LegalizeDAG.cpp revision 6726b6d75a8b679068a58cb954ba97cf9d1690ba
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SelectionDAG::Legalize method.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/CodeGen/MachineFunction.h"
16#include "llvm/CodeGen/MachineFrameInfo.h"
17#include "llvm/CodeGen/MachineJumpTableInfo.h"
18#include "llvm/CodeGen/MachineModuleInfo.h"
19#include "llvm/CodeGen/DwarfWriter.h"
20#include "llvm/Analysis/DebugInfo.h"
21#include "llvm/CodeGen/PseudoSourceValue.h"
22#include "llvm/Target/TargetFrameInfo.h"
23#include "llvm/Target/TargetLowering.h"
24#include "llvm/Target/TargetData.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/Target/TargetOptions.h"
27#include "llvm/Target/TargetSubtarget.h"
28#include "llvm/CallingConv.h"
29#include "llvm/Constants.h"
30#include "llvm/DerivedTypes.h"
31#include "llvm/Function.h"
32#include "llvm/GlobalVariable.h"
33#include "llvm/LLVMContext.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/Support/Compiler.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/MathExtras.h"
38#include "llvm/Support/raw_ostream.h"
39#include "llvm/ADT/DenseMap.h"
40#include "llvm/ADT/SmallVector.h"
41#include "llvm/ADT/SmallPtrSet.h"
42#include <map>
43using namespace llvm;
44
45//===----------------------------------------------------------------------===//
46/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
47/// hacks on it until the target machine can handle it.  This involves
48/// eliminating value sizes the machine cannot handle (promoting small sizes to
49/// large sizes or splitting up large values into small values) as well as
50/// eliminating operations the machine cannot handle.
51///
52/// This code also does a small amount of optimization and recognition of idioms
53/// as part of its processing.  For example, if a target does not support a
54/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
55/// will attempt merge setcc and brc instructions into brcc's.
56///
57namespace {
58class SelectionDAGLegalize {
59  TargetLowering &TLI;
60  SelectionDAG &DAG;
61  CodeGenOpt::Level OptLevel;
62
63  // Libcall insertion helpers.
64
65  /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been
66  /// legalized.  We use this to ensure that calls are properly serialized
67  /// against each other, including inserted libcalls.
68  SDValue LastCALLSEQ_END;
69
70  /// IsLegalizingCall - This member is used *only* for purposes of providing
71  /// helpful assertions that a libcall isn't created while another call is
72  /// being legalized (which could lead to non-serialized call sequences).
73  bool IsLegalizingCall;
74
75  enum LegalizeAction {
76    Legal,      // The target natively supports this operation.
77    Promote,    // This operation should be executed in a larger type.
78    Expand      // Try to expand this to other ops, otherwise use a libcall.
79  };
80
81  /// ValueTypeActions - This is a bitvector that contains two bits for each
82  /// value type, where the two bits correspond to the LegalizeAction enum.
83  /// This can be queried with "getTypeAction(VT)".
84  TargetLowering::ValueTypeActionImpl ValueTypeActions;
85
86  /// LegalizedNodes - For nodes that are of legal width, and that have more
87  /// than one use, this map indicates what regularized operand to use.  This
88  /// allows us to avoid legalizing the same thing more than once.
89  DenseMap<SDValue, SDValue> LegalizedNodes;
90
91  void AddLegalizedOperand(SDValue From, SDValue To) {
92    LegalizedNodes.insert(std::make_pair(From, To));
93    // If someone requests legalization of the new node, return itself.
94    if (From != To)
95      LegalizedNodes.insert(std::make_pair(To, To));
96  }
97
98public:
99  SelectionDAGLegalize(SelectionDAG &DAG, CodeGenOpt::Level ol);
100
101  /// getTypeAction - Return how we should legalize values of this type, either
102  /// it is already legal or we need to expand it into multiple registers of
103  /// smaller integer type, or we need to promote it to a larger type.
104  LegalizeAction getTypeAction(EVT VT) const {
105    return
106        (LegalizeAction)ValueTypeActions.getTypeAction(*DAG.getContext(), VT);
107  }
108
109  /// isTypeLegal - Return true if this type is legal on this target.
110  ///
111  bool isTypeLegal(EVT VT) const {
112    return getTypeAction(VT) == Legal;
113  }
114
115  void LegalizeDAG();
116
117private:
118  /// LegalizeOp - We know that the specified value has a legal type.
119  /// Recursively ensure that the operands have legal types, then return the
120  /// result.
121  SDValue LegalizeOp(SDValue O);
122
123  SDValue OptimizeFloatStore(StoreSDNode *ST);
124
125  /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
126  /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
127  /// is necessary to spill the vector being inserted into to memory, perform
128  /// the insert there, and then read the result back.
129  SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
130                                         SDValue Idx, DebugLoc dl);
131  SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
132                                  SDValue Idx, DebugLoc dl);
133
134  /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
135  /// performs the same shuffe in terms of order or result bytes, but on a type
136  /// whose vector element type is narrower than the original shuffle type.
137  /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
138  SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl,
139                                     SDValue N1, SDValue N2,
140                                     SmallVectorImpl<int> &Mask) const;
141
142  bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
143                                    SmallPtrSet<SDNode*, 32> &NodesLeadingTo);
144
145  void LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
146                             DebugLoc dl);
147
148  SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
149  SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
150                          RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
151                          RTLIB::Libcall Call_PPCF128);
152  SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, RTLIB::Libcall Call_I16,
153                           RTLIB::Libcall Call_I32, RTLIB::Libcall Call_I64,
154                           RTLIB::Libcall Call_I128);
155
156  SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, DebugLoc dl);
157  SDValue ExpandBUILD_VECTOR(SDNode *Node);
158  SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
159  SDValue ExpandDBG_STOPPOINT(SDNode *Node);
160  void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
161                                SmallVectorImpl<SDValue> &Results);
162  SDValue ExpandFCOPYSIGN(SDNode *Node);
163  SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT,
164                               DebugLoc dl);
165  SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned,
166                                DebugLoc dl);
167  SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned,
168                                DebugLoc dl);
169
170  SDValue ExpandBSWAP(SDValue Op, DebugLoc dl);
171  SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl);
172
173  SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
174  SDValue ExpandVectorBuildThroughStack(SDNode* Node);
175
176  void ExpandNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
177  void PromoteNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
178};
179}
180
181/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
182/// performs the same shuffe in terms of order or result bytes, but on a type
183/// whose vector element type is narrower than the original shuffle type.
184/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
185SDValue
186SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT,  DebugLoc dl,
187                                                 SDValue N1, SDValue N2,
188                                             SmallVectorImpl<int> &Mask) const {
189  EVT EltVT = NVT.getVectorElementType();
190  unsigned NumMaskElts = VT.getVectorNumElements();
191  unsigned NumDestElts = NVT.getVectorNumElements();
192  unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
193
194  assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
195
196  if (NumEltsGrowth == 1)
197    return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
198
199  SmallVector<int, 8> NewMask;
200  for (unsigned i = 0; i != NumMaskElts; ++i) {
201    int Idx = Mask[i];
202    for (unsigned j = 0; j != NumEltsGrowth; ++j) {
203      if (Idx < 0)
204        NewMask.push_back(-1);
205      else
206        NewMask.push_back(Idx * NumEltsGrowth + j);
207    }
208  }
209  assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
210  assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
211  return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
212}
213
214SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag,
215                                           CodeGenOpt::Level ol)
216  : TLI(dag.getTargetLoweringInfo()), DAG(dag), OptLevel(ol),
217    ValueTypeActions(TLI.getValueTypeActions()) {
218  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
219         "Too many value types for ValueTypeActions to hold!");
220}
221
222void SelectionDAGLegalize::LegalizeDAG() {
223  LastCALLSEQ_END = DAG.getEntryNode();
224  IsLegalizingCall = false;
225
226  // The legalize process is inherently a bottom-up recursive process (users
227  // legalize their uses before themselves).  Given infinite stack space, we
228  // could just start legalizing on the root and traverse the whole graph.  In
229  // practice however, this causes us to run out of stack space on large basic
230  // blocks.  To avoid this problem, compute an ordering of the nodes where each
231  // node is only legalized after all of its operands are legalized.
232  DAG.AssignTopologicalOrder();
233  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
234       E = prior(DAG.allnodes_end()); I != next(E); ++I)
235    LegalizeOp(SDValue(I, 0));
236
237  // Finally, it's possible the root changed.  Get the new root.
238  SDValue OldRoot = DAG.getRoot();
239  assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
240  DAG.setRoot(LegalizedNodes[OldRoot]);
241
242  LegalizedNodes.clear();
243
244  // Remove dead nodes now.
245  DAG.RemoveDeadNodes();
246}
247
248
249/// FindCallEndFromCallStart - Given a chained node that is part of a call
250/// sequence, find the CALLSEQ_END node that terminates the call sequence.
251static SDNode *FindCallEndFromCallStart(SDNode *Node) {
252  if (Node->getOpcode() == ISD::CALLSEQ_END)
253    return Node;
254  if (Node->use_empty())
255    return 0;   // No CallSeqEnd
256
257  // The chain is usually at the end.
258  SDValue TheChain(Node, Node->getNumValues()-1);
259  if (TheChain.getValueType() != MVT::Other) {
260    // Sometimes it's at the beginning.
261    TheChain = SDValue(Node, 0);
262    if (TheChain.getValueType() != MVT::Other) {
263      // Otherwise, hunt for it.
264      for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i)
265        if (Node->getValueType(i) == MVT::Other) {
266          TheChain = SDValue(Node, i);
267          break;
268        }
269
270      // Otherwise, we walked into a node without a chain.
271      if (TheChain.getValueType() != MVT::Other)
272        return 0;
273    }
274  }
275
276  for (SDNode::use_iterator UI = Node->use_begin(),
277       E = Node->use_end(); UI != E; ++UI) {
278
279    // Make sure to only follow users of our token chain.
280    SDNode *User = *UI;
281    for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
282      if (User->getOperand(i) == TheChain)
283        if (SDNode *Result = FindCallEndFromCallStart(User))
284          return Result;
285  }
286  return 0;
287}
288
289/// FindCallStartFromCallEnd - Given a chained node that is part of a call
290/// sequence, find the CALLSEQ_START node that initiates the call sequence.
291static SDNode *FindCallStartFromCallEnd(SDNode *Node) {
292  assert(Node && "Didn't find callseq_start for a call??");
293  if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
294
295  assert(Node->getOperand(0).getValueType() == MVT::Other &&
296         "Node doesn't have a token chain argument!");
297  return FindCallStartFromCallEnd(Node->getOperand(0).getNode());
298}
299
300/// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to
301/// see if any uses can reach Dest.  If no dest operands can get to dest,
302/// legalize them, legalize ourself, and return false, otherwise, return true.
303///
304/// Keep track of the nodes we fine that actually do lead to Dest in
305/// NodesLeadingTo.  This avoids retraversing them exponential number of times.
306///
307bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
308                                     SmallPtrSet<SDNode*, 32> &NodesLeadingTo) {
309  if (N == Dest) return true;  // N certainly leads to Dest :)
310
311  // If we've already processed this node and it does lead to Dest, there is no
312  // need to reprocess it.
313  if (NodesLeadingTo.count(N)) return true;
314
315  // If the first result of this node has been already legalized, then it cannot
316  // reach N.
317  if (LegalizedNodes.count(SDValue(N, 0))) return false;
318
319  // Okay, this node has not already been legalized.  Check and legalize all
320  // operands.  If none lead to Dest, then we can legalize this node.
321  bool OperandsLeadToDest = false;
322  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
323    OperandsLeadToDest |=     // If an operand leads to Dest, so do we.
324      LegalizeAllNodesNotLeadingTo(N->getOperand(i).getNode(), Dest, NodesLeadingTo);
325
326  if (OperandsLeadToDest) {
327    NodesLeadingTo.insert(N);
328    return true;
329  }
330
331  // Okay, this node looks safe, legalize it and return false.
332  LegalizeOp(SDValue(N, 0));
333  return false;
334}
335
336/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
337/// a load from the constant pool.
338static SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP,
339                                SelectionDAG &DAG, const TargetLowering &TLI) {
340  bool Extend = false;
341  DebugLoc dl = CFP->getDebugLoc();
342
343  // If a FP immediate is precise when represented as a float and if the
344  // target can do an extending load from float to double, we put it into
345  // the constant pool as a float, even if it's is statically typed as a
346  // double.  This shrinks FP constants and canonicalizes them for targets where
347  // an FP extending load is the same cost as a normal load (such as on the x87
348  // fp stack or PPC FP unit).
349  EVT VT = CFP->getValueType(0);
350  ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
351  if (!UseCP) {
352    assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
353    return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(),
354                           (VT == MVT::f64) ? MVT::i64 : MVT::i32);
355  }
356
357  EVT OrigVT = VT;
358  EVT SVT = VT;
359  while (SVT != MVT::f32) {
360    SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
361    if (CFP->isValueValidForType(SVT, CFP->getValueAPF()) &&
362        // Only do this if the target has a native EXTLOAD instruction from
363        // smaller type.
364        TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
365        TLI.ShouldShrinkFPConstant(OrigVT)) {
366      const Type *SType = SVT.getTypeForEVT(*DAG.getContext());
367      LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
368      VT = SVT;
369      Extend = true;
370    }
371  }
372
373  SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
374  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
375  if (Extend)
376    return DAG.getExtLoad(ISD::EXTLOAD, dl,
377                          OrigVT, DAG.getEntryNode(),
378                          CPIdx, PseudoSourceValue::getConstantPool(),
379                          0, VT, false, Alignment);
380  return DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
381                     PseudoSourceValue::getConstantPool(), 0, false, Alignment);
382}
383
384/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
385static
386SDValue ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
387                             const TargetLowering &TLI) {
388  SDValue Chain = ST->getChain();
389  SDValue Ptr = ST->getBasePtr();
390  SDValue Val = ST->getValue();
391  EVT VT = Val.getValueType();
392  int Alignment = ST->getAlignment();
393  int SVOffset = ST->getSrcValueOffset();
394  DebugLoc dl = ST->getDebugLoc();
395  if (ST->getMemoryVT().isFloatingPoint() ||
396      ST->getMemoryVT().isVector()) {
397    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
398    if (TLI.isTypeLegal(intVT)) {
399      // Expand to a bitconvert of the value to the integer type of the
400      // same size, then a (misaligned) int store.
401      // FIXME: Does not handle truncating floating point stores!
402      SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, intVT, Val);
403      return DAG.getStore(Chain, dl, Result, Ptr, ST->getSrcValue(),
404                          SVOffset, ST->isVolatile(), Alignment);
405    } else {
406      // Do a (aligned) store to a stack slot, then copy from the stack slot
407      // to the final destination using (unaligned) integer loads and stores.
408      EVT StoredVT = ST->getMemoryVT();
409      EVT RegVT =
410        TLI.getRegisterType(*DAG.getContext(), EVT::getIntegerVT(*DAG.getContext(), StoredVT.getSizeInBits()));
411      unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
412      unsigned RegBytes = RegVT.getSizeInBits() / 8;
413      unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
414
415      // Make sure the stack slot is also aligned for the register type.
416      SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
417
418      // Perform the original store, only redirected to the stack slot.
419      SDValue Store = DAG.getTruncStore(Chain, dl,
420                                        Val, StackPtr, NULL, 0, StoredVT);
421      SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
422      SmallVector<SDValue, 8> Stores;
423      unsigned Offset = 0;
424
425      // Do all but one copies using the full register width.
426      for (unsigned i = 1; i < NumRegs; i++) {
427        // Load one integer register's worth from the stack slot.
428        SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr, NULL, 0);
429        // Store it to the final location.  Remember the store.
430        Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
431                                      ST->getSrcValue(), SVOffset + Offset,
432                                      ST->isVolatile(),
433                                      MinAlign(ST->getAlignment(), Offset)));
434        // Increment the pointers.
435        Offset += RegBytes;
436        StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
437                               Increment);
438        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
439      }
440
441      // The last store may be partial.  Do a truncating store.  On big-endian
442      // machines this requires an extending load from the stack slot to ensure
443      // that the bits are in the right place.
444      EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
445
446      // Load from the stack slot.
447      SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
448                                    NULL, 0, MemVT);
449
450      Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
451                                         ST->getSrcValue(), SVOffset + Offset,
452                                         MemVT, ST->isVolatile(),
453                                         MinAlign(ST->getAlignment(), Offset)));
454      // The order of the stores doesn't matter - say it with a TokenFactor.
455      return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
456                         Stores.size());
457    }
458  }
459  assert(ST->getMemoryVT().isInteger() &&
460         !ST->getMemoryVT().isVector() &&
461         "Unaligned store of unknown type.");
462  // Get the half-size VT
463  EVT NewStoredVT =
464    (MVT::SimpleValueType)(ST->getMemoryVT().getSimpleVT().SimpleTy - 1);
465  int NumBits = NewStoredVT.getSizeInBits();
466  int IncrementSize = NumBits / 8;
467
468  // Divide the stored value in two parts.
469  SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
470  SDValue Lo = Val;
471  SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
472
473  // Store the two parts
474  SDValue Store1, Store2;
475  Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
476                             ST->getSrcValue(), SVOffset, NewStoredVT,
477                             ST->isVolatile(), Alignment);
478  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
479                    DAG.getConstant(IncrementSize, TLI.getPointerTy()));
480  Alignment = MinAlign(Alignment, IncrementSize);
481  Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
482                             ST->getSrcValue(), SVOffset + IncrementSize,
483                             NewStoredVT, ST->isVolatile(), Alignment);
484
485  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
486}
487
488/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
489static
490SDValue ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
491                            const TargetLowering &TLI) {
492  int SVOffset = LD->getSrcValueOffset();
493  SDValue Chain = LD->getChain();
494  SDValue Ptr = LD->getBasePtr();
495  EVT VT = LD->getValueType(0);
496  EVT LoadedVT = LD->getMemoryVT();
497  DebugLoc dl = LD->getDebugLoc();
498  if (VT.isFloatingPoint() || VT.isVector()) {
499    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
500    if (TLI.isTypeLegal(intVT)) {
501      // Expand to a (misaligned) integer load of the same size,
502      // then bitconvert to floating point or vector.
503      SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getSrcValue(),
504                                    SVOffset, LD->isVolatile(),
505                                    LD->getAlignment());
506      SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, LoadedVT, newLoad);
507      if (VT.isFloatingPoint() && LoadedVT != VT)
508        Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result);
509
510      SDValue Ops[] = { Result, Chain };
511      return DAG.getMergeValues(Ops, 2, dl);
512    } else {
513      // Copy the value to a (aligned) stack slot using (unaligned) integer
514      // loads and stores, then do a (aligned) load from the stack slot.
515      EVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT);
516      unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
517      unsigned RegBytes = RegVT.getSizeInBits() / 8;
518      unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
519
520      // Make sure the stack slot is also aligned for the register type.
521      SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
522
523      SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
524      SmallVector<SDValue, 8> Stores;
525      SDValue StackPtr = StackBase;
526      unsigned Offset = 0;
527
528      // Do all but one copies using the full register width.
529      for (unsigned i = 1; i < NumRegs; i++) {
530        // Load one integer register's worth from the original location.
531        SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr, LD->getSrcValue(),
532                                   SVOffset + Offset, LD->isVolatile(),
533                                   MinAlign(LD->getAlignment(), Offset));
534        // Follow the load with a store to the stack slot.  Remember the store.
535        Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
536                                      NULL, 0));
537        // Increment the pointers.
538        Offset += RegBytes;
539        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
540        StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
541                               Increment);
542      }
543
544      // The last copy may be partial.  Do an extending load.
545      EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 8 * (LoadedBytes - Offset));
546      SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
547                                    LD->getSrcValue(), SVOffset + Offset,
548                                    MemVT, LD->isVolatile(),
549                                    MinAlign(LD->getAlignment(), Offset));
550      // Follow the load with a store to the stack slot.  Remember the store.
551      // On big-endian machines this requires a truncating store to ensure
552      // that the bits end up in the right place.
553      Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
554                                         NULL, 0, MemVT));
555
556      // The order of the stores doesn't matter - say it with a TokenFactor.
557      SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
558                               Stores.size());
559
560      // Finally, perform the original load only redirected to the stack slot.
561      Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
562                            NULL, 0, LoadedVT);
563
564      // Callers expect a MERGE_VALUES node.
565      SDValue Ops[] = { Load, TF };
566      return DAG.getMergeValues(Ops, 2, dl);
567    }
568  }
569  assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
570         "Unaligned load of unsupported type.");
571
572  // Compute the new VT that is half the size of the old one.  This is an
573  // integer MVT.
574  unsigned NumBits = LoadedVT.getSizeInBits();
575  EVT NewLoadedVT;
576  NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
577  NumBits >>= 1;
578
579  unsigned Alignment = LD->getAlignment();
580  unsigned IncrementSize = NumBits / 8;
581  ISD::LoadExtType HiExtType = LD->getExtensionType();
582
583  // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
584  if (HiExtType == ISD::NON_EXTLOAD)
585    HiExtType = ISD::ZEXTLOAD;
586
587  // Load the value in two parts
588  SDValue Lo, Hi;
589  if (TLI.isLittleEndian()) {
590    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(),
591                        SVOffset, NewLoadedVT, LD->isVolatile(), Alignment);
592    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
593                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
594    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(),
595                        SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
596                        MinAlign(Alignment, IncrementSize));
597  } else {
598    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(),
599                        SVOffset, NewLoadedVT, LD->isVolatile(), Alignment);
600    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
601                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
602    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(),
603                        SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
604                        MinAlign(Alignment, IncrementSize));
605  }
606
607  // aggregate the two parts
608  SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
609  SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
610  Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
611
612  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
613                             Hi.getValue(1));
614
615  SDValue Ops[] = { Result, TF };
616  return DAG.getMergeValues(Ops, 2, dl);
617}
618
619/// PerformInsertVectorEltInMemory - Some target cannot handle a variable
620/// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
621/// is necessary to spill the vector being inserted into to memory, perform
622/// the insert there, and then read the result back.
623SDValue SelectionDAGLegalize::
624PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
625                               DebugLoc dl) {
626  SDValue Tmp1 = Vec;
627  SDValue Tmp2 = Val;
628  SDValue Tmp3 = Idx;
629
630  // If the target doesn't support this, we have to spill the input vector
631  // to a temporary stack slot, update the element, then reload it.  This is
632  // badness.  We could also load the value into a vector register (either
633  // with a "move to register" or "extload into register" instruction, then
634  // permute it into place, if the idx is a constant and if the idx is
635  // supported by the target.
636  EVT VT    = Tmp1.getValueType();
637  EVT EltVT = VT.getVectorElementType();
638  EVT IdxVT = Tmp3.getValueType();
639  EVT PtrVT = TLI.getPointerTy();
640  SDValue StackPtr = DAG.CreateStackTemporary(VT);
641
642  int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
643
644  // Store the vector.
645  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr,
646                            PseudoSourceValue::getFixedStack(SPFI), 0);
647
648  // Truncate or zero extend offset to target pointer type.
649  unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
650  Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3);
651  // Add the offset to the index.
652  unsigned EltSize = EltVT.getSizeInBits()/8;
653  Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
654  SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
655  // Store the scalar value.
656  Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2,
657                         PseudoSourceValue::getFixedStack(SPFI), 0, EltVT);
658  // Load the updated vector.
659  return DAG.getLoad(VT, dl, Ch, StackPtr,
660                     PseudoSourceValue::getFixedStack(SPFI), 0);
661}
662
663
664SDValue SelectionDAGLegalize::
665ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) {
666  if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
667    // SCALAR_TO_VECTOR requires that the type of the value being inserted
668    // match the element type of the vector being created, except for
669    // integers in which case the inserted value can be over width.
670    EVT EltVT = Vec.getValueType().getVectorElementType();
671    if (Val.getValueType() == EltVT ||
672        (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
673      SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
674                                  Vec.getValueType(), Val);
675
676      unsigned NumElts = Vec.getValueType().getVectorNumElements();
677      // We generate a shuffle of InVec and ScVec, so the shuffle mask
678      // should be 0,1,2,3,4,5... with the appropriate element replaced with
679      // elt 0 of the RHS.
680      SmallVector<int, 8> ShufOps;
681      for (unsigned i = 0; i != NumElts; ++i)
682        ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
683
684      return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
685                                  &ShufOps[0]);
686    }
687  }
688  return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
689}
690
691SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
692  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
693  // FIXME: We shouldn't do this for TargetConstantFP's.
694  // FIXME: move this to the DAG Combiner!  Note that we can't regress due
695  // to phase ordering between legalized code and the dag combiner.  This
696  // probably means that we need to integrate dag combiner and legalizer
697  // together.
698  // We generally can't do this one for long doubles.
699  SDValue Tmp1 = ST->getChain();
700  SDValue Tmp2 = ST->getBasePtr();
701  SDValue Tmp3;
702  int SVOffset = ST->getSrcValueOffset();
703  unsigned Alignment = ST->getAlignment();
704  bool isVolatile = ST->isVolatile();
705  DebugLoc dl = ST->getDebugLoc();
706  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
707    if (CFP->getValueType(0) == MVT::f32 &&
708        getTypeAction(MVT::i32) == Legal) {
709      Tmp3 = DAG.getConstant(CFP->getValueAPF().
710                                      bitcastToAPInt().zextOrTrunc(32),
711                              MVT::i32);
712      return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
713                          SVOffset, isVolatile, Alignment);
714    } else if (CFP->getValueType(0) == MVT::f64) {
715      // If this target supports 64-bit registers, do a single 64-bit store.
716      if (getTypeAction(MVT::i64) == Legal) {
717        Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
718                                  zextOrTrunc(64), MVT::i64);
719        return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
720                            SVOffset, isVolatile, Alignment);
721      } else if (getTypeAction(MVT::i32) == Legal && !ST->isVolatile()) {
722        // Otherwise, if the target supports 32-bit registers, use 2 32-bit
723        // stores.  If the target supports neither 32- nor 64-bits, this
724        // xform is certainly not worth it.
725        const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt();
726        SDValue Lo = DAG.getConstant(APInt(IntVal).trunc(32), MVT::i32);
727        SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32);
728        if (TLI.isBigEndian()) std::swap(Lo, Hi);
729
730        Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getSrcValue(),
731                          SVOffset, isVolatile, Alignment);
732        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
733                            DAG.getIntPtrConstant(4));
734        Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(), SVOffset+4,
735                          isVolatile, MinAlign(Alignment, 4U));
736
737        return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
738      }
739    }
740  }
741  return SDValue();
742}
743
744/// LegalizeOp - We know that the specified value has a legal type, and
745/// that its operands are legal.  Now ensure that the operation itself
746/// is legal, recursively ensuring that the operands' operations remain
747/// legal.
748SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
749  if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
750    return Op;
751
752  SDNode *Node = Op.getNode();
753  DebugLoc dl = Node->getDebugLoc();
754
755  for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
756    assert(getTypeAction(Node->getValueType(i)) == Legal &&
757           "Unexpected illegal type!");
758
759  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
760    assert((isTypeLegal(Node->getOperand(i).getValueType()) ||
761            Node->getOperand(i).getOpcode() == ISD::TargetConstant) &&
762           "Unexpected illegal type!");
763
764  // Note that LegalizeOp may be reentered even from single-use nodes, which
765  // means that we always must cache transformed nodes.
766  DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
767  if (I != LegalizedNodes.end()) return I->second;
768
769  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
770  SDValue Result = Op;
771  bool isCustom = false;
772
773  // Figure out the correct action; the way to query this varies by opcode
774  TargetLowering::LegalizeAction Action;
775  bool SimpleFinishLegalizing = true;
776  switch (Node->getOpcode()) {
777  case ISD::INTRINSIC_W_CHAIN:
778  case ISD::INTRINSIC_WO_CHAIN:
779  case ISD::INTRINSIC_VOID:
780  case ISD::VAARG:
781  case ISD::STACKSAVE:
782    Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
783    break;
784  case ISD::SINT_TO_FP:
785  case ISD::UINT_TO_FP:
786  case ISD::EXTRACT_VECTOR_ELT:
787    Action = TLI.getOperationAction(Node->getOpcode(),
788                                    Node->getOperand(0).getValueType());
789    break;
790  case ISD::FP_ROUND_INREG:
791  case ISD::SIGN_EXTEND_INREG: {
792    EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
793    Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
794    break;
795  }
796  case ISD::SELECT_CC:
797  case ISD::SETCC:
798  case ISD::BR_CC: {
799    unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
800                         Node->getOpcode() == ISD::SETCC ? 2 : 1;
801    unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
802    EVT OpVT = Node->getOperand(CompareOperand).getValueType();
803    ISD::CondCode CCCode =
804        cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
805    Action = TLI.getCondCodeAction(CCCode, OpVT);
806    if (Action == TargetLowering::Legal) {
807      if (Node->getOpcode() == ISD::SELECT_CC)
808        Action = TLI.getOperationAction(Node->getOpcode(),
809                                        Node->getValueType(0));
810      else
811        Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
812    }
813    break;
814  }
815  case ISD::LOAD:
816  case ISD::STORE:
817    // FIXME: Model these properly.  LOAD and STORE are complicated, and
818    // STORE expects the unlegalized operand in some cases.
819    SimpleFinishLegalizing = false;
820    break;
821  case ISD::CALLSEQ_START:
822  case ISD::CALLSEQ_END:
823    // FIXME: This shouldn't be necessary.  These nodes have special properties
824    // dealing with the recursive nature of legalization.  Removing this
825    // special case should be done as part of making LegalizeDAG non-recursive.
826    SimpleFinishLegalizing = false;
827    break;
828  case ISD::EXTRACT_ELEMENT:
829  case ISD::FLT_ROUNDS_:
830  case ISD::SADDO:
831  case ISD::SSUBO:
832  case ISD::UADDO:
833  case ISD::USUBO:
834  case ISD::SMULO:
835  case ISD::UMULO:
836  case ISD::FPOWI:
837  case ISD::MERGE_VALUES:
838  case ISD::EH_RETURN:
839  case ISD::FRAME_TO_ARGS_OFFSET:
840    // These operations lie about being legal: when they claim to be legal,
841    // they should actually be expanded.
842    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
843    if (Action == TargetLowering::Legal)
844      Action = TargetLowering::Expand;
845    break;
846  case ISD::TRAMPOLINE:
847  case ISD::FRAMEADDR:
848  case ISD::RETURNADDR:
849    // These operations lie about being legal: when they claim to be legal,
850    // they should actually be custom-lowered.
851    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
852    if (Action == TargetLowering::Legal)
853      Action = TargetLowering::Custom;
854    break;
855  case ISD::BUILD_VECTOR:
856    // A weird case: legalization for BUILD_VECTOR never legalizes the
857    // operands!
858    // FIXME: This really sucks... changing it isn't semantically incorrect,
859    // but it massively pessimizes the code for floating-point BUILD_VECTORs
860    // because ConstantFP operands get legalized into constant pool loads
861    // before the BUILD_VECTOR code can see them.  It doesn't usually bite,
862    // though, because BUILD_VECTORS usually get lowered into other nodes
863    // which get legalized properly.
864    SimpleFinishLegalizing = false;
865    break;
866  default:
867    if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
868      Action = TargetLowering::Legal;
869    } else {
870      Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
871    }
872    break;
873  }
874
875  if (SimpleFinishLegalizing) {
876    SmallVector<SDValue, 8> Ops, ResultVals;
877    for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
878      Ops.push_back(LegalizeOp(Node->getOperand(i)));
879    switch (Node->getOpcode()) {
880    default: break;
881    case ISD::BR:
882    case ISD::BRIND:
883    case ISD::BR_JT:
884    case ISD::BR_CC:
885    case ISD::BRCOND:
886      // Branches tweak the chain to include LastCALLSEQ_END
887      Ops[0] = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ops[0],
888                            LastCALLSEQ_END);
889      Ops[0] = LegalizeOp(Ops[0]);
890      LastCALLSEQ_END = DAG.getEntryNode();
891      break;
892    case ISD::SHL:
893    case ISD::SRL:
894    case ISD::SRA:
895    case ISD::ROTL:
896    case ISD::ROTR:
897      // Legalizing shifts/rotates requires adjusting the shift amount
898      // to the appropriate width.
899      if (!Ops[1].getValueType().isVector())
900        Ops[1] = LegalizeOp(DAG.getShiftAmountOperand(Ops[1]));
901      break;
902    case ISD::SRL_PARTS:
903    case ISD::SRA_PARTS:
904    case ISD::SHL_PARTS:
905      // Legalizing shifts/rotates requires adjusting the shift amount
906      // to the appropriate width.
907      if (!Ops[2].getValueType().isVector())
908        Ops[2] = LegalizeOp(DAG.getShiftAmountOperand(Ops[2]));
909      break;
910    }
911
912    Result = DAG.UpdateNodeOperands(Result.getValue(0), Ops.data(),
913                                    Ops.size());
914    switch (Action) {
915    case TargetLowering::Legal:
916      for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
917        ResultVals.push_back(Result.getValue(i));
918      break;
919    case TargetLowering::Custom:
920      // FIXME: The handling for custom lowering with multiple results is
921      // a complete mess.
922      Tmp1 = TLI.LowerOperation(Result, DAG);
923      if (Tmp1.getNode()) {
924        for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
925          if (e == 1)
926            ResultVals.push_back(Tmp1);
927          else
928            ResultVals.push_back(Tmp1.getValue(i));
929        }
930        break;
931      }
932
933      // FALL THROUGH
934    case TargetLowering::Expand:
935      ExpandNode(Result.getNode(), ResultVals);
936      break;
937    case TargetLowering::Promote:
938      PromoteNode(Result.getNode(), ResultVals);
939      break;
940    }
941    if (!ResultVals.empty()) {
942      for (unsigned i = 0, e = ResultVals.size(); i != e; ++i) {
943        if (ResultVals[i] != SDValue(Node, i))
944          ResultVals[i] = LegalizeOp(ResultVals[i]);
945        AddLegalizedOperand(SDValue(Node, i), ResultVals[i]);
946      }
947      return ResultVals[Op.getResNo()];
948    }
949  }
950
951  switch (Node->getOpcode()) {
952  default:
953#ifndef NDEBUG
954    errs() << "NODE: ";
955    Node->dump(&DAG);
956    errs() << "\n";
957#endif
958    llvm_unreachable("Do not know how to legalize this operator!");
959
960  case ISD::BUILD_VECTOR:
961    switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) {
962    default: llvm_unreachable("This action is not supported yet!");
963    case TargetLowering::Custom:
964      Tmp3 = TLI.LowerOperation(Result, DAG);
965      if (Tmp3.getNode()) {
966        Result = Tmp3;
967        break;
968      }
969      // FALLTHROUGH
970    case TargetLowering::Expand:
971      Result = ExpandBUILD_VECTOR(Result.getNode());
972      break;
973    }
974    break;
975  case ISD::CALLSEQ_START: {
976    SDNode *CallEnd = FindCallEndFromCallStart(Node);
977
978    // Recursively Legalize all of the inputs of the call end that do not lead
979    // to this call start.  This ensures that any libcalls that need be inserted
980    // are inserted *before* the CALLSEQ_START.
981    {SmallPtrSet<SDNode*, 32> NodesLeadingTo;
982    for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i)
983      LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).getNode(), Node,
984                                   NodesLeadingTo);
985    }
986
987    // Now that we legalized all of the inputs (which may have inserted
988    // libcalls) create the new CALLSEQ_START node.
989    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
990
991    // Merge in the last call, to ensure that this call start after the last
992    // call ended.
993    if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) {
994      Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
995                         Tmp1, LastCALLSEQ_END);
996      Tmp1 = LegalizeOp(Tmp1);
997    }
998
999    // Do not try to legalize the target-specific arguments (#1+).
1000    if (Tmp1 != Node->getOperand(0)) {
1001      SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1002      Ops[0] = Tmp1;
1003      Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1004    }
1005
1006    // Remember that the CALLSEQ_START is legalized.
1007    AddLegalizedOperand(Op.getValue(0), Result);
1008    if (Node->getNumValues() == 2)    // If this has a flag result, remember it.
1009      AddLegalizedOperand(Op.getValue(1), Result.getValue(1));
1010
1011    // Now that the callseq_start and all of the non-call nodes above this call
1012    // sequence have been legalized, legalize the call itself.  During this
1013    // process, no libcalls can/will be inserted, guaranteeing that no calls
1014    // can overlap.
1015    assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!");
1016    // Note that we are selecting this call!
1017    LastCALLSEQ_END = SDValue(CallEnd, 0);
1018    IsLegalizingCall = true;
1019
1020    // Legalize the call, starting from the CALLSEQ_END.
1021    LegalizeOp(LastCALLSEQ_END);
1022    assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!");
1023    return Result;
1024  }
1025  case ISD::CALLSEQ_END:
1026    // If the CALLSEQ_START node hasn't been legalized first, legalize it.  This
1027    // will cause this node to be legalized as well as handling libcalls right.
1028    if (LastCALLSEQ_END.getNode() != Node) {
1029      LegalizeOp(SDValue(FindCallStartFromCallEnd(Node), 0));
1030      DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
1031      assert(I != LegalizedNodes.end() &&
1032             "Legalizing the call start should have legalized this node!");
1033      return I->second;
1034    }
1035
1036    // Otherwise, the call start has been legalized and everything is going
1037    // according to plan.  Just legalize ourselves normally here.
1038    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1039    // Do not try to legalize the target-specific arguments (#1+), except for
1040    // an optional flag input.
1041    if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Flag){
1042      if (Tmp1 != Node->getOperand(0)) {
1043        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1044        Ops[0] = Tmp1;
1045        Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1046      }
1047    } else {
1048      Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1));
1049      if (Tmp1 != Node->getOperand(0) ||
1050          Tmp2 != Node->getOperand(Node->getNumOperands()-1)) {
1051        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1052        Ops[0] = Tmp1;
1053        Ops.back() = Tmp2;
1054        Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1055      }
1056    }
1057    assert(IsLegalizingCall && "Call sequence imbalance between start/end?");
1058    // This finishes up call legalization.
1059    IsLegalizingCall = false;
1060
1061    // If the CALLSEQ_END node has a flag, remember that we legalized it.
1062    AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0));
1063    if (Node->getNumValues() == 2)
1064      AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1));
1065    return Result.getValue(Op.getResNo());
1066  case ISD::LOAD: {
1067    LoadSDNode *LD = cast<LoadSDNode>(Node);
1068    Tmp1 = LegalizeOp(LD->getChain());   // Legalize the chain.
1069    Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer.
1070
1071    ISD::LoadExtType ExtType = LD->getExtensionType();
1072    if (ExtType == ISD::NON_EXTLOAD) {
1073      EVT VT = Node->getValueType(0);
1074      Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset());
1075      Tmp3 = Result.getValue(0);
1076      Tmp4 = Result.getValue(1);
1077
1078      switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
1079      default: llvm_unreachable("This action is not supported yet!");
1080      case TargetLowering::Legal:
1081        // If this is an unaligned load and the target doesn't support it,
1082        // expand it.
1083        if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1084          const Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1085          unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1086          if (LD->getAlignment() < ABIAlignment){
1087            Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
1088                                         DAG, TLI);
1089            Tmp3 = Result.getOperand(0);
1090            Tmp4 = Result.getOperand(1);
1091            Tmp3 = LegalizeOp(Tmp3);
1092            Tmp4 = LegalizeOp(Tmp4);
1093          }
1094        }
1095        break;
1096      case TargetLowering::Custom:
1097        Tmp1 = TLI.LowerOperation(Tmp3, DAG);
1098        if (Tmp1.getNode()) {
1099          Tmp3 = LegalizeOp(Tmp1);
1100          Tmp4 = LegalizeOp(Tmp1.getValue(1));
1101        }
1102        break;
1103      case TargetLowering::Promote: {
1104        // Only promote a load of vector type to another.
1105        assert(VT.isVector() && "Cannot promote this load!");
1106        // Change base type to a different vector type.
1107        EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
1108
1109        Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
1110                           LD->getSrcValueOffset(),
1111                           LD->isVolatile(), LD->getAlignment());
1112        Tmp3 = LegalizeOp(DAG.getNode(ISD::BIT_CONVERT, dl, VT, Tmp1));
1113        Tmp4 = LegalizeOp(Tmp1.getValue(1));
1114        break;
1115      }
1116      }
1117      // Since loads produce two values, make sure to remember that we
1118      // legalized both of them.
1119      AddLegalizedOperand(SDValue(Node, 0), Tmp3);
1120      AddLegalizedOperand(SDValue(Node, 1), Tmp4);
1121      return Op.getResNo() ? Tmp4 : Tmp3;
1122    } else {
1123      EVT SrcVT = LD->getMemoryVT();
1124      unsigned SrcWidth = SrcVT.getSizeInBits();
1125      int SVOffset = LD->getSrcValueOffset();
1126      unsigned Alignment = LD->getAlignment();
1127      bool isVolatile = LD->isVolatile();
1128
1129      if (SrcWidth != SrcVT.getStoreSizeInBits() &&
1130          // Some targets pretend to have an i1 loading operation, and actually
1131          // load an i8.  This trick is correct for ZEXTLOAD because the top 7
1132          // bits are guaranteed to be zero; it helps the optimizers understand
1133          // that these bits are zero.  It is also useful for EXTLOAD, since it
1134          // tells the optimizers that those bits are undefined.  It would be
1135          // nice to have an effective generic way of getting these benefits...
1136          // Until such a way is found, don't insist on promoting i1 here.
1137          (SrcVT != MVT::i1 ||
1138           TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
1139        // Promote to a byte-sized load if not loading an integral number of
1140        // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
1141        unsigned NewWidth = SrcVT.getStoreSizeInBits();
1142        EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
1143        SDValue Ch;
1144
1145        // The extra bits are guaranteed to be zero, since we stored them that
1146        // way.  A zext load from NVT thus automatically gives zext from SrcVT.
1147
1148        ISD::LoadExtType NewExtType =
1149          ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
1150
1151        Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
1152                                Tmp1, Tmp2, LD->getSrcValue(), SVOffset,
1153                                NVT, isVolatile, Alignment);
1154
1155        Ch = Result.getValue(1); // The chain.
1156
1157        if (ExtType == ISD::SEXTLOAD)
1158          // Having the top bits zero doesn't help when sign extending.
1159          Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1160                               Result.getValueType(),
1161                               Result, DAG.getValueType(SrcVT));
1162        else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
1163          // All the top bits are guaranteed to be zero - inform the optimizers.
1164          Result = DAG.getNode(ISD::AssertZext, dl,
1165                               Result.getValueType(), Result,
1166                               DAG.getValueType(SrcVT));
1167
1168        Tmp1 = LegalizeOp(Result);
1169        Tmp2 = LegalizeOp(Ch);
1170      } else if (SrcWidth & (SrcWidth - 1)) {
1171        // If not loading a power-of-2 number of bits, expand as two loads.
1172        assert(SrcVT.isExtended() && !SrcVT.isVector() &&
1173               "Unsupported extload!");
1174        unsigned RoundWidth = 1 << Log2_32(SrcWidth);
1175        assert(RoundWidth < SrcWidth);
1176        unsigned ExtraWidth = SrcWidth - RoundWidth;
1177        assert(ExtraWidth < RoundWidth);
1178        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1179               "Load size not an integral number of bytes!");
1180        EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1181        EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1182        SDValue Lo, Hi, Ch;
1183        unsigned IncrementSize;
1184
1185        if (TLI.isLittleEndian()) {
1186          // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
1187          // Load the bottom RoundWidth bits.
1188          Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl,
1189                              Node->getValueType(0), Tmp1, Tmp2,
1190                              LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
1191                              Alignment);
1192
1193          // Load the remaining ExtraWidth bits.
1194          IncrementSize = RoundWidth / 8;
1195          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1196                             DAG.getIntPtrConstant(IncrementSize));
1197          Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1198                              LD->getSrcValue(), SVOffset + IncrementSize,
1199                              ExtraVT, isVolatile,
1200                              MinAlign(Alignment, IncrementSize));
1201
1202          // Build a factor node to remember that this load is independent of the
1203          // other one.
1204          Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1205                           Hi.getValue(1));
1206
1207          // Move the top bits to the right place.
1208          Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1209                           DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1210
1211          // Join the hi and lo parts.
1212          Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1213        } else {
1214          // Big endian - avoid unaligned loads.
1215          // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
1216          // Load the top RoundWidth bits.
1217          Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1218                              LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
1219                              Alignment);
1220
1221          // Load the remaining ExtraWidth bits.
1222          IncrementSize = RoundWidth / 8;
1223          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1224                             DAG.getIntPtrConstant(IncrementSize));
1225          Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl,
1226                              Node->getValueType(0), Tmp1, Tmp2,
1227                              LD->getSrcValue(), SVOffset + IncrementSize,
1228                              ExtraVT, isVolatile,
1229                              MinAlign(Alignment, IncrementSize));
1230
1231          // Build a factor node to remember that this load is independent of the
1232          // other one.
1233          Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1234                           Hi.getValue(1));
1235
1236          // Move the top bits to the right place.
1237          Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1238                           DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1239
1240          // Join the hi and lo parts.
1241          Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1242        }
1243
1244        Tmp1 = LegalizeOp(Result);
1245        Tmp2 = LegalizeOp(Ch);
1246      } else {
1247        switch (TLI.getLoadExtAction(ExtType, SrcVT)) {
1248        default: llvm_unreachable("This action is not supported yet!");
1249        case TargetLowering::Custom:
1250          isCustom = true;
1251          // FALLTHROUGH
1252        case TargetLowering::Legal:
1253          Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset());
1254          Tmp1 = Result.getValue(0);
1255          Tmp2 = Result.getValue(1);
1256
1257          if (isCustom) {
1258            Tmp3 = TLI.LowerOperation(Result, DAG);
1259            if (Tmp3.getNode()) {
1260              Tmp1 = LegalizeOp(Tmp3);
1261              Tmp2 = LegalizeOp(Tmp3.getValue(1));
1262            }
1263          } else {
1264            // If this is an unaligned load and the target doesn't support it,
1265            // expand it.
1266            if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1267              const Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1268              unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1269              if (LD->getAlignment() < ABIAlignment){
1270                Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
1271                                             DAG, TLI);
1272                Tmp1 = Result.getOperand(0);
1273                Tmp2 = Result.getOperand(1);
1274                Tmp1 = LegalizeOp(Tmp1);
1275                Tmp2 = LegalizeOp(Tmp2);
1276              }
1277            }
1278          }
1279          break;
1280        case TargetLowering::Expand:
1281          // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND
1282          // f128 = EXTLOAD {f32,f64} too
1283          if ((SrcVT == MVT::f32 && (Node->getValueType(0) == MVT::f64 ||
1284                                     Node->getValueType(0) == MVT::f128)) ||
1285              (SrcVT == MVT::f64 && Node->getValueType(0) == MVT::f128)) {
1286            SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
1287                                       LD->getSrcValueOffset(),
1288                                       LD->isVolatile(), LD->getAlignment());
1289            Result = DAG.getNode(ISD::FP_EXTEND, dl,
1290                                 Node->getValueType(0), Load);
1291            Tmp1 = LegalizeOp(Result);  // Relegalize new nodes.
1292            Tmp2 = LegalizeOp(Load.getValue(1));
1293            break;
1294          }
1295          assert(ExtType != ISD::EXTLOAD &&"EXTLOAD should always be supported!");
1296          // Turn the unsupported load into an EXTLOAD followed by an explicit
1297          // zero/sign extend inreg.
1298          Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0),
1299                                  Tmp1, Tmp2, LD->getSrcValue(),
1300                                  LD->getSrcValueOffset(), SrcVT,
1301                                  LD->isVolatile(), LD->getAlignment());
1302          SDValue ValRes;
1303          if (ExtType == ISD::SEXTLOAD)
1304            ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1305                                 Result.getValueType(),
1306                                 Result, DAG.getValueType(SrcVT));
1307          else
1308            ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT);
1309          Tmp1 = LegalizeOp(ValRes);  // Relegalize new nodes.
1310          Tmp2 = LegalizeOp(Result.getValue(1));  // Relegalize new nodes.
1311          break;
1312        }
1313      }
1314
1315      // Since loads produce two values, make sure to remember that we legalized
1316      // both of them.
1317      AddLegalizedOperand(SDValue(Node, 0), Tmp1);
1318      AddLegalizedOperand(SDValue(Node, 1), Tmp2);
1319      return Op.getResNo() ? Tmp2 : Tmp1;
1320    }
1321  }
1322  case ISD::STORE: {
1323    StoreSDNode *ST = cast<StoreSDNode>(Node);
1324    Tmp1 = LegalizeOp(ST->getChain());    // Legalize the chain.
1325    Tmp2 = LegalizeOp(ST->getBasePtr());  // Legalize the pointer.
1326    int SVOffset = ST->getSrcValueOffset();
1327    unsigned Alignment = ST->getAlignment();
1328    bool isVolatile = ST->isVolatile();
1329
1330    if (!ST->isTruncatingStore()) {
1331      if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
1332        Result = SDValue(OptStore, 0);
1333        break;
1334      }
1335
1336      {
1337        Tmp3 = LegalizeOp(ST->getValue());
1338        Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2,
1339                                        ST->getOffset());
1340
1341        EVT VT = Tmp3.getValueType();
1342        switch (TLI.getOperationAction(ISD::STORE, VT)) {
1343        default: llvm_unreachable("This action is not supported yet!");
1344        case TargetLowering::Legal:
1345          // If this is an unaligned store and the target doesn't support it,
1346          // expand it.
1347          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1348            const Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1349            unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1350            if (ST->getAlignment() < ABIAlignment)
1351              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()),
1352                                            DAG, TLI);
1353          }
1354          break;
1355        case TargetLowering::Custom:
1356          Tmp1 = TLI.LowerOperation(Result, DAG);
1357          if (Tmp1.getNode()) Result = Tmp1;
1358          break;
1359        case TargetLowering::Promote:
1360          assert(VT.isVector() && "Unknown legal promote case!");
1361          Tmp3 = DAG.getNode(ISD::BIT_CONVERT, dl,
1362                             TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3);
1363          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2,
1364                                ST->getSrcValue(), SVOffset, isVolatile,
1365                                Alignment);
1366          break;
1367        }
1368        break;
1369      }
1370    } else {
1371      Tmp3 = LegalizeOp(ST->getValue());
1372
1373      EVT StVT = ST->getMemoryVT();
1374      unsigned StWidth = StVT.getSizeInBits();
1375
1376      if (StWidth != StVT.getStoreSizeInBits()) {
1377        // Promote to a byte-sized store with upper bits zero if not
1378        // storing an integral number of bytes.  For example, promote
1379        // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
1380        EVT NVT = EVT::getIntegerVT(*DAG.getContext(), StVT.getStoreSizeInBits());
1381        Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT);
1382        Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1383                                   SVOffset, NVT, isVolatile, Alignment);
1384      } else if (StWidth & (StWidth - 1)) {
1385        // If not storing a power-of-2 number of bits, expand as two stores.
1386        assert(StVT.isExtended() && !StVT.isVector() &&
1387               "Unsupported truncstore!");
1388        unsigned RoundWidth = 1 << Log2_32(StWidth);
1389        assert(RoundWidth < StWidth);
1390        unsigned ExtraWidth = StWidth - RoundWidth;
1391        assert(ExtraWidth < RoundWidth);
1392        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1393               "Store size not an integral number of bytes!");
1394        EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1395        EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1396        SDValue Lo, Hi;
1397        unsigned IncrementSize;
1398
1399        if (TLI.isLittleEndian()) {
1400          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
1401          // Store the bottom RoundWidth bits.
1402          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1403                                 SVOffset, RoundVT,
1404                                 isVolatile, Alignment);
1405
1406          // Store the remaining ExtraWidth bits.
1407          IncrementSize = RoundWidth / 8;
1408          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1409                             DAG.getIntPtrConstant(IncrementSize));
1410          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1411                           DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1412          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
1413                                 SVOffset + IncrementSize, ExtraVT, isVolatile,
1414                                 MinAlign(Alignment, IncrementSize));
1415        } else {
1416          // Big endian - avoid unaligned stores.
1417          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
1418          // Store the top RoundWidth bits.
1419          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1420                           DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1421          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
1422                                 SVOffset, RoundVT, isVolatile, Alignment);
1423
1424          // Store the remaining ExtraWidth bits.
1425          IncrementSize = RoundWidth / 8;
1426          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1427                             DAG.getIntPtrConstant(IncrementSize));
1428          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1429                                 SVOffset + IncrementSize, ExtraVT, isVolatile,
1430                                 MinAlign(Alignment, IncrementSize));
1431        }
1432
1433        // The order of the stores doesn't matter.
1434        Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
1435      } else {
1436        if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() ||
1437            Tmp2 != ST->getBasePtr())
1438          Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2,
1439                                          ST->getOffset());
1440
1441        switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
1442        default: llvm_unreachable("This action is not supported yet!");
1443        case TargetLowering::Legal:
1444          // If this is an unaligned store and the target doesn't support it,
1445          // expand it.
1446          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1447            const Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1448            unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1449            if (ST->getAlignment() < ABIAlignment)
1450              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()),
1451                                            DAG, TLI);
1452          }
1453          break;
1454        case TargetLowering::Custom:
1455          Result = TLI.LowerOperation(Result, DAG);
1456          break;
1457        case Expand:
1458          // TRUNCSTORE:i16 i32 -> STORE i16
1459          assert(isTypeLegal(StVT) && "Do not know how to expand this store!");
1460          Tmp3 = DAG.getNode(ISD::TRUNCATE, dl, StVT, Tmp3);
1461          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1462                                SVOffset, isVolatile, Alignment);
1463          break;
1464        }
1465      }
1466    }
1467    break;
1468  }
1469  }
1470  assert(Result.getValueType() == Op.getValueType() &&
1471         "Bad legalization!");
1472
1473  // Make sure that the generated code is itself legal.
1474  if (Result != Op)
1475    Result = LegalizeOp(Result);
1476
1477  // Note that LegalizeOp may be reentered even from single-use nodes, which
1478  // means that we always must cache transformed nodes.
1479  AddLegalizedOperand(Op, Result);
1480  return Result;
1481}
1482
1483SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1484  SDValue Vec = Op.getOperand(0);
1485  SDValue Idx = Op.getOperand(1);
1486  DebugLoc dl = Op.getDebugLoc();
1487  // Store the value to a temporary stack slot, then LOAD the returned part.
1488  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1489  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, NULL, 0);
1490
1491  // Add the offset to the index.
1492  unsigned EltSize =
1493      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1494  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1495                    DAG.getConstant(EltSize, Idx.getValueType()));
1496
1497  if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1498    Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1499  else
1500    Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1501
1502  StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
1503
1504  if (Op.getValueType().isVector())
1505    return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, NULL, 0);
1506  else
1507    return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
1508                          NULL, 0, Vec.getValueType().getVectorElementType());
1509}
1510
1511SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1512  // We can't handle this case efficiently.  Allocate a sufficiently
1513  // aligned object on the stack, store each element into it, then load
1514  // the result as a vector.
1515  // Create the stack frame object.
1516  EVT VT = Node->getValueType(0);
1517  EVT OpVT = Node->getOperand(0).getValueType();
1518  DebugLoc dl = Node->getDebugLoc();
1519  SDValue FIPtr = DAG.CreateStackTemporary(VT);
1520  int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1521  const Value *SV = PseudoSourceValue::getFixedStack(FI);
1522
1523  // Emit a store of each element to the stack slot.
1524  SmallVector<SDValue, 8> Stores;
1525  unsigned TypeByteSize = OpVT.getSizeInBits() / 8;
1526  // Store (in the right endianness) the elements to memory.
1527  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1528    // Ignore undef elements.
1529    if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1530
1531    unsigned Offset = TypeByteSize*i;
1532
1533    SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType());
1534    Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
1535
1536    Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i),
1537                                  Idx, SV, Offset));
1538  }
1539
1540  SDValue StoreChain;
1541  if (!Stores.empty())    // Not all undef elements?
1542    StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1543                             &Stores[0], Stores.size());
1544  else
1545    StoreChain = DAG.getEntryNode();
1546
1547  // Result is a load from the stack slot.
1548  return DAG.getLoad(VT, dl, StoreChain, FIPtr, SV, 0);
1549}
1550
1551SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) {
1552  DebugLoc dl = Node->getDebugLoc();
1553  SDValue Tmp1 = Node->getOperand(0);
1554  SDValue Tmp2 = Node->getOperand(1);
1555  assert((Tmp2.getValueType() == MVT::f32 ||
1556          Tmp2.getValueType() == MVT::f64) &&
1557          "Ugly special-cased code!");
1558  // Get the sign bit of the RHS.
1559  SDValue SignBit;
1560  EVT IVT = Tmp2.getValueType() == MVT::f64 ? MVT::i64 : MVT::i32;
1561  if (isTypeLegal(IVT)) {
1562    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, IVT, Tmp2);
1563  } else {
1564    assert(isTypeLegal(TLI.getPointerTy()) &&
1565            (TLI.getPointerTy() == MVT::i32 ||
1566            TLI.getPointerTy() == MVT::i64) &&
1567            "Legal type for load?!");
1568    SDValue StackPtr = DAG.CreateStackTemporary(Tmp2.getValueType());
1569    SDValue StorePtr = StackPtr, LoadPtr = StackPtr;
1570    SDValue Ch =
1571        DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StorePtr, NULL, 0);
1572    if (Tmp2.getValueType() == MVT::f64 && TLI.isLittleEndian())
1573      LoadPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(),
1574                            LoadPtr, DAG.getIntPtrConstant(4));
1575    SignBit = DAG.getExtLoad(ISD::SEXTLOAD, dl, TLI.getPointerTy(),
1576                              Ch, LoadPtr, NULL, 0, MVT::i32);
1577  }
1578  SignBit =
1579      DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()),
1580                    SignBit, DAG.getConstant(0, SignBit.getValueType()),
1581                    ISD::SETLT);
1582  // Get the absolute value of the result.
1583  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1);
1584  // Select between the nabs and abs value based on the sign bit of
1585  // the input.
1586  return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit,
1587                     DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal),
1588                     AbsVal);
1589}
1590
1591SDValue SelectionDAGLegalize::ExpandDBG_STOPPOINT(SDNode* Node) {
1592  DebugLoc dl = Node->getDebugLoc();
1593  DwarfWriter *DW = DAG.getDwarfWriter();
1594  bool useDEBUG_LOC = TLI.isOperationLegalOrCustom(ISD::DEBUG_LOC,
1595                                                    MVT::Other);
1596  bool useLABEL = TLI.isOperationLegalOrCustom(ISD::DBG_LABEL, MVT::Other);
1597
1598  const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(Node);
1599  MDNode *CU_Node = DSP->getCompileUnit();
1600  if (DW && (useDEBUG_LOC || useLABEL)) {
1601
1602    unsigned Line = DSP->getLine();
1603    unsigned Col = DSP->getColumn();
1604
1605    if (OptLevel == CodeGenOpt::None) {
1606      // A bit self-referential to have DebugLoc on Debug_Loc nodes, but it
1607      // won't hurt anything.
1608      if (useDEBUG_LOC) {
1609        return DAG.getNode(ISD::DEBUG_LOC, dl, MVT::Other, Node->getOperand(0),
1610                           DAG.getConstant(Line, MVT::i32),
1611                           DAG.getConstant(Col, MVT::i32),
1612                           DAG.getSrcValue(CU_Node));
1613      } else {
1614        unsigned ID = DW->RecordSourceLine(Line, Col, CU_Node);
1615        return DAG.getLabel(ISD::DBG_LABEL, dl, Node->getOperand(0), ID);
1616      }
1617    }
1618  }
1619  return Node->getOperand(0);
1620}
1621
1622void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1623                                           SmallVectorImpl<SDValue> &Results) {
1624  unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1625  assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1626          " not tell us which reg is the stack pointer!");
1627  DebugLoc dl = Node->getDebugLoc();
1628  EVT VT = Node->getValueType(0);
1629  SDValue Tmp1 = SDValue(Node, 0);
1630  SDValue Tmp2 = SDValue(Node, 1);
1631  SDValue Tmp3 = Node->getOperand(2);
1632  SDValue Chain = Tmp1.getOperand(0);
1633
1634  // Chain the dynamic stack allocation so that it doesn't modify the stack
1635  // pointer when other instructions are using the stack.
1636  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
1637
1638  SDValue Size  = Tmp2.getOperand(1);
1639  SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1640  Chain = SP.getValue(1);
1641  unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1642  unsigned StackAlign =
1643    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
1644  if (Align > StackAlign)
1645    SP = DAG.getNode(ISD::AND, dl, VT, SP,
1646                      DAG.getConstant(-(uint64_t)Align, VT));
1647  Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size);       // Value
1648  Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain
1649
1650  Tmp2 = DAG.getCALLSEQ_END(Chain,  DAG.getIntPtrConstant(0, true),
1651                            DAG.getIntPtrConstant(0, true), SDValue());
1652
1653  Results.push_back(Tmp1);
1654  Results.push_back(Tmp2);
1655}
1656
1657/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
1658/// condition code CC on the current target. This routine expands SETCC with
1659/// illegal condition code into AND / OR of multiple SETCC values.
1660void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT,
1661                                                 SDValue &LHS, SDValue &RHS,
1662                                                 SDValue &CC,
1663                                                 DebugLoc dl) {
1664  EVT OpVT = LHS.getValueType();
1665  ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1666  switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1667  default: llvm_unreachable("Unknown condition code action!");
1668  case TargetLowering::Legal:
1669    // Nothing to do.
1670    break;
1671  case TargetLowering::Expand: {
1672    ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1673    unsigned Opc = 0;
1674    switch (CCCode) {
1675    default: llvm_unreachable("Don't know how to expand this condition!");
1676    case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1677    case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1678    case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1679    case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1680    case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1681    case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1682    case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1683    case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1684    case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1685    case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1686    case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1687    case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1688    // FIXME: Implement more expansions.
1689    }
1690
1691    SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1692    SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
1693    LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1694    RHS = SDValue();
1695    CC  = SDValue();
1696    break;
1697  }
1698  }
1699}
1700
1701/// EmitStackConvert - Emit a store/load combination to the stack.  This stores
1702/// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
1703/// a load from the stack slot to DestVT, extending it if needed.
1704/// The resultant code need not be legal.
1705SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
1706                                               EVT SlotVT,
1707                                               EVT DestVT,
1708                                               DebugLoc dl) {
1709  // Create the stack frame object.
1710  unsigned SrcAlign =
1711    TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType().
1712                                              getTypeForEVT(*DAG.getContext()));
1713  SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1714
1715  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1716  int SPFI = StackPtrFI->getIndex();
1717  const Value *SV = PseudoSourceValue::getFixedStack(SPFI);
1718
1719  unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
1720  unsigned SlotSize = SlotVT.getSizeInBits();
1721  unsigned DestSize = DestVT.getSizeInBits();
1722  unsigned DestAlign =
1723    TLI.getTargetData()->getPrefTypeAlignment(DestVT.getTypeForEVT(*DAG.getContext()));
1724
1725  // Emit a store to the stack slot.  Use a truncstore if the input value is
1726  // later than DestVT.
1727  SDValue Store;
1728
1729  if (SrcSize > SlotSize)
1730    Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1731                              SV, 0, SlotVT, false, SrcAlign);
1732  else {
1733    assert(SrcSize == SlotSize && "Invalid store");
1734    Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1735                         SV, 0, false, SrcAlign);
1736  }
1737
1738  // Result is a load from the stack slot.
1739  if (SlotSize == DestSize)
1740    return DAG.getLoad(DestVT, dl, Store, FIPtr, SV, 0, false, DestAlign);
1741
1742  assert(SlotSize < DestSize && "Unknown extension!");
1743  return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, SV, 0, SlotVT,
1744                        false, DestAlign);
1745}
1746
1747SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1748  DebugLoc dl = Node->getDebugLoc();
1749  // Create a vector sized/aligned stack slot, store the value to element #0,
1750  // then load the whole vector back out.
1751  SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1752
1753  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1754  int SPFI = StackPtrFI->getIndex();
1755
1756  SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0),
1757                                 StackPtr,
1758                                 PseudoSourceValue::getFixedStack(SPFI), 0,
1759                                 Node->getValueType(0).getVectorElementType());
1760  return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr,
1761                     PseudoSourceValue::getFixedStack(SPFI), 0);
1762}
1763
1764
1765/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
1766/// support the operation, but do support the resultant vector type.
1767SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1768  unsigned NumElems = Node->getNumOperands();
1769  SDValue Value1, Value2;
1770  DebugLoc dl = Node->getDebugLoc();
1771  EVT VT = Node->getValueType(0);
1772  EVT OpVT = Node->getOperand(0).getValueType();
1773  EVT EltVT = VT.getVectorElementType();
1774
1775  // If the only non-undef value is the low element, turn this into a
1776  // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
1777  bool isOnlyLowElement = true;
1778  bool MoreThanTwoValues = false;
1779  bool isConstant = true;
1780  for (unsigned i = 0; i < NumElems; ++i) {
1781    SDValue V = Node->getOperand(i);
1782    if (V.getOpcode() == ISD::UNDEF)
1783      continue;
1784    if (i > 0)
1785      isOnlyLowElement = false;
1786    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1787      isConstant = false;
1788
1789    if (!Value1.getNode()) {
1790      Value1 = V;
1791    } else if (!Value2.getNode()) {
1792      if (V != Value1)
1793        Value2 = V;
1794    } else if (V != Value1 && V != Value2) {
1795      MoreThanTwoValues = true;
1796    }
1797  }
1798
1799  if (!Value1.getNode())
1800    return DAG.getUNDEF(VT);
1801
1802  if (isOnlyLowElement)
1803    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1804
1805  // If all elements are constants, create a load from the constant pool.
1806  if (isConstant) {
1807    std::vector<Constant*> CV;
1808    for (unsigned i = 0, e = NumElems; i != e; ++i) {
1809      if (ConstantFPSDNode *V =
1810          dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1811        CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1812      } else if (ConstantSDNode *V =
1813                 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1814        CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1815      } else {
1816        assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
1817        const Type *OpNTy = OpVT.getTypeForEVT(*DAG.getContext());
1818        CV.push_back(UndefValue::get(OpNTy));
1819      }
1820    }
1821    Constant *CP = ConstantVector::get(CV);
1822    SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
1823    unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
1824    return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
1825                       PseudoSourceValue::getConstantPool(), 0,
1826                       false, Alignment);
1827  }
1828
1829  if (!MoreThanTwoValues) {
1830    SmallVector<int, 8> ShuffleVec(NumElems, -1);
1831    for (unsigned i = 0; i < NumElems; ++i) {
1832      SDValue V = Node->getOperand(i);
1833      if (V.getOpcode() == ISD::UNDEF)
1834        continue;
1835      ShuffleVec[i] = V == Value1 ? 0 : NumElems;
1836    }
1837    if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
1838      // Get the splatted value into the low element of a vector register.
1839      SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
1840      SDValue Vec2;
1841      if (Value2.getNode())
1842        Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
1843      else
1844        Vec2 = DAG.getUNDEF(VT);
1845
1846      // Return shuffle(LowValVec, undef, <0,0,0,0>)
1847      return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
1848    }
1849  }
1850
1851  // Otherwise, we can't handle this case efficiently.
1852  return ExpandVectorBuildThroughStack(Node);
1853}
1854
1855// ExpandLibCall - Expand a node into a call to a libcall.  If the result value
1856// does not fit into a register, return the lo part and set the hi part to the
1857// by-reg argument.  If it does fit into a single register, return the result
1858// and leave the Hi part unset.
1859SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
1860                                            bool isSigned) {
1861  assert(!IsLegalizingCall && "Cannot overlap legalization of calls!");
1862  // The input chain to this libcall is the entry node of the function.
1863  // Legalizing the call will automatically add the previous call to the
1864  // dependence.
1865  SDValue InChain = DAG.getEntryNode();
1866
1867  TargetLowering::ArgListTy Args;
1868  TargetLowering::ArgListEntry Entry;
1869  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1870    EVT ArgVT = Node->getOperand(i).getValueType();
1871    const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1872    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
1873    Entry.isSExt = isSigned;
1874    Entry.isZExt = !isSigned;
1875    Args.push_back(Entry);
1876  }
1877  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1878                                         TLI.getPointerTy());
1879
1880  // Splice the libcall in wherever FindInputOutputChains tells us to.
1881  const Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1882  std::pair<SDValue, SDValue> CallInfo =
1883    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
1884                    0, TLI.getLibcallCallingConv(LC), false,
1885                    /*isReturnValueUsed=*/true,
1886                    Callee, Args, DAG,
1887                    Node->getDebugLoc());
1888
1889  // Legalize the call sequence, starting with the chain.  This will advance
1890  // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
1891  // was added by LowerCallTo (guaranteeing proper serialization of calls).
1892  LegalizeOp(CallInfo.second);
1893  return CallInfo.first;
1894}
1895
1896SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
1897                                              RTLIB::Libcall Call_F32,
1898                                              RTLIB::Libcall Call_F64,
1899                                              RTLIB::Libcall Call_F80,
1900                                              RTLIB::Libcall Call_PPCF128) {
1901  RTLIB::Libcall LC;
1902  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1903  default: llvm_unreachable("Unexpected request for libcall!");
1904  case MVT::f32: LC = Call_F32; break;
1905  case MVT::f64: LC = Call_F64; break;
1906  case MVT::f80: LC = Call_F80; break;
1907  case MVT::ppcf128: LC = Call_PPCF128; break;
1908  }
1909  return ExpandLibCall(LC, Node, false);
1910}
1911
1912SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
1913                                               RTLIB::Libcall Call_I16,
1914                                               RTLIB::Libcall Call_I32,
1915                                               RTLIB::Libcall Call_I64,
1916                                               RTLIB::Libcall Call_I128) {
1917  RTLIB::Libcall LC;
1918  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1919  default: llvm_unreachable("Unexpected request for libcall!");
1920  case MVT::i16: LC = Call_I16; break;
1921  case MVT::i32: LC = Call_I32; break;
1922  case MVT::i64: LC = Call_I64; break;
1923  case MVT::i128: LC = Call_I128; break;
1924  }
1925  return ExpandLibCall(LC, Node, isSigned);
1926}
1927
1928/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
1929/// INT_TO_FP operation of the specified operand when the target requests that
1930/// we expand it.  At this point, we know that the result and operand types are
1931/// legal for the target.
1932SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
1933                                                   SDValue Op0,
1934                                                   EVT DestVT,
1935                                                   DebugLoc dl) {
1936  if (Op0.getValueType() == MVT::i32) {
1937    // simple 32-bit [signed|unsigned] integer to float/double expansion
1938
1939    // Get the stack frame index of a 8 byte buffer.
1940    SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
1941
1942    // word offset constant for Hi/Lo address computation
1943    SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy());
1944    // set up Hi and Lo (into buffer) address based on endian
1945    SDValue Hi = StackSlot;
1946    SDValue Lo = DAG.getNode(ISD::ADD, dl,
1947                             TLI.getPointerTy(), StackSlot, WordOff);
1948    if (TLI.isLittleEndian())
1949      std::swap(Hi, Lo);
1950
1951    // if signed map to unsigned space
1952    SDValue Op0Mapped;
1953    if (isSigned) {
1954      // constant used to invert sign bit (signed to unsigned mapping)
1955      SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32);
1956      Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
1957    } else {
1958      Op0Mapped = Op0;
1959    }
1960    // store the lo of the constructed double - based on integer input
1961    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
1962                                  Op0Mapped, Lo, NULL, 0);
1963    // initial hi portion of constructed double
1964    SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
1965    // store the hi of the constructed double - biased exponent
1966    SDValue Store2=DAG.getStore(Store1, dl, InitialHi, Hi, NULL, 0);
1967    // load the constructed double
1968    SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot, NULL, 0);
1969    // FP constant to bias correct the final result
1970    SDValue Bias = DAG.getConstantFP(isSigned ?
1971                                     BitsToDouble(0x4330000080000000ULL) :
1972                                     BitsToDouble(0x4330000000000000ULL),
1973                                     MVT::f64);
1974    // subtract the bias
1975    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
1976    // final result
1977    SDValue Result;
1978    // handle final rounding
1979    if (DestVT == MVT::f64) {
1980      // do nothing
1981      Result = Sub;
1982    } else if (DestVT.bitsLT(MVT::f64)) {
1983      Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
1984                           DAG.getIntPtrConstant(0));
1985    } else if (DestVT.bitsGT(MVT::f64)) {
1986      Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
1987    }
1988    return Result;
1989  }
1990  assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
1991  SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
1992
1993  SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()),
1994                                 Op0, DAG.getConstant(0, Op0.getValueType()),
1995                                 ISD::SETLT);
1996  SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
1997  SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(),
1998                                    SignSet, Four, Zero);
1999
2000  // If the sign bit of the integer is set, the large number will be treated
2001  // as a negative number.  To counteract this, the dynamic code adds an
2002  // offset depending on the data type.
2003  uint64_t FF;
2004  switch (Op0.getValueType().getSimpleVT().SimpleTy) {
2005  default: llvm_unreachable("Unsupported integer type!");
2006  case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
2007  case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
2008  case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
2009  case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
2010  }
2011  if (TLI.isLittleEndian()) FF <<= 32;
2012  Constant *FudgeFactor = ConstantInt::get(
2013                                       Type::getInt64Ty(*DAG.getContext()), FF);
2014
2015  SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
2016  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2017  CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset);
2018  Alignment = std::min(Alignment, 4u);
2019  SDValue FudgeInReg;
2020  if (DestVT == MVT::f32)
2021    FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2022                             PseudoSourceValue::getConstantPool(), 0,
2023                             false, Alignment);
2024  else {
2025    FudgeInReg =
2026      LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT,
2027                                DAG.getEntryNode(), CPIdx,
2028                                PseudoSourceValue::getConstantPool(), 0,
2029                                MVT::f32, false, Alignment));
2030  }
2031
2032  return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2033}
2034
2035/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
2036/// *INT_TO_FP operation of the specified operand when the target requests that
2037/// we promote it.  At this point, we know that the result and operand types are
2038/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2039/// operation that takes a larger input.
2040SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
2041                                                    EVT DestVT,
2042                                                    bool isSigned,
2043                                                    DebugLoc dl) {
2044  // First step, figure out the appropriate *INT_TO_FP operation to use.
2045  EVT NewInTy = LegalOp.getValueType();
2046
2047  unsigned OpToUse = 0;
2048
2049  // Scan for the appropriate larger type to use.
2050  while (1) {
2051    NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2052    assert(NewInTy.isInteger() && "Ran out of possibilities!");
2053
2054    // If the target supports SINT_TO_FP of this type, use it.
2055    if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2056      OpToUse = ISD::SINT_TO_FP;
2057      break;
2058    }
2059    if (isSigned) continue;
2060
2061    // If the target supports UINT_TO_FP of this type, use it.
2062    if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2063      OpToUse = ISD::UINT_TO_FP;
2064      break;
2065    }
2066
2067    // Otherwise, try a larger type.
2068  }
2069
2070  // Okay, we found the operation and type to use.  Zero extend our input to the
2071  // desired type then run the operation on it.
2072  return DAG.getNode(OpToUse, dl, DestVT,
2073                     DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2074                                 dl, NewInTy, LegalOp));
2075}
2076
2077/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
2078/// FP_TO_*INT operation of the specified operand when the target requests that
2079/// we promote it.  At this point, we know that the result and operand types are
2080/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2081/// operation that returns a larger result.
2082SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
2083                                                    EVT DestVT,
2084                                                    bool isSigned,
2085                                                    DebugLoc dl) {
2086  // First step, figure out the appropriate FP_TO*INT operation to use.
2087  EVT NewOutTy = DestVT;
2088
2089  unsigned OpToUse = 0;
2090
2091  // Scan for the appropriate larger type to use.
2092  while (1) {
2093    NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2094    assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2095
2096    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2097      OpToUse = ISD::FP_TO_SINT;
2098      break;
2099    }
2100
2101    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
2102      OpToUse = ISD::FP_TO_UINT;
2103      break;
2104    }
2105
2106    // Otherwise, try a larger type.
2107  }
2108
2109
2110  // Okay, we found the operation and type to use.
2111  SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2112
2113  // Truncate the result of the extended FP_TO_*INT operation to the desired
2114  // size.
2115  return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2116}
2117
2118/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
2119///
2120SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) {
2121  EVT VT = Op.getValueType();
2122  EVT SHVT = TLI.getShiftAmountTy();
2123  SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2124  switch (VT.getSimpleVT().SimpleTy) {
2125  default: llvm_unreachable("Unhandled Expand type in BSWAP!");
2126  case MVT::i16:
2127    Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2128    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2129    return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2130  case MVT::i32:
2131    Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2132    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2133    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2134    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2135    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
2136    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT));
2137    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2138    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2139    return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2140  case MVT::i64:
2141    Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT));
2142    Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT));
2143    Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2144    Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2145    Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2146    Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2147    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT));
2148    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT));
2149    Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
2150    Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
2151    Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
2152    Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
2153    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
2154    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
2155    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2156    Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2157    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2158    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2159    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2160    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2161    return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2162  }
2163}
2164
2165/// ExpandBitCount - Expand the specified bitcount instruction into operations.
2166///
2167SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
2168                                             DebugLoc dl) {
2169  switch (Opc) {
2170  default: llvm_unreachable("Cannot expand this yet!");
2171  case ISD::CTPOP: {
2172    static const uint64_t mask[6] = {
2173      0x5555555555555555ULL, 0x3333333333333333ULL,
2174      0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL,
2175      0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL
2176    };
2177    EVT VT = Op.getValueType();
2178    EVT ShVT = TLI.getShiftAmountTy();
2179    unsigned len = VT.getSizeInBits();
2180    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2181      //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8])
2182      unsigned EltSize = VT.isVector() ?
2183        VT.getVectorElementType().getSizeInBits() : len;
2184      SDValue Tmp2 = DAG.getConstant(APInt(EltSize, mask[i]), VT);
2185      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2186      Op = DAG.getNode(ISD::ADD, dl, VT,
2187                       DAG.getNode(ISD::AND, dl, VT, Op, Tmp2),
2188                       DAG.getNode(ISD::AND, dl, VT,
2189                                   DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3),
2190                                   Tmp2));
2191    }
2192    return Op;
2193  }
2194  case ISD::CTLZ: {
2195    // for now, we do this:
2196    // x = x | (x >> 1);
2197    // x = x | (x >> 2);
2198    // ...
2199    // x = x | (x >>16);
2200    // x = x | (x >>32); // for 64-bit input
2201    // return popcount(~x);
2202    //
2203    // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
2204    EVT VT = Op.getValueType();
2205    EVT ShVT = TLI.getShiftAmountTy();
2206    unsigned len = VT.getSizeInBits();
2207    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2208      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2209      Op = DAG.getNode(ISD::OR, dl, VT, Op,
2210                       DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
2211    }
2212    Op = DAG.getNOT(dl, Op, VT);
2213    return DAG.getNode(ISD::CTPOP, dl, VT, Op);
2214  }
2215  case ISD::CTTZ: {
2216    // for now, we use: { return popcount(~x & (x - 1)); }
2217    // unless the target has ctlz but not ctpop, in which case we use:
2218    // { return 32 - nlz(~x & (x-1)); }
2219    // see also http://www.hackersdelight.org/HDcode/ntz.cc
2220    EVT VT = Op.getValueType();
2221    SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
2222                               DAG.getNOT(dl, Op, VT),
2223                               DAG.getNode(ISD::SUB, dl, VT, Op,
2224                                           DAG.getConstant(1, VT)));
2225    // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
2226    if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
2227        TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
2228      return DAG.getNode(ISD::SUB, dl, VT,
2229                         DAG.getConstant(VT.getSizeInBits(), VT),
2230                         DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
2231    return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
2232  }
2233  }
2234}
2235
2236void SelectionDAGLegalize::ExpandNode(SDNode *Node,
2237                                      SmallVectorImpl<SDValue> &Results) {
2238  DebugLoc dl = Node->getDebugLoc();
2239  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2240  switch (Node->getOpcode()) {
2241  case ISD::CTPOP:
2242  case ISD::CTLZ:
2243  case ISD::CTTZ:
2244    Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
2245    Results.push_back(Tmp1);
2246    break;
2247  case ISD::BSWAP:
2248    Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2249    break;
2250  case ISD::FRAMEADDR:
2251  case ISD::RETURNADDR:
2252  case ISD::FRAME_TO_ARGS_OFFSET:
2253    Results.push_back(DAG.getConstant(0, Node->getValueType(0)));
2254    break;
2255  case ISD::FLT_ROUNDS_:
2256    Results.push_back(DAG.getConstant(1, Node->getValueType(0)));
2257    break;
2258  case ISD::EH_RETURN:
2259  case ISD::DBG_LABEL:
2260  case ISD::EH_LABEL:
2261  case ISD::PREFETCH:
2262  case ISD::MEMBARRIER:
2263  case ISD::VAEND:
2264    Results.push_back(Node->getOperand(0));
2265    break;
2266  case ISD::DBG_STOPPOINT:
2267    Results.push_back(ExpandDBG_STOPPOINT(Node));
2268    break;
2269  case ISD::DYNAMIC_STACKALLOC:
2270    ExpandDYNAMIC_STACKALLOC(Node, Results);
2271    break;
2272  case ISD::MERGE_VALUES:
2273    for (unsigned i = 0; i < Node->getNumValues(); i++)
2274      Results.push_back(Node->getOperand(i));
2275    break;
2276  case ISD::UNDEF: {
2277    EVT VT = Node->getValueType(0);
2278    if (VT.isInteger())
2279      Results.push_back(DAG.getConstant(0, VT));
2280    else if (VT.isFloatingPoint())
2281      Results.push_back(DAG.getConstantFP(0, VT));
2282    else
2283      llvm_unreachable("Unknown value type!");
2284    break;
2285  }
2286  case ISD::TRAP: {
2287    // If this operation is not supported, lower it to 'abort()' call
2288    TargetLowering::ArgListTy Args;
2289    std::pair<SDValue, SDValue> CallResult =
2290      TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()),
2291                      false, false, false, false, 0, CallingConv::C, false,
2292                      /*isReturnValueUsed=*/true,
2293                      DAG.getExternalSymbol("abort", TLI.getPointerTy()),
2294                      Args, DAG, dl);
2295    Results.push_back(CallResult.second);
2296    break;
2297  }
2298  case ISD::FP_ROUND:
2299  case ISD::BIT_CONVERT:
2300    Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
2301                            Node->getValueType(0), dl);
2302    Results.push_back(Tmp1);
2303    break;
2304  case ISD::FP_EXTEND:
2305    Tmp1 = EmitStackConvert(Node->getOperand(0),
2306                            Node->getOperand(0).getValueType(),
2307                            Node->getValueType(0), dl);
2308    Results.push_back(Tmp1);
2309    break;
2310  case ISD::SIGN_EXTEND_INREG: {
2311    // NOTE: we could fall back on load/store here too for targets without
2312    // SAR.  However, it is doubtful that any exist.
2313    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2314    unsigned BitsDiff = Node->getValueType(0).getSizeInBits() -
2315                        ExtraVT.getSizeInBits();
2316    SDValue ShiftCst = DAG.getConstant(BitsDiff, TLI.getShiftAmountTy());
2317    Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
2318                       Node->getOperand(0), ShiftCst);
2319    Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
2320    Results.push_back(Tmp1);
2321    break;
2322  }
2323  case ISD::FP_ROUND_INREG: {
2324    // The only way we can lower this is to turn it into a TRUNCSTORE,
2325    // EXTLOAD pair, targetting a temporary location (a stack slot).
2326
2327    // NOTE: there is a choice here between constantly creating new stack
2328    // slots and always reusing the same one.  We currently always create
2329    // new ones, as reuse may inhibit scheduling.
2330    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2331    Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
2332                            Node->getValueType(0), dl);
2333    Results.push_back(Tmp1);
2334    break;
2335  }
2336  case ISD::SINT_TO_FP:
2337  case ISD::UINT_TO_FP:
2338    Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
2339                                Node->getOperand(0), Node->getValueType(0), dl);
2340    Results.push_back(Tmp1);
2341    break;
2342  case ISD::FP_TO_UINT: {
2343    SDValue True, False;
2344    EVT VT =  Node->getOperand(0).getValueType();
2345    EVT NVT = Node->getValueType(0);
2346    const uint64_t zero[] = {0, 0};
2347    APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
2348    APInt x = APInt::getSignBit(NVT.getSizeInBits());
2349    (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
2350    Tmp1 = DAG.getConstantFP(apf, VT);
2351    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT),
2352                        Node->getOperand(0),
2353                        Tmp1, ISD::SETLT);
2354    True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
2355    False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
2356                        DAG.getNode(ISD::FSUB, dl, VT,
2357                                    Node->getOperand(0), Tmp1));
2358    False = DAG.getNode(ISD::XOR, dl, NVT, False,
2359                        DAG.getConstant(x, NVT));
2360    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False);
2361    Results.push_back(Tmp1);
2362    break;
2363  }
2364  case ISD::VAARG: {
2365    const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2366    EVT VT = Node->getValueType(0);
2367    Tmp1 = Node->getOperand(0);
2368    Tmp2 = Node->getOperand(1);
2369    SDValue VAList = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2, V, 0);
2370    // Increment the pointer, VAList, to the next vaarg
2371    Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2372                       DAG.getConstant(TLI.getTargetData()->
2373                                       getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())),
2374                                       TLI.getPointerTy()));
2375    // Store the incremented VAList to the legalized pointer
2376    Tmp3 = DAG.getStore(VAList.getValue(1), dl, Tmp3, Tmp2, V, 0);
2377    // Load the actual argument out of the pointer VAList
2378    Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, NULL, 0));
2379    Results.push_back(Results[0].getValue(1));
2380    break;
2381  }
2382  case ISD::VACOPY: {
2383    // This defaults to loading a pointer from the input and storing it to the
2384    // output, returning the chain.
2385    const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2386    const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2387    Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0),
2388                       Node->getOperand(2), VS, 0);
2389    Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), VD, 0);
2390    Results.push_back(Tmp1);
2391    break;
2392  }
2393  case ISD::EXTRACT_VECTOR_ELT:
2394    if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
2395      // This must be an access of the only element.  Return it.
2396      Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, Node->getValueType(0),
2397                         Node->getOperand(0));
2398    else
2399      Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
2400    Results.push_back(Tmp1);
2401    break;
2402  case ISD::EXTRACT_SUBVECTOR:
2403    Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
2404    break;
2405  case ISD::CONCAT_VECTORS: {
2406    Results.push_back(ExpandVectorBuildThroughStack(Node));
2407    break;
2408  }
2409  case ISD::SCALAR_TO_VECTOR:
2410    Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
2411    break;
2412  case ISD::INSERT_VECTOR_ELT:
2413    Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
2414                                              Node->getOperand(1),
2415                                              Node->getOperand(2), dl));
2416    break;
2417  case ISD::VECTOR_SHUFFLE: {
2418    SmallVector<int, 8> Mask;
2419    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
2420
2421    EVT VT = Node->getValueType(0);
2422    EVT EltVT = VT.getVectorElementType();
2423    unsigned NumElems = VT.getVectorNumElements();
2424    SmallVector<SDValue, 8> Ops;
2425    for (unsigned i = 0; i != NumElems; ++i) {
2426      if (Mask[i] < 0) {
2427        Ops.push_back(DAG.getUNDEF(EltVT));
2428        continue;
2429      }
2430      unsigned Idx = Mask[i];
2431      if (Idx < NumElems)
2432        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2433                                  Node->getOperand(0),
2434                                  DAG.getIntPtrConstant(Idx)));
2435      else
2436        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2437                                  Node->getOperand(1),
2438                                  DAG.getIntPtrConstant(Idx - NumElems)));
2439    }
2440    Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size());
2441    Results.push_back(Tmp1);
2442    break;
2443  }
2444  case ISD::EXTRACT_ELEMENT: {
2445    EVT OpTy = Node->getOperand(0).getValueType();
2446    if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
2447      // 1 -> Hi
2448      Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
2449                         DAG.getConstant(OpTy.getSizeInBits()/2,
2450                                         TLI.getShiftAmountTy()));
2451      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
2452    } else {
2453      // 0 -> Lo
2454      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
2455                         Node->getOperand(0));
2456    }
2457    Results.push_back(Tmp1);
2458    break;
2459  }
2460  case ISD::STACKSAVE:
2461    // Expand to CopyFromReg if the target set
2462    // StackPointerRegisterToSaveRestore.
2463    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2464      Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
2465                                           Node->getValueType(0)));
2466      Results.push_back(Results[0].getValue(1));
2467    } else {
2468      Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
2469      Results.push_back(Node->getOperand(0));
2470    }
2471    break;
2472  case ISD::STACKRESTORE:
2473    // Expand to CopyToReg if the target set
2474    // StackPointerRegisterToSaveRestore.
2475    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2476      Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
2477                                         Node->getOperand(1)));
2478    } else {
2479      Results.push_back(Node->getOperand(0));
2480    }
2481    break;
2482  case ISD::FCOPYSIGN:
2483    Results.push_back(ExpandFCOPYSIGN(Node));
2484    break;
2485  case ISD::FNEG:
2486    // Expand Y = FNEG(X) ->  Y = SUB -0.0, X
2487    Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0));
2488    Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
2489                       Node->getOperand(0));
2490    Results.push_back(Tmp1);
2491    break;
2492  case ISD::FABS: {
2493    // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
2494    EVT VT = Node->getValueType(0);
2495    Tmp1 = Node->getOperand(0);
2496    Tmp2 = DAG.getConstantFP(0.0, VT);
2497    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
2498                        Tmp1, Tmp2, ISD::SETUGT);
2499    Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1);
2500    Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3);
2501    Results.push_back(Tmp1);
2502    break;
2503  }
2504  case ISD::FSQRT:
2505    Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
2506                                      RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128));
2507    break;
2508  case ISD::FSIN:
2509    Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
2510                                      RTLIB::SIN_F80, RTLIB::SIN_PPCF128));
2511    break;
2512  case ISD::FCOS:
2513    Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
2514                                      RTLIB::COS_F80, RTLIB::COS_PPCF128));
2515    break;
2516  case ISD::FLOG:
2517    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
2518                                      RTLIB::LOG_F80, RTLIB::LOG_PPCF128));
2519    break;
2520  case ISD::FLOG2:
2521    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
2522                                      RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128));
2523    break;
2524  case ISD::FLOG10:
2525    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
2526                                      RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128));
2527    break;
2528  case ISD::FEXP:
2529    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
2530                                      RTLIB::EXP_F80, RTLIB::EXP_PPCF128));
2531    break;
2532  case ISD::FEXP2:
2533    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
2534                                      RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128));
2535    break;
2536  case ISD::FTRUNC:
2537    Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
2538                                      RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128));
2539    break;
2540  case ISD::FFLOOR:
2541    Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
2542                                      RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128));
2543    break;
2544  case ISD::FCEIL:
2545    Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
2546                                      RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128));
2547    break;
2548  case ISD::FRINT:
2549    Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
2550                                      RTLIB::RINT_F80, RTLIB::RINT_PPCF128));
2551    break;
2552  case ISD::FNEARBYINT:
2553    Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
2554                                      RTLIB::NEARBYINT_F64,
2555                                      RTLIB::NEARBYINT_F80,
2556                                      RTLIB::NEARBYINT_PPCF128));
2557    break;
2558  case ISD::FPOWI:
2559    Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
2560                                      RTLIB::POWI_F80, RTLIB::POWI_PPCF128));
2561    break;
2562  case ISD::FPOW:
2563    Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
2564                                      RTLIB::POW_F80, RTLIB::POW_PPCF128));
2565    break;
2566  case ISD::FDIV:
2567    Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
2568                                      RTLIB::DIV_F80, RTLIB::DIV_PPCF128));
2569    break;
2570  case ISD::FREM:
2571    Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
2572                                      RTLIB::REM_F80, RTLIB::REM_PPCF128));
2573    break;
2574  case ISD::ConstantFP: {
2575    ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
2576    // Check to see if this FP immediate is already legal.
2577    bool isLegal = false;
2578    for (TargetLowering::legal_fpimm_iterator I = TLI.legal_fpimm_begin(),
2579            E = TLI.legal_fpimm_end(); I != E; ++I) {
2580      if (CFP->isExactlyValue(*I)) {
2581        isLegal = true;
2582        break;
2583      }
2584    }
2585    // If this is a legal constant, turn it into a TargetConstantFP node.
2586    if (isLegal)
2587      Results.push_back(SDValue(Node, 0));
2588    else
2589      Results.push_back(ExpandConstantFP(CFP, true, DAG, TLI));
2590    break;
2591  }
2592  case ISD::EHSELECTION: {
2593    unsigned Reg = TLI.getExceptionSelectorRegister();
2594    assert(Reg && "Can't expand to unknown register!");
2595    Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg,
2596                                         Node->getValueType(0)));
2597    Results.push_back(Results[0].getValue(1));
2598    break;
2599  }
2600  case ISD::EXCEPTIONADDR: {
2601    unsigned Reg = TLI.getExceptionAddressRegister();
2602    assert(Reg && "Can't expand to unknown register!");
2603    Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg,
2604                                         Node->getValueType(0)));
2605    Results.push_back(Results[0].getValue(1));
2606    break;
2607  }
2608  case ISD::SUB: {
2609    EVT VT = Node->getValueType(0);
2610    assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
2611           TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
2612           "Don't know how to expand this subtraction!");
2613    Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
2614               DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT));
2615    Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp2, DAG.getConstant(1, VT));
2616    Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
2617    break;
2618  }
2619  case ISD::UREM:
2620  case ISD::SREM: {
2621    EVT VT = Node->getValueType(0);
2622    SDVTList VTs = DAG.getVTList(VT, VT);
2623    bool isSigned = Node->getOpcode() == ISD::SREM;
2624    unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
2625    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2626    Tmp2 = Node->getOperand(0);
2627    Tmp3 = Node->getOperand(1);
2628    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
2629      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
2630    } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
2631      // X % Y -> X-X/Y*Y
2632      Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
2633      Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
2634      Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
2635    } else if (isSigned) {
2636      Tmp1 = ExpandIntLibCall(Node, true, RTLIB::SREM_I16, RTLIB::SREM_I32,
2637                              RTLIB::SREM_I64, RTLIB::SREM_I128);
2638    } else {
2639      Tmp1 = ExpandIntLibCall(Node, false, RTLIB::UREM_I16, RTLIB::UREM_I32,
2640                              RTLIB::UREM_I64, RTLIB::UREM_I128);
2641    }
2642    Results.push_back(Tmp1);
2643    break;
2644  }
2645  case ISD::UDIV:
2646  case ISD::SDIV: {
2647    bool isSigned = Node->getOpcode() == ISD::SDIV;
2648    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2649    EVT VT = Node->getValueType(0);
2650    SDVTList VTs = DAG.getVTList(VT, VT);
2651    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT))
2652      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
2653                         Node->getOperand(1));
2654    else if (isSigned)
2655      Tmp1 = ExpandIntLibCall(Node, true, RTLIB::SDIV_I16, RTLIB::SDIV_I32,
2656                              RTLIB::SDIV_I64, RTLIB::SDIV_I128);
2657    else
2658      Tmp1 = ExpandIntLibCall(Node, false, RTLIB::UDIV_I16, RTLIB::UDIV_I32,
2659                              RTLIB::UDIV_I64, RTLIB::UDIV_I128);
2660    Results.push_back(Tmp1);
2661    break;
2662  }
2663  case ISD::MULHU:
2664  case ISD::MULHS: {
2665    unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
2666                                                              ISD::SMUL_LOHI;
2667    EVT VT = Node->getValueType(0);
2668    SDVTList VTs = DAG.getVTList(VT, VT);
2669    assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
2670           "If this wasn't legal, it shouldn't have been created!");
2671    Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
2672                       Node->getOperand(1));
2673    Results.push_back(Tmp1.getValue(1));
2674    break;
2675  }
2676  case ISD::MUL: {
2677    EVT VT = Node->getValueType(0);
2678    SDVTList VTs = DAG.getVTList(VT, VT);
2679    // See if multiply or divide can be lowered using two-result operations.
2680    // We just need the low half of the multiply; try both the signed
2681    // and unsigned forms. If the target supports both SMUL_LOHI and
2682    // UMUL_LOHI, form a preference by checking which forms of plain
2683    // MULH it supports.
2684    bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
2685    bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
2686    bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
2687    bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
2688    unsigned OpToUse = 0;
2689    if (HasSMUL_LOHI && !HasMULHS) {
2690      OpToUse = ISD::SMUL_LOHI;
2691    } else if (HasUMUL_LOHI && !HasMULHU) {
2692      OpToUse = ISD::UMUL_LOHI;
2693    } else if (HasSMUL_LOHI) {
2694      OpToUse = ISD::SMUL_LOHI;
2695    } else if (HasUMUL_LOHI) {
2696      OpToUse = ISD::UMUL_LOHI;
2697    }
2698    if (OpToUse) {
2699      Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
2700                                    Node->getOperand(1)));
2701      break;
2702    }
2703    Tmp1 = ExpandIntLibCall(Node, false, RTLIB::MUL_I16, RTLIB::MUL_I32,
2704                            RTLIB::MUL_I64, RTLIB::MUL_I128);
2705    Results.push_back(Tmp1);
2706    break;
2707  }
2708  case ISD::SADDO:
2709  case ISD::SSUBO: {
2710    SDValue LHS = Node->getOperand(0);
2711    SDValue RHS = Node->getOperand(1);
2712    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
2713                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2714                              LHS, RHS);
2715    Results.push_back(Sum);
2716    EVT OType = Node->getValueType(1);
2717
2718    SDValue Zero = DAG.getConstant(0, LHS.getValueType());
2719
2720    //   LHSSign -> LHS >= 0
2721    //   RHSSign -> RHS >= 0
2722    //   SumSign -> Sum >= 0
2723    //
2724    //   Add:
2725    //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
2726    //   Sub:
2727    //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
2728    //
2729    SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
2730    SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
2731    SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
2732                                      Node->getOpcode() == ISD::SADDO ?
2733                                      ISD::SETEQ : ISD::SETNE);
2734
2735    SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
2736    SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
2737
2738    SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
2739    Results.push_back(Cmp);
2740    break;
2741  }
2742  case ISD::UADDO:
2743  case ISD::USUBO: {
2744    SDValue LHS = Node->getOperand(0);
2745    SDValue RHS = Node->getOperand(1);
2746    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
2747                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2748                              LHS, RHS);
2749    Results.push_back(Sum);
2750    Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS,
2751                                   Node->getOpcode () == ISD::UADDO ?
2752                                   ISD::SETULT : ISD::SETUGT));
2753    break;
2754  }
2755  case ISD::UMULO:
2756  case ISD::SMULO: {
2757    EVT VT = Node->getValueType(0);
2758    SDValue LHS = Node->getOperand(0);
2759    SDValue RHS = Node->getOperand(1);
2760    SDValue BottomHalf;
2761    SDValue TopHalf;
2762    static unsigned Ops[2][3] =
2763        { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
2764          { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
2765    bool isSigned = Node->getOpcode() == ISD::SMULO;
2766    if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
2767      BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
2768      TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
2769    } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
2770      BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
2771                               RHS);
2772      TopHalf = BottomHalf.getValue(1);
2773    } else if (TLI.isTypeLegal(EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2))) {
2774      EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
2775      LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
2776      RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
2777      Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
2778      BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
2779                               DAG.getIntPtrConstant(0));
2780      TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
2781                            DAG.getIntPtrConstant(1));
2782    } else {
2783      // FIXME: We should be able to fall back to a libcall with an illegal
2784      // type in some cases cases.
2785      // Also, we can fall back to a division in some cases, but that's a big
2786      // performance hit in the general case.
2787      llvm_unreachable("Don't know how to expand this operation yet!");
2788    }
2789    if (isSigned) {
2790      Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1, TLI.getShiftAmountTy());
2791      Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1);
2792      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1,
2793                             ISD::SETNE);
2794    } else {
2795      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf,
2796                             DAG.getConstant(0, VT), ISD::SETNE);
2797    }
2798    Results.push_back(BottomHalf);
2799    Results.push_back(TopHalf);
2800    break;
2801  }
2802  case ISD::BUILD_PAIR: {
2803    EVT PairTy = Node->getValueType(0);
2804    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
2805    Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
2806    Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
2807                       DAG.getConstant(PairTy.getSizeInBits()/2,
2808                                       TLI.getShiftAmountTy()));
2809    Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
2810    break;
2811  }
2812  case ISD::SELECT:
2813    Tmp1 = Node->getOperand(0);
2814    Tmp2 = Node->getOperand(1);
2815    Tmp3 = Node->getOperand(2);
2816    if (Tmp1.getOpcode() == ISD::SETCC) {
2817      Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
2818                             Tmp2, Tmp3,
2819                             cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
2820    } else {
2821      Tmp1 = DAG.getSelectCC(dl, Tmp1,
2822                             DAG.getConstant(0, Tmp1.getValueType()),
2823                             Tmp2, Tmp3, ISD::SETNE);
2824    }
2825    Results.push_back(Tmp1);
2826    break;
2827  case ISD::BR_JT: {
2828    SDValue Chain = Node->getOperand(0);
2829    SDValue Table = Node->getOperand(1);
2830    SDValue Index = Node->getOperand(2);
2831
2832    EVT PTy = TLI.getPointerTy();
2833    MachineFunction &MF = DAG.getMachineFunction();
2834    unsigned EntrySize = MF.getJumpTableInfo()->getEntrySize();
2835    Index= DAG.getNode(ISD::MUL, dl, PTy,
2836                        Index, DAG.getConstant(EntrySize, PTy));
2837    SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
2838
2839    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
2840    SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr,
2841                                PseudoSourceValue::getJumpTable(), 0, MemVT);
2842    Addr = LD;
2843    if (TLI.getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2844      // For PIC, the sequence is:
2845      // BRIND(load(Jumptable + index) + RelocBase)
2846      // RelocBase can be JumpTable, GOT or some sort of global base.
2847      Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
2848                          TLI.getPICJumpTableRelocBase(Table, DAG));
2849    }
2850    Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
2851    Results.push_back(Tmp1);
2852    break;
2853  }
2854  case ISD::BRCOND:
2855    // Expand brcond's setcc into its constituent parts and create a BR_CC
2856    // Node.
2857    Tmp1 = Node->getOperand(0);
2858    Tmp2 = Node->getOperand(1);
2859    if (Tmp2.getOpcode() == ISD::SETCC) {
2860      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
2861                         Tmp1, Tmp2.getOperand(2),
2862                         Tmp2.getOperand(0), Tmp2.getOperand(1),
2863                         Node->getOperand(2));
2864    } else {
2865      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
2866                         DAG.getCondCode(ISD::SETNE), Tmp2,
2867                         DAG.getConstant(0, Tmp2.getValueType()),
2868                         Node->getOperand(2));
2869    }
2870    Results.push_back(Tmp1);
2871    break;
2872  case ISD::SETCC: {
2873    Tmp1 = Node->getOperand(0);
2874    Tmp2 = Node->getOperand(1);
2875    Tmp3 = Node->getOperand(2);
2876    LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl);
2877
2878    // If we expanded the SETCC into an AND/OR, return the new node
2879    if (Tmp2.getNode() == 0) {
2880      Results.push_back(Tmp1);
2881      break;
2882    }
2883
2884    // Otherwise, SETCC for the given comparison type must be completely
2885    // illegal; expand it into a SELECT_CC.
2886    EVT VT = Node->getValueType(0);
2887    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
2888                       DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3);
2889    Results.push_back(Tmp1);
2890    break;
2891  }
2892  case ISD::SELECT_CC: {
2893    Tmp1 = Node->getOperand(0);   // LHS
2894    Tmp2 = Node->getOperand(1);   // RHS
2895    Tmp3 = Node->getOperand(2);   // True
2896    Tmp4 = Node->getOperand(3);   // False
2897    SDValue CC = Node->getOperand(4);
2898
2899    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()),
2900                          Tmp1, Tmp2, CC, dl);
2901
2902    assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!");
2903    Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
2904    CC = DAG.getCondCode(ISD::SETNE);
2905    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2,
2906                       Tmp3, Tmp4, CC);
2907    Results.push_back(Tmp1);
2908    break;
2909  }
2910  case ISD::BR_CC: {
2911    Tmp1 = Node->getOperand(0);              // Chain
2912    Tmp2 = Node->getOperand(2);              // LHS
2913    Tmp3 = Node->getOperand(3);              // RHS
2914    Tmp4 = Node->getOperand(1);              // CC
2915
2916    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()),
2917                          Tmp2, Tmp3, Tmp4, dl);
2918    LastCALLSEQ_END = DAG.getEntryNode();
2919
2920    assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!");
2921    Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
2922    Tmp4 = DAG.getCondCode(ISD::SETNE);
2923    Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2,
2924                       Tmp3, Node->getOperand(4));
2925    Results.push_back(Tmp1);
2926    break;
2927  }
2928  case ISD::GLOBAL_OFFSET_TABLE:
2929  case ISD::GlobalAddress:
2930  case ISD::GlobalTLSAddress:
2931  case ISD::ExternalSymbol:
2932  case ISD::ConstantPool:
2933  case ISD::JumpTable:
2934  case ISD::INTRINSIC_W_CHAIN:
2935  case ISD::INTRINSIC_WO_CHAIN:
2936  case ISD::INTRINSIC_VOID:
2937    // FIXME: Custom lowering for these operations shouldn't return null!
2938    for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
2939      Results.push_back(SDValue(Node, i));
2940    break;
2941  }
2942}
2943void SelectionDAGLegalize::PromoteNode(SDNode *Node,
2944                                       SmallVectorImpl<SDValue> &Results) {
2945  EVT OVT = Node->getValueType(0);
2946  if (Node->getOpcode() == ISD::UINT_TO_FP ||
2947      Node->getOpcode() == ISD::SINT_TO_FP ||
2948      Node->getOpcode() == ISD::SETCC) {
2949    OVT = Node->getOperand(0).getValueType();
2950  }
2951  EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
2952  DebugLoc dl = Node->getDebugLoc();
2953  SDValue Tmp1, Tmp2, Tmp3;
2954  switch (Node->getOpcode()) {
2955  case ISD::CTTZ:
2956  case ISD::CTLZ:
2957  case ISD::CTPOP:
2958    // Zero extend the argument.
2959    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
2960    // Perform the larger operation.
2961    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
2962    if (Node->getOpcode() == ISD::CTTZ) {
2963      //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT)
2964      Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT),
2965                          Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT),
2966                          ISD::SETEQ);
2967      Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2,
2968                          DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1);
2969    } else if (Node->getOpcode() == ISD::CTLZ) {
2970      // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
2971      Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
2972                          DAG.getConstant(NVT.getSizeInBits() -
2973                                          OVT.getSizeInBits(), NVT));
2974    }
2975    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
2976    break;
2977  case ISD::BSWAP: {
2978    unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
2979    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Tmp1);
2980    Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
2981    Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
2982                          DAG.getConstant(DiffBits, TLI.getShiftAmountTy()));
2983    Results.push_back(Tmp1);
2984    break;
2985  }
2986  case ISD::FP_TO_UINT:
2987  case ISD::FP_TO_SINT:
2988    Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
2989                                 Node->getOpcode() == ISD::FP_TO_SINT, dl);
2990    Results.push_back(Tmp1);
2991    break;
2992  case ISD::UINT_TO_FP:
2993  case ISD::SINT_TO_FP:
2994    Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
2995                                 Node->getOpcode() == ISD::SINT_TO_FP, dl);
2996    Results.push_back(Tmp1);
2997    break;
2998  case ISD::AND:
2999  case ISD::OR:
3000  case ISD::XOR: {
3001    unsigned ExtOp, TruncOp;
3002    if (OVT.isVector()) {
3003      ExtOp   = ISD::BIT_CONVERT;
3004      TruncOp = ISD::BIT_CONVERT;
3005    } else if (OVT.isInteger()) {
3006      ExtOp   = ISD::ANY_EXTEND;
3007      TruncOp = ISD::TRUNCATE;
3008    } else {
3009      llvm_report_error("Cannot promote logic operation");
3010    }
3011    // Promote each of the values to the new type.
3012    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3013    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3014    // Perform the larger operation, then convert back
3015    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3016    Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
3017    break;
3018  }
3019  case ISD::SELECT: {
3020    unsigned ExtOp, TruncOp;
3021    if (Node->getValueType(0).isVector()) {
3022      ExtOp   = ISD::BIT_CONVERT;
3023      TruncOp = ISD::BIT_CONVERT;
3024    } else if (Node->getValueType(0).isInteger()) {
3025      ExtOp   = ISD::ANY_EXTEND;
3026      TruncOp = ISD::TRUNCATE;
3027    } else {
3028      ExtOp   = ISD::FP_EXTEND;
3029      TruncOp = ISD::FP_ROUND;
3030    }
3031    Tmp1 = Node->getOperand(0);
3032    // Promote each of the values to the new type.
3033    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3034    Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
3035    // Perform the larger operation, then round down.
3036    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3);
3037    if (TruncOp != ISD::FP_ROUND)
3038      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
3039    else
3040      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
3041                         DAG.getIntPtrConstant(0));
3042    Results.push_back(Tmp1);
3043    break;
3044  }
3045  case ISD::VECTOR_SHUFFLE: {
3046    SmallVector<int, 8> Mask;
3047    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
3048
3049    // Cast the two input vectors.
3050    Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0));
3051    Tmp2 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(1));
3052
3053    // Convert the shuffle mask to the right # elements.
3054    Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
3055    Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, OVT, Tmp1);
3056    Results.push_back(Tmp1);
3057    break;
3058  }
3059  case ISD::SETCC: {
3060    unsigned ExtOp = ISD::FP_EXTEND;
3061    if (NVT.isInteger()) {
3062      ISD::CondCode CCCode =
3063        cast<CondCodeSDNode>(Node->getOperand(2))->get();
3064      ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3065    }
3066    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3067    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3068    Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3069                                  Tmp1, Tmp2, Node->getOperand(2)));
3070    break;
3071  }
3072  }
3073}
3074
3075// SelectionDAG::Legalize - This is the entry point for the file.
3076//
3077void SelectionDAG::Legalize(bool TypesNeedLegalizing,
3078                            CodeGenOpt::Level OptLevel) {
3079  /// run - This is the main entry point to this class.
3080  ///
3081  SelectionDAGLegalize(*this, OptLevel).LegalizeDAG();
3082}
3083
3084