880 ExtraVT.getScalarType().getSizeInBits(); 2881 SDValue ShiftCst = DAG.getConstant(BitsDiff, ShiftAmountTy); 2882 Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0), 2883 Node->getOperand(0), ShiftCst); 2884 Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst); 2885 Results.push_back(Tmp1); 2886 break; 2887 } 2888 case ISD::FP_ROUND_INREG: { 2889 // The only way we can lower this is to turn it into a TRUNCSTORE, 2890 // EXTLOAD pair, targeting a temporary location (a stack slot). 2891 2892 // NOTE: there is a choice here between constantly creating new stack 2893 // slots and always reusing the same one. We currently always create 2894 // new ones, as reuse may inhibit scheduling. 2895 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 2896 Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT, 2897 Node->getValueType(0), dl); 2898 Results.push_back(Tmp1); 2899 break; 2900 } 2901 case ISD::SINT_TO_FP: 2902 case ISD::UINT_TO_FP: 2903 Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP, 2904 Node->getOperand(0), Node->getValueType(0), dl); 2905 Results.push_back(Tmp1); 2906 break; 2907 case ISD::FP_TO_UINT: { 2908 SDValue True, False; 2909 EVT VT = Node->getOperand(0).getValueType(); 2910 EVT NVT = Node->getValueType(0); 2911 APFloat apf(DAG.EVTToAPFloatSemantics(VT), 2912 APInt::getNullValue(VT.getSizeInBits())); 2913 APInt x = APInt::getSignBit(NVT.getSizeInBits()); 2914 (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven); 2915 Tmp1 = DAG.getConstantFP(apf, VT); 2916 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), 2917 Node->getOperand(0), 2918 Tmp1, ISD::SETLT); 2919 True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0)); 2920 False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, 2921 DAG.getNode(ISD::FSUB, dl, VT, 2922 Node->getOperand(0), Tmp1)); 2923 False = DAG.getNode(ISD::XOR, dl, NVT, False, 2924 DAG.getConstant(x, NVT)); 2925 Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False); 2926 Results.push_back(Tmp1); 2927 break; 2928 } 2929 case ISD::VAARG: { 2930 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2931 EVT VT = Node->getValueType(0); 2932 Tmp1 = Node->getOperand(0); 2933 Tmp2 = Node->getOperand(1); 2934 unsigned Align = Node->getConstantOperandVal(3); 2935 2936 SDValue VAListLoad = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2, 2937 MachinePointerInfo(V), 2938 false, false, false, 0); 2939 SDValue VAList = VAListLoad; 2940 2941 if (Align > TLI.getMinStackArgumentAlignment()) { 2942 assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2"); 2943 2944 VAList = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList, 2945 DAG.getConstant(Align - 1, 2946 TLI.getPointerTy())); 2947 2948 VAList = DAG.getNode(ISD::AND, dl, TLI.getPointerTy(), VAList, 2949 DAG.getConstant(-(int64_t)Align, 2950 TLI.getPointerTy())); 2951 } 2952 2953 // Increment the pointer, VAList, to the next vaarg 2954 Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList, 2955 DAG.getConstant(TLI.getDataLayout()-> 2956 getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())), 2957 TLI.getPointerTy())); 2958 // Store the incremented VAList to the legalized pointer 2959 Tmp3 = DAG.getStore(VAListLoad.getValue(1), dl, Tmp3, Tmp2, 2960 MachinePointerInfo(V), false, false, 0); 2961 // Load the actual argument out of the pointer VAList 2962 Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, MachinePointerInfo(), 2963 false, false, false, 0)); 2964 Results.push_back(Results[0].getValue(1)); 2965 break; 2966 } 2967 case ISD::VACOPY: { 2968 // This defaults to loading a pointer from the input and storing it to the 2969 // output, returning the chain. 2970 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 2971 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 2972 Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0), 2973 Node->getOperand(2), MachinePointerInfo(VS), 2974 false, false, false, 0); 2975 Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 2976 MachinePointerInfo(VD), false, false, 0); 2977 Results.push_back(Tmp1); 2978 break; 2979 } 2980 case ISD::EXTRACT_VECTOR_ELT: 2981 if (Node->getOperand(0).getValueType().getVectorNumElements() == 1) 2982 // This must be an access of the only element. Return it. 2983 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), 2984 Node->getOperand(0)); 2985 else 2986 Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0)); 2987 Results.push_back(Tmp1); 2988 break; 2989 case ISD::EXTRACT_SUBVECTOR: 2990 Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0))); 2991 break; 2992 case ISD::INSERT_SUBVECTOR: 2993 Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0))); 2994 break; 2995 case ISD::CONCAT_VECTORS: { 2996 Results.push_back(ExpandVectorBuildThroughStack(Node)); 2997 break; 2998 } 2999 case ISD::SCALAR_TO_VECTOR: 3000 Results.push_back(ExpandSCALAR_TO_VECTOR(Node)); 3001 break; 3002 case ISD::INSERT_VECTOR_ELT: 3003 Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0), 3004 Node->getOperand(1), 3005 Node->getOperand(2), dl)); 3006 break; 3007 case ISD::VECTOR_SHUFFLE: { 3008 SmallVector<int, 32> NewMask; 3009 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 3010 3011 EVT VT = Node->getValueType(0); 3012 EVT EltVT = VT.getVectorElementType(); 3013 SDValue Op0 = Node->getOperand(0); 3014 SDValue Op1 = Node->getOperand(1); 3015 if (!TLI.isTypeLegal(EltVT)) { 3016 3017 EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT); 3018 3019 // BUILD_VECTOR operands are allowed to be wider than the element type. 3020 // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept it 3021 if (NewEltVT.bitsLT(EltVT)) { 3022 3023 // Convert shuffle node. 3024 // If original node was v4i64 and the new EltVT is i32, 3025 // cast operands to v8i32 and re-build the mask. 3026 3027 // Calculate new VT, the size of the new VT should be equal to original. 3028 EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltVT, 3029 VT.getSizeInBits()/NewEltVT.getSizeInBits()); 3030 assert(NewVT.bitsEq(VT)); 3031 3032 // cast operands to new VT 3033 Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0); 3034 Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1); 3035 3036 // Convert the shuffle mask 3037 unsigned int factor = NewVT.getVectorNumElements()/VT.getVectorNumElements(); 3038 3039 // EltVT gets smaller 3040 assert(factor > 0); 3041 3042 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { 3043 if (Mask[i] < 0) { 3044 for (unsigned fi = 0; fi < factor; ++fi) 3045 NewMask.push_back(Mask[i]); 3046 } 3047 else { 3048 for (unsigned fi = 0; fi < factor; ++fi) 3049 NewMask.push_back(Mask[i]*factor+fi); 3050 } 3051 } 3052 Mask = NewMask; 3053 VT = NewVT; 3054 } 3055 EltVT = NewEltVT; 3056 } 3057 unsigned NumElems = VT.getVectorNumElements(); 3058 SmallVector<SDValue, 16> Ops; 3059 for (unsigned i = 0; i != NumElems; ++i) { 3060 if (Mask[i] < 0) { 3061 Ops.push_back(DAG.getUNDEF(EltVT)); 3062 continue; 3063 } 3064 unsigned Idx = Mask[i]; 3065 if (Idx < NumElems) 3066 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, 3067 Op0, 3068 DAG.getIntPtrConstant(Idx))); 3069 else 3070 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, 3071 Op1, 3072 DAG.getIntPtrConstant(Idx - NumElems))); 3073 } 3074 3075 Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size()); 3076 // We may have changed the BUILD_VECTOR type. Cast it back to the Node type. 3077 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1); 3078 Results.push_back(Tmp1); 3079 break; 3080 } 3081 case ISD::EXTRACT_ELEMENT: { 3082 EVT OpTy = Node->getOperand(0).getValueType(); 3083 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { 3084 // 1 -> Hi 3085 Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0), 3086 DAG.getConstant(OpTy.getSizeInBits()/2, 3087 TLI.getShiftAmountTy(Node->getOperand(0).getValueType()))); 3088 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1); 3089 } else { 3090 // 0 -> Lo 3091 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), 3092 Node->getOperand(0)); 3093 } 3094 Results.push_back(Tmp1); 3095 break; 3096 } 3097 case ISD::STACKSAVE: 3098 // Expand to CopyFromReg if the target set 3099 // StackPointerRegisterToSaveRestore. 3100 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 3101 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP, 3102 Node->getValueType(0))); 3103 Results.push_back(Results[0].getValue(1)); 3104 } else { 3105 Results.push_back(DAG.getUNDEF(Node->getValueType(0))); 3106 Results.push_back(Node->getOperand(0)); 3107 } 3108 break; 3109 case ISD::STACKRESTORE: 3110 // Expand to CopyToReg if the target set 3111 // StackPointerRegisterToSaveRestore. 3112 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 3113 Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP, 3114 Node->getOperand(1))); 3115 } else { 3116 Results.push_back(Node->getOperand(0)); 3117 } 3118 break; 3119 case ISD::FCOPYSIGN: 3120 Results.push_back(ExpandFCOPYSIGN(Node)); 3121 break; 3122 case ISD::FNEG: 3123 // Expand Y = FNEG(X) -> Y = SUB -0.0, X 3124 Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0)); 3125 Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1, 3126 Node->getOperand(0)); 3127 Results.push_back(Tmp1); 3128 break; 3129 case ISD::FABS: { 3130 // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X). 3131 EVT VT = Node->getValueType(0); 3132 Tmp1 = Node->getOperand(0); 3133 Tmp2 = DAG.getConstantFP(0.0, VT); 3134 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()), 3135 Tmp1, Tmp2, ISD::SETUGT); 3136 Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1); 3137 Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3); 3138 Results.push_back(Tmp1); 3139 break; 3140 } 3141 case ISD::FSQRT: 3142 Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 3143 RTLIB::SQRT_F80, RTLIB::SQRT_F128, 3144 RTLIB::SQRT_PPCF128)); 3145 break; 3146 case ISD::FSIN: 3147 case ISD::FCOS: { 3148 EVT VT = Node->getValueType(0); 3149 bool isSIN = Node->getOpcode() == ISD::FSIN; 3150 // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin / 3151 // fcos which share the same operand and both are used. 3152 if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) || 3153 canCombineSinCosLibcall(Node, TLI, TM)) 3154 && useSinCos(Node)) { 3155 SDVTList VTs = DAG.getVTList(VT, VT); 3156 Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0)); 3157 if (!isSIN) 3158 Tmp1 = Tmp1.getValue(1); 3159 Results.push_back(Tmp1); 3160 } else if (isSIN) { 3161 Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64, 3162 RTLIB::SIN_F80, RTLIB::SIN_F128, 3163 RTLIB::SIN_PPCF128)); 3164 } else { 3165 Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64, 3166 RTLIB::COS_F80, RTLIB::COS_F128, 3167 RTLIB::COS_PPCF128)); 3168 } 3169 break; 3170 } 3171 case ISD::FSINCOS: 3172 // Expand into sincos libcall. 3173 ExpandSinCosLibCall(Node, Results); 3174 break; 3175 case ISD::FLOG: 3176 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, 3177 RTLIB::LOG_F80, RTLIB::LOG_F128, 3178 RTLIB::LOG_PPCF128)); 3179 break; 3180 case ISD::FLOG2: 3181 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, 3182 RTLIB::LOG2_F80, RTLIB::LOG2_F128, 3183 RTLIB::LOG2_PPCF128)); 3184 break; 3185 case ISD::FLOG10: 3186 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, 3187 RTLIB::LOG10_F80, RTLIB::LOG10_F128, 3188 RTLIB::LOG10_PPCF128)); 3189 break; 3190 case ISD::FEXP: 3191 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, 3192 RTLIB::EXP_F80, RTLIB::EXP_F128, 3193 RTLIB::EXP_PPCF128)); 3194 break; 3195 case ISD::FEXP2: 3196 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, 3197 RTLIB::EXP2_F80, RTLIB::EXP2_F128, 3198 RTLIB::EXP2_PPCF128)); 3199 break; 3200 case ISD::FTRUNC: 3201 Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, 3202 RTLIB::TRUNC_F80, RTLIB::TRUNC_F128, 3203 RTLIB::TRUNC_PPCF128)); 3204 break; 3205 case ISD::FFLOOR: 3206 Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, 3207 RTLIB::FLOOR_F80, RTLIB::FLOOR_F128, 3208 RTLIB::FLOOR_PPCF128)); 3209 break; 3210 case ISD::FCEIL: 3211 Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64, 3212 RTLIB::CEIL_F80, RTLIB::CEIL_F128, 3213 RTLIB::CEIL_PPCF128)); 3214 break; 3215 case ISD::FRINT: 3216 Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64, 3217 RTLIB::RINT_F80, RTLIB::RINT_F128, 3218 RTLIB::RINT_PPCF128)); 3219 break; 3220 case ISD::FNEARBYINT: 3221 Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32, 3222 RTLIB::NEARBYINT_F64, 3223 RTLIB::NEARBYINT_F80, 3224 RTLIB::NEARBYINT_F128, 3225 RTLIB::NEARBYINT_PPCF128)); 3226 break; 3227 case ISD::FPOWI: 3228 Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64, 3229 RTLIB::POWI_F80, RTLIB::POWI_F128, 3230 RTLIB::POWI_PPCF128)); 3231 break; 3232 case ISD::FPOW: 3233 Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, 3234 RTLIB::POW_F80, RTLIB::POW_F128, 3235 RTLIB::POW_PPCF128)); 3236 break; 3237 case ISD::FDIV: 3238 Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64, 3239 RTLIB::DIV_F80, RTLIB::DIV_F128, 3240 RTLIB::DIV_PPCF128)); 3241 break; 3242 case ISD::FREM: 3243 Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64, 3244 RTLIB::REM_F80, RTLIB::REM_F128, 3245 RTLIB::REM_PPCF128)); 3246 break; 3247 case ISD::FMA: 3248 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64, 3249 RTLIB::FMA_F80, RTLIB::FMA_F128, 3250 RTLIB::FMA_PPCF128)); 3251 break; 3252 case ISD::FP16_TO_FP32: 3253 Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false)); 3254 break; 3255 case ISD::FP32_TO_FP16: 3256 Results.push_back(ExpandLibCall(RTLIB::FPROUND_F32_F16, Node, false)); 3257 break; 3258 case ISD::ConstantFP: { 3259 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 3260 // Check to see if this FP immediate is already legal. 3261 // If this is a legal constant, turn it into a TargetConstantFP node. 3262 if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0))) 3263 Results.push_back(ExpandConstantFP(CFP, true)); 3264 break; 3265 } 3266 case ISD::EHSELECTION: { 3267 unsigned Reg = TLI.getExceptionSelectorRegister(); 3268 assert(Reg && "Can't expand to unknown register!"); 3269 Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg, 3270 Node->getValueType(0))); 3271 Results.push_back(Results[0].getValue(1)); 3272 break; 3273 } 3274 case ISD::EXCEPTIONADDR: { 3275 unsigned Reg = TLI.getExceptionPointerRegister(); 3276 assert(Reg && "Can't expand to unknown register!"); 3277 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg, 3278 Node->getValueType(0))); 3279 Results.push_back(Results[0].getValue(1)); 3280 break; 3281 } 3282 case ISD::FSUB: { 3283 EVT VT = Node->getValueType(0); 3284 assert(TLI.isOperationLegalOrCustom(ISD::FADD, VT) && 3285 TLI.isOperationLegalOrCustom(ISD::FNEG, VT) && 3286 "Don't know how to expand this FP subtraction!"); 3287 Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1)); 3288 Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1); 3289 Results.push_back(Tmp1); 3290 break; 3291 } 3292 case ISD::SUB: { 3293 EVT VT = Node->getValueType(0); 3294 assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 3295 TLI.isOperationLegalOrCustom(ISD::XOR, VT) && 3296 "Don't know how to expand this subtraction!"); 3297 Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1), 3298 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT)); 3299 Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, VT)); 3300 Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1)); 3301 break; 3302 } 3303 case ISD::UREM: 3304 case ISD::SREM: { 3305 EVT VT = Node->getValueType(0); 3306 bool isSigned = Node->getOpcode() == ISD::SREM; 3307 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 3308 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3309 Tmp2 = Node->getOperand(0); 3310 Tmp3 = Node->getOperand(1); 3311 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) || 3312 (isDivRemLibcallAvailable(Node, isSigned, TLI) && 3313 // If div is legal, it's better to do the normal expansion 3314 !TLI.isOperationLegalOrCustom(DivOpc, Node->getValueType(0)) && 3315 useDivRem(Node, isSigned, false))) { 3316 SDVTList VTs = DAG.getVTList(VT, VT); 3317 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1); 3318 } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) { 3319 // X % Y -> X-X/Y*Y 3320 Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3); 3321 Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3); 3322 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1); 3323 } else if (isSigned) 3324 Tmp1 = ExpandIntLibCall(Node, true, 3325 RTLIB::SREM_I8, 3326 RTLIB::SREM_I16, RTLIB::SREM_I32, 3327 RTLIB::SREM_I64, RTLIB::SREM_I128); 3328 else 3329 Tmp1 = ExpandIntLibCall(Node, false, 3330 RTLIB::UREM_I8, 3331 RTLIB::UREM_I16, RTLIB::UREM_I32, 3332 RTLIB::UREM_I64, RTLIB::UREM_I128); 3333 Results.push_back(Tmp1); 3334 break; 3335 } 3336 case ISD::UDIV: 3337 case ISD::SDIV: { 3338 bool isSigned = Node->getOpcode() == ISD::SDIV; 3339 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3340 EVT VT = Node->getValueType(0); 3341 SDVTList VTs = DAG.getVTList(VT, VT); 3342 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) || 3343 (isDivRemLibcallAvailable(Node, isSigned, TLI) && 3344 useDivRem(Node, isSigned, true))) 3345 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0), 3346 Node->getOperand(1)); 3347 else if (isSigned) 3348 Tmp1 = ExpandIntLibCall(Node, true, 3349 RTLIB::SDIV_I8, 3350 RTLIB::SDIV_I16, RTLIB::SDIV_I32, 3351 RTLIB::SDIV_I64, RTLIB::SDIV_I128); 3352 else 3353 Tmp1 = ExpandIntLibCall(Node, false, 3354 RTLIB::UDIV_I8, 3355 RTLIB::UDIV_I16, RTLIB::UDIV_I32, 3356 RTLIB::UDIV_I64, RTLIB::UDIV_I128); 3357 Results.push_back(Tmp1); 3358 break; 3359 } 3360 case ISD::MULHU: 3361 case ISD::MULHS: { 3362 unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : 3363 ISD::SMUL_LOHI; 3364 EVT VT = Node->getValueType(0); 3365 SDVTList VTs = DAG.getVTList(VT, VT); 3366 assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) && 3367 "If this wasn't legal, it shouldn't have been created!"); 3368 Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0), 3369 Node->getOperand(1)); 3370 Results.push_back(Tmp1.getValue(1)); 3371 break; 3372 } 3373 case ISD::SDIVREM: 3374 case ISD::UDIVREM: 3375 // Expand into divrem libcall 3376 ExpandDivRemLibCall(Node, Results); 3377 break; 3378 case ISD::MUL: { 3379 EVT VT = Node->getValueType(0); 3380 SDVTList VTs = DAG.getVTList(VT, VT); 3381 // See if multiply or divide can be lowered using two-result operations. 3382 // We just need the low half of the multiply; try both the signed 3383 // and unsigned forms. If the target supports both SMUL_LOHI and 3384 // UMUL_LOHI, form a preference by checking which forms of plain 3385 // MULH it supports. 3386 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT); 3387 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT); 3388 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT); 3389 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT); 3390 unsigned OpToUse = 0; 3391 if (HasSMUL_LOHI && !HasMULHS) { 3392 OpToUse = ISD::SMUL_LOHI; 3393 } else if (HasUMUL_LOHI && !HasMULHU) { 3394 OpToUse = ISD::UMUL_LOHI; 3395 } else if (HasSMUL_LOHI) { 3396 OpToUse = ISD::SMUL_LOHI; 3397 } else if (HasUMUL_LOHI) { 3398 OpToUse = ISD::UMUL_LOHI; 3399 } 3400 if (OpToUse) { 3401 Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0), 3402 Node->getOperand(1))); 3403 break; 3404 } 3405 Tmp1 = ExpandIntLibCall(Node, false, 3406 RTLIB::MUL_I8, 3407 RTLIB::MUL_I16, RTLIB::MUL_I32, 3408 RTLIB::MUL_I64, RTLIB::MUL_I128); 3409 Results.push_back(Tmp1); 3410 break; 3411 } 3412 case ISD::SADDO: 3413 case ISD::SSUBO: { 3414 SDValue LHS = Node->getOperand(0); 3415 SDValue RHS = Node->getOperand(1); 3416 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ? 3417 ISD::ADD : ISD::SUB, dl, LHS.getValueType(), 3418 LHS, RHS); 3419 Results.push_back(Sum); 3420 EVT OType = Node->getValueType(1); 3421 3422 SDValue Zero = DAG.getConstant(0, LHS.getValueType()); 3423 3424 // LHSSign -> LHS >= 0 3425 // RHSSign -> RHS >= 0 3426 // SumSign -> Sum >= 0 3427 // 3428 // Add: 3429 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign) 3430 // Sub: 3431 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign) 3432 // 3433 SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE); 3434 SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE); 3435 SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign, 3436 Node->getOpcode() == ISD::SADDO ? 3437 ISD::SETEQ : ISD::SETNE); 3438 3439 SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE); 3440 SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE); 3441 3442 SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE); 3443 Results.push_back(Cmp); 3444 break; 3445 } 3446 case ISD::UADDO: 3447 case ISD::USUBO: { 3448 SDValue LHS = Node->getOperand(0); 3449 SDValue RHS = Node->getOperand(1); 3450 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ? 3451 ISD::ADD : ISD::SUB, dl, LHS.getValueType(), 3452 LHS, RHS); 3453 Results.push_back(Sum); 3454 Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS, 3455 Node->getOpcode () == ISD::UADDO ? 3456 ISD::SETULT : ISD::SETUGT)); 3457 break; 3458 } 3459 case ISD::UMULO: 3460 case ISD::SMULO: { 3461 EVT VT = Node->getValueType(0); 3462 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2); 3463 SDValue LHS = Node->getOperand(0); 3464 SDValue RHS = Node->getOperand(1); 3465 SDValue BottomHalf; 3466 SDValue TopHalf; 3467 static const unsigned Ops[2][3] = 3468 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 3469 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 3470 bool isSigned = Node->getOpcode() == ISD::SMULO; 3471 if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 3472 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 3473 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 3474 } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 3475 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 3476 RHS); 3477 TopHalf = BottomHalf.getValue(1); 3478 } else if (TLI.isTypeLegal(EVT::getIntegerVT(*DAG.getContext(), 3479 VT.getSizeInBits() * 2))) { 3480 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 3481 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 3482 Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 3483 BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1, 3484 DAG.getIntPtrConstant(0)); 3485 TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1, 3486 DAG.getIntPtrConstant(1)); 3487 } else { 3488 // We can fall back to a libcall with an illegal type for the MUL if we 3489 // have a libcall big enough. 3490 // Also, we can fall back to a division in some cases, but that's a big 3491 // performance hit in the general case. 3492 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 3493 if (WideVT == MVT::i16) 3494 LC = RTLIB::MUL_I16; 3495 else if (WideVT == MVT::i32) 3496 LC = RTLIB::MUL_I32; 3497 else if (WideVT == MVT::i64) 3498 LC = RTLIB::MUL_I64; 3499 else if (WideVT == MVT::i128) 3500 LC = RTLIB::MUL_I128; 3501 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 3502 3503 // The high part is obtained by SRA'ing all but one of the bits of low 3504 // part. 3505 unsigned LoSize = VT.getSizeInBits(); 3506 SDValue HiLHS = DAG.getNode(ISD::SRA, dl, VT, RHS, 3507 DAG.getConstant(LoSize-1, TLI.getPointerTy())); 3508 SDValue HiRHS = DAG.getNode(ISD::SRA, dl, VT, LHS, 3509 DAG.getConstant(LoSize-1, TLI.getPointerTy())); 3510 3511 // Here we're passing the 2 arguments explicitly as 4 arguments that are 3512 // pre-lowered to the correct types. This all depends upon WideVT not 3513 // being a legal type for the architecture and thus has to be split to 3514 // two arguments. 3515 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 3516 SDValue Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl); 3517 BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret, 3518 DAG.getIntPtrConstant(0)); 3519 TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret, 3520 DAG.getIntPtrConstant(1)); 3521 // Ret is a node with an illegal type. Because such things are not 3522 // generally permitted during this phase of legalization, delete the 3523 // node. The above EXTRACT_ELEMENT nodes should have been folded. 3524 DAG.DeleteNode(Ret.getNode()); 3525 } 3526 3527 if (isSigned) { 3528 Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1, 3529 TLI.getShiftAmountTy(BottomHalf.getValueType())); 3530 Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1); 3531 TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1, 3532 ISD::SETNE); 3533 } else { 3534 TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, 3535 DAG.getConstant(0, VT), ISD::SETNE); 3536 } 3537 Results.push_back(BottomHalf); 3538 Results.push_back(TopHalf); 3539 break; 3540 } 3541 case ISD::BUILD_PAIR: { 3542 EVT PairTy = Node->getValueType(0); 3543 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0)); 3544 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1)); 3545 Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2, 3546 DAG.getConstant(PairTy.getSizeInBits()/2, 3547 TLI.getShiftAmountTy(PairTy))); 3548 Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2)); 3549 break; 3550 } 3551 case ISD::SELECT: 3552 Tmp1 = Node->getOperand(0); 3553 Tmp2 = Node->getOperand(1); 3554 Tmp3 = Node->getOperand(2); 3555 if (Tmp1.getOpcode() == ISD::SETCC) { 3556 Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1), 3557 Tmp2, Tmp3, 3558 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); 3559 } else { 3560 Tmp1 = DAG.getSelectCC(dl, Tmp1, 3561 DAG.getConstant(0, Tmp1.getValueType()), 3562 Tmp2, Tmp3, ISD::SETNE); 3563 } 3564 Results.push_back(Tmp1); 3565 break; 3566 case ISD::BR_JT: { 3567 SDValue Chain = Node->getOperand(0); 3568 SDValue Table = Node->getOperand(1); 3569 SDValue Index = Node->getOperand(2); 3570 3571 EVT PTy = TLI.getPointerTy(); 3572 3573 const DataLayout &TD = *TLI.getDataLayout(); 3574 unsigned EntrySize = 3575 DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD); 3576 3577 Index = DAG.getNode(ISD::MUL, dl, PTy, 3578 Index, DAG.getConstant(EntrySize, PTy)); 3579 SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table); 3580 3581 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8); 3582 SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr, 3583 MachinePointerInfo::getJumpTable(), MemVT, 3584 false, false, 0); 3585 Addr = LD; 3586 if (TM.getRelocationModel() == Reloc::PIC_) { 3587 // For PIC, the sequence is: 3588 // BRIND(load(Jumptable + index) + RelocBase) 3589 // RelocBase can be JumpTable, GOT or some sort of global base. 3590 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, 3591 TLI.getPICJumpTableRelocBase(Table, DAG)); 3592 } 3593 Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr); 3594 Results.push_back(Tmp1); 3595 break; 3596 } 3597 case ISD::BRCOND: 3598 // Expand brcond's setcc into its constituent parts and create a BR_CC 3599 // Node. 3600 Tmp1 = Node->getOperand(0); 3601 Tmp2 = Node->getOperand(1); 3602 if (Tmp2.getOpcode() == ISD::SETCC) { 3603 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, 3604 Tmp1, Tmp2.getOperand(2), 3605 Tmp2.getOperand(0), Tmp2.getOperand(1), 3606 Node->getOperand(2)); 3607 } else { 3608 // We test only the i1 bit. Skip the AND if UNDEF. 3609 Tmp3 = (Tmp2.getOpcode() == ISD::UNDEF) ? Tmp2 : 3610 DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2, 3611 DAG.getConstant(1, Tmp2.getValueType())); 3612 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, 3613 DAG.getCondCode(ISD::SETNE), Tmp3, 3614 DAG.getConstant(0, Tmp3.getValueType()), 3615 Node->getOperand(2)); 3616 } 3617 Results.push_back(Tmp1); 3618 break; 3619 case ISD::SETCC: { 3620 Tmp1 = Node->getOperand(0); 3621 Tmp2 = Node->getOperand(1); 3622 Tmp3 = Node->getOperand(2); 3623 LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl); 3624 3625 // If we expanded the SETCC into an AND/OR, return the new node 3626 if (Tmp2.getNode() == 0) { 3627 Results.push_back(Tmp1); 3628 break; 3629 } 3630 3631 // Otherwise, SETCC for the given comparison type must be completely 3632 // illegal; expand it into a SELECT_CC. 3633 EVT VT = Node->getValueType(0); 3634 int TrueValue; 3635 switch (TLI.getBooleanContents(VT.isVector())) { 3636 case TargetLowering::ZeroOrOneBooleanContent: 3637 case TargetLowering::UndefinedBooleanContent: 3638 TrueValue = 1; 3639 break; 3640 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3641 TrueValue = -1; 3642 break; 3643 } 3644 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2, 3645 DAG.getConstant(TrueValue, VT), DAG.getConstant(0, VT), 3646 Tmp3); 3647 Results.push_back(Tmp1); 3648 break; 3649 } 3650 case ISD::SELECT_CC: { 3651 Tmp1 = Node->getOperand(0); // LHS 3652 Tmp2 = Node->getOperand(1); // RHS 3653 Tmp3 = Node->getOperand(2); // True 3654 Tmp4 = Node->getOperand(3); // False 3655 SDValue CC = Node->getOperand(4); 3656 3657 LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()), 3658 Tmp1, Tmp2, CC, dl); 3659 3660 assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!"); 3661 Tmp2 = DAG.getConstant(0, Tmp1.getValueType()); 3662 CC = DAG.getCondCode(ISD::SETNE); 3663 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2, 3664 Tmp3, Tmp4, CC); 3665 Results.push_back(Tmp1); 3666 break; 3667 } 3668 case ISD::BR_CC: { 3669 Tmp1 = Node->getOperand(0); // Chain 3670 Tmp2 = Node->getOperand(2); // LHS 3671 Tmp3 = Node->getOperand(3); // RHS 3672 Tmp4 = Node->getOperand(1); // CC 3673 3674 LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()), 3675 Tmp2, Tmp3, Tmp4, dl); 3676 3677 assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!"); 3678 Tmp3 = DAG.getConstant(0, Tmp2.getValueType()); 3679 Tmp4 = DAG.getCondCode(ISD::SETNE); 3680 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2, 3681 Tmp3, Node->getOperand(4)); 3682 Results.push_back(Tmp1); 3683 break; 3684 } 3685 case ISD::BUILD_VECTOR: 3686 Results.push_back(ExpandBUILD_VECTOR(Node)); 3687 break; 3688 case ISD::SRA: 3689 case ISD::SRL: 3690 case ISD::SHL: { 3691 // Scalarize vector SRA/SRL/SHL. 3692 EVT VT = Node->getValueType(0); 3693 assert(VT.isVector() && "Unable to legalize non-vector shift"); 3694 assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal"); 3695 unsigned NumElem = VT.getVectorNumElements(); 3696 3697 SmallVector<SDValue, 8> Scalars; 3698 for (unsigned Idx = 0; Idx < NumElem; Idx++) { 3699 SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 3700 VT.getScalarType(), 3701 Node->getOperand(0), DAG.getIntPtrConstant(Idx)); 3702 SDValue Sh = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 3703 VT.getScalarType(), 3704 Node->getOperand(1), DAG.getIntPtrConstant(Idx)); 3705 Scalars.push_back(DAG.getNode(Node->getOpcode(), dl, 3706 VT.getScalarType(), Ex, Sh)); 3707 } 3708 SDValue Result = 3709 DAG.getNode(ISD::BUILD_VECTOR, dl, Node->getValueType(0), 3710 &Scalars[0], Scalars.size()); 3711 ReplaceNode(SDValue(Node, 0), Result); 3712 break; 3713 } 3714 case ISD::GLOBAL_OFFSET_TABLE: 3715 case ISD::GlobalAddress: 3716 case ISD::GlobalTLSAddress: 3717 case ISD::ExternalSymbol: 3718 case ISD::ConstantPool: 3719 case ISD::JumpTable: 3720 case ISD::INTRINSIC_W_CHAIN: 3721 case ISD::INTRINSIC_WO_CHAIN: 3722 case ISD::INTRINSIC_VOID: 3723 // FIXME: Custom lowering for these operations shouldn't return null! 3724 break; 3725 } 3726 3727 // Replace the original node with the legalized result. 3728 if (!Results.empty()) 3729 ReplaceNode(Node, Results.data()); 3730} 3731 3732void SelectionDAGLegalize::PromoteNode(SDNode *Node) { 3733 SmallVector<SDValue, 8> Results; 3734 MVT OVT = Node->getSimpleValueType(0); 3735 if (Node->getOpcode() == ISD::UINT_TO_FP || 3736 Node->getOpcode() == ISD::SINT_TO_FP || 3737 Node->getOpcode() == ISD::SETCC) { 3738 OVT = Node->getOperand(0).getSimpleValueType(); 3739 } 3740 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 3741 DebugLoc dl = Node->getDebugLoc(); 3742 SDValue Tmp1, Tmp2, Tmp3; 3743 switch (Node->getOpcode()) { 3744 case ISD::CTTZ: 3745 case ISD::CTTZ_ZERO_UNDEF: 3746 case ISD::CTLZ: 3747 case ISD::CTLZ_ZERO_UNDEF: 3748 case ISD::CTPOP: 3749 // Zero extend the argument. 3750 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 3751 // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is 3752 // already the correct result. 3753 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 3754 if (Node->getOpcode() == ISD::CTTZ) { 3755 // FIXME: This should set a bit in the zero extended value instead. 3756 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT), 3757 Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT), 3758 ISD::SETEQ); 3759 Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, 3760 DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1); 3761 } else if (Node->getOpcode() == ISD::CTLZ || 3762 Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) { 3763 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 3764 Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, 3765 DAG.getConstant(NVT.getSizeInBits() - 3766 OVT.getSizeInBits(), NVT)); 3767 } 3768 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 3769 break; 3770 case ISD::BSWAP: { 3771 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); 3772 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 3773 Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1); 3774 Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1, 3775 DAG.getConstant(DiffBits, TLI.getShiftAmountTy(NVT))); 3776 Results.push_back(Tmp1); 3777 break; 3778 } 3779 case ISD::FP_TO_UINT: 3780 case ISD::FP_TO_SINT: 3781 Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0), 3782 Node->getOpcode() == ISD::FP_TO_SINT, dl); 3783 Results.push_back(Tmp1); 3784 break; 3785 case ISD::UINT_TO_FP: 3786 case ISD::SINT_TO_FP: 3787 Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0), 3788 Node->getOpcode() == ISD::SINT_TO_FP, dl); 3789 Results.push_back(Tmp1); 3790 break; 3791 case ISD::VAARG: { 3792 SDValue Chain = Node->getOperand(0); // Get the chain. 3793 SDValue Ptr = Node->getOperand(1); // Get the pointer. 3794 3795 unsigned TruncOp; 3796 if (OVT.isVector()) { 3797 TruncOp = ISD::BITCAST; 3798 } else { 3799 assert(OVT.isInteger() 3800 && "VAARG promotion is supported only for vectors or integer types"); 3801 TruncOp = ISD::TRUNCATE; 3802 } 3803 3804 // Perform the larger operation, then convert back 3805 Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2), 3806 Node->getConstantOperandVal(3)); 3807 Chain = Tmp1.getValue(1); 3808 3809 Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1); 3810 3811 // Modified the chain result - switch anything that used the old chain to 3812 // use the new one. 3813 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2); 3814 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 3815 ReplacedNode(Node); 3816 break; 3817 } 3818 case ISD::AND: 3819 case ISD::OR: 3820 case ISD::XOR: { 3821 unsigned ExtOp, TruncOp; 3822 if (OVT.isVector()) { 3823 ExtOp = ISD::BITCAST; 3824 TruncOp = ISD::BITCAST; 3825 } else { 3826 assert(OVT.isInteger() && "Cannot promote logic operation"); 3827 ExtOp = ISD::ANY_EXTEND; 3828 TruncOp = ISD::TRUNCATE; 3829 } 3830 // Promote each of the values to the new type. 3831 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 3832 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 3833 // Perform the larger operation, then convert back 3834 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 3835 Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1)); 3836 break; 3837 } 3838 case ISD::SELECT: { 3839 unsigned ExtOp, TruncOp; 3840 if (Node->getValueType(0).isVector()) { 3841 ExtOp = ISD::BITCAST; 3842 TruncOp = ISD::BITCAST; 3843 } else if (Node->getValueType(0).isInteger()) { 3844 ExtOp = ISD::ANY_EXTEND; 3845 TruncOp = ISD::TRUNCATE; 3846 } else { 3847 ExtOp = ISD::FP_EXTEND; 3848 TruncOp = ISD::FP_ROUND; 3849 } 3850 Tmp1 = Node->getOperand(0); 3851 // Promote each of the values to the new type. 3852 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 3853 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 3854 // Perform the larger operation, then round down. 3855 Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3); 3856 if (TruncOp != ISD::FP_ROUND) 3857 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1); 3858 else 3859 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1, 3860 DAG.getIntPtrConstant(0)); 3861 Results.push_back(Tmp1); 3862 break; 3863 } 3864 case ISD::VECTOR_SHUFFLE: { 3865 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 3866 3867 // Cast the two input vectors. 3868 Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0)); 3869 Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1)); 3870 3871 // Convert the shuffle mask to the right # elements. 3872 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask); 3873 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1); 3874 Results.push_back(Tmp1); 3875 break; 3876 } 3877 case ISD::SETCC: { 3878 unsigned ExtOp = ISD::FP_EXTEND; 3879 if (NVT.isInteger()) { 3880 ISD::CondCode CCCode = 3881 cast<CondCodeSDNode>(Node->getOperand(2))->get(); 3882 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 3883 } 3884 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 3885 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 3886 Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), 3887 Tmp1, Tmp2, Node->getOperand(2))); 3888 break; 3889 } 3890 case ISD::FDIV: 3891 case ISD::FREM: 3892 case ISD::FPOW: { 3893 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 3894 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 3895 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 3896 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 3897 Tmp3, DAG.getIntPtrConstant(0))); 3898 break; 3899 } 3900 case ISD::FLOG2: 3901 case ISD::FEXP2: 3902 case ISD::FLOG: 3903 case ISD::FEXP: { 3904 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 3905 Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 3906 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 3907 Tmp2, DAG.getIntPtrConstant(0))); 3908 break; 3909 } 3910 } 3911 3912 // Replace the original node with the legalized result. 3913 if (!Results.empty()) 3914 ReplaceNode(Node, Results.data()); 3915} 3916 3917// SelectionDAG::Legalize - This is the entry point for the file. 3918// 3919void SelectionDAG::Legalize() { 3920 /// run - This is the main entry point to this class. 3921 /// 3922 SelectionDAGLegalize(*this).LegalizeDAG(); 3923} 3924