LegalizeDAG.cpp revision aa2acbbbf06348f20274f4eeb77f9761c654a589
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the SelectionDAG::Legalize method. 11// 12//===----------------------------------------------------------------------===// 13 14#include "llvm/CodeGen/SelectionDAG.h" 15#include "llvm/CodeGen/MachineFunction.h" 16#include "llvm/CodeGen/MachineFrameInfo.h" 17#include "llvm/CodeGen/MachineJumpTableInfo.h" 18#include "llvm/CodeGen/MachineModuleInfo.h" 19#include "llvm/CodeGen/PseudoSourceValue.h" 20#include "llvm/Target/TargetFrameInfo.h" 21#include "llvm/Target/TargetLowering.h" 22#include "llvm/Target/TargetData.h" 23#include "llvm/Target/TargetMachine.h" 24#include "llvm/Target/TargetOptions.h" 25#include "llvm/CallingConv.h" 26#include "llvm/Constants.h" 27#include "llvm/DerivedTypes.h" 28#include "llvm/Support/CommandLine.h" 29#include "llvm/Support/Compiler.h" 30#include "llvm/Support/MathExtras.h" 31#include "llvm/ADT/DenseMap.h" 32#include "llvm/ADT/SmallVector.h" 33#include "llvm/ADT/SmallPtrSet.h" 34#include <map> 35using namespace llvm; 36 37#ifndef NDEBUG 38static cl::opt<bool> 39ViewLegalizeDAGs("view-legalize-dags", cl::Hidden, 40 cl::desc("Pop up a window to show dags before legalize")); 41#else 42static const bool ViewLegalizeDAGs = 0; 43#endif 44 45//===----------------------------------------------------------------------===// 46/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and 47/// hacks on it until the target machine can handle it. This involves 48/// eliminating value sizes the machine cannot handle (promoting small sizes to 49/// large sizes or splitting up large values into small values) as well as 50/// eliminating operations the machine cannot handle. 51/// 52/// This code also does a small amount of optimization and recognition of idioms 53/// as part of its processing. For example, if a target does not support a 54/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this 55/// will attempt merge setcc and brc instructions into brcc's. 56/// 57namespace { 58class VISIBILITY_HIDDEN SelectionDAGLegalize { 59 TargetLowering &TLI; 60 SelectionDAG &DAG; 61 62 // Libcall insertion helpers. 63 64 /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been 65 /// legalized. We use this to ensure that calls are properly serialized 66 /// against each other, including inserted libcalls. 67 SDOperand LastCALLSEQ_END; 68 69 /// IsLegalizingCall - This member is used *only* for purposes of providing 70 /// helpful assertions that a libcall isn't created while another call is 71 /// being legalized (which could lead to non-serialized call sequences). 72 bool IsLegalizingCall; 73 74 enum LegalizeAction { 75 Legal, // The target natively supports this operation. 76 Promote, // This operation should be executed in a larger type. 77 Expand // Try to expand this to other ops, otherwise use a libcall. 78 }; 79 80 /// ValueTypeActions - This is a bitvector that contains two bits for each 81 /// value type, where the two bits correspond to the LegalizeAction enum. 82 /// This can be queried with "getTypeAction(VT)". 83 TargetLowering::ValueTypeActionImpl ValueTypeActions; 84 85 /// LegalizedNodes - For nodes that are of legal width, and that have more 86 /// than one use, this map indicates what regularized operand to use. This 87 /// allows us to avoid legalizing the same thing more than once. 88 DenseMap<SDOperand, SDOperand> LegalizedNodes; 89 90 /// PromotedNodes - For nodes that are below legal width, and that have more 91 /// than one use, this map indicates what promoted value to use. This allows 92 /// us to avoid promoting the same thing more than once. 93 DenseMap<SDOperand, SDOperand> PromotedNodes; 94 95 /// ExpandedNodes - For nodes that need to be expanded this map indicates 96 /// which which operands are the expanded version of the input. This allows 97 /// us to avoid expanding the same node more than once. 98 DenseMap<SDOperand, std::pair<SDOperand, SDOperand> > ExpandedNodes; 99 100 /// SplitNodes - For vector nodes that need to be split, this map indicates 101 /// which which operands are the split version of the input. This allows us 102 /// to avoid splitting the same node more than once. 103 std::map<SDOperand, std::pair<SDOperand, SDOperand> > SplitNodes; 104 105 /// ScalarizedNodes - For nodes that need to be converted from vector types to 106 /// scalar types, this contains the mapping of ones we have already 107 /// processed to the result. 108 std::map<SDOperand, SDOperand> ScalarizedNodes; 109 110 void AddLegalizedOperand(SDOperand From, SDOperand To) { 111 LegalizedNodes.insert(std::make_pair(From, To)); 112 // If someone requests legalization of the new node, return itself. 113 if (From != To) 114 LegalizedNodes.insert(std::make_pair(To, To)); 115 } 116 void AddPromotedOperand(SDOperand From, SDOperand To) { 117 bool isNew = PromotedNodes.insert(std::make_pair(From, To)); 118 assert(isNew && "Got into the map somehow?"); 119 // If someone requests legalization of the new node, return itself. 120 LegalizedNodes.insert(std::make_pair(To, To)); 121 } 122 123public: 124 125 SelectionDAGLegalize(SelectionDAG &DAG); 126 127 /// getTypeAction - Return how we should legalize values of this type, either 128 /// it is already legal or we need to expand it into multiple registers of 129 /// smaller integer type, or we need to promote it to a larger type. 130 LegalizeAction getTypeAction(MVT::ValueType VT) const { 131 return (LegalizeAction)ValueTypeActions.getTypeAction(VT); 132 } 133 134 /// isTypeLegal - Return true if this type is legal on this target. 135 /// 136 bool isTypeLegal(MVT::ValueType VT) const { 137 return getTypeAction(VT) == Legal; 138 } 139 140 void LegalizeDAG(); 141 142private: 143 /// HandleOp - Legalize, Promote, or Expand the specified operand as 144 /// appropriate for its type. 145 void HandleOp(SDOperand Op); 146 147 /// LegalizeOp - We know that the specified value has a legal type. 148 /// Recursively ensure that the operands have legal types, then return the 149 /// result. 150 SDOperand LegalizeOp(SDOperand O); 151 152 /// UnrollVectorOp - We know that the given vector has a legal type, however 153 /// the operation it performs is not legal and is an operation that we have 154 /// no way of lowering. "Unroll" the vector, splitting out the scalars and 155 /// operating on each element individually. 156 SDOperand UnrollVectorOp(SDOperand O); 157 158 /// PromoteOp - Given an operation that produces a value in an invalid type, 159 /// promote it to compute the value into a larger type. The produced value 160 /// will have the correct bits for the low portion of the register, but no 161 /// guarantee is made about the top bits: it may be zero, sign-extended, or 162 /// garbage. 163 SDOperand PromoteOp(SDOperand O); 164 165 /// ExpandOp - Expand the specified SDOperand into its two component pieces 166 /// Lo&Hi. Note that the Op MUST be an expanded type. As a result of this, 167 /// the LegalizeNodes map is filled in for any results that are not expanded, 168 /// the ExpandedNodes map is filled in for any results that are expanded, and 169 /// the Lo/Hi values are returned. This applies to integer types and Vector 170 /// types. 171 void ExpandOp(SDOperand O, SDOperand &Lo, SDOperand &Hi); 172 173 /// SplitVectorOp - Given an operand of vector type, break it down into 174 /// two smaller values. 175 void SplitVectorOp(SDOperand O, SDOperand &Lo, SDOperand &Hi); 176 177 /// ScalarizeVectorOp - Given an operand of single-element vector type 178 /// (e.g. v1f32), convert it into the equivalent operation that returns a 179 /// scalar (e.g. f32) value. 180 SDOperand ScalarizeVectorOp(SDOperand O); 181 182 /// isShuffleLegal - Return true if a vector shuffle is legal with the 183 /// specified mask and type. Targets can specify exactly which masks they 184 /// support and the code generator is tasked with not creating illegal masks. 185 /// 186 /// Note that this will also return true for shuffles that are promoted to a 187 /// different type. 188 /// 189 /// If this is a legal shuffle, this method returns the (possibly promoted) 190 /// build_vector Mask. If it's not a legal shuffle, it returns null. 191 SDNode *isShuffleLegal(MVT::ValueType VT, SDOperand Mask) const; 192 193 bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest, 194 SmallPtrSet<SDNode*, 32> &NodesLeadingTo); 195 196 void LegalizeSetCCOperands(SDOperand &LHS, SDOperand &RHS, SDOperand &CC); 197 198 SDOperand ExpandLibCall(const char *Name, SDNode *Node, bool isSigned, 199 SDOperand &Hi); 200 SDOperand ExpandIntToFP(bool isSigned, MVT::ValueType DestTy, 201 SDOperand Source); 202 203 SDOperand EmitStackConvert(SDOperand SrcOp, MVT::ValueType SlotVT, 204 MVT::ValueType DestVT); 205 SDOperand ExpandBUILD_VECTOR(SDNode *Node); 206 SDOperand ExpandSCALAR_TO_VECTOR(SDNode *Node); 207 SDOperand ExpandLegalINT_TO_FP(bool isSigned, 208 SDOperand LegalOp, 209 MVT::ValueType DestVT); 210 SDOperand PromoteLegalINT_TO_FP(SDOperand LegalOp, MVT::ValueType DestVT, 211 bool isSigned); 212 SDOperand PromoteLegalFP_TO_INT(SDOperand LegalOp, MVT::ValueType DestVT, 213 bool isSigned); 214 215 SDOperand ExpandBSWAP(SDOperand Op); 216 SDOperand ExpandBitCount(unsigned Opc, SDOperand Op); 217 bool ExpandShift(unsigned Opc, SDOperand Op, SDOperand Amt, 218 SDOperand &Lo, SDOperand &Hi); 219 void ExpandShiftParts(unsigned NodeOp, SDOperand Op, SDOperand Amt, 220 SDOperand &Lo, SDOperand &Hi); 221 222 SDOperand ExpandEXTRACT_SUBVECTOR(SDOperand Op); 223 SDOperand ExpandEXTRACT_VECTOR_ELT(SDOperand Op); 224}; 225} 226 227/// isVectorShuffleLegal - Return true if a vector shuffle is legal with the 228/// specified mask and type. Targets can specify exactly which masks they 229/// support and the code generator is tasked with not creating illegal masks. 230/// 231/// Note that this will also return true for shuffles that are promoted to a 232/// different type. 233SDNode *SelectionDAGLegalize::isShuffleLegal(MVT::ValueType VT, 234 SDOperand Mask) const { 235 switch (TLI.getOperationAction(ISD::VECTOR_SHUFFLE, VT)) { 236 default: return 0; 237 case TargetLowering::Legal: 238 case TargetLowering::Custom: 239 break; 240 case TargetLowering::Promote: { 241 // If this is promoted to a different type, convert the shuffle mask and 242 // ask if it is legal in the promoted type! 243 MVT::ValueType NVT = TLI.getTypeToPromoteTo(ISD::VECTOR_SHUFFLE, VT); 244 245 // If we changed # elements, change the shuffle mask. 246 unsigned NumEltsGrowth = 247 MVT::getVectorNumElements(NVT) / MVT::getVectorNumElements(VT); 248 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); 249 if (NumEltsGrowth > 1) { 250 // Renumber the elements. 251 SmallVector<SDOperand, 8> Ops; 252 for (unsigned i = 0, e = Mask.getNumOperands(); i != e; ++i) { 253 SDOperand InOp = Mask.getOperand(i); 254 for (unsigned j = 0; j != NumEltsGrowth; ++j) { 255 if (InOp.getOpcode() == ISD::UNDEF) 256 Ops.push_back(DAG.getNode(ISD::UNDEF, MVT::i32)); 257 else { 258 unsigned InEltNo = cast<ConstantSDNode>(InOp)->getValue(); 259 Ops.push_back(DAG.getConstant(InEltNo*NumEltsGrowth+j, MVT::i32)); 260 } 261 } 262 } 263 Mask = DAG.getNode(ISD::BUILD_VECTOR, NVT, &Ops[0], Ops.size()); 264 } 265 VT = NVT; 266 break; 267 } 268 } 269 return TLI.isShuffleMaskLegal(Mask, VT) ? Mask.Val : 0; 270} 271 272SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag) 273 : TLI(dag.getTargetLoweringInfo()), DAG(dag), 274 ValueTypeActions(TLI.getValueTypeActions()) { 275 assert(MVT::LAST_VALUETYPE <= 32 && 276 "Too many value types for ValueTypeActions to hold!"); 277} 278 279/// ComputeTopDownOrdering - Compute a top-down ordering of the dag, where Order 280/// contains all of a nodes operands before it contains the node. 281static void ComputeTopDownOrdering(SelectionDAG &DAG, 282 SmallVector<SDNode*, 64> &Order) { 283 284 DenseMap<SDNode*, unsigned> Visited; 285 std::vector<SDNode*> Worklist; 286 Worklist.reserve(128); 287 288 // Compute ordering from all of the leaves in the graphs, those (like the 289 // entry node) that have no operands. 290 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 291 E = DAG.allnodes_end(); I != E; ++I) { 292 if (I->getNumOperands() == 0) { 293 Visited[I] = 0 - 1U; 294 Worklist.push_back(I); 295 } 296 } 297 298 while (!Worklist.empty()) { 299 SDNode *N = Worklist.back(); 300 Worklist.pop_back(); 301 302 if (++Visited[N] != N->getNumOperands()) 303 continue; // Haven't visited all operands yet 304 305 Order.push_back(N); 306 307 // Now that we have N in, add anything that uses it if all of their operands 308 // are now done. 309 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 310 UI != E; ++UI) 311 Worklist.push_back(*UI); 312 } 313 314 assert(Order.size() == Visited.size() && 315 Order.size() == 316 (unsigned)std::distance(DAG.allnodes_begin(), DAG.allnodes_end()) && 317 "Error: DAG is cyclic!"); 318} 319 320 321void SelectionDAGLegalize::LegalizeDAG() { 322 LastCALLSEQ_END = DAG.getEntryNode(); 323 IsLegalizingCall = false; 324 325 // The legalize process is inherently a bottom-up recursive process (users 326 // legalize their uses before themselves). Given infinite stack space, we 327 // could just start legalizing on the root and traverse the whole graph. In 328 // practice however, this causes us to run out of stack space on large basic 329 // blocks. To avoid this problem, compute an ordering of the nodes where each 330 // node is only legalized after all of its operands are legalized. 331 SmallVector<SDNode*, 64> Order; 332 ComputeTopDownOrdering(DAG, Order); 333 334 for (unsigned i = 0, e = Order.size(); i != e; ++i) 335 HandleOp(SDOperand(Order[i], 0)); 336 337 // Finally, it's possible the root changed. Get the new root. 338 SDOperand OldRoot = DAG.getRoot(); 339 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 340 DAG.setRoot(LegalizedNodes[OldRoot]); 341 342 ExpandedNodes.clear(); 343 LegalizedNodes.clear(); 344 PromotedNodes.clear(); 345 SplitNodes.clear(); 346 ScalarizedNodes.clear(); 347 348 // Remove dead nodes now. 349 DAG.RemoveDeadNodes(); 350} 351 352 353/// FindCallEndFromCallStart - Given a chained node that is part of a call 354/// sequence, find the CALLSEQ_END node that terminates the call sequence. 355static SDNode *FindCallEndFromCallStart(SDNode *Node) { 356 if (Node->getOpcode() == ISD::CALLSEQ_END) 357 return Node; 358 if (Node->use_empty()) 359 return 0; // No CallSeqEnd 360 361 // The chain is usually at the end. 362 SDOperand TheChain(Node, Node->getNumValues()-1); 363 if (TheChain.getValueType() != MVT::Other) { 364 // Sometimes it's at the beginning. 365 TheChain = SDOperand(Node, 0); 366 if (TheChain.getValueType() != MVT::Other) { 367 // Otherwise, hunt for it. 368 for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i) 369 if (Node->getValueType(i) == MVT::Other) { 370 TheChain = SDOperand(Node, i); 371 break; 372 } 373 374 // Otherwise, we walked into a node without a chain. 375 if (TheChain.getValueType() != MVT::Other) 376 return 0; 377 } 378 } 379 380 for (SDNode::use_iterator UI = Node->use_begin(), 381 E = Node->use_end(); UI != E; ++UI) { 382 383 // Make sure to only follow users of our token chain. 384 SDNode *User = *UI; 385 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) 386 if (User->getOperand(i) == TheChain) 387 if (SDNode *Result = FindCallEndFromCallStart(User)) 388 return Result; 389 } 390 return 0; 391} 392 393/// FindCallStartFromCallEnd - Given a chained node that is part of a call 394/// sequence, find the CALLSEQ_START node that initiates the call sequence. 395static SDNode *FindCallStartFromCallEnd(SDNode *Node) { 396 assert(Node && "Didn't find callseq_start for a call??"); 397 if (Node->getOpcode() == ISD::CALLSEQ_START) return Node; 398 399 assert(Node->getOperand(0).getValueType() == MVT::Other && 400 "Node doesn't have a token chain argument!"); 401 return FindCallStartFromCallEnd(Node->getOperand(0).Val); 402} 403 404/// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to 405/// see if any uses can reach Dest. If no dest operands can get to dest, 406/// legalize them, legalize ourself, and return false, otherwise, return true. 407/// 408/// Keep track of the nodes we fine that actually do lead to Dest in 409/// NodesLeadingTo. This avoids retraversing them exponential number of times. 410/// 411bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest, 412 SmallPtrSet<SDNode*, 32> &NodesLeadingTo) { 413 if (N == Dest) return true; // N certainly leads to Dest :) 414 415 // If we've already processed this node and it does lead to Dest, there is no 416 // need to reprocess it. 417 if (NodesLeadingTo.count(N)) return true; 418 419 // If the first result of this node has been already legalized, then it cannot 420 // reach N. 421 switch (getTypeAction(N->getValueType(0))) { 422 case Legal: 423 if (LegalizedNodes.count(SDOperand(N, 0))) return false; 424 break; 425 case Promote: 426 if (PromotedNodes.count(SDOperand(N, 0))) return false; 427 break; 428 case Expand: 429 if (ExpandedNodes.count(SDOperand(N, 0))) return false; 430 break; 431 } 432 433 // Okay, this node has not already been legalized. Check and legalize all 434 // operands. If none lead to Dest, then we can legalize this node. 435 bool OperandsLeadToDest = false; 436 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) 437 OperandsLeadToDest |= // If an operand leads to Dest, so do we. 438 LegalizeAllNodesNotLeadingTo(N->getOperand(i).Val, Dest, NodesLeadingTo); 439 440 if (OperandsLeadToDest) { 441 NodesLeadingTo.insert(N); 442 return true; 443 } 444 445 // Okay, this node looks safe, legalize it and return false. 446 HandleOp(SDOperand(N, 0)); 447 return false; 448} 449 450/// HandleOp - Legalize, Promote, or Expand the specified operand as 451/// appropriate for its type. 452void SelectionDAGLegalize::HandleOp(SDOperand Op) { 453 MVT::ValueType VT = Op.getValueType(); 454 switch (getTypeAction(VT)) { 455 default: assert(0 && "Bad type action!"); 456 case Legal: (void)LegalizeOp(Op); break; 457 case Promote: (void)PromoteOp(Op); break; 458 case Expand: 459 if (!MVT::isVector(VT)) { 460 // If this is an illegal scalar, expand it into its two component 461 // pieces. 462 SDOperand X, Y; 463 if (Op.getOpcode() == ISD::TargetConstant) 464 break; // Allow illegal target nodes. 465 ExpandOp(Op, X, Y); 466 } else if (MVT::getVectorNumElements(VT) == 1) { 467 // If this is an illegal single element vector, convert it to a 468 // scalar operation. 469 (void)ScalarizeVectorOp(Op); 470 } else { 471 // Otherwise, this is an illegal multiple element vector. 472 // Split it in half and legalize both parts. 473 SDOperand X, Y; 474 SplitVectorOp(Op, X, Y); 475 } 476 break; 477 } 478} 479 480/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or 481/// a load from the constant pool. 482static SDOperand ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP, 483 SelectionDAG &DAG, TargetLowering &TLI) { 484 bool Extend = false; 485 486 // If a FP immediate is precise when represented as a float and if the 487 // target can do an extending load from float to double, we put it into 488 // the constant pool as a float, even if it's is statically typed as a 489 // double. This shrinks FP constants and canonicalizes them for targets where 490 // an FP extending load is the same cost as a normal load (such as on the x87 491 // fp stack or PPC FP unit). 492 MVT::ValueType VT = CFP->getValueType(0); 493 ConstantFP *LLVMC = ConstantFP::get(MVT::getTypeForValueType(VT), 494 CFP->getValueAPF()); 495 if (!UseCP) { 496 if (VT!=MVT::f64 && VT!=MVT::f32) 497 assert(0 && "Invalid type expansion"); 498 return DAG.getConstant(LLVMC->getValueAPF().convertToAPInt().getZExtValue(), 499 (VT == MVT::f64) ? MVT::i64 : MVT::i32); 500 } 501 502 MVT::ValueType OrigVT = VT; 503 MVT::ValueType SVT = VT; 504 while (SVT != MVT::f32) { 505 SVT = (unsigned)SVT - 1; 506 if (CFP->isValueValidForType(SVT, CFP->getValueAPF()) && 507 // Only do this if the target has a native EXTLOAD instruction from 508 // smaller type. 509 TLI.isLoadXLegal(ISD::EXTLOAD, SVT) && 510 TLI.ShouldShrinkFPConstant(OrigVT)) { 511 const Type *SType = MVT::getTypeForValueType(SVT); 512 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType)); 513 VT = SVT; 514 Extend = true; 515 } 516 } 517 518 SDOperand CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy()); 519 if (Extend) 520 return DAG.getExtLoad(ISD::EXTLOAD, OrigVT, DAG.getEntryNode(), 521 CPIdx, PseudoSourceValue::getConstantPool(), 522 0, VT); 523 return DAG.getLoad(OrigVT, DAG.getEntryNode(), CPIdx, 524 PseudoSourceValue::getConstantPool(), 0); 525} 526 527 528/// ExpandFCOPYSIGNToBitwiseOps - Expands fcopysign to a series of bitwise 529/// operations. 530static 531SDOperand ExpandFCOPYSIGNToBitwiseOps(SDNode *Node, MVT::ValueType NVT, 532 SelectionDAG &DAG, TargetLowering &TLI) { 533 MVT::ValueType VT = Node->getValueType(0); 534 MVT::ValueType SrcVT = Node->getOperand(1).getValueType(); 535 assert((SrcVT == MVT::f32 || SrcVT == MVT::f64) && 536 "fcopysign expansion only supported for f32 and f64"); 537 MVT::ValueType SrcNVT = (SrcVT == MVT::f64) ? MVT::i64 : MVT::i32; 538 539 // First get the sign bit of second operand. 540 SDOperand Mask1 = (SrcVT == MVT::f64) 541 ? DAG.getConstantFP(BitsToDouble(1ULL << 63), SrcVT) 542 : DAG.getConstantFP(BitsToFloat(1U << 31), SrcVT); 543 Mask1 = DAG.getNode(ISD::BIT_CONVERT, SrcNVT, Mask1); 544 SDOperand SignBit= DAG.getNode(ISD::BIT_CONVERT, SrcNVT, Node->getOperand(1)); 545 SignBit = DAG.getNode(ISD::AND, SrcNVT, SignBit, Mask1); 546 // Shift right or sign-extend it if the two operands have different types. 547 int SizeDiff = MVT::getSizeInBits(SrcNVT) - MVT::getSizeInBits(NVT); 548 if (SizeDiff > 0) { 549 SignBit = DAG.getNode(ISD::SRL, SrcNVT, SignBit, 550 DAG.getConstant(SizeDiff, TLI.getShiftAmountTy())); 551 SignBit = DAG.getNode(ISD::TRUNCATE, NVT, SignBit); 552 } else if (SizeDiff < 0) 553 SignBit = DAG.getNode(ISD::SIGN_EXTEND, NVT, SignBit); 554 555 // Clear the sign bit of first operand. 556 SDOperand Mask2 = (VT == MVT::f64) 557 ? DAG.getConstantFP(BitsToDouble(~(1ULL << 63)), VT) 558 : DAG.getConstantFP(BitsToFloat(~(1U << 31)), VT); 559 Mask2 = DAG.getNode(ISD::BIT_CONVERT, NVT, Mask2); 560 SDOperand Result = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0)); 561 Result = DAG.getNode(ISD::AND, NVT, Result, Mask2); 562 563 // Or the value with the sign bit. 564 Result = DAG.getNode(ISD::OR, NVT, Result, SignBit); 565 return Result; 566} 567 568/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores. 569static 570SDOperand ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG, 571 TargetLowering &TLI) { 572 SDOperand Chain = ST->getChain(); 573 SDOperand Ptr = ST->getBasePtr(); 574 SDOperand Val = ST->getValue(); 575 MVT::ValueType VT = Val.getValueType(); 576 int Alignment = ST->getAlignment(); 577 int SVOffset = ST->getSrcValueOffset(); 578 if (MVT::isFloatingPoint(ST->getMemoryVT()) || 579 MVT::isVector(ST->getMemoryVT())) { 580 // Expand to a bitconvert of the value to the integer type of the 581 // same size, then a (misaligned) int store. 582 MVT::ValueType intVT; 583 if (MVT::is128BitVector(VT) || VT == MVT::ppcf128 || VT == MVT::f128) 584 intVT = MVT::i128; 585 else if (MVT::is64BitVector(VT) || VT==MVT::f64) 586 intVT = MVT::i64; 587 else if (VT==MVT::f32) 588 intVT = MVT::i32; 589 else 590 assert(0 && "Unaligned store of unsupported type"); 591 592 SDOperand Result = DAG.getNode(ISD::BIT_CONVERT, intVT, Val); 593 return DAG.getStore(Chain, Result, Ptr, ST->getSrcValue(), 594 SVOffset, ST->isVolatile(), Alignment); 595 } 596 assert(MVT::isInteger(ST->getMemoryVT()) && 597 !MVT::isVector(ST->getMemoryVT()) && 598 "Unaligned store of unknown type."); 599 // Get the half-size VT 600 MVT::ValueType NewStoredVT = ST->getMemoryVT() - 1; 601 int NumBits = MVT::getSizeInBits(NewStoredVT); 602 int IncrementSize = NumBits / 8; 603 604 // Divide the stored value in two parts. 605 SDOperand ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy()); 606 SDOperand Lo = Val; 607 SDOperand Hi = DAG.getNode(ISD::SRL, VT, Val, ShiftAmount); 608 609 // Store the two parts 610 SDOperand Store1, Store2; 611 Store1 = DAG.getTruncStore(Chain, TLI.isLittleEndian()?Lo:Hi, Ptr, 612 ST->getSrcValue(), SVOffset, NewStoredVT, 613 ST->isVolatile(), Alignment); 614 Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, 615 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 616 Alignment = MinAlign(Alignment, IncrementSize); 617 Store2 = DAG.getTruncStore(Chain, TLI.isLittleEndian()?Hi:Lo, Ptr, 618 ST->getSrcValue(), SVOffset + IncrementSize, 619 NewStoredVT, ST->isVolatile(), Alignment); 620 621 return DAG.getNode(ISD::TokenFactor, MVT::Other, Store1, Store2); 622} 623 624/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads. 625static 626SDOperand ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG, 627 TargetLowering &TLI) { 628 int SVOffset = LD->getSrcValueOffset(); 629 SDOperand Chain = LD->getChain(); 630 SDOperand Ptr = LD->getBasePtr(); 631 MVT::ValueType VT = LD->getValueType(0); 632 MVT::ValueType LoadedVT = LD->getMemoryVT(); 633 if (MVT::isFloatingPoint(VT) || MVT::isVector(VT)) { 634 // Expand to a (misaligned) integer load of the same size, 635 // then bitconvert to floating point or vector. 636 MVT::ValueType intVT; 637 if (MVT::is128BitVector(LoadedVT) || 638 LoadedVT == MVT::ppcf128 || LoadedVT == MVT::f128) 639 intVT = MVT::i128; 640 else if (MVT::is64BitVector(LoadedVT) || LoadedVT == MVT::f64) 641 intVT = MVT::i64; 642 else if (LoadedVT == MVT::f32) 643 intVT = MVT::i32; 644 else 645 assert(0 && "Unaligned load of unsupported type"); 646 647 SDOperand newLoad = DAG.getLoad(intVT, Chain, Ptr, LD->getSrcValue(), 648 SVOffset, LD->isVolatile(), 649 LD->getAlignment()); 650 SDOperand Result = DAG.getNode(ISD::BIT_CONVERT, LoadedVT, newLoad); 651 if (MVT::isFloatingPoint(VT) && LoadedVT != VT) 652 Result = DAG.getNode(ISD::FP_EXTEND, VT, Result); 653 654 SDOperand Ops[] = { Result, Chain }; 655 return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, MVT::Other), 656 Ops, 2); 657 } 658 assert(MVT::isInteger(LoadedVT) && !MVT::isVector(LoadedVT) && 659 "Unaligned load of unsupported type."); 660 661 // Compute the new VT that is half the size of the old one. This is an 662 // integer MVT. 663 unsigned NumBits = MVT::getSizeInBits(LoadedVT); 664 MVT::ValueType NewLoadedVT; 665 NewLoadedVT = MVT::getIntegerType(NumBits/2); 666 NumBits >>= 1; 667 668 unsigned Alignment = LD->getAlignment(); 669 unsigned IncrementSize = NumBits / 8; 670 ISD::LoadExtType HiExtType = LD->getExtensionType(); 671 672 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 673 if (HiExtType == ISD::NON_EXTLOAD) 674 HiExtType = ISD::ZEXTLOAD; 675 676 // Load the value in two parts 677 SDOperand Lo, Hi; 678 if (TLI.isLittleEndian()) { 679 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, VT, Chain, Ptr, LD->getSrcValue(), 680 SVOffset, NewLoadedVT, LD->isVolatile(), Alignment); 681 Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, 682 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 683 Hi = DAG.getExtLoad(HiExtType, VT, Chain, Ptr, LD->getSrcValue(), 684 SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(), 685 MinAlign(Alignment, IncrementSize)); 686 } else { 687 Hi = DAG.getExtLoad(HiExtType, VT, Chain, Ptr, LD->getSrcValue(), SVOffset, 688 NewLoadedVT,LD->isVolatile(), Alignment); 689 Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, 690 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 691 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, VT, Chain, Ptr, LD->getSrcValue(), 692 SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(), 693 MinAlign(Alignment, IncrementSize)); 694 } 695 696 // aggregate the two parts 697 SDOperand ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy()); 698 SDOperand Result = DAG.getNode(ISD::SHL, VT, Hi, ShiftAmount); 699 Result = DAG.getNode(ISD::OR, VT, Result, Lo); 700 701 SDOperand TF = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), 702 Hi.getValue(1)); 703 704 SDOperand Ops[] = { Result, TF }; 705 return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, MVT::Other), Ops, 2); 706} 707 708/// UnrollVectorOp - We know that the given vector has a legal type, however 709/// the operation it performs is not legal and is an operation that we have 710/// no way of lowering. "Unroll" the vector, splitting out the scalars and 711/// operating on each element individually. 712SDOperand SelectionDAGLegalize::UnrollVectorOp(SDOperand Op) { 713 MVT::ValueType VT = Op.getValueType(); 714 assert(isTypeLegal(VT) && 715 "Caller should expand or promote operands that are not legal!"); 716 assert(Op.Val->getNumValues() == 1 && 717 "Can't unroll a vector with multiple results!"); 718 unsigned NE = MVT::getVectorNumElements(VT); 719 MVT::ValueType EltVT = MVT::getVectorElementType(VT); 720 721 SmallVector<SDOperand, 8> Scalars; 722 SmallVector<SDOperand, 4> Operands(Op.getNumOperands()); 723 for (unsigned i = 0; i != NE; ++i) { 724 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 725 SDOperand Operand = Op.getOperand(j); 726 MVT::ValueType OperandVT = Operand.getValueType(); 727 if (MVT::isVector(OperandVT)) { 728 // A vector operand; extract a single element. 729 MVT::ValueType OperandEltVT = MVT::getVectorElementType(OperandVT); 730 Operands[j] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, 731 OperandEltVT, 732 Operand, 733 DAG.getConstant(i, MVT::i32)); 734 } else { 735 // A scalar operand; just use it as is. 736 Operands[j] = Operand; 737 } 738 } 739 Scalars.push_back(DAG.getNode(Op.getOpcode(), EltVT, 740 &Operands[0], Operands.size())); 741 } 742 743 return DAG.getNode(ISD::BUILD_VECTOR, VT, &Scalars[0], Scalars.size()); 744} 745 746/// GetFPLibCall - Return the right libcall for the given floating point type. 747static RTLIB::Libcall GetFPLibCall(MVT::ValueType VT, 748 RTLIB::Libcall Call_F32, 749 RTLIB::Libcall Call_F64, 750 RTLIB::Libcall Call_F80, 751 RTLIB::Libcall Call_PPCF128) { 752 return 753 VT == MVT::f32 ? Call_F32 : 754 VT == MVT::f64 ? Call_F64 : 755 VT == MVT::f80 ? Call_F80 : 756 VT == MVT::ppcf128 ? Call_PPCF128 : 757 RTLIB::UNKNOWN_LIBCALL; 758} 759 760/// LegalizeOp - We know that the specified value has a legal type, and 761/// that its operands are legal. Now ensure that the operation itself 762/// is legal, recursively ensuring that the operands' operations remain 763/// legal. 764SDOperand SelectionDAGLegalize::LegalizeOp(SDOperand Op) { 765 if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes. 766 return Op; 767 768 assert(isTypeLegal(Op.getValueType()) && 769 "Caller should expand or promote operands that are not legal!"); 770 SDNode *Node = Op.Val; 771 772 // If this operation defines any values that cannot be represented in a 773 // register on this target, make sure to expand or promote them. 774 if (Node->getNumValues() > 1) { 775 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 776 if (getTypeAction(Node->getValueType(i)) != Legal) { 777 HandleOp(Op.getValue(i)); 778 assert(LegalizedNodes.count(Op) && 779 "Handling didn't add legal operands!"); 780 return LegalizedNodes[Op]; 781 } 782 } 783 784 // Note that LegalizeOp may be reentered even from single-use nodes, which 785 // means that we always must cache transformed nodes. 786 DenseMap<SDOperand, SDOperand>::iterator I = LegalizedNodes.find(Op); 787 if (I != LegalizedNodes.end()) return I->second; 788 789 SDOperand Tmp1, Tmp2, Tmp3, Tmp4; 790 SDOperand Result = Op; 791 bool isCustom = false; 792 793 switch (Node->getOpcode()) { 794 case ISD::FrameIndex: 795 case ISD::EntryToken: 796 case ISD::Register: 797 case ISD::BasicBlock: 798 case ISD::TargetFrameIndex: 799 case ISD::TargetJumpTable: 800 case ISD::TargetConstant: 801 case ISD::TargetConstantFP: 802 case ISD::TargetConstantPool: 803 case ISD::TargetGlobalAddress: 804 case ISD::TargetGlobalTLSAddress: 805 case ISD::TargetExternalSymbol: 806 case ISD::VALUETYPE: 807 case ISD::SRCVALUE: 808 case ISD::MEMOPERAND: 809 case ISD::STRING: 810 case ISD::CONDCODE: 811 // Primitives must all be legal. 812 assert(TLI.isOperationLegal(Node->getOpcode(), Node->getValueType(0)) && 813 "This must be legal!"); 814 break; 815 default: 816 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { 817 // If this is a target node, legalize it by legalizing the operands then 818 // passing it through. 819 SmallVector<SDOperand, 8> Ops; 820 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 821 Ops.push_back(LegalizeOp(Node->getOperand(i))); 822 823 Result = DAG.UpdateNodeOperands(Result.getValue(0), &Ops[0], Ops.size()); 824 825 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 826 AddLegalizedOperand(Op.getValue(i), Result.getValue(i)); 827 return Result.getValue(Op.ResNo); 828 } 829 // Otherwise this is an unhandled builtin node. splat. 830#ifndef NDEBUG 831 cerr << "NODE: "; Node->dump(&DAG); cerr << "\n"; 832#endif 833 assert(0 && "Do not know how to legalize this operator!"); 834 abort(); 835 case ISD::GLOBAL_OFFSET_TABLE: 836 case ISD::GlobalAddress: 837 case ISD::GlobalTLSAddress: 838 case ISD::ExternalSymbol: 839 case ISD::ConstantPool: 840 case ISD::JumpTable: // Nothing to do. 841 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 842 default: assert(0 && "This action is not supported yet!"); 843 case TargetLowering::Custom: 844 Tmp1 = TLI.LowerOperation(Op, DAG); 845 if (Tmp1.Val) Result = Tmp1; 846 // FALLTHROUGH if the target doesn't want to lower this op after all. 847 case TargetLowering::Legal: 848 break; 849 } 850 break; 851 case ISD::FRAMEADDR: 852 case ISD::RETURNADDR: 853 // The only option for these nodes is to custom lower them. If the target 854 // does not custom lower them, then return zero. 855 Tmp1 = TLI.LowerOperation(Op, DAG); 856 if (Tmp1.Val) 857 Result = Tmp1; 858 else 859 Result = DAG.getConstant(0, TLI.getPointerTy()); 860 break; 861 case ISD::FRAME_TO_ARGS_OFFSET: { 862 MVT::ValueType VT = Node->getValueType(0); 863 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 864 default: assert(0 && "This action is not supported yet!"); 865 case TargetLowering::Custom: 866 Result = TLI.LowerOperation(Op, DAG); 867 if (Result.Val) break; 868 // Fall Thru 869 case TargetLowering::Legal: 870 Result = DAG.getConstant(0, VT); 871 break; 872 } 873 } 874 break; 875 case ISD::EXCEPTIONADDR: { 876 Tmp1 = LegalizeOp(Node->getOperand(0)); 877 MVT::ValueType VT = Node->getValueType(0); 878 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 879 default: assert(0 && "This action is not supported yet!"); 880 case TargetLowering::Expand: { 881 unsigned Reg = TLI.getExceptionAddressRegister(); 882 Result = DAG.getCopyFromReg(Tmp1, Reg, VT); 883 } 884 break; 885 case TargetLowering::Custom: 886 Result = TLI.LowerOperation(Op, DAG); 887 if (Result.Val) break; 888 // Fall Thru 889 case TargetLowering::Legal: { 890 SDOperand Ops[] = { DAG.getConstant(0, VT), Tmp1 }; 891 Result = DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, MVT::Other), 892 Ops, 2); 893 break; 894 } 895 } 896 } 897 if (Result.Val->getNumValues() == 1) break; 898 899 assert(Result.Val->getNumValues() == 2 && 900 "Cannot return more than two values!"); 901 902 // Since we produced two values, make sure to remember that we 903 // legalized both of them. 904 Tmp1 = LegalizeOp(Result); 905 Tmp2 = LegalizeOp(Result.getValue(1)); 906 AddLegalizedOperand(Op.getValue(0), Tmp1); 907 AddLegalizedOperand(Op.getValue(1), Tmp2); 908 return Op.ResNo ? Tmp2 : Tmp1; 909 case ISD::EHSELECTION: { 910 Tmp1 = LegalizeOp(Node->getOperand(0)); 911 Tmp2 = LegalizeOp(Node->getOperand(1)); 912 MVT::ValueType VT = Node->getValueType(0); 913 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 914 default: assert(0 && "This action is not supported yet!"); 915 case TargetLowering::Expand: { 916 unsigned Reg = TLI.getExceptionSelectorRegister(); 917 Result = DAG.getCopyFromReg(Tmp2, Reg, VT); 918 } 919 break; 920 case TargetLowering::Custom: 921 Result = TLI.LowerOperation(Op, DAG); 922 if (Result.Val) break; 923 // Fall Thru 924 case TargetLowering::Legal: { 925 SDOperand Ops[] = { DAG.getConstant(0, VT), Tmp2 }; 926 Result = DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, MVT::Other), 927 Ops, 2); 928 break; 929 } 930 } 931 } 932 if (Result.Val->getNumValues() == 1) break; 933 934 assert(Result.Val->getNumValues() == 2 && 935 "Cannot return more than two values!"); 936 937 // Since we produced two values, make sure to remember that we 938 // legalized both of them. 939 Tmp1 = LegalizeOp(Result); 940 Tmp2 = LegalizeOp(Result.getValue(1)); 941 AddLegalizedOperand(Op.getValue(0), Tmp1); 942 AddLegalizedOperand(Op.getValue(1), Tmp2); 943 return Op.ResNo ? Tmp2 : Tmp1; 944 case ISD::EH_RETURN: { 945 MVT::ValueType VT = Node->getValueType(0); 946 // The only "good" option for this node is to custom lower it. 947 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 948 default: assert(0 && "This action is not supported at all!"); 949 case TargetLowering::Custom: 950 Result = TLI.LowerOperation(Op, DAG); 951 if (Result.Val) break; 952 // Fall Thru 953 case TargetLowering::Legal: 954 // Target does not know, how to lower this, lower to noop 955 Result = LegalizeOp(Node->getOperand(0)); 956 break; 957 } 958 } 959 break; 960 case ISD::AssertSext: 961 case ISD::AssertZext: 962 Tmp1 = LegalizeOp(Node->getOperand(0)); 963 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 964 break; 965 case ISD::MERGE_VALUES: 966 // Legalize eliminates MERGE_VALUES nodes. 967 Result = Node->getOperand(Op.ResNo); 968 break; 969 case ISD::CopyFromReg: 970 Tmp1 = LegalizeOp(Node->getOperand(0)); 971 Result = Op.getValue(0); 972 if (Node->getNumValues() == 2) { 973 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 974 } else { 975 assert(Node->getNumValues() == 3 && "Invalid copyfromreg!"); 976 if (Node->getNumOperands() == 3) { 977 Tmp2 = LegalizeOp(Node->getOperand(2)); 978 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1),Tmp2); 979 } else { 980 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 981 } 982 AddLegalizedOperand(Op.getValue(2), Result.getValue(2)); 983 } 984 // Since CopyFromReg produces two values, make sure to remember that we 985 // legalized both of them. 986 AddLegalizedOperand(Op.getValue(0), Result); 987 AddLegalizedOperand(Op.getValue(1), Result.getValue(1)); 988 return Result.getValue(Op.ResNo); 989 case ISD::UNDEF: { 990 MVT::ValueType VT = Op.getValueType(); 991 switch (TLI.getOperationAction(ISD::UNDEF, VT)) { 992 default: assert(0 && "This action is not supported yet!"); 993 case TargetLowering::Expand: 994 if (MVT::isInteger(VT)) 995 Result = DAG.getConstant(0, VT); 996 else if (MVT::isFloatingPoint(VT)) 997 Result = DAG.getConstantFP(APFloat(APInt(MVT::getSizeInBits(VT), 0)), 998 VT); 999 else 1000 assert(0 && "Unknown value type!"); 1001 break; 1002 case TargetLowering::Legal: 1003 break; 1004 } 1005 break; 1006 } 1007 1008 case ISD::INTRINSIC_W_CHAIN: 1009 case ISD::INTRINSIC_WO_CHAIN: 1010 case ISD::INTRINSIC_VOID: { 1011 SmallVector<SDOperand, 8> Ops; 1012 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 1013 Ops.push_back(LegalizeOp(Node->getOperand(i))); 1014 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1015 1016 // Allow the target to custom lower its intrinsics if it wants to. 1017 if (TLI.getOperationAction(Node->getOpcode(), MVT::Other) == 1018 TargetLowering::Custom) { 1019 Tmp3 = TLI.LowerOperation(Result, DAG); 1020 if (Tmp3.Val) Result = Tmp3; 1021 } 1022 1023 if (Result.Val->getNumValues() == 1) break; 1024 1025 // Must have return value and chain result. 1026 assert(Result.Val->getNumValues() == 2 && 1027 "Cannot return more than two values!"); 1028 1029 // Since loads produce two values, make sure to remember that we 1030 // legalized both of them. 1031 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 1032 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 1033 return Result.getValue(Op.ResNo); 1034 } 1035 1036 case ISD::LOCATION: 1037 assert(Node->getNumOperands() == 5 && "Invalid LOCATION node!"); 1038 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the input chain. 1039 1040 switch (TLI.getOperationAction(ISD::LOCATION, MVT::Other)) { 1041 case TargetLowering::Promote: 1042 default: assert(0 && "This action is not supported yet!"); 1043 case TargetLowering::Expand: { 1044 MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); 1045 bool useDEBUG_LOC = TLI.isOperationLegal(ISD::DEBUG_LOC, MVT::Other); 1046 bool useLABEL = TLI.isOperationLegal(ISD::LABEL, MVT::Other); 1047 1048 if (MMI && (useDEBUG_LOC || useLABEL)) { 1049 const std::string &FName = 1050 cast<StringSDNode>(Node->getOperand(3))->getValue(); 1051 const std::string &DirName = 1052 cast<StringSDNode>(Node->getOperand(4))->getValue(); 1053 unsigned SrcFile = MMI->RecordSource(DirName, FName); 1054 1055 SmallVector<SDOperand, 8> Ops; 1056 Ops.push_back(Tmp1); // chain 1057 SDOperand LineOp = Node->getOperand(1); 1058 SDOperand ColOp = Node->getOperand(2); 1059 1060 if (useDEBUG_LOC) { 1061 Ops.push_back(LineOp); // line # 1062 Ops.push_back(ColOp); // col # 1063 Ops.push_back(DAG.getConstant(SrcFile, MVT::i32)); // source file id 1064 Result = DAG.getNode(ISD::DEBUG_LOC, MVT::Other, &Ops[0], Ops.size()); 1065 } else { 1066 unsigned Line = cast<ConstantSDNode>(LineOp)->getValue(); 1067 unsigned Col = cast<ConstantSDNode>(ColOp)->getValue(); 1068 unsigned ID = MMI->RecordSourceLine(Line, Col, SrcFile); 1069 Ops.push_back(DAG.getConstant(ID, MVT::i32)); 1070 Ops.push_back(DAG.getConstant(0, MVT::i32)); // a debug label 1071 Result = DAG.getNode(ISD::LABEL, MVT::Other, &Ops[0], Ops.size()); 1072 } 1073 } else { 1074 Result = Tmp1; // chain 1075 } 1076 break; 1077 } 1078 case TargetLowering::Legal: 1079 if (Tmp1 != Node->getOperand(0) || 1080 getTypeAction(Node->getOperand(1).getValueType()) == Promote) { 1081 SmallVector<SDOperand, 8> Ops; 1082 Ops.push_back(Tmp1); 1083 if (getTypeAction(Node->getOperand(1).getValueType()) == Legal) { 1084 Ops.push_back(Node->getOperand(1)); // line # must be legal. 1085 Ops.push_back(Node->getOperand(2)); // col # must be legal. 1086 } else { 1087 // Otherwise promote them. 1088 Ops.push_back(PromoteOp(Node->getOperand(1))); 1089 Ops.push_back(PromoteOp(Node->getOperand(2))); 1090 } 1091 Ops.push_back(Node->getOperand(3)); // filename must be legal. 1092 Ops.push_back(Node->getOperand(4)); // working dir # must be legal. 1093 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1094 } 1095 break; 1096 } 1097 break; 1098 1099 case ISD::DECLARE: 1100 assert(Node->getNumOperands() == 3 && "Invalid DECLARE node!"); 1101 switch (TLI.getOperationAction(ISD::DECLARE, MVT::Other)) { 1102 default: assert(0 && "This action is not supported yet!"); 1103 case TargetLowering::Legal: 1104 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1105 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the address. 1106 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the variable. 1107 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1108 break; 1109 case TargetLowering::Expand: 1110 Result = LegalizeOp(Node->getOperand(0)); 1111 break; 1112 } 1113 break; 1114 1115 case ISD::DEBUG_LOC: 1116 assert(Node->getNumOperands() == 4 && "Invalid DEBUG_LOC node!"); 1117 switch (TLI.getOperationAction(ISD::DEBUG_LOC, MVT::Other)) { 1118 default: assert(0 && "This action is not supported yet!"); 1119 case TargetLowering::Legal: 1120 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1121 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the line #. 1122 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the col #. 1123 Tmp4 = LegalizeOp(Node->getOperand(3)); // Legalize the source file id. 1124 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, Tmp4); 1125 break; 1126 } 1127 break; 1128 1129 case ISD::LABEL: 1130 assert(Node->getNumOperands() == 3 && "Invalid LABEL node!"); 1131 switch (TLI.getOperationAction(ISD::LABEL, MVT::Other)) { 1132 default: assert(0 && "This action is not supported yet!"); 1133 case TargetLowering::Legal: 1134 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1135 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the label id. 1136 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the "flavor" operand. 1137 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1138 break; 1139 case TargetLowering::Expand: 1140 Result = LegalizeOp(Node->getOperand(0)); 1141 break; 1142 } 1143 break; 1144 1145 case ISD::MEMBARRIER: { 1146 assert(Node->getNumOperands() == 6 && "Invalid MemBarrier node!"); 1147 switch (TLI.getOperationAction(ISD::MEMBARRIER, MVT::Other)) { 1148 default: assert(0 && "This action is not supported yet!"); 1149 case TargetLowering::Legal: { 1150 SDOperand Ops[6]; 1151 Ops[0] = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1152 for (int x = 1; x < 6; ++x) { 1153 Ops[x] = Node->getOperand(x); 1154 if (!isTypeLegal(Ops[x].getValueType())) 1155 Ops[x] = PromoteOp(Ops[x]); 1156 } 1157 Result = DAG.UpdateNodeOperands(Result, &Ops[0], 6); 1158 break; 1159 } 1160 case TargetLowering::Expand: 1161 //There is no libgcc call for this op 1162 Result = Node->getOperand(0); // Noop 1163 break; 1164 } 1165 break; 1166 } 1167 1168 case ISD::ATOMIC_LCS: 1169 case ISD::ATOMIC_LAS: 1170 case ISD::ATOMIC_SWAP: { 1171 assert(((Node->getNumOperands() == 4 && Node->getOpcode() == ISD::ATOMIC_LCS) || 1172 (Node->getNumOperands() == 3 && Node->getOpcode() == ISD::ATOMIC_LAS) || 1173 (Node->getNumOperands() == 3 && Node->getOpcode() == ISD::ATOMIC_SWAP)) && 1174 "Invalid Atomic node!"); 1175 int num = Node->getOpcode() == ISD::ATOMIC_LCS ? 4 : 3; 1176 SDOperand Ops[4]; 1177 for (int x = 0; x < num; ++x) 1178 Ops[x] = LegalizeOp(Node->getOperand(x)); 1179 Result = DAG.UpdateNodeOperands(Result, &Ops[0], num); 1180 1181 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 1182 default: assert(0 && "This action is not supported yet!"); 1183 case TargetLowering::Custom: 1184 Result = TLI.LowerOperation(Result, DAG); 1185 break; 1186 case TargetLowering::Legal: 1187 break; 1188 } 1189 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 1190 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 1191 return Result.getValue(Op.ResNo); 1192 } 1193 1194 case ISD::Constant: { 1195 ConstantSDNode *CN = cast<ConstantSDNode>(Node); 1196 unsigned opAction = 1197 TLI.getOperationAction(ISD::Constant, CN->getValueType(0)); 1198 1199 // We know we don't need to expand constants here, constants only have one 1200 // value and we check that it is fine above. 1201 1202 if (opAction == TargetLowering::Custom) { 1203 Tmp1 = TLI.LowerOperation(Result, DAG); 1204 if (Tmp1.Val) 1205 Result = Tmp1; 1206 } 1207 break; 1208 } 1209 case ISD::ConstantFP: { 1210 // Spill FP immediates to the constant pool if the target cannot directly 1211 // codegen them. Targets often have some immediate values that can be 1212 // efficiently generated into an FP register without a load. We explicitly 1213 // leave these constants as ConstantFP nodes for the target to deal with. 1214 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 1215 1216 switch (TLI.getOperationAction(ISD::ConstantFP, CFP->getValueType(0))) { 1217 default: assert(0 && "This action is not supported yet!"); 1218 case TargetLowering::Legal: 1219 break; 1220 case TargetLowering::Custom: 1221 Tmp3 = TLI.LowerOperation(Result, DAG); 1222 if (Tmp3.Val) { 1223 Result = Tmp3; 1224 break; 1225 } 1226 // FALLTHROUGH 1227 case TargetLowering::Expand: { 1228 // Check to see if this FP immediate is already legal. 1229 bool isLegal = false; 1230 for (TargetLowering::legal_fpimm_iterator I = TLI.legal_fpimm_begin(), 1231 E = TLI.legal_fpimm_end(); I != E; ++I) { 1232 if (CFP->isExactlyValue(*I)) { 1233 isLegal = true; 1234 break; 1235 } 1236 } 1237 // If this is a legal constant, turn it into a TargetConstantFP node. 1238 if (isLegal) 1239 break; 1240 Result = ExpandConstantFP(CFP, true, DAG, TLI); 1241 } 1242 } 1243 break; 1244 } 1245 case ISD::TokenFactor: 1246 if (Node->getNumOperands() == 2) { 1247 Tmp1 = LegalizeOp(Node->getOperand(0)); 1248 Tmp2 = LegalizeOp(Node->getOperand(1)); 1249 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1250 } else if (Node->getNumOperands() == 3) { 1251 Tmp1 = LegalizeOp(Node->getOperand(0)); 1252 Tmp2 = LegalizeOp(Node->getOperand(1)); 1253 Tmp3 = LegalizeOp(Node->getOperand(2)); 1254 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1255 } else { 1256 SmallVector<SDOperand, 8> Ops; 1257 // Legalize the operands. 1258 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 1259 Ops.push_back(LegalizeOp(Node->getOperand(i))); 1260 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1261 } 1262 break; 1263 1264 case ISD::FORMAL_ARGUMENTS: 1265 case ISD::CALL: 1266 // The only option for this is to custom lower it. 1267 Tmp3 = TLI.LowerOperation(Result.getValue(0), DAG); 1268 assert(Tmp3.Val && "Target didn't custom lower this node!"); 1269 1270 // The number of incoming and outgoing values should match; unless the final 1271 // outgoing value is a flag. 1272 assert((Tmp3.Val->getNumValues() == Result.Val->getNumValues() || 1273 (Tmp3.Val->getNumValues() == Result.Val->getNumValues() + 1 && 1274 Tmp3.Val->getValueType(Tmp3.Val->getNumValues() - 1) == 1275 MVT::Flag)) && 1276 "Lowering call/formal_arguments produced unexpected # results!"); 1277 1278 // Since CALL/FORMAL_ARGUMENTS nodes produce multiple values, make sure to 1279 // remember that we legalized all of them, so it doesn't get relegalized. 1280 for (unsigned i = 0, e = Tmp3.Val->getNumValues(); i != e; ++i) { 1281 if (Tmp3.Val->getValueType(i) == MVT::Flag) 1282 continue; 1283 Tmp1 = LegalizeOp(Tmp3.getValue(i)); 1284 if (Op.ResNo == i) 1285 Tmp2 = Tmp1; 1286 AddLegalizedOperand(SDOperand(Node, i), Tmp1); 1287 } 1288 return Tmp2; 1289 case ISD::EXTRACT_SUBREG: { 1290 Tmp1 = LegalizeOp(Node->getOperand(0)); 1291 ConstantSDNode *idx = dyn_cast<ConstantSDNode>(Node->getOperand(1)); 1292 assert(idx && "Operand must be a constant"); 1293 Tmp2 = DAG.getTargetConstant(idx->getValue(), idx->getValueType(0)); 1294 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1295 } 1296 break; 1297 case ISD::INSERT_SUBREG: { 1298 Tmp1 = LegalizeOp(Node->getOperand(0)); 1299 Tmp2 = LegalizeOp(Node->getOperand(1)); 1300 ConstantSDNode *idx = dyn_cast<ConstantSDNode>(Node->getOperand(2)); 1301 assert(idx && "Operand must be a constant"); 1302 Tmp3 = DAG.getTargetConstant(idx->getValue(), idx->getValueType(0)); 1303 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1304 } 1305 break; 1306 case ISD::BUILD_VECTOR: 1307 switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) { 1308 default: assert(0 && "This action is not supported yet!"); 1309 case TargetLowering::Custom: 1310 Tmp3 = TLI.LowerOperation(Result, DAG); 1311 if (Tmp3.Val) { 1312 Result = Tmp3; 1313 break; 1314 } 1315 // FALLTHROUGH 1316 case TargetLowering::Expand: 1317 Result = ExpandBUILD_VECTOR(Result.Val); 1318 break; 1319 } 1320 break; 1321 case ISD::INSERT_VECTOR_ELT: 1322 Tmp1 = LegalizeOp(Node->getOperand(0)); // InVec 1323 Tmp3 = LegalizeOp(Node->getOperand(2)); // InEltNo 1324 1325 // The type of the value to insert may not be legal, even though the vector 1326 // type is legal. Legalize/Promote accordingly. We do not handle Expand 1327 // here. 1328 switch (getTypeAction(Node->getOperand(1).getValueType())) { 1329 default: assert(0 && "Cannot expand insert element operand"); 1330 case Legal: Tmp2 = LegalizeOp(Node->getOperand(1)); break; 1331 case Promote: Tmp2 = PromoteOp(Node->getOperand(1)); break; 1332 } 1333 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1334 1335 switch (TLI.getOperationAction(ISD::INSERT_VECTOR_ELT, 1336 Node->getValueType(0))) { 1337 default: assert(0 && "This action is not supported yet!"); 1338 case TargetLowering::Legal: 1339 break; 1340 case TargetLowering::Custom: 1341 Tmp4 = TLI.LowerOperation(Result, DAG); 1342 if (Tmp4.Val) { 1343 Result = Tmp4; 1344 break; 1345 } 1346 // FALLTHROUGH 1347 case TargetLowering::Expand: { 1348 // If the insert index is a constant, codegen this as a scalar_to_vector, 1349 // then a shuffle that inserts it into the right position in the vector. 1350 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Tmp3)) { 1351 // SCALAR_TO_VECTOR requires that the type of the value being inserted 1352 // match the element type of the vector being created. 1353 if (Tmp2.getValueType() == 1354 MVT::getVectorElementType(Op.getValueType())) { 1355 SDOperand ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, 1356 Tmp1.getValueType(), Tmp2); 1357 1358 unsigned NumElts = MVT::getVectorNumElements(Tmp1.getValueType()); 1359 MVT::ValueType ShufMaskVT = MVT::getIntVectorWithNumElements(NumElts); 1360 MVT::ValueType ShufMaskEltVT = MVT::getVectorElementType(ShufMaskVT); 1361 1362 // We generate a shuffle of InVec and ScVec, so the shuffle mask 1363 // should be 0,1,2,3,4,5... with the appropriate element replaced with 1364 // elt 0 of the RHS. 1365 SmallVector<SDOperand, 8> ShufOps; 1366 for (unsigned i = 0; i != NumElts; ++i) { 1367 if (i != InsertPos->getValue()) 1368 ShufOps.push_back(DAG.getConstant(i, ShufMaskEltVT)); 1369 else 1370 ShufOps.push_back(DAG.getConstant(NumElts, ShufMaskEltVT)); 1371 } 1372 SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, ShufMaskVT, 1373 &ShufOps[0], ShufOps.size()); 1374 1375 Result = DAG.getNode(ISD::VECTOR_SHUFFLE, Tmp1.getValueType(), 1376 Tmp1, ScVec, ShufMask); 1377 Result = LegalizeOp(Result); 1378 break; 1379 } 1380 } 1381 1382 // If the target doesn't support this, we have to spill the input vector 1383 // to a temporary stack slot, update the element, then reload it. This is 1384 // badness. We could also load the value into a vector register (either 1385 // with a "move to register" or "extload into register" instruction, then 1386 // permute it into place, if the idx is a constant and if the idx is 1387 // supported by the target. 1388 MVT::ValueType VT = Tmp1.getValueType(); 1389 MVT::ValueType EltVT = MVT::getVectorElementType(VT); 1390 MVT::ValueType IdxVT = Tmp3.getValueType(); 1391 MVT::ValueType PtrVT = TLI.getPointerTy(); 1392 SDOperand StackPtr = DAG.CreateStackTemporary(VT); 1393 1394 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr.Val); 1395 int SPFI = StackPtrFI->getIndex(); 1396 1397 // Store the vector. 1398 SDOperand Ch = DAG.getStore(DAG.getEntryNode(), Tmp1, StackPtr, 1399 PseudoSourceValue::getFixedStack(), 1400 SPFI); 1401 1402 // Truncate or zero extend offset to target pointer type. 1403 unsigned CastOpc = (IdxVT > PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND; 1404 Tmp3 = DAG.getNode(CastOpc, PtrVT, Tmp3); 1405 // Add the offset to the index. 1406 unsigned EltSize = MVT::getSizeInBits(EltVT)/8; 1407 Tmp3 = DAG.getNode(ISD::MUL, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT)); 1408 SDOperand StackPtr2 = DAG.getNode(ISD::ADD, IdxVT, Tmp3, StackPtr); 1409 // Store the scalar value. 1410 Ch = DAG.getTruncStore(Ch, Tmp2, StackPtr2, 1411 PseudoSourceValue::getFixedStack(), SPFI, EltVT); 1412 // Load the updated vector. 1413 Result = DAG.getLoad(VT, Ch, StackPtr, 1414 PseudoSourceValue::getFixedStack(), SPFI); 1415 break; 1416 } 1417 } 1418 break; 1419 case ISD::SCALAR_TO_VECTOR: 1420 if (!TLI.isTypeLegal(Node->getOperand(0).getValueType())) { 1421 Result = LegalizeOp(ExpandSCALAR_TO_VECTOR(Node)); 1422 break; 1423 } 1424 1425 Tmp1 = LegalizeOp(Node->getOperand(0)); // InVal 1426 Result = DAG.UpdateNodeOperands(Result, Tmp1); 1427 switch (TLI.getOperationAction(ISD::SCALAR_TO_VECTOR, 1428 Node->getValueType(0))) { 1429 default: assert(0 && "This action is not supported yet!"); 1430 case TargetLowering::Legal: 1431 break; 1432 case TargetLowering::Custom: 1433 Tmp3 = TLI.LowerOperation(Result, DAG); 1434 if (Tmp3.Val) { 1435 Result = Tmp3; 1436 break; 1437 } 1438 // FALLTHROUGH 1439 case TargetLowering::Expand: 1440 Result = LegalizeOp(ExpandSCALAR_TO_VECTOR(Node)); 1441 break; 1442 } 1443 break; 1444 case ISD::VECTOR_SHUFFLE: 1445 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the input vectors, 1446 Tmp2 = LegalizeOp(Node->getOperand(1)); // but not the shuffle mask. 1447 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 1448 1449 // Allow targets to custom lower the SHUFFLEs they support. 1450 switch (TLI.getOperationAction(ISD::VECTOR_SHUFFLE,Result.getValueType())) { 1451 default: assert(0 && "Unknown operation action!"); 1452 case TargetLowering::Legal: 1453 assert(isShuffleLegal(Result.getValueType(), Node->getOperand(2)) && 1454 "vector shuffle should not be created if not legal!"); 1455 break; 1456 case TargetLowering::Custom: 1457 Tmp3 = TLI.LowerOperation(Result, DAG); 1458 if (Tmp3.Val) { 1459 Result = Tmp3; 1460 break; 1461 } 1462 // FALLTHROUGH 1463 case TargetLowering::Expand: { 1464 MVT::ValueType VT = Node->getValueType(0); 1465 MVT::ValueType EltVT = MVT::getVectorElementType(VT); 1466 MVT::ValueType PtrVT = TLI.getPointerTy(); 1467 SDOperand Mask = Node->getOperand(2); 1468 unsigned NumElems = Mask.getNumOperands(); 1469 SmallVector<SDOperand,8> Ops; 1470 for (unsigned i = 0; i != NumElems; ++i) { 1471 SDOperand Arg = Mask.getOperand(i); 1472 if (Arg.getOpcode() == ISD::UNDEF) { 1473 Ops.push_back(DAG.getNode(ISD::UNDEF, EltVT)); 1474 } else { 1475 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); 1476 unsigned Idx = cast<ConstantSDNode>(Arg)->getValue(); 1477 if (Idx < NumElems) 1478 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EltVT, Tmp1, 1479 DAG.getConstant(Idx, PtrVT))); 1480 else 1481 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EltVT, Tmp2, 1482 DAG.getConstant(Idx - NumElems, PtrVT))); 1483 } 1484 } 1485 Result = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size()); 1486 break; 1487 } 1488 case TargetLowering::Promote: { 1489 // Change base type to a different vector type. 1490 MVT::ValueType OVT = Node->getValueType(0); 1491 MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 1492 1493 // Cast the two input vectors. 1494 Tmp1 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp1); 1495 Tmp2 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp2); 1496 1497 // Convert the shuffle mask to the right # elements. 1498 Tmp3 = SDOperand(isShuffleLegal(OVT, Node->getOperand(2)), 0); 1499 assert(Tmp3.Val && "Shuffle not legal?"); 1500 Result = DAG.getNode(ISD::VECTOR_SHUFFLE, NVT, Tmp1, Tmp2, Tmp3); 1501 Result = DAG.getNode(ISD::BIT_CONVERT, OVT, Result); 1502 break; 1503 } 1504 } 1505 break; 1506 1507 case ISD::EXTRACT_VECTOR_ELT: 1508 Tmp1 = Node->getOperand(0); 1509 Tmp2 = LegalizeOp(Node->getOperand(1)); 1510 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1511 Result = ExpandEXTRACT_VECTOR_ELT(Result); 1512 break; 1513 1514 case ISD::EXTRACT_SUBVECTOR: 1515 Tmp1 = Node->getOperand(0); 1516 Tmp2 = LegalizeOp(Node->getOperand(1)); 1517 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1518 Result = ExpandEXTRACT_SUBVECTOR(Result); 1519 break; 1520 1521 case ISD::CALLSEQ_START: { 1522 SDNode *CallEnd = FindCallEndFromCallStart(Node); 1523 1524 // Recursively Legalize all of the inputs of the call end that do not lead 1525 // to this call start. This ensures that any libcalls that need be inserted 1526 // are inserted *before* the CALLSEQ_START. 1527 {SmallPtrSet<SDNode*, 32> NodesLeadingTo; 1528 for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i) 1529 LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).Val, Node, 1530 NodesLeadingTo); 1531 } 1532 1533 // Now that we legalized all of the inputs (which may have inserted 1534 // libcalls) create the new CALLSEQ_START node. 1535 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1536 1537 // Merge in the last call, to ensure that this call start after the last 1538 // call ended. 1539 if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) { 1540 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1541 Tmp1 = LegalizeOp(Tmp1); 1542 } 1543 1544 // Do not try to legalize the target-specific arguments (#1+). 1545 if (Tmp1 != Node->getOperand(0)) { 1546 SmallVector<SDOperand, 8> Ops(Node->op_begin(), Node->op_end()); 1547 Ops[0] = Tmp1; 1548 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1549 } 1550 1551 // Remember that the CALLSEQ_START is legalized. 1552 AddLegalizedOperand(Op.getValue(0), Result); 1553 if (Node->getNumValues() == 2) // If this has a flag result, remember it. 1554 AddLegalizedOperand(Op.getValue(1), Result.getValue(1)); 1555 1556 // Now that the callseq_start and all of the non-call nodes above this call 1557 // sequence have been legalized, legalize the call itself. During this 1558 // process, no libcalls can/will be inserted, guaranteeing that no calls 1559 // can overlap. 1560 assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!"); 1561 SDOperand InCallSEQ = LastCALLSEQ_END; 1562 // Note that we are selecting this call! 1563 LastCALLSEQ_END = SDOperand(CallEnd, 0); 1564 IsLegalizingCall = true; 1565 1566 // Legalize the call, starting from the CALLSEQ_END. 1567 LegalizeOp(LastCALLSEQ_END); 1568 assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!"); 1569 return Result; 1570 } 1571 case ISD::CALLSEQ_END: 1572 // If the CALLSEQ_START node hasn't been legalized first, legalize it. This 1573 // will cause this node to be legalized as well as handling libcalls right. 1574 if (LastCALLSEQ_END.Val != Node) { 1575 LegalizeOp(SDOperand(FindCallStartFromCallEnd(Node), 0)); 1576 DenseMap<SDOperand, SDOperand>::iterator I = LegalizedNodes.find(Op); 1577 assert(I != LegalizedNodes.end() && 1578 "Legalizing the call start should have legalized this node!"); 1579 return I->second; 1580 } 1581 1582 // Otherwise, the call start has been legalized and everything is going 1583 // according to plan. Just legalize ourselves normally here. 1584 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1585 // Do not try to legalize the target-specific arguments (#1+), except for 1586 // an optional flag input. 1587 if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Flag){ 1588 if (Tmp1 != Node->getOperand(0)) { 1589 SmallVector<SDOperand, 8> Ops(Node->op_begin(), Node->op_end()); 1590 Ops[0] = Tmp1; 1591 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1592 } 1593 } else { 1594 Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1)); 1595 if (Tmp1 != Node->getOperand(0) || 1596 Tmp2 != Node->getOperand(Node->getNumOperands()-1)) { 1597 SmallVector<SDOperand, 8> Ops(Node->op_begin(), Node->op_end()); 1598 Ops[0] = Tmp1; 1599 Ops.back() = Tmp2; 1600 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1601 } 1602 } 1603 assert(IsLegalizingCall && "Call sequence imbalance between start/end?"); 1604 // This finishes up call legalization. 1605 IsLegalizingCall = false; 1606 1607 // If the CALLSEQ_END node has a flag, remember that we legalized it. 1608 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 1609 if (Node->getNumValues() == 2) 1610 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 1611 return Result.getValue(Op.ResNo); 1612 case ISD::DYNAMIC_STACKALLOC: { 1613 MVT::ValueType VT = Node->getValueType(0); 1614 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1615 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the size. 1616 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the alignment. 1617 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1618 1619 Tmp1 = Result.getValue(0); 1620 Tmp2 = Result.getValue(1); 1621 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 1622 default: assert(0 && "This action is not supported yet!"); 1623 case TargetLowering::Expand: { 1624 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1625 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" 1626 " not tell us which reg is the stack pointer!"); 1627 SDOperand Chain = Tmp1.getOperand(0); 1628 1629 // Chain the dynamic stack allocation so that it doesn't modify the stack 1630 // pointer when other instructions are using the stack. 1631 Chain = DAG.getCALLSEQ_START(Chain, 1632 DAG.getConstant(0, TLI.getPointerTy())); 1633 1634 SDOperand Size = Tmp2.getOperand(1); 1635 SDOperand SP = DAG.getCopyFromReg(Chain, SPReg, VT); 1636 Chain = SP.getValue(1); 1637 unsigned Align = cast<ConstantSDNode>(Tmp3)->getValue(); 1638 unsigned StackAlign = 1639 TLI.getTargetMachine().getFrameInfo()->getStackAlignment(); 1640 if (Align > StackAlign) 1641 SP = DAG.getNode(ISD::AND, VT, SP, 1642 DAG.getConstant(-(uint64_t)Align, VT)); 1643 Tmp1 = DAG.getNode(ISD::SUB, VT, SP, Size); // Value 1644 Chain = DAG.getCopyToReg(Chain, SPReg, Tmp1); // Output chain 1645 1646 Tmp2 = 1647 DAG.getCALLSEQ_END(Chain, 1648 DAG.getConstant(0, TLI.getPointerTy()), 1649 DAG.getConstant(0, TLI.getPointerTy()), 1650 SDOperand()); 1651 1652 Tmp1 = LegalizeOp(Tmp1); 1653 Tmp2 = LegalizeOp(Tmp2); 1654 break; 1655 } 1656 case TargetLowering::Custom: 1657 Tmp3 = TLI.LowerOperation(Tmp1, DAG); 1658 if (Tmp3.Val) { 1659 Tmp1 = LegalizeOp(Tmp3); 1660 Tmp2 = LegalizeOp(Tmp3.getValue(1)); 1661 } 1662 break; 1663 case TargetLowering::Legal: 1664 break; 1665 } 1666 // Since this op produce two values, make sure to remember that we 1667 // legalized both of them. 1668 AddLegalizedOperand(SDOperand(Node, 0), Tmp1); 1669 AddLegalizedOperand(SDOperand(Node, 1), Tmp2); 1670 return Op.ResNo ? Tmp2 : Tmp1; 1671 } 1672 case ISD::INLINEASM: { 1673 SmallVector<SDOperand, 8> Ops(Node->op_begin(), Node->op_end()); 1674 bool Changed = false; 1675 // Legalize all of the operands of the inline asm, in case they are nodes 1676 // that need to be expanded or something. Note we skip the asm string and 1677 // all of the TargetConstant flags. 1678 SDOperand Op = LegalizeOp(Ops[0]); 1679 Changed = Op != Ops[0]; 1680 Ops[0] = Op; 1681 1682 bool HasInFlag = Ops.back().getValueType() == MVT::Flag; 1683 for (unsigned i = 2, e = Ops.size()-HasInFlag; i < e; ) { 1684 unsigned NumVals = cast<ConstantSDNode>(Ops[i])->getValue() >> 3; 1685 for (++i; NumVals; ++i, --NumVals) { 1686 SDOperand Op = LegalizeOp(Ops[i]); 1687 if (Op != Ops[i]) { 1688 Changed = true; 1689 Ops[i] = Op; 1690 } 1691 } 1692 } 1693 1694 if (HasInFlag) { 1695 Op = LegalizeOp(Ops.back()); 1696 Changed |= Op != Ops.back(); 1697 Ops.back() = Op; 1698 } 1699 1700 if (Changed) 1701 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1702 1703 // INLINE asm returns a chain and flag, make sure to add both to the map. 1704 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 1705 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 1706 return Result.getValue(Op.ResNo); 1707 } 1708 case ISD::BR: 1709 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1710 // Ensure that libcalls are emitted before a branch. 1711 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1712 Tmp1 = LegalizeOp(Tmp1); 1713 LastCALLSEQ_END = DAG.getEntryNode(); 1714 1715 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 1716 break; 1717 case ISD::BRIND: 1718 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1719 // Ensure that libcalls are emitted before a branch. 1720 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1721 Tmp1 = LegalizeOp(Tmp1); 1722 LastCALLSEQ_END = DAG.getEntryNode(); 1723 1724 switch (getTypeAction(Node->getOperand(1).getValueType())) { 1725 default: assert(0 && "Indirect target must be legal type (pointer)!"); 1726 case Legal: 1727 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the condition. 1728 break; 1729 } 1730 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1731 break; 1732 case ISD::BR_JT: 1733 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1734 // Ensure that libcalls are emitted before a branch. 1735 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1736 Tmp1 = LegalizeOp(Tmp1); 1737 LastCALLSEQ_END = DAG.getEntryNode(); 1738 1739 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the jumptable node. 1740 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 1741 1742 switch (TLI.getOperationAction(ISD::BR_JT, MVT::Other)) { 1743 default: assert(0 && "This action is not supported yet!"); 1744 case TargetLowering::Legal: break; 1745 case TargetLowering::Custom: 1746 Tmp1 = TLI.LowerOperation(Result, DAG); 1747 if (Tmp1.Val) Result = Tmp1; 1748 break; 1749 case TargetLowering::Expand: { 1750 SDOperand Chain = Result.getOperand(0); 1751 SDOperand Table = Result.getOperand(1); 1752 SDOperand Index = Result.getOperand(2); 1753 1754 MVT::ValueType PTy = TLI.getPointerTy(); 1755 MachineFunction &MF = DAG.getMachineFunction(); 1756 unsigned EntrySize = MF.getJumpTableInfo()->getEntrySize(); 1757 Index= DAG.getNode(ISD::MUL, PTy, Index, DAG.getConstant(EntrySize, PTy)); 1758 SDOperand Addr = DAG.getNode(ISD::ADD, PTy, Index, Table); 1759 1760 SDOperand LD; 1761 switch (EntrySize) { 1762 default: assert(0 && "Size of jump table not supported yet."); break; 1763 case 4: LD = DAG.getLoad(MVT::i32, Chain, Addr, 1764 PseudoSourceValue::getJumpTable(), 0); break; 1765 case 8: LD = DAG.getLoad(MVT::i64, Chain, Addr, 1766 PseudoSourceValue::getJumpTable(), 0); break; 1767 } 1768 1769 Addr = LD; 1770 if (TLI.getTargetMachine().getRelocationModel() == Reloc::PIC_) { 1771 // For PIC, the sequence is: 1772 // BRIND(load(Jumptable + index) + RelocBase) 1773 // RelocBase can be JumpTable, GOT or some sort of global base. 1774 if (PTy != MVT::i32) 1775 Addr = DAG.getNode(ISD::SIGN_EXTEND, PTy, Addr); 1776 Addr = DAG.getNode(ISD::ADD, PTy, Addr, 1777 TLI.getPICJumpTableRelocBase(Table, DAG)); 1778 } 1779 Result = DAG.getNode(ISD::BRIND, MVT::Other, LD.getValue(1), Addr); 1780 } 1781 } 1782 break; 1783 case ISD::BRCOND: 1784 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1785 // Ensure that libcalls are emitted before a return. 1786 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1787 Tmp1 = LegalizeOp(Tmp1); 1788 LastCALLSEQ_END = DAG.getEntryNode(); 1789 1790 switch (getTypeAction(Node->getOperand(1).getValueType())) { 1791 case Expand: assert(0 && "It's impossible to expand bools"); 1792 case Legal: 1793 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the condition. 1794 break; 1795 case Promote: { 1796 Tmp2 = PromoteOp(Node->getOperand(1)); // Promote the condition. 1797 1798 // The top bits of the promoted condition are not necessarily zero, ensure 1799 // that the value is properly zero extended. 1800 unsigned BitWidth = Tmp2.getValueSizeInBits(); 1801 if (!DAG.MaskedValueIsZero(Tmp2, 1802 APInt::getHighBitsSet(BitWidth, BitWidth-1))) 1803 Tmp2 = DAG.getZeroExtendInReg(Tmp2, MVT::i1); 1804 break; 1805 } 1806 } 1807 1808 // Basic block destination (Op#2) is always legal. 1809 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 1810 1811 switch (TLI.getOperationAction(ISD::BRCOND, MVT::Other)) { 1812 default: assert(0 && "This action is not supported yet!"); 1813 case TargetLowering::Legal: break; 1814 case TargetLowering::Custom: 1815 Tmp1 = TLI.LowerOperation(Result, DAG); 1816 if (Tmp1.Val) Result = Tmp1; 1817 break; 1818 case TargetLowering::Expand: 1819 // Expand brcond's setcc into its constituent parts and create a BR_CC 1820 // Node. 1821 if (Tmp2.getOpcode() == ISD::SETCC) { 1822 Result = DAG.getNode(ISD::BR_CC, MVT::Other, Tmp1, Tmp2.getOperand(2), 1823 Tmp2.getOperand(0), Tmp2.getOperand(1), 1824 Node->getOperand(2)); 1825 } else { 1826 Result = DAG.getNode(ISD::BR_CC, MVT::Other, Tmp1, 1827 DAG.getCondCode(ISD::SETNE), Tmp2, 1828 DAG.getConstant(0, Tmp2.getValueType()), 1829 Node->getOperand(2)); 1830 } 1831 break; 1832 } 1833 break; 1834 case ISD::BR_CC: 1835 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1836 // Ensure that libcalls are emitted before a branch. 1837 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1838 Tmp1 = LegalizeOp(Tmp1); 1839 Tmp2 = Node->getOperand(2); // LHS 1840 Tmp3 = Node->getOperand(3); // RHS 1841 Tmp4 = Node->getOperand(1); // CC 1842 1843 LegalizeSetCCOperands(Tmp2, Tmp3, Tmp4); 1844 LastCALLSEQ_END = DAG.getEntryNode(); 1845 1846 // If we didn't get both a LHS and RHS back from LegalizeSetCCOperands, 1847 // the LHS is a legal SETCC itself. In this case, we need to compare 1848 // the result against zero to select between true and false values. 1849 if (Tmp3.Val == 0) { 1850 Tmp3 = DAG.getConstant(0, Tmp2.getValueType()); 1851 Tmp4 = DAG.getCondCode(ISD::SETNE); 1852 } 1853 1854 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp4, Tmp2, Tmp3, 1855 Node->getOperand(4)); 1856 1857 switch (TLI.getOperationAction(ISD::BR_CC, Tmp3.getValueType())) { 1858 default: assert(0 && "Unexpected action for BR_CC!"); 1859 case TargetLowering::Legal: break; 1860 case TargetLowering::Custom: 1861 Tmp4 = TLI.LowerOperation(Result, DAG); 1862 if (Tmp4.Val) Result = Tmp4; 1863 break; 1864 } 1865 break; 1866 case ISD::LOAD: { 1867 LoadSDNode *LD = cast<LoadSDNode>(Node); 1868 Tmp1 = LegalizeOp(LD->getChain()); // Legalize the chain. 1869 Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer. 1870 1871 ISD::LoadExtType ExtType = LD->getExtensionType(); 1872 if (ExtType == ISD::NON_EXTLOAD) { 1873 MVT::ValueType VT = Node->getValueType(0); 1874 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset()); 1875 Tmp3 = Result.getValue(0); 1876 Tmp4 = Result.getValue(1); 1877 1878 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 1879 default: assert(0 && "This action is not supported yet!"); 1880 case TargetLowering::Legal: 1881 // If this is an unaligned load and the target doesn't support it, 1882 // expand it. 1883 if (!TLI.allowsUnalignedMemoryAccesses()) { 1884 unsigned ABIAlignment = TLI.getTargetData()-> 1885 getABITypeAlignment(MVT::getTypeForValueType(LD->getMemoryVT())); 1886 if (LD->getAlignment() < ABIAlignment){ 1887 Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.Val), DAG, 1888 TLI); 1889 Tmp3 = Result.getOperand(0); 1890 Tmp4 = Result.getOperand(1); 1891 Tmp3 = LegalizeOp(Tmp3); 1892 Tmp4 = LegalizeOp(Tmp4); 1893 } 1894 } 1895 break; 1896 case TargetLowering::Custom: 1897 Tmp1 = TLI.LowerOperation(Tmp3, DAG); 1898 if (Tmp1.Val) { 1899 Tmp3 = LegalizeOp(Tmp1); 1900 Tmp4 = LegalizeOp(Tmp1.getValue(1)); 1901 } 1902 break; 1903 case TargetLowering::Promote: { 1904 // Only promote a load of vector type to another. 1905 assert(MVT::isVector(VT) && "Cannot promote this load!"); 1906 // Change base type to a different vector type. 1907 MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 1908 1909 Tmp1 = DAG.getLoad(NVT, Tmp1, Tmp2, LD->getSrcValue(), 1910 LD->getSrcValueOffset(), 1911 LD->isVolatile(), LD->getAlignment()); 1912 Tmp3 = LegalizeOp(DAG.getNode(ISD::BIT_CONVERT, VT, Tmp1)); 1913 Tmp4 = LegalizeOp(Tmp1.getValue(1)); 1914 break; 1915 } 1916 } 1917 // Since loads produce two values, make sure to remember that we 1918 // legalized both of them. 1919 AddLegalizedOperand(SDOperand(Node, 0), Tmp3); 1920 AddLegalizedOperand(SDOperand(Node, 1), Tmp4); 1921 return Op.ResNo ? Tmp4 : Tmp3; 1922 } else { 1923 MVT::ValueType SrcVT = LD->getMemoryVT(); 1924 unsigned SrcWidth = MVT::getSizeInBits(SrcVT); 1925 int SVOffset = LD->getSrcValueOffset(); 1926 unsigned Alignment = LD->getAlignment(); 1927 bool isVolatile = LD->isVolatile(); 1928 1929 if (SrcWidth != MVT::getStoreSizeInBits(SrcVT) && 1930 // Some targets pretend to have an i1 loading operation, and actually 1931 // load an i8. This trick is correct for ZEXTLOAD because the top 7 1932 // bits are guaranteed to be zero; it helps the optimizers understand 1933 // that these bits are zero. It is also useful for EXTLOAD, since it 1934 // tells the optimizers that those bits are undefined. It would be 1935 // nice to have an effective generic way of getting these benefits... 1936 // Until such a way is found, don't insist on promoting i1 here. 1937 (SrcVT != MVT::i1 || 1938 TLI.getLoadXAction(ExtType, MVT::i1) == TargetLowering::Promote)) { 1939 // Promote to a byte-sized load if not loading an integral number of 1940 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 1941 unsigned NewWidth = MVT::getStoreSizeInBits(SrcVT); 1942 MVT::ValueType NVT = MVT::getIntegerType(NewWidth); 1943 SDOperand Ch; 1944 1945 // The extra bits are guaranteed to be zero, since we stored them that 1946 // way. A zext load from NVT thus automatically gives zext from SrcVT. 1947 1948 ISD::LoadExtType NewExtType = 1949 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; 1950 1951 Result = DAG.getExtLoad(NewExtType, Node->getValueType(0), 1952 Tmp1, Tmp2, LD->getSrcValue(), SVOffset, 1953 NVT, isVolatile, Alignment); 1954 1955 Ch = Result.getValue(1); // The chain. 1956 1957 if (ExtType == ISD::SEXTLOAD) 1958 // Having the top bits zero doesn't help when sign extending. 1959 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(), 1960 Result, DAG.getValueType(SrcVT)); 1961 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) 1962 // All the top bits are guaranteed to be zero - inform the optimizers. 1963 Result = DAG.getNode(ISD::AssertZext, Result.getValueType(), Result, 1964 DAG.getValueType(SrcVT)); 1965 1966 Tmp1 = LegalizeOp(Result); 1967 Tmp2 = LegalizeOp(Ch); 1968 } else if (SrcWidth & (SrcWidth - 1)) { 1969 // If not loading a power-of-2 number of bits, expand as two loads. 1970 assert(MVT::isExtendedVT(SrcVT) && !MVT::isVector(SrcVT) && 1971 "Unsupported extload!"); 1972 unsigned RoundWidth = 1 << Log2_32(SrcWidth); 1973 assert(RoundWidth < SrcWidth); 1974 unsigned ExtraWidth = SrcWidth - RoundWidth; 1975 assert(ExtraWidth < RoundWidth); 1976 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 1977 "Load size not an integral number of bytes!"); 1978 MVT::ValueType RoundVT = MVT::getIntegerType(RoundWidth); 1979 MVT::ValueType ExtraVT = MVT::getIntegerType(ExtraWidth); 1980 SDOperand Lo, Hi, Ch; 1981 unsigned IncrementSize; 1982 1983 if (TLI.isLittleEndian()) { 1984 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) 1985 // Load the bottom RoundWidth bits. 1986 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, Node->getValueType(0), Tmp1, Tmp2, 1987 LD->getSrcValue(), SVOffset, RoundVT, isVolatile, 1988 Alignment); 1989 1990 // Load the remaining ExtraWidth bits. 1991 IncrementSize = RoundWidth / 8; 1992 Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, 1993 DAG.getIntPtrConstant(IncrementSize)); 1994 Hi = DAG.getExtLoad(ExtType, Node->getValueType(0), Tmp1, Tmp2, 1995 LD->getSrcValue(), SVOffset + IncrementSize, 1996 ExtraVT, isVolatile, 1997 MinAlign(Alignment, IncrementSize)); 1998 1999 // Build a factor node to remember that this load is independent of the 2000 // other one. 2001 Ch = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), 2002 Hi.getValue(1)); 2003 2004 // Move the top bits to the right place. 2005 Hi = DAG.getNode(ISD::SHL, Hi.getValueType(), Hi, 2006 DAG.getConstant(RoundWidth, TLI.getShiftAmountTy())); 2007 2008 // Join the hi and lo parts. 2009 Result = DAG.getNode(ISD::OR, Node->getValueType(0), Lo, Hi); 2010 } else { 2011 // Big endian - avoid unaligned loads. 2012 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 2013 // Load the top RoundWidth bits. 2014 Hi = DAG.getExtLoad(ExtType, Node->getValueType(0), Tmp1, Tmp2, 2015 LD->getSrcValue(), SVOffset, RoundVT, isVolatile, 2016 Alignment); 2017 2018 // Load the remaining ExtraWidth bits. 2019 IncrementSize = RoundWidth / 8; 2020 Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, 2021 DAG.getIntPtrConstant(IncrementSize)); 2022 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, Node->getValueType(0), Tmp1, Tmp2, 2023 LD->getSrcValue(), SVOffset + IncrementSize, 2024 ExtraVT, isVolatile, 2025 MinAlign(Alignment, IncrementSize)); 2026 2027 // Build a factor node to remember that this load is independent of the 2028 // other one. 2029 Ch = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), 2030 Hi.getValue(1)); 2031 2032 // Move the top bits to the right place. 2033 Hi = DAG.getNode(ISD::SHL, Hi.getValueType(), Hi, 2034 DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy())); 2035 2036 // Join the hi and lo parts. 2037 Result = DAG.getNode(ISD::OR, Node->getValueType(0), Lo, Hi); 2038 } 2039 2040 Tmp1 = LegalizeOp(Result); 2041 Tmp2 = LegalizeOp(Ch); 2042 } else { 2043 switch (TLI.getLoadXAction(ExtType, SrcVT)) { 2044 default: assert(0 && "This action is not supported yet!"); 2045 case TargetLowering::Custom: 2046 isCustom = true; 2047 // FALLTHROUGH 2048 case TargetLowering::Legal: 2049 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset()); 2050 Tmp1 = Result.getValue(0); 2051 Tmp2 = Result.getValue(1); 2052 2053 if (isCustom) { 2054 Tmp3 = TLI.LowerOperation(Result, DAG); 2055 if (Tmp3.Val) { 2056 Tmp1 = LegalizeOp(Tmp3); 2057 Tmp2 = LegalizeOp(Tmp3.getValue(1)); 2058 } 2059 } else { 2060 // If this is an unaligned load and the target doesn't support it, 2061 // expand it. 2062 if (!TLI.allowsUnalignedMemoryAccesses()) { 2063 unsigned ABIAlignment = TLI.getTargetData()-> 2064 getABITypeAlignment(MVT::getTypeForValueType(LD->getMemoryVT())); 2065 if (LD->getAlignment() < ABIAlignment){ 2066 Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.Val), DAG, 2067 TLI); 2068 Tmp1 = Result.getOperand(0); 2069 Tmp2 = Result.getOperand(1); 2070 Tmp1 = LegalizeOp(Tmp1); 2071 Tmp2 = LegalizeOp(Tmp2); 2072 } 2073 } 2074 } 2075 break; 2076 case TargetLowering::Expand: 2077 // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND 2078 if (SrcVT == MVT::f32 && Node->getValueType(0) == MVT::f64) { 2079 SDOperand Load = DAG.getLoad(SrcVT, Tmp1, Tmp2, LD->getSrcValue(), 2080 LD->getSrcValueOffset(), 2081 LD->isVolatile(), LD->getAlignment()); 2082 Result = DAG.getNode(ISD::FP_EXTEND, Node->getValueType(0), Load); 2083 Tmp1 = LegalizeOp(Result); // Relegalize new nodes. 2084 Tmp2 = LegalizeOp(Load.getValue(1)); 2085 break; 2086 } 2087 assert(ExtType != ISD::EXTLOAD &&"EXTLOAD should always be supported!"); 2088 // Turn the unsupported load into an EXTLOAD followed by an explicit 2089 // zero/sign extend inreg. 2090 Result = DAG.getExtLoad(ISD::EXTLOAD, Node->getValueType(0), 2091 Tmp1, Tmp2, LD->getSrcValue(), 2092 LD->getSrcValueOffset(), SrcVT, 2093 LD->isVolatile(), LD->getAlignment()); 2094 SDOperand ValRes; 2095 if (ExtType == ISD::SEXTLOAD) 2096 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(), 2097 Result, DAG.getValueType(SrcVT)); 2098 else 2099 ValRes = DAG.getZeroExtendInReg(Result, SrcVT); 2100 Tmp1 = LegalizeOp(ValRes); // Relegalize new nodes. 2101 Tmp2 = LegalizeOp(Result.getValue(1)); // Relegalize new nodes. 2102 break; 2103 } 2104 } 2105 2106 // Since loads produce two values, make sure to remember that we legalized 2107 // both of them. 2108 AddLegalizedOperand(SDOperand(Node, 0), Tmp1); 2109 AddLegalizedOperand(SDOperand(Node, 1), Tmp2); 2110 return Op.ResNo ? Tmp2 : Tmp1; 2111 } 2112 } 2113 case ISD::EXTRACT_ELEMENT: { 2114 MVT::ValueType OpTy = Node->getOperand(0).getValueType(); 2115 switch (getTypeAction(OpTy)) { 2116 default: assert(0 && "EXTRACT_ELEMENT action for type unimplemented!"); 2117 case Legal: 2118 if (cast<ConstantSDNode>(Node->getOperand(1))->getValue()) { 2119 // 1 -> Hi 2120 Result = DAG.getNode(ISD::SRL, OpTy, Node->getOperand(0), 2121 DAG.getConstant(MVT::getSizeInBits(OpTy)/2, 2122 TLI.getShiftAmountTy())); 2123 Result = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), Result); 2124 } else { 2125 // 0 -> Lo 2126 Result = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), 2127 Node->getOperand(0)); 2128 } 2129 break; 2130 case Expand: 2131 // Get both the low and high parts. 2132 ExpandOp(Node->getOperand(0), Tmp1, Tmp2); 2133 if (cast<ConstantSDNode>(Node->getOperand(1))->getValue()) 2134 Result = Tmp2; // 1 -> Hi 2135 else 2136 Result = Tmp1; // 0 -> Lo 2137 break; 2138 } 2139 break; 2140 } 2141 2142 case ISD::CopyToReg: 2143 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2144 2145 assert(isTypeLegal(Node->getOperand(2).getValueType()) && 2146 "Register type must be legal!"); 2147 // Legalize the incoming value (must be a legal type). 2148 Tmp2 = LegalizeOp(Node->getOperand(2)); 2149 if (Node->getNumValues() == 1) { 2150 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1), Tmp2); 2151 } else { 2152 assert(Node->getNumValues() == 2 && "Unknown CopyToReg"); 2153 if (Node->getNumOperands() == 4) { 2154 Tmp3 = LegalizeOp(Node->getOperand(3)); 2155 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1), Tmp2, 2156 Tmp3); 2157 } else { 2158 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1),Tmp2); 2159 } 2160 2161 // Since this produces two values, make sure to remember that we legalized 2162 // both of them. 2163 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 2164 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 2165 return Result; 2166 } 2167 break; 2168 2169 case ISD::RET: 2170 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2171 2172 // Ensure that libcalls are emitted before a return. 2173 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 2174 Tmp1 = LegalizeOp(Tmp1); 2175 LastCALLSEQ_END = DAG.getEntryNode(); 2176 2177 switch (Node->getNumOperands()) { 2178 case 3: // ret val 2179 Tmp2 = Node->getOperand(1); 2180 Tmp3 = Node->getOperand(2); // Signness 2181 switch (getTypeAction(Tmp2.getValueType())) { 2182 case Legal: 2183 Result = DAG.UpdateNodeOperands(Result, Tmp1, LegalizeOp(Tmp2), Tmp3); 2184 break; 2185 case Expand: 2186 if (!MVT::isVector(Tmp2.getValueType())) { 2187 SDOperand Lo, Hi; 2188 ExpandOp(Tmp2, Lo, Hi); 2189 2190 // Big endian systems want the hi reg first. 2191 if (TLI.isBigEndian()) 2192 std::swap(Lo, Hi); 2193 2194 if (Hi.Val) 2195 Result = DAG.getNode(ISD::RET, MVT::Other, Tmp1, Lo, Tmp3, Hi,Tmp3); 2196 else 2197 Result = DAG.getNode(ISD::RET, MVT::Other, Tmp1, Lo, Tmp3); 2198 Result = LegalizeOp(Result); 2199 } else { 2200 SDNode *InVal = Tmp2.Val; 2201 int InIx = Tmp2.ResNo; 2202 unsigned NumElems = MVT::getVectorNumElements(InVal->getValueType(InIx)); 2203 MVT::ValueType EVT = MVT::getVectorElementType(InVal->getValueType(InIx)); 2204 2205 // Figure out if there is a simple type corresponding to this Vector 2206 // type. If so, convert to the vector type. 2207 MVT::ValueType TVT = MVT::getVectorType(EVT, NumElems); 2208 if (TLI.isTypeLegal(TVT)) { 2209 // Turn this into a return of the vector type. 2210 Tmp2 = LegalizeOp(Tmp2); 2211 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2212 } else if (NumElems == 1) { 2213 // Turn this into a return of the scalar type. 2214 Tmp2 = ScalarizeVectorOp(Tmp2); 2215 Tmp2 = LegalizeOp(Tmp2); 2216 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2217 2218 // FIXME: Returns of gcc generic vectors smaller than a legal type 2219 // should be returned in integer registers! 2220 2221 // The scalarized value type may not be legal, e.g. it might require 2222 // promotion or expansion. Relegalize the return. 2223 Result = LegalizeOp(Result); 2224 } else { 2225 // FIXME: Returns of gcc generic vectors larger than a legal vector 2226 // type should be returned by reference! 2227 SDOperand Lo, Hi; 2228 SplitVectorOp(Tmp2, Lo, Hi); 2229 Result = DAG.getNode(ISD::RET, MVT::Other, Tmp1, Lo, Tmp3, Hi,Tmp3); 2230 Result = LegalizeOp(Result); 2231 } 2232 } 2233 break; 2234 case Promote: 2235 Tmp2 = PromoteOp(Node->getOperand(1)); 2236 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2237 Result = LegalizeOp(Result); 2238 break; 2239 } 2240 break; 2241 case 1: // ret void 2242 Result = DAG.UpdateNodeOperands(Result, Tmp1); 2243 break; 2244 default: { // ret <values> 2245 SmallVector<SDOperand, 8> NewValues; 2246 NewValues.push_back(Tmp1); 2247 for (unsigned i = 1, e = Node->getNumOperands(); i < e; i += 2) 2248 switch (getTypeAction(Node->getOperand(i).getValueType())) { 2249 case Legal: 2250 NewValues.push_back(LegalizeOp(Node->getOperand(i))); 2251 NewValues.push_back(Node->getOperand(i+1)); 2252 break; 2253 case Expand: { 2254 SDOperand Lo, Hi; 2255 assert(!MVT::isExtendedVT(Node->getOperand(i).getValueType()) && 2256 "FIXME: TODO: implement returning non-legal vector types!"); 2257 ExpandOp(Node->getOperand(i), Lo, Hi); 2258 NewValues.push_back(Lo); 2259 NewValues.push_back(Node->getOperand(i+1)); 2260 if (Hi.Val) { 2261 NewValues.push_back(Hi); 2262 NewValues.push_back(Node->getOperand(i+1)); 2263 } 2264 break; 2265 } 2266 case Promote: 2267 assert(0 && "Can't promote multiple return value yet!"); 2268 } 2269 2270 if (NewValues.size() == Node->getNumOperands()) 2271 Result = DAG.UpdateNodeOperands(Result, &NewValues[0],NewValues.size()); 2272 else 2273 Result = DAG.getNode(ISD::RET, MVT::Other, 2274 &NewValues[0], NewValues.size()); 2275 break; 2276 } 2277 } 2278 2279 if (Result.getOpcode() == ISD::RET) { 2280 switch (TLI.getOperationAction(Result.getOpcode(), MVT::Other)) { 2281 default: assert(0 && "This action is not supported yet!"); 2282 case TargetLowering::Legal: break; 2283 case TargetLowering::Custom: 2284 Tmp1 = TLI.LowerOperation(Result, DAG); 2285 if (Tmp1.Val) Result = Tmp1; 2286 break; 2287 } 2288 } 2289 break; 2290 case ISD::STORE: { 2291 StoreSDNode *ST = cast<StoreSDNode>(Node); 2292 Tmp1 = LegalizeOp(ST->getChain()); // Legalize the chain. 2293 Tmp2 = LegalizeOp(ST->getBasePtr()); // Legalize the pointer. 2294 int SVOffset = ST->getSrcValueOffset(); 2295 unsigned Alignment = ST->getAlignment(); 2296 bool isVolatile = ST->isVolatile(); 2297 2298 if (!ST->isTruncatingStore()) { 2299 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 2300 // FIXME: We shouldn't do this for TargetConstantFP's. 2301 // FIXME: move this to the DAG Combiner! Note that we can't regress due 2302 // to phase ordering between legalized code and the dag combiner. This 2303 // probably means that we need to integrate dag combiner and legalizer 2304 // together. 2305 // We generally can't do this one for long doubles. 2306 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) { 2307 if (CFP->getValueType(0) == MVT::f32 && 2308 getTypeAction(MVT::i32) == Legal) { 2309 Tmp3 = DAG.getConstant((uint32_t)CFP->getValueAPF(). 2310 convertToAPInt().getZExtValue(), 2311 MVT::i32); 2312 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2313 SVOffset, isVolatile, Alignment); 2314 break; 2315 } else if (CFP->getValueType(0) == MVT::f64) { 2316 // If this target supports 64-bit registers, do a single 64-bit store. 2317 if (getTypeAction(MVT::i64) == Legal) { 2318 Tmp3 = DAG.getConstant(CFP->getValueAPF().convertToAPInt(). 2319 getZExtValue(), MVT::i64); 2320 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2321 SVOffset, isVolatile, Alignment); 2322 break; 2323 } else if (getTypeAction(MVT::i32) == Legal) { 2324 // Otherwise, if the target supports 32-bit registers, use 2 32-bit 2325 // stores. If the target supports neither 32- nor 64-bits, this 2326 // xform is certainly not worth it. 2327 uint64_t IntVal =CFP->getValueAPF().convertToAPInt().getZExtValue(); 2328 SDOperand Lo = DAG.getConstant(uint32_t(IntVal), MVT::i32); 2329 SDOperand Hi = DAG.getConstant(uint32_t(IntVal >>32), MVT::i32); 2330 if (TLI.isBigEndian()) std::swap(Lo, Hi); 2331 2332 Lo = DAG.getStore(Tmp1, Lo, Tmp2, ST->getSrcValue(), 2333 SVOffset, isVolatile, Alignment); 2334 Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, 2335 DAG.getIntPtrConstant(4)); 2336 Hi = DAG.getStore(Tmp1, Hi, Tmp2, ST->getSrcValue(), SVOffset+4, 2337 isVolatile, MinAlign(Alignment, 4U)); 2338 2339 Result = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi); 2340 break; 2341 } 2342 } 2343 } 2344 2345 switch (getTypeAction(ST->getMemoryVT())) { 2346 case Legal: { 2347 Tmp3 = LegalizeOp(ST->getValue()); 2348 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2, 2349 ST->getOffset()); 2350 2351 MVT::ValueType VT = Tmp3.getValueType(); 2352 switch (TLI.getOperationAction(ISD::STORE, VT)) { 2353 default: assert(0 && "This action is not supported yet!"); 2354 case TargetLowering::Legal: 2355 // If this is an unaligned store and the target doesn't support it, 2356 // expand it. 2357 if (!TLI.allowsUnalignedMemoryAccesses()) { 2358 unsigned ABIAlignment = TLI.getTargetData()-> 2359 getABITypeAlignment(MVT::getTypeForValueType(ST->getMemoryVT())); 2360 if (ST->getAlignment() < ABIAlignment) 2361 Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.Val), DAG, 2362 TLI); 2363 } 2364 break; 2365 case TargetLowering::Custom: 2366 Tmp1 = TLI.LowerOperation(Result, DAG); 2367 if (Tmp1.Val) Result = Tmp1; 2368 break; 2369 case TargetLowering::Promote: 2370 assert(MVT::isVector(VT) && "Unknown legal promote case!"); 2371 Tmp3 = DAG.getNode(ISD::BIT_CONVERT, 2372 TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3); 2373 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, 2374 ST->getSrcValue(), SVOffset, isVolatile, 2375 Alignment); 2376 break; 2377 } 2378 break; 2379 } 2380 case Promote: 2381 // Truncate the value and store the result. 2382 Tmp3 = PromoteOp(ST->getValue()); 2383 Result = DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2384 SVOffset, ST->getMemoryVT(), 2385 isVolatile, Alignment); 2386 break; 2387 2388 case Expand: 2389 unsigned IncrementSize = 0; 2390 SDOperand Lo, Hi; 2391 2392 // If this is a vector type, then we have to calculate the increment as 2393 // the product of the element size in bytes, and the number of elements 2394 // in the high half of the vector. 2395 if (MVT::isVector(ST->getValue().getValueType())) { 2396 SDNode *InVal = ST->getValue().Val; 2397 int InIx = ST->getValue().ResNo; 2398 MVT::ValueType InVT = InVal->getValueType(InIx); 2399 unsigned NumElems = MVT::getVectorNumElements(InVT); 2400 MVT::ValueType EVT = MVT::getVectorElementType(InVT); 2401 2402 // Figure out if there is a simple type corresponding to this Vector 2403 // type. If so, convert to the vector type. 2404 MVT::ValueType TVT = MVT::getVectorType(EVT, NumElems); 2405 if (TLI.isTypeLegal(TVT)) { 2406 // Turn this into a normal store of the vector type. 2407 Tmp3 = LegalizeOp(ST->getValue()); 2408 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2409 SVOffset, isVolatile, Alignment); 2410 Result = LegalizeOp(Result); 2411 break; 2412 } else if (NumElems == 1) { 2413 // Turn this into a normal store of the scalar type. 2414 Tmp3 = ScalarizeVectorOp(ST->getValue()); 2415 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2416 SVOffset, isVolatile, Alignment); 2417 // The scalarized value type may not be legal, e.g. it might require 2418 // promotion or expansion. Relegalize the scalar store. 2419 Result = LegalizeOp(Result); 2420 break; 2421 } else { 2422 SplitVectorOp(ST->getValue(), Lo, Hi); 2423 IncrementSize = MVT::getVectorNumElements(Lo.Val->getValueType(0)) * 2424 MVT::getSizeInBits(EVT)/8; 2425 } 2426 } else { 2427 ExpandOp(ST->getValue(), Lo, Hi); 2428 IncrementSize = Hi.Val ? MVT::getSizeInBits(Hi.getValueType())/8 : 0; 2429 2430 if (TLI.isBigEndian()) 2431 std::swap(Lo, Hi); 2432 } 2433 2434 Lo = DAG.getStore(Tmp1, Lo, Tmp2, ST->getSrcValue(), 2435 SVOffset, isVolatile, Alignment); 2436 2437 if (Hi.Val == NULL) { 2438 // Must be int <-> float one-to-one expansion. 2439 Result = Lo; 2440 break; 2441 } 2442 2443 Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, 2444 DAG.getIntPtrConstant(IncrementSize)); 2445 assert(isTypeLegal(Tmp2.getValueType()) && 2446 "Pointers must be legal!"); 2447 SVOffset += IncrementSize; 2448 Alignment = MinAlign(Alignment, IncrementSize); 2449 Hi = DAG.getStore(Tmp1, Hi, Tmp2, ST->getSrcValue(), 2450 SVOffset, isVolatile, Alignment); 2451 Result = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi); 2452 break; 2453 } 2454 } else { 2455 switch (getTypeAction(ST->getValue().getValueType())) { 2456 case Legal: 2457 Tmp3 = LegalizeOp(ST->getValue()); 2458 break; 2459 case Promote: 2460 // We can promote the value, the truncstore will still take care of it. 2461 Tmp3 = PromoteOp(ST->getValue()); 2462 break; 2463 case Expand: 2464 // Just store the low part. This may become a non-trunc store, so make 2465 // sure to use getTruncStore, not UpdateNodeOperands below. 2466 ExpandOp(ST->getValue(), Tmp3, Tmp4); 2467 return DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2468 SVOffset, MVT::i8, isVolatile, Alignment); 2469 } 2470 2471 MVT::ValueType StVT = ST->getMemoryVT(); 2472 unsigned StWidth = MVT::getSizeInBits(StVT); 2473 2474 if (StWidth != MVT::getStoreSizeInBits(StVT)) { 2475 // Promote to a byte-sized store with upper bits zero if not 2476 // storing an integral number of bytes. For example, promote 2477 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 2478 MVT::ValueType NVT = MVT::getIntegerType(MVT::getStoreSizeInBits(StVT)); 2479 Tmp3 = DAG.getZeroExtendInReg(Tmp3, StVT); 2480 Result = DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2481 SVOffset, NVT, isVolatile, Alignment); 2482 } else if (StWidth & (StWidth - 1)) { 2483 // If not storing a power-of-2 number of bits, expand as two stores. 2484 assert(MVT::isExtendedVT(StVT) && !MVT::isVector(StVT) && 2485 "Unsupported truncstore!"); 2486 unsigned RoundWidth = 1 << Log2_32(StWidth); 2487 assert(RoundWidth < StWidth); 2488 unsigned ExtraWidth = StWidth - RoundWidth; 2489 assert(ExtraWidth < RoundWidth); 2490 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 2491 "Store size not an integral number of bytes!"); 2492 MVT::ValueType RoundVT = MVT::getIntegerType(RoundWidth); 2493 MVT::ValueType ExtraVT = MVT::getIntegerType(ExtraWidth); 2494 SDOperand Lo, Hi; 2495 unsigned IncrementSize; 2496 2497 if (TLI.isLittleEndian()) { 2498 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) 2499 // Store the bottom RoundWidth bits. 2500 Lo = DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2501 SVOffset, RoundVT, 2502 isVolatile, Alignment); 2503 2504 // Store the remaining ExtraWidth bits. 2505 IncrementSize = RoundWidth / 8; 2506 Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, 2507 DAG.getIntPtrConstant(IncrementSize)); 2508 Hi = DAG.getNode(ISD::SRL, Tmp3.getValueType(), Tmp3, 2509 DAG.getConstant(RoundWidth, TLI.getShiftAmountTy())); 2510 Hi = DAG.getTruncStore(Tmp1, Hi, Tmp2, ST->getSrcValue(), 2511 SVOffset + IncrementSize, ExtraVT, isVolatile, 2512 MinAlign(Alignment, IncrementSize)); 2513 } else { 2514 // Big endian - avoid unaligned stores. 2515 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X 2516 // Store the top RoundWidth bits. 2517 Hi = DAG.getNode(ISD::SRL, Tmp3.getValueType(), Tmp3, 2518 DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy())); 2519 Hi = DAG.getTruncStore(Tmp1, Hi, Tmp2, ST->getSrcValue(), SVOffset, 2520 RoundVT, isVolatile, Alignment); 2521 2522 // Store the remaining ExtraWidth bits. 2523 IncrementSize = RoundWidth / 8; 2524 Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, 2525 DAG.getIntPtrConstant(IncrementSize)); 2526 Lo = DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2527 SVOffset + IncrementSize, ExtraVT, isVolatile, 2528 MinAlign(Alignment, IncrementSize)); 2529 } 2530 2531 // The order of the stores doesn't matter. 2532 Result = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi); 2533 } else { 2534 if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() || 2535 Tmp2 != ST->getBasePtr()) 2536 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2, 2537 ST->getOffset()); 2538 2539 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { 2540 default: assert(0 && "This action is not supported yet!"); 2541 case TargetLowering::Legal: 2542 // If this is an unaligned store and the target doesn't support it, 2543 // expand it. 2544 if (!TLI.allowsUnalignedMemoryAccesses()) { 2545 unsigned ABIAlignment = TLI.getTargetData()-> 2546 getABITypeAlignment(MVT::getTypeForValueType(ST->getMemoryVT())); 2547 if (ST->getAlignment() < ABIAlignment) 2548 Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.Val), DAG, 2549 TLI); 2550 } 2551 break; 2552 case TargetLowering::Custom: 2553 Result = TLI.LowerOperation(Result, DAG); 2554 break; 2555 case Expand: 2556 // TRUNCSTORE:i16 i32 -> STORE i16 2557 assert(isTypeLegal(StVT) && "Do not know how to expand this store!"); 2558 Tmp3 = DAG.getNode(ISD::TRUNCATE, StVT, Tmp3); 2559 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), SVOffset, 2560 isVolatile, Alignment); 2561 break; 2562 } 2563 } 2564 } 2565 break; 2566 } 2567 case ISD::PCMARKER: 2568 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2569 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 2570 break; 2571 case ISD::STACKSAVE: 2572 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2573 Result = DAG.UpdateNodeOperands(Result, Tmp1); 2574 Tmp1 = Result.getValue(0); 2575 Tmp2 = Result.getValue(1); 2576 2577 switch (TLI.getOperationAction(ISD::STACKSAVE, MVT::Other)) { 2578 default: assert(0 && "This action is not supported yet!"); 2579 case TargetLowering::Legal: break; 2580 case TargetLowering::Custom: 2581 Tmp3 = TLI.LowerOperation(Result, DAG); 2582 if (Tmp3.Val) { 2583 Tmp1 = LegalizeOp(Tmp3); 2584 Tmp2 = LegalizeOp(Tmp3.getValue(1)); 2585 } 2586 break; 2587 case TargetLowering::Expand: 2588 // Expand to CopyFromReg if the target set 2589 // StackPointerRegisterToSaveRestore. 2590 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 2591 Tmp1 = DAG.getCopyFromReg(Result.getOperand(0), SP, 2592 Node->getValueType(0)); 2593 Tmp2 = Tmp1.getValue(1); 2594 } else { 2595 Tmp1 = DAG.getNode(ISD::UNDEF, Node->getValueType(0)); 2596 Tmp2 = Node->getOperand(0); 2597 } 2598 break; 2599 } 2600 2601 // Since stacksave produce two values, make sure to remember that we 2602 // legalized both of them. 2603 AddLegalizedOperand(SDOperand(Node, 0), Tmp1); 2604 AddLegalizedOperand(SDOperand(Node, 1), Tmp2); 2605 return Op.ResNo ? Tmp2 : Tmp1; 2606 2607 case ISD::STACKRESTORE: 2608 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2609 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. 2610 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 2611 2612 switch (TLI.getOperationAction(ISD::STACKRESTORE, MVT::Other)) { 2613 default: assert(0 && "This action is not supported yet!"); 2614 case TargetLowering::Legal: break; 2615 case TargetLowering::Custom: 2616 Tmp1 = TLI.LowerOperation(Result, DAG); 2617 if (Tmp1.Val) Result = Tmp1; 2618 break; 2619 case TargetLowering::Expand: 2620 // Expand to CopyToReg if the target set 2621 // StackPointerRegisterToSaveRestore. 2622 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 2623 Result = DAG.getCopyToReg(Tmp1, SP, Tmp2); 2624 } else { 2625 Result = Tmp1; 2626 } 2627 break; 2628 } 2629 break; 2630 2631 case ISD::READCYCLECOUNTER: 2632 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain 2633 Result = DAG.UpdateNodeOperands(Result, Tmp1); 2634 switch (TLI.getOperationAction(ISD::READCYCLECOUNTER, 2635 Node->getValueType(0))) { 2636 default: assert(0 && "This action is not supported yet!"); 2637 case TargetLowering::Legal: 2638 Tmp1 = Result.getValue(0); 2639 Tmp2 = Result.getValue(1); 2640 break; 2641 case TargetLowering::Custom: 2642 Result = TLI.LowerOperation(Result, DAG); 2643 Tmp1 = LegalizeOp(Result.getValue(0)); 2644 Tmp2 = LegalizeOp(Result.getValue(1)); 2645 break; 2646 } 2647 2648 // Since rdcc produce two values, make sure to remember that we legalized 2649 // both of them. 2650 AddLegalizedOperand(SDOperand(Node, 0), Tmp1); 2651 AddLegalizedOperand(SDOperand(Node, 1), Tmp2); 2652 return Result; 2653 2654 case ISD::SELECT: 2655 switch (getTypeAction(Node->getOperand(0).getValueType())) { 2656 case Expand: assert(0 && "It's impossible to expand bools"); 2657 case Legal: 2658 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the condition. 2659 break; 2660 case Promote: { 2661 Tmp1 = PromoteOp(Node->getOperand(0)); // Promote the condition. 2662 // Make sure the condition is either zero or one. 2663 unsigned BitWidth = Tmp1.getValueSizeInBits(); 2664 if (!DAG.MaskedValueIsZero(Tmp1, 2665 APInt::getHighBitsSet(BitWidth, BitWidth-1))) 2666 Tmp1 = DAG.getZeroExtendInReg(Tmp1, MVT::i1); 2667 break; 2668 } 2669 } 2670 Tmp2 = LegalizeOp(Node->getOperand(1)); // TrueVal 2671 Tmp3 = LegalizeOp(Node->getOperand(2)); // FalseVal 2672 2673 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2674 2675 switch (TLI.getOperationAction(ISD::SELECT, Tmp2.getValueType())) { 2676 default: assert(0 && "This action is not supported yet!"); 2677 case TargetLowering::Legal: break; 2678 case TargetLowering::Custom: { 2679 Tmp1 = TLI.LowerOperation(Result, DAG); 2680 if (Tmp1.Val) Result = Tmp1; 2681 break; 2682 } 2683 case TargetLowering::Expand: 2684 if (Tmp1.getOpcode() == ISD::SETCC) { 2685 Result = DAG.getSelectCC(Tmp1.getOperand(0), Tmp1.getOperand(1), 2686 Tmp2, Tmp3, 2687 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); 2688 } else { 2689 Result = DAG.getSelectCC(Tmp1, 2690 DAG.getConstant(0, Tmp1.getValueType()), 2691 Tmp2, Tmp3, ISD::SETNE); 2692 } 2693 break; 2694 case TargetLowering::Promote: { 2695 MVT::ValueType NVT = 2696 TLI.getTypeToPromoteTo(ISD::SELECT, Tmp2.getValueType()); 2697 unsigned ExtOp, TruncOp; 2698 if (MVT::isVector(Tmp2.getValueType())) { 2699 ExtOp = ISD::BIT_CONVERT; 2700 TruncOp = ISD::BIT_CONVERT; 2701 } else if (MVT::isInteger(Tmp2.getValueType())) { 2702 ExtOp = ISD::ANY_EXTEND; 2703 TruncOp = ISD::TRUNCATE; 2704 } else { 2705 ExtOp = ISD::FP_EXTEND; 2706 TruncOp = ISD::FP_ROUND; 2707 } 2708 // Promote each of the values to the new type. 2709 Tmp2 = DAG.getNode(ExtOp, NVT, Tmp2); 2710 Tmp3 = DAG.getNode(ExtOp, NVT, Tmp3); 2711 // Perform the larger operation, then round down. 2712 Result = DAG.getNode(ISD::SELECT, NVT, Tmp1, Tmp2,Tmp3); 2713 if (TruncOp != ISD::FP_ROUND) 2714 Result = DAG.getNode(TruncOp, Node->getValueType(0), Result); 2715 else 2716 Result = DAG.getNode(TruncOp, Node->getValueType(0), Result, 2717 DAG.getIntPtrConstant(0)); 2718 break; 2719 } 2720 } 2721 break; 2722 case ISD::SELECT_CC: { 2723 Tmp1 = Node->getOperand(0); // LHS 2724 Tmp2 = Node->getOperand(1); // RHS 2725 Tmp3 = LegalizeOp(Node->getOperand(2)); // True 2726 Tmp4 = LegalizeOp(Node->getOperand(3)); // False 2727 SDOperand CC = Node->getOperand(4); 2728 2729 LegalizeSetCCOperands(Tmp1, Tmp2, CC); 2730 2731 // If we didn't get both a LHS and RHS back from LegalizeSetCCOperands, 2732 // the LHS is a legal SETCC itself. In this case, we need to compare 2733 // the result against zero to select between true and false values. 2734 if (Tmp2.Val == 0) { 2735 Tmp2 = DAG.getConstant(0, Tmp1.getValueType()); 2736 CC = DAG.getCondCode(ISD::SETNE); 2737 } 2738 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, Tmp4, CC); 2739 2740 // Everything is legal, see if we should expand this op or something. 2741 switch (TLI.getOperationAction(ISD::SELECT_CC, Tmp3.getValueType())) { 2742 default: assert(0 && "This action is not supported yet!"); 2743 case TargetLowering::Legal: break; 2744 case TargetLowering::Custom: 2745 Tmp1 = TLI.LowerOperation(Result, DAG); 2746 if (Tmp1.Val) Result = Tmp1; 2747 break; 2748 } 2749 break; 2750 } 2751 case ISD::SETCC: 2752 Tmp1 = Node->getOperand(0); 2753 Tmp2 = Node->getOperand(1); 2754 Tmp3 = Node->getOperand(2); 2755 LegalizeSetCCOperands(Tmp1, Tmp2, Tmp3); 2756 2757 // If we had to Expand the SetCC operands into a SELECT node, then it may 2758 // not always be possible to return a true LHS & RHS. In this case, just 2759 // return the value we legalized, returned in the LHS 2760 if (Tmp2.Val == 0) { 2761 Result = Tmp1; 2762 break; 2763 } 2764 2765 switch (TLI.getOperationAction(ISD::SETCC, Tmp1.getValueType())) { 2766 default: assert(0 && "Cannot handle this action for SETCC yet!"); 2767 case TargetLowering::Custom: 2768 isCustom = true; 2769 // FALLTHROUGH. 2770 case TargetLowering::Legal: 2771 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2772 if (isCustom) { 2773 Tmp4 = TLI.LowerOperation(Result, DAG); 2774 if (Tmp4.Val) Result = Tmp4; 2775 } 2776 break; 2777 case TargetLowering::Promote: { 2778 // First step, figure out the appropriate operation to use. 2779 // Allow SETCC to not be supported for all legal data types 2780 // Mostly this targets FP 2781 MVT::ValueType NewInTy = Node->getOperand(0).getValueType(); 2782 MVT::ValueType OldVT = NewInTy; OldVT = OldVT; 2783 2784 // Scan for the appropriate larger type to use. 2785 while (1) { 2786 NewInTy = (MVT::ValueType)(NewInTy+1); 2787 2788 assert(MVT::isInteger(NewInTy) == MVT::isInteger(OldVT) && 2789 "Fell off of the edge of the integer world"); 2790 assert(MVT::isFloatingPoint(NewInTy) == MVT::isFloatingPoint(OldVT) && 2791 "Fell off of the edge of the floating point world"); 2792 2793 // If the target supports SETCC of this type, use it. 2794 if (TLI.isOperationLegal(ISD::SETCC, NewInTy)) 2795 break; 2796 } 2797 if (MVT::isInteger(NewInTy)) 2798 assert(0 && "Cannot promote Legal Integer SETCC yet"); 2799 else { 2800 Tmp1 = DAG.getNode(ISD::FP_EXTEND, NewInTy, Tmp1); 2801 Tmp2 = DAG.getNode(ISD::FP_EXTEND, NewInTy, Tmp2); 2802 } 2803 Tmp1 = LegalizeOp(Tmp1); 2804 Tmp2 = LegalizeOp(Tmp2); 2805 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2806 Result = LegalizeOp(Result); 2807 break; 2808 } 2809 case TargetLowering::Expand: 2810 // Expand a setcc node into a select_cc of the same condition, lhs, and 2811 // rhs that selects between const 1 (true) and const 0 (false). 2812 MVT::ValueType VT = Node->getValueType(0); 2813 Result = DAG.getNode(ISD::SELECT_CC, VT, Tmp1, Tmp2, 2814 DAG.getConstant(1, VT), DAG.getConstant(0, VT), 2815 Tmp3); 2816 break; 2817 } 2818 break; 2819 case ISD::MEMSET: 2820 case ISD::MEMCPY: 2821 case ISD::MEMMOVE: { 2822 Tmp1 = LegalizeOp(Node->getOperand(0)); // Chain 2823 Tmp2 = LegalizeOp(Node->getOperand(1)); // Pointer 2824 2825 if (Node->getOpcode() == ISD::MEMSET) { // memset = ubyte 2826 switch (getTypeAction(Node->getOperand(2).getValueType())) { 2827 case Expand: assert(0 && "Cannot expand a byte!"); 2828 case Legal: 2829 Tmp3 = LegalizeOp(Node->getOperand(2)); 2830 break; 2831 case Promote: 2832 Tmp3 = PromoteOp(Node->getOperand(2)); 2833 break; 2834 } 2835 } else { 2836 Tmp3 = LegalizeOp(Node->getOperand(2)); // memcpy/move = pointer, 2837 } 2838 2839 SDOperand Tmp4; 2840 switch (getTypeAction(Node->getOperand(3).getValueType())) { 2841 case Expand: { 2842 // Length is too big, just take the lo-part of the length. 2843 SDOperand HiPart; 2844 ExpandOp(Node->getOperand(3), Tmp4, HiPart); 2845 break; 2846 } 2847 case Legal: 2848 Tmp4 = LegalizeOp(Node->getOperand(3)); 2849 break; 2850 case Promote: 2851 Tmp4 = PromoteOp(Node->getOperand(3)); 2852 break; 2853 } 2854 2855 SDOperand Tmp5; 2856 switch (getTypeAction(Node->getOperand(4).getValueType())) { // uint 2857 case Expand: assert(0 && "Cannot expand this yet!"); 2858 case Legal: 2859 Tmp5 = LegalizeOp(Node->getOperand(4)); 2860 break; 2861 case Promote: 2862 Tmp5 = PromoteOp(Node->getOperand(4)); 2863 break; 2864 } 2865 2866 SDOperand Tmp6; 2867 switch (getTypeAction(Node->getOperand(5).getValueType())) { // bool 2868 case Expand: assert(0 && "Cannot expand this yet!"); 2869 case Legal: 2870 Tmp6 = LegalizeOp(Node->getOperand(5)); 2871 break; 2872 case Promote: 2873 Tmp6 = PromoteOp(Node->getOperand(5)); 2874 break; 2875 } 2876 2877 switch (TLI.getOperationAction(Node->getOpcode(), MVT::Other)) { 2878 default: assert(0 && "This action not implemented for this operation!"); 2879 case TargetLowering::Custom: 2880 isCustom = true; 2881 // FALLTHROUGH 2882 case TargetLowering::Legal: { 2883 SDOperand Ops[] = { Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6 }; 2884 Result = DAG.UpdateNodeOperands(Result, Ops, 6); 2885 if (isCustom) { 2886 Tmp1 = TLI.LowerOperation(Result, DAG); 2887 if (Tmp1.Val) Result = Tmp1; 2888 } 2889 break; 2890 } 2891 case TargetLowering::Expand: { 2892 // Otherwise, the target does not support this operation. Lower the 2893 // operation to an explicit libcall as appropriate. 2894 MVT::ValueType IntPtr = TLI.getPointerTy(); 2895 const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(); 2896 TargetLowering::ArgListTy Args; 2897 TargetLowering::ArgListEntry Entry; 2898 2899 const char *FnName = 0; 2900 if (Node->getOpcode() == ISD::MEMSET) { 2901 Entry.Node = Tmp2; Entry.Ty = IntPtrTy; 2902 Args.push_back(Entry); 2903 // Extend the (previously legalized) ubyte argument to be an int value 2904 // for the call. 2905 if (Tmp3.getValueType() > MVT::i32) 2906 Tmp3 = DAG.getNode(ISD::TRUNCATE, MVT::i32, Tmp3); 2907 else 2908 Tmp3 = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Tmp3); 2909 Entry.Node = Tmp3; Entry.Ty = Type::Int32Ty; Entry.isSExt = true; 2910 Args.push_back(Entry); 2911 Entry.Node = Tmp4; Entry.Ty = IntPtrTy; Entry.isSExt = false; 2912 Args.push_back(Entry); 2913 2914 FnName = "memset"; 2915 } else if (Node->getOpcode() == ISD::MEMCPY || 2916 Node->getOpcode() == ISD::MEMMOVE) { 2917 Entry.Ty = IntPtrTy; 2918 Entry.Node = Tmp2; Args.push_back(Entry); 2919 Entry.Node = Tmp3; Args.push_back(Entry); 2920 Entry.Node = Tmp4; Args.push_back(Entry); 2921 FnName = Node->getOpcode() == ISD::MEMMOVE ? "memmove" : "memcpy"; 2922 } else { 2923 assert(0 && "Unknown op!"); 2924 } 2925 2926 std::pair<SDOperand,SDOperand> CallResult = 2927 TLI.LowerCallTo(Tmp1, Type::VoidTy, 2928 false, false, false, CallingConv::C, false, 2929 DAG.getExternalSymbol(FnName, IntPtr), Args, DAG); 2930 Result = CallResult.second; 2931 break; 2932 } 2933 } 2934 break; 2935 } 2936 2937 case ISD::SHL_PARTS: 2938 case ISD::SRA_PARTS: 2939 case ISD::SRL_PARTS: { 2940 SmallVector<SDOperand, 8> Ops; 2941 bool Changed = false; 2942 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 2943 Ops.push_back(LegalizeOp(Node->getOperand(i))); 2944 Changed |= Ops.back() != Node->getOperand(i); 2945 } 2946 if (Changed) 2947 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 2948 2949 switch (TLI.getOperationAction(Node->getOpcode(), 2950 Node->getValueType(0))) { 2951 default: assert(0 && "This action is not supported yet!"); 2952 case TargetLowering::Legal: break; 2953 case TargetLowering::Custom: 2954 Tmp1 = TLI.LowerOperation(Result, DAG); 2955 if (Tmp1.Val) { 2956 SDOperand Tmp2, RetVal(0, 0); 2957 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) { 2958 Tmp2 = LegalizeOp(Tmp1.getValue(i)); 2959 AddLegalizedOperand(SDOperand(Node, i), Tmp2); 2960 if (i == Op.ResNo) 2961 RetVal = Tmp2; 2962 } 2963 assert(RetVal.Val && "Illegal result number"); 2964 return RetVal; 2965 } 2966 break; 2967 } 2968 2969 // Since these produce multiple values, make sure to remember that we 2970 // legalized all of them. 2971 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 2972 AddLegalizedOperand(SDOperand(Node, i), Result.getValue(i)); 2973 return Result.getValue(Op.ResNo); 2974 } 2975 2976 // Binary operators 2977 case ISD::ADD: 2978 case ISD::SUB: 2979 case ISD::MUL: 2980 case ISD::MULHS: 2981 case ISD::MULHU: 2982 case ISD::UDIV: 2983 case ISD::SDIV: 2984 case ISD::AND: 2985 case ISD::OR: 2986 case ISD::XOR: 2987 case ISD::SHL: 2988 case ISD::SRL: 2989 case ISD::SRA: 2990 case ISD::FADD: 2991 case ISD::FSUB: 2992 case ISD::FMUL: 2993 case ISD::FDIV: 2994 case ISD::FPOW: 2995 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 2996 switch (getTypeAction(Node->getOperand(1).getValueType())) { 2997 case Expand: assert(0 && "Not possible"); 2998 case Legal: 2999 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the RHS. 3000 break; 3001 case Promote: 3002 Tmp2 = PromoteOp(Node->getOperand(1)); // Promote the RHS. 3003 break; 3004 } 3005 3006 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3007 3008 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3009 default: assert(0 && "BinOp legalize operation not supported"); 3010 case TargetLowering::Legal: break; 3011 case TargetLowering::Custom: 3012 Tmp1 = TLI.LowerOperation(Result, DAG); 3013 if (Tmp1.Val) Result = Tmp1; 3014 break; 3015 case TargetLowering::Expand: { 3016 MVT::ValueType VT = Op.getValueType(); 3017 3018 // See if multiply or divide can be lowered using two-result operations. 3019 SDVTList VTs = DAG.getVTList(VT, VT); 3020 if (Node->getOpcode() == ISD::MUL) { 3021 // We just need the low half of the multiply; try both the signed 3022 // and unsigned forms. If the target supports both SMUL_LOHI and 3023 // UMUL_LOHI, form a preference by checking which forms of plain 3024 // MULH it supports. 3025 bool HasSMUL_LOHI = TLI.isOperationLegal(ISD::SMUL_LOHI, VT); 3026 bool HasUMUL_LOHI = TLI.isOperationLegal(ISD::UMUL_LOHI, VT); 3027 bool HasMULHS = TLI.isOperationLegal(ISD::MULHS, VT); 3028 bool HasMULHU = TLI.isOperationLegal(ISD::MULHU, VT); 3029 unsigned OpToUse = 0; 3030 if (HasSMUL_LOHI && !HasMULHS) { 3031 OpToUse = ISD::SMUL_LOHI; 3032 } else if (HasUMUL_LOHI && !HasMULHU) { 3033 OpToUse = ISD::UMUL_LOHI; 3034 } else if (HasSMUL_LOHI) { 3035 OpToUse = ISD::SMUL_LOHI; 3036 } else if (HasUMUL_LOHI) { 3037 OpToUse = ISD::UMUL_LOHI; 3038 } 3039 if (OpToUse) { 3040 Result = SDOperand(DAG.getNode(OpToUse, VTs, Tmp1, Tmp2).Val, 0); 3041 break; 3042 } 3043 } 3044 if (Node->getOpcode() == ISD::MULHS && 3045 TLI.isOperationLegal(ISD::SMUL_LOHI, VT)) { 3046 Result = SDOperand(DAG.getNode(ISD::SMUL_LOHI, VTs, Tmp1, Tmp2).Val, 1); 3047 break; 3048 } 3049 if (Node->getOpcode() == ISD::MULHU && 3050 TLI.isOperationLegal(ISD::UMUL_LOHI, VT)) { 3051 Result = SDOperand(DAG.getNode(ISD::UMUL_LOHI, VTs, Tmp1, Tmp2).Val, 1); 3052 break; 3053 } 3054 if (Node->getOpcode() == ISD::SDIV && 3055 TLI.isOperationLegal(ISD::SDIVREM, VT)) { 3056 Result = SDOperand(DAG.getNode(ISD::SDIVREM, VTs, Tmp1, Tmp2).Val, 0); 3057 break; 3058 } 3059 if (Node->getOpcode() == ISD::UDIV && 3060 TLI.isOperationLegal(ISD::UDIVREM, VT)) { 3061 Result = SDOperand(DAG.getNode(ISD::UDIVREM, VTs, Tmp1, Tmp2).Val, 0); 3062 break; 3063 } 3064 3065 // Check to see if we have a libcall for this operator. 3066 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 3067 bool isSigned = false; 3068 switch (Node->getOpcode()) { 3069 case ISD::UDIV: 3070 case ISD::SDIV: 3071 if (VT == MVT::i32) { 3072 LC = Node->getOpcode() == ISD::UDIV 3073 ? RTLIB::UDIV_I32 : RTLIB::SDIV_I32; 3074 isSigned = Node->getOpcode() == ISD::SDIV; 3075 } 3076 break; 3077 case ISD::FPOW: 3078 LC = GetFPLibCall(VT, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80, 3079 RTLIB::POW_PPCF128); 3080 break; 3081 default: break; 3082 } 3083 if (LC != RTLIB::UNKNOWN_LIBCALL) { 3084 SDOperand Dummy; 3085 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, isSigned, Dummy); 3086 break; 3087 } 3088 3089 assert(MVT::isVector(Node->getValueType(0)) && 3090 "Cannot expand this binary operator!"); 3091 // Expand the operation into a bunch of nasty scalar code. 3092 Result = LegalizeOp(UnrollVectorOp(Op)); 3093 break; 3094 } 3095 case TargetLowering::Promote: { 3096 switch (Node->getOpcode()) { 3097 default: assert(0 && "Do not know how to promote this BinOp!"); 3098 case ISD::AND: 3099 case ISD::OR: 3100 case ISD::XOR: { 3101 MVT::ValueType OVT = Node->getValueType(0); 3102 MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 3103 assert(MVT::isVector(OVT) && "Cannot promote this BinOp!"); 3104 // Bit convert each of the values to the new type. 3105 Tmp1 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp1); 3106 Tmp2 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp2); 3107 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 3108 // Bit convert the result back the original type. 3109 Result = DAG.getNode(ISD::BIT_CONVERT, OVT, Result); 3110 break; 3111 } 3112 } 3113 } 3114 } 3115 break; 3116 3117 case ISD::SMUL_LOHI: 3118 case ISD::UMUL_LOHI: 3119 case ISD::SDIVREM: 3120 case ISD::UDIVREM: 3121 // These nodes will only be produced by target-specific lowering, so 3122 // they shouldn't be here if they aren't legal. 3123 assert(TLI.isOperationLegal(Node->getOpcode(), Node->getValueType(0)) && 3124 "This must be legal!"); 3125 3126 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 3127 Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS 3128 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3129 break; 3130 3131 case ISD::FCOPYSIGN: // FCOPYSIGN does not require LHS/RHS to match type! 3132 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 3133 switch (getTypeAction(Node->getOperand(1).getValueType())) { 3134 case Expand: assert(0 && "Not possible"); 3135 case Legal: 3136 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the RHS. 3137 break; 3138 case Promote: 3139 Tmp2 = PromoteOp(Node->getOperand(1)); // Promote the RHS. 3140 break; 3141 } 3142 3143 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3144 3145 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3146 default: assert(0 && "Operation not supported"); 3147 case TargetLowering::Custom: 3148 Tmp1 = TLI.LowerOperation(Result, DAG); 3149 if (Tmp1.Val) Result = Tmp1; 3150 break; 3151 case TargetLowering::Legal: break; 3152 case TargetLowering::Expand: { 3153 // If this target supports fabs/fneg natively and select is cheap, 3154 // do this efficiently. 3155 if (!TLI.isSelectExpensive() && 3156 TLI.getOperationAction(ISD::FABS, Tmp1.getValueType()) == 3157 TargetLowering::Legal && 3158 TLI.getOperationAction(ISD::FNEG, Tmp1.getValueType()) == 3159 TargetLowering::Legal) { 3160 // Get the sign bit of the RHS. 3161 MVT::ValueType IVT = 3162 Tmp2.getValueType() == MVT::f32 ? MVT::i32 : MVT::i64; 3163 SDOperand SignBit = DAG.getNode(ISD::BIT_CONVERT, IVT, Tmp2); 3164 SignBit = DAG.getSetCC(TLI.getSetCCResultTy(), 3165 SignBit, DAG.getConstant(0, IVT), ISD::SETLT); 3166 // Get the absolute value of the result. 3167 SDOperand AbsVal = DAG.getNode(ISD::FABS, Tmp1.getValueType(), Tmp1); 3168 // Select between the nabs and abs value based on the sign bit of 3169 // the input. 3170 Result = DAG.getNode(ISD::SELECT, AbsVal.getValueType(), SignBit, 3171 DAG.getNode(ISD::FNEG, AbsVal.getValueType(), 3172 AbsVal), 3173 AbsVal); 3174 Result = LegalizeOp(Result); 3175 break; 3176 } 3177 3178 // Otherwise, do bitwise ops! 3179 MVT::ValueType NVT = 3180 Node->getValueType(0) == MVT::f32 ? MVT::i32 : MVT::i64; 3181 Result = ExpandFCOPYSIGNToBitwiseOps(Node, NVT, DAG, TLI); 3182 Result = DAG.getNode(ISD::BIT_CONVERT, Node->getValueType(0), Result); 3183 Result = LegalizeOp(Result); 3184 break; 3185 } 3186 } 3187 break; 3188 3189 case ISD::ADDC: 3190 case ISD::SUBC: 3191 Tmp1 = LegalizeOp(Node->getOperand(0)); 3192 Tmp2 = LegalizeOp(Node->getOperand(1)); 3193 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3194 // Since this produces two values, make sure to remember that we legalized 3195 // both of them. 3196 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 3197 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 3198 return Result; 3199 3200 case ISD::ADDE: 3201 case ISD::SUBE: 3202 Tmp1 = LegalizeOp(Node->getOperand(0)); 3203 Tmp2 = LegalizeOp(Node->getOperand(1)); 3204 Tmp3 = LegalizeOp(Node->getOperand(2)); 3205 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 3206 // Since this produces two values, make sure to remember that we legalized 3207 // both of them. 3208 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 3209 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 3210 return Result; 3211 3212 case ISD::BUILD_PAIR: { 3213 MVT::ValueType PairTy = Node->getValueType(0); 3214 // TODO: handle the case where the Lo and Hi operands are not of legal type 3215 Tmp1 = LegalizeOp(Node->getOperand(0)); // Lo 3216 Tmp2 = LegalizeOp(Node->getOperand(1)); // Hi 3217 switch (TLI.getOperationAction(ISD::BUILD_PAIR, PairTy)) { 3218 case TargetLowering::Promote: 3219 case TargetLowering::Custom: 3220 assert(0 && "Cannot promote/custom this yet!"); 3221 case TargetLowering::Legal: 3222 if (Tmp1 != Node->getOperand(0) || Tmp2 != Node->getOperand(1)) 3223 Result = DAG.getNode(ISD::BUILD_PAIR, PairTy, Tmp1, Tmp2); 3224 break; 3225 case TargetLowering::Expand: 3226 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, PairTy, Tmp1); 3227 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, PairTy, Tmp2); 3228 Tmp2 = DAG.getNode(ISD::SHL, PairTy, Tmp2, 3229 DAG.getConstant(MVT::getSizeInBits(PairTy)/2, 3230 TLI.getShiftAmountTy())); 3231 Result = DAG.getNode(ISD::OR, PairTy, Tmp1, Tmp2); 3232 break; 3233 } 3234 break; 3235 } 3236 3237 case ISD::UREM: 3238 case ISD::SREM: 3239 case ISD::FREM: 3240 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 3241 Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS 3242 3243 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3244 case TargetLowering::Promote: assert(0 && "Cannot promote this yet!"); 3245 case TargetLowering::Custom: 3246 isCustom = true; 3247 // FALLTHROUGH 3248 case TargetLowering::Legal: 3249 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3250 if (isCustom) { 3251 Tmp1 = TLI.LowerOperation(Result, DAG); 3252 if (Tmp1.Val) Result = Tmp1; 3253 } 3254 break; 3255 case TargetLowering::Expand: { 3256 unsigned DivOpc= (Node->getOpcode() == ISD::UREM) ? ISD::UDIV : ISD::SDIV; 3257 bool isSigned = DivOpc == ISD::SDIV; 3258 MVT::ValueType VT = Node->getValueType(0); 3259 3260 // See if remainder can be lowered using two-result operations. 3261 SDVTList VTs = DAG.getVTList(VT, VT); 3262 if (Node->getOpcode() == ISD::SREM && 3263 TLI.isOperationLegal(ISD::SDIVREM, VT)) { 3264 Result = SDOperand(DAG.getNode(ISD::SDIVREM, VTs, Tmp1, Tmp2).Val, 1); 3265 break; 3266 } 3267 if (Node->getOpcode() == ISD::UREM && 3268 TLI.isOperationLegal(ISD::UDIVREM, VT)) { 3269 Result = SDOperand(DAG.getNode(ISD::UDIVREM, VTs, Tmp1, Tmp2).Val, 1); 3270 break; 3271 } 3272 3273 if (MVT::isInteger(VT)) { 3274 if (TLI.getOperationAction(DivOpc, VT) == 3275 TargetLowering::Legal) { 3276 // X % Y -> X-X/Y*Y 3277 Result = DAG.getNode(DivOpc, VT, Tmp1, Tmp2); 3278 Result = DAG.getNode(ISD::MUL, VT, Result, Tmp2); 3279 Result = DAG.getNode(ISD::SUB, VT, Tmp1, Result); 3280 } else if (MVT::isVector(VT)) { 3281 Result = LegalizeOp(UnrollVectorOp(Op)); 3282 } else { 3283 assert(VT == MVT::i32 && 3284 "Cannot expand this binary operator!"); 3285 RTLIB::Libcall LC = Node->getOpcode() == ISD::UREM 3286 ? RTLIB::UREM_I32 : RTLIB::SREM_I32; 3287 SDOperand Dummy; 3288 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, isSigned, Dummy); 3289 } 3290 } else { 3291 assert(MVT::isFloatingPoint(VT) && 3292 "remainder op must have integer or floating-point type"); 3293 if (MVT::isVector(VT)) { 3294 Result = LegalizeOp(UnrollVectorOp(Op)); 3295 } else { 3296 // Floating point mod -> fmod libcall. 3297 RTLIB::Libcall LC = GetFPLibCall(VT, RTLIB::REM_F32, RTLIB::REM_F64, 3298 RTLIB::REM_F80, RTLIB::REM_PPCF128); 3299 SDOperand Dummy; 3300 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, 3301 false/*sign irrelevant*/, Dummy); 3302 } 3303 } 3304 break; 3305 } 3306 } 3307 break; 3308 case ISD::VAARG: { 3309 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 3310 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. 3311 3312 MVT::ValueType VT = Node->getValueType(0); 3313 switch (TLI.getOperationAction(Node->getOpcode(), MVT::Other)) { 3314 default: assert(0 && "This action is not supported yet!"); 3315 case TargetLowering::Custom: 3316 isCustom = true; 3317 // FALLTHROUGH 3318 case TargetLowering::Legal: 3319 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 3320 Result = Result.getValue(0); 3321 Tmp1 = Result.getValue(1); 3322 3323 if (isCustom) { 3324 Tmp2 = TLI.LowerOperation(Result, DAG); 3325 if (Tmp2.Val) { 3326 Result = LegalizeOp(Tmp2); 3327 Tmp1 = LegalizeOp(Tmp2.getValue(1)); 3328 } 3329 } 3330 break; 3331 case TargetLowering::Expand: { 3332 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 3333 SDOperand VAList = DAG.getLoad(TLI.getPointerTy(), Tmp1, Tmp2, V, 0); 3334 // Increment the pointer, VAList, to the next vaarg 3335 Tmp3 = DAG.getNode(ISD::ADD, TLI.getPointerTy(), VAList, 3336 DAG.getConstant(MVT::getSizeInBits(VT)/8, 3337 TLI.getPointerTy())); 3338 // Store the incremented VAList to the legalized pointer 3339 Tmp3 = DAG.getStore(VAList.getValue(1), Tmp3, Tmp2, V, 0); 3340 // Load the actual argument out of the pointer VAList 3341 Result = DAG.getLoad(VT, Tmp3, VAList, NULL, 0); 3342 Tmp1 = LegalizeOp(Result.getValue(1)); 3343 Result = LegalizeOp(Result); 3344 break; 3345 } 3346 } 3347 // Since VAARG produces two values, make sure to remember that we 3348 // legalized both of them. 3349 AddLegalizedOperand(SDOperand(Node, 0), Result); 3350 AddLegalizedOperand(SDOperand(Node, 1), Tmp1); 3351 return Op.ResNo ? Tmp1 : Result; 3352 } 3353 3354 case ISD::VACOPY: 3355 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 3356 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the dest pointer. 3357 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the source pointer. 3358 3359 switch (TLI.getOperationAction(ISD::VACOPY, MVT::Other)) { 3360 default: assert(0 && "This action is not supported yet!"); 3361 case TargetLowering::Custom: 3362 isCustom = true; 3363 // FALLTHROUGH 3364 case TargetLowering::Legal: 3365 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, 3366 Node->getOperand(3), Node->getOperand(4)); 3367 if (isCustom) { 3368 Tmp1 = TLI.LowerOperation(Result, DAG); 3369 if (Tmp1.Val) Result = Tmp1; 3370 } 3371 break; 3372 case TargetLowering::Expand: 3373 // This defaults to loading a pointer from the input and storing it to the 3374 // output, returning the chain. 3375 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 3376 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 3377 Tmp4 = DAG.getLoad(TLI.getPointerTy(), Tmp1, Tmp3, VD, 0); 3378 Result = DAG.getStore(Tmp4.getValue(1), Tmp4, Tmp2, VS, 0); 3379 break; 3380 } 3381 break; 3382 3383 case ISD::VAEND: 3384 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 3385 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. 3386 3387 switch (TLI.getOperationAction(ISD::VAEND, MVT::Other)) { 3388 default: assert(0 && "This action is not supported yet!"); 3389 case TargetLowering::Custom: 3390 isCustom = true; 3391 // FALLTHROUGH 3392 case TargetLowering::Legal: 3393 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 3394 if (isCustom) { 3395 Tmp1 = TLI.LowerOperation(Tmp1, DAG); 3396 if (Tmp1.Val) Result = Tmp1; 3397 } 3398 break; 3399 case TargetLowering::Expand: 3400 Result = Tmp1; // Default to a no-op, return the chain 3401 break; 3402 } 3403 break; 3404 3405 case ISD::VASTART: 3406 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 3407 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. 3408 3409 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 3410 3411 switch (TLI.getOperationAction(ISD::VASTART, MVT::Other)) { 3412 default: assert(0 && "This action is not supported yet!"); 3413 case TargetLowering::Legal: break; 3414 case TargetLowering::Custom: 3415 Tmp1 = TLI.LowerOperation(Result, DAG); 3416 if (Tmp1.Val) Result = Tmp1; 3417 break; 3418 } 3419 break; 3420 3421 case ISD::ROTL: 3422 case ISD::ROTR: 3423 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 3424 Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS 3425 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3426 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3427 default: 3428 assert(0 && "ROTL/ROTR legalize operation not supported"); 3429 break; 3430 case TargetLowering::Legal: 3431 break; 3432 case TargetLowering::Custom: 3433 Tmp1 = TLI.LowerOperation(Result, DAG); 3434 if (Tmp1.Val) Result = Tmp1; 3435 break; 3436 case TargetLowering::Promote: 3437 assert(0 && "Do not know how to promote ROTL/ROTR"); 3438 break; 3439 case TargetLowering::Expand: 3440 assert(0 && "Do not know how to expand ROTL/ROTR"); 3441 break; 3442 } 3443 break; 3444 3445 case ISD::BSWAP: 3446 Tmp1 = LegalizeOp(Node->getOperand(0)); // Op 3447 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3448 case TargetLowering::Custom: 3449 assert(0 && "Cannot custom legalize this yet!"); 3450 case TargetLowering::Legal: 3451 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3452 break; 3453 case TargetLowering::Promote: { 3454 MVT::ValueType OVT = Tmp1.getValueType(); 3455 MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 3456 unsigned DiffBits = MVT::getSizeInBits(NVT) - MVT::getSizeInBits(OVT); 3457 3458 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Tmp1); 3459 Tmp1 = DAG.getNode(ISD::BSWAP, NVT, Tmp1); 3460 Result = DAG.getNode(ISD::SRL, NVT, Tmp1, 3461 DAG.getConstant(DiffBits, TLI.getShiftAmountTy())); 3462 break; 3463 } 3464 case TargetLowering::Expand: 3465 Result = ExpandBSWAP(Tmp1); 3466 break; 3467 } 3468 break; 3469 3470 case ISD::CTPOP: 3471 case ISD::CTTZ: 3472 case ISD::CTLZ: 3473 Tmp1 = LegalizeOp(Node->getOperand(0)); // Op 3474 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3475 case TargetLowering::Custom: 3476 case TargetLowering::Legal: 3477 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3478 if (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)) == 3479 TargetLowering::Custom) { 3480 Tmp1 = TLI.LowerOperation(Result, DAG); 3481 if (Tmp1.Val) { 3482 Result = Tmp1; 3483 } 3484 } 3485 break; 3486 case TargetLowering::Promote: { 3487 MVT::ValueType OVT = Tmp1.getValueType(); 3488 MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 3489 3490 // Zero extend the argument. 3491 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Tmp1); 3492 // Perform the larger operation, then subtract if needed. 3493 Tmp1 = DAG.getNode(Node->getOpcode(), Node->getValueType(0), Tmp1); 3494 switch (Node->getOpcode()) { 3495 case ISD::CTPOP: 3496 Result = Tmp1; 3497 break; 3498 case ISD::CTTZ: 3499 //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT) 3500 Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), Tmp1, 3501 DAG.getConstant(MVT::getSizeInBits(NVT), NVT), 3502 ISD::SETEQ); 3503 Result = DAG.getNode(ISD::SELECT, NVT, Tmp2, 3504 DAG.getConstant(MVT::getSizeInBits(OVT),NVT), Tmp1); 3505 break; 3506 case ISD::CTLZ: 3507 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 3508 Result = DAG.getNode(ISD::SUB, NVT, Tmp1, 3509 DAG.getConstant(MVT::getSizeInBits(NVT) - 3510 MVT::getSizeInBits(OVT), NVT)); 3511 break; 3512 } 3513 break; 3514 } 3515 case TargetLowering::Expand: 3516 Result = ExpandBitCount(Node->getOpcode(), Tmp1); 3517 break; 3518 } 3519 break; 3520 3521 // Unary operators 3522 case ISD::FABS: 3523 case ISD::FNEG: 3524 case ISD::FSQRT: 3525 case ISD::FSIN: 3526 case ISD::FCOS: 3527 Tmp1 = LegalizeOp(Node->getOperand(0)); 3528 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3529 case TargetLowering::Promote: 3530 case TargetLowering::Custom: 3531 isCustom = true; 3532 // FALLTHROUGH 3533 case TargetLowering::Legal: 3534 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3535 if (isCustom) { 3536 Tmp1 = TLI.LowerOperation(Result, DAG); 3537 if (Tmp1.Val) Result = Tmp1; 3538 } 3539 break; 3540 case TargetLowering::Expand: 3541 switch (Node->getOpcode()) { 3542 default: assert(0 && "Unreachable!"); 3543 case ISD::FNEG: 3544 // Expand Y = FNEG(X) -> Y = SUB -0.0, X 3545 Tmp2 = DAG.getConstantFP(-0.0, Node->getValueType(0)); 3546 Result = DAG.getNode(ISD::FSUB, Node->getValueType(0), Tmp2, Tmp1); 3547 break; 3548 case ISD::FABS: { 3549 // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X). 3550 MVT::ValueType VT = Node->getValueType(0); 3551 Tmp2 = DAG.getConstantFP(0.0, VT); 3552 Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), Tmp1, Tmp2, ISD::SETUGT); 3553 Tmp3 = DAG.getNode(ISD::FNEG, VT, Tmp1); 3554 Result = DAG.getNode(ISD::SELECT, VT, Tmp2, Tmp1, Tmp3); 3555 break; 3556 } 3557 case ISD::FSQRT: 3558 case ISD::FSIN: 3559 case ISD::FCOS: { 3560 MVT::ValueType VT = Node->getValueType(0); 3561 3562 // Expand unsupported unary vector operators by unrolling them. 3563 if (MVT::isVector(VT)) { 3564 Result = LegalizeOp(UnrollVectorOp(Op)); 3565 break; 3566 } 3567 3568 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 3569 switch(Node->getOpcode()) { 3570 case ISD::FSQRT: 3571 LC = GetFPLibCall(VT, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 3572 RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128); 3573 break; 3574 case ISD::FSIN: 3575 LC = GetFPLibCall(VT, RTLIB::SIN_F32, RTLIB::SIN_F64, 3576 RTLIB::SIN_F80, RTLIB::SIN_PPCF128); 3577 break; 3578 case ISD::FCOS: 3579 LC = GetFPLibCall(VT, RTLIB::COS_F32, RTLIB::COS_F64, 3580 RTLIB::COS_F80, RTLIB::COS_PPCF128); 3581 break; 3582 default: assert(0 && "Unreachable!"); 3583 } 3584 SDOperand Dummy; 3585 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, 3586 false/*sign irrelevant*/, Dummy); 3587 break; 3588 } 3589 } 3590 break; 3591 } 3592 break; 3593 case ISD::FPOWI: { 3594 MVT::ValueType VT = Node->getValueType(0); 3595 3596 // Expand unsupported unary vector operators by unrolling them. 3597 if (MVT::isVector(VT)) { 3598 Result = LegalizeOp(UnrollVectorOp(Op)); 3599 break; 3600 } 3601 3602 // We always lower FPOWI into a libcall. No target support for it yet. 3603 RTLIB::Libcall LC = GetFPLibCall(VT, RTLIB::POWI_F32, RTLIB::POWI_F64, 3604 RTLIB::POWI_F80, RTLIB::POWI_PPCF128); 3605 SDOperand Dummy; 3606 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, 3607 false/*sign irrelevant*/, Dummy); 3608 break; 3609 } 3610 case ISD::BIT_CONVERT: 3611 if (!isTypeLegal(Node->getOperand(0).getValueType())) { 3612 Result = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 3613 Node->getValueType(0)); 3614 } else if (MVT::isVector(Op.getOperand(0).getValueType())) { 3615 // The input has to be a vector type, we have to either scalarize it, pack 3616 // it, or convert it based on whether the input vector type is legal. 3617 SDNode *InVal = Node->getOperand(0).Val; 3618 int InIx = Node->getOperand(0).ResNo; 3619 unsigned NumElems = MVT::getVectorNumElements(InVal->getValueType(InIx)); 3620 MVT::ValueType EVT = MVT::getVectorElementType(InVal->getValueType(InIx)); 3621 3622 // Figure out if there is a simple type corresponding to this Vector 3623 // type. If so, convert to the vector type. 3624 MVT::ValueType TVT = MVT::getVectorType(EVT, NumElems); 3625 if (TLI.isTypeLegal(TVT)) { 3626 // Turn this into a bit convert of the vector input. 3627 Result = DAG.getNode(ISD::BIT_CONVERT, Node->getValueType(0), 3628 LegalizeOp(Node->getOperand(0))); 3629 break; 3630 } else if (NumElems == 1) { 3631 // Turn this into a bit convert of the scalar input. 3632 Result = DAG.getNode(ISD::BIT_CONVERT, Node->getValueType(0), 3633 ScalarizeVectorOp(Node->getOperand(0))); 3634 break; 3635 } else { 3636 // FIXME: UNIMP! Store then reload 3637 assert(0 && "Cast from unsupported vector type not implemented yet!"); 3638 } 3639 } else { 3640 switch (TLI.getOperationAction(ISD::BIT_CONVERT, 3641 Node->getOperand(0).getValueType())) { 3642 default: assert(0 && "Unknown operation action!"); 3643 case TargetLowering::Expand: 3644 Result = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 3645 Node->getValueType(0)); 3646 break; 3647 case TargetLowering::Legal: 3648 Tmp1 = LegalizeOp(Node->getOperand(0)); 3649 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3650 break; 3651 } 3652 } 3653 break; 3654 3655 // Conversion operators. The source and destination have different types. 3656 case ISD::SINT_TO_FP: 3657 case ISD::UINT_TO_FP: { 3658 bool isSigned = Node->getOpcode() == ISD::SINT_TO_FP; 3659 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3660 case Legal: 3661 switch (TLI.getOperationAction(Node->getOpcode(), 3662 Node->getOperand(0).getValueType())) { 3663 default: assert(0 && "Unknown operation action!"); 3664 case TargetLowering::Custom: 3665 isCustom = true; 3666 // FALLTHROUGH 3667 case TargetLowering::Legal: 3668 Tmp1 = LegalizeOp(Node->getOperand(0)); 3669 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3670 if (isCustom) { 3671 Tmp1 = TLI.LowerOperation(Result, DAG); 3672 if (Tmp1.Val) Result = Tmp1; 3673 } 3674 break; 3675 case TargetLowering::Expand: 3676 Result = ExpandLegalINT_TO_FP(isSigned, 3677 LegalizeOp(Node->getOperand(0)), 3678 Node->getValueType(0)); 3679 break; 3680 case TargetLowering::Promote: 3681 Result = PromoteLegalINT_TO_FP(LegalizeOp(Node->getOperand(0)), 3682 Node->getValueType(0), 3683 isSigned); 3684 break; 3685 } 3686 break; 3687 case Expand: 3688 Result = ExpandIntToFP(Node->getOpcode() == ISD::SINT_TO_FP, 3689 Node->getValueType(0), Node->getOperand(0)); 3690 break; 3691 case Promote: 3692 Tmp1 = PromoteOp(Node->getOperand(0)); 3693 if (isSigned) { 3694 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, Tmp1.getValueType(), 3695 Tmp1, DAG.getValueType(Node->getOperand(0).getValueType())); 3696 } else { 3697 Tmp1 = DAG.getZeroExtendInReg(Tmp1, 3698 Node->getOperand(0).getValueType()); 3699 } 3700 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3701 Result = LegalizeOp(Result); // The 'op' is not necessarily legal! 3702 break; 3703 } 3704 break; 3705 } 3706 case ISD::TRUNCATE: 3707 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3708 case Legal: 3709 Tmp1 = LegalizeOp(Node->getOperand(0)); 3710 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3711 break; 3712 case Expand: 3713 ExpandOp(Node->getOperand(0), Tmp1, Tmp2); 3714 3715 // Since the result is legal, we should just be able to truncate the low 3716 // part of the source. 3717 Result = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), Tmp1); 3718 break; 3719 case Promote: 3720 Result = PromoteOp(Node->getOperand(0)); 3721 Result = DAG.getNode(ISD::TRUNCATE, Op.getValueType(), Result); 3722 break; 3723 } 3724 break; 3725 3726 case ISD::FP_TO_SINT: 3727 case ISD::FP_TO_UINT: 3728 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3729 case Legal: 3730 Tmp1 = LegalizeOp(Node->getOperand(0)); 3731 3732 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))){ 3733 default: assert(0 && "Unknown operation action!"); 3734 case TargetLowering::Custom: 3735 isCustom = true; 3736 // FALLTHROUGH 3737 case TargetLowering::Legal: 3738 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3739 if (isCustom) { 3740 Tmp1 = TLI.LowerOperation(Result, DAG); 3741 if (Tmp1.Val) Result = Tmp1; 3742 } 3743 break; 3744 case TargetLowering::Promote: 3745 Result = PromoteLegalFP_TO_INT(Tmp1, Node->getValueType(0), 3746 Node->getOpcode() == ISD::FP_TO_SINT); 3747 break; 3748 case TargetLowering::Expand: 3749 if (Node->getOpcode() == ISD::FP_TO_UINT) { 3750 SDOperand True, False; 3751 MVT::ValueType VT = Node->getOperand(0).getValueType(); 3752 MVT::ValueType NVT = Node->getValueType(0); 3753 const uint64_t zero[] = {0, 0}; 3754 APFloat apf = APFloat(APInt(MVT::getSizeInBits(VT), 2, zero)); 3755 APInt x = APInt::getSignBit(MVT::getSizeInBits(NVT)); 3756 (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven); 3757 Tmp2 = DAG.getConstantFP(apf, VT); 3758 Tmp3 = DAG.getSetCC(TLI.getSetCCResultTy(), 3759 Node->getOperand(0), Tmp2, ISD::SETLT); 3760 True = DAG.getNode(ISD::FP_TO_SINT, NVT, Node->getOperand(0)); 3761 False = DAG.getNode(ISD::FP_TO_SINT, NVT, 3762 DAG.getNode(ISD::FSUB, VT, Node->getOperand(0), 3763 Tmp2)); 3764 False = DAG.getNode(ISD::XOR, NVT, False, 3765 DAG.getConstant(x, NVT)); 3766 Result = DAG.getNode(ISD::SELECT, NVT, Tmp3, True, False); 3767 break; 3768 } else { 3769 assert(0 && "Do not know how to expand FP_TO_SINT yet!"); 3770 } 3771 break; 3772 } 3773 break; 3774 case Expand: { 3775 MVT::ValueType VT = Op.getValueType(); 3776 MVT::ValueType OVT = Node->getOperand(0).getValueType(); 3777 // Convert ppcf128 to i32 3778 if (OVT == MVT::ppcf128 && VT == MVT::i32) { 3779 if (Node->getOpcode() == ISD::FP_TO_SINT) { 3780 Result = DAG.getNode(ISD::FP_ROUND_INREG, MVT::ppcf128, 3781 Node->getOperand(0), DAG.getValueType(MVT::f64)); 3782 Result = DAG.getNode(ISD::FP_ROUND, MVT::f64, Result, 3783 DAG.getIntPtrConstant(1)); 3784 Result = DAG.getNode(ISD::FP_TO_SINT, VT, Result); 3785 } else { 3786 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 3787 APFloat apf = APFloat(APInt(128, 2, TwoE31)); 3788 Tmp2 = DAG.getConstantFP(apf, OVT); 3789 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 3790 // FIXME: generated code sucks. 3791 Result = DAG.getNode(ISD::SELECT_CC, VT, Node->getOperand(0), Tmp2, 3792 DAG.getNode(ISD::ADD, MVT::i32, 3793 DAG.getNode(ISD::FP_TO_SINT, VT, 3794 DAG.getNode(ISD::FSUB, OVT, 3795 Node->getOperand(0), Tmp2)), 3796 DAG.getConstant(0x80000000, MVT::i32)), 3797 DAG.getNode(ISD::FP_TO_SINT, VT, 3798 Node->getOperand(0)), 3799 DAG.getCondCode(ISD::SETGE)); 3800 } 3801 break; 3802 } 3803 // Convert f32 / f64 to i32 / i64. 3804 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 3805 switch (Node->getOpcode()) { 3806 case ISD::FP_TO_SINT: { 3807 if (OVT == MVT::f32) 3808 LC = (VT == MVT::i32) 3809 ? RTLIB::FPTOSINT_F32_I32 : RTLIB::FPTOSINT_F32_I64; 3810 else if (OVT == MVT::f64) 3811 LC = (VT == MVT::i32) 3812 ? RTLIB::FPTOSINT_F64_I32 : RTLIB::FPTOSINT_F64_I64; 3813 else if (OVT == MVT::f80) { 3814 assert(VT == MVT::i64); 3815 LC = RTLIB::FPTOSINT_F80_I64; 3816 } 3817 else if (OVT == MVT::ppcf128) { 3818 assert(VT == MVT::i64); 3819 LC = RTLIB::FPTOSINT_PPCF128_I64; 3820 } 3821 break; 3822 } 3823 case ISD::FP_TO_UINT: { 3824 if (OVT == MVT::f32) 3825 LC = (VT == MVT::i32) 3826 ? RTLIB::FPTOUINT_F32_I32 : RTLIB::FPTOSINT_F32_I64; 3827 else if (OVT == MVT::f64) 3828 LC = (VT == MVT::i32) 3829 ? RTLIB::FPTOUINT_F64_I32 : RTLIB::FPTOSINT_F64_I64; 3830 else if (OVT == MVT::f80) { 3831 LC = (VT == MVT::i32) 3832 ? RTLIB::FPTOUINT_F80_I32 : RTLIB::FPTOUINT_F80_I64; 3833 } 3834 else if (OVT == MVT::ppcf128) { 3835 assert(VT == MVT::i64); 3836 LC = RTLIB::FPTOUINT_PPCF128_I64; 3837 } 3838 break; 3839 } 3840 default: assert(0 && "Unreachable!"); 3841 } 3842 SDOperand Dummy; 3843 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, 3844 false/*sign irrelevant*/, Dummy); 3845 break; 3846 } 3847 case Promote: 3848 Tmp1 = PromoteOp(Node->getOperand(0)); 3849 Result = DAG.UpdateNodeOperands(Result, LegalizeOp(Tmp1)); 3850 Result = LegalizeOp(Result); 3851 break; 3852 } 3853 break; 3854 3855 case ISD::FP_EXTEND: { 3856 MVT::ValueType DstVT = Op.getValueType(); 3857 MVT::ValueType SrcVT = Op.getOperand(0).getValueType(); 3858 if (TLI.getConvertAction(SrcVT, DstVT) == TargetLowering::Expand) { 3859 // The only other way we can lower this is to turn it into a STORE, 3860 // LOAD pair, targetting a temporary location (a stack slot). 3861 Result = EmitStackConvert(Node->getOperand(0), SrcVT, DstVT); 3862 break; 3863 } 3864 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3865 case Expand: assert(0 && "Shouldn't need to expand other operators here!"); 3866 case Legal: 3867 Tmp1 = LegalizeOp(Node->getOperand(0)); 3868 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3869 break; 3870 case Promote: 3871 Tmp1 = PromoteOp(Node->getOperand(0)); 3872 Result = DAG.getNode(ISD::FP_EXTEND, Op.getValueType(), Tmp1); 3873 break; 3874 } 3875 break; 3876 } 3877 case ISD::FP_ROUND: { 3878 MVT::ValueType DstVT = Op.getValueType(); 3879 MVT::ValueType SrcVT = Op.getOperand(0).getValueType(); 3880 if (TLI.getConvertAction(SrcVT, DstVT) == TargetLowering::Expand) { 3881 if (SrcVT == MVT::ppcf128) { 3882 SDOperand Lo; 3883 ExpandOp(Node->getOperand(0), Lo, Result); 3884 // Round it the rest of the way (e.g. to f32) if needed. 3885 if (DstVT!=MVT::f64) 3886 Result = DAG.getNode(ISD::FP_ROUND, DstVT, Result, Op.getOperand(1)); 3887 break; 3888 } 3889 // The only other way we can lower this is to turn it into a STORE, 3890 // LOAD pair, targetting a temporary location (a stack slot). 3891 Result = EmitStackConvert(Node->getOperand(0), DstVT, DstVT); 3892 break; 3893 } 3894 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3895 case Expand: assert(0 && "Shouldn't need to expand other operators here!"); 3896 case Legal: 3897 Tmp1 = LegalizeOp(Node->getOperand(0)); 3898 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 3899 break; 3900 case Promote: 3901 Tmp1 = PromoteOp(Node->getOperand(0)); 3902 Result = DAG.getNode(ISD::FP_ROUND, Op.getValueType(), Tmp1, 3903 Node->getOperand(1)); 3904 break; 3905 } 3906 break; 3907 } 3908 case ISD::ANY_EXTEND: 3909 case ISD::ZERO_EXTEND: 3910 case ISD::SIGN_EXTEND: 3911 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3912 case Expand: assert(0 && "Shouldn't need to expand other operators here!"); 3913 case Legal: 3914 Tmp1 = LegalizeOp(Node->getOperand(0)); 3915 if (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)) == 3916 TargetLowering::Custom) { 3917 Tmp2 = TLI.LowerOperation(Result, DAG); 3918 if (Tmp2.Val) { 3919 Tmp1 = Tmp2; 3920 } 3921 } 3922 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3923 break; 3924 case Promote: 3925 switch (Node->getOpcode()) { 3926 case ISD::ANY_EXTEND: 3927 Tmp1 = PromoteOp(Node->getOperand(0)); 3928 Result = DAG.getNode(ISD::ANY_EXTEND, Op.getValueType(), Tmp1); 3929 break; 3930 case ISD::ZERO_EXTEND: 3931 Result = PromoteOp(Node->getOperand(0)); 3932 Result = DAG.getNode(ISD::ANY_EXTEND, Op.getValueType(), Result); 3933 Result = DAG.getZeroExtendInReg(Result, 3934 Node->getOperand(0).getValueType()); 3935 break; 3936 case ISD::SIGN_EXTEND: 3937 Result = PromoteOp(Node->getOperand(0)); 3938 Result = DAG.getNode(ISD::ANY_EXTEND, Op.getValueType(), Result); 3939 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(), 3940 Result, 3941 DAG.getValueType(Node->getOperand(0).getValueType())); 3942 break; 3943 } 3944 } 3945 break; 3946 case ISD::FP_ROUND_INREG: 3947 case ISD::SIGN_EXTEND_INREG: { 3948 Tmp1 = LegalizeOp(Node->getOperand(0)); 3949 MVT::ValueType ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 3950 3951 // If this operation is not supported, convert it to a shl/shr or load/store 3952 // pair. 3953 switch (TLI.getOperationAction(Node->getOpcode(), ExtraVT)) { 3954 default: assert(0 && "This action not supported for this op yet!"); 3955 case TargetLowering::Legal: 3956 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 3957 break; 3958 case TargetLowering::Expand: 3959 // If this is an integer extend and shifts are supported, do that. 3960 if (Node->getOpcode() == ISD::SIGN_EXTEND_INREG) { 3961 // NOTE: we could fall back on load/store here too for targets without 3962 // SAR. However, it is doubtful that any exist. 3963 unsigned BitsDiff = MVT::getSizeInBits(Node->getValueType(0)) - 3964 MVT::getSizeInBits(ExtraVT); 3965 SDOperand ShiftCst = DAG.getConstant(BitsDiff, TLI.getShiftAmountTy()); 3966 Result = DAG.getNode(ISD::SHL, Node->getValueType(0), 3967 Node->getOperand(0), ShiftCst); 3968 Result = DAG.getNode(ISD::SRA, Node->getValueType(0), 3969 Result, ShiftCst); 3970 } else if (Node->getOpcode() == ISD::FP_ROUND_INREG) { 3971 // The only way we can lower this is to turn it into a TRUNCSTORE, 3972 // EXTLOAD pair, targetting a temporary location (a stack slot). 3973 3974 // NOTE: there is a choice here between constantly creating new stack 3975 // slots and always reusing the same one. We currently always create 3976 // new ones, as reuse may inhibit scheduling. 3977 Result = EmitStackConvert(Node->getOperand(0), ExtraVT, 3978 Node->getValueType(0)); 3979 } else { 3980 assert(0 && "Unknown op"); 3981 } 3982 break; 3983 } 3984 break; 3985 } 3986 case ISD::TRAMPOLINE: { 3987 SDOperand Ops[6]; 3988 for (unsigned i = 0; i != 6; ++i) 3989 Ops[i] = LegalizeOp(Node->getOperand(i)); 3990 Result = DAG.UpdateNodeOperands(Result, Ops, 6); 3991 // The only option for this node is to custom lower it. 3992 Result = TLI.LowerOperation(Result, DAG); 3993 assert(Result.Val && "Should always custom lower!"); 3994 3995 // Since trampoline produces two values, make sure to remember that we 3996 // legalized both of them. 3997 Tmp1 = LegalizeOp(Result.getValue(1)); 3998 Result = LegalizeOp(Result); 3999 AddLegalizedOperand(SDOperand(Node, 0), Result); 4000 AddLegalizedOperand(SDOperand(Node, 1), Tmp1); 4001 return Op.ResNo ? Tmp1 : Result; 4002 } 4003 case ISD::FLT_ROUNDS_: { 4004 MVT::ValueType VT = Node->getValueType(0); 4005 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 4006 default: assert(0 && "This action not supported for this op yet!"); 4007 case TargetLowering::Custom: 4008 Result = TLI.LowerOperation(Op, DAG); 4009 if (Result.Val) break; 4010 // Fall Thru 4011 case TargetLowering::Legal: 4012 // If this operation is not supported, lower it to constant 1 4013 Result = DAG.getConstant(1, VT); 4014 break; 4015 } 4016 } 4017 case ISD::TRAP: { 4018 MVT::ValueType VT = Node->getValueType(0); 4019 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 4020 default: assert(0 && "This action not supported for this op yet!"); 4021 case TargetLowering::Legal: 4022 Tmp1 = LegalizeOp(Node->getOperand(0)); 4023 Result = DAG.UpdateNodeOperands(Result, Tmp1); 4024 break; 4025 case TargetLowering::Custom: 4026 Result = TLI.LowerOperation(Op, DAG); 4027 if (Result.Val) break; 4028 // Fall Thru 4029 case TargetLowering::Expand: 4030 // If this operation is not supported, lower it to 'abort()' call 4031 Tmp1 = LegalizeOp(Node->getOperand(0)); 4032 TargetLowering::ArgListTy Args; 4033 std::pair<SDOperand,SDOperand> CallResult = 4034 TLI.LowerCallTo(Tmp1, Type::VoidTy, 4035 false, false, false, CallingConv::C, false, 4036 DAG.getExternalSymbol("abort", TLI.getPointerTy()), 4037 Args, DAG); 4038 Result = CallResult.second; 4039 break; 4040 } 4041 break; 4042 } 4043 } 4044 4045 assert(Result.getValueType() == Op.getValueType() && 4046 "Bad legalization!"); 4047 4048 // Make sure that the generated code is itself legal. 4049 if (Result != Op) 4050 Result = LegalizeOp(Result); 4051 4052 // Note that LegalizeOp may be reentered even from single-use nodes, which 4053 // means that we always must cache transformed nodes. 4054 AddLegalizedOperand(Op, Result); 4055 return Result; 4056} 4057 4058/// PromoteOp - Given an operation that produces a value in an invalid type, 4059/// promote it to compute the value into a larger type. The produced value will 4060/// have the correct bits for the low portion of the register, but no guarantee 4061/// is made about the top bits: it may be zero, sign-extended, or garbage. 4062SDOperand SelectionDAGLegalize::PromoteOp(SDOperand Op) { 4063 MVT::ValueType VT = Op.getValueType(); 4064 MVT::ValueType NVT = TLI.getTypeToTransformTo(VT); 4065 assert(getTypeAction(VT) == Promote && 4066 "Caller should expand or legalize operands that are not promotable!"); 4067 assert(NVT > VT && MVT::isInteger(NVT) == MVT::isInteger(VT) && 4068 "Cannot promote to smaller type!"); 4069 4070 SDOperand Tmp1, Tmp2, Tmp3; 4071 SDOperand Result; 4072 SDNode *Node = Op.Val; 4073 4074 DenseMap<SDOperand, SDOperand>::iterator I = PromotedNodes.find(Op); 4075 if (I != PromotedNodes.end()) return I->second; 4076 4077 switch (Node->getOpcode()) { 4078 case ISD::CopyFromReg: 4079 assert(0 && "CopyFromReg must be legal!"); 4080 default: 4081#ifndef NDEBUG 4082 cerr << "NODE: "; Node->dump(&DAG); cerr << "\n"; 4083#endif 4084 assert(0 && "Do not know how to promote this operator!"); 4085 abort(); 4086 case ISD::UNDEF: 4087 Result = DAG.getNode(ISD::UNDEF, NVT); 4088 break; 4089 case ISD::Constant: 4090 if (VT != MVT::i1) 4091 Result = DAG.getNode(ISD::SIGN_EXTEND, NVT, Op); 4092 else 4093 Result = DAG.getNode(ISD::ZERO_EXTEND, NVT, Op); 4094 assert(isa<ConstantSDNode>(Result) && "Didn't constant fold zext?"); 4095 break; 4096 case ISD::ConstantFP: 4097 Result = DAG.getNode(ISD::FP_EXTEND, NVT, Op); 4098 assert(isa<ConstantFPSDNode>(Result) && "Didn't constant fold fp_extend?"); 4099 break; 4100 4101 case ISD::SETCC: 4102 assert(isTypeLegal(TLI.getSetCCResultTy()) && "SetCC type is not legal??"); 4103 Result = DAG.getNode(ISD::SETCC, TLI.getSetCCResultTy(),Node->getOperand(0), 4104 Node->getOperand(1), Node->getOperand(2)); 4105 break; 4106 4107 case ISD::TRUNCATE: 4108 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4109 case Legal: 4110 Result = LegalizeOp(Node->getOperand(0)); 4111 assert(Result.getValueType() >= NVT && 4112 "This truncation doesn't make sense!"); 4113 if (Result.getValueType() > NVT) // Truncate to NVT instead of VT 4114 Result = DAG.getNode(ISD::TRUNCATE, NVT, Result); 4115 break; 4116 case Promote: 4117 // The truncation is not required, because we don't guarantee anything 4118 // about high bits anyway. 4119 Result = PromoteOp(Node->getOperand(0)); 4120 break; 4121 case Expand: 4122 ExpandOp(Node->getOperand(0), Tmp1, Tmp2); 4123 // Truncate the low part of the expanded value to the result type 4124 Result = DAG.getNode(ISD::TRUNCATE, NVT, Tmp1); 4125 } 4126 break; 4127 case ISD::SIGN_EXTEND: 4128 case ISD::ZERO_EXTEND: 4129 case ISD::ANY_EXTEND: 4130 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4131 case Expand: assert(0 && "BUG: Smaller reg should have been promoted!"); 4132 case Legal: 4133 // Input is legal? Just do extend all the way to the larger type. 4134 Result = DAG.getNode(Node->getOpcode(), NVT, Node->getOperand(0)); 4135 break; 4136 case Promote: 4137 // Promote the reg if it's smaller. 4138 Result = PromoteOp(Node->getOperand(0)); 4139 // The high bits are not guaranteed to be anything. Insert an extend. 4140 if (Node->getOpcode() == ISD::SIGN_EXTEND) 4141 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Result, 4142 DAG.getValueType(Node->getOperand(0).getValueType())); 4143 else if (Node->getOpcode() == ISD::ZERO_EXTEND) 4144 Result = DAG.getZeroExtendInReg(Result, 4145 Node->getOperand(0).getValueType()); 4146 break; 4147 } 4148 break; 4149 case ISD::BIT_CONVERT: 4150 Result = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 4151 Node->getValueType(0)); 4152 Result = PromoteOp(Result); 4153 break; 4154 4155 case ISD::FP_EXTEND: 4156 assert(0 && "Case not implemented. Dynamically dead with 2 FP types!"); 4157 case ISD::FP_ROUND: 4158 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4159 case Expand: assert(0 && "BUG: Cannot expand FP regs!"); 4160 case Promote: assert(0 && "Unreachable with 2 FP types!"); 4161 case Legal: 4162 if (Node->getConstantOperandVal(1) == 0) { 4163 // Input is legal? Do an FP_ROUND_INREG. 4164 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Node->getOperand(0), 4165 DAG.getValueType(VT)); 4166 } else { 4167 // Just remove the truncate, it isn't affecting the value. 4168 Result = DAG.getNode(ISD::FP_ROUND, NVT, Node->getOperand(0), 4169 Node->getOperand(1)); 4170 } 4171 break; 4172 } 4173 break; 4174 case ISD::SINT_TO_FP: 4175 case ISD::UINT_TO_FP: 4176 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4177 case Legal: 4178 // No extra round required here. 4179 Result = DAG.getNode(Node->getOpcode(), NVT, Node->getOperand(0)); 4180 break; 4181 4182 case Promote: 4183 Result = PromoteOp(Node->getOperand(0)); 4184 if (Node->getOpcode() == ISD::SINT_TO_FP) 4185 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(), 4186 Result, 4187 DAG.getValueType(Node->getOperand(0).getValueType())); 4188 else 4189 Result = DAG.getZeroExtendInReg(Result, 4190 Node->getOperand(0).getValueType()); 4191 // No extra round required here. 4192 Result = DAG.getNode(Node->getOpcode(), NVT, Result); 4193 break; 4194 case Expand: 4195 Result = ExpandIntToFP(Node->getOpcode() == ISD::SINT_TO_FP, NVT, 4196 Node->getOperand(0)); 4197 // Round if we cannot tolerate excess precision. 4198 if (NoExcessFPPrecision) 4199 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 4200 DAG.getValueType(VT)); 4201 break; 4202 } 4203 break; 4204 4205 case ISD::SIGN_EXTEND_INREG: 4206 Result = PromoteOp(Node->getOperand(0)); 4207 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Result, 4208 Node->getOperand(1)); 4209 break; 4210 case ISD::FP_TO_SINT: 4211 case ISD::FP_TO_UINT: 4212 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4213 case Legal: 4214 case Expand: 4215 Tmp1 = Node->getOperand(0); 4216 break; 4217 case Promote: 4218 // The input result is prerounded, so we don't have to do anything 4219 // special. 4220 Tmp1 = PromoteOp(Node->getOperand(0)); 4221 break; 4222 } 4223 // If we're promoting a UINT to a larger size, check to see if the new node 4224 // will be legal. If it isn't, check to see if FP_TO_SINT is legal, since 4225 // we can use that instead. This allows us to generate better code for 4226 // FP_TO_UINT for small destination sizes on targets where FP_TO_UINT is not 4227 // legal, such as PowerPC. 4228 if (Node->getOpcode() == ISD::FP_TO_UINT && 4229 !TLI.isOperationLegal(ISD::FP_TO_UINT, NVT) && 4230 (TLI.isOperationLegal(ISD::FP_TO_SINT, NVT) || 4231 TLI.getOperationAction(ISD::FP_TO_SINT, NVT)==TargetLowering::Custom)){ 4232 Result = DAG.getNode(ISD::FP_TO_SINT, NVT, Tmp1); 4233 } else { 4234 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1); 4235 } 4236 break; 4237 4238 case ISD::FABS: 4239 case ISD::FNEG: 4240 Tmp1 = PromoteOp(Node->getOperand(0)); 4241 assert(Tmp1.getValueType() == NVT); 4242 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1); 4243 // NOTE: we do not have to do any extra rounding here for 4244 // NoExcessFPPrecision, because we know the input will have the appropriate 4245 // precision, and these operations don't modify precision at all. 4246 break; 4247 4248 case ISD::FSQRT: 4249 case ISD::FSIN: 4250 case ISD::FCOS: 4251 Tmp1 = PromoteOp(Node->getOperand(0)); 4252 assert(Tmp1.getValueType() == NVT); 4253 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1); 4254 if (NoExcessFPPrecision) 4255 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 4256 DAG.getValueType(VT)); 4257 break; 4258 4259 case ISD::FPOWI: { 4260 // Promote f32 powi to f64 powi. Note that this could insert a libcall 4261 // directly as well, which may be better. 4262 Tmp1 = PromoteOp(Node->getOperand(0)); 4263 assert(Tmp1.getValueType() == NVT); 4264 Result = DAG.getNode(ISD::FPOWI, NVT, Tmp1, Node->getOperand(1)); 4265 if (NoExcessFPPrecision) 4266 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 4267 DAG.getValueType(VT)); 4268 break; 4269 } 4270 4271 case ISD::ATOMIC_LCS: { 4272 Tmp2 = PromoteOp(Node->getOperand(2)); 4273 Tmp3 = PromoteOp(Node->getOperand(3)); 4274 Result = DAG.getAtomic(Node->getOpcode(), Node->getOperand(0), 4275 Node->getOperand(1), Tmp2, Tmp3, 4276 cast<AtomicSDNode>(Node)->getVT()); 4277 // Remember that we legalized the chain. 4278 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); 4279 break; 4280 } 4281 case ISD::ATOMIC_LAS: 4282 case ISD::ATOMIC_SWAP: { 4283 Tmp2 = PromoteOp(Node->getOperand(2)); 4284 Result = DAG.getAtomic(Node->getOpcode(), Node->getOperand(0), 4285 Node->getOperand(1), Tmp2, 4286 cast<AtomicSDNode>(Node)->getVT()); 4287 // Remember that we legalized the chain. 4288 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); 4289 break; 4290 } 4291 4292 case ISD::AND: 4293 case ISD::OR: 4294 case ISD::XOR: 4295 case ISD::ADD: 4296 case ISD::SUB: 4297 case ISD::MUL: 4298 // The input may have strange things in the top bits of the registers, but 4299 // these operations don't care. They may have weird bits going out, but 4300 // that too is okay if they are integer operations. 4301 Tmp1 = PromoteOp(Node->getOperand(0)); 4302 Tmp2 = PromoteOp(Node->getOperand(1)); 4303 assert(Tmp1.getValueType() == NVT && Tmp2.getValueType() == NVT); 4304 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 4305 break; 4306 case ISD::FADD: 4307 case ISD::FSUB: 4308 case ISD::FMUL: 4309 Tmp1 = PromoteOp(Node->getOperand(0)); 4310 Tmp2 = PromoteOp(Node->getOperand(1)); 4311 assert(Tmp1.getValueType() == NVT && Tmp2.getValueType() == NVT); 4312 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 4313 4314 // Floating point operations will give excess precision that we may not be 4315 // able to tolerate. If we DO allow excess precision, just leave it, 4316 // otherwise excise it. 4317 // FIXME: Why would we need to round FP ops more than integer ones? 4318 // Is Round(Add(Add(A,B),C)) != Round(Add(Round(Add(A,B)), C)) 4319 if (NoExcessFPPrecision) 4320 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 4321 DAG.getValueType(VT)); 4322 break; 4323 4324 case ISD::SDIV: 4325 case ISD::SREM: 4326 // These operators require that their input be sign extended. 4327 Tmp1 = PromoteOp(Node->getOperand(0)); 4328 Tmp2 = PromoteOp(Node->getOperand(1)); 4329 if (MVT::isInteger(NVT)) { 4330 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp1, 4331 DAG.getValueType(VT)); 4332 Tmp2 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp2, 4333 DAG.getValueType(VT)); 4334 } 4335 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 4336 4337 // Perform FP_ROUND: this is probably overly pessimistic. 4338 if (MVT::isFloatingPoint(NVT) && NoExcessFPPrecision) 4339 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 4340 DAG.getValueType(VT)); 4341 break; 4342 case ISD::FDIV: 4343 case ISD::FREM: 4344 case ISD::FCOPYSIGN: 4345 // These operators require that their input be fp extended. 4346 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4347 case Expand: assert(0 && "not implemented"); 4348 case Legal: Tmp1 = LegalizeOp(Node->getOperand(0)); break; 4349 case Promote: Tmp1 = PromoteOp(Node->getOperand(0)); break; 4350 } 4351 switch (getTypeAction(Node->getOperand(1).getValueType())) { 4352 case Expand: assert(0 && "not implemented"); 4353 case Legal: Tmp2 = LegalizeOp(Node->getOperand(1)); break; 4354 case Promote: Tmp2 = PromoteOp(Node->getOperand(1)); break; 4355 } 4356 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 4357 4358 // Perform FP_ROUND: this is probably overly pessimistic. 4359 if (NoExcessFPPrecision && Node->getOpcode() != ISD::FCOPYSIGN) 4360 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 4361 DAG.getValueType(VT)); 4362 break; 4363 4364 case ISD::UDIV: 4365 case ISD::UREM: 4366 // These operators require that their input be zero extended. 4367 Tmp1 = PromoteOp(Node->getOperand(0)); 4368 Tmp2 = PromoteOp(Node->getOperand(1)); 4369 assert(MVT::isInteger(NVT) && "Operators don't apply to FP!"); 4370 Tmp1 = DAG.getZeroExtendInReg(Tmp1, VT); 4371 Tmp2 = DAG.getZeroExtendInReg(Tmp2, VT); 4372 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 4373 break; 4374 4375 case ISD::SHL: 4376 Tmp1 = PromoteOp(Node->getOperand(0)); 4377 Result = DAG.getNode(ISD::SHL, NVT, Tmp1, Node->getOperand(1)); 4378 break; 4379 case ISD::SRA: 4380 // The input value must be properly sign extended. 4381 Tmp1 = PromoteOp(Node->getOperand(0)); 4382 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp1, 4383 DAG.getValueType(VT)); 4384 Result = DAG.getNode(ISD::SRA, NVT, Tmp1, Node->getOperand(1)); 4385 break; 4386 case ISD::SRL: 4387 // The input value must be properly zero extended. 4388 Tmp1 = PromoteOp(Node->getOperand(0)); 4389 Tmp1 = DAG.getZeroExtendInReg(Tmp1, VT); 4390 Result = DAG.getNode(ISD::SRL, NVT, Tmp1, Node->getOperand(1)); 4391 break; 4392 4393 case ISD::VAARG: 4394 Tmp1 = Node->getOperand(0); // Get the chain. 4395 Tmp2 = Node->getOperand(1); // Get the pointer. 4396 if (TLI.getOperationAction(ISD::VAARG, VT) == TargetLowering::Custom) { 4397 Tmp3 = DAG.getVAArg(VT, Tmp1, Tmp2, Node->getOperand(2)); 4398 Result = TLI.CustomPromoteOperation(Tmp3, DAG); 4399 } else { 4400 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 4401 SDOperand VAList = DAG.getLoad(TLI.getPointerTy(), Tmp1, Tmp2, V, 0); 4402 // Increment the pointer, VAList, to the next vaarg 4403 Tmp3 = DAG.getNode(ISD::ADD, TLI.getPointerTy(), VAList, 4404 DAG.getConstant(MVT::getSizeInBits(VT)/8, 4405 TLI.getPointerTy())); 4406 // Store the incremented VAList to the legalized pointer 4407 Tmp3 = DAG.getStore(VAList.getValue(1), Tmp3, Tmp2, V, 0); 4408 // Load the actual argument out of the pointer VAList 4409 Result = DAG.getExtLoad(ISD::EXTLOAD, NVT, Tmp3, VAList, NULL, 0, VT); 4410 } 4411 // Remember that we legalized the chain. 4412 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); 4413 break; 4414 4415 case ISD::LOAD: { 4416 LoadSDNode *LD = cast<LoadSDNode>(Node); 4417 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(Node) 4418 ? ISD::EXTLOAD : LD->getExtensionType(); 4419 Result = DAG.getExtLoad(ExtType, NVT, 4420 LD->getChain(), LD->getBasePtr(), 4421 LD->getSrcValue(), LD->getSrcValueOffset(), 4422 LD->getMemoryVT(), 4423 LD->isVolatile(), 4424 LD->getAlignment()); 4425 // Remember that we legalized the chain. 4426 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); 4427 break; 4428 } 4429 case ISD::SELECT: 4430 Tmp2 = PromoteOp(Node->getOperand(1)); // Legalize the op0 4431 Tmp3 = PromoteOp(Node->getOperand(2)); // Legalize the op1 4432 Result = DAG.getNode(ISD::SELECT, NVT, Node->getOperand(0), Tmp2, Tmp3); 4433 break; 4434 case ISD::SELECT_CC: 4435 Tmp2 = PromoteOp(Node->getOperand(2)); // True 4436 Tmp3 = PromoteOp(Node->getOperand(3)); // False 4437 Result = DAG.getNode(ISD::SELECT_CC, NVT, Node->getOperand(0), 4438 Node->getOperand(1), Tmp2, Tmp3, Node->getOperand(4)); 4439 break; 4440 case ISD::BSWAP: 4441 Tmp1 = Node->getOperand(0); 4442 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Tmp1); 4443 Tmp1 = DAG.getNode(ISD::BSWAP, NVT, Tmp1); 4444 Result = DAG.getNode(ISD::SRL, NVT, Tmp1, 4445 DAG.getConstant(MVT::getSizeInBits(NVT) - 4446 MVT::getSizeInBits(VT), 4447 TLI.getShiftAmountTy())); 4448 break; 4449 case ISD::CTPOP: 4450 case ISD::CTTZ: 4451 case ISD::CTLZ: 4452 // Zero extend the argument 4453 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Node->getOperand(0)); 4454 // Perform the larger operation, then subtract if needed. 4455 Tmp1 = DAG.getNode(Node->getOpcode(), NVT, Tmp1); 4456 switch(Node->getOpcode()) { 4457 case ISD::CTPOP: 4458 Result = Tmp1; 4459 break; 4460 case ISD::CTTZ: 4461 // if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT) 4462 Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), Tmp1, 4463 DAG.getConstant(MVT::getSizeInBits(NVT), NVT), 4464 ISD::SETEQ); 4465 Result = DAG.getNode(ISD::SELECT, NVT, Tmp2, 4466 DAG.getConstant(MVT::getSizeInBits(VT), NVT), Tmp1); 4467 break; 4468 case ISD::CTLZ: 4469 //Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 4470 Result = DAG.getNode(ISD::SUB, NVT, Tmp1, 4471 DAG.getConstant(MVT::getSizeInBits(NVT) - 4472 MVT::getSizeInBits(VT), NVT)); 4473 break; 4474 } 4475 break; 4476 case ISD::EXTRACT_SUBVECTOR: 4477 Result = PromoteOp(ExpandEXTRACT_SUBVECTOR(Op)); 4478 break; 4479 case ISD::EXTRACT_VECTOR_ELT: 4480 Result = PromoteOp(ExpandEXTRACT_VECTOR_ELT(Op)); 4481 break; 4482 } 4483 4484 assert(Result.Val && "Didn't set a result!"); 4485 4486 // Make sure the result is itself legal. 4487 Result = LegalizeOp(Result); 4488 4489 // Remember that we promoted this! 4490 AddPromotedOperand(Op, Result); 4491 return Result; 4492} 4493 4494/// ExpandEXTRACT_VECTOR_ELT - Expand an EXTRACT_VECTOR_ELT operation into 4495/// a legal EXTRACT_VECTOR_ELT operation, scalar code, or memory traffic, 4496/// based on the vector type. The return type of this matches the element type 4497/// of the vector, which may not be legal for the target. 4498SDOperand SelectionDAGLegalize::ExpandEXTRACT_VECTOR_ELT(SDOperand Op) { 4499 // We know that operand #0 is the Vec vector. If the index is a constant 4500 // or if the invec is a supported hardware type, we can use it. Otherwise, 4501 // lower to a store then an indexed load. 4502 SDOperand Vec = Op.getOperand(0); 4503 SDOperand Idx = Op.getOperand(1); 4504 4505 MVT::ValueType TVT = Vec.getValueType(); 4506 unsigned NumElems = MVT::getVectorNumElements(TVT); 4507 4508 switch (TLI.getOperationAction(ISD::EXTRACT_VECTOR_ELT, TVT)) { 4509 default: assert(0 && "This action is not supported yet!"); 4510 case TargetLowering::Custom: { 4511 Vec = LegalizeOp(Vec); 4512 Op = DAG.UpdateNodeOperands(Op, Vec, Idx); 4513 SDOperand Tmp3 = TLI.LowerOperation(Op, DAG); 4514 if (Tmp3.Val) 4515 return Tmp3; 4516 break; 4517 } 4518 case TargetLowering::Legal: 4519 if (isTypeLegal(TVT)) { 4520 Vec = LegalizeOp(Vec); 4521 Op = DAG.UpdateNodeOperands(Op, Vec, Idx); 4522 return Op; 4523 } 4524 break; 4525 case TargetLowering::Expand: 4526 break; 4527 } 4528 4529 if (NumElems == 1) { 4530 // This must be an access of the only element. Return it. 4531 Op = ScalarizeVectorOp(Vec); 4532 } else if (!TLI.isTypeLegal(TVT) && isa<ConstantSDNode>(Idx)) { 4533 unsigned NumLoElts = 1 << Log2_32(NumElems-1); 4534 ConstantSDNode *CIdx = cast<ConstantSDNode>(Idx); 4535 SDOperand Lo, Hi; 4536 SplitVectorOp(Vec, Lo, Hi); 4537 if (CIdx->getValue() < NumLoElts) { 4538 Vec = Lo; 4539 } else { 4540 Vec = Hi; 4541 Idx = DAG.getConstant(CIdx->getValue() - NumLoElts, 4542 Idx.getValueType()); 4543 } 4544 4545 // It's now an extract from the appropriate high or low part. Recurse. 4546 Op = DAG.UpdateNodeOperands(Op, Vec, Idx); 4547 Op = ExpandEXTRACT_VECTOR_ELT(Op); 4548 } else { 4549 // Store the value to a temporary stack slot, then LOAD the scalar 4550 // element back out. 4551 SDOperand StackPtr = DAG.CreateStackTemporary(Vec.getValueType()); 4552 SDOperand Ch = DAG.getStore(DAG.getEntryNode(), Vec, StackPtr, NULL, 0); 4553 4554 // Add the offset to the index. 4555 unsigned EltSize = MVT::getSizeInBits(Op.getValueType())/8; 4556 Idx = DAG.getNode(ISD::MUL, Idx.getValueType(), Idx, 4557 DAG.getConstant(EltSize, Idx.getValueType())); 4558 4559 if (MVT::getSizeInBits(Idx.getValueType()) > 4560 MVT::getSizeInBits(TLI.getPointerTy())) 4561 Idx = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), Idx); 4562 else 4563 Idx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), Idx); 4564 4565 StackPtr = DAG.getNode(ISD::ADD, Idx.getValueType(), Idx, StackPtr); 4566 4567 Op = DAG.getLoad(Op.getValueType(), Ch, StackPtr, NULL, 0); 4568 } 4569 return Op; 4570} 4571 4572/// ExpandEXTRACT_SUBVECTOR - Expand a EXTRACT_SUBVECTOR operation. For now 4573/// we assume the operation can be split if it is not already legal. 4574SDOperand SelectionDAGLegalize::ExpandEXTRACT_SUBVECTOR(SDOperand Op) { 4575 // We know that operand #0 is the Vec vector. For now we assume the index 4576 // is a constant and that the extracted result is a supported hardware type. 4577 SDOperand Vec = Op.getOperand(0); 4578 SDOperand Idx = LegalizeOp(Op.getOperand(1)); 4579 4580 unsigned NumElems = MVT::getVectorNumElements(Vec.getValueType()); 4581 4582 if (NumElems == MVT::getVectorNumElements(Op.getValueType())) { 4583 // This must be an access of the desired vector length. Return it. 4584 return Vec; 4585 } 4586 4587 ConstantSDNode *CIdx = cast<ConstantSDNode>(Idx); 4588 SDOperand Lo, Hi; 4589 SplitVectorOp(Vec, Lo, Hi); 4590 if (CIdx->getValue() < NumElems/2) { 4591 Vec = Lo; 4592 } else { 4593 Vec = Hi; 4594 Idx = DAG.getConstant(CIdx->getValue() - NumElems/2, Idx.getValueType()); 4595 } 4596 4597 // It's now an extract from the appropriate high or low part. Recurse. 4598 Op = DAG.UpdateNodeOperands(Op, Vec, Idx); 4599 return ExpandEXTRACT_SUBVECTOR(Op); 4600} 4601 4602/// LegalizeSetCCOperands - Attempts to create a legal LHS and RHS for a SETCC 4603/// with condition CC on the current target. This usually involves legalizing 4604/// or promoting the arguments. In the case where LHS and RHS must be expanded, 4605/// there may be no choice but to create a new SetCC node to represent the 4606/// legalized value of setcc lhs, rhs. In this case, the value is returned in 4607/// LHS, and the SDOperand returned in RHS has a nil SDNode value. 4608void SelectionDAGLegalize::LegalizeSetCCOperands(SDOperand &LHS, 4609 SDOperand &RHS, 4610 SDOperand &CC) { 4611 SDOperand Tmp1, Tmp2, Tmp3, Result; 4612 4613 switch (getTypeAction(LHS.getValueType())) { 4614 case Legal: 4615 Tmp1 = LegalizeOp(LHS); // LHS 4616 Tmp2 = LegalizeOp(RHS); // RHS 4617 break; 4618 case Promote: 4619 Tmp1 = PromoteOp(LHS); // LHS 4620 Tmp2 = PromoteOp(RHS); // RHS 4621 4622 // If this is an FP compare, the operands have already been extended. 4623 if (MVT::isInteger(LHS.getValueType())) { 4624 MVT::ValueType VT = LHS.getValueType(); 4625 MVT::ValueType NVT = TLI.getTypeToTransformTo(VT); 4626 4627 // Otherwise, we have to insert explicit sign or zero extends. Note 4628 // that we could insert sign extends for ALL conditions, but zero extend 4629 // is cheaper on many machines (an AND instead of two shifts), so prefer 4630 // it. 4631 switch (cast<CondCodeSDNode>(CC)->get()) { 4632 default: assert(0 && "Unknown integer comparison!"); 4633 case ISD::SETEQ: 4634 case ISD::SETNE: 4635 case ISD::SETUGE: 4636 case ISD::SETUGT: 4637 case ISD::SETULE: 4638 case ISD::SETULT: 4639 // ALL of these operations will work if we either sign or zero extend 4640 // the operands (including the unsigned comparisons!). Zero extend is 4641 // usually a simpler/cheaper operation, so prefer it. 4642 Tmp1 = DAG.getZeroExtendInReg(Tmp1, VT); 4643 Tmp2 = DAG.getZeroExtendInReg(Tmp2, VT); 4644 break; 4645 case ISD::SETGE: 4646 case ISD::SETGT: 4647 case ISD::SETLT: 4648 case ISD::SETLE: 4649 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp1, 4650 DAG.getValueType(VT)); 4651 Tmp2 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp2, 4652 DAG.getValueType(VT)); 4653 break; 4654 } 4655 } 4656 break; 4657 case Expand: { 4658 MVT::ValueType VT = LHS.getValueType(); 4659 if (VT == MVT::f32 || VT == MVT::f64) { 4660 // Expand into one or more soft-fp libcall(s). 4661 RTLIB::Libcall LC1, LC2 = RTLIB::UNKNOWN_LIBCALL; 4662 switch (cast<CondCodeSDNode>(CC)->get()) { 4663 case ISD::SETEQ: 4664 case ISD::SETOEQ: 4665 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : RTLIB::OEQ_F64; 4666 break; 4667 case ISD::SETNE: 4668 case ISD::SETUNE: 4669 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : RTLIB::UNE_F64; 4670 break; 4671 case ISD::SETGE: 4672 case ISD::SETOGE: 4673 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : RTLIB::OGE_F64; 4674 break; 4675 case ISD::SETLT: 4676 case ISD::SETOLT: 4677 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64; 4678 break; 4679 case ISD::SETLE: 4680 case ISD::SETOLE: 4681 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : RTLIB::OLE_F64; 4682 break; 4683 case ISD::SETGT: 4684 case ISD::SETOGT: 4685 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : RTLIB::OGT_F64; 4686 break; 4687 case ISD::SETUO: 4688 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : RTLIB::UO_F64; 4689 break; 4690 case ISD::SETO: 4691 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : RTLIB::O_F64; 4692 break; 4693 default: 4694 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : RTLIB::UO_F64; 4695 switch (cast<CondCodeSDNode>(CC)->get()) { 4696 case ISD::SETONE: 4697 // SETONE = SETOLT | SETOGT 4698 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64; 4699 // Fallthrough 4700 case ISD::SETUGT: 4701 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : RTLIB::OGT_F64; 4702 break; 4703 case ISD::SETUGE: 4704 LC2 = (VT == MVT::f32) ? RTLIB::OGE_F32 : RTLIB::OGE_F64; 4705 break; 4706 case ISD::SETULT: 4707 LC2 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64; 4708 break; 4709 case ISD::SETULE: 4710 LC2 = (VT == MVT::f32) ? RTLIB::OLE_F32 : RTLIB::OLE_F64; 4711 break; 4712 case ISD::SETUEQ: 4713 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : RTLIB::OEQ_F64; 4714 break; 4715 default: assert(0 && "Unsupported FP setcc!"); 4716 } 4717 } 4718 4719 SDOperand Dummy; 4720 Tmp1 = ExpandLibCall(TLI.getLibcallName(LC1), 4721 DAG.getNode(ISD::MERGE_VALUES, VT, LHS, RHS).Val, 4722 false /*sign irrelevant*/, Dummy); 4723 Tmp2 = DAG.getConstant(0, MVT::i32); 4724 CC = DAG.getCondCode(TLI.getCmpLibcallCC(LC1)); 4725 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 4726 Tmp1 = DAG.getNode(ISD::SETCC, TLI.getSetCCResultTy(), Tmp1, Tmp2, CC); 4727 LHS = ExpandLibCall(TLI.getLibcallName(LC2), 4728 DAG.getNode(ISD::MERGE_VALUES, VT, LHS, RHS).Val, 4729 false /*sign irrelevant*/, Dummy); 4730 Tmp2 = DAG.getNode(ISD::SETCC, TLI.getSetCCResultTy(), LHS, Tmp2, 4731 DAG.getCondCode(TLI.getCmpLibcallCC(LC2))); 4732 Tmp1 = DAG.getNode(ISD::OR, Tmp1.getValueType(), Tmp1, Tmp2); 4733 Tmp2 = SDOperand(); 4734 } 4735 LHS = Tmp1; 4736 RHS = Tmp2; 4737 return; 4738 } 4739 4740 SDOperand LHSLo, LHSHi, RHSLo, RHSHi; 4741 ExpandOp(LHS, LHSLo, LHSHi); 4742 ExpandOp(RHS, RHSLo, RHSHi); 4743 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 4744 4745 if (VT==MVT::ppcf128) { 4746 // FIXME: This generated code sucks. We want to generate 4747 // FCMP crN, hi1, hi2 4748 // BNE crN, L: 4749 // FCMP crN, lo1, lo2 4750 // The following can be improved, but not that much. 4751 Tmp1 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, ISD::SETEQ); 4752 Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSLo, RHSLo, CCCode); 4753 Tmp3 = DAG.getNode(ISD::AND, Tmp1.getValueType(), Tmp1, Tmp2); 4754 Tmp1 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, ISD::SETNE); 4755 Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, CCCode); 4756 Tmp1 = DAG.getNode(ISD::AND, Tmp1.getValueType(), Tmp1, Tmp2); 4757 Tmp1 = DAG.getNode(ISD::OR, Tmp1.getValueType(), Tmp1, Tmp3); 4758 Tmp2 = SDOperand(); 4759 break; 4760 } 4761 4762 switch (CCCode) { 4763 case ISD::SETEQ: 4764 case ISD::SETNE: 4765 if (RHSLo == RHSHi) 4766 if (ConstantSDNode *RHSCST = dyn_cast<ConstantSDNode>(RHSLo)) 4767 if (RHSCST->isAllOnesValue()) { 4768 // Comparison to -1. 4769 Tmp1 = DAG.getNode(ISD::AND, LHSLo.getValueType(), LHSLo, LHSHi); 4770 Tmp2 = RHSLo; 4771 break; 4772 } 4773 4774 Tmp1 = DAG.getNode(ISD::XOR, LHSLo.getValueType(), LHSLo, RHSLo); 4775 Tmp2 = DAG.getNode(ISD::XOR, LHSLo.getValueType(), LHSHi, RHSHi); 4776 Tmp1 = DAG.getNode(ISD::OR, Tmp1.getValueType(), Tmp1, Tmp2); 4777 Tmp2 = DAG.getConstant(0, Tmp1.getValueType()); 4778 break; 4779 default: 4780 // If this is a comparison of the sign bit, just look at the top part. 4781 // X > -1, x < 0 4782 if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(RHS)) 4783 if ((cast<CondCodeSDNode>(CC)->get() == ISD::SETLT && 4784 CST->getValue() == 0) || // X < 0 4785 (cast<CondCodeSDNode>(CC)->get() == ISD::SETGT && 4786 CST->isAllOnesValue())) { // X > -1 4787 Tmp1 = LHSHi; 4788 Tmp2 = RHSHi; 4789 break; 4790 } 4791 4792 // FIXME: This generated code sucks. 4793 ISD::CondCode LowCC; 4794 switch (CCCode) { 4795 default: assert(0 && "Unknown integer setcc!"); 4796 case ISD::SETLT: 4797 case ISD::SETULT: LowCC = ISD::SETULT; break; 4798 case ISD::SETGT: 4799 case ISD::SETUGT: LowCC = ISD::SETUGT; break; 4800 case ISD::SETLE: 4801 case ISD::SETULE: LowCC = ISD::SETULE; break; 4802 case ISD::SETGE: 4803 case ISD::SETUGE: LowCC = ISD::SETUGE; break; 4804 } 4805 4806 // Tmp1 = lo(op1) < lo(op2) // Always unsigned comparison 4807 // Tmp2 = hi(op1) < hi(op2) // Signedness depends on operands 4808 // dest = hi(op1) == hi(op2) ? Tmp1 : Tmp2; 4809 4810 // NOTE: on targets without efficient SELECT of bools, we can always use 4811 // this identity: (B1 ? B2 : B3) --> (B1 & B2)|(!B1&B3) 4812 TargetLowering::DAGCombinerInfo DagCombineInfo(DAG, false, true, NULL); 4813 Tmp1 = TLI.SimplifySetCC(TLI.getSetCCResultTy(), LHSLo, RHSLo, LowCC, 4814 false, DagCombineInfo); 4815 if (!Tmp1.Val) 4816 Tmp1 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSLo, RHSLo, LowCC); 4817 Tmp2 = TLI.SimplifySetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, 4818 CCCode, false, DagCombineInfo); 4819 if (!Tmp2.Val) 4820 Tmp2 = DAG.getNode(ISD::SETCC, TLI.getSetCCResultTy(), LHSHi, RHSHi,CC); 4821 4822 ConstantSDNode *Tmp1C = dyn_cast<ConstantSDNode>(Tmp1.Val); 4823 ConstantSDNode *Tmp2C = dyn_cast<ConstantSDNode>(Tmp2.Val); 4824 if ((Tmp1C && Tmp1C->getValue() == 0) || 4825 (Tmp2C && Tmp2C->getValue() == 0 && 4826 (CCCode == ISD::SETLE || CCCode == ISD::SETGE || 4827 CCCode == ISD::SETUGE || CCCode == ISD::SETULE)) || 4828 (Tmp2C && Tmp2C->getValue() == 1 && 4829 (CCCode == ISD::SETLT || CCCode == ISD::SETGT || 4830 CCCode == ISD::SETUGT || CCCode == ISD::SETULT))) { 4831 // low part is known false, returns high part. 4832 // For LE / GE, if high part is known false, ignore the low part. 4833 // For LT / GT, if high part is known true, ignore the low part. 4834 Tmp1 = Tmp2; 4835 Tmp2 = SDOperand(); 4836 } else { 4837 Result = TLI.SimplifySetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, 4838 ISD::SETEQ, false, DagCombineInfo); 4839 if (!Result.Val) 4840 Result=DAG.getSetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, ISD::SETEQ); 4841 Result = LegalizeOp(DAG.getNode(ISD::SELECT, Tmp1.getValueType(), 4842 Result, Tmp1, Tmp2)); 4843 Tmp1 = Result; 4844 Tmp2 = SDOperand(); 4845 } 4846 } 4847 } 4848 } 4849 LHS = Tmp1; 4850 RHS = Tmp2; 4851} 4852 4853/// EmitStackConvert - Emit a store/load combination to the stack. This stores 4854/// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does 4855/// a load from the stack slot to DestVT, extending it if needed. 4856/// The resultant code need not be legal. 4857SDOperand SelectionDAGLegalize::EmitStackConvert(SDOperand SrcOp, 4858 MVT::ValueType SlotVT, 4859 MVT::ValueType DestVT) { 4860 // Create the stack frame object. 4861 SDOperand FIPtr = DAG.CreateStackTemporary(SlotVT); 4862 4863 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); 4864 int SPFI = StackPtrFI->getIndex(); 4865 4866 unsigned SrcSize = MVT::getSizeInBits(SrcOp.getValueType()); 4867 unsigned SlotSize = MVT::getSizeInBits(SlotVT); 4868 unsigned DestSize = MVT::getSizeInBits(DestVT); 4869 4870 // Emit a store to the stack slot. Use a truncstore if the input value is 4871 // later than DestVT. 4872 SDOperand Store; 4873 if (SrcSize > SlotSize) 4874 Store = DAG.getTruncStore(DAG.getEntryNode(), SrcOp, FIPtr, 4875 PseudoSourceValue::getFixedStack(), 4876 SPFI, SlotVT); 4877 else { 4878 assert(SrcSize == SlotSize && "Invalid store"); 4879 Store = DAG.getStore(DAG.getEntryNode(), SrcOp, FIPtr, 4880 PseudoSourceValue::getFixedStack(), 4881 SPFI, SlotVT); 4882 } 4883 4884 // Result is a load from the stack slot. 4885 if (SlotSize == DestSize) 4886 return DAG.getLoad(DestVT, Store, FIPtr, NULL, 0); 4887 4888 assert(SlotSize < DestSize && "Unknown extension!"); 4889 return DAG.getExtLoad(ISD::EXTLOAD, DestVT, Store, FIPtr, NULL, 0, SlotVT); 4890} 4891 4892SDOperand SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { 4893 // Create a vector sized/aligned stack slot, store the value to element #0, 4894 // then load the whole vector back out. 4895 SDOperand StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); 4896 4897 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); 4898 int SPFI = StackPtrFI->getIndex(); 4899 4900 SDOperand Ch = DAG.getStore(DAG.getEntryNode(), Node->getOperand(0), StackPtr, 4901 PseudoSourceValue::getFixedStack(), SPFI); 4902 return DAG.getLoad(Node->getValueType(0), Ch, StackPtr, 4903 PseudoSourceValue::getFixedStack(), SPFI); 4904} 4905 4906 4907/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't 4908/// support the operation, but do support the resultant vector type. 4909SDOperand SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { 4910 4911 // If the only non-undef value is the low element, turn this into a 4912 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. 4913 unsigned NumElems = Node->getNumOperands(); 4914 bool isOnlyLowElement = true; 4915 SDOperand SplatValue = Node->getOperand(0); 4916 std::map<SDOperand, std::vector<unsigned> > Values; 4917 Values[SplatValue].push_back(0); 4918 bool isConstant = true; 4919 if (!isa<ConstantFPSDNode>(SplatValue) && !isa<ConstantSDNode>(SplatValue) && 4920 SplatValue.getOpcode() != ISD::UNDEF) 4921 isConstant = false; 4922 4923 for (unsigned i = 1; i < NumElems; ++i) { 4924 SDOperand V = Node->getOperand(i); 4925 Values[V].push_back(i); 4926 if (V.getOpcode() != ISD::UNDEF) 4927 isOnlyLowElement = false; 4928 if (SplatValue != V) 4929 SplatValue = SDOperand(0,0); 4930 4931 // If this isn't a constant element or an undef, we can't use a constant 4932 // pool load. 4933 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V) && 4934 V.getOpcode() != ISD::UNDEF) 4935 isConstant = false; 4936 } 4937 4938 if (isOnlyLowElement) { 4939 // If the low element is an undef too, then this whole things is an undef. 4940 if (Node->getOperand(0).getOpcode() == ISD::UNDEF) 4941 return DAG.getNode(ISD::UNDEF, Node->getValueType(0)); 4942 // Otherwise, turn this into a scalar_to_vector node. 4943 return DAG.getNode(ISD::SCALAR_TO_VECTOR, Node->getValueType(0), 4944 Node->getOperand(0)); 4945 } 4946 4947 // If all elements are constants, create a load from the constant pool. 4948 if (isConstant) { 4949 MVT::ValueType VT = Node->getValueType(0); 4950 const Type *OpNTy = 4951 MVT::getTypeForValueType(Node->getOperand(0).getValueType()); 4952 std::vector<Constant*> CV; 4953 for (unsigned i = 0, e = NumElems; i != e; ++i) { 4954 if (ConstantFPSDNode *V = 4955 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { 4956 CV.push_back(ConstantFP::get(OpNTy, V->getValueAPF())); 4957 } else if (ConstantSDNode *V = 4958 dyn_cast<ConstantSDNode>(Node->getOperand(i))) { 4959 CV.push_back(ConstantInt::get(OpNTy, V->getValue())); 4960 } else { 4961 assert(Node->getOperand(i).getOpcode() == ISD::UNDEF); 4962 CV.push_back(UndefValue::get(OpNTy)); 4963 } 4964 } 4965 Constant *CP = ConstantVector::get(CV); 4966 SDOperand CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy()); 4967 return DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, 4968 PseudoSourceValue::getConstantPool(), 0); 4969 } 4970 4971 if (SplatValue.Val) { // Splat of one value? 4972 // Build the shuffle constant vector: <0, 0, 0, 0> 4973 MVT::ValueType MaskVT = 4974 MVT::getIntVectorWithNumElements(NumElems); 4975 SDOperand Zero = DAG.getConstant(0, MVT::getVectorElementType(MaskVT)); 4976 std::vector<SDOperand> ZeroVec(NumElems, Zero); 4977 SDOperand SplatMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 4978 &ZeroVec[0], ZeroVec.size()); 4979 4980 // If the target supports VECTOR_SHUFFLE and this shuffle mask, use it. 4981 if (isShuffleLegal(Node->getValueType(0), SplatMask)) { 4982 // Get the splatted value into the low element of a vector register. 4983 SDOperand LowValVec = 4984 DAG.getNode(ISD::SCALAR_TO_VECTOR, Node->getValueType(0), SplatValue); 4985 4986 // Return shuffle(LowValVec, undef, <0,0,0,0>) 4987 return DAG.getNode(ISD::VECTOR_SHUFFLE, Node->getValueType(0), LowValVec, 4988 DAG.getNode(ISD::UNDEF, Node->getValueType(0)), 4989 SplatMask); 4990 } 4991 } 4992 4993 // If there are only two unique elements, we may be able to turn this into a 4994 // vector shuffle. 4995 if (Values.size() == 2) { 4996 // Build the shuffle constant vector: e.g. <0, 4, 0, 4> 4997 MVT::ValueType MaskVT = 4998 MVT::getIntVectorWithNumElements(NumElems); 4999 std::vector<SDOperand> MaskVec(NumElems); 5000 unsigned i = 0; 5001 for (std::map<SDOperand,std::vector<unsigned> >::iterator I=Values.begin(), 5002 E = Values.end(); I != E; ++I) { 5003 for (std::vector<unsigned>::iterator II = I->second.begin(), 5004 EE = I->second.end(); II != EE; ++II) 5005 MaskVec[*II] = DAG.getConstant(i, MVT::getVectorElementType(MaskVT)); 5006 i += NumElems; 5007 } 5008 SDOperand ShuffleMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 5009 &MaskVec[0], MaskVec.size()); 5010 5011 // If the target supports VECTOR_SHUFFLE and this shuffle mask, use it. 5012 if (TLI.isOperationLegal(ISD::SCALAR_TO_VECTOR, Node->getValueType(0)) && 5013 isShuffleLegal(Node->getValueType(0), ShuffleMask)) { 5014 SmallVector<SDOperand, 8> Ops; 5015 for(std::map<SDOperand,std::vector<unsigned> >::iterator I=Values.begin(), 5016 E = Values.end(); I != E; ++I) { 5017 SDOperand Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, Node->getValueType(0), 5018 I->first); 5019 Ops.push_back(Op); 5020 } 5021 Ops.push_back(ShuffleMask); 5022 5023 // Return shuffle(LoValVec, HiValVec, <0,1,0,1>) 5024 return DAG.getNode(ISD::VECTOR_SHUFFLE, Node->getValueType(0), 5025 &Ops[0], Ops.size()); 5026 } 5027 } 5028 5029 // Otherwise, we can't handle this case efficiently. Allocate a sufficiently 5030 // aligned object on the stack, store each element into it, then load 5031 // the result as a vector. 5032 MVT::ValueType VT = Node->getValueType(0); 5033 // Create the stack frame object. 5034 SDOperand FIPtr = DAG.CreateStackTemporary(VT); 5035 5036 // Emit a store of each element to the stack slot. 5037 SmallVector<SDOperand, 8> Stores; 5038 unsigned TypeByteSize = 5039 MVT::getSizeInBits(Node->getOperand(0).getValueType())/8; 5040 // Store (in the right endianness) the elements to memory. 5041 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 5042 // Ignore undef elements. 5043 if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue; 5044 5045 unsigned Offset = TypeByteSize*i; 5046 5047 SDOperand Idx = DAG.getConstant(Offset, FIPtr.getValueType()); 5048 Idx = DAG.getNode(ISD::ADD, FIPtr.getValueType(), FIPtr, Idx); 5049 5050 Stores.push_back(DAG.getStore(DAG.getEntryNode(), Node->getOperand(i), Idx, 5051 NULL, 0)); 5052 } 5053 5054 SDOperand StoreChain; 5055 if (!Stores.empty()) // Not all undef elements? 5056 StoreChain = DAG.getNode(ISD::TokenFactor, MVT::Other, 5057 &Stores[0], Stores.size()); 5058 else 5059 StoreChain = DAG.getEntryNode(); 5060 5061 // Result is a load from the stack slot. 5062 return DAG.getLoad(VT, StoreChain, FIPtr, NULL, 0); 5063} 5064 5065void SelectionDAGLegalize::ExpandShiftParts(unsigned NodeOp, 5066 SDOperand Op, SDOperand Amt, 5067 SDOperand &Lo, SDOperand &Hi) { 5068 // Expand the subcomponents. 5069 SDOperand LHSL, LHSH; 5070 ExpandOp(Op, LHSL, LHSH); 5071 5072 SDOperand Ops[] = { LHSL, LHSH, Amt }; 5073 MVT::ValueType VT = LHSL.getValueType(); 5074 Lo = DAG.getNode(NodeOp, DAG.getNodeValueTypes(VT, VT), 2, Ops, 3); 5075 Hi = Lo.getValue(1); 5076} 5077 5078 5079/// ExpandShift - Try to find a clever way to expand this shift operation out to 5080/// smaller elements. If we can't find a way that is more efficient than a 5081/// libcall on this target, return false. Otherwise, return true with the 5082/// low-parts expanded into Lo and Hi. 5083bool SelectionDAGLegalize::ExpandShift(unsigned Opc, SDOperand Op,SDOperand Amt, 5084 SDOperand &Lo, SDOperand &Hi) { 5085 assert((Opc == ISD::SHL || Opc == ISD::SRA || Opc == ISD::SRL) && 5086 "This is not a shift!"); 5087 5088 MVT::ValueType NVT = TLI.getTypeToTransformTo(Op.getValueType()); 5089 SDOperand ShAmt = LegalizeOp(Amt); 5090 MVT::ValueType ShTy = ShAmt.getValueType(); 5091 unsigned ShBits = MVT::getSizeInBits(ShTy); 5092 unsigned VTBits = MVT::getSizeInBits(Op.getValueType()); 5093 unsigned NVTBits = MVT::getSizeInBits(NVT); 5094 5095 // Handle the case when Amt is an immediate. 5096 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Amt.Val)) { 5097 unsigned Cst = CN->getValue(); 5098 // Expand the incoming operand to be shifted, so that we have its parts 5099 SDOperand InL, InH; 5100 ExpandOp(Op, InL, InH); 5101 switch(Opc) { 5102 case ISD::SHL: 5103 if (Cst > VTBits) { 5104 Lo = DAG.getConstant(0, NVT); 5105 Hi = DAG.getConstant(0, NVT); 5106 } else if (Cst > NVTBits) { 5107 Lo = DAG.getConstant(0, NVT); 5108 Hi = DAG.getNode(ISD::SHL, NVT, InL, DAG.getConstant(Cst-NVTBits,ShTy)); 5109 } else if (Cst == NVTBits) { 5110 Lo = DAG.getConstant(0, NVT); 5111 Hi = InL; 5112 } else { 5113 Lo = DAG.getNode(ISD::SHL, NVT, InL, DAG.getConstant(Cst, ShTy)); 5114 Hi = DAG.getNode(ISD::OR, NVT, 5115 DAG.getNode(ISD::SHL, NVT, InH, DAG.getConstant(Cst, ShTy)), 5116 DAG.getNode(ISD::SRL, NVT, InL, DAG.getConstant(NVTBits-Cst, ShTy))); 5117 } 5118 return true; 5119 case ISD::SRL: 5120 if (Cst > VTBits) { 5121 Lo = DAG.getConstant(0, NVT); 5122 Hi = DAG.getConstant(0, NVT); 5123 } else if (Cst > NVTBits) { 5124 Lo = DAG.getNode(ISD::SRL, NVT, InH, DAG.getConstant(Cst-NVTBits,ShTy)); 5125 Hi = DAG.getConstant(0, NVT); 5126 } else if (Cst == NVTBits) { 5127 Lo = InH; 5128 Hi = DAG.getConstant(0, NVT); 5129 } else { 5130 Lo = DAG.getNode(ISD::OR, NVT, 5131 DAG.getNode(ISD::SRL, NVT, InL, DAG.getConstant(Cst, ShTy)), 5132 DAG.getNode(ISD::SHL, NVT, InH, DAG.getConstant(NVTBits-Cst, ShTy))); 5133 Hi = DAG.getNode(ISD::SRL, NVT, InH, DAG.getConstant(Cst, ShTy)); 5134 } 5135 return true; 5136 case ISD::SRA: 5137 if (Cst > VTBits) { 5138 Hi = Lo = DAG.getNode(ISD::SRA, NVT, InH, 5139 DAG.getConstant(NVTBits-1, ShTy)); 5140 } else if (Cst > NVTBits) { 5141 Lo = DAG.getNode(ISD::SRA, NVT, InH, 5142 DAG.getConstant(Cst-NVTBits, ShTy)); 5143 Hi = DAG.getNode(ISD::SRA, NVT, InH, 5144 DAG.getConstant(NVTBits-1, ShTy)); 5145 } else if (Cst == NVTBits) { 5146 Lo = InH; 5147 Hi = DAG.getNode(ISD::SRA, NVT, InH, 5148 DAG.getConstant(NVTBits-1, ShTy)); 5149 } else { 5150 Lo = DAG.getNode(ISD::OR, NVT, 5151 DAG.getNode(ISD::SRL, NVT, InL, DAG.getConstant(Cst, ShTy)), 5152 DAG.getNode(ISD::SHL, NVT, InH, DAG.getConstant(NVTBits-Cst, ShTy))); 5153 Hi = DAG.getNode(ISD::SRA, NVT, InH, DAG.getConstant(Cst, ShTy)); 5154 } 5155 return true; 5156 } 5157 } 5158 5159 // Okay, the shift amount isn't constant. However, if we can tell that it is 5160 // >= 32 or < 32, we can still simplify it, without knowing the actual value. 5161 APInt Mask = APInt::getHighBitsSet(ShBits, ShBits - Log2_32(NVTBits)); 5162 APInt KnownZero, KnownOne; 5163 DAG.ComputeMaskedBits(Amt, Mask, KnownZero, KnownOne); 5164 5165 // If we know that if any of the high bits of the shift amount are one, then 5166 // we can do this as a couple of simple shifts. 5167 if (KnownOne.intersects(Mask)) { 5168 // Mask out the high bit, which we know is set. 5169 Amt = DAG.getNode(ISD::AND, Amt.getValueType(), Amt, 5170 DAG.getConstant(~Mask, Amt.getValueType())); 5171 5172 // Expand the incoming operand to be shifted, so that we have its parts 5173 SDOperand InL, InH; 5174 ExpandOp(Op, InL, InH); 5175 switch(Opc) { 5176 case ISD::SHL: 5177 Lo = DAG.getConstant(0, NVT); // Low part is zero. 5178 Hi = DAG.getNode(ISD::SHL, NVT, InL, Amt); // High part from Lo part. 5179 return true; 5180 case ISD::SRL: 5181 Hi = DAG.getConstant(0, NVT); // Hi part is zero. 5182 Lo = DAG.getNode(ISD::SRL, NVT, InH, Amt); // Lo part from Hi part. 5183 return true; 5184 case ISD::SRA: 5185 Hi = DAG.getNode(ISD::SRA, NVT, InH, // Sign extend high part. 5186 DAG.getConstant(NVTBits-1, Amt.getValueType())); 5187 Lo = DAG.getNode(ISD::SRA, NVT, InH, Amt); // Lo part from Hi part. 5188 return true; 5189 } 5190 } 5191 5192 // If we know that the high bits of the shift amount are all zero, then we can 5193 // do this as a couple of simple shifts. 5194 if ((KnownZero & Mask) == Mask) { 5195 // Compute 32-amt. 5196 SDOperand Amt2 = DAG.getNode(ISD::SUB, Amt.getValueType(), 5197 DAG.getConstant(NVTBits, Amt.getValueType()), 5198 Amt); 5199 5200 // Expand the incoming operand to be shifted, so that we have its parts 5201 SDOperand InL, InH; 5202 ExpandOp(Op, InL, InH); 5203 switch(Opc) { 5204 case ISD::SHL: 5205 Lo = DAG.getNode(ISD::SHL, NVT, InL, Amt); 5206 Hi = DAG.getNode(ISD::OR, NVT, 5207 DAG.getNode(ISD::SHL, NVT, InH, Amt), 5208 DAG.getNode(ISD::SRL, NVT, InL, Amt2)); 5209 return true; 5210 case ISD::SRL: 5211 Hi = DAG.getNode(ISD::SRL, NVT, InH, Amt); 5212 Lo = DAG.getNode(ISD::OR, NVT, 5213 DAG.getNode(ISD::SRL, NVT, InL, Amt), 5214 DAG.getNode(ISD::SHL, NVT, InH, Amt2)); 5215 return true; 5216 case ISD::SRA: 5217 Hi = DAG.getNode(ISD::SRA, NVT, InH, Amt); 5218 Lo = DAG.getNode(ISD::OR, NVT, 5219 DAG.getNode(ISD::SRL, NVT, InL, Amt), 5220 DAG.getNode(ISD::SHL, NVT, InH, Amt2)); 5221 return true; 5222 } 5223 } 5224 5225 return false; 5226} 5227 5228 5229// ExpandLibCall - Expand a node into a call to a libcall. If the result value 5230// does not fit into a register, return the lo part and set the hi part to the 5231// by-reg argument. If it does fit into a single register, return the result 5232// and leave the Hi part unset. 5233SDOperand SelectionDAGLegalize::ExpandLibCall(const char *Name, SDNode *Node, 5234 bool isSigned, SDOperand &Hi) { 5235 assert(!IsLegalizingCall && "Cannot overlap legalization of calls!"); 5236 // The input chain to this libcall is the entry node of the function. 5237 // Legalizing the call will automatically add the previous call to the 5238 // dependence. 5239 SDOperand InChain = DAG.getEntryNode(); 5240 5241 TargetLowering::ArgListTy Args; 5242 TargetLowering::ArgListEntry Entry; 5243 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 5244 MVT::ValueType ArgVT = Node->getOperand(i).getValueType(); 5245 const Type *ArgTy = MVT::getTypeForValueType(ArgVT); 5246 Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy; 5247 Entry.isSExt = isSigned; 5248 Entry.isZExt = !isSigned; 5249 Args.push_back(Entry); 5250 } 5251 SDOperand Callee = DAG.getExternalSymbol(Name, TLI.getPointerTy()); 5252 5253 // Splice the libcall in wherever FindInputOutputChains tells us to. 5254 const Type *RetTy = MVT::getTypeForValueType(Node->getValueType(0)); 5255 std::pair<SDOperand,SDOperand> CallInfo = 5256 TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, CallingConv::C, 5257 false, Callee, Args, DAG); 5258 5259 // Legalize the call sequence, starting with the chain. This will advance 5260 // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that 5261 // was added by LowerCallTo (guaranteeing proper serialization of calls). 5262 LegalizeOp(CallInfo.second); 5263 SDOperand Result; 5264 switch (getTypeAction(CallInfo.first.getValueType())) { 5265 default: assert(0 && "Unknown thing"); 5266 case Legal: 5267 Result = CallInfo.first; 5268 break; 5269 case Expand: 5270 ExpandOp(CallInfo.first, Result, Hi); 5271 break; 5272 } 5273 return Result; 5274} 5275 5276 5277/// ExpandIntToFP - Expand a [US]INT_TO_FP operation. 5278/// 5279SDOperand SelectionDAGLegalize:: 5280ExpandIntToFP(bool isSigned, MVT::ValueType DestTy, SDOperand Source) { 5281 MVT::ValueType SourceVT = Source.getValueType(); 5282 assert(getTypeAction(SourceVT) == Expand && 5283 "This is not an expansion!"); 5284 5285 if (!isSigned) { 5286 // The integer value loaded will be incorrectly if the 'sign bit' of the 5287 // incoming integer is set. To handle this, we dynamically test to see if 5288 // it is set, and, if so, add a fudge factor. 5289 SDOperand Lo, Hi; 5290 ExpandOp(Source, Lo, Hi); 5291 5292 // If this is unsigned, and not supported, first perform the conversion to 5293 // signed, then adjust the result if the sign bit is set. 5294 SDOperand SignedConv = ExpandIntToFP(true, DestTy, 5295 DAG.getNode(ISD::BUILD_PAIR, SourceVT, Lo, Hi)); 5296 5297 SDOperand SignSet = DAG.getSetCC(TLI.getSetCCResultTy(), Hi, 5298 DAG.getConstant(0, Hi.getValueType()), 5299 ISD::SETLT); 5300 SDOperand Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4); 5301 SDOperand CstOffset = DAG.getNode(ISD::SELECT, Zero.getValueType(), 5302 SignSet, Four, Zero); 5303 uint64_t FF = 0x5f800000ULL; 5304 if (TLI.isLittleEndian()) FF <<= 32; 5305 static Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF); 5306 5307 SDOperand CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy()); 5308 CPIdx = DAG.getNode(ISD::ADD, TLI.getPointerTy(), CPIdx, CstOffset); 5309 SDOperand FudgeInReg; 5310 if (DestTy == MVT::f32) 5311 FudgeInReg = DAG.getLoad(MVT::f32, DAG.getEntryNode(), CPIdx, 5312 PseudoSourceValue::getConstantPool(), 0); 5313 else if (MVT::getSizeInBits(DestTy) > MVT::getSizeInBits(MVT::f32)) 5314 // FIXME: Avoid the extend by construction the right constantpool? 5315 FudgeInReg = DAG.getExtLoad(ISD::EXTLOAD, DestTy, DAG.getEntryNode(), 5316 CPIdx, 5317 PseudoSourceValue::getConstantPool(), 0, 5318 MVT::f32); 5319 else 5320 assert(0 && "Unexpected conversion"); 5321 5322 MVT::ValueType SCVT = SignedConv.getValueType(); 5323 if (SCVT != DestTy) { 5324 // Destination type needs to be expanded as well. The FADD now we are 5325 // constructing will be expanded into a libcall. 5326 if (MVT::getSizeInBits(SCVT) != MVT::getSizeInBits(DestTy)) { 5327 assert(MVT::getSizeInBits(SCVT) * 2 == MVT::getSizeInBits(DestTy)); 5328 SignedConv = DAG.getNode(ISD::BUILD_PAIR, DestTy, 5329 SignedConv, SignedConv.getValue(1)); 5330 } 5331 SignedConv = DAG.getNode(ISD::BIT_CONVERT, DestTy, SignedConv); 5332 } 5333 return DAG.getNode(ISD::FADD, DestTy, SignedConv, FudgeInReg); 5334 } 5335 5336 // Check to see if the target has a custom way to lower this. If so, use it. 5337 switch (TLI.getOperationAction(ISD::SINT_TO_FP, SourceVT)) { 5338 default: assert(0 && "This action not implemented for this operation!"); 5339 case TargetLowering::Legal: 5340 case TargetLowering::Expand: 5341 break; // This case is handled below. 5342 case TargetLowering::Custom: { 5343 SDOperand NV = TLI.LowerOperation(DAG.getNode(ISD::SINT_TO_FP, DestTy, 5344 Source), DAG); 5345 if (NV.Val) 5346 return LegalizeOp(NV); 5347 break; // The target decided this was legal after all 5348 } 5349 } 5350 5351 // Expand the source, then glue it back together for the call. We must expand 5352 // the source in case it is shared (this pass of legalize must traverse it). 5353 SDOperand SrcLo, SrcHi; 5354 ExpandOp(Source, SrcLo, SrcHi); 5355 Source = DAG.getNode(ISD::BUILD_PAIR, SourceVT, SrcLo, SrcHi); 5356 5357 RTLIB::Libcall LC; 5358 if (SourceVT == MVT::i64) { 5359 if (DestTy == MVT::f32) 5360 LC = RTLIB::SINTTOFP_I64_F32; 5361 else { 5362 assert(DestTy == MVT::f64 && "Unknown fp value type!"); 5363 LC = RTLIB::SINTTOFP_I64_F64; 5364 } 5365 } else if (SourceVT == MVT::i128) { 5366 if (DestTy == MVT::f32) 5367 LC = RTLIB::SINTTOFP_I128_F32; 5368 else if (DestTy == MVT::f64) 5369 LC = RTLIB::SINTTOFP_I128_F64; 5370 else if (DestTy == MVT::f80) 5371 LC = RTLIB::SINTTOFP_I128_F80; 5372 else { 5373 assert(DestTy == MVT::ppcf128 && "Unknown fp value type!"); 5374 LC = RTLIB::SINTTOFP_I128_PPCF128; 5375 } 5376 } else { 5377 assert(0 && "Unknown int value type"); 5378 } 5379 5380 assert(TLI.getLibcallName(LC) && "Don't know how to expand this SINT_TO_FP!"); 5381 Source = DAG.getNode(ISD::SINT_TO_FP, DestTy, Source); 5382 SDOperand UnusedHiPart; 5383 return ExpandLibCall(TLI.getLibcallName(LC), Source.Val, isSigned, 5384 UnusedHiPart); 5385} 5386 5387/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a 5388/// INT_TO_FP operation of the specified operand when the target requests that 5389/// we expand it. At this point, we know that the result and operand types are 5390/// legal for the target. 5391SDOperand SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned, 5392 SDOperand Op0, 5393 MVT::ValueType DestVT) { 5394 if (Op0.getValueType() == MVT::i32) { 5395 // simple 32-bit [signed|unsigned] integer to float/double expansion 5396 5397 // Get the stack frame index of a 8 byte buffer. 5398 SDOperand StackSlot = DAG.CreateStackTemporary(MVT::f64); 5399 5400 // word offset constant for Hi/Lo address computation 5401 SDOperand WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy()); 5402 // set up Hi and Lo (into buffer) address based on endian 5403 SDOperand Hi = StackSlot; 5404 SDOperand Lo = DAG.getNode(ISD::ADD, TLI.getPointerTy(), StackSlot,WordOff); 5405 if (TLI.isLittleEndian()) 5406 std::swap(Hi, Lo); 5407 5408 // if signed map to unsigned space 5409 SDOperand Op0Mapped; 5410 if (isSigned) { 5411 // constant used to invert sign bit (signed to unsigned mapping) 5412 SDOperand SignBit = DAG.getConstant(0x80000000u, MVT::i32); 5413 Op0Mapped = DAG.getNode(ISD::XOR, MVT::i32, Op0, SignBit); 5414 } else { 5415 Op0Mapped = Op0; 5416 } 5417 // store the lo of the constructed double - based on integer input 5418 SDOperand Store1 = DAG.getStore(DAG.getEntryNode(), 5419 Op0Mapped, Lo, NULL, 0); 5420 // initial hi portion of constructed double 5421 SDOperand InitialHi = DAG.getConstant(0x43300000u, MVT::i32); 5422 // store the hi of the constructed double - biased exponent 5423 SDOperand Store2=DAG.getStore(Store1, InitialHi, Hi, NULL, 0); 5424 // load the constructed double 5425 SDOperand Load = DAG.getLoad(MVT::f64, Store2, StackSlot, NULL, 0); 5426 // FP constant to bias correct the final result 5427 SDOperand Bias = DAG.getConstantFP(isSigned ? 5428 BitsToDouble(0x4330000080000000ULL) 5429 : BitsToDouble(0x4330000000000000ULL), 5430 MVT::f64); 5431 // subtract the bias 5432 SDOperand Sub = DAG.getNode(ISD::FSUB, MVT::f64, Load, Bias); 5433 // final result 5434 SDOperand Result; 5435 // handle final rounding 5436 if (DestVT == MVT::f64) { 5437 // do nothing 5438 Result = Sub; 5439 } else if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(MVT::f64)) { 5440 Result = DAG.getNode(ISD::FP_ROUND, DestVT, Sub, 5441 DAG.getIntPtrConstant(0)); 5442 } else if (MVT::getSizeInBits(DestVT) > MVT::getSizeInBits(MVT::f64)) { 5443 Result = DAG.getNode(ISD::FP_EXTEND, DestVT, Sub); 5444 } 5445 return Result; 5446 } 5447 assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet"); 5448 SDOperand Tmp1 = DAG.getNode(ISD::SINT_TO_FP, DestVT, Op0); 5449 5450 SDOperand SignSet = DAG.getSetCC(TLI.getSetCCResultTy(), Op0, 5451 DAG.getConstant(0, Op0.getValueType()), 5452 ISD::SETLT); 5453 SDOperand Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4); 5454 SDOperand CstOffset = DAG.getNode(ISD::SELECT, Zero.getValueType(), 5455 SignSet, Four, Zero); 5456 5457 // If the sign bit of the integer is set, the large number will be treated 5458 // as a negative number. To counteract this, the dynamic code adds an 5459 // offset depending on the data type. 5460 uint64_t FF; 5461 switch (Op0.getValueType()) { 5462 default: assert(0 && "Unsupported integer type!"); 5463 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) 5464 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) 5465 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) 5466 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) 5467 } 5468 if (TLI.isLittleEndian()) FF <<= 32; 5469 static Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF); 5470 5471 SDOperand CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy()); 5472 CPIdx = DAG.getNode(ISD::ADD, TLI.getPointerTy(), CPIdx, CstOffset); 5473 SDOperand FudgeInReg; 5474 if (DestVT == MVT::f32) 5475 FudgeInReg = DAG.getLoad(MVT::f32, DAG.getEntryNode(), CPIdx, 5476 PseudoSourceValue::getConstantPool(), 0); 5477 else { 5478 FudgeInReg = 5479 LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, DestVT, 5480 DAG.getEntryNode(), CPIdx, 5481 PseudoSourceValue::getConstantPool(), 0, 5482 MVT::f32)); 5483 } 5484 5485 return DAG.getNode(ISD::FADD, DestVT, Tmp1, FudgeInReg); 5486} 5487 5488/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a 5489/// *INT_TO_FP operation of the specified operand when the target requests that 5490/// we promote it. At this point, we know that the result and operand types are 5491/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP 5492/// operation that takes a larger input. 5493SDOperand SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDOperand LegalOp, 5494 MVT::ValueType DestVT, 5495 bool isSigned) { 5496 // First step, figure out the appropriate *INT_TO_FP operation to use. 5497 MVT::ValueType NewInTy = LegalOp.getValueType(); 5498 5499 unsigned OpToUse = 0; 5500 5501 // Scan for the appropriate larger type to use. 5502 while (1) { 5503 NewInTy = (MVT::ValueType)(NewInTy+1); 5504 assert(MVT::isInteger(NewInTy) && "Ran out of possibilities!"); 5505 5506 // If the target supports SINT_TO_FP of this type, use it. 5507 switch (TLI.getOperationAction(ISD::SINT_TO_FP, NewInTy)) { 5508 default: break; 5509 case TargetLowering::Legal: 5510 if (!TLI.isTypeLegal(NewInTy)) 5511 break; // Can't use this datatype. 5512 // FALL THROUGH. 5513 case TargetLowering::Custom: 5514 OpToUse = ISD::SINT_TO_FP; 5515 break; 5516 } 5517 if (OpToUse) break; 5518 if (isSigned) continue; 5519 5520 // If the target supports UINT_TO_FP of this type, use it. 5521 switch (TLI.getOperationAction(ISD::UINT_TO_FP, NewInTy)) { 5522 default: break; 5523 case TargetLowering::Legal: 5524 if (!TLI.isTypeLegal(NewInTy)) 5525 break; // Can't use this datatype. 5526 // FALL THROUGH. 5527 case TargetLowering::Custom: 5528 OpToUse = ISD::UINT_TO_FP; 5529 break; 5530 } 5531 if (OpToUse) break; 5532 5533 // Otherwise, try a larger type. 5534 } 5535 5536 // Okay, we found the operation and type to use. Zero extend our input to the 5537 // desired type then run the operation on it. 5538 return DAG.getNode(OpToUse, DestVT, 5539 DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 5540 NewInTy, LegalOp)); 5541} 5542 5543/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a 5544/// FP_TO_*INT operation of the specified operand when the target requests that 5545/// we promote it. At this point, we know that the result and operand types are 5546/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT 5547/// operation that returns a larger result. 5548SDOperand SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDOperand LegalOp, 5549 MVT::ValueType DestVT, 5550 bool isSigned) { 5551 // First step, figure out the appropriate FP_TO*INT operation to use. 5552 MVT::ValueType NewOutTy = DestVT; 5553 5554 unsigned OpToUse = 0; 5555 5556 // Scan for the appropriate larger type to use. 5557 while (1) { 5558 NewOutTy = (MVT::ValueType)(NewOutTy+1); 5559 assert(MVT::isInteger(NewOutTy) && "Ran out of possibilities!"); 5560 5561 // If the target supports FP_TO_SINT returning this type, use it. 5562 switch (TLI.getOperationAction(ISD::FP_TO_SINT, NewOutTy)) { 5563 default: break; 5564 case TargetLowering::Legal: 5565 if (!TLI.isTypeLegal(NewOutTy)) 5566 break; // Can't use this datatype. 5567 // FALL THROUGH. 5568 case TargetLowering::Custom: 5569 OpToUse = ISD::FP_TO_SINT; 5570 break; 5571 } 5572 if (OpToUse) break; 5573 5574 // If the target supports FP_TO_UINT of this type, use it. 5575 switch (TLI.getOperationAction(ISD::FP_TO_UINT, NewOutTy)) { 5576 default: break; 5577 case TargetLowering::Legal: 5578 if (!TLI.isTypeLegal(NewOutTy)) 5579 break; // Can't use this datatype. 5580 // FALL THROUGH. 5581 case TargetLowering::Custom: 5582 OpToUse = ISD::FP_TO_UINT; 5583 break; 5584 } 5585 if (OpToUse) break; 5586 5587 // Otherwise, try a larger type. 5588 } 5589 5590 5591 // Okay, we found the operation and type to use. 5592 SDOperand Operation = DAG.getNode(OpToUse, NewOutTy, LegalOp); 5593 5594 // If the operation produces an invalid type, it must be custom lowered. Use 5595 // the target lowering hooks to expand it. Just keep the low part of the 5596 // expanded operation, we know that we're truncating anyway. 5597 if (getTypeAction(NewOutTy) == Expand) { 5598 Operation = SDOperand(TLI.ExpandOperationResult(Operation.Val, DAG), 0); 5599 assert(Operation.Val && "Didn't return anything"); 5600 } 5601 5602 // Truncate the result of the extended FP_TO_*INT operation to the desired 5603 // size. 5604 return DAG.getNode(ISD::TRUNCATE, DestVT, Operation); 5605} 5606 5607/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation. 5608/// 5609SDOperand SelectionDAGLegalize::ExpandBSWAP(SDOperand Op) { 5610 MVT::ValueType VT = Op.getValueType(); 5611 MVT::ValueType SHVT = TLI.getShiftAmountTy(); 5612 SDOperand Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 5613 switch (VT) { 5614 default: assert(0 && "Unhandled Expand type in BSWAP!"); abort(); 5615 case MVT::i16: 5616 Tmp2 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(8, SHVT)); 5617 Tmp1 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(8, SHVT)); 5618 return DAG.getNode(ISD::OR, VT, Tmp1, Tmp2); 5619 case MVT::i32: 5620 Tmp4 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(24, SHVT)); 5621 Tmp3 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(8, SHVT)); 5622 Tmp2 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(8, SHVT)); 5623 Tmp1 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(24, SHVT)); 5624 Tmp3 = DAG.getNode(ISD::AND, VT, Tmp3, DAG.getConstant(0xFF0000, VT)); 5625 Tmp2 = DAG.getNode(ISD::AND, VT, Tmp2, DAG.getConstant(0xFF00, VT)); 5626 Tmp4 = DAG.getNode(ISD::OR, VT, Tmp4, Tmp3); 5627 Tmp2 = DAG.getNode(ISD::OR, VT, Tmp2, Tmp1); 5628 return DAG.getNode(ISD::OR, VT, Tmp4, Tmp2); 5629 case MVT::i64: 5630 Tmp8 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(56, SHVT)); 5631 Tmp7 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(40, SHVT)); 5632 Tmp6 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(24, SHVT)); 5633 Tmp5 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(8, SHVT)); 5634 Tmp4 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(8, SHVT)); 5635 Tmp3 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(24, SHVT)); 5636 Tmp2 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(40, SHVT)); 5637 Tmp1 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(56, SHVT)); 5638 Tmp7 = DAG.getNode(ISD::AND, VT, Tmp7, DAG.getConstant(255ULL<<48, VT)); 5639 Tmp6 = DAG.getNode(ISD::AND, VT, Tmp6, DAG.getConstant(255ULL<<40, VT)); 5640 Tmp5 = DAG.getNode(ISD::AND, VT, Tmp5, DAG.getConstant(255ULL<<32, VT)); 5641 Tmp4 = DAG.getNode(ISD::AND, VT, Tmp4, DAG.getConstant(255ULL<<24, VT)); 5642 Tmp3 = DAG.getNode(ISD::AND, VT, Tmp3, DAG.getConstant(255ULL<<16, VT)); 5643 Tmp2 = DAG.getNode(ISD::AND, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT)); 5644 Tmp8 = DAG.getNode(ISD::OR, VT, Tmp8, Tmp7); 5645 Tmp6 = DAG.getNode(ISD::OR, VT, Tmp6, Tmp5); 5646 Tmp4 = DAG.getNode(ISD::OR, VT, Tmp4, Tmp3); 5647 Tmp2 = DAG.getNode(ISD::OR, VT, Tmp2, Tmp1); 5648 Tmp8 = DAG.getNode(ISD::OR, VT, Tmp8, Tmp6); 5649 Tmp4 = DAG.getNode(ISD::OR, VT, Tmp4, Tmp2); 5650 return DAG.getNode(ISD::OR, VT, Tmp8, Tmp4); 5651 } 5652} 5653 5654/// ExpandBitCount - Expand the specified bitcount instruction into operations. 5655/// 5656SDOperand SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDOperand Op) { 5657 switch (Opc) { 5658 default: assert(0 && "Cannot expand this yet!"); 5659 case ISD::CTPOP: { 5660 static const uint64_t mask[6] = { 5661 0x5555555555555555ULL, 0x3333333333333333ULL, 5662 0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL, 5663 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL 5664 }; 5665 MVT::ValueType VT = Op.getValueType(); 5666 MVT::ValueType ShVT = TLI.getShiftAmountTy(); 5667 unsigned len = MVT::getSizeInBits(VT); 5668 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) { 5669 //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8]) 5670 SDOperand Tmp2 = DAG.getConstant(mask[i], VT); 5671 SDOperand Tmp3 = DAG.getConstant(1ULL << i, ShVT); 5672 Op = DAG.getNode(ISD::ADD, VT, DAG.getNode(ISD::AND, VT, Op, Tmp2), 5673 DAG.getNode(ISD::AND, VT, 5674 DAG.getNode(ISD::SRL, VT, Op, Tmp3),Tmp2)); 5675 } 5676 return Op; 5677 } 5678 case ISD::CTLZ: { 5679 // for now, we do this: 5680 // x = x | (x >> 1); 5681 // x = x | (x >> 2); 5682 // ... 5683 // x = x | (x >>16); 5684 // x = x | (x >>32); // for 64-bit input 5685 // return popcount(~x); 5686 // 5687 // but see also: http://www.hackersdelight.org/HDcode/nlz.cc 5688 MVT::ValueType VT = Op.getValueType(); 5689 MVT::ValueType ShVT = TLI.getShiftAmountTy(); 5690 unsigned len = MVT::getSizeInBits(VT); 5691 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) { 5692 SDOperand Tmp3 = DAG.getConstant(1ULL << i, ShVT); 5693 Op = DAG.getNode(ISD::OR, VT, Op, DAG.getNode(ISD::SRL, VT, Op, Tmp3)); 5694 } 5695 Op = DAG.getNode(ISD::XOR, VT, Op, DAG.getConstant(~0ULL, VT)); 5696 return DAG.getNode(ISD::CTPOP, VT, Op); 5697 } 5698 case ISD::CTTZ: { 5699 // for now, we use: { return popcount(~x & (x - 1)); } 5700 // unless the target has ctlz but not ctpop, in which case we use: 5701 // { return 32 - nlz(~x & (x-1)); } 5702 // see also http://www.hackersdelight.org/HDcode/ntz.cc 5703 MVT::ValueType VT = Op.getValueType(); 5704 SDOperand Tmp2 = DAG.getConstant(~0ULL, VT); 5705 SDOperand Tmp3 = DAG.getNode(ISD::AND, VT, 5706 DAG.getNode(ISD::XOR, VT, Op, Tmp2), 5707 DAG.getNode(ISD::SUB, VT, Op, DAG.getConstant(1, VT))); 5708 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 5709 if (!TLI.isOperationLegal(ISD::CTPOP, VT) && 5710 TLI.isOperationLegal(ISD::CTLZ, VT)) 5711 return DAG.getNode(ISD::SUB, VT, 5712 DAG.getConstant(MVT::getSizeInBits(VT), VT), 5713 DAG.getNode(ISD::CTLZ, VT, Tmp3)); 5714 return DAG.getNode(ISD::CTPOP, VT, Tmp3); 5715 } 5716 } 5717} 5718 5719/// ExpandOp - Expand the specified SDOperand into its two component pieces 5720/// Lo&Hi. Note that the Op MUST be an expanded type. As a result of this, the 5721/// LegalizeNodes map is filled in for any results that are not expanded, the 5722/// ExpandedNodes map is filled in for any results that are expanded, and the 5723/// Lo/Hi values are returned. 5724void SelectionDAGLegalize::ExpandOp(SDOperand Op, SDOperand &Lo, SDOperand &Hi){ 5725 MVT::ValueType VT = Op.getValueType(); 5726 MVT::ValueType NVT = TLI.getTypeToTransformTo(VT); 5727 SDNode *Node = Op.Val; 5728 assert(getTypeAction(VT) == Expand && "Not an expanded type!"); 5729 assert(((MVT::isInteger(NVT) && NVT < VT) || MVT::isFloatingPoint(VT) || 5730 MVT::isVector(VT)) && 5731 "Cannot expand to FP value or to larger int value!"); 5732 5733 // See if we already expanded it. 5734 DenseMap<SDOperand, std::pair<SDOperand, SDOperand> >::iterator I 5735 = ExpandedNodes.find(Op); 5736 if (I != ExpandedNodes.end()) { 5737 Lo = I->second.first; 5738 Hi = I->second.second; 5739 return; 5740 } 5741 5742 switch (Node->getOpcode()) { 5743 case ISD::CopyFromReg: 5744 assert(0 && "CopyFromReg must be legal!"); 5745 case ISD::FP_ROUND_INREG: 5746 if (VT == MVT::ppcf128 && 5747 TLI.getOperationAction(ISD::FP_ROUND_INREG, VT) == 5748 TargetLowering::Custom) { 5749 SDOperand SrcLo, SrcHi, Src; 5750 ExpandOp(Op.getOperand(0), SrcLo, SrcHi); 5751 Src = DAG.getNode(ISD::BUILD_PAIR, VT, SrcLo, SrcHi); 5752 SDOperand Result = TLI.LowerOperation( 5753 DAG.getNode(ISD::FP_ROUND_INREG, VT, Src, Op.getOperand(1)), DAG); 5754 assert(Result.Val->getOpcode() == ISD::BUILD_PAIR); 5755 Lo = Result.Val->getOperand(0); 5756 Hi = Result.Val->getOperand(1); 5757 break; 5758 } 5759 // fall through 5760 default: 5761#ifndef NDEBUG 5762 cerr << "NODE: "; Node->dump(&DAG); cerr << "\n"; 5763#endif 5764 assert(0 && "Do not know how to expand this operator!"); 5765 abort(); 5766 case ISD::EXTRACT_ELEMENT: 5767 ExpandOp(Node->getOperand(0), Lo, Hi); 5768 if (cast<ConstantSDNode>(Node->getOperand(1))->getValue()) 5769 return ExpandOp(Hi, Lo, Hi); 5770 return ExpandOp(Lo, Lo, Hi); 5771 case ISD::EXTRACT_VECTOR_ELT: 5772 assert(VT==MVT::i64 && "Do not know how to expand this operator!"); 5773 // ExpandEXTRACT_VECTOR_ELT tolerates invalid result types. 5774 Lo = ExpandEXTRACT_VECTOR_ELT(Op); 5775 return ExpandOp(Lo, Lo, Hi); 5776 case ISD::UNDEF: 5777 NVT = TLI.getTypeToExpandTo(VT); 5778 Lo = DAG.getNode(ISD::UNDEF, NVT); 5779 Hi = DAG.getNode(ISD::UNDEF, NVT); 5780 break; 5781 case ISD::Constant: { 5782 unsigned NVTBits = MVT::getSizeInBits(NVT); 5783 const APInt &Cst = cast<ConstantSDNode>(Node)->getAPIntValue(); 5784 Lo = DAG.getConstant(APInt(Cst).trunc(NVTBits), NVT); 5785 Hi = DAG.getConstant(Cst.lshr(NVTBits).trunc(NVTBits), NVT); 5786 break; 5787 } 5788 case ISD::ConstantFP: { 5789 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 5790 if (CFP->getValueType(0) == MVT::ppcf128) { 5791 APInt api = CFP->getValueAPF().convertToAPInt(); 5792 Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &api.getRawData()[1])), 5793 MVT::f64); 5794 Hi = DAG.getConstantFP(APFloat(APInt(64, 1, &api.getRawData()[0])), 5795 MVT::f64); 5796 break; 5797 } 5798 Lo = ExpandConstantFP(CFP, false, DAG, TLI); 5799 if (getTypeAction(Lo.getValueType()) == Expand) 5800 ExpandOp(Lo, Lo, Hi); 5801 break; 5802 } 5803 case ISD::BUILD_PAIR: 5804 // Return the operands. 5805 Lo = Node->getOperand(0); 5806 Hi = Node->getOperand(1); 5807 break; 5808 5809 case ISD::MERGE_VALUES: 5810 if (Node->getNumValues() == 1) { 5811 ExpandOp(Op.getOperand(0), Lo, Hi); 5812 break; 5813 } 5814 // FIXME: For now only expand i64,chain = MERGE_VALUES (x, y) 5815 assert(Op.ResNo == 0 && Node->getNumValues() == 2 && 5816 Op.getValue(1).getValueType() == MVT::Other && 5817 "unhandled MERGE_VALUES"); 5818 ExpandOp(Op.getOperand(0), Lo, Hi); 5819 // Remember that we legalized the chain. 5820 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Op.getOperand(1))); 5821 break; 5822 5823 case ISD::SIGN_EXTEND_INREG: 5824 ExpandOp(Node->getOperand(0), Lo, Hi); 5825 // sext_inreg the low part if needed. 5826 Lo = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Lo, Node->getOperand(1)); 5827 5828 // The high part gets the sign extension from the lo-part. This handles 5829 // things like sextinreg V:i64 from i8. 5830 Hi = DAG.getNode(ISD::SRA, NVT, Lo, 5831 DAG.getConstant(MVT::getSizeInBits(NVT)-1, 5832 TLI.getShiftAmountTy())); 5833 break; 5834 5835 case ISD::BSWAP: { 5836 ExpandOp(Node->getOperand(0), Lo, Hi); 5837 SDOperand TempLo = DAG.getNode(ISD::BSWAP, NVT, Hi); 5838 Hi = DAG.getNode(ISD::BSWAP, NVT, Lo); 5839 Lo = TempLo; 5840 break; 5841 } 5842 5843 case ISD::CTPOP: 5844 ExpandOp(Node->getOperand(0), Lo, Hi); 5845 Lo = DAG.getNode(ISD::ADD, NVT, // ctpop(HL) -> ctpop(H)+ctpop(L) 5846 DAG.getNode(ISD::CTPOP, NVT, Lo), 5847 DAG.getNode(ISD::CTPOP, NVT, Hi)); 5848 Hi = DAG.getConstant(0, NVT); 5849 break; 5850 5851 case ISD::CTLZ: { 5852 // ctlz (HL) -> ctlz(H) != 32 ? ctlz(H) : (ctlz(L)+32) 5853 ExpandOp(Node->getOperand(0), Lo, Hi); 5854 SDOperand BitsC = DAG.getConstant(MVT::getSizeInBits(NVT), NVT); 5855 SDOperand HLZ = DAG.getNode(ISD::CTLZ, NVT, Hi); 5856 SDOperand TopNotZero = DAG.getSetCC(TLI.getSetCCResultTy(), HLZ, BitsC, 5857 ISD::SETNE); 5858 SDOperand LowPart = DAG.getNode(ISD::CTLZ, NVT, Lo); 5859 LowPart = DAG.getNode(ISD::ADD, NVT, LowPart, BitsC); 5860 5861 Lo = DAG.getNode(ISD::SELECT, NVT, TopNotZero, HLZ, LowPart); 5862 Hi = DAG.getConstant(0, NVT); 5863 break; 5864 } 5865 5866 case ISD::CTTZ: { 5867 // cttz (HL) -> cttz(L) != 32 ? cttz(L) : (cttz(H)+32) 5868 ExpandOp(Node->getOperand(0), Lo, Hi); 5869 SDOperand BitsC = DAG.getConstant(MVT::getSizeInBits(NVT), NVT); 5870 SDOperand LTZ = DAG.getNode(ISD::CTTZ, NVT, Lo); 5871 SDOperand BotNotZero = DAG.getSetCC(TLI.getSetCCResultTy(), LTZ, BitsC, 5872 ISD::SETNE); 5873 SDOperand HiPart = DAG.getNode(ISD::CTTZ, NVT, Hi); 5874 HiPart = DAG.getNode(ISD::ADD, NVT, HiPart, BitsC); 5875 5876 Lo = DAG.getNode(ISD::SELECT, NVT, BotNotZero, LTZ, HiPart); 5877 Hi = DAG.getConstant(0, NVT); 5878 break; 5879 } 5880 5881 case ISD::VAARG: { 5882 SDOperand Ch = Node->getOperand(0); // Legalize the chain. 5883 SDOperand Ptr = Node->getOperand(1); // Legalize the pointer. 5884 Lo = DAG.getVAArg(NVT, Ch, Ptr, Node->getOperand(2)); 5885 Hi = DAG.getVAArg(NVT, Lo.getValue(1), Ptr, Node->getOperand(2)); 5886 5887 // Remember that we legalized the chain. 5888 Hi = LegalizeOp(Hi); 5889 AddLegalizedOperand(Op.getValue(1), Hi.getValue(1)); 5890 if (TLI.isBigEndian()) 5891 std::swap(Lo, Hi); 5892 break; 5893 } 5894 5895 case ISD::LOAD: { 5896 LoadSDNode *LD = cast<LoadSDNode>(Node); 5897 SDOperand Ch = LD->getChain(); // Legalize the chain. 5898 SDOperand Ptr = LD->getBasePtr(); // Legalize the pointer. 5899 ISD::LoadExtType ExtType = LD->getExtensionType(); 5900 int SVOffset = LD->getSrcValueOffset(); 5901 unsigned Alignment = LD->getAlignment(); 5902 bool isVolatile = LD->isVolatile(); 5903 5904 if (ExtType == ISD::NON_EXTLOAD) { 5905 Lo = DAG.getLoad(NVT, Ch, Ptr, LD->getSrcValue(), SVOffset, 5906 isVolatile, Alignment); 5907 if (VT == MVT::f32 || VT == MVT::f64) { 5908 // f32->i32 or f64->i64 one to one expansion. 5909 // Remember that we legalized the chain. 5910 AddLegalizedOperand(SDOperand(Node, 1), LegalizeOp(Lo.getValue(1))); 5911 // Recursively expand the new load. 5912 if (getTypeAction(NVT) == Expand) 5913 ExpandOp(Lo, Lo, Hi); 5914 break; 5915 } 5916 5917 // Increment the pointer to the other half. 5918 unsigned IncrementSize = MVT::getSizeInBits(Lo.getValueType())/8; 5919 Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, 5920 DAG.getIntPtrConstant(IncrementSize)); 5921 SVOffset += IncrementSize; 5922 Alignment = MinAlign(Alignment, IncrementSize); 5923 Hi = DAG.getLoad(NVT, Ch, Ptr, LD->getSrcValue(), SVOffset, 5924 isVolatile, Alignment); 5925 5926 // Build a factor node to remember that this load is independent of the 5927 // other one. 5928 SDOperand TF = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), 5929 Hi.getValue(1)); 5930 5931 // Remember that we legalized the chain. 5932 AddLegalizedOperand(Op.getValue(1), LegalizeOp(TF)); 5933 if (TLI.isBigEndian()) 5934 std::swap(Lo, Hi); 5935 } else { 5936 MVT::ValueType EVT = LD->getMemoryVT(); 5937 5938 if ((VT == MVT::f64 && EVT == MVT::f32) || 5939 (VT == MVT::ppcf128 && (EVT==MVT::f64 || EVT==MVT::f32))) { 5940 // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND 5941 SDOperand Load = DAG.getLoad(EVT, Ch, Ptr, LD->getSrcValue(), 5942 SVOffset, isVolatile, Alignment); 5943 // Remember that we legalized the chain. 5944 AddLegalizedOperand(SDOperand(Node, 1), LegalizeOp(Load.getValue(1))); 5945 ExpandOp(DAG.getNode(ISD::FP_EXTEND, VT, Load), Lo, Hi); 5946 break; 5947 } 5948 5949 if (EVT == NVT) 5950 Lo = DAG.getLoad(NVT, Ch, Ptr, LD->getSrcValue(), 5951 SVOffset, isVolatile, Alignment); 5952 else 5953 Lo = DAG.getExtLoad(ExtType, NVT, Ch, Ptr, LD->getSrcValue(), 5954 SVOffset, EVT, isVolatile, 5955 Alignment); 5956 5957 // Remember that we legalized the chain. 5958 AddLegalizedOperand(SDOperand(Node, 1), LegalizeOp(Lo.getValue(1))); 5959 5960 if (ExtType == ISD::SEXTLOAD) { 5961 // The high part is obtained by SRA'ing all but one of the bits of the 5962 // lo part. 5963 unsigned LoSize = MVT::getSizeInBits(Lo.getValueType()); 5964 Hi = DAG.getNode(ISD::SRA, NVT, Lo, 5965 DAG.getConstant(LoSize-1, TLI.getShiftAmountTy())); 5966 } else if (ExtType == ISD::ZEXTLOAD) { 5967 // The high part is just a zero. 5968 Hi = DAG.getConstant(0, NVT); 5969 } else /* if (ExtType == ISD::EXTLOAD) */ { 5970 // The high part is undefined. 5971 Hi = DAG.getNode(ISD::UNDEF, NVT); 5972 } 5973 } 5974 break; 5975 } 5976 case ISD::AND: 5977 case ISD::OR: 5978 case ISD::XOR: { // Simple logical operators -> two trivial pieces. 5979 SDOperand LL, LH, RL, RH; 5980 ExpandOp(Node->getOperand(0), LL, LH); 5981 ExpandOp(Node->getOperand(1), RL, RH); 5982 Lo = DAG.getNode(Node->getOpcode(), NVT, LL, RL); 5983 Hi = DAG.getNode(Node->getOpcode(), NVT, LH, RH); 5984 break; 5985 } 5986 case ISD::SELECT: { 5987 SDOperand LL, LH, RL, RH; 5988 ExpandOp(Node->getOperand(1), LL, LH); 5989 ExpandOp(Node->getOperand(2), RL, RH); 5990 if (getTypeAction(NVT) == Expand) 5991 NVT = TLI.getTypeToExpandTo(NVT); 5992 Lo = DAG.getNode(ISD::SELECT, NVT, Node->getOperand(0), LL, RL); 5993 if (VT != MVT::f32) 5994 Hi = DAG.getNode(ISD::SELECT, NVT, Node->getOperand(0), LH, RH); 5995 break; 5996 } 5997 case ISD::SELECT_CC: { 5998 SDOperand TL, TH, FL, FH; 5999 ExpandOp(Node->getOperand(2), TL, TH); 6000 ExpandOp(Node->getOperand(3), FL, FH); 6001 if (getTypeAction(NVT) == Expand) 6002 NVT = TLI.getTypeToExpandTo(NVT); 6003 Lo = DAG.getNode(ISD::SELECT_CC, NVT, Node->getOperand(0), 6004 Node->getOperand(1), TL, FL, Node->getOperand(4)); 6005 if (VT != MVT::f32) 6006 Hi = DAG.getNode(ISD::SELECT_CC, NVT, Node->getOperand(0), 6007 Node->getOperand(1), TH, FH, Node->getOperand(4)); 6008 break; 6009 } 6010 case ISD::ANY_EXTEND: 6011 // The low part is any extension of the input (which degenerates to a copy). 6012 Lo = DAG.getNode(ISD::ANY_EXTEND, NVT, Node->getOperand(0)); 6013 // The high part is undefined. 6014 Hi = DAG.getNode(ISD::UNDEF, NVT); 6015 break; 6016 case ISD::SIGN_EXTEND: { 6017 // The low part is just a sign extension of the input (which degenerates to 6018 // a copy). 6019 Lo = DAG.getNode(ISD::SIGN_EXTEND, NVT, Node->getOperand(0)); 6020 6021 // The high part is obtained by SRA'ing all but one of the bits of the lo 6022 // part. 6023 unsigned LoSize = MVT::getSizeInBits(Lo.getValueType()); 6024 Hi = DAG.getNode(ISD::SRA, NVT, Lo, 6025 DAG.getConstant(LoSize-1, TLI.getShiftAmountTy())); 6026 break; 6027 } 6028 case ISD::ZERO_EXTEND: 6029 // The low part is just a zero extension of the input (which degenerates to 6030 // a copy). 6031 Lo = DAG.getNode(ISD::ZERO_EXTEND, NVT, Node->getOperand(0)); 6032 6033 // The high part is just a zero. 6034 Hi = DAG.getConstant(0, NVT); 6035 break; 6036 6037 case ISD::TRUNCATE: { 6038 // The input value must be larger than this value. Expand *it*. 6039 SDOperand NewLo; 6040 ExpandOp(Node->getOperand(0), NewLo, Hi); 6041 6042 // The low part is now either the right size, or it is closer. If not the 6043 // right size, make an illegal truncate so we recursively expand it. 6044 if (NewLo.getValueType() != Node->getValueType(0)) 6045 NewLo = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), NewLo); 6046 ExpandOp(NewLo, Lo, Hi); 6047 break; 6048 } 6049 6050 case ISD::BIT_CONVERT: { 6051 SDOperand Tmp; 6052 if (TLI.getOperationAction(ISD::BIT_CONVERT, VT) == TargetLowering::Custom){ 6053 // If the target wants to, allow it to lower this itself. 6054 switch (getTypeAction(Node->getOperand(0).getValueType())) { 6055 case Expand: assert(0 && "cannot expand FP!"); 6056 case Legal: Tmp = LegalizeOp(Node->getOperand(0)); break; 6057 case Promote: Tmp = PromoteOp (Node->getOperand(0)); break; 6058 } 6059 Tmp = TLI.LowerOperation(DAG.getNode(ISD::BIT_CONVERT, VT, Tmp), DAG); 6060 } 6061 6062 // f32 / f64 must be expanded to i32 / i64. 6063 if (VT == MVT::f32 || VT == MVT::f64) { 6064 Lo = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0)); 6065 if (getTypeAction(NVT) == Expand) 6066 ExpandOp(Lo, Lo, Hi); 6067 break; 6068 } 6069 6070 // If source operand will be expanded to the same type as VT, i.e. 6071 // i64 <- f64, i32 <- f32, expand the source operand instead. 6072 MVT::ValueType VT0 = Node->getOperand(0).getValueType(); 6073 if (getTypeAction(VT0) == Expand && TLI.getTypeToTransformTo(VT0) == VT) { 6074 ExpandOp(Node->getOperand(0), Lo, Hi); 6075 break; 6076 } 6077 6078 // Turn this into a load/store pair by default. 6079 if (Tmp.Val == 0) 6080 Tmp = EmitStackConvert(Node->getOperand(0), VT, VT); 6081 6082 ExpandOp(Tmp, Lo, Hi); 6083 break; 6084 } 6085 6086 case ISD::READCYCLECOUNTER: { 6087 assert(TLI.getOperationAction(ISD::READCYCLECOUNTER, VT) == 6088 TargetLowering::Custom && 6089 "Must custom expand ReadCycleCounter"); 6090 SDOperand Tmp = TLI.LowerOperation(Op, DAG); 6091 assert(Tmp.Val && "Node must be custom expanded!"); 6092 ExpandOp(Tmp.getValue(0), Lo, Hi); 6093 AddLegalizedOperand(SDOperand(Node, 1), // Remember we legalized the chain. 6094 LegalizeOp(Tmp.getValue(1))); 6095 break; 6096 } 6097 6098 case ISD::ATOMIC_LCS: { 6099 SDOperand Tmp = TLI.LowerOperation(Op, DAG); 6100 assert(Tmp.Val && "Node must be custom expanded!"); 6101 ExpandOp(Tmp.getValue(0), Lo, Hi); 6102 AddLegalizedOperand(SDOperand(Node, 1), // Remember we legalized the chain. 6103 LegalizeOp(Tmp.getValue(1))); 6104 break; 6105 } 6106 6107 6108 6109 // These operators cannot be expanded directly, emit them as calls to 6110 // library functions. 6111 case ISD::FP_TO_SINT: { 6112 if (TLI.getOperationAction(ISD::FP_TO_SINT, VT) == TargetLowering::Custom) { 6113 SDOperand Op; 6114 switch (getTypeAction(Node->getOperand(0).getValueType())) { 6115 case Expand: assert(0 && "cannot expand FP!"); 6116 case Legal: Op = LegalizeOp(Node->getOperand(0)); break; 6117 case Promote: Op = PromoteOp (Node->getOperand(0)); break; 6118 } 6119 6120 Op = TLI.LowerOperation(DAG.getNode(ISD::FP_TO_SINT, VT, Op), DAG); 6121 6122 // Now that the custom expander is done, expand the result, which is still 6123 // VT. 6124 if (Op.Val) { 6125 ExpandOp(Op, Lo, Hi); 6126 break; 6127 } 6128 } 6129 6130 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 6131 if (Node->getOperand(0).getValueType() == MVT::f32) 6132 LC = RTLIB::FPTOSINT_F32_I64; 6133 else if (Node->getOperand(0).getValueType() == MVT::f64) 6134 LC = RTLIB::FPTOSINT_F64_I64; 6135 else if (Node->getOperand(0).getValueType() == MVT::f80) 6136 LC = RTLIB::FPTOSINT_F80_I64; 6137 else if (Node->getOperand(0).getValueType() == MVT::ppcf128) 6138 LC = RTLIB::FPTOSINT_PPCF128_I64; 6139 Lo = ExpandLibCall(TLI.getLibcallName(LC), Node, 6140 false/*sign irrelevant*/, Hi); 6141 break; 6142 } 6143 6144 case ISD::FP_TO_UINT: { 6145 if (TLI.getOperationAction(ISD::FP_TO_UINT, VT) == TargetLowering::Custom) { 6146 SDOperand Op; 6147 switch (getTypeAction(Node->getOperand(0).getValueType())) { 6148 case Expand: assert(0 && "cannot expand FP!"); 6149 case Legal: Op = LegalizeOp(Node->getOperand(0)); break; 6150 case Promote: Op = PromoteOp (Node->getOperand(0)); break; 6151 } 6152 6153 Op = TLI.LowerOperation(DAG.getNode(ISD::FP_TO_UINT, VT, Op), DAG); 6154 6155 // Now that the custom expander is done, expand the result. 6156 if (Op.Val) { 6157 ExpandOp(Op, Lo, Hi); 6158 break; 6159 } 6160 } 6161 6162 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 6163 if (Node->getOperand(0).getValueType() == MVT::f32) 6164 LC = RTLIB::FPTOUINT_F32_I64; 6165 else if (Node->getOperand(0).getValueType() == MVT::f64) 6166 LC = RTLIB::FPTOUINT_F64_I64; 6167 else if (Node->getOperand(0).getValueType() == MVT::f80) 6168 LC = RTLIB::FPTOUINT_F80_I64; 6169 else if (Node->getOperand(0).getValueType() == MVT::ppcf128) 6170 LC = RTLIB::FPTOUINT_PPCF128_I64; 6171 Lo = ExpandLibCall(TLI.getLibcallName(LC), Node, 6172 false/*sign irrelevant*/, Hi); 6173 break; 6174 } 6175 6176 case ISD::SHL: { 6177 // If the target wants custom lowering, do so. 6178 SDOperand ShiftAmt = LegalizeOp(Node->getOperand(1)); 6179 if (TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Custom) { 6180 SDOperand Op = DAG.getNode(ISD::SHL, VT, Node->getOperand(0), ShiftAmt); 6181 Op = TLI.LowerOperation(Op, DAG); 6182 if (Op.Val) { 6183 // Now that the custom expander is done, expand the result, which is 6184 // still VT. 6185 ExpandOp(Op, Lo, Hi); 6186 break; 6187 } 6188 } 6189 6190 // If ADDC/ADDE are supported and if the shift amount is a constant 1, emit 6191 // this X << 1 as X+X. 6192 if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(ShiftAmt)) { 6193 if (ShAmt->getValue() == 1 && TLI.isOperationLegal(ISD::ADDC, NVT) && 6194 TLI.isOperationLegal(ISD::ADDE, NVT)) { 6195 SDOperand LoOps[2], HiOps[3]; 6196 ExpandOp(Node->getOperand(0), LoOps[0], HiOps[0]); 6197 SDVTList VTList = DAG.getVTList(LoOps[0].getValueType(), MVT::Flag); 6198 LoOps[1] = LoOps[0]; 6199 Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2); 6200 6201 HiOps[1] = HiOps[0]; 6202 HiOps[2] = Lo.getValue(1); 6203 Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3); 6204 break; 6205 } 6206 } 6207 6208 // If we can emit an efficient shift operation, do so now. 6209 if (ExpandShift(ISD::SHL, Node->getOperand(0), ShiftAmt, Lo, Hi)) 6210 break; 6211 6212 // If this target supports SHL_PARTS, use it. 6213 TargetLowering::LegalizeAction Action = 6214 TLI.getOperationAction(ISD::SHL_PARTS, NVT); 6215 if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) || 6216 Action == TargetLowering::Custom) { 6217 ExpandShiftParts(ISD::SHL_PARTS, Node->getOperand(0), ShiftAmt, Lo, Hi); 6218 break; 6219 } 6220 6221 // Otherwise, emit a libcall. 6222 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SHL_I64), Node, 6223 false/*left shift=unsigned*/, Hi); 6224 break; 6225 } 6226 6227 case ISD::SRA: { 6228 // If the target wants custom lowering, do so. 6229 SDOperand ShiftAmt = LegalizeOp(Node->getOperand(1)); 6230 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Custom) { 6231 SDOperand Op = DAG.getNode(ISD::SRA, VT, Node->getOperand(0), ShiftAmt); 6232 Op = TLI.LowerOperation(Op, DAG); 6233 if (Op.Val) { 6234 // Now that the custom expander is done, expand the result, which is 6235 // still VT. 6236 ExpandOp(Op, Lo, Hi); 6237 break; 6238 } 6239 } 6240 6241 // If we can emit an efficient shift operation, do so now. 6242 if (ExpandShift(ISD::SRA, Node->getOperand(0), ShiftAmt, Lo, Hi)) 6243 break; 6244 6245 // If this target supports SRA_PARTS, use it. 6246 TargetLowering::LegalizeAction Action = 6247 TLI.getOperationAction(ISD::SRA_PARTS, NVT); 6248 if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) || 6249 Action == TargetLowering::Custom) { 6250 ExpandShiftParts(ISD::SRA_PARTS, Node->getOperand(0), ShiftAmt, Lo, Hi); 6251 break; 6252 } 6253 6254 // Otherwise, emit a libcall. 6255 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SRA_I64), Node, 6256 true/*ashr is signed*/, Hi); 6257 break; 6258 } 6259 6260 case ISD::SRL: { 6261 // If the target wants custom lowering, do so. 6262 SDOperand ShiftAmt = LegalizeOp(Node->getOperand(1)); 6263 if (TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Custom) { 6264 SDOperand Op = DAG.getNode(ISD::SRL, VT, Node->getOperand(0), ShiftAmt); 6265 Op = TLI.LowerOperation(Op, DAG); 6266 if (Op.Val) { 6267 // Now that the custom expander is done, expand the result, which is 6268 // still VT. 6269 ExpandOp(Op, Lo, Hi); 6270 break; 6271 } 6272 } 6273 6274 // If we can emit an efficient shift operation, do so now. 6275 if (ExpandShift(ISD::SRL, Node->getOperand(0), ShiftAmt, Lo, Hi)) 6276 break; 6277 6278 // If this target supports SRL_PARTS, use it. 6279 TargetLowering::LegalizeAction Action = 6280 TLI.getOperationAction(ISD::SRL_PARTS, NVT); 6281 if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) || 6282 Action == TargetLowering::Custom) { 6283 ExpandShiftParts(ISD::SRL_PARTS, Node->getOperand(0), ShiftAmt, Lo, Hi); 6284 break; 6285 } 6286 6287 // Otherwise, emit a libcall. 6288 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SRL_I64), Node, 6289 false/*lshr is unsigned*/, Hi); 6290 break; 6291 } 6292 6293 case ISD::ADD: 6294 case ISD::SUB: { 6295 // If the target wants to custom expand this, let them. 6296 if (TLI.getOperationAction(Node->getOpcode(), VT) == 6297 TargetLowering::Custom) { 6298 Op = TLI.LowerOperation(Op, DAG); 6299 if (Op.Val) { 6300 ExpandOp(Op, Lo, Hi); 6301 break; 6302 } 6303 } 6304 6305 // Expand the subcomponents. 6306 SDOperand LHSL, LHSH, RHSL, RHSH; 6307 ExpandOp(Node->getOperand(0), LHSL, LHSH); 6308 ExpandOp(Node->getOperand(1), RHSL, RHSH); 6309 SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); 6310 SDOperand LoOps[2], HiOps[3]; 6311 LoOps[0] = LHSL; 6312 LoOps[1] = RHSL; 6313 HiOps[0] = LHSH; 6314 HiOps[1] = RHSH; 6315 if (Node->getOpcode() == ISD::ADD) { 6316 Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2); 6317 HiOps[2] = Lo.getValue(1); 6318 Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3); 6319 } else { 6320 Lo = DAG.getNode(ISD::SUBC, VTList, LoOps, 2); 6321 HiOps[2] = Lo.getValue(1); 6322 Hi = DAG.getNode(ISD::SUBE, VTList, HiOps, 3); 6323 } 6324 break; 6325 } 6326 6327 case ISD::ADDC: 6328 case ISD::SUBC: { 6329 // Expand the subcomponents. 6330 SDOperand LHSL, LHSH, RHSL, RHSH; 6331 ExpandOp(Node->getOperand(0), LHSL, LHSH); 6332 ExpandOp(Node->getOperand(1), RHSL, RHSH); 6333 SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); 6334 SDOperand LoOps[2] = { LHSL, RHSL }; 6335 SDOperand HiOps[3] = { LHSH, RHSH }; 6336 6337 if (Node->getOpcode() == ISD::ADDC) { 6338 Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2); 6339 HiOps[2] = Lo.getValue(1); 6340 Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3); 6341 } else { 6342 Lo = DAG.getNode(ISD::SUBC, VTList, LoOps, 2); 6343 HiOps[2] = Lo.getValue(1); 6344 Hi = DAG.getNode(ISD::SUBE, VTList, HiOps, 3); 6345 } 6346 // Remember that we legalized the flag. 6347 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Hi.getValue(1))); 6348 break; 6349 } 6350 case ISD::ADDE: 6351 case ISD::SUBE: { 6352 // Expand the subcomponents. 6353 SDOperand LHSL, LHSH, RHSL, RHSH; 6354 ExpandOp(Node->getOperand(0), LHSL, LHSH); 6355 ExpandOp(Node->getOperand(1), RHSL, RHSH); 6356 SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); 6357 SDOperand LoOps[3] = { LHSL, RHSL, Node->getOperand(2) }; 6358 SDOperand HiOps[3] = { LHSH, RHSH }; 6359 6360 Lo = DAG.getNode(Node->getOpcode(), VTList, LoOps, 3); 6361 HiOps[2] = Lo.getValue(1); 6362 Hi = DAG.getNode(Node->getOpcode(), VTList, HiOps, 3); 6363 6364 // Remember that we legalized the flag. 6365 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Hi.getValue(1))); 6366 break; 6367 } 6368 case ISD::MUL: { 6369 // If the target wants to custom expand this, let them. 6370 if (TLI.getOperationAction(ISD::MUL, VT) == TargetLowering::Custom) { 6371 SDOperand New = TLI.LowerOperation(Op, DAG); 6372 if (New.Val) { 6373 ExpandOp(New, Lo, Hi); 6374 break; 6375 } 6376 } 6377 6378 bool HasMULHS = TLI.isOperationLegal(ISD::MULHS, NVT); 6379 bool HasMULHU = TLI.isOperationLegal(ISD::MULHU, NVT); 6380 bool HasSMUL_LOHI = TLI.isOperationLegal(ISD::SMUL_LOHI, NVT); 6381 bool HasUMUL_LOHI = TLI.isOperationLegal(ISD::UMUL_LOHI, NVT); 6382 if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) { 6383 SDOperand LL, LH, RL, RH; 6384 ExpandOp(Node->getOperand(0), LL, LH); 6385 ExpandOp(Node->getOperand(1), RL, RH); 6386 unsigned OuterBitSize = Op.getValueSizeInBits(); 6387 unsigned InnerBitSize = RH.getValueSizeInBits(); 6388 unsigned LHSSB = DAG.ComputeNumSignBits(Op.getOperand(0)); 6389 unsigned RHSSB = DAG.ComputeNumSignBits(Op.getOperand(1)); 6390 if (DAG.MaskedValueIsZero(Op.getOperand(0), 6391 APInt::getHighBitsSet(OuterBitSize, LHSSB)) && 6392 DAG.MaskedValueIsZero(Op.getOperand(1), 6393 APInt::getHighBitsSet(OuterBitSize, RHSSB))) { 6394 // The inputs are both zero-extended. 6395 if (HasUMUL_LOHI) { 6396 // We can emit a umul_lohi. 6397 Lo = DAG.getNode(ISD::UMUL_LOHI, DAG.getVTList(NVT, NVT), LL, RL); 6398 Hi = SDOperand(Lo.Val, 1); 6399 break; 6400 } 6401 if (HasMULHU) { 6402 // We can emit a mulhu+mul. 6403 Lo = DAG.getNode(ISD::MUL, NVT, LL, RL); 6404 Hi = DAG.getNode(ISD::MULHU, NVT, LL, RL); 6405 break; 6406 } 6407 } 6408 if (LHSSB > InnerBitSize && RHSSB > InnerBitSize) { 6409 // The input values are both sign-extended. 6410 if (HasSMUL_LOHI) { 6411 // We can emit a smul_lohi. 6412 Lo = DAG.getNode(ISD::SMUL_LOHI, DAG.getVTList(NVT, NVT), LL, RL); 6413 Hi = SDOperand(Lo.Val, 1); 6414 break; 6415 } 6416 if (HasMULHS) { 6417 // We can emit a mulhs+mul. 6418 Lo = DAG.getNode(ISD::MUL, NVT, LL, RL); 6419 Hi = DAG.getNode(ISD::MULHS, NVT, LL, RL); 6420 break; 6421 } 6422 } 6423 if (HasUMUL_LOHI) { 6424 // Lo,Hi = umul LHS, RHS. 6425 SDOperand UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, 6426 DAG.getVTList(NVT, NVT), LL, RL); 6427 Lo = UMulLOHI; 6428 Hi = UMulLOHI.getValue(1); 6429 RH = DAG.getNode(ISD::MUL, NVT, LL, RH); 6430 LH = DAG.getNode(ISD::MUL, NVT, LH, RL); 6431 Hi = DAG.getNode(ISD::ADD, NVT, Hi, RH); 6432 Hi = DAG.getNode(ISD::ADD, NVT, Hi, LH); 6433 break; 6434 } 6435 if (HasMULHU) { 6436 Lo = DAG.getNode(ISD::MUL, NVT, LL, RL); 6437 Hi = DAG.getNode(ISD::MULHU, NVT, LL, RL); 6438 RH = DAG.getNode(ISD::MUL, NVT, LL, RH); 6439 LH = DAG.getNode(ISD::MUL, NVT, LH, RL); 6440 Hi = DAG.getNode(ISD::ADD, NVT, Hi, RH); 6441 Hi = DAG.getNode(ISD::ADD, NVT, Hi, LH); 6442 break; 6443 } 6444 } 6445 6446 // If nothing else, we can make a libcall. 6447 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::MUL_I64), Node, 6448 false/*sign irrelevant*/, Hi); 6449 break; 6450 } 6451 case ISD::SDIV: 6452 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SDIV_I64), Node, true, Hi); 6453 break; 6454 case ISD::UDIV: 6455 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::UDIV_I64), Node, true, Hi); 6456 break; 6457 case ISD::SREM: 6458 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SREM_I64), Node, true, Hi); 6459 break; 6460 case ISD::UREM: 6461 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::UREM_I64), Node, true, Hi); 6462 break; 6463 6464 case ISD::FADD: 6465 Lo = ExpandLibCall(TLI.getLibcallName(GetFPLibCall(VT, RTLIB::ADD_F32, 6466 RTLIB::ADD_F64, 6467 RTLIB::ADD_F80, 6468 RTLIB::ADD_PPCF128)), 6469 Node, false, Hi); 6470 break; 6471 case ISD::FSUB: 6472 Lo = ExpandLibCall(TLI.getLibcallName(GetFPLibCall(VT, RTLIB::SUB_F32, 6473 RTLIB::SUB_F64, 6474 RTLIB::SUB_F80, 6475 RTLIB::SUB_PPCF128)), 6476 Node, false, Hi); 6477 break; 6478 case ISD::FMUL: 6479 Lo = ExpandLibCall(TLI.getLibcallName(GetFPLibCall(VT, RTLIB::MUL_F32, 6480 RTLIB::MUL_F64, 6481 RTLIB::MUL_F80, 6482 RTLIB::MUL_PPCF128)), 6483 Node, false, Hi); 6484 break; 6485 case ISD::FDIV: 6486 Lo = ExpandLibCall(TLI.getLibcallName(GetFPLibCall(VT, RTLIB::DIV_F32, 6487 RTLIB::DIV_F64, 6488 RTLIB::DIV_F80, 6489 RTLIB::DIV_PPCF128)), 6490 Node, false, Hi); 6491 break; 6492 case ISD::FP_EXTEND: 6493 if (VT == MVT::ppcf128) { 6494 assert(Node->getOperand(0).getValueType()==MVT::f32 || 6495 Node->getOperand(0).getValueType()==MVT::f64); 6496 const uint64_t zero = 0; 6497 if (Node->getOperand(0).getValueType()==MVT::f32) 6498 Hi = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Node->getOperand(0)); 6499 else 6500 Hi = Node->getOperand(0); 6501 Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &zero)), MVT::f64); 6502 break; 6503 } 6504 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::FPEXT_F32_F64), Node, true,Hi); 6505 break; 6506 case ISD::FP_ROUND: 6507 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::FPROUND_F64_F32),Node,true,Hi); 6508 break; 6509 case ISD::FPOWI: 6510 Lo = ExpandLibCall(TLI.getLibcallName(GetFPLibCall(VT, RTLIB::POWI_F32, 6511 RTLIB::POWI_F64, 6512 RTLIB::POWI_F80, 6513 RTLIB::POWI_PPCF128)), 6514 Node, false, Hi); 6515 break; 6516 case ISD::FSQRT: 6517 case ISD::FSIN: 6518 case ISD::FCOS: { 6519 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 6520 switch(Node->getOpcode()) { 6521 case ISD::FSQRT: 6522 LC = GetFPLibCall(VT, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 6523 RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128); 6524 break; 6525 case ISD::FSIN: 6526 LC = GetFPLibCall(VT, RTLIB::SIN_F32, RTLIB::SIN_F64, 6527 RTLIB::SIN_F80, RTLIB::SIN_PPCF128); 6528 break; 6529 case ISD::FCOS: 6530 LC = GetFPLibCall(VT, RTLIB::COS_F32, RTLIB::COS_F64, 6531 RTLIB::COS_F80, RTLIB::COS_PPCF128); 6532 break; 6533 default: assert(0 && "Unreachable!"); 6534 } 6535 Lo = ExpandLibCall(TLI.getLibcallName(LC), Node, false, Hi); 6536 break; 6537 } 6538 case ISD::FABS: { 6539 if (VT == MVT::ppcf128) { 6540 SDOperand Tmp; 6541 ExpandOp(Node->getOperand(0), Lo, Tmp); 6542 Hi = DAG.getNode(ISD::FABS, NVT, Tmp); 6543 // lo = hi==fabs(hi) ? lo : -lo; 6544 Lo = DAG.getNode(ISD::SELECT_CC, NVT, Hi, Tmp, 6545 Lo, DAG.getNode(ISD::FNEG, NVT, Lo), 6546 DAG.getCondCode(ISD::SETEQ)); 6547 break; 6548 } 6549 SDOperand Mask = (VT == MVT::f64) 6550 ? DAG.getConstantFP(BitsToDouble(~(1ULL << 63)), VT) 6551 : DAG.getConstantFP(BitsToFloat(~(1U << 31)), VT); 6552 Mask = DAG.getNode(ISD::BIT_CONVERT, NVT, Mask); 6553 Lo = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0)); 6554 Lo = DAG.getNode(ISD::AND, NVT, Lo, Mask); 6555 if (getTypeAction(NVT) == Expand) 6556 ExpandOp(Lo, Lo, Hi); 6557 break; 6558 } 6559 case ISD::FNEG: { 6560 if (VT == MVT::ppcf128) { 6561 ExpandOp(Node->getOperand(0), Lo, Hi); 6562 Lo = DAG.getNode(ISD::FNEG, MVT::f64, Lo); 6563 Hi = DAG.getNode(ISD::FNEG, MVT::f64, Hi); 6564 break; 6565 } 6566 SDOperand Mask = (VT == MVT::f64) 6567 ? DAG.getConstantFP(BitsToDouble(1ULL << 63), VT) 6568 : DAG.getConstantFP(BitsToFloat(1U << 31), VT); 6569 Mask = DAG.getNode(ISD::BIT_CONVERT, NVT, Mask); 6570 Lo = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0)); 6571 Lo = DAG.getNode(ISD::XOR, NVT, Lo, Mask); 6572 if (getTypeAction(NVT) == Expand) 6573 ExpandOp(Lo, Lo, Hi); 6574 break; 6575 } 6576 case ISD::FCOPYSIGN: { 6577 Lo = ExpandFCOPYSIGNToBitwiseOps(Node, NVT, DAG, TLI); 6578 if (getTypeAction(NVT) == Expand) 6579 ExpandOp(Lo, Lo, Hi); 6580 break; 6581 } 6582 case ISD::SINT_TO_FP: 6583 case ISD::UINT_TO_FP: { 6584 bool isSigned = Node->getOpcode() == ISD::SINT_TO_FP; 6585 MVT::ValueType SrcVT = Node->getOperand(0).getValueType(); 6586 if (VT == MVT::ppcf128 && SrcVT != MVT::i64) { 6587 static const uint64_t zero = 0; 6588 if (isSigned) { 6589 Hi = LegalizeOp(DAG.getNode(ISD::SINT_TO_FP, MVT::f64, 6590 Node->getOperand(0))); 6591 Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &zero)), MVT::f64); 6592 } else { 6593 static const uint64_t TwoE32[] = { 0x41f0000000000000LL, 0 }; 6594 Hi = LegalizeOp(DAG.getNode(ISD::SINT_TO_FP, MVT::f64, 6595 Node->getOperand(0))); 6596 Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &zero)), MVT::f64); 6597 Hi = DAG.getNode(ISD::BUILD_PAIR, VT, Lo, Hi); 6598 // X>=0 ? {(f64)x, 0} : {(f64)x, 0} + 2^32 6599 ExpandOp(DAG.getNode(ISD::SELECT_CC, MVT::ppcf128, Node->getOperand(0), 6600 DAG.getConstant(0, MVT::i32), 6601 DAG.getNode(ISD::FADD, MVT::ppcf128, Hi, 6602 DAG.getConstantFP( 6603 APFloat(APInt(128, 2, TwoE32)), 6604 MVT::ppcf128)), 6605 Hi, 6606 DAG.getCondCode(ISD::SETLT)), 6607 Lo, Hi); 6608 } 6609 break; 6610 } 6611 if (VT == MVT::ppcf128 && SrcVT == MVT::i64 && !isSigned) { 6612 // si64->ppcf128 done by libcall, below 6613 static const uint64_t TwoE64[] = { 0x43f0000000000000LL, 0 }; 6614 ExpandOp(DAG.getNode(ISD::SINT_TO_FP, MVT::ppcf128, Node->getOperand(0)), 6615 Lo, Hi); 6616 Hi = DAG.getNode(ISD::BUILD_PAIR, VT, Lo, Hi); 6617 // x>=0 ? (ppcf128)(i64)x : (ppcf128)(i64)x + 2^64 6618 ExpandOp(DAG.getNode(ISD::SELECT_CC, MVT::ppcf128, Node->getOperand(0), 6619 DAG.getConstant(0, MVT::i64), 6620 DAG.getNode(ISD::FADD, MVT::ppcf128, Hi, 6621 DAG.getConstantFP( 6622 APFloat(APInt(128, 2, TwoE64)), 6623 MVT::ppcf128)), 6624 Hi, 6625 DAG.getCondCode(ISD::SETLT)), 6626 Lo, Hi); 6627 break; 6628 } 6629 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 6630 if (Node->getOperand(0).getValueType() == MVT::i64) { 6631 if (VT == MVT::f32) 6632 LC = isSigned ? RTLIB::SINTTOFP_I64_F32 : RTLIB::UINTTOFP_I64_F32; 6633 else if (VT == MVT::f64) 6634 LC = isSigned ? RTLIB::SINTTOFP_I64_F64 : RTLIB::UINTTOFP_I64_F64; 6635 else if (VT == MVT::f80) { 6636 assert(isSigned); 6637 LC = RTLIB::SINTTOFP_I64_F80; 6638 } 6639 else if (VT == MVT::ppcf128) { 6640 assert(isSigned); 6641 LC = RTLIB::SINTTOFP_I64_PPCF128; 6642 } 6643 } else { 6644 if (VT == MVT::f32) 6645 LC = isSigned ? RTLIB::SINTTOFP_I32_F32 : RTLIB::UINTTOFP_I32_F32; 6646 else 6647 LC = isSigned ? RTLIB::SINTTOFP_I32_F64 : RTLIB::UINTTOFP_I32_F64; 6648 } 6649 6650 // Promote the operand if needed. 6651 if (getTypeAction(SrcVT) == Promote) { 6652 SDOperand Tmp = PromoteOp(Node->getOperand(0)); 6653 Tmp = isSigned 6654 ? DAG.getNode(ISD::SIGN_EXTEND_INREG, Tmp.getValueType(), Tmp, 6655 DAG.getValueType(SrcVT)) 6656 : DAG.getZeroExtendInReg(Tmp, SrcVT); 6657 Node = DAG.UpdateNodeOperands(Op, Tmp).Val; 6658 } 6659 6660 const char *LibCall = TLI.getLibcallName(LC); 6661 if (LibCall) 6662 Lo = ExpandLibCall(TLI.getLibcallName(LC), Node, isSigned, Hi); 6663 else { 6664 Lo = ExpandIntToFP(Node->getOpcode() == ISD::SINT_TO_FP, VT, 6665 Node->getOperand(0)); 6666 if (getTypeAction(Lo.getValueType()) == Expand) 6667 ExpandOp(Lo, Lo, Hi); 6668 } 6669 break; 6670 } 6671 } 6672 6673 // Make sure the resultant values have been legalized themselves, unless this 6674 // is a type that requires multi-step expansion. 6675 if (getTypeAction(NVT) != Expand && NVT != MVT::isVoid) { 6676 Lo = LegalizeOp(Lo); 6677 if (Hi.Val) 6678 // Don't legalize the high part if it is expanded to a single node. 6679 Hi = LegalizeOp(Hi); 6680 } 6681 6682 // Remember in a map if the values will be reused later. 6683 bool isNew = ExpandedNodes.insert(std::make_pair(Op, std::make_pair(Lo, Hi))); 6684 assert(isNew && "Value already expanded?!?"); 6685} 6686 6687/// SplitVectorOp - Given an operand of vector type, break it down into 6688/// two smaller values, still of vector type. 6689void SelectionDAGLegalize::SplitVectorOp(SDOperand Op, SDOperand &Lo, 6690 SDOperand &Hi) { 6691 assert(MVT::isVector(Op.getValueType()) && "Cannot split non-vector type!"); 6692 SDNode *Node = Op.Val; 6693 unsigned NumElements = MVT::getVectorNumElements(Op.getValueType()); 6694 assert(NumElements > 1 && "Cannot split a single element vector!"); 6695 6696 MVT::ValueType NewEltVT = MVT::getVectorElementType(Op.getValueType()); 6697 6698 unsigned NewNumElts_Lo = 1 << Log2_32(NumElements-1); 6699 unsigned NewNumElts_Hi = NumElements - NewNumElts_Lo; 6700 6701 MVT::ValueType NewVT_Lo = MVT::getVectorType(NewEltVT, NewNumElts_Lo); 6702 MVT::ValueType NewVT_Hi = MVT::getVectorType(NewEltVT, NewNumElts_Hi); 6703 6704 // See if we already split it. 6705 std::map<SDOperand, std::pair<SDOperand, SDOperand> >::iterator I 6706 = SplitNodes.find(Op); 6707 if (I != SplitNodes.end()) { 6708 Lo = I->second.first; 6709 Hi = I->second.second; 6710 return; 6711 } 6712 6713 switch (Node->getOpcode()) { 6714 default: 6715#ifndef NDEBUG 6716 Node->dump(&DAG); 6717#endif 6718 assert(0 && "Unhandled operation in SplitVectorOp!"); 6719 case ISD::UNDEF: 6720 Lo = DAG.getNode(ISD::UNDEF, NewVT_Lo); 6721 Hi = DAG.getNode(ISD::UNDEF, NewVT_Hi); 6722 break; 6723 case ISD::BUILD_PAIR: 6724 Lo = Node->getOperand(0); 6725 Hi = Node->getOperand(1); 6726 break; 6727 case ISD::INSERT_VECTOR_ELT: { 6728 SplitVectorOp(Node->getOperand(0), Lo, Hi); 6729 unsigned Index = cast<ConstantSDNode>(Node->getOperand(2))->getValue(); 6730 SDOperand ScalarOp = Node->getOperand(1); 6731 if (Index < NewNumElts_Lo) 6732 Lo = DAG.getNode(ISD::INSERT_VECTOR_ELT, NewVT_Lo, Lo, ScalarOp, 6733 DAG.getConstant(Index, TLI.getPointerTy())); 6734 else 6735 Hi = DAG.getNode(ISD::INSERT_VECTOR_ELT, NewVT_Hi, Hi, ScalarOp, 6736 DAG.getConstant(Index - NewNumElts_Lo, 6737 TLI.getPointerTy())); 6738 break; 6739 } 6740 case ISD::VECTOR_SHUFFLE: { 6741 // Build the low part. 6742 SDOperand Mask = Node->getOperand(2); 6743 SmallVector<SDOperand, 8> Ops; 6744 MVT::ValueType PtrVT = TLI.getPointerTy(); 6745 6746 // Insert all of the elements from the input that are needed. We use 6747 // buildvector of extractelement here because the input vectors will have 6748 // to be legalized, so this makes the code simpler. 6749 for (unsigned i = 0; i != NewNumElts_Lo; ++i) { 6750 unsigned Idx = cast<ConstantSDNode>(Mask.getOperand(i))->getValue(); 6751 SDOperand InVec = Node->getOperand(0); 6752 if (Idx >= NumElements) { 6753 InVec = Node->getOperand(1); 6754 Idx -= NumElements; 6755 } 6756 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, NewEltVT, InVec, 6757 DAG.getConstant(Idx, PtrVT))); 6758 } 6759 Lo = DAG.getNode(ISD::BUILD_VECTOR, NewVT_Lo, &Ops[0], Ops.size()); 6760 Ops.clear(); 6761 6762 for (unsigned i = NewNumElts_Lo; i != NumElements; ++i) { 6763 unsigned Idx = cast<ConstantSDNode>(Mask.getOperand(i))->getValue(); 6764 SDOperand InVec = Node->getOperand(0); 6765 if (Idx >= NumElements) { 6766 InVec = Node->getOperand(1); 6767 Idx -= NumElements; 6768 } 6769 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, NewEltVT, InVec, 6770 DAG.getConstant(Idx, PtrVT))); 6771 } 6772 Hi = DAG.getNode(ISD::BUILD_VECTOR, NewVT_Lo, &Ops[0], Ops.size()); 6773 break; 6774 } 6775 case ISD::BUILD_VECTOR: { 6776 SmallVector<SDOperand, 8> LoOps(Node->op_begin(), 6777 Node->op_begin()+NewNumElts_Lo); 6778 Lo = DAG.getNode(ISD::BUILD_VECTOR, NewVT_Lo, &LoOps[0], LoOps.size()); 6779 6780 SmallVector<SDOperand, 8> HiOps(Node->op_begin()+NewNumElts_Lo, 6781 Node->op_end()); 6782 Hi = DAG.getNode(ISD::BUILD_VECTOR, NewVT_Hi, &HiOps[0], HiOps.size()); 6783 break; 6784 } 6785 case ISD::CONCAT_VECTORS: { 6786 // FIXME: Handle non-power-of-two vectors? 6787 unsigned NewNumSubvectors = Node->getNumOperands() / 2; 6788 if (NewNumSubvectors == 1) { 6789 Lo = Node->getOperand(0); 6790 Hi = Node->getOperand(1); 6791 } else { 6792 SmallVector<SDOperand, 8> LoOps(Node->op_begin(), 6793 Node->op_begin()+NewNumSubvectors); 6794 Lo = DAG.getNode(ISD::CONCAT_VECTORS, NewVT_Lo, &LoOps[0], LoOps.size()); 6795 6796 SmallVector<SDOperand, 8> HiOps(Node->op_begin()+NewNumSubvectors, 6797 Node->op_end()); 6798 Hi = DAG.getNode(ISD::CONCAT_VECTORS, NewVT_Hi, &HiOps[0], HiOps.size()); 6799 } 6800 break; 6801 } 6802 case ISD::SELECT: { 6803 SDOperand Cond = Node->getOperand(0); 6804 6805 SDOperand LL, LH, RL, RH; 6806 SplitVectorOp(Node->getOperand(1), LL, LH); 6807 SplitVectorOp(Node->getOperand(2), RL, RH); 6808 6809 if (MVT::isVector(Cond.getValueType())) { 6810 // Handle a vector merge. 6811 SDOperand CL, CH; 6812 SplitVectorOp(Cond, CL, CH); 6813 Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, CL, LL, RL); 6814 Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, CH, LH, RH); 6815 } else { 6816 // Handle a simple select with vector operands. 6817 Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, Cond, LL, RL); 6818 Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, Cond, LH, RH); 6819 } 6820 break; 6821 } 6822 case ISD::ADD: 6823 case ISD::SUB: 6824 case ISD::MUL: 6825 case ISD::FADD: 6826 case ISD::FSUB: 6827 case ISD::FMUL: 6828 case ISD::SDIV: 6829 case ISD::UDIV: 6830 case ISD::FDIV: 6831 case ISD::FPOW: 6832 case ISD::AND: 6833 case ISD::OR: 6834 case ISD::XOR: 6835 case ISD::UREM: 6836 case ISD::SREM: 6837 case ISD::FREM: { 6838 SDOperand LL, LH, RL, RH; 6839 SplitVectorOp(Node->getOperand(0), LL, LH); 6840 SplitVectorOp(Node->getOperand(1), RL, RH); 6841 6842 Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, LL, RL); 6843 Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, LH, RH); 6844 break; 6845 } 6846 case ISD::FPOWI: { 6847 SDOperand L, H; 6848 SplitVectorOp(Node->getOperand(0), L, H); 6849 6850 Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, L, Node->getOperand(1)); 6851 Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, H, Node->getOperand(1)); 6852 break; 6853 } 6854 case ISD::CTTZ: 6855 case ISD::CTLZ: 6856 case ISD::CTPOP: 6857 case ISD::FNEG: 6858 case ISD::FABS: 6859 case ISD::FSQRT: 6860 case ISD::FSIN: 6861 case ISD::FCOS: 6862 case ISD::FP_TO_SINT: 6863 case ISD::FP_TO_UINT: 6864 case ISD::SINT_TO_FP: 6865 case ISD::UINT_TO_FP: { 6866 SDOperand L, H; 6867 SplitVectorOp(Node->getOperand(0), L, H); 6868 6869 Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, L); 6870 Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, H); 6871 break; 6872 } 6873 case ISD::LOAD: { 6874 LoadSDNode *LD = cast<LoadSDNode>(Node); 6875 SDOperand Ch = LD->getChain(); 6876 SDOperand Ptr = LD->getBasePtr(); 6877 const Value *SV = LD->getSrcValue(); 6878 int SVOffset = LD->getSrcValueOffset(); 6879 unsigned Alignment = LD->getAlignment(); 6880 bool isVolatile = LD->isVolatile(); 6881 6882 Lo = DAG.getLoad(NewVT_Lo, Ch, Ptr, SV, SVOffset, isVolatile, Alignment); 6883 unsigned IncrementSize = NewNumElts_Lo * MVT::getSizeInBits(NewEltVT)/8; 6884 Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, 6885 DAG.getIntPtrConstant(IncrementSize)); 6886 SVOffset += IncrementSize; 6887 Alignment = MinAlign(Alignment, IncrementSize); 6888 Hi = DAG.getLoad(NewVT_Hi, Ch, Ptr, SV, SVOffset, isVolatile, Alignment); 6889 6890 // Build a factor node to remember that this load is independent of the 6891 // other one. 6892 SDOperand TF = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), 6893 Hi.getValue(1)); 6894 6895 // Remember that we legalized the chain. 6896 AddLegalizedOperand(Op.getValue(1), LegalizeOp(TF)); 6897 break; 6898 } 6899 case ISD::BIT_CONVERT: { 6900 // We know the result is a vector. The input may be either a vector or a 6901 // scalar value. 6902 SDOperand InOp = Node->getOperand(0); 6903 if (!MVT::isVector(InOp.getValueType()) || 6904 MVT::getVectorNumElements(InOp.getValueType()) == 1) { 6905 // The input is a scalar or single-element vector. 6906 // Lower to a store/load so that it can be split. 6907 // FIXME: this could be improved probably. 6908 SDOperand Ptr = DAG.CreateStackTemporary(InOp.getValueType()); 6909 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(Ptr.Val); 6910 6911 SDOperand St = DAG.getStore(DAG.getEntryNode(), 6912 InOp, Ptr, 6913 PseudoSourceValue::getFixedStack(), 6914 FI->getIndex()); 6915 InOp = DAG.getLoad(Op.getValueType(), St, Ptr, 6916 PseudoSourceValue::getFixedStack(), 6917 FI->getIndex()); 6918 } 6919 // Split the vector and convert each of the pieces now. 6920 SplitVectorOp(InOp, Lo, Hi); 6921 Lo = DAG.getNode(ISD::BIT_CONVERT, NewVT_Lo, Lo); 6922 Hi = DAG.getNode(ISD::BIT_CONVERT, NewVT_Hi, Hi); 6923 break; 6924 } 6925 } 6926 6927 // Remember in a map if the values will be reused later. 6928 bool isNew = 6929 SplitNodes.insert(std::make_pair(Op, std::make_pair(Lo, Hi))).second; 6930 assert(isNew && "Value already split?!?"); 6931} 6932 6933 6934/// ScalarizeVectorOp - Given an operand of single-element vector type 6935/// (e.g. v1f32), convert it into the equivalent operation that returns a 6936/// scalar (e.g. f32) value. 6937SDOperand SelectionDAGLegalize::ScalarizeVectorOp(SDOperand Op) { 6938 assert(MVT::isVector(Op.getValueType()) && 6939 "Bad ScalarizeVectorOp invocation!"); 6940 SDNode *Node = Op.Val; 6941 MVT::ValueType NewVT = MVT::getVectorElementType(Op.getValueType()); 6942 assert(MVT::getVectorNumElements(Op.getValueType()) == 1); 6943 6944 // See if we already scalarized it. 6945 std::map<SDOperand, SDOperand>::iterator I = ScalarizedNodes.find(Op); 6946 if (I != ScalarizedNodes.end()) return I->second; 6947 6948 SDOperand Result; 6949 switch (Node->getOpcode()) { 6950 default: 6951#ifndef NDEBUG 6952 Node->dump(&DAG); cerr << "\n"; 6953#endif 6954 assert(0 && "Unknown vector operation in ScalarizeVectorOp!"); 6955 case ISD::ADD: 6956 case ISD::FADD: 6957 case ISD::SUB: 6958 case ISD::FSUB: 6959 case ISD::MUL: 6960 case ISD::FMUL: 6961 case ISD::SDIV: 6962 case ISD::UDIV: 6963 case ISD::FDIV: 6964 case ISD::SREM: 6965 case ISD::UREM: 6966 case ISD::FREM: 6967 case ISD::FPOW: 6968 case ISD::AND: 6969 case ISD::OR: 6970 case ISD::XOR: 6971 Result = DAG.getNode(Node->getOpcode(), 6972 NewVT, 6973 ScalarizeVectorOp(Node->getOperand(0)), 6974 ScalarizeVectorOp(Node->getOperand(1))); 6975 break; 6976 case ISD::FNEG: 6977 case ISD::FABS: 6978 case ISD::FSQRT: 6979 case ISD::FSIN: 6980 case ISD::FCOS: 6981 Result = DAG.getNode(Node->getOpcode(), 6982 NewVT, 6983 ScalarizeVectorOp(Node->getOperand(0))); 6984 break; 6985 case ISD::FPOWI: 6986 Result = DAG.getNode(Node->getOpcode(), 6987 NewVT, 6988 ScalarizeVectorOp(Node->getOperand(0)), 6989 Node->getOperand(1)); 6990 break; 6991 case ISD::LOAD: { 6992 LoadSDNode *LD = cast<LoadSDNode>(Node); 6993 SDOperand Ch = LegalizeOp(LD->getChain()); // Legalize the chain. 6994 SDOperand Ptr = LegalizeOp(LD->getBasePtr()); // Legalize the pointer. 6995 6996 const Value *SV = LD->getSrcValue(); 6997 int SVOffset = LD->getSrcValueOffset(); 6998 Result = DAG.getLoad(NewVT, Ch, Ptr, SV, SVOffset, 6999 LD->isVolatile(), LD->getAlignment()); 7000 7001 // Remember that we legalized the chain. 7002 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); 7003 break; 7004 } 7005 case ISD::BUILD_VECTOR: 7006 Result = Node->getOperand(0); 7007 break; 7008 case ISD::INSERT_VECTOR_ELT: 7009 // Returning the inserted scalar element. 7010 Result = Node->getOperand(1); 7011 break; 7012 case ISD::CONCAT_VECTORS: 7013 assert(Node->getOperand(0).getValueType() == NewVT && 7014 "Concat of non-legal vectors not yet supported!"); 7015 Result = Node->getOperand(0); 7016 break; 7017 case ISD::VECTOR_SHUFFLE: { 7018 // Figure out if the scalar is the LHS or RHS and return it. 7019 SDOperand EltNum = Node->getOperand(2).getOperand(0); 7020 if (cast<ConstantSDNode>(EltNum)->getValue()) 7021 Result = ScalarizeVectorOp(Node->getOperand(1)); 7022 else 7023 Result = ScalarizeVectorOp(Node->getOperand(0)); 7024 break; 7025 } 7026 case ISD::EXTRACT_SUBVECTOR: 7027 Result = Node->getOperand(0); 7028 assert(Result.getValueType() == NewVT); 7029 break; 7030 case ISD::BIT_CONVERT: 7031 Result = DAG.getNode(ISD::BIT_CONVERT, NewVT, Op.getOperand(0)); 7032 break; 7033 case ISD::SELECT: 7034 Result = DAG.getNode(ISD::SELECT, NewVT, Op.getOperand(0), 7035 ScalarizeVectorOp(Op.getOperand(1)), 7036 ScalarizeVectorOp(Op.getOperand(2))); 7037 break; 7038 } 7039 7040 if (TLI.isTypeLegal(NewVT)) 7041 Result = LegalizeOp(Result); 7042 bool isNew = ScalarizedNodes.insert(std::make_pair(Op, Result)).second; 7043 assert(isNew && "Value already scalarized?"); 7044 return Result; 7045} 7046 7047 7048// SelectionDAG::Legalize - This is the entry point for the file. 7049// 7050void SelectionDAG::Legalize() { 7051 if (ViewLegalizeDAGs) viewGraph(); 7052 7053 /// run - This is the main entry point to this class. 7054 /// 7055 SelectionDAGLegalize(*this).LegalizeDAG(); 7056} 7057 7058