LegalizeDAG.cpp revision 65fd6564b8aedd053845c81ede1ac594acb470e4
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SelectionDAG::Legalize method.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Analysis/DebugInfo.h"
15#include "llvm/CodeGen/Analysis.h"
16#include "llvm/CodeGen/MachineFunction.h"
17#include "llvm/CodeGen/MachineJumpTableInfo.h"
18#include "llvm/CodeGen/SelectionDAG.h"
19#include "llvm/Target/TargetFrameLowering.h"
20#include "llvm/Target/TargetLowering.h"
21#include "llvm/Target/TargetData.h"
22#include "llvm/Target/TargetMachine.h"
23#include "llvm/CallingConv.h"
24#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/LLVMContext.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/Support/ErrorHandling.h"
29#include "llvm/Support/MathExtras.h"
30#include "llvm/Support/raw_ostream.h"
31#include "llvm/ADT/DenseMap.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/SmallPtrSet.h"
34using namespace llvm;
35
36//===----------------------------------------------------------------------===//
37/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
38/// hacks on it until the target machine can handle it.  This involves
39/// eliminating value sizes the machine cannot handle (promoting small sizes to
40/// large sizes or splitting up large values into small values) as well as
41/// eliminating operations the machine cannot handle.
42///
43/// This code also does a small amount of optimization and recognition of idioms
44/// as part of its processing.  For example, if a target does not support a
45/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
46/// will attempt merge setcc and brc instructions into brcc's.
47///
48namespace {
49class SelectionDAGLegalize : public SelectionDAG::DAGUpdateListener {
50  const TargetMachine &TM;
51  const TargetLowering &TLI;
52  SelectionDAG &DAG;
53
54  /// LegalizePosition - The iterator for walking through the node list.
55  SelectionDAG::allnodes_iterator LegalizePosition;
56
57  /// LegalizedNodes - The set of nodes which have already been legalized.
58  SmallPtrSet<SDNode *, 16> LegalizedNodes;
59
60  // Libcall insertion helpers.
61
62public:
63  explicit SelectionDAGLegalize(SelectionDAG &DAG);
64
65  void LegalizeDAG();
66
67private:
68  /// LegalizeOp - Legalizes the given operation.
69  void LegalizeOp(SDNode *Node);
70
71  SDValue OptimizeFloatStore(StoreSDNode *ST);
72
73  /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
74  /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
75  /// is necessary to spill the vector being inserted into to memory, perform
76  /// the insert there, and then read the result back.
77  SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
78                                         SDValue Idx, DebugLoc dl);
79  SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
80                                  SDValue Idx, DebugLoc dl);
81
82  /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
83  /// performs the same shuffe in terms of order or result bytes, but on a type
84  /// whose vector element type is narrower than the original shuffle type.
85  /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
86  SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl,
87                                     SDValue N1, SDValue N2,
88                                     SmallVectorImpl<int> &Mask) const;
89
90  void LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
91                             DebugLoc dl);
92
93  SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
94  SDValue ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, const SDValue *Ops,
95                        unsigned NumOps, bool isSigned, DebugLoc dl);
96
97  std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC,
98                                                 SDNode *Node, bool isSigned);
99  SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
100                          RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
101                          RTLIB::Libcall Call_PPCF128);
102  SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
103                           RTLIB::Libcall Call_I8,
104                           RTLIB::Libcall Call_I16,
105                           RTLIB::Libcall Call_I32,
106                           RTLIB::Libcall Call_I64,
107                           RTLIB::Libcall Call_I128);
108  void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
109
110  SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, DebugLoc dl);
111  SDValue ExpandBUILD_VECTOR(SDNode *Node);
112  SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
113  void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
114                                SmallVectorImpl<SDValue> &Results);
115  SDValue ExpandFCOPYSIGN(SDNode *Node);
116  SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT,
117                               DebugLoc dl);
118  SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned,
119                                DebugLoc dl);
120  SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned,
121                                DebugLoc dl);
122
123  SDValue ExpandBSWAP(SDValue Op, DebugLoc dl);
124  SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl);
125
126  SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
127  SDValue ExpandInsertToVectorThroughStack(SDValue Op);
128  SDValue ExpandVectorBuildThroughStack(SDNode* Node);
129
130  SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP);
131
132  std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node);
133
134  void ExpandNode(SDNode *Node);
135  void PromoteNode(SDNode *Node);
136
137  // DAGUpdateListener implementation.
138  virtual void NodeDeleted(SDNode *N, SDNode *E) {
139    LegalizedNodes.erase(N);
140    if (LegalizePosition == SelectionDAG::allnodes_iterator(N))
141      ++LegalizePosition;
142  }
143
144  virtual void NodeUpdated(SDNode *N) {}
145};
146}
147
148/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
149/// performs the same shuffe in terms of order or result bytes, but on a type
150/// whose vector element type is narrower than the original shuffle type.
151/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
152SDValue
153SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT,  DebugLoc dl,
154                                                 SDValue N1, SDValue N2,
155                                             SmallVectorImpl<int> &Mask) const {
156  unsigned NumMaskElts = VT.getVectorNumElements();
157  unsigned NumDestElts = NVT.getVectorNumElements();
158  unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
159
160  assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
161
162  if (NumEltsGrowth == 1)
163    return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
164
165  SmallVector<int, 8> NewMask;
166  for (unsigned i = 0; i != NumMaskElts; ++i) {
167    int Idx = Mask[i];
168    for (unsigned j = 0; j != NumEltsGrowth; ++j) {
169      if (Idx < 0)
170        NewMask.push_back(-1);
171      else
172        NewMask.push_back(Idx * NumEltsGrowth + j);
173    }
174  }
175  assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
176  assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
177  return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
178}
179
180SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag)
181  : TM(dag.getTarget()), TLI(dag.getTargetLoweringInfo()),
182    DAG(dag) {
183}
184
185void SelectionDAGLegalize::LegalizeDAG() {
186  DAG.AssignTopologicalOrder();
187
188  // Visit all the nodes. We start in topological order, so that we see
189  // nodes with their original operands intact. Legalization can produce
190  // new nodes which may themselves need to be legalized. Iterate until all
191  // nodes have been legalized.
192  for (;;) {
193    bool AnyLegalized = false;
194    for (LegalizePosition = DAG.allnodes_end();
195         LegalizePosition != DAG.allnodes_begin(); ) {
196      --LegalizePosition;
197
198      SDNode *N = LegalizePosition;
199      if (LegalizedNodes.insert(N)) {
200        AnyLegalized = true;
201        LegalizeOp(N);
202      }
203    }
204    if (!AnyLegalized)
205      break;
206
207  }
208
209  // Remove dead nodes now.
210  DAG.RemoveDeadNodes();
211}
212
213/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
214/// a load from the constant pool.
215SDValue
216SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) {
217  bool Extend = false;
218  DebugLoc dl = CFP->getDebugLoc();
219
220  // If a FP immediate is precise when represented as a float and if the
221  // target can do an extending load from float to double, we put it into
222  // the constant pool as a float, even if it's is statically typed as a
223  // double.  This shrinks FP constants and canonicalizes them for targets where
224  // an FP extending load is the same cost as a normal load (such as on the x87
225  // fp stack or PPC FP unit).
226  EVT VT = CFP->getValueType(0);
227  ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
228  if (!UseCP) {
229    assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
230    return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(),
231                           (VT == MVT::f64) ? MVT::i64 : MVT::i32);
232  }
233
234  EVT OrigVT = VT;
235  EVT SVT = VT;
236  while (SVT != MVT::f32) {
237    SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
238    if (ConstantFPSDNode::isValueValidForType(SVT, CFP->getValueAPF()) &&
239        // Only do this if the target has a native EXTLOAD instruction from
240        // smaller type.
241        TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
242        TLI.ShouldShrinkFPConstant(OrigVT)) {
243      Type *SType = SVT.getTypeForEVT(*DAG.getContext());
244      LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
245      VT = SVT;
246      Extend = true;
247    }
248  }
249
250  SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
251  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
252  if (Extend) {
253    SDValue Result =
254      DAG.getExtLoad(ISD::EXTLOAD, dl, OrigVT,
255                     DAG.getEntryNode(),
256                     CPIdx, MachinePointerInfo::getConstantPool(),
257                     VT, false, false, Alignment);
258    return Result;
259  }
260  SDValue Result =
261    DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
262                MachinePointerInfo::getConstantPool(), false, false,
263                Alignment);
264  return Result;
265}
266
267/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
268static void ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
269                                 const TargetLowering &TLI,
270                                 SelectionDAG::DAGUpdateListener *DUL) {
271  SDValue Chain = ST->getChain();
272  SDValue Ptr = ST->getBasePtr();
273  SDValue Val = ST->getValue();
274  EVT VT = Val.getValueType();
275  int Alignment = ST->getAlignment();
276  DebugLoc dl = ST->getDebugLoc();
277  if (ST->getMemoryVT().isFloatingPoint() ||
278      ST->getMemoryVT().isVector()) {
279    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
280    if (TLI.isTypeLegal(intVT)) {
281      // Expand to a bitconvert of the value to the integer type of the
282      // same size, then a (misaligned) int store.
283      // FIXME: Does not handle truncating floating point stores!
284      SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
285      Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
286                           ST->isVolatile(), ST->isNonTemporal(), Alignment);
287      DAG.ReplaceAllUsesWith(SDValue(ST, 0), Result, DUL);
288      return;
289    }
290    // Do a (aligned) store to a stack slot, then copy from the stack slot
291    // to the final destination using (unaligned) integer loads and stores.
292    EVT StoredVT = ST->getMemoryVT();
293    EVT RegVT =
294      TLI.getRegisterType(*DAG.getContext(),
295                          EVT::getIntegerVT(*DAG.getContext(),
296                                            StoredVT.getSizeInBits()));
297    unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
298    unsigned RegBytes = RegVT.getSizeInBits() / 8;
299    unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
300
301    // Make sure the stack slot is also aligned for the register type.
302    SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
303
304    // Perform the original store, only redirected to the stack slot.
305    SDValue Store = DAG.getTruncStore(Chain, dl,
306                                      Val, StackPtr, MachinePointerInfo(),
307                                      StoredVT, false, false, 0);
308    SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
309    SmallVector<SDValue, 8> Stores;
310    unsigned Offset = 0;
311
312    // Do all but one copies using the full register width.
313    for (unsigned i = 1; i < NumRegs; i++) {
314      // Load one integer register's worth from the stack slot.
315      SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr,
316                                 MachinePointerInfo(),
317                                 false, false, 0);
318      // Store it to the final location.  Remember the store.
319      Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
320                                  ST->getPointerInfo().getWithOffset(Offset),
321                                    ST->isVolatile(), ST->isNonTemporal(),
322                                    MinAlign(ST->getAlignment(), Offset)));
323      // Increment the pointers.
324      Offset += RegBytes;
325      StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
326                             Increment);
327      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
328    }
329
330    // The last store may be partial.  Do a truncating store.  On big-endian
331    // machines this requires an extending load from the stack slot to ensure
332    // that the bits are in the right place.
333    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
334                                  8 * (StoredBytes - Offset));
335
336    // Load from the stack slot.
337    SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
338                                  MachinePointerInfo(),
339                                  MemVT, false, false, 0);
340
341    Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
342                                       ST->getPointerInfo()
343                                         .getWithOffset(Offset),
344                                       MemVT, ST->isVolatile(),
345                                       ST->isNonTemporal(),
346                                       MinAlign(ST->getAlignment(), Offset)));
347    // The order of the stores doesn't matter - say it with a TokenFactor.
348    SDValue Result =
349      DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
350                  Stores.size());
351    DAG.ReplaceAllUsesWith(SDValue(ST, 0), Result, DUL);
352    return;
353  }
354  assert(ST->getMemoryVT().isInteger() &&
355         !ST->getMemoryVT().isVector() &&
356         "Unaligned store of unknown type.");
357  // Get the half-size VT
358  EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
359  int NumBits = NewStoredVT.getSizeInBits();
360  int IncrementSize = NumBits / 8;
361
362  // Divide the stored value in two parts.
363  SDValue ShiftAmount = DAG.getConstant(NumBits,
364                                      TLI.getShiftAmountTy(Val.getValueType()));
365  SDValue Lo = Val;
366  SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
367
368  // Store the two parts
369  SDValue Store1, Store2;
370  Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
371                             ST->getPointerInfo(), NewStoredVT,
372                             ST->isVolatile(), ST->isNonTemporal(), Alignment);
373  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
374                    DAG.getConstant(IncrementSize, TLI.getPointerTy()));
375  Alignment = MinAlign(Alignment, IncrementSize);
376  Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
377                             ST->getPointerInfo().getWithOffset(IncrementSize),
378                             NewStoredVT, ST->isVolatile(), ST->isNonTemporal(),
379                             Alignment);
380
381  SDValue Result =
382    DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
383  DAG.ReplaceAllUsesWith(SDValue(ST, 0), Result, DUL);
384}
385
386/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
387static void
388ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
389                    const TargetLowering &TLI,
390                    SDValue &ValResult, SDValue &ChainResult) {
391  SDValue Chain = LD->getChain();
392  SDValue Ptr = LD->getBasePtr();
393  EVT VT = LD->getValueType(0);
394  EVT LoadedVT = LD->getMemoryVT();
395  DebugLoc dl = LD->getDebugLoc();
396  if (VT.isFloatingPoint() || VT.isVector()) {
397    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
398    if (TLI.isTypeLegal(intVT)) {
399      // Expand to a (misaligned) integer load of the same size,
400      // then bitconvert to floating point or vector.
401      SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getPointerInfo(),
402                                    LD->isVolatile(),
403                                    LD->isNonTemporal(), LD->getAlignment());
404      SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
405      if (VT.isFloatingPoint() && LoadedVT != VT)
406        Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result);
407
408      ValResult = Result;
409      ChainResult = Chain;
410      return;
411    }
412
413    // Copy the value to a (aligned) stack slot using (unaligned) integer
414    // loads and stores, then do a (aligned) load from the stack slot.
415    EVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT);
416    unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
417    unsigned RegBytes = RegVT.getSizeInBits() / 8;
418    unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
419
420    // Make sure the stack slot is also aligned for the register type.
421    SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
422
423    SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
424    SmallVector<SDValue, 8> Stores;
425    SDValue StackPtr = StackBase;
426    unsigned Offset = 0;
427
428    // Do all but one copies using the full register width.
429    for (unsigned i = 1; i < NumRegs; i++) {
430      // Load one integer register's worth from the original location.
431      SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr,
432                                 LD->getPointerInfo().getWithOffset(Offset),
433                                 LD->isVolatile(), LD->isNonTemporal(),
434                                 MinAlign(LD->getAlignment(), Offset));
435      // Follow the load with a store to the stack slot.  Remember the store.
436      Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
437                                    MachinePointerInfo(), false, false, 0));
438      // Increment the pointers.
439      Offset += RegBytes;
440      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
441      StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
442                             Increment);
443    }
444
445    // The last copy may be partial.  Do an extending load.
446    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
447                                  8 * (LoadedBytes - Offset));
448    SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
449                                  LD->getPointerInfo().getWithOffset(Offset),
450                                  MemVT, LD->isVolatile(),
451                                  LD->isNonTemporal(),
452                                  MinAlign(LD->getAlignment(), Offset));
453    // Follow the load with a store to the stack slot.  Remember the store.
454    // On big-endian machines this requires a truncating store to ensure
455    // that the bits end up in the right place.
456    Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
457                                       MachinePointerInfo(), MemVT,
458                                       false, false, 0));
459
460    // The order of the stores doesn't matter - say it with a TokenFactor.
461    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
462                             Stores.size());
463
464    // Finally, perform the original load only redirected to the stack slot.
465    Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
466                          MachinePointerInfo(), LoadedVT, false, false, 0);
467
468    // Callers expect a MERGE_VALUES node.
469    ValResult = Load;
470    ChainResult = TF;
471    return;
472  }
473  assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
474         "Unaligned load of unsupported type.");
475
476  // Compute the new VT that is half the size of the old one.  This is an
477  // integer MVT.
478  unsigned NumBits = LoadedVT.getSizeInBits();
479  EVT NewLoadedVT;
480  NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
481  NumBits >>= 1;
482
483  unsigned Alignment = LD->getAlignment();
484  unsigned IncrementSize = NumBits / 8;
485  ISD::LoadExtType HiExtType = LD->getExtensionType();
486
487  // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
488  if (HiExtType == ISD::NON_EXTLOAD)
489    HiExtType = ISD::ZEXTLOAD;
490
491  // Load the value in two parts
492  SDValue Lo, Hi;
493  if (TLI.isLittleEndian()) {
494    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
495                        NewLoadedVT, LD->isVolatile(),
496                        LD->isNonTemporal(), Alignment);
497    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
498                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
499    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
500                        LD->getPointerInfo().getWithOffset(IncrementSize),
501                        NewLoadedVT, LD->isVolatile(),
502                        LD->isNonTemporal(), MinAlign(Alignment,IncrementSize));
503  } else {
504    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
505                        NewLoadedVT, LD->isVolatile(),
506                        LD->isNonTemporal(), Alignment);
507    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
508                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
509    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
510                        LD->getPointerInfo().getWithOffset(IncrementSize),
511                        NewLoadedVT, LD->isVolatile(),
512                        LD->isNonTemporal(), MinAlign(Alignment,IncrementSize));
513  }
514
515  // aggregate the two parts
516  SDValue ShiftAmount = DAG.getConstant(NumBits,
517                                       TLI.getShiftAmountTy(Hi.getValueType()));
518  SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
519  Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
520
521  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
522                             Hi.getValue(1));
523
524  ValResult = Result;
525  ChainResult = TF;
526}
527
528/// PerformInsertVectorEltInMemory - Some target cannot handle a variable
529/// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
530/// is necessary to spill the vector being inserted into to memory, perform
531/// the insert there, and then read the result back.
532SDValue SelectionDAGLegalize::
533PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
534                               DebugLoc dl) {
535  SDValue Tmp1 = Vec;
536  SDValue Tmp2 = Val;
537  SDValue Tmp3 = Idx;
538
539  // If the target doesn't support this, we have to spill the input vector
540  // to a temporary stack slot, update the element, then reload it.  This is
541  // badness.  We could also load the value into a vector register (either
542  // with a "move to register" or "extload into register" instruction, then
543  // permute it into place, if the idx is a constant and if the idx is
544  // supported by the target.
545  EVT VT    = Tmp1.getValueType();
546  EVT EltVT = VT.getVectorElementType();
547  EVT IdxVT = Tmp3.getValueType();
548  EVT PtrVT = TLI.getPointerTy();
549  SDValue StackPtr = DAG.CreateStackTemporary(VT);
550
551  int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
552
553  // Store the vector.
554  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr,
555                            MachinePointerInfo::getFixedStack(SPFI),
556                            false, false, 0);
557
558  // Truncate or zero extend offset to target pointer type.
559  unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
560  Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3);
561  // Add the offset to the index.
562  unsigned EltSize = EltVT.getSizeInBits()/8;
563  Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
564  SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
565  // Store the scalar value.
566  Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT,
567                         false, false, 0);
568  // Load the updated vector.
569  return DAG.getLoad(VT, dl, Ch, StackPtr,
570                     MachinePointerInfo::getFixedStack(SPFI), false, false, 0);
571}
572
573
574SDValue SelectionDAGLegalize::
575ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) {
576  if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
577    // SCALAR_TO_VECTOR requires that the type of the value being inserted
578    // match the element type of the vector being created, except for
579    // integers in which case the inserted value can be over width.
580    EVT EltVT = Vec.getValueType().getVectorElementType();
581    if (Val.getValueType() == EltVT ||
582        (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
583      SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
584                                  Vec.getValueType(), Val);
585
586      unsigned NumElts = Vec.getValueType().getVectorNumElements();
587      // We generate a shuffle of InVec and ScVec, so the shuffle mask
588      // should be 0,1,2,3,4,5... with the appropriate element replaced with
589      // elt 0 of the RHS.
590      SmallVector<int, 8> ShufOps;
591      for (unsigned i = 0; i != NumElts; ++i)
592        ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
593
594      return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
595                                  &ShufOps[0]);
596    }
597  }
598  return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
599}
600
601SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
602  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
603  // FIXME: We shouldn't do this for TargetConstantFP's.
604  // FIXME: move this to the DAG Combiner!  Note that we can't regress due
605  // to phase ordering between legalized code and the dag combiner.  This
606  // probably means that we need to integrate dag combiner and legalizer
607  // together.
608  // We generally can't do this one for long doubles.
609  SDValue Tmp1 = ST->getChain();
610  SDValue Tmp2 = ST->getBasePtr();
611  SDValue Tmp3;
612  unsigned Alignment = ST->getAlignment();
613  bool isVolatile = ST->isVolatile();
614  bool isNonTemporal = ST->isNonTemporal();
615  DebugLoc dl = ST->getDebugLoc();
616  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
617    if (CFP->getValueType(0) == MVT::f32 &&
618        TLI.isTypeLegal(MVT::i32)) {
619      Tmp3 = DAG.getConstant(CFP->getValueAPF().
620                                      bitcastToAPInt().zextOrTrunc(32),
621                              MVT::i32);
622      return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
623                          isVolatile, isNonTemporal, Alignment);
624    }
625
626    if (CFP->getValueType(0) == MVT::f64) {
627      // If this target supports 64-bit registers, do a single 64-bit store.
628      if (TLI.isTypeLegal(MVT::i64)) {
629        Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
630                                  zextOrTrunc(64), MVT::i64);
631        return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
632                            isVolatile, isNonTemporal, Alignment);
633      }
634
635      if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) {
636        // Otherwise, if the target supports 32-bit registers, use 2 32-bit
637        // stores.  If the target supports neither 32- nor 64-bits, this
638        // xform is certainly not worth it.
639        const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt();
640        SDValue Lo = DAG.getConstant(IntVal.trunc(32), MVT::i32);
641        SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32);
642        if (TLI.isBigEndian()) std::swap(Lo, Hi);
643
644        Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getPointerInfo(), isVolatile,
645                          isNonTemporal, Alignment);
646        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
647                            DAG.getIntPtrConstant(4));
648        Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2,
649                          ST->getPointerInfo().getWithOffset(4),
650                          isVolatile, isNonTemporal, MinAlign(Alignment, 4U));
651
652        return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
653      }
654    }
655  }
656  return SDValue(0, 0);
657}
658
659/// LegalizeOp - Return a legal replacement for the given operation, with
660/// all legal operands.
661void SelectionDAGLegalize::LegalizeOp(SDNode *Node) {
662  if (Node->getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
663    return;
664
665  DebugLoc dl = Node->getDebugLoc();
666
667  for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
668    assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) ==
669             TargetLowering::TypeLegal &&
670           "Unexpected illegal type!");
671
672  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
673    assert((TLI.getTypeAction(*DAG.getContext(),
674                              Node->getOperand(i).getValueType()) ==
675              TargetLowering::TypeLegal ||
676            Node->getOperand(i).getOpcode() == ISD::TargetConstant) &&
677           "Unexpected illegal type!");
678
679  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
680  bool isCustom = false;
681
682  // Figure out the correct action; the way to query this varies by opcode
683  TargetLowering::LegalizeAction Action = TargetLowering::Legal;
684  bool SimpleFinishLegalizing = true;
685  switch (Node->getOpcode()) {
686  case ISD::INTRINSIC_W_CHAIN:
687  case ISD::INTRINSIC_WO_CHAIN:
688  case ISD::INTRINSIC_VOID:
689  case ISD::VAARG:
690  case ISD::STACKSAVE:
691    Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
692    break;
693  case ISD::SINT_TO_FP:
694  case ISD::UINT_TO_FP:
695  case ISD::EXTRACT_VECTOR_ELT:
696    Action = TLI.getOperationAction(Node->getOpcode(),
697                                    Node->getOperand(0).getValueType());
698    break;
699  case ISD::FP_ROUND_INREG:
700  case ISD::SIGN_EXTEND_INREG: {
701    EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
702    Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
703    break;
704  }
705  case ISD::ATOMIC_STORE: {
706    Action = TLI.getOperationAction(Node->getOpcode(),
707                                    Node->getOperand(2).getValueType());
708    break;
709  }
710  case ISD::SELECT_CC:
711  case ISD::SETCC:
712  case ISD::BR_CC: {
713    unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
714                         Node->getOpcode() == ISD::SETCC ? 2 : 1;
715    unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
716    EVT OpVT = Node->getOperand(CompareOperand).getValueType();
717    ISD::CondCode CCCode =
718        cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
719    Action = TLI.getCondCodeAction(CCCode, OpVT);
720    if (Action == TargetLowering::Legal) {
721      if (Node->getOpcode() == ISD::SELECT_CC)
722        Action = TLI.getOperationAction(Node->getOpcode(),
723                                        Node->getValueType(0));
724      else
725        Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
726    }
727    break;
728  }
729  case ISD::LOAD:
730  case ISD::STORE:
731    // FIXME: Model these properly.  LOAD and STORE are complicated, and
732    // STORE expects the unlegalized operand in some cases.
733    SimpleFinishLegalizing = false;
734    break;
735  case ISD::CALLSEQ_START:
736  case ISD::CALLSEQ_END:
737    // FIXME: This shouldn't be necessary.  These nodes have special properties
738    // dealing with the recursive nature of legalization.  Removing this
739    // special case should be done as part of making LegalizeDAG non-recursive.
740    SimpleFinishLegalizing = false;
741    break;
742  case ISD::EXTRACT_ELEMENT:
743  case ISD::FLT_ROUNDS_:
744  case ISD::SADDO:
745  case ISD::SSUBO:
746  case ISD::UADDO:
747  case ISD::USUBO:
748  case ISD::SMULO:
749  case ISD::UMULO:
750  case ISD::FPOWI:
751  case ISD::MERGE_VALUES:
752  case ISD::EH_RETURN:
753  case ISD::FRAME_TO_ARGS_OFFSET:
754  case ISD::EH_SJLJ_SETJMP:
755  case ISD::EH_SJLJ_LONGJMP:
756  case ISD::EH_SJLJ_DISPATCHSETUP:
757    // These operations lie about being legal: when they claim to be legal,
758    // they should actually be expanded.
759    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
760    if (Action == TargetLowering::Legal)
761      Action = TargetLowering::Expand;
762    break;
763  case ISD::INIT_TRAMPOLINE:
764  case ISD::ADJUST_TRAMPOLINE:
765  case ISD::FRAMEADDR:
766  case ISD::RETURNADDR:
767    // These operations lie about being legal: when they claim to be legal,
768    // they should actually be custom-lowered.
769    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
770    if (Action == TargetLowering::Legal)
771      Action = TargetLowering::Custom;
772    break;
773  default:
774    if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
775      Action = TargetLowering::Legal;
776    } else {
777      Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
778    }
779    break;
780  }
781
782  if (SimpleFinishLegalizing) {
783    SmallVector<SDValue, 8> Ops;
784    for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
785      Ops.push_back(Node->getOperand(i));
786    switch (Node->getOpcode()) {
787    default: break;
788    case ISD::SHL:
789    case ISD::SRL:
790    case ISD::SRA:
791    case ISD::ROTL:
792    case ISD::ROTR:
793      // Legalizing shifts/rotates requires adjusting the shift amount
794      // to the appropriate width.
795      if (!Ops[1].getValueType().isVector()) {
796        SDValue SAO = DAG.getShiftAmountOperand(Ops[0].getValueType(), Ops[1]);
797        HandleSDNode Handle(SAO);
798        LegalizeOp(SAO.getNode());
799        Ops[1] = Handle.getValue();
800      }
801      break;
802    case ISD::SRL_PARTS:
803    case ISD::SRA_PARTS:
804    case ISD::SHL_PARTS:
805      // Legalizing shifts/rotates requires adjusting the shift amount
806      // to the appropriate width.
807      if (!Ops[2].getValueType().isVector()) {
808        SDValue SAO = DAG.getShiftAmountOperand(Ops[0].getValueType(), Ops[2]);
809        HandleSDNode Handle(SAO);
810        LegalizeOp(SAO.getNode());
811        Ops[2] = Handle.getValue();
812      }
813      break;
814    }
815
816    SDNode *NewNode = DAG.UpdateNodeOperands(Node, Ops.data(), Ops.size());
817    if (NewNode != Node) {
818      DAG.ReplaceAllUsesWith(Node, NewNode, this);
819      for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
820        DAG.TransferDbgValues(SDValue(Node, i), SDValue(NewNode, i));
821      DAG.RemoveDeadNode(Node, this);
822      Node = NewNode;
823    }
824    switch (Action) {
825    case TargetLowering::Legal:
826      return;
827    case TargetLowering::Custom:
828      // FIXME: The handling for custom lowering with multiple results is
829      // a complete mess.
830      Tmp1 = TLI.LowerOperation(SDValue(Node, 0), DAG);
831      if (Tmp1.getNode()) {
832        SmallVector<SDValue, 8> ResultVals;
833        for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
834          if (e == 1)
835            ResultVals.push_back(Tmp1);
836          else
837            ResultVals.push_back(Tmp1.getValue(i));
838        }
839        if (Tmp1.getNode() != Node || Tmp1.getResNo() != 0) {
840          DAG.ReplaceAllUsesWith(Node, ResultVals.data(), this);
841          for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
842            DAG.TransferDbgValues(SDValue(Node, i), ResultVals[i]);
843          DAG.RemoveDeadNode(Node, this);
844        }
845        return;
846      }
847
848      // FALL THROUGH
849    case TargetLowering::Expand:
850      ExpandNode(Node);
851      return;
852    case TargetLowering::Promote:
853      PromoteNode(Node);
854      return;
855    }
856  }
857
858  switch (Node->getOpcode()) {
859  default:
860#ifndef NDEBUG
861    dbgs() << "NODE: ";
862    Node->dump( &DAG);
863    dbgs() << "\n";
864#endif
865    assert(0 && "Do not know how to legalize this operator!");
866
867  case ISD::CALLSEQ_START:
868  case ISD::CALLSEQ_END:
869    break;
870  case ISD::LOAD: {
871    LoadSDNode *LD = cast<LoadSDNode>(Node);
872    Tmp1 = LD->getChain();   // Legalize the chain.
873    Tmp2 = LD->getBasePtr(); // Legalize the base pointer.
874
875    ISD::LoadExtType ExtType = LD->getExtensionType();
876    if (ExtType == ISD::NON_EXTLOAD) {
877      EVT VT = Node->getValueType(0);
878      Node = DAG.UpdateNodeOperands(Node, Tmp1, Tmp2, LD->getOffset());
879      Tmp3 = SDValue(Node, 0);
880      Tmp4 = SDValue(Node, 1);
881
882      switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
883      default: assert(0 && "This action is not supported yet!");
884      case TargetLowering::Legal:
885        // If this is an unaligned load and the target doesn't support it,
886        // expand it.
887        if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
888          Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
889          unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
890          if (LD->getAlignment() < ABIAlignment){
891            ExpandUnalignedLoad(cast<LoadSDNode>(Node),
892                                DAG, TLI, Tmp3, Tmp4);
893          }
894        }
895        break;
896      case TargetLowering::Custom:
897        Tmp1 = TLI.LowerOperation(Tmp3, DAG);
898        if (Tmp1.getNode()) {
899          Tmp3 = Tmp1;
900          Tmp4 = Tmp1.getValue(1);
901        }
902        break;
903      case TargetLowering::Promote: {
904        // Only promote a load of vector type to another.
905        assert(VT.isVector() && "Cannot promote this load!");
906        // Change base type to a different vector type.
907        EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
908
909        Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getPointerInfo(),
910                           LD->isVolatile(), LD->isNonTemporal(),
911                           LD->getAlignment());
912        Tmp3 = DAG.getNode(ISD::BITCAST, dl, VT, Tmp1);
913        Tmp4 = Tmp1.getValue(1);
914        break;
915      }
916      }
917      // Since loads produce two values, make sure to remember that we
918      // legalized both of them.
919      DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp3);
920      DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Tmp4);
921      return;
922    }
923
924    EVT SrcVT = LD->getMemoryVT();
925    unsigned SrcWidth = SrcVT.getSizeInBits();
926    unsigned Alignment = LD->getAlignment();
927    bool isVolatile = LD->isVolatile();
928    bool isNonTemporal = LD->isNonTemporal();
929
930    if (SrcWidth != SrcVT.getStoreSizeInBits() &&
931        // Some targets pretend to have an i1 loading operation, and actually
932        // load an i8.  This trick is correct for ZEXTLOAD because the top 7
933        // bits are guaranteed to be zero; it helps the optimizers understand
934        // that these bits are zero.  It is also useful for EXTLOAD, since it
935        // tells the optimizers that those bits are undefined.  It would be
936        // nice to have an effective generic way of getting these benefits...
937        // Until such a way is found, don't insist on promoting i1 here.
938        (SrcVT != MVT::i1 ||
939         TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
940      // Promote to a byte-sized load if not loading an integral number of
941      // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
942      unsigned NewWidth = SrcVT.getStoreSizeInBits();
943      EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
944      SDValue Ch;
945
946      // The extra bits are guaranteed to be zero, since we stored them that
947      // way.  A zext load from NVT thus automatically gives zext from SrcVT.
948
949      ISD::LoadExtType NewExtType =
950        ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
951
952      SDValue Result =
953        DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
954                       Tmp1, Tmp2, LD->getPointerInfo(),
955                       NVT, isVolatile, isNonTemporal, Alignment);
956
957      Ch = Result.getValue(1); // The chain.
958
959      if (ExtType == ISD::SEXTLOAD)
960        // Having the top bits zero doesn't help when sign extending.
961        Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
962                             Result.getValueType(),
963                             Result, DAG.getValueType(SrcVT));
964      else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
965        // All the top bits are guaranteed to be zero - inform the optimizers.
966        Result = DAG.getNode(ISD::AssertZext, dl,
967                             Result.getValueType(), Result,
968                             DAG.getValueType(SrcVT));
969
970      Tmp1 = Result;
971      Tmp2 = Ch;
972    } else if (SrcWidth & (SrcWidth - 1)) {
973      // If not loading a power-of-2 number of bits, expand as two loads.
974      assert(!SrcVT.isVector() && "Unsupported extload!");
975      unsigned RoundWidth = 1 << Log2_32(SrcWidth);
976      assert(RoundWidth < SrcWidth);
977      unsigned ExtraWidth = SrcWidth - RoundWidth;
978      assert(ExtraWidth < RoundWidth);
979      assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
980             "Load size not an integral number of bytes!");
981      EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
982      EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
983      SDValue Lo, Hi, Ch;
984      unsigned IncrementSize;
985
986      if (TLI.isLittleEndian()) {
987        // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
988        // Load the bottom RoundWidth bits.
989        Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0),
990                            Tmp1, Tmp2,
991                            LD->getPointerInfo(), RoundVT, isVolatile,
992                            isNonTemporal, Alignment);
993
994        // Load the remaining ExtraWidth bits.
995        IncrementSize = RoundWidth / 8;
996        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
997                           DAG.getIntPtrConstant(IncrementSize));
998        Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
999                            LD->getPointerInfo().getWithOffset(IncrementSize),
1000                            ExtraVT, isVolatile, isNonTemporal,
1001                            MinAlign(Alignment, IncrementSize));
1002
1003        // Build a factor node to remember that this load is independent of
1004        // the other one.
1005        Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1006                         Hi.getValue(1));
1007
1008        // Move the top bits to the right place.
1009        Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1010                         DAG.getConstant(RoundWidth,
1011                                      TLI.getShiftAmountTy(Hi.getValueType())));
1012
1013        // Join the hi and lo parts.
1014        Tmp1 = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1015      } else {
1016        // Big endian - avoid unaligned loads.
1017        // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
1018        // Load the top RoundWidth bits.
1019        Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1020                            LD->getPointerInfo(), RoundVT, isVolatile,
1021                            isNonTemporal, Alignment);
1022
1023        // Load the remaining ExtraWidth bits.
1024        IncrementSize = RoundWidth / 8;
1025        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1026                           DAG.getIntPtrConstant(IncrementSize));
1027        Lo = DAG.getExtLoad(ISD::ZEXTLOAD,
1028                            dl, Node->getValueType(0), Tmp1, Tmp2,
1029                            LD->getPointerInfo().getWithOffset(IncrementSize),
1030                            ExtraVT, isVolatile, isNonTemporal,
1031                            MinAlign(Alignment, IncrementSize));
1032
1033        // Build a factor node to remember that this load is independent of
1034        // the other one.
1035        Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1036                         Hi.getValue(1));
1037
1038        // Move the top bits to the right place.
1039        Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1040                         DAG.getConstant(ExtraWidth,
1041                                      TLI.getShiftAmountTy(Hi.getValueType())));
1042
1043        // Join the hi and lo parts.
1044        Tmp1 = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1045      }
1046
1047      Tmp2 = Ch;
1048    } else {
1049      switch (TLI.getLoadExtAction(ExtType, SrcVT)) {
1050      default: assert(0 && "This action is not supported yet!");
1051      case TargetLowering::Custom:
1052        isCustom = true;
1053        // FALLTHROUGH
1054      case TargetLowering::Legal:
1055        Node = DAG.UpdateNodeOperands(Node,
1056                                      Tmp1, Tmp2, LD->getOffset());
1057        Tmp1 = SDValue(Node, 0);
1058        Tmp2 = SDValue(Node, 1);
1059
1060        if (isCustom) {
1061          Tmp3 = TLI.LowerOperation(SDValue(Node, 0), DAG);
1062          if (Tmp3.getNode()) {
1063            Tmp1 = Tmp3;
1064            Tmp2 = Tmp3.getValue(1);
1065          }
1066        } else {
1067          // If this is an unaligned load and the target doesn't support it,
1068          // expand it.
1069          if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1070            Type *Ty =
1071              LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1072            unsigned ABIAlignment =
1073              TLI.getTargetData()->getABITypeAlignment(Ty);
1074            if (LD->getAlignment() < ABIAlignment){
1075              ExpandUnalignedLoad(cast<LoadSDNode>(Node),
1076                                  DAG, TLI, Tmp1, Tmp2);
1077            }
1078          }
1079        }
1080        break;
1081      case TargetLowering::Expand:
1082        if (!TLI.isLoadExtLegal(ISD::EXTLOAD, SrcVT) && TLI.isTypeLegal(SrcVT)) {
1083          SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2,
1084                                     LD->getPointerInfo(),
1085                                     LD->isVolatile(), LD->isNonTemporal(),
1086                                     LD->getAlignment());
1087          unsigned ExtendOp;
1088          switch (ExtType) {
1089          case ISD::EXTLOAD:
1090            ExtendOp = (SrcVT.isFloatingPoint() ?
1091                        ISD::FP_EXTEND : ISD::ANY_EXTEND);
1092            break;
1093          case ISD::SEXTLOAD: ExtendOp = ISD::SIGN_EXTEND; break;
1094          case ISD::ZEXTLOAD: ExtendOp = ISD::ZERO_EXTEND; break;
1095          default: llvm_unreachable("Unexpected extend load type!");
1096          }
1097          Tmp1 = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load);
1098          Tmp2 = Load.getValue(1);
1099          break;
1100        }
1101
1102        assert(!SrcVT.isVector() &&
1103               "Vector Loads are handled in LegalizeVectorOps");
1104
1105        // FIXME: This does not work for vectors on most targets.  Sign- and
1106        // zero-extend operations are currently folded into extending loads,
1107        // whether they are legal or not, and then we end up here without any
1108        // support for legalizing them.
1109        assert(ExtType != ISD::EXTLOAD &&
1110               "EXTLOAD should always be supported!");
1111        // Turn the unsupported load into an EXTLOAD followed by an explicit
1112        // zero/sign extend inreg.
1113        SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0),
1114                                        Tmp1, Tmp2, LD->getPointerInfo(), SrcVT,
1115                                        LD->isVolatile(), LD->isNonTemporal(),
1116                                        LD->getAlignment());
1117        SDValue ValRes;
1118        if (ExtType == ISD::SEXTLOAD)
1119          ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1120                               Result.getValueType(),
1121                               Result, DAG.getValueType(SrcVT));
1122        else
1123          ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType());
1124        Tmp1 = ValRes;
1125        Tmp2 = Result.getValue(1);
1126        break;
1127      }
1128    }
1129
1130    // Since loads produce two values, make sure to remember that we legalized
1131    // both of them.
1132    DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp1);
1133    DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Tmp2);
1134    break;
1135  }
1136  case ISD::STORE: {
1137    StoreSDNode *ST = cast<StoreSDNode>(Node);
1138    Tmp1 = ST->getChain();
1139    Tmp2 = ST->getBasePtr();
1140    unsigned Alignment = ST->getAlignment();
1141    bool isVolatile = ST->isVolatile();
1142    bool isNonTemporal = ST->isNonTemporal();
1143
1144    if (!ST->isTruncatingStore()) {
1145      if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
1146        DAG.ReplaceAllUsesWith(ST, OptStore, this);
1147        break;
1148      }
1149
1150      {
1151        Tmp3 = ST->getValue();
1152        Node = DAG.UpdateNodeOperands(Node,
1153                                      Tmp1, Tmp3, Tmp2,
1154                                      ST->getOffset());
1155
1156        EVT VT = Tmp3.getValueType();
1157        switch (TLI.getOperationAction(ISD::STORE, VT)) {
1158        default: assert(0 && "This action is not supported yet!");
1159        case TargetLowering::Legal:
1160          // If this is an unaligned store and the target doesn't support it,
1161          // expand it.
1162          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1163            Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1164            unsigned ABIAlignment= TLI.getTargetData()->getABITypeAlignment(Ty);
1165            if (ST->getAlignment() < ABIAlignment)
1166              ExpandUnalignedStore(cast<StoreSDNode>(Node),
1167                                   DAG, TLI, this);
1168          }
1169          break;
1170        case TargetLowering::Custom:
1171          Tmp1 = TLI.LowerOperation(SDValue(Node, 0), DAG);
1172          if (Tmp1.getNode())
1173            DAG.ReplaceAllUsesWith(SDValue(Node, 0), Tmp1, this);
1174          break;
1175        case TargetLowering::Promote: {
1176          assert(VT.isVector() && "Unknown legal promote case!");
1177          Tmp3 = DAG.getNode(ISD::BITCAST, dl,
1178                             TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3);
1179          SDValue Result =
1180            DAG.getStore(Tmp1, dl, Tmp3, Tmp2,
1181                         ST->getPointerInfo(), isVolatile,
1182                         isNonTemporal, Alignment);
1183          DAG.ReplaceAllUsesWith(SDValue(Node, 0), Result, this);
1184          break;
1185        }
1186        }
1187        break;
1188      }
1189    } else {
1190      Tmp3 = ST->getValue();
1191
1192      EVT StVT = ST->getMemoryVT();
1193      unsigned StWidth = StVT.getSizeInBits();
1194
1195      if (StWidth != StVT.getStoreSizeInBits()) {
1196        // Promote to a byte-sized store with upper bits zero if not
1197        // storing an integral number of bytes.  For example, promote
1198        // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
1199        EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
1200                                    StVT.getStoreSizeInBits());
1201        Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT);
1202        SDValue Result =
1203          DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
1204                            NVT, isVolatile, isNonTemporal, Alignment);
1205        DAG.ReplaceAllUsesWith(SDValue(Node, 0), Result, this);
1206      } else if (StWidth & (StWidth - 1)) {
1207        // If not storing a power-of-2 number of bits, expand as two stores.
1208        assert(!StVT.isVector() && "Unsupported truncstore!");
1209        unsigned RoundWidth = 1 << Log2_32(StWidth);
1210        assert(RoundWidth < StWidth);
1211        unsigned ExtraWidth = StWidth - RoundWidth;
1212        assert(ExtraWidth < RoundWidth);
1213        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1214               "Store size not an integral number of bytes!");
1215        EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1216        EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1217        SDValue Lo, Hi;
1218        unsigned IncrementSize;
1219
1220        if (TLI.isLittleEndian()) {
1221          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
1222          // Store the bottom RoundWidth bits.
1223          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
1224                                 RoundVT,
1225                                 isVolatile, isNonTemporal, Alignment);
1226
1227          // Store the remaining ExtraWidth bits.
1228          IncrementSize = RoundWidth / 8;
1229          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1230                             DAG.getIntPtrConstant(IncrementSize));
1231          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1232                           DAG.getConstant(RoundWidth,
1233                                    TLI.getShiftAmountTy(Tmp3.getValueType())));
1234          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2,
1235                             ST->getPointerInfo().getWithOffset(IncrementSize),
1236                                 ExtraVT, isVolatile, isNonTemporal,
1237                                 MinAlign(Alignment, IncrementSize));
1238        } else {
1239          // Big endian - avoid unaligned stores.
1240          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
1241          // Store the top RoundWidth bits.
1242          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1243                           DAG.getConstant(ExtraWidth,
1244                                    TLI.getShiftAmountTy(Tmp3.getValueType())));
1245          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getPointerInfo(),
1246                                 RoundVT, isVolatile, isNonTemporal, Alignment);
1247
1248          // Store the remaining ExtraWidth bits.
1249          IncrementSize = RoundWidth / 8;
1250          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1251                             DAG.getIntPtrConstant(IncrementSize));
1252          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2,
1253                              ST->getPointerInfo().getWithOffset(IncrementSize),
1254                                 ExtraVT, isVolatile, isNonTemporal,
1255                                 MinAlign(Alignment, IncrementSize));
1256        }
1257
1258        // The order of the stores doesn't matter.
1259        SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
1260        DAG.ReplaceAllUsesWith(SDValue(Node, 0), Result, this);
1261      } else {
1262        if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() ||
1263            Tmp2 != ST->getBasePtr())
1264          Node = DAG.UpdateNodeOperands(Node, Tmp1, Tmp3, Tmp2,
1265                                        ST->getOffset());
1266
1267        switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
1268        default: assert(0 && "This action is not supported yet!");
1269        case TargetLowering::Legal:
1270          // If this is an unaligned store and the target doesn't support it,
1271          // expand it.
1272          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1273            Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1274            unsigned ABIAlignment= TLI.getTargetData()->getABITypeAlignment(Ty);
1275            if (ST->getAlignment() < ABIAlignment)
1276              ExpandUnalignedStore(cast<StoreSDNode>(Node), DAG, TLI, this);
1277          }
1278          break;
1279        case TargetLowering::Custom:
1280          DAG.ReplaceAllUsesWith(SDValue(Node, 0),
1281                                 TLI.LowerOperation(SDValue(Node, 0), DAG),
1282                                 this);
1283          break;
1284        case TargetLowering::Expand:
1285          assert(!StVT.isVector() &&
1286                 "Vector Stores are handled in LegalizeVectorOps");
1287
1288          // TRUNCSTORE:i16 i32 -> STORE i16
1289          assert(TLI.isTypeLegal(StVT) && "Do not know how to expand this store!");
1290          Tmp3 = DAG.getNode(ISD::TRUNCATE, dl, StVT, Tmp3);
1291          SDValue Result =
1292            DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
1293                         isVolatile, isNonTemporal, Alignment);
1294          DAG.ReplaceAllUsesWith(SDValue(Node, 0), Result, this);
1295          break;
1296        }
1297      }
1298    }
1299    break;
1300  }
1301  }
1302}
1303
1304SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1305  SDValue Vec = Op.getOperand(0);
1306  SDValue Idx = Op.getOperand(1);
1307  DebugLoc dl = Op.getDebugLoc();
1308  // Store the value to a temporary stack slot, then LOAD the returned part.
1309  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1310  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
1311                            MachinePointerInfo(), false, false, 0);
1312
1313  // Add the offset to the index.
1314  unsigned EltSize =
1315      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1316  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1317                    DAG.getConstant(EltSize, Idx.getValueType()));
1318
1319  if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1320    Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1321  else
1322    Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1323
1324  StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
1325
1326  if (Op.getValueType().isVector())
1327    return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr,MachinePointerInfo(),
1328                       false, false, 0);
1329  return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
1330                        MachinePointerInfo(),
1331                        Vec.getValueType().getVectorElementType(),
1332                        false, false, 0);
1333}
1334
1335SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) {
1336  assert(Op.getValueType().isVector() && "Non-vector insert subvector!");
1337
1338  SDValue Vec  = Op.getOperand(0);
1339  SDValue Part = Op.getOperand(1);
1340  SDValue Idx  = Op.getOperand(2);
1341  DebugLoc dl  = Op.getDebugLoc();
1342
1343  // Store the value to a temporary stack slot, then LOAD the returned part.
1344
1345  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1346  int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1347  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI);
1348
1349  // First store the whole vector.
1350  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo,
1351                            false, false, 0);
1352
1353  // Then store the inserted part.
1354
1355  // Add the offset to the index.
1356  unsigned EltSize =
1357      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1358
1359  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1360                    DAG.getConstant(EltSize, Idx.getValueType()));
1361
1362  if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1363    Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1364  else
1365    Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1366
1367  SDValue SubStackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx,
1368                                    StackPtr);
1369
1370  // Store the subvector.
1371  Ch = DAG.getStore(DAG.getEntryNode(), dl, Part, SubStackPtr,
1372                    MachinePointerInfo(), false, false, 0);
1373
1374  // Finally, load the updated vector.
1375  return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo,
1376                     false, false, 0);
1377}
1378
1379SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1380  // We can't handle this case efficiently.  Allocate a sufficiently
1381  // aligned object on the stack, store each element into it, then load
1382  // the result as a vector.
1383  // Create the stack frame object.
1384  EVT VT = Node->getValueType(0);
1385  EVT EltVT = VT.getVectorElementType();
1386  DebugLoc dl = Node->getDebugLoc();
1387  SDValue FIPtr = DAG.CreateStackTemporary(VT);
1388  int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1389  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI);
1390
1391  // Emit a store of each element to the stack slot.
1392  SmallVector<SDValue, 8> Stores;
1393  unsigned TypeByteSize = EltVT.getSizeInBits() / 8;
1394  // Store (in the right endianness) the elements to memory.
1395  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1396    // Ignore undef elements.
1397    if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1398
1399    unsigned Offset = TypeByteSize*i;
1400
1401    SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType());
1402    Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
1403
1404    // If the destination vector element type is narrower than the source
1405    // element type, only store the bits necessary.
1406    if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) {
1407      Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
1408                                         Node->getOperand(i), Idx,
1409                                         PtrInfo.getWithOffset(Offset),
1410                                         EltVT, false, false, 0));
1411    } else
1412      Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl,
1413                                    Node->getOperand(i), Idx,
1414                                    PtrInfo.getWithOffset(Offset),
1415                                    false, false, 0));
1416  }
1417
1418  SDValue StoreChain;
1419  if (!Stores.empty())    // Not all undef elements?
1420    StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1421                             &Stores[0], Stores.size());
1422  else
1423    StoreChain = DAG.getEntryNode();
1424
1425  // Result is a load from the stack slot.
1426  return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo, false, false, 0);
1427}
1428
1429SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) {
1430  DebugLoc dl = Node->getDebugLoc();
1431  SDValue Tmp1 = Node->getOperand(0);
1432  SDValue Tmp2 = Node->getOperand(1);
1433
1434  // Get the sign bit of the RHS.  First obtain a value that has the same
1435  // sign as the sign bit, i.e. negative if and only if the sign bit is 1.
1436  SDValue SignBit;
1437  EVT FloatVT = Tmp2.getValueType();
1438  EVT IVT = EVT::getIntegerVT(*DAG.getContext(), FloatVT.getSizeInBits());
1439  if (TLI.isTypeLegal(IVT)) {
1440    // Convert to an integer with the same sign bit.
1441    SignBit = DAG.getNode(ISD::BITCAST, dl, IVT, Tmp2);
1442  } else {
1443    // Store the float to memory, then load the sign part out as an integer.
1444    MVT LoadTy = TLI.getPointerTy();
1445    // First create a temporary that is aligned for both the load and store.
1446    SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
1447    // Then store the float to it.
1448    SDValue Ch =
1449      DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StackPtr, MachinePointerInfo(),
1450                   false, false, 0);
1451    if (TLI.isBigEndian()) {
1452      assert(FloatVT.isByteSized() && "Unsupported floating point type!");
1453      // Load out a legal integer with the same sign bit as the float.
1454      SignBit = DAG.getLoad(LoadTy, dl, Ch, StackPtr, MachinePointerInfo(),
1455                            false, false, 0);
1456    } else { // Little endian
1457      SDValue LoadPtr = StackPtr;
1458      // The float may be wider than the integer we are going to load.  Advance
1459      // the pointer so that the loaded integer will contain the sign bit.
1460      unsigned Strides = (FloatVT.getSizeInBits()-1)/LoadTy.getSizeInBits();
1461      unsigned ByteOffset = (Strides * LoadTy.getSizeInBits()) / 8;
1462      LoadPtr = DAG.getNode(ISD::ADD, dl, LoadPtr.getValueType(),
1463                            LoadPtr, DAG.getIntPtrConstant(ByteOffset));
1464      // Load a legal integer containing the sign bit.
1465      SignBit = DAG.getLoad(LoadTy, dl, Ch, LoadPtr, MachinePointerInfo(),
1466                            false, false, 0);
1467      // Move the sign bit to the top bit of the loaded integer.
1468      unsigned BitShift = LoadTy.getSizeInBits() -
1469        (FloatVT.getSizeInBits() - 8 * ByteOffset);
1470      assert(BitShift < LoadTy.getSizeInBits() && "Pointer advanced wrong?");
1471      if (BitShift)
1472        SignBit = DAG.getNode(ISD::SHL, dl, LoadTy, SignBit,
1473                              DAG.getConstant(BitShift,
1474                                 TLI.getShiftAmountTy(SignBit.getValueType())));
1475    }
1476  }
1477  // Now get the sign bit proper, by seeing whether the value is negative.
1478  SignBit = DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()),
1479                         SignBit, DAG.getConstant(0, SignBit.getValueType()),
1480                         ISD::SETLT);
1481  // Get the absolute value of the result.
1482  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1);
1483  // Select between the nabs and abs value based on the sign bit of
1484  // the input.
1485  return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit,
1486                     DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal),
1487                     AbsVal);
1488}
1489
1490void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1491                                           SmallVectorImpl<SDValue> &Results) {
1492  unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1493  assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1494          " not tell us which reg is the stack pointer!");
1495  DebugLoc dl = Node->getDebugLoc();
1496  EVT VT = Node->getValueType(0);
1497  SDValue Tmp1 = SDValue(Node, 0);
1498  SDValue Tmp2 = SDValue(Node, 1);
1499  SDValue Tmp3 = Node->getOperand(2);
1500  SDValue Chain = Tmp1.getOperand(0);
1501
1502  // Chain the dynamic stack allocation so that it doesn't modify the stack
1503  // pointer when other instructions are using the stack.
1504  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
1505
1506  SDValue Size  = Tmp2.getOperand(1);
1507  SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1508  Chain = SP.getValue(1);
1509  unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1510  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
1511  if (Align > StackAlign)
1512    SP = DAG.getNode(ISD::AND, dl, VT, SP,
1513                      DAG.getConstant(-(uint64_t)Align, VT));
1514  Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size);       // Value
1515  Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain
1516
1517  Tmp2 = DAG.getCALLSEQ_END(Chain,  DAG.getIntPtrConstant(0, true),
1518                            DAG.getIntPtrConstant(0, true), SDValue());
1519
1520  Results.push_back(Tmp1);
1521  Results.push_back(Tmp2);
1522}
1523
1524/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
1525/// condition code CC on the current target. This routine expands SETCC with
1526/// illegal condition code into AND / OR of multiple SETCC values.
1527void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT,
1528                                                 SDValue &LHS, SDValue &RHS,
1529                                                 SDValue &CC,
1530                                                 DebugLoc dl) {
1531  EVT OpVT = LHS.getValueType();
1532  ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1533  switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1534  default: assert(0 && "Unknown condition code action!");
1535  case TargetLowering::Legal:
1536    // Nothing to do.
1537    break;
1538  case TargetLowering::Expand: {
1539    ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1540    unsigned Opc = 0;
1541    switch (CCCode) {
1542    default: assert(0 && "Don't know how to expand this condition!");
1543    case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1544    case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1545    case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1546    case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1547    case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1548    case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1549    case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1550    case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1551    case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1552    case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1553    case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1554    case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1555    // FIXME: Implement more expansions.
1556    }
1557
1558    SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1559    SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
1560    LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1561    RHS = SDValue();
1562    CC  = SDValue();
1563    break;
1564  }
1565  }
1566}
1567
1568/// EmitStackConvert - Emit a store/load combination to the stack.  This stores
1569/// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
1570/// a load from the stack slot to DestVT, extending it if needed.
1571/// The resultant code need not be legal.
1572SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
1573                                               EVT SlotVT,
1574                                               EVT DestVT,
1575                                               DebugLoc dl) {
1576  // Create the stack frame object.
1577  unsigned SrcAlign =
1578    TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType().
1579                                              getTypeForEVT(*DAG.getContext()));
1580  SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1581
1582  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1583  int SPFI = StackPtrFI->getIndex();
1584  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(SPFI);
1585
1586  unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
1587  unsigned SlotSize = SlotVT.getSizeInBits();
1588  unsigned DestSize = DestVT.getSizeInBits();
1589  Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
1590  unsigned DestAlign = TLI.getTargetData()->getPrefTypeAlignment(DestType);
1591
1592  // Emit a store to the stack slot.  Use a truncstore if the input value is
1593  // later than DestVT.
1594  SDValue Store;
1595
1596  if (SrcSize > SlotSize)
1597    Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1598                              PtrInfo, SlotVT, false, false, SrcAlign);
1599  else {
1600    assert(SrcSize == SlotSize && "Invalid store");
1601    Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1602                         PtrInfo, false, false, SrcAlign);
1603  }
1604
1605  // Result is a load from the stack slot.
1606  if (SlotSize == DestSize)
1607    return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo,
1608                       false, false, DestAlign);
1609
1610  assert(SlotSize < DestSize && "Unknown extension!");
1611  return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr,
1612                        PtrInfo, SlotVT, false, false, DestAlign);
1613}
1614
1615SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1616  DebugLoc dl = Node->getDebugLoc();
1617  // Create a vector sized/aligned stack slot, store the value to element #0,
1618  // then load the whole vector back out.
1619  SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1620
1621  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1622  int SPFI = StackPtrFI->getIndex();
1623
1624  SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0),
1625                                 StackPtr,
1626                                 MachinePointerInfo::getFixedStack(SPFI),
1627                                 Node->getValueType(0).getVectorElementType(),
1628                                 false, false, 0);
1629  return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr,
1630                     MachinePointerInfo::getFixedStack(SPFI),
1631                     false, false, 0);
1632}
1633
1634
1635/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
1636/// support the operation, but do support the resultant vector type.
1637SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1638  unsigned NumElems = Node->getNumOperands();
1639  SDValue Value1, Value2;
1640  DebugLoc dl = Node->getDebugLoc();
1641  EVT VT = Node->getValueType(0);
1642  EVT OpVT = Node->getOperand(0).getValueType();
1643  EVT EltVT = VT.getVectorElementType();
1644
1645  // If the only non-undef value is the low element, turn this into a
1646  // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
1647  bool isOnlyLowElement = true;
1648  bool MoreThanTwoValues = false;
1649  bool isConstant = true;
1650  for (unsigned i = 0; i < NumElems; ++i) {
1651    SDValue V = Node->getOperand(i);
1652    if (V.getOpcode() == ISD::UNDEF)
1653      continue;
1654    if (i > 0)
1655      isOnlyLowElement = false;
1656    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1657      isConstant = false;
1658
1659    if (!Value1.getNode()) {
1660      Value1 = V;
1661    } else if (!Value2.getNode()) {
1662      if (V != Value1)
1663        Value2 = V;
1664    } else if (V != Value1 && V != Value2) {
1665      MoreThanTwoValues = true;
1666    }
1667  }
1668
1669  if (!Value1.getNode())
1670    return DAG.getUNDEF(VT);
1671
1672  if (isOnlyLowElement)
1673    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1674
1675  // If all elements are constants, create a load from the constant pool.
1676  if (isConstant) {
1677    std::vector<Constant*> CV;
1678    for (unsigned i = 0, e = NumElems; i != e; ++i) {
1679      if (ConstantFPSDNode *V =
1680          dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1681        CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1682      } else if (ConstantSDNode *V =
1683                 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1684        if (OpVT==EltVT)
1685          CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1686        else {
1687          // If OpVT and EltVT don't match, EltVT is not legal and the
1688          // element values have been promoted/truncated earlier.  Undo this;
1689          // we don't want a v16i8 to become a v16i32 for example.
1690          const ConstantInt *CI = V->getConstantIntValue();
1691          CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
1692                                        CI->getZExtValue()));
1693        }
1694      } else {
1695        assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
1696        Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
1697        CV.push_back(UndefValue::get(OpNTy));
1698      }
1699    }
1700    Constant *CP = ConstantVector::get(CV);
1701    SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
1702    unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
1703    return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
1704                       MachinePointerInfo::getConstantPool(),
1705                       false, false, Alignment);
1706  }
1707
1708  if (!MoreThanTwoValues) {
1709    SmallVector<int, 8> ShuffleVec(NumElems, -1);
1710    for (unsigned i = 0; i < NumElems; ++i) {
1711      SDValue V = Node->getOperand(i);
1712      if (V.getOpcode() == ISD::UNDEF)
1713        continue;
1714      ShuffleVec[i] = V == Value1 ? 0 : NumElems;
1715    }
1716    if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
1717      // Get the splatted value into the low element of a vector register.
1718      SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
1719      SDValue Vec2;
1720      if (Value2.getNode())
1721        Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
1722      else
1723        Vec2 = DAG.getUNDEF(VT);
1724
1725      // Return shuffle(LowValVec, undef, <0,0,0,0>)
1726      return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
1727    }
1728  }
1729
1730  // Otherwise, we can't handle this case efficiently.
1731  return ExpandVectorBuildThroughStack(Node);
1732}
1733
1734// ExpandLibCall - Expand a node into a call to a libcall.  If the result value
1735// does not fit into a register, return the lo part and set the hi part to the
1736// by-reg argument.  If it does fit into a single register, return the result
1737// and leave the Hi part unset.
1738SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
1739                                            bool isSigned) {
1740  // The input chain to this libcall is the entry node of the function.
1741  // Legalizing the call will automatically add the previous call to the
1742  // dependence.
1743  SDValue InChain = DAG.getEntryNode();
1744
1745  TargetLowering::ArgListTy Args;
1746  TargetLowering::ArgListEntry Entry;
1747  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1748    EVT ArgVT = Node->getOperand(i).getValueType();
1749    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1750    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
1751    Entry.isSExt = isSigned;
1752    Entry.isZExt = !isSigned;
1753    Args.push_back(Entry);
1754  }
1755  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1756                                         TLI.getPointerTy());
1757
1758  Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1759
1760  // isTailCall may be true since the callee does not reference caller stack
1761  // frame. Check if it's in the right position.
1762  bool isTailCall = isInTailCallPosition(DAG, Node, TLI);
1763  std::pair<SDValue, SDValue> CallInfo =
1764    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
1765                    0, TLI.getLibcallCallingConv(LC), isTailCall,
1766                    /*isReturnValueUsed=*/true,
1767                    Callee, Args, DAG, Node->getDebugLoc());
1768
1769  if (!CallInfo.second.getNode())
1770    // It's a tailcall, return the chain (which is the DAG root).
1771    return DAG.getRoot();
1772
1773  return CallInfo.first;
1774}
1775
1776/// ExpandLibCall - Generate a libcall taking the given operands as arguments
1777/// and returning a result of type RetVT.
1778SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, EVT RetVT,
1779                                            const SDValue *Ops, unsigned NumOps,
1780                                            bool isSigned, DebugLoc dl) {
1781  TargetLowering::ArgListTy Args;
1782  Args.reserve(NumOps);
1783
1784  TargetLowering::ArgListEntry Entry;
1785  for (unsigned i = 0; i != NumOps; ++i) {
1786    Entry.Node = Ops[i];
1787    Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
1788    Entry.isSExt = isSigned;
1789    Entry.isZExt = !isSigned;
1790    Args.push_back(Entry);
1791  }
1792  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1793                                         TLI.getPointerTy());
1794
1795  Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
1796  std::pair<SDValue,SDValue> CallInfo =
1797  TLI.LowerCallTo(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false,
1798                  false, 0, TLI.getLibcallCallingConv(LC), false,
1799                  /*isReturnValueUsed=*/true,
1800                  Callee, Args, DAG, dl);
1801
1802  return CallInfo.first;
1803}
1804
1805// ExpandChainLibCall - Expand a node into a call to a libcall. Similar to
1806// ExpandLibCall except that the first operand is the in-chain.
1807std::pair<SDValue, SDValue>
1808SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC,
1809                                         SDNode *Node,
1810                                         bool isSigned) {
1811  SDValue InChain = Node->getOperand(0);
1812
1813  TargetLowering::ArgListTy Args;
1814  TargetLowering::ArgListEntry Entry;
1815  for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) {
1816    EVT ArgVT = Node->getOperand(i).getValueType();
1817    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1818    Entry.Node = Node->getOperand(i);
1819    Entry.Ty = ArgTy;
1820    Entry.isSExt = isSigned;
1821    Entry.isZExt = !isSigned;
1822    Args.push_back(Entry);
1823  }
1824  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1825                                         TLI.getPointerTy());
1826
1827  Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1828  std::pair<SDValue, SDValue> CallInfo =
1829    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
1830                    0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false,
1831                    /*isReturnValueUsed=*/true,
1832                    Callee, Args, DAG, Node->getDebugLoc());
1833
1834  return CallInfo;
1835}
1836
1837SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
1838                                              RTLIB::Libcall Call_F32,
1839                                              RTLIB::Libcall Call_F64,
1840                                              RTLIB::Libcall Call_F80,
1841                                              RTLIB::Libcall Call_PPCF128) {
1842  RTLIB::Libcall LC;
1843  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1844  default: assert(0 && "Unexpected request for libcall!");
1845  case MVT::f32: LC = Call_F32; break;
1846  case MVT::f64: LC = Call_F64; break;
1847  case MVT::f80: LC = Call_F80; break;
1848  case MVT::ppcf128: LC = Call_PPCF128; break;
1849  }
1850  return ExpandLibCall(LC, Node, false);
1851}
1852
1853SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
1854                                               RTLIB::Libcall Call_I8,
1855                                               RTLIB::Libcall Call_I16,
1856                                               RTLIB::Libcall Call_I32,
1857                                               RTLIB::Libcall Call_I64,
1858                                               RTLIB::Libcall Call_I128) {
1859  RTLIB::Libcall LC;
1860  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1861  default: assert(0 && "Unexpected request for libcall!");
1862  case MVT::i8:   LC = Call_I8; break;
1863  case MVT::i16:  LC = Call_I16; break;
1864  case MVT::i32:  LC = Call_I32; break;
1865  case MVT::i64:  LC = Call_I64; break;
1866  case MVT::i128: LC = Call_I128; break;
1867  }
1868  return ExpandLibCall(LC, Node, isSigned);
1869}
1870
1871/// isDivRemLibcallAvailable - Return true if divmod libcall is available.
1872static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned,
1873                                     const TargetLowering &TLI) {
1874  RTLIB::Libcall LC;
1875  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1876  default: assert(0 && "Unexpected request for libcall!");
1877  case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
1878  case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
1879  case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
1880  case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
1881  case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
1882  }
1883
1884  return TLI.getLibcallName(LC) != 0;
1885}
1886
1887/// UseDivRem - Only issue divrem libcall if both quotient and remainder are
1888/// needed.
1889static bool UseDivRem(SDNode *Node, bool isSigned, bool isDIV) {
1890  unsigned OtherOpcode = 0;
1891  if (isSigned)
1892    OtherOpcode = isDIV ? ISD::SREM : ISD::SDIV;
1893  else
1894    OtherOpcode = isDIV ? ISD::UREM : ISD::UDIV;
1895
1896  SDValue Op0 = Node->getOperand(0);
1897  SDValue Op1 = Node->getOperand(1);
1898  for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
1899         UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
1900    SDNode *User = *UI;
1901    if (User == Node)
1902      continue;
1903    if (User->getOpcode() == OtherOpcode &&
1904        User->getOperand(0) == Op0 &&
1905        User->getOperand(1) == Op1)
1906      return true;
1907  }
1908  return false;
1909}
1910
1911/// ExpandDivRemLibCall - Issue libcalls to __{u}divmod to compute div / rem
1912/// pairs.
1913void
1914SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node,
1915                                          SmallVectorImpl<SDValue> &Results) {
1916  unsigned Opcode = Node->getOpcode();
1917  bool isSigned = Opcode == ISD::SDIVREM;
1918
1919  RTLIB::Libcall LC;
1920  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1921  default: assert(0 && "Unexpected request for libcall!");
1922  case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
1923  case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
1924  case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
1925  case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
1926  case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
1927  }
1928
1929  // The input chain to this libcall is the entry node of the function.
1930  // Legalizing the call will automatically add the previous call to the
1931  // dependence.
1932  SDValue InChain = DAG.getEntryNode();
1933
1934  EVT RetVT = Node->getValueType(0);
1935  Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
1936
1937  TargetLowering::ArgListTy Args;
1938  TargetLowering::ArgListEntry Entry;
1939  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1940    EVT ArgVT = Node->getOperand(i).getValueType();
1941    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1942    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
1943    Entry.isSExt = isSigned;
1944    Entry.isZExt = !isSigned;
1945    Args.push_back(Entry);
1946  }
1947
1948  // Also pass the return address of the remainder.
1949  SDValue FIPtr = DAG.CreateStackTemporary(RetVT);
1950  Entry.Node = FIPtr;
1951  Entry.Ty = RetTy->getPointerTo();
1952  Entry.isSExt = isSigned;
1953  Entry.isZExt = !isSigned;
1954  Args.push_back(Entry);
1955
1956  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1957                                         TLI.getPointerTy());
1958
1959  DebugLoc dl = Node->getDebugLoc();
1960  std::pair<SDValue, SDValue> CallInfo =
1961    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
1962                    0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false,
1963                    /*isReturnValueUsed=*/true, Callee, Args, DAG, dl);
1964
1965  // Remainder is loaded back from the stack frame.
1966  SDValue Rem = DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr,
1967                            MachinePointerInfo(), false, false, 0);
1968  Results.push_back(CallInfo.first);
1969  Results.push_back(Rem);
1970}
1971
1972/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
1973/// INT_TO_FP operation of the specified operand when the target requests that
1974/// we expand it.  At this point, we know that the result and operand types are
1975/// legal for the target.
1976SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
1977                                                   SDValue Op0,
1978                                                   EVT DestVT,
1979                                                   DebugLoc dl) {
1980  if (Op0.getValueType() == MVT::i32) {
1981    // simple 32-bit [signed|unsigned] integer to float/double expansion
1982
1983    // Get the stack frame index of a 8 byte buffer.
1984    SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
1985
1986    // word offset constant for Hi/Lo address computation
1987    SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy());
1988    // set up Hi and Lo (into buffer) address based on endian
1989    SDValue Hi = StackSlot;
1990    SDValue Lo = DAG.getNode(ISD::ADD, dl,
1991                             TLI.getPointerTy(), StackSlot, WordOff);
1992    if (TLI.isLittleEndian())
1993      std::swap(Hi, Lo);
1994
1995    // if signed map to unsigned space
1996    SDValue Op0Mapped;
1997    if (isSigned) {
1998      // constant used to invert sign bit (signed to unsigned mapping)
1999      SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32);
2000      Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
2001    } else {
2002      Op0Mapped = Op0;
2003    }
2004    // store the lo of the constructed double - based on integer input
2005    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
2006                                  Op0Mapped, Lo, MachinePointerInfo(),
2007                                  false, false, 0);
2008    // initial hi portion of constructed double
2009    SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
2010    // store the hi of the constructed double - biased exponent
2011    SDValue Store2 = DAG.getStore(Store1, dl, InitialHi, Hi,
2012                                  MachinePointerInfo(),
2013                                  false, false, 0);
2014    // load the constructed double
2015    SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot,
2016                               MachinePointerInfo(), false, false, 0);
2017    // FP constant to bias correct the final result
2018    SDValue Bias = DAG.getConstantFP(isSigned ?
2019                                     BitsToDouble(0x4330000080000000ULL) :
2020                                     BitsToDouble(0x4330000000000000ULL),
2021                                     MVT::f64);
2022    // subtract the bias
2023    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2024    // final result
2025    SDValue Result;
2026    // handle final rounding
2027    if (DestVT == MVT::f64) {
2028      // do nothing
2029      Result = Sub;
2030    } else if (DestVT.bitsLT(MVT::f64)) {
2031      Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
2032                           DAG.getIntPtrConstant(0));
2033    } else if (DestVT.bitsGT(MVT::f64)) {
2034      Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
2035    }
2036    return Result;
2037  }
2038  assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2039  // Code below here assumes !isSigned without checking again.
2040
2041  // Implementation of unsigned i64 to f64 following the algorithm in
2042  // __floatundidf in compiler_rt. This implementation has the advantage
2043  // of performing rounding correctly, both in the default rounding mode
2044  // and in all alternate rounding modes.
2045  // TODO: Generalize this for use with other types.
2046  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) {
2047    SDValue TwoP52 =
2048      DAG.getConstant(UINT64_C(0x4330000000000000), MVT::i64);
2049    SDValue TwoP84PlusTwoP52 =
2050      DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), MVT::f64);
2051    SDValue TwoP84 =
2052      DAG.getConstant(UINT64_C(0x4530000000000000), MVT::i64);
2053
2054    SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32);
2055    SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0,
2056                             DAG.getConstant(32, MVT::i64));
2057    SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52);
2058    SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84);
2059    SDValue LoFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, LoOr);
2060    SDValue HiFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, HiOr);
2061    SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt,
2062                                TwoP84PlusTwoP52);
2063    return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub);
2064  }
2065
2066  // Implementation of unsigned i64 to f32.
2067  // TODO: Generalize this for use with other types.
2068  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) {
2069    // For unsigned conversions, convert them to signed conversions using the
2070    // algorithm from the x86_64 __floatundidf in compiler_rt.
2071    if (!isSigned) {
2072      SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Op0);
2073
2074      SDValue ShiftConst =
2075          DAG.getConstant(1, TLI.getShiftAmountTy(Op0.getValueType()));
2076      SDValue Shr = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, ShiftConst);
2077      SDValue AndConst = DAG.getConstant(1, MVT::i64);
2078      SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, AndConst);
2079      SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, Shr);
2080
2081      SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Or);
2082      SDValue Slow = DAG.getNode(ISD::FADD, dl, MVT::f32, SignCvt, SignCvt);
2083
2084      // TODO: This really should be implemented using a branch rather than a
2085      // select.  We happen to get lucky and machinesink does the right
2086      // thing most of the time.  This would be a good candidate for a
2087      //pseudo-op, or, even better, for whole-function isel.
2088      SDValue SignBitTest = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2089        Op0, DAG.getConstant(0, MVT::i64), ISD::SETLT);
2090      return DAG.getNode(ISD::SELECT, dl, MVT::f32, SignBitTest, Slow, Fast);
2091    }
2092
2093    // Otherwise, implement the fully general conversion.
2094
2095    SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2096         DAG.getConstant(UINT64_C(0xfffffffffffff800), MVT::i64));
2097    SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And,
2098         DAG.getConstant(UINT64_C(0x800), MVT::i64));
2099    SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2100         DAG.getConstant(UINT64_C(0x7ff), MVT::i64));
2101    SDValue Ne = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2102                   And2, DAG.getConstant(UINT64_C(0), MVT::i64), ISD::SETNE);
2103    SDValue Sel = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ne, Or, Op0);
2104    SDValue Ge = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2105                   Op0, DAG.getConstant(UINT64_C(0x0020000000000000), MVT::i64),
2106                   ISD::SETUGE);
2107    SDValue Sel2 = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ge, Sel, Op0);
2108    EVT SHVT = TLI.getShiftAmountTy(Sel2.getValueType());
2109
2110    SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2,
2111                             DAG.getConstant(32, SHVT));
2112    SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh);
2113    SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc);
2114    SDValue TwoP32 =
2115      DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), MVT::f64);
2116    SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt);
2117    SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2);
2118    SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo);
2119    SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2);
2120    return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd,
2121                       DAG.getIntPtrConstant(0));
2122  }
2123
2124  SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2125
2126  SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()),
2127                                 Op0, DAG.getConstant(0, Op0.getValueType()),
2128                                 ISD::SETLT);
2129  SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
2130  SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(),
2131                                    SignSet, Four, Zero);
2132
2133  // If the sign bit of the integer is set, the large number will be treated
2134  // as a negative number.  To counteract this, the dynamic code adds an
2135  // offset depending on the data type.
2136  uint64_t FF;
2137  switch (Op0.getValueType().getSimpleVT().SimpleTy) {
2138  default: assert(0 && "Unsupported integer type!");
2139  case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
2140  case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
2141  case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
2142  case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
2143  }
2144  if (TLI.isLittleEndian()) FF <<= 32;
2145  Constant *FudgeFactor = ConstantInt::get(
2146                                       Type::getInt64Ty(*DAG.getContext()), FF);
2147
2148  SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
2149  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2150  CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset);
2151  Alignment = std::min(Alignment, 4u);
2152  SDValue FudgeInReg;
2153  if (DestVT == MVT::f32)
2154    FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2155                             MachinePointerInfo::getConstantPool(),
2156                             false, false, Alignment);
2157  else {
2158    SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT,
2159                                  DAG.getEntryNode(), CPIdx,
2160                                  MachinePointerInfo::getConstantPool(),
2161                                  MVT::f32, false, false, Alignment);
2162    HandleSDNode Handle(Load);
2163    LegalizeOp(Load.getNode());
2164    FudgeInReg = Handle.getValue();
2165  }
2166
2167  return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2168}
2169
2170/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
2171/// *INT_TO_FP operation of the specified operand when the target requests that
2172/// we promote it.  At this point, we know that the result and operand types are
2173/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2174/// operation that takes a larger input.
2175SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
2176                                                    EVT DestVT,
2177                                                    bool isSigned,
2178                                                    DebugLoc dl) {
2179  // First step, figure out the appropriate *INT_TO_FP operation to use.
2180  EVT NewInTy = LegalOp.getValueType();
2181
2182  unsigned OpToUse = 0;
2183
2184  // Scan for the appropriate larger type to use.
2185  while (1) {
2186    NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2187    assert(NewInTy.isInteger() && "Ran out of possibilities!");
2188
2189    // If the target supports SINT_TO_FP of this type, use it.
2190    if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2191      OpToUse = ISD::SINT_TO_FP;
2192      break;
2193    }
2194    if (isSigned) continue;
2195
2196    // If the target supports UINT_TO_FP of this type, use it.
2197    if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2198      OpToUse = ISD::UINT_TO_FP;
2199      break;
2200    }
2201
2202    // Otherwise, try a larger type.
2203  }
2204
2205  // Okay, we found the operation and type to use.  Zero extend our input to the
2206  // desired type then run the operation on it.
2207  return DAG.getNode(OpToUse, dl, DestVT,
2208                     DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2209                                 dl, NewInTy, LegalOp));
2210}
2211
2212/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
2213/// FP_TO_*INT operation of the specified operand when the target requests that
2214/// we promote it.  At this point, we know that the result and operand types are
2215/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2216/// operation that returns a larger result.
2217SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
2218                                                    EVT DestVT,
2219                                                    bool isSigned,
2220                                                    DebugLoc dl) {
2221  // First step, figure out the appropriate FP_TO*INT operation to use.
2222  EVT NewOutTy = DestVT;
2223
2224  unsigned OpToUse = 0;
2225
2226  // Scan for the appropriate larger type to use.
2227  while (1) {
2228    NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2229    assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2230
2231    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2232      OpToUse = ISD::FP_TO_SINT;
2233      break;
2234    }
2235
2236    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
2237      OpToUse = ISD::FP_TO_UINT;
2238      break;
2239    }
2240
2241    // Otherwise, try a larger type.
2242  }
2243
2244
2245  // Okay, we found the operation and type to use.
2246  SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2247
2248  // Truncate the result of the extended FP_TO_*INT operation to the desired
2249  // size.
2250  return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2251}
2252
2253/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
2254///
2255SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) {
2256  EVT VT = Op.getValueType();
2257  EVT SHVT = TLI.getShiftAmountTy(VT);
2258  SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2259  switch (VT.getSimpleVT().SimpleTy) {
2260  default: assert(0 && "Unhandled Expand type in BSWAP!");
2261  case MVT::i16:
2262    Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2263    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2264    return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2265  case MVT::i32:
2266    Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2267    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2268    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2269    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2270    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
2271    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT));
2272    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2273    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2274    return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2275  case MVT::i64:
2276    Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT));
2277    Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT));
2278    Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2279    Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2280    Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2281    Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2282    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT));
2283    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT));
2284    Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
2285    Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
2286    Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
2287    Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
2288    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
2289    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
2290    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2291    Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2292    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2293    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2294    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2295    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2296    return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2297  }
2298}
2299
2300/// SplatByte - Distribute ByteVal over NumBits bits.
2301// FIXME: Move this helper to a common place.
2302static APInt SplatByte(unsigned NumBits, uint8_t ByteVal) {
2303  APInt Val = APInt(NumBits, ByteVal);
2304  unsigned Shift = 8;
2305  for (unsigned i = NumBits; i > 8; i >>= 1) {
2306    Val = (Val << Shift) | Val;
2307    Shift <<= 1;
2308  }
2309  return Val;
2310}
2311
2312/// ExpandBitCount - Expand the specified bitcount instruction into operations.
2313///
2314SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
2315                                             DebugLoc dl) {
2316  switch (Opc) {
2317  default: assert(0 && "Cannot expand this yet!");
2318  case ISD::CTPOP: {
2319    EVT VT = Op.getValueType();
2320    EVT ShVT = TLI.getShiftAmountTy(VT);
2321    unsigned Len = VT.getSizeInBits();
2322
2323    assert(VT.isInteger() && Len <= 128 && Len % 8 == 0 &&
2324           "CTPOP not implemented for this type.");
2325
2326    // This is the "best" algorithm from
2327    // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
2328
2329    SDValue Mask55 = DAG.getConstant(SplatByte(Len, 0x55), VT);
2330    SDValue Mask33 = DAG.getConstant(SplatByte(Len, 0x33), VT);
2331    SDValue Mask0F = DAG.getConstant(SplatByte(Len, 0x0F), VT);
2332    SDValue Mask01 = DAG.getConstant(SplatByte(Len, 0x01), VT);
2333
2334    // v = v - ((v >> 1) & 0x55555555...)
2335    Op = DAG.getNode(ISD::SUB, dl, VT, Op,
2336                     DAG.getNode(ISD::AND, dl, VT,
2337                                 DAG.getNode(ISD::SRL, dl, VT, Op,
2338                                             DAG.getConstant(1, ShVT)),
2339                                 Mask55));
2340    // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
2341    Op = DAG.getNode(ISD::ADD, dl, VT,
2342                     DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
2343                     DAG.getNode(ISD::AND, dl, VT,
2344                                 DAG.getNode(ISD::SRL, dl, VT, Op,
2345                                             DAG.getConstant(2, ShVT)),
2346                                 Mask33));
2347    // v = (v + (v >> 4)) & 0x0F0F0F0F...
2348    Op = DAG.getNode(ISD::AND, dl, VT,
2349                     DAG.getNode(ISD::ADD, dl, VT, Op,
2350                                 DAG.getNode(ISD::SRL, dl, VT, Op,
2351                                             DAG.getConstant(4, ShVT))),
2352                     Mask0F);
2353    // v = (v * 0x01010101...) >> (Len - 8)
2354    Op = DAG.getNode(ISD::SRL, dl, VT,
2355                     DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
2356                     DAG.getConstant(Len - 8, ShVT));
2357
2358    return Op;
2359  }
2360  case ISD::CTLZ: {
2361    // for now, we do this:
2362    // x = x | (x >> 1);
2363    // x = x | (x >> 2);
2364    // ...
2365    // x = x | (x >>16);
2366    // x = x | (x >>32); // for 64-bit input
2367    // return popcount(~x);
2368    //
2369    // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
2370    EVT VT = Op.getValueType();
2371    EVT ShVT = TLI.getShiftAmountTy(VT);
2372    unsigned len = VT.getSizeInBits();
2373    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2374      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2375      Op = DAG.getNode(ISD::OR, dl, VT, Op,
2376                       DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
2377    }
2378    Op = DAG.getNOT(dl, Op, VT);
2379    return DAG.getNode(ISD::CTPOP, dl, VT, Op);
2380  }
2381  case ISD::CTTZ: {
2382    // for now, we use: { return popcount(~x & (x - 1)); }
2383    // unless the target has ctlz but not ctpop, in which case we use:
2384    // { return 32 - nlz(~x & (x-1)); }
2385    // see also http://www.hackersdelight.org/HDcode/ntz.cc
2386    EVT VT = Op.getValueType();
2387    SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
2388                               DAG.getNOT(dl, Op, VT),
2389                               DAG.getNode(ISD::SUB, dl, VT, Op,
2390                                           DAG.getConstant(1, VT)));
2391    // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
2392    if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
2393        TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
2394      return DAG.getNode(ISD::SUB, dl, VT,
2395                         DAG.getConstant(VT.getSizeInBits(), VT),
2396                         DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
2397    return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
2398  }
2399  }
2400}
2401
2402std::pair <SDValue, SDValue> SelectionDAGLegalize::ExpandAtomic(SDNode *Node) {
2403  unsigned Opc = Node->getOpcode();
2404  MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
2405  RTLIB::Libcall LC;
2406
2407  switch (Opc) {
2408  default:
2409    llvm_unreachable("Unhandled atomic intrinsic Expand!");
2410    break;
2411  case ISD::ATOMIC_SWAP:
2412    switch (VT.SimpleTy) {
2413    default: llvm_unreachable("Unexpected value type for atomic!");
2414    case MVT::i8:  LC = RTLIB::SYNC_LOCK_TEST_AND_SET_1; break;
2415    case MVT::i16: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_2; break;
2416    case MVT::i32: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_4; break;
2417    case MVT::i64: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_8; break;
2418    }
2419    break;
2420  case ISD::ATOMIC_CMP_SWAP:
2421    switch (VT.SimpleTy) {
2422    default: llvm_unreachable("Unexpected value type for atomic!");
2423    case MVT::i8:  LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1; break;
2424    case MVT::i16: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2; break;
2425    case MVT::i32: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4; break;
2426    case MVT::i64: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8; break;
2427    }
2428    break;
2429  case ISD::ATOMIC_LOAD_ADD:
2430    switch (VT.SimpleTy) {
2431    default: llvm_unreachable("Unexpected value type for atomic!");
2432    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_ADD_1; break;
2433    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_ADD_2; break;
2434    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_ADD_4; break;
2435    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_ADD_8; break;
2436    }
2437    break;
2438  case ISD::ATOMIC_LOAD_SUB:
2439    switch (VT.SimpleTy) {
2440    default: llvm_unreachable("Unexpected value type for atomic!");
2441    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_SUB_1; break;
2442    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_SUB_2; break;
2443    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_SUB_4; break;
2444    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_SUB_8; break;
2445    }
2446    break;
2447  case ISD::ATOMIC_LOAD_AND:
2448    switch (VT.SimpleTy) {
2449    default: llvm_unreachable("Unexpected value type for atomic!");
2450    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_AND_1; break;
2451    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_AND_2; break;
2452    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_AND_4; break;
2453    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_AND_8; break;
2454    }
2455    break;
2456  case ISD::ATOMIC_LOAD_OR:
2457    switch (VT.SimpleTy) {
2458    default: llvm_unreachable("Unexpected value type for atomic!");
2459    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_OR_1; break;
2460    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_OR_2; break;
2461    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_OR_4; break;
2462    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_OR_8; break;
2463    }
2464    break;
2465  case ISD::ATOMIC_LOAD_XOR:
2466    switch (VT.SimpleTy) {
2467    default: llvm_unreachable("Unexpected value type for atomic!");
2468    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_XOR_1; break;
2469    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_XOR_2; break;
2470    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_XOR_4; break;
2471    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_XOR_8; break;
2472    }
2473    break;
2474  case ISD::ATOMIC_LOAD_NAND:
2475    switch (VT.SimpleTy) {
2476    default: llvm_unreachable("Unexpected value type for atomic!");
2477    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_NAND_1; break;
2478    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_NAND_2; break;
2479    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_NAND_4; break;
2480    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_NAND_8; break;
2481    }
2482    break;
2483  }
2484
2485  return ExpandChainLibCall(LC, Node, false);
2486}
2487
2488void SelectionDAGLegalize::ExpandNode(SDNode *Node) {
2489  SmallVector<SDValue, 8> Results;
2490  DebugLoc dl = Node->getDebugLoc();
2491  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2492  switch (Node->getOpcode()) {
2493  case ISD::CTPOP:
2494  case ISD::CTLZ:
2495  case ISD::CTTZ:
2496    Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
2497    Results.push_back(Tmp1);
2498    break;
2499  case ISD::BSWAP:
2500    Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2501    break;
2502  case ISD::FRAMEADDR:
2503  case ISD::RETURNADDR:
2504  case ISD::FRAME_TO_ARGS_OFFSET:
2505    Results.push_back(DAG.getConstant(0, Node->getValueType(0)));
2506    break;
2507  case ISD::FLT_ROUNDS_:
2508    Results.push_back(DAG.getConstant(1, Node->getValueType(0)));
2509    break;
2510  case ISD::EH_RETURN:
2511  case ISD::EH_LABEL:
2512  case ISD::PREFETCH:
2513  case ISD::VAEND:
2514  case ISD::EH_SJLJ_LONGJMP:
2515  case ISD::EH_SJLJ_DISPATCHSETUP:
2516    // If the target didn't expand these, there's nothing to do, so just
2517    // preserve the chain and be done.
2518    Results.push_back(Node->getOperand(0));
2519    break;
2520  case ISD::EH_SJLJ_SETJMP:
2521    // If the target didn't expand this, just return 'zero' and preserve the
2522    // chain.
2523    Results.push_back(DAG.getConstant(0, MVT::i32));
2524    Results.push_back(Node->getOperand(0));
2525    break;
2526  case ISD::ATOMIC_FENCE:
2527  case ISD::MEMBARRIER: {
2528    // If the target didn't lower this, lower it to '__sync_synchronize()' call
2529    // FIXME: handle "fence singlethread" more efficiently.
2530    TargetLowering::ArgListTy Args;
2531    std::pair<SDValue, SDValue> CallResult =
2532      TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()),
2533                      false, false, false, false, 0, CallingConv::C,
2534                      /*isTailCall=*/false,
2535                      /*isReturnValueUsed=*/true,
2536                      DAG.getExternalSymbol("__sync_synchronize",
2537                                            TLI.getPointerTy()),
2538                      Args, DAG, dl);
2539    Results.push_back(CallResult.second);
2540    break;
2541  }
2542  case ISD::ATOMIC_LOAD: {
2543    // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP.
2544    SDValue Zero = DAG.getConstant(0, Node->getValueType(0));
2545    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
2546                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
2547                                 Node->getOperand(0),
2548                                 Node->getOperand(1), Zero, Zero,
2549                                 cast<AtomicSDNode>(Node)->getMemOperand(),
2550                                 cast<AtomicSDNode>(Node)->getOrdering(),
2551                                 cast<AtomicSDNode>(Node)->getSynchScope());
2552    Results.push_back(Swap.getValue(0));
2553    Results.push_back(Swap.getValue(1));
2554    break;
2555  }
2556  case ISD::ATOMIC_STORE: {
2557    // There is no libcall for atomic store; fake it with ATOMIC_SWAP.
2558    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
2559                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
2560                                 Node->getOperand(0),
2561                                 Node->getOperand(1), Node->getOperand(2),
2562                                 cast<AtomicSDNode>(Node)->getMemOperand(),
2563                                 cast<AtomicSDNode>(Node)->getOrdering(),
2564                                 cast<AtomicSDNode>(Node)->getSynchScope());
2565    Results.push_back(Swap.getValue(1));
2566    break;
2567  }
2568  // By default, atomic intrinsics are marked Legal and lowered. Targets
2569  // which don't support them directly, however, may want libcalls, in which
2570  // case they mark them Expand, and we get here.
2571  case ISD::ATOMIC_SWAP:
2572  case ISD::ATOMIC_LOAD_ADD:
2573  case ISD::ATOMIC_LOAD_SUB:
2574  case ISD::ATOMIC_LOAD_AND:
2575  case ISD::ATOMIC_LOAD_OR:
2576  case ISD::ATOMIC_LOAD_XOR:
2577  case ISD::ATOMIC_LOAD_NAND:
2578  case ISD::ATOMIC_LOAD_MIN:
2579  case ISD::ATOMIC_LOAD_MAX:
2580  case ISD::ATOMIC_LOAD_UMIN:
2581  case ISD::ATOMIC_LOAD_UMAX:
2582  case ISD::ATOMIC_CMP_SWAP: {
2583    std::pair<SDValue, SDValue> Tmp = ExpandAtomic(Node);
2584    Results.push_back(Tmp.first);
2585    Results.push_back(Tmp.second);
2586    break;
2587  }
2588  case ISD::DYNAMIC_STACKALLOC:
2589    ExpandDYNAMIC_STACKALLOC(Node, Results);
2590    break;
2591  case ISD::MERGE_VALUES:
2592    for (unsigned i = 0; i < Node->getNumValues(); i++)
2593      Results.push_back(Node->getOperand(i));
2594    break;
2595  case ISD::UNDEF: {
2596    EVT VT = Node->getValueType(0);
2597    if (VT.isInteger())
2598      Results.push_back(DAG.getConstant(0, VT));
2599    else {
2600      assert(VT.isFloatingPoint() && "Unknown value type!");
2601      Results.push_back(DAG.getConstantFP(0, VT));
2602    }
2603    break;
2604  }
2605  case ISD::TRAP: {
2606    // If this operation is not supported, lower it to 'abort()' call
2607    TargetLowering::ArgListTy Args;
2608    std::pair<SDValue, SDValue> CallResult =
2609      TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()),
2610                      false, false, false, false, 0, CallingConv::C,
2611                      /*isTailCall=*/false,
2612                      /*isReturnValueUsed=*/true,
2613                      DAG.getExternalSymbol("abort", TLI.getPointerTy()),
2614                      Args, DAG, dl);
2615    Results.push_back(CallResult.second);
2616    break;
2617  }
2618  case ISD::FP_ROUND:
2619  case ISD::BITCAST:
2620    Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
2621                            Node->getValueType(0), dl);
2622    Results.push_back(Tmp1);
2623    break;
2624  case ISD::FP_EXTEND:
2625    Tmp1 = EmitStackConvert(Node->getOperand(0),
2626                            Node->getOperand(0).getValueType(),
2627                            Node->getValueType(0), dl);
2628    Results.push_back(Tmp1);
2629    break;
2630  case ISD::SIGN_EXTEND_INREG: {
2631    // NOTE: we could fall back on load/store here too for targets without
2632    // SAR.  However, it is doubtful that any exist.
2633    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2634    EVT VT = Node->getValueType(0);
2635    EVT ShiftAmountTy = TLI.getShiftAmountTy(VT);
2636    if (VT.isVector())
2637      ShiftAmountTy = VT;
2638    unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
2639                        ExtraVT.getScalarType().getSizeInBits();
2640    SDValue ShiftCst = DAG.getConstant(BitsDiff, ShiftAmountTy);
2641    Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
2642                       Node->getOperand(0), ShiftCst);
2643    Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
2644    Results.push_back(Tmp1);
2645    break;
2646  }
2647  case ISD::FP_ROUND_INREG: {
2648    // The only way we can lower this is to turn it into a TRUNCSTORE,
2649    // EXTLOAD pair, targeting a temporary location (a stack slot).
2650
2651    // NOTE: there is a choice here between constantly creating new stack
2652    // slots and always reusing the same one.  We currently always create
2653    // new ones, as reuse may inhibit scheduling.
2654    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2655    Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
2656                            Node->getValueType(0), dl);
2657    Results.push_back(Tmp1);
2658    break;
2659  }
2660  case ISD::SINT_TO_FP:
2661  case ISD::UINT_TO_FP:
2662    Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
2663                                Node->getOperand(0), Node->getValueType(0), dl);
2664    Results.push_back(Tmp1);
2665    break;
2666  case ISD::FP_TO_UINT: {
2667    SDValue True, False;
2668    EVT VT =  Node->getOperand(0).getValueType();
2669    EVT NVT = Node->getValueType(0);
2670    APFloat apf(APInt::getNullValue(VT.getSizeInBits()));
2671    APInt x = APInt::getSignBit(NVT.getSizeInBits());
2672    (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
2673    Tmp1 = DAG.getConstantFP(apf, VT);
2674    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT),
2675                        Node->getOperand(0),
2676                        Tmp1, ISD::SETLT);
2677    True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
2678    False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
2679                        DAG.getNode(ISD::FSUB, dl, VT,
2680                                    Node->getOperand(0), Tmp1));
2681    False = DAG.getNode(ISD::XOR, dl, NVT, False,
2682                        DAG.getConstant(x, NVT));
2683    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False);
2684    Results.push_back(Tmp1);
2685    break;
2686  }
2687  case ISD::VAARG: {
2688    const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2689    EVT VT = Node->getValueType(0);
2690    Tmp1 = Node->getOperand(0);
2691    Tmp2 = Node->getOperand(1);
2692    unsigned Align = Node->getConstantOperandVal(3);
2693
2694    SDValue VAListLoad = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2,
2695                                     MachinePointerInfo(V), false, false, 0);
2696    SDValue VAList = VAListLoad;
2697
2698    if (Align > TLI.getMinStackArgumentAlignment()) {
2699      assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
2700
2701      VAList = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2702                           DAG.getConstant(Align - 1,
2703                                           TLI.getPointerTy()));
2704
2705      VAList = DAG.getNode(ISD::AND, dl, TLI.getPointerTy(), VAList,
2706                           DAG.getConstant(-(int64_t)Align,
2707                                           TLI.getPointerTy()));
2708    }
2709
2710    // Increment the pointer, VAList, to the next vaarg
2711    Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2712                       DAG.getConstant(TLI.getTargetData()->
2713                          getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())),
2714                                       TLI.getPointerTy()));
2715    // Store the incremented VAList to the legalized pointer
2716    Tmp3 = DAG.getStore(VAListLoad.getValue(1), dl, Tmp3, Tmp2,
2717                        MachinePointerInfo(V), false, false, 0);
2718    // Load the actual argument out of the pointer VAList
2719    Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, MachinePointerInfo(),
2720                                  false, false, 0));
2721    Results.push_back(Results[0].getValue(1));
2722    break;
2723  }
2724  case ISD::VACOPY: {
2725    // This defaults to loading a pointer from the input and storing it to the
2726    // output, returning the chain.
2727    const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2728    const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2729    Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0),
2730                       Node->getOperand(2), MachinePointerInfo(VS),
2731                       false, false, 0);
2732    Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2733                        MachinePointerInfo(VD), false, false, 0);
2734    Results.push_back(Tmp1);
2735    break;
2736  }
2737  case ISD::EXTRACT_VECTOR_ELT:
2738    if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
2739      // This must be an access of the only element.  Return it.
2740      Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0),
2741                         Node->getOperand(0));
2742    else
2743      Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
2744    Results.push_back(Tmp1);
2745    break;
2746  case ISD::EXTRACT_SUBVECTOR:
2747    Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
2748    break;
2749  case ISD::INSERT_SUBVECTOR:
2750    Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0)));
2751    break;
2752  case ISD::CONCAT_VECTORS: {
2753    Results.push_back(ExpandVectorBuildThroughStack(Node));
2754    break;
2755  }
2756  case ISD::SCALAR_TO_VECTOR:
2757    Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
2758    break;
2759  case ISD::INSERT_VECTOR_ELT:
2760    Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
2761                                              Node->getOperand(1),
2762                                              Node->getOperand(2), dl));
2763    break;
2764  case ISD::VECTOR_SHUFFLE: {
2765    SmallVector<int, 8> Mask;
2766    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
2767
2768    EVT VT = Node->getValueType(0);
2769    EVT EltVT = VT.getVectorElementType();
2770    if (!TLI.isTypeLegal(EltVT))
2771      EltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT);
2772    unsigned NumElems = VT.getVectorNumElements();
2773    SmallVector<SDValue, 8> Ops;
2774    for (unsigned i = 0; i != NumElems; ++i) {
2775      if (Mask[i] < 0) {
2776        Ops.push_back(DAG.getUNDEF(EltVT));
2777        continue;
2778      }
2779      unsigned Idx = Mask[i];
2780      if (Idx < NumElems)
2781        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2782                                  Node->getOperand(0),
2783                                  DAG.getIntPtrConstant(Idx)));
2784      else
2785        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2786                                  Node->getOperand(1),
2787                                  DAG.getIntPtrConstant(Idx - NumElems)));
2788    }
2789    Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size());
2790    Results.push_back(Tmp1);
2791    break;
2792  }
2793  case ISD::EXTRACT_ELEMENT: {
2794    EVT OpTy = Node->getOperand(0).getValueType();
2795    if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
2796      // 1 -> Hi
2797      Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
2798                         DAG.getConstant(OpTy.getSizeInBits()/2,
2799                    TLI.getShiftAmountTy(Node->getOperand(0).getValueType())));
2800      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
2801    } else {
2802      // 0 -> Lo
2803      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
2804                         Node->getOperand(0));
2805    }
2806    Results.push_back(Tmp1);
2807    break;
2808  }
2809  case ISD::STACKSAVE:
2810    // Expand to CopyFromReg if the target set
2811    // StackPointerRegisterToSaveRestore.
2812    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2813      Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
2814                                           Node->getValueType(0)));
2815      Results.push_back(Results[0].getValue(1));
2816    } else {
2817      Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
2818      Results.push_back(Node->getOperand(0));
2819    }
2820    break;
2821  case ISD::STACKRESTORE:
2822    // Expand to CopyToReg if the target set
2823    // StackPointerRegisterToSaveRestore.
2824    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2825      Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
2826                                         Node->getOperand(1)));
2827    } else {
2828      Results.push_back(Node->getOperand(0));
2829    }
2830    break;
2831  case ISD::FCOPYSIGN:
2832    Results.push_back(ExpandFCOPYSIGN(Node));
2833    break;
2834  case ISD::FNEG:
2835    // Expand Y = FNEG(X) ->  Y = SUB -0.0, X
2836    Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0));
2837    Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
2838                       Node->getOperand(0));
2839    Results.push_back(Tmp1);
2840    break;
2841  case ISD::FABS: {
2842    // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
2843    EVT VT = Node->getValueType(0);
2844    Tmp1 = Node->getOperand(0);
2845    Tmp2 = DAG.getConstantFP(0.0, VT);
2846    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
2847                        Tmp1, Tmp2, ISD::SETUGT);
2848    Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1);
2849    Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3);
2850    Results.push_back(Tmp1);
2851    break;
2852  }
2853  case ISD::FSQRT:
2854    Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
2855                                      RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128));
2856    break;
2857  case ISD::FSIN:
2858    Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
2859                                      RTLIB::SIN_F80, RTLIB::SIN_PPCF128));
2860    break;
2861  case ISD::FCOS:
2862    Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
2863                                      RTLIB::COS_F80, RTLIB::COS_PPCF128));
2864    break;
2865  case ISD::FLOG:
2866    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
2867                                      RTLIB::LOG_F80, RTLIB::LOG_PPCF128));
2868    break;
2869  case ISD::FLOG2:
2870    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
2871                                      RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128));
2872    break;
2873  case ISD::FLOG10:
2874    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
2875                                      RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128));
2876    break;
2877  case ISD::FEXP:
2878    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
2879                                      RTLIB::EXP_F80, RTLIB::EXP_PPCF128));
2880    break;
2881  case ISD::FEXP2:
2882    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
2883                                      RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128));
2884    break;
2885  case ISD::FTRUNC:
2886    Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
2887                                      RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128));
2888    break;
2889  case ISD::FFLOOR:
2890    Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
2891                                      RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128));
2892    break;
2893  case ISD::FCEIL:
2894    Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
2895                                      RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128));
2896    break;
2897  case ISD::FRINT:
2898    Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
2899                                      RTLIB::RINT_F80, RTLIB::RINT_PPCF128));
2900    break;
2901  case ISD::FNEARBYINT:
2902    Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
2903                                      RTLIB::NEARBYINT_F64,
2904                                      RTLIB::NEARBYINT_F80,
2905                                      RTLIB::NEARBYINT_PPCF128));
2906    break;
2907  case ISD::FPOWI:
2908    Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
2909                                      RTLIB::POWI_F80, RTLIB::POWI_PPCF128));
2910    break;
2911  case ISD::FPOW:
2912    Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
2913                                      RTLIB::POW_F80, RTLIB::POW_PPCF128));
2914    break;
2915  case ISD::FDIV:
2916    Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
2917                                      RTLIB::DIV_F80, RTLIB::DIV_PPCF128));
2918    break;
2919  case ISD::FREM:
2920    Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
2921                                      RTLIB::REM_F80, RTLIB::REM_PPCF128));
2922    break;
2923  case ISD::FMA:
2924    Results.push_back(ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64,
2925                                      RTLIB::FMA_F80, RTLIB::FMA_PPCF128));
2926    break;
2927  case ISD::FP16_TO_FP32:
2928    Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
2929    break;
2930  case ISD::FP32_TO_FP16:
2931    Results.push_back(ExpandLibCall(RTLIB::FPROUND_F32_F16, Node, false));
2932    break;
2933  case ISD::ConstantFP: {
2934    ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
2935    // Check to see if this FP immediate is already legal.
2936    // If this is a legal constant, turn it into a TargetConstantFP node.
2937    if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0)))
2938      Results.push_back(ExpandConstantFP(CFP, true));
2939    break;
2940  }
2941  case ISD::EHSELECTION: {
2942    unsigned Reg = TLI.getExceptionSelectorRegister();
2943    assert(Reg && "Can't expand to unknown register!");
2944    Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg,
2945                                         Node->getValueType(0)));
2946    Results.push_back(Results[0].getValue(1));
2947    break;
2948  }
2949  case ISD::EXCEPTIONADDR: {
2950    unsigned Reg = TLI.getExceptionAddressRegister();
2951    assert(Reg && "Can't expand to unknown register!");
2952    Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg,
2953                                         Node->getValueType(0)));
2954    Results.push_back(Results[0].getValue(1));
2955    break;
2956  }
2957  case ISD::SUB: {
2958    EVT VT = Node->getValueType(0);
2959    assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
2960           TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
2961           "Don't know how to expand this subtraction!");
2962    Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
2963               DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT));
2964    Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp2, DAG.getConstant(1, VT));
2965    Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
2966    break;
2967  }
2968  case ISD::UREM:
2969  case ISD::SREM: {
2970    EVT VT = Node->getValueType(0);
2971    SDVTList VTs = DAG.getVTList(VT, VT);
2972    bool isSigned = Node->getOpcode() == ISD::SREM;
2973    unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
2974    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2975    Tmp2 = Node->getOperand(0);
2976    Tmp3 = Node->getOperand(1);
2977    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) ||
2978        (isDivRemLibcallAvailable(Node, isSigned, TLI) &&
2979         UseDivRem(Node, isSigned, false))) {
2980      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
2981    } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
2982      // X % Y -> X-X/Y*Y
2983      Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
2984      Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
2985      Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
2986    } else if (isSigned)
2987      Tmp1 = ExpandIntLibCall(Node, true,
2988                              RTLIB::SREM_I8,
2989                              RTLIB::SREM_I16, RTLIB::SREM_I32,
2990                              RTLIB::SREM_I64, RTLIB::SREM_I128);
2991    else
2992      Tmp1 = ExpandIntLibCall(Node, false,
2993                              RTLIB::UREM_I8,
2994                              RTLIB::UREM_I16, RTLIB::UREM_I32,
2995                              RTLIB::UREM_I64, RTLIB::UREM_I128);
2996    Results.push_back(Tmp1);
2997    break;
2998  }
2999  case ISD::UDIV:
3000  case ISD::SDIV: {
3001    bool isSigned = Node->getOpcode() == ISD::SDIV;
3002    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3003    EVT VT = Node->getValueType(0);
3004    SDVTList VTs = DAG.getVTList(VT, VT);
3005    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) ||
3006        (isDivRemLibcallAvailable(Node, isSigned, TLI) &&
3007         UseDivRem(Node, isSigned, true)))
3008      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
3009                         Node->getOperand(1));
3010    else if (isSigned)
3011      Tmp1 = ExpandIntLibCall(Node, true,
3012                              RTLIB::SDIV_I8,
3013                              RTLIB::SDIV_I16, RTLIB::SDIV_I32,
3014                              RTLIB::SDIV_I64, RTLIB::SDIV_I128);
3015    else
3016      Tmp1 = ExpandIntLibCall(Node, false,
3017                              RTLIB::UDIV_I8,
3018                              RTLIB::UDIV_I16, RTLIB::UDIV_I32,
3019                              RTLIB::UDIV_I64, RTLIB::UDIV_I128);
3020    Results.push_back(Tmp1);
3021    break;
3022  }
3023  case ISD::MULHU:
3024  case ISD::MULHS: {
3025    unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
3026                                                              ISD::SMUL_LOHI;
3027    EVT VT = Node->getValueType(0);
3028    SDVTList VTs = DAG.getVTList(VT, VT);
3029    assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
3030           "If this wasn't legal, it shouldn't have been created!");
3031    Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
3032                       Node->getOperand(1));
3033    Results.push_back(Tmp1.getValue(1));
3034    break;
3035  }
3036  case ISD::SDIVREM:
3037  case ISD::UDIVREM:
3038    // Expand into divrem libcall
3039    ExpandDivRemLibCall(Node, Results);
3040    break;
3041  case ISD::MUL: {
3042    EVT VT = Node->getValueType(0);
3043    SDVTList VTs = DAG.getVTList(VT, VT);
3044    // See if multiply or divide can be lowered using two-result operations.
3045    // We just need the low half of the multiply; try both the signed
3046    // and unsigned forms. If the target supports both SMUL_LOHI and
3047    // UMUL_LOHI, form a preference by checking which forms of plain
3048    // MULH it supports.
3049    bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
3050    bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
3051    bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
3052    bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
3053    unsigned OpToUse = 0;
3054    if (HasSMUL_LOHI && !HasMULHS) {
3055      OpToUse = ISD::SMUL_LOHI;
3056    } else if (HasUMUL_LOHI && !HasMULHU) {
3057      OpToUse = ISD::UMUL_LOHI;
3058    } else if (HasSMUL_LOHI) {
3059      OpToUse = ISD::SMUL_LOHI;
3060    } else if (HasUMUL_LOHI) {
3061      OpToUse = ISD::UMUL_LOHI;
3062    }
3063    if (OpToUse) {
3064      Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
3065                                    Node->getOperand(1)));
3066      break;
3067    }
3068    Tmp1 = ExpandIntLibCall(Node, false,
3069                            RTLIB::MUL_I8,
3070                            RTLIB::MUL_I16, RTLIB::MUL_I32,
3071                            RTLIB::MUL_I64, RTLIB::MUL_I128);
3072    Results.push_back(Tmp1);
3073    break;
3074  }
3075  case ISD::SADDO:
3076  case ISD::SSUBO: {
3077    SDValue LHS = Node->getOperand(0);
3078    SDValue RHS = Node->getOperand(1);
3079    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
3080                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3081                              LHS, RHS);
3082    Results.push_back(Sum);
3083    EVT OType = Node->getValueType(1);
3084
3085    SDValue Zero = DAG.getConstant(0, LHS.getValueType());
3086
3087    //   LHSSign -> LHS >= 0
3088    //   RHSSign -> RHS >= 0
3089    //   SumSign -> Sum >= 0
3090    //
3091    //   Add:
3092    //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
3093    //   Sub:
3094    //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
3095    //
3096    SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
3097    SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
3098    SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
3099                                      Node->getOpcode() == ISD::SADDO ?
3100                                      ISD::SETEQ : ISD::SETNE);
3101
3102    SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
3103    SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
3104
3105    SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
3106    Results.push_back(Cmp);
3107    break;
3108  }
3109  case ISD::UADDO:
3110  case ISD::USUBO: {
3111    SDValue LHS = Node->getOperand(0);
3112    SDValue RHS = Node->getOperand(1);
3113    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
3114                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3115                              LHS, RHS);
3116    Results.push_back(Sum);
3117    Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS,
3118                                   Node->getOpcode () == ISD::UADDO ?
3119                                   ISD::SETULT : ISD::SETUGT));
3120    break;
3121  }
3122  case ISD::UMULO:
3123  case ISD::SMULO: {
3124    EVT VT = Node->getValueType(0);
3125    EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
3126    SDValue LHS = Node->getOperand(0);
3127    SDValue RHS = Node->getOperand(1);
3128    SDValue BottomHalf;
3129    SDValue TopHalf;
3130    static const unsigned Ops[2][3] =
3131        { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
3132          { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
3133    bool isSigned = Node->getOpcode() == ISD::SMULO;
3134    if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
3135      BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
3136      TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
3137    } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
3138      BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
3139                               RHS);
3140      TopHalf = BottomHalf.getValue(1);
3141    } else if (TLI.isTypeLegal(EVT::getIntegerVT(*DAG.getContext(),
3142                                                 VT.getSizeInBits() * 2))) {
3143      LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
3144      RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
3145      Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
3146      BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3147                               DAG.getIntPtrConstant(0));
3148      TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3149                            DAG.getIntPtrConstant(1));
3150    } else {
3151      // We can fall back to a libcall with an illegal type for the MUL if we
3152      // have a libcall big enough.
3153      // Also, we can fall back to a division in some cases, but that's a big
3154      // performance hit in the general case.
3155      RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
3156      if (WideVT == MVT::i16)
3157        LC = RTLIB::MUL_I16;
3158      else if (WideVT == MVT::i32)
3159        LC = RTLIB::MUL_I32;
3160      else if (WideVT == MVT::i64)
3161        LC = RTLIB::MUL_I64;
3162      else if (WideVT == MVT::i128)
3163        LC = RTLIB::MUL_I128;
3164      assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
3165
3166      // The high part is obtained by SRA'ing all but one of the bits of low
3167      // part.
3168      unsigned LoSize = VT.getSizeInBits();
3169      SDValue HiLHS = DAG.getNode(ISD::SRA, dl, VT, RHS,
3170                                DAG.getConstant(LoSize-1, TLI.getPointerTy()));
3171      SDValue HiRHS = DAG.getNode(ISD::SRA, dl, VT, LHS,
3172                                DAG.getConstant(LoSize-1, TLI.getPointerTy()));
3173
3174      // Here we're passing the 2 arguments explicitly as 4 arguments that are
3175      // pre-lowered to the correct types. This all depends upon WideVT not
3176      // being a legal type for the architecture and thus has to be split to
3177      // two arguments.
3178      SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
3179      SDValue Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl);
3180      BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret,
3181                               DAG.getIntPtrConstant(0));
3182      TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret,
3183                            DAG.getIntPtrConstant(1));
3184      // Ret is a node with an illegal type. Because such things are not
3185      // generally permitted during this phase of legalization, delete the
3186      // node. The above EXTRACT_ELEMENT nodes should have been folded.
3187      DAG.DeleteNode(Ret.getNode());
3188    }
3189
3190    if (isSigned) {
3191      Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1,
3192                             TLI.getShiftAmountTy(BottomHalf.getValueType()));
3193      Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1);
3194      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1,
3195                             ISD::SETNE);
3196    } else {
3197      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf,
3198                             DAG.getConstant(0, VT), ISD::SETNE);
3199    }
3200    Results.push_back(BottomHalf);
3201    Results.push_back(TopHalf);
3202    break;
3203  }
3204  case ISD::BUILD_PAIR: {
3205    EVT PairTy = Node->getValueType(0);
3206    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
3207    Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
3208    Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
3209                       DAG.getConstant(PairTy.getSizeInBits()/2,
3210                                       TLI.getShiftAmountTy(PairTy)));
3211    Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
3212    break;
3213  }
3214  case ISD::SELECT:
3215    Tmp1 = Node->getOperand(0);
3216    Tmp2 = Node->getOperand(1);
3217    Tmp3 = Node->getOperand(2);
3218    if (Tmp1.getOpcode() == ISD::SETCC) {
3219      Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
3220                             Tmp2, Tmp3,
3221                             cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
3222    } else {
3223      Tmp1 = DAG.getSelectCC(dl, Tmp1,
3224                             DAG.getConstant(0, Tmp1.getValueType()),
3225                             Tmp2, Tmp3, ISD::SETNE);
3226    }
3227    Results.push_back(Tmp1);
3228    break;
3229  case ISD::BR_JT: {
3230    SDValue Chain = Node->getOperand(0);
3231    SDValue Table = Node->getOperand(1);
3232    SDValue Index = Node->getOperand(2);
3233
3234    EVT PTy = TLI.getPointerTy();
3235
3236    const TargetData &TD = *TLI.getTargetData();
3237    unsigned EntrySize =
3238      DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
3239
3240    Index = DAG.getNode(ISD::MUL, dl, PTy,
3241                        Index, DAG.getConstant(EntrySize, PTy));
3242    SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
3243
3244    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
3245    SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr,
3246                                MachinePointerInfo::getJumpTable(), MemVT,
3247                                false, false, 0);
3248    Addr = LD;
3249    if (TM.getRelocationModel() == Reloc::PIC_) {
3250      // For PIC, the sequence is:
3251      // BRIND(load(Jumptable + index) + RelocBase)
3252      // RelocBase can be JumpTable, GOT or some sort of global base.
3253      Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
3254                          TLI.getPICJumpTableRelocBase(Table, DAG));
3255    }
3256    Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
3257    Results.push_back(Tmp1);
3258    break;
3259  }
3260  case ISD::BRCOND:
3261    // Expand brcond's setcc into its constituent parts and create a BR_CC
3262    // Node.
3263    Tmp1 = Node->getOperand(0);
3264    Tmp2 = Node->getOperand(1);
3265    if (Tmp2.getOpcode() == ISD::SETCC) {
3266      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
3267                         Tmp1, Tmp2.getOperand(2),
3268                         Tmp2.getOperand(0), Tmp2.getOperand(1),
3269                         Node->getOperand(2));
3270    } else {
3271      // We test only the i1 bit.  Skip the AND if UNDEF.
3272      Tmp3 = (Tmp2.getOpcode() == ISD::UNDEF) ? Tmp2 :
3273        DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2,
3274                    DAG.getConstant(1, Tmp2.getValueType()));
3275      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
3276                         DAG.getCondCode(ISD::SETNE), Tmp3,
3277                         DAG.getConstant(0, Tmp3.getValueType()),
3278                         Node->getOperand(2));
3279    }
3280    Results.push_back(Tmp1);
3281    break;
3282  case ISD::SETCC: {
3283    Tmp1 = Node->getOperand(0);
3284    Tmp2 = Node->getOperand(1);
3285    Tmp3 = Node->getOperand(2);
3286    LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl);
3287
3288    // If we expanded the SETCC into an AND/OR, return the new node
3289    if (Tmp2.getNode() == 0) {
3290      Results.push_back(Tmp1);
3291      break;
3292    }
3293
3294    // Otherwise, SETCC for the given comparison type must be completely
3295    // illegal; expand it into a SELECT_CC.
3296    EVT VT = Node->getValueType(0);
3297    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
3298                       DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3);
3299    Results.push_back(Tmp1);
3300    break;
3301  }
3302  case ISD::SELECT_CC: {
3303    Tmp1 = Node->getOperand(0);   // LHS
3304    Tmp2 = Node->getOperand(1);   // RHS
3305    Tmp3 = Node->getOperand(2);   // True
3306    Tmp4 = Node->getOperand(3);   // False
3307    SDValue CC = Node->getOperand(4);
3308
3309    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()),
3310                          Tmp1, Tmp2, CC, dl);
3311
3312    assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!");
3313    Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
3314    CC = DAG.getCondCode(ISD::SETNE);
3315    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2,
3316                       Tmp3, Tmp4, CC);
3317    Results.push_back(Tmp1);
3318    break;
3319  }
3320  case ISD::BR_CC: {
3321    Tmp1 = Node->getOperand(0);              // Chain
3322    Tmp2 = Node->getOperand(2);              // LHS
3323    Tmp3 = Node->getOperand(3);              // RHS
3324    Tmp4 = Node->getOperand(1);              // CC
3325
3326    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()),
3327                          Tmp2, Tmp3, Tmp4, dl);
3328
3329    assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!");
3330    Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
3331    Tmp4 = DAG.getCondCode(ISD::SETNE);
3332    Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2,
3333                       Tmp3, Node->getOperand(4));
3334    Results.push_back(Tmp1);
3335    break;
3336  }
3337  case ISD::BUILD_VECTOR:
3338    Results.push_back(ExpandBUILD_VECTOR(Node));
3339    break;
3340  case ISD::SRA:
3341  case ISD::SRL:
3342  case ISD::SHL: {
3343    // Scalarize vector SRA/SRL/SHL.
3344    EVT VT = Node->getValueType(0);
3345    assert(VT.isVector() && "Unable to legalize non-vector shift");
3346    assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal");
3347    unsigned NumElem = VT.getVectorNumElements();
3348
3349    SmallVector<SDValue, 8> Scalars;
3350    for (unsigned Idx = 0; Idx < NumElem; Idx++) {
3351      SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
3352                               VT.getScalarType(),
3353                               Node->getOperand(0), DAG.getIntPtrConstant(Idx));
3354      SDValue Sh = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
3355                               VT.getScalarType(),
3356                               Node->getOperand(1), DAG.getIntPtrConstant(Idx));
3357      Scalars.push_back(DAG.getNode(Node->getOpcode(), dl,
3358                                    VT.getScalarType(), Ex, Sh));
3359    }
3360    SDValue Result =
3361      DAG.getNode(ISD::BUILD_VECTOR, dl, Node->getValueType(0),
3362                  &Scalars[0], Scalars.size());
3363    DAG.ReplaceAllUsesWith(SDValue(Node, 0), Result, this);
3364    break;
3365  }
3366  case ISD::GLOBAL_OFFSET_TABLE:
3367  case ISD::GlobalAddress:
3368  case ISD::GlobalTLSAddress:
3369  case ISD::ExternalSymbol:
3370  case ISD::ConstantPool:
3371  case ISD::JumpTable:
3372  case ISD::INTRINSIC_W_CHAIN:
3373  case ISD::INTRINSIC_WO_CHAIN:
3374  case ISD::INTRINSIC_VOID:
3375    // FIXME: Custom lowering for these operations shouldn't return null!
3376    break;
3377  }
3378
3379  // Replace the original node with the legalized result.
3380  if (!Results.empty())
3381    DAG.ReplaceAllUsesWith(Node, Results.data(), this);
3382}
3383
3384void SelectionDAGLegalize::PromoteNode(SDNode *Node) {
3385  SmallVector<SDValue, 8> Results;
3386  EVT OVT = Node->getValueType(0);
3387  if (Node->getOpcode() == ISD::UINT_TO_FP ||
3388      Node->getOpcode() == ISD::SINT_TO_FP ||
3389      Node->getOpcode() == ISD::SETCC) {
3390    OVT = Node->getOperand(0).getValueType();
3391  }
3392  EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
3393  DebugLoc dl = Node->getDebugLoc();
3394  SDValue Tmp1, Tmp2, Tmp3;
3395  switch (Node->getOpcode()) {
3396  case ISD::CTTZ:
3397  case ISD::CTLZ:
3398  case ISD::CTPOP:
3399    // Zero extend the argument.
3400    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3401    // Perform the larger operation.
3402    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
3403    if (Node->getOpcode() == ISD::CTTZ) {
3404      //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT)
3405      Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT),
3406                          Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT),
3407                          ISD::SETEQ);
3408      Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2,
3409                          DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1);
3410    } else if (Node->getOpcode() == ISD::CTLZ) {
3411      // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
3412      Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
3413                          DAG.getConstant(NVT.getSizeInBits() -
3414                                          OVT.getSizeInBits(), NVT));
3415    }
3416    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
3417    break;
3418  case ISD::BSWAP: {
3419    unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
3420    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3421    Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
3422    Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
3423                          DAG.getConstant(DiffBits, TLI.getShiftAmountTy(NVT)));
3424    Results.push_back(Tmp1);
3425    break;
3426  }
3427  case ISD::FP_TO_UINT:
3428  case ISD::FP_TO_SINT:
3429    Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
3430                                 Node->getOpcode() == ISD::FP_TO_SINT, dl);
3431    Results.push_back(Tmp1);
3432    break;
3433  case ISD::UINT_TO_FP:
3434  case ISD::SINT_TO_FP:
3435    Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
3436                                 Node->getOpcode() == ISD::SINT_TO_FP, dl);
3437    Results.push_back(Tmp1);
3438    break;
3439  case ISD::AND:
3440  case ISD::OR:
3441  case ISD::XOR: {
3442    unsigned ExtOp, TruncOp;
3443    if (OVT.isVector()) {
3444      ExtOp   = ISD::BITCAST;
3445      TruncOp = ISD::BITCAST;
3446    } else {
3447      assert(OVT.isInteger() && "Cannot promote logic operation");
3448      ExtOp   = ISD::ANY_EXTEND;
3449      TruncOp = ISD::TRUNCATE;
3450    }
3451    // Promote each of the values to the new type.
3452    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3453    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3454    // Perform the larger operation, then convert back
3455    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3456    Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
3457    break;
3458  }
3459  case ISD::SELECT: {
3460    unsigned ExtOp, TruncOp;
3461    if (Node->getValueType(0).isVector()) {
3462      ExtOp   = ISD::BITCAST;
3463      TruncOp = ISD::BITCAST;
3464    } else if (Node->getValueType(0).isInteger()) {
3465      ExtOp   = ISD::ANY_EXTEND;
3466      TruncOp = ISD::TRUNCATE;
3467    } else {
3468      ExtOp   = ISD::FP_EXTEND;
3469      TruncOp = ISD::FP_ROUND;
3470    }
3471    Tmp1 = Node->getOperand(0);
3472    // Promote each of the values to the new type.
3473    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3474    Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
3475    // Perform the larger operation, then round down.
3476    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3);
3477    if (TruncOp != ISD::FP_ROUND)
3478      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
3479    else
3480      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
3481                         DAG.getIntPtrConstant(0));
3482    Results.push_back(Tmp1);
3483    break;
3484  }
3485  case ISD::VECTOR_SHUFFLE: {
3486    SmallVector<int, 8> Mask;
3487    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
3488
3489    // Cast the two input vectors.
3490    Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0));
3491    Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1));
3492
3493    // Convert the shuffle mask to the right # elements.
3494    Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
3495    Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1);
3496    Results.push_back(Tmp1);
3497    break;
3498  }
3499  case ISD::SETCC: {
3500    unsigned ExtOp = ISD::FP_EXTEND;
3501    if (NVT.isInteger()) {
3502      ISD::CondCode CCCode =
3503        cast<CondCodeSDNode>(Node->getOperand(2))->get();
3504      ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3505    }
3506    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3507    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3508    Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3509                                  Tmp1, Tmp2, Node->getOperand(2)));
3510    break;
3511  }
3512  }
3513
3514  // Replace the original node with the legalized result.
3515  if (!Results.empty())
3516    DAG.ReplaceAllUsesWith(Node, Results.data(), this);
3517}
3518
3519// SelectionDAG::Legalize - This is the entry point for the file.
3520//
3521void SelectionDAG::Legalize() {
3522  /// run - This is the main entry point to this class.
3523  ///
3524  SelectionDAGLegalize(*this).LegalizeDAG();
3525}
3526