LegalizeDAG.cpp revision ab0b949e0e9de452f3b052b11634ab761e008b23
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the SelectionDAG::Legalize method. 11// 12//===----------------------------------------------------------------------===// 13 14#include "llvm/CodeGen/SelectionDAG.h" 15#include "llvm/CodeGen/MachineFunction.h" 16#include "llvm/CodeGen/MachineFrameInfo.h" 17#include "llvm/CodeGen/MachineJumpTableInfo.h" 18#include "llvm/CodeGen/MachineModuleInfo.h" 19#include "llvm/CodeGen/PseudoSourceValue.h" 20#include "llvm/Target/TargetFrameInfo.h" 21#include "llvm/Target/TargetLowering.h" 22#include "llvm/Target/TargetData.h" 23#include "llvm/Target/TargetMachine.h" 24#include "llvm/Target/TargetOptions.h" 25#include "llvm/CallingConv.h" 26#include "llvm/Constants.h" 27#include "llvm/DerivedTypes.h" 28#include "llvm/Support/CommandLine.h" 29#include "llvm/Support/Compiler.h" 30#include "llvm/Support/MathExtras.h" 31#include "llvm/ADT/DenseMap.h" 32#include "llvm/ADT/SmallVector.h" 33#include "llvm/ADT/SmallPtrSet.h" 34#include <map> 35using namespace llvm; 36 37#ifndef NDEBUG 38static cl::opt<bool> 39ViewLegalizeDAGs("view-legalize-dags", cl::Hidden, 40 cl::desc("Pop up a window to show dags before legalize")); 41#else 42static const bool ViewLegalizeDAGs = 0; 43#endif 44 45//===----------------------------------------------------------------------===// 46/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and 47/// hacks on it until the target machine can handle it. This involves 48/// eliminating value sizes the machine cannot handle (promoting small sizes to 49/// large sizes or splitting up large values into small values) as well as 50/// eliminating operations the machine cannot handle. 51/// 52/// This code also does a small amount of optimization and recognition of idioms 53/// as part of its processing. For example, if a target does not support a 54/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this 55/// will attempt merge setcc and brc instructions into brcc's. 56/// 57namespace { 58class VISIBILITY_HIDDEN SelectionDAGLegalize { 59 TargetLowering &TLI; 60 SelectionDAG &DAG; 61 62 // Libcall insertion helpers. 63 64 /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been 65 /// legalized. We use this to ensure that calls are properly serialized 66 /// against each other, including inserted libcalls. 67 SDOperand LastCALLSEQ_END; 68 69 /// IsLegalizingCall - This member is used *only* for purposes of providing 70 /// helpful assertions that a libcall isn't created while another call is 71 /// being legalized (which could lead to non-serialized call sequences). 72 bool IsLegalizingCall; 73 74 enum LegalizeAction { 75 Legal, // The target natively supports this operation. 76 Promote, // This operation should be executed in a larger type. 77 Expand // Try to expand this to other ops, otherwise use a libcall. 78 }; 79 80 /// ValueTypeActions - This is a bitvector that contains two bits for each 81 /// value type, where the two bits correspond to the LegalizeAction enum. 82 /// This can be queried with "getTypeAction(VT)". 83 TargetLowering::ValueTypeActionImpl ValueTypeActions; 84 85 /// LegalizedNodes - For nodes that are of legal width, and that have more 86 /// than one use, this map indicates what regularized operand to use. This 87 /// allows us to avoid legalizing the same thing more than once. 88 DenseMap<SDOperand, SDOperand> LegalizedNodes; 89 90 /// PromotedNodes - For nodes that are below legal width, and that have more 91 /// than one use, this map indicates what promoted value to use. This allows 92 /// us to avoid promoting the same thing more than once. 93 DenseMap<SDOperand, SDOperand> PromotedNodes; 94 95 /// ExpandedNodes - For nodes that need to be expanded this map indicates 96 /// which which operands are the expanded version of the input. This allows 97 /// us to avoid expanding the same node more than once. 98 DenseMap<SDOperand, std::pair<SDOperand, SDOperand> > ExpandedNodes; 99 100 /// SplitNodes - For vector nodes that need to be split, this map indicates 101 /// which which operands are the split version of the input. This allows us 102 /// to avoid splitting the same node more than once. 103 std::map<SDOperand, std::pair<SDOperand, SDOperand> > SplitNodes; 104 105 /// ScalarizedNodes - For nodes that need to be converted from vector types to 106 /// scalar types, this contains the mapping of ones we have already 107 /// processed to the result. 108 std::map<SDOperand, SDOperand> ScalarizedNodes; 109 110 void AddLegalizedOperand(SDOperand From, SDOperand To) { 111 LegalizedNodes.insert(std::make_pair(From, To)); 112 // If someone requests legalization of the new node, return itself. 113 if (From != To) 114 LegalizedNodes.insert(std::make_pair(To, To)); 115 } 116 void AddPromotedOperand(SDOperand From, SDOperand To) { 117 bool isNew = PromotedNodes.insert(std::make_pair(From, To)); 118 assert(isNew && "Got into the map somehow?"); 119 // If someone requests legalization of the new node, return itself. 120 LegalizedNodes.insert(std::make_pair(To, To)); 121 } 122 123public: 124 125 SelectionDAGLegalize(SelectionDAG &DAG); 126 127 /// getTypeAction - Return how we should legalize values of this type, either 128 /// it is already legal or we need to expand it into multiple registers of 129 /// smaller integer type, or we need to promote it to a larger type. 130 LegalizeAction getTypeAction(MVT::ValueType VT) const { 131 return (LegalizeAction)ValueTypeActions.getTypeAction(VT); 132 } 133 134 /// isTypeLegal - Return true if this type is legal on this target. 135 /// 136 bool isTypeLegal(MVT::ValueType VT) const { 137 return getTypeAction(VT) == Legal; 138 } 139 140 void LegalizeDAG(); 141 142private: 143 /// HandleOp - Legalize, Promote, or Expand the specified operand as 144 /// appropriate for its type. 145 void HandleOp(SDOperand Op); 146 147 /// LegalizeOp - We know that the specified value has a legal type. 148 /// Recursively ensure that the operands have legal types, then return the 149 /// result. 150 SDOperand LegalizeOp(SDOperand O); 151 152 /// UnrollVectorOp - We know that the given vector has a legal type, however 153 /// the operation it performs is not legal and is an operation that we have 154 /// no way of lowering. "Unroll" the vector, splitting out the scalars and 155 /// operating on each element individually. 156 SDOperand UnrollVectorOp(SDOperand O); 157 158 /// PromoteOp - Given an operation that produces a value in an invalid type, 159 /// promote it to compute the value into a larger type. The produced value 160 /// will have the correct bits for the low portion of the register, but no 161 /// guarantee is made about the top bits: it may be zero, sign-extended, or 162 /// garbage. 163 SDOperand PromoteOp(SDOperand O); 164 165 /// ExpandOp - Expand the specified SDOperand into its two component pieces 166 /// Lo&Hi. Note that the Op MUST be an expanded type. As a result of this, 167 /// the LegalizeNodes map is filled in for any results that are not expanded, 168 /// the ExpandedNodes map is filled in for any results that are expanded, and 169 /// the Lo/Hi values are returned. This applies to integer types and Vector 170 /// types. 171 void ExpandOp(SDOperand O, SDOperand &Lo, SDOperand &Hi); 172 173 /// SplitVectorOp - Given an operand of vector type, break it down into 174 /// two smaller values. 175 void SplitVectorOp(SDOperand O, SDOperand &Lo, SDOperand &Hi); 176 177 /// ScalarizeVectorOp - Given an operand of single-element vector type 178 /// (e.g. v1f32), convert it into the equivalent operation that returns a 179 /// scalar (e.g. f32) value. 180 SDOperand ScalarizeVectorOp(SDOperand O); 181 182 /// isShuffleLegal - Return true if a vector shuffle is legal with the 183 /// specified mask and type. Targets can specify exactly which masks they 184 /// support and the code generator is tasked with not creating illegal masks. 185 /// 186 /// Note that this will also return true for shuffles that are promoted to a 187 /// different type. 188 /// 189 /// If this is a legal shuffle, this method returns the (possibly promoted) 190 /// build_vector Mask. If it's not a legal shuffle, it returns null. 191 SDNode *isShuffleLegal(MVT::ValueType VT, SDOperand Mask) const; 192 193 bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest, 194 SmallPtrSet<SDNode*, 32> &NodesLeadingTo); 195 196 void LegalizeSetCCOperands(SDOperand &LHS, SDOperand &RHS, SDOperand &CC); 197 198 SDOperand ExpandLibCall(const char *Name, SDNode *Node, bool isSigned, 199 SDOperand &Hi); 200 SDOperand ExpandIntToFP(bool isSigned, MVT::ValueType DestTy, 201 SDOperand Source); 202 203 SDOperand EmitStackConvert(SDOperand SrcOp, MVT::ValueType SlotVT, 204 MVT::ValueType DestVT); 205 SDOperand ExpandBUILD_VECTOR(SDNode *Node); 206 SDOperand ExpandSCALAR_TO_VECTOR(SDNode *Node); 207 SDOperand ExpandLegalINT_TO_FP(bool isSigned, 208 SDOperand LegalOp, 209 MVT::ValueType DestVT); 210 SDOperand PromoteLegalINT_TO_FP(SDOperand LegalOp, MVT::ValueType DestVT, 211 bool isSigned); 212 SDOperand PromoteLegalFP_TO_INT(SDOperand LegalOp, MVT::ValueType DestVT, 213 bool isSigned); 214 215 SDOperand ExpandBSWAP(SDOperand Op); 216 SDOperand ExpandBitCount(unsigned Opc, SDOperand Op); 217 bool ExpandShift(unsigned Opc, SDOperand Op, SDOperand Amt, 218 SDOperand &Lo, SDOperand &Hi); 219 void ExpandShiftParts(unsigned NodeOp, SDOperand Op, SDOperand Amt, 220 SDOperand &Lo, SDOperand &Hi); 221 222 SDOperand ExpandEXTRACT_SUBVECTOR(SDOperand Op); 223 SDOperand ExpandEXTRACT_VECTOR_ELT(SDOperand Op); 224}; 225} 226 227/// isVectorShuffleLegal - Return true if a vector shuffle is legal with the 228/// specified mask and type. Targets can specify exactly which masks they 229/// support and the code generator is tasked with not creating illegal masks. 230/// 231/// Note that this will also return true for shuffles that are promoted to a 232/// different type. 233SDNode *SelectionDAGLegalize::isShuffleLegal(MVT::ValueType VT, 234 SDOperand Mask) const { 235 switch (TLI.getOperationAction(ISD::VECTOR_SHUFFLE, VT)) { 236 default: return 0; 237 case TargetLowering::Legal: 238 case TargetLowering::Custom: 239 break; 240 case TargetLowering::Promote: { 241 // If this is promoted to a different type, convert the shuffle mask and 242 // ask if it is legal in the promoted type! 243 MVT::ValueType NVT = TLI.getTypeToPromoteTo(ISD::VECTOR_SHUFFLE, VT); 244 245 // If we changed # elements, change the shuffle mask. 246 unsigned NumEltsGrowth = 247 MVT::getVectorNumElements(NVT) / MVT::getVectorNumElements(VT); 248 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); 249 if (NumEltsGrowth > 1) { 250 // Renumber the elements. 251 SmallVector<SDOperand, 8> Ops; 252 for (unsigned i = 0, e = Mask.getNumOperands(); i != e; ++i) { 253 SDOperand InOp = Mask.getOperand(i); 254 for (unsigned j = 0; j != NumEltsGrowth; ++j) { 255 if (InOp.getOpcode() == ISD::UNDEF) 256 Ops.push_back(DAG.getNode(ISD::UNDEF, MVT::i32)); 257 else { 258 unsigned InEltNo = cast<ConstantSDNode>(InOp)->getValue(); 259 Ops.push_back(DAG.getConstant(InEltNo*NumEltsGrowth+j, MVT::i32)); 260 } 261 } 262 } 263 Mask = DAG.getNode(ISD::BUILD_VECTOR, NVT, &Ops[0], Ops.size()); 264 } 265 VT = NVT; 266 break; 267 } 268 } 269 return TLI.isShuffleMaskLegal(Mask, VT) ? Mask.Val : 0; 270} 271 272SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag) 273 : TLI(dag.getTargetLoweringInfo()), DAG(dag), 274 ValueTypeActions(TLI.getValueTypeActions()) { 275 assert(MVT::LAST_VALUETYPE <= 32 && 276 "Too many value types for ValueTypeActions to hold!"); 277} 278 279/// ComputeTopDownOrdering - Compute a top-down ordering of the dag, where Order 280/// contains all of a nodes operands before it contains the node. 281static void ComputeTopDownOrdering(SelectionDAG &DAG, 282 SmallVector<SDNode*, 64> &Order) { 283 284 DenseMap<SDNode*, unsigned> Visited; 285 std::vector<SDNode*> Worklist; 286 Worklist.reserve(128); 287 288 // Compute ordering from all of the leaves in the graphs, those (like the 289 // entry node) that have no operands. 290 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 291 E = DAG.allnodes_end(); I != E; ++I) { 292 if (I->getNumOperands() == 0) { 293 Visited[I] = 0 - 1U; 294 Worklist.push_back(I); 295 } 296 } 297 298 while (!Worklist.empty()) { 299 SDNode *N = Worklist.back(); 300 Worklist.pop_back(); 301 302 if (++Visited[N] != N->getNumOperands()) 303 continue; // Haven't visited all operands yet 304 305 Order.push_back(N); 306 307 // Now that we have N in, add anything that uses it if all of their operands 308 // are now done. 309 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 310 UI != E; ++UI) 311 Worklist.push_back(*UI); 312 } 313 314 assert(Order.size() == Visited.size() && 315 Order.size() == 316 (unsigned)std::distance(DAG.allnodes_begin(), DAG.allnodes_end()) && 317 "Error: DAG is cyclic!"); 318} 319 320 321void SelectionDAGLegalize::LegalizeDAG() { 322 LastCALLSEQ_END = DAG.getEntryNode(); 323 IsLegalizingCall = false; 324 325 // The legalize process is inherently a bottom-up recursive process (users 326 // legalize their uses before themselves). Given infinite stack space, we 327 // could just start legalizing on the root and traverse the whole graph. In 328 // practice however, this causes us to run out of stack space on large basic 329 // blocks. To avoid this problem, compute an ordering of the nodes where each 330 // node is only legalized after all of its operands are legalized. 331 SmallVector<SDNode*, 64> Order; 332 ComputeTopDownOrdering(DAG, Order); 333 334 for (unsigned i = 0, e = Order.size(); i != e; ++i) 335 HandleOp(SDOperand(Order[i], 0)); 336 337 // Finally, it's possible the root changed. Get the new root. 338 SDOperand OldRoot = DAG.getRoot(); 339 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 340 DAG.setRoot(LegalizedNodes[OldRoot]); 341 342 ExpandedNodes.clear(); 343 LegalizedNodes.clear(); 344 PromotedNodes.clear(); 345 SplitNodes.clear(); 346 ScalarizedNodes.clear(); 347 348 // Remove dead nodes now. 349 DAG.RemoveDeadNodes(); 350} 351 352 353/// FindCallEndFromCallStart - Given a chained node that is part of a call 354/// sequence, find the CALLSEQ_END node that terminates the call sequence. 355static SDNode *FindCallEndFromCallStart(SDNode *Node) { 356 if (Node->getOpcode() == ISD::CALLSEQ_END) 357 return Node; 358 if (Node->use_empty()) 359 return 0; // No CallSeqEnd 360 361 // The chain is usually at the end. 362 SDOperand TheChain(Node, Node->getNumValues()-1); 363 if (TheChain.getValueType() != MVT::Other) { 364 // Sometimes it's at the beginning. 365 TheChain = SDOperand(Node, 0); 366 if (TheChain.getValueType() != MVT::Other) { 367 // Otherwise, hunt for it. 368 for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i) 369 if (Node->getValueType(i) == MVT::Other) { 370 TheChain = SDOperand(Node, i); 371 break; 372 } 373 374 // Otherwise, we walked into a node without a chain. 375 if (TheChain.getValueType() != MVT::Other) 376 return 0; 377 } 378 } 379 380 for (SDNode::use_iterator UI = Node->use_begin(), 381 E = Node->use_end(); UI != E; ++UI) { 382 383 // Make sure to only follow users of our token chain. 384 SDNode *User = *UI; 385 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) 386 if (User->getOperand(i) == TheChain) 387 if (SDNode *Result = FindCallEndFromCallStart(User)) 388 return Result; 389 } 390 return 0; 391} 392 393/// FindCallStartFromCallEnd - Given a chained node that is part of a call 394/// sequence, find the CALLSEQ_START node that initiates the call sequence. 395static SDNode *FindCallStartFromCallEnd(SDNode *Node) { 396 assert(Node && "Didn't find callseq_start for a call??"); 397 if (Node->getOpcode() == ISD::CALLSEQ_START) return Node; 398 399 assert(Node->getOperand(0).getValueType() == MVT::Other && 400 "Node doesn't have a token chain argument!"); 401 return FindCallStartFromCallEnd(Node->getOperand(0).Val); 402} 403 404/// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to 405/// see if any uses can reach Dest. If no dest operands can get to dest, 406/// legalize them, legalize ourself, and return false, otherwise, return true. 407/// 408/// Keep track of the nodes we fine that actually do lead to Dest in 409/// NodesLeadingTo. This avoids retraversing them exponential number of times. 410/// 411bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest, 412 SmallPtrSet<SDNode*, 32> &NodesLeadingTo) { 413 if (N == Dest) return true; // N certainly leads to Dest :) 414 415 // If we've already processed this node and it does lead to Dest, there is no 416 // need to reprocess it. 417 if (NodesLeadingTo.count(N)) return true; 418 419 // If the first result of this node has been already legalized, then it cannot 420 // reach N. 421 switch (getTypeAction(N->getValueType(0))) { 422 case Legal: 423 if (LegalizedNodes.count(SDOperand(N, 0))) return false; 424 break; 425 case Promote: 426 if (PromotedNodes.count(SDOperand(N, 0))) return false; 427 break; 428 case Expand: 429 if (ExpandedNodes.count(SDOperand(N, 0))) return false; 430 break; 431 } 432 433 // Okay, this node has not already been legalized. Check and legalize all 434 // operands. If none lead to Dest, then we can legalize this node. 435 bool OperandsLeadToDest = false; 436 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) 437 OperandsLeadToDest |= // If an operand leads to Dest, so do we. 438 LegalizeAllNodesNotLeadingTo(N->getOperand(i).Val, Dest, NodesLeadingTo); 439 440 if (OperandsLeadToDest) { 441 NodesLeadingTo.insert(N); 442 return true; 443 } 444 445 // Okay, this node looks safe, legalize it and return false. 446 HandleOp(SDOperand(N, 0)); 447 return false; 448} 449 450/// HandleOp - Legalize, Promote, or Expand the specified operand as 451/// appropriate for its type. 452void SelectionDAGLegalize::HandleOp(SDOperand Op) { 453 MVT::ValueType VT = Op.getValueType(); 454 switch (getTypeAction(VT)) { 455 default: assert(0 && "Bad type action!"); 456 case Legal: (void)LegalizeOp(Op); break; 457 case Promote: (void)PromoteOp(Op); break; 458 case Expand: 459 if (!MVT::isVector(VT)) { 460 // If this is an illegal scalar, expand it into its two component 461 // pieces. 462 SDOperand X, Y; 463 if (Op.getOpcode() == ISD::TargetConstant) 464 break; // Allow illegal target nodes. 465 ExpandOp(Op, X, Y); 466 } else if (MVT::getVectorNumElements(VT) == 1) { 467 // If this is an illegal single element vector, convert it to a 468 // scalar operation. 469 (void)ScalarizeVectorOp(Op); 470 } else { 471 // Otherwise, this is an illegal multiple element vector. 472 // Split it in half and legalize both parts. 473 SDOperand X, Y; 474 SplitVectorOp(Op, X, Y); 475 } 476 break; 477 } 478} 479 480/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or 481/// a load from the constant pool. 482static SDOperand ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP, 483 SelectionDAG &DAG, TargetLowering &TLI) { 484 bool Extend = false; 485 486 // If a FP immediate is precise when represented as a float and if the 487 // target can do an extending load from float to double, we put it into 488 // the constant pool as a float, even if it's is statically typed as a 489 // double. 490 MVT::ValueType VT = CFP->getValueType(0); 491 bool isDouble = VT == MVT::f64; 492 ConstantFP *LLVMC = ConstantFP::get(MVT::getTypeForValueType(VT), 493 CFP->getValueAPF()); 494 if (!UseCP) { 495 if (VT!=MVT::f64 && VT!=MVT::f32) 496 assert(0 && "Invalid type expansion"); 497 return DAG.getConstant(LLVMC->getValueAPF().convertToAPInt().getZExtValue(), 498 isDouble ? MVT::i64 : MVT::i32); 499 } 500 501 if (isDouble && CFP->isValueValidForType(MVT::f32, CFP->getValueAPF()) && 502 // Only do this if the target has a native EXTLOAD instruction from f32. 503 // Do not try to be clever about long doubles (so far) 504 TLI.isLoadXLegal(ISD::EXTLOAD, MVT::f32)) { 505 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC,Type::FloatTy)); 506 VT = MVT::f32; 507 Extend = true; 508 } 509 510 SDOperand CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy()); 511 if (Extend) { 512 return DAG.getExtLoad(ISD::EXTLOAD, MVT::f64, DAG.getEntryNode(), 513 CPIdx, PseudoSourceValue::getConstantPool(), 514 0, MVT::f32); 515 } else { 516 return DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, 517 PseudoSourceValue::getConstantPool(), 0); 518 } 519} 520 521 522/// ExpandFCOPYSIGNToBitwiseOps - Expands fcopysign to a series of bitwise 523/// operations. 524static 525SDOperand ExpandFCOPYSIGNToBitwiseOps(SDNode *Node, MVT::ValueType NVT, 526 SelectionDAG &DAG, TargetLowering &TLI) { 527 MVT::ValueType VT = Node->getValueType(0); 528 MVT::ValueType SrcVT = Node->getOperand(1).getValueType(); 529 assert((SrcVT == MVT::f32 || SrcVT == MVT::f64) && 530 "fcopysign expansion only supported for f32 and f64"); 531 MVT::ValueType SrcNVT = (SrcVT == MVT::f64) ? MVT::i64 : MVT::i32; 532 533 // First get the sign bit of second operand. 534 SDOperand Mask1 = (SrcVT == MVT::f64) 535 ? DAG.getConstantFP(BitsToDouble(1ULL << 63), SrcVT) 536 : DAG.getConstantFP(BitsToFloat(1U << 31), SrcVT); 537 Mask1 = DAG.getNode(ISD::BIT_CONVERT, SrcNVT, Mask1); 538 SDOperand SignBit= DAG.getNode(ISD::BIT_CONVERT, SrcNVT, Node->getOperand(1)); 539 SignBit = DAG.getNode(ISD::AND, SrcNVT, SignBit, Mask1); 540 // Shift right or sign-extend it if the two operands have different types. 541 int SizeDiff = MVT::getSizeInBits(SrcNVT) - MVT::getSizeInBits(NVT); 542 if (SizeDiff > 0) { 543 SignBit = DAG.getNode(ISD::SRL, SrcNVT, SignBit, 544 DAG.getConstant(SizeDiff, TLI.getShiftAmountTy())); 545 SignBit = DAG.getNode(ISD::TRUNCATE, NVT, SignBit); 546 } else if (SizeDiff < 0) 547 SignBit = DAG.getNode(ISD::SIGN_EXTEND, NVT, SignBit); 548 549 // Clear the sign bit of first operand. 550 SDOperand Mask2 = (VT == MVT::f64) 551 ? DAG.getConstantFP(BitsToDouble(~(1ULL << 63)), VT) 552 : DAG.getConstantFP(BitsToFloat(~(1U << 31)), VT); 553 Mask2 = DAG.getNode(ISD::BIT_CONVERT, NVT, Mask2); 554 SDOperand Result = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0)); 555 Result = DAG.getNode(ISD::AND, NVT, Result, Mask2); 556 557 // Or the value with the sign bit. 558 Result = DAG.getNode(ISD::OR, NVT, Result, SignBit); 559 return Result; 560} 561 562/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores. 563static 564SDOperand ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG, 565 TargetLowering &TLI) { 566 SDOperand Chain = ST->getChain(); 567 SDOperand Ptr = ST->getBasePtr(); 568 SDOperand Val = ST->getValue(); 569 MVT::ValueType VT = Val.getValueType(); 570 int Alignment = ST->getAlignment(); 571 int SVOffset = ST->getSrcValueOffset(); 572 if (MVT::isFloatingPoint(ST->getMemoryVT())) { 573 // Expand to a bitconvert of the value to the integer type of the 574 // same size, then a (misaligned) int store. 575 MVT::ValueType intVT; 576 if (VT==MVT::f64) 577 intVT = MVT::i64; 578 else if (VT==MVT::f32) 579 intVT = MVT::i32; 580 else 581 assert(0 && "Unaligned load of unsupported floating point type"); 582 583 SDOperand Result = DAG.getNode(ISD::BIT_CONVERT, intVT, Val); 584 return DAG.getStore(Chain, Result, Ptr, ST->getSrcValue(), 585 SVOffset, ST->isVolatile(), Alignment); 586 } 587 assert(MVT::isInteger(ST->getMemoryVT()) && 588 "Unaligned store of unknown type."); 589 // Get the half-size VT 590 MVT::ValueType NewStoredVT = ST->getMemoryVT() - 1; 591 int NumBits = MVT::getSizeInBits(NewStoredVT); 592 int IncrementSize = NumBits / 8; 593 594 // Divide the stored value in two parts. 595 SDOperand ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy()); 596 SDOperand Lo = Val; 597 SDOperand Hi = DAG.getNode(ISD::SRL, VT, Val, ShiftAmount); 598 599 // Store the two parts 600 SDOperand Store1, Store2; 601 Store1 = DAG.getTruncStore(Chain, TLI.isLittleEndian()?Lo:Hi, Ptr, 602 ST->getSrcValue(), SVOffset, NewStoredVT, 603 ST->isVolatile(), Alignment); 604 Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, 605 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 606 Alignment = MinAlign(Alignment, IncrementSize); 607 Store2 = DAG.getTruncStore(Chain, TLI.isLittleEndian()?Hi:Lo, Ptr, 608 ST->getSrcValue(), SVOffset + IncrementSize, 609 NewStoredVT, ST->isVolatile(), Alignment); 610 611 return DAG.getNode(ISD::TokenFactor, MVT::Other, Store1, Store2); 612} 613 614/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads. 615static 616SDOperand ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG, 617 TargetLowering &TLI) { 618 int SVOffset = LD->getSrcValueOffset(); 619 SDOperand Chain = LD->getChain(); 620 SDOperand Ptr = LD->getBasePtr(); 621 MVT::ValueType VT = LD->getValueType(0); 622 MVT::ValueType LoadedVT = LD->getMemoryVT(); 623 if (MVT::isFloatingPoint(VT) && !MVT::isVector(VT)) { 624 // Expand to a (misaligned) integer load of the same size, 625 // then bitconvert to floating point. 626 MVT::ValueType intVT; 627 if (LoadedVT == MVT::f64) 628 intVT = MVT::i64; 629 else if (LoadedVT == MVT::f32) 630 intVT = MVT::i32; 631 else 632 assert(0 && "Unaligned load of unsupported floating point type"); 633 634 SDOperand newLoad = DAG.getLoad(intVT, Chain, Ptr, LD->getSrcValue(), 635 SVOffset, LD->isVolatile(), 636 LD->getAlignment()); 637 SDOperand Result = DAG.getNode(ISD::BIT_CONVERT, LoadedVT, newLoad); 638 if (LoadedVT != VT) 639 Result = DAG.getNode(ISD::FP_EXTEND, VT, Result); 640 641 SDOperand Ops[] = { Result, Chain }; 642 return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, MVT::Other), 643 Ops, 2); 644 } 645 assert((MVT::isInteger(LoadedVT) || MVT::isVector(LoadedVT)) && 646 "Unaligned load of unsupported type."); 647 648 // Compute the new VT that is half the size of the old one. We either have an 649 // integer MVT or we have a vector MVT. 650 unsigned NumBits = MVT::getSizeInBits(LoadedVT); 651 MVT::ValueType NewLoadedVT; 652 if (!MVT::isVector(LoadedVT)) { 653 NewLoadedVT = MVT::getIntegerType(NumBits/2); 654 } else { 655 // FIXME: This is not right for <1 x anything> it is also not right for 656 // non-power-of-two vectors. 657 NewLoadedVT = MVT::getVectorType(MVT::getVectorElementType(LoadedVT), 658 MVT::getVectorNumElements(LoadedVT)/2); 659 } 660 NumBits >>= 1; 661 662 unsigned Alignment = LD->getAlignment(); 663 unsigned IncrementSize = NumBits / 8; 664 ISD::LoadExtType HiExtType = LD->getExtensionType(); 665 666 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 667 if (HiExtType == ISD::NON_EXTLOAD) 668 HiExtType = ISD::ZEXTLOAD; 669 670 // Load the value in two parts 671 SDOperand Lo, Hi; 672 if (TLI.isLittleEndian()) { 673 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, VT, Chain, Ptr, LD->getSrcValue(), 674 SVOffset, NewLoadedVT, LD->isVolatile(), Alignment); 675 Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, 676 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 677 Hi = DAG.getExtLoad(HiExtType, VT, Chain, Ptr, LD->getSrcValue(), 678 SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(), 679 MinAlign(Alignment, IncrementSize)); 680 } else { 681 Hi = DAG.getExtLoad(HiExtType, VT, Chain, Ptr, LD->getSrcValue(), SVOffset, 682 NewLoadedVT,LD->isVolatile(), Alignment); 683 Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, 684 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 685 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, VT, Chain, Ptr, LD->getSrcValue(), 686 SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(), 687 MinAlign(Alignment, IncrementSize)); 688 } 689 690 // aggregate the two parts 691 SDOperand ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy()); 692 SDOperand Result = DAG.getNode(ISD::SHL, VT, Hi, ShiftAmount); 693 Result = DAG.getNode(ISD::OR, VT, Result, Lo); 694 695 SDOperand TF = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), 696 Hi.getValue(1)); 697 698 SDOperand Ops[] = { Result, TF }; 699 return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, MVT::Other), Ops, 2); 700} 701 702/// UnrollVectorOp - We know that the given vector has a legal type, however 703/// the operation it performs is not legal and is an operation that we have 704/// no way of lowering. "Unroll" the vector, splitting out the scalars and 705/// operating on each element individually. 706SDOperand SelectionDAGLegalize::UnrollVectorOp(SDOperand Op) { 707 MVT::ValueType VT = Op.getValueType(); 708 assert(isTypeLegal(VT) && 709 "Caller should expand or promote operands that are not legal!"); 710 assert(Op.Val->getNumValues() == 1 && 711 "Can't unroll a vector with multiple results!"); 712 unsigned NE = MVT::getVectorNumElements(VT); 713 MVT::ValueType EltVT = MVT::getVectorElementType(VT); 714 715 SmallVector<SDOperand, 8> Scalars; 716 SmallVector<SDOperand, 4> Operands(Op.getNumOperands()); 717 for (unsigned i = 0; i != NE; ++i) { 718 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 719 SDOperand Operand = Op.getOperand(j); 720 MVT::ValueType OperandVT = Operand.getValueType(); 721 if (MVT::isVector(OperandVT)) { 722 // A vector operand; extract a single element. 723 MVT::ValueType OperandEltVT = MVT::getVectorElementType(OperandVT); 724 Operands[j] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, 725 OperandEltVT, 726 Operand, 727 DAG.getConstant(i, MVT::i32)); 728 } else { 729 // A scalar operand; just use it as is. 730 Operands[j] = Operand; 731 } 732 } 733 Scalars.push_back(DAG.getNode(Op.getOpcode(), EltVT, 734 &Operands[0], Operands.size())); 735 } 736 737 return DAG.getNode(ISD::BUILD_VECTOR, VT, &Scalars[0], Scalars.size()); 738} 739 740/// GetFPLibCall - Return the right libcall for the given floating point type. 741static RTLIB::Libcall GetFPLibCall(MVT::ValueType VT, 742 RTLIB::Libcall Call_F32, 743 RTLIB::Libcall Call_F64, 744 RTLIB::Libcall Call_F80, 745 RTLIB::Libcall Call_PPCF128) { 746 return 747 VT == MVT::f32 ? Call_F32 : 748 VT == MVT::f64 ? Call_F64 : 749 VT == MVT::f80 ? Call_F80 : 750 VT == MVT::ppcf128 ? Call_PPCF128 : 751 RTLIB::UNKNOWN_LIBCALL; 752} 753 754/// LegalizeOp - We know that the specified value has a legal type, and 755/// that its operands are legal. Now ensure that the operation itself 756/// is legal, recursively ensuring that the operands' operations remain 757/// legal. 758SDOperand SelectionDAGLegalize::LegalizeOp(SDOperand Op) { 759 if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes. 760 return Op; 761 762 assert(isTypeLegal(Op.getValueType()) && 763 "Caller should expand or promote operands that are not legal!"); 764 SDNode *Node = Op.Val; 765 766 // If this operation defines any values that cannot be represented in a 767 // register on this target, make sure to expand or promote them. 768 if (Node->getNumValues() > 1) { 769 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 770 if (getTypeAction(Node->getValueType(i)) != Legal) { 771 HandleOp(Op.getValue(i)); 772 assert(LegalizedNodes.count(Op) && 773 "Handling didn't add legal operands!"); 774 return LegalizedNodes[Op]; 775 } 776 } 777 778 // Note that LegalizeOp may be reentered even from single-use nodes, which 779 // means that we always must cache transformed nodes. 780 DenseMap<SDOperand, SDOperand>::iterator I = LegalizedNodes.find(Op); 781 if (I != LegalizedNodes.end()) return I->second; 782 783 SDOperand Tmp1, Tmp2, Tmp3, Tmp4; 784 SDOperand Result = Op; 785 bool isCustom = false; 786 787 switch (Node->getOpcode()) { 788 case ISD::FrameIndex: 789 case ISD::EntryToken: 790 case ISD::Register: 791 case ISD::BasicBlock: 792 case ISD::TargetFrameIndex: 793 case ISD::TargetJumpTable: 794 case ISD::TargetConstant: 795 case ISD::TargetConstantFP: 796 case ISD::TargetConstantPool: 797 case ISD::TargetGlobalAddress: 798 case ISD::TargetGlobalTLSAddress: 799 case ISD::TargetExternalSymbol: 800 case ISD::VALUETYPE: 801 case ISD::SRCVALUE: 802 case ISD::MEMOPERAND: 803 case ISD::STRING: 804 case ISD::CONDCODE: 805 // Primitives must all be legal. 806 assert(TLI.isOperationLegal(Node->getOpcode(), Node->getValueType(0)) && 807 "This must be legal!"); 808 break; 809 default: 810 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { 811 // If this is a target node, legalize it by legalizing the operands then 812 // passing it through. 813 SmallVector<SDOperand, 8> Ops; 814 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 815 Ops.push_back(LegalizeOp(Node->getOperand(i))); 816 817 Result = DAG.UpdateNodeOperands(Result.getValue(0), &Ops[0], Ops.size()); 818 819 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 820 AddLegalizedOperand(Op.getValue(i), Result.getValue(i)); 821 return Result.getValue(Op.ResNo); 822 } 823 // Otherwise this is an unhandled builtin node. splat. 824#ifndef NDEBUG 825 cerr << "NODE: "; Node->dump(&DAG); cerr << "\n"; 826#endif 827 assert(0 && "Do not know how to legalize this operator!"); 828 abort(); 829 case ISD::GLOBAL_OFFSET_TABLE: 830 case ISD::GlobalAddress: 831 case ISD::GlobalTLSAddress: 832 case ISD::ExternalSymbol: 833 case ISD::ConstantPool: 834 case ISD::JumpTable: // Nothing to do. 835 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 836 default: assert(0 && "This action is not supported yet!"); 837 case TargetLowering::Custom: 838 Tmp1 = TLI.LowerOperation(Op, DAG); 839 if (Tmp1.Val) Result = Tmp1; 840 // FALLTHROUGH if the target doesn't want to lower this op after all. 841 case TargetLowering::Legal: 842 break; 843 } 844 break; 845 case ISD::FRAMEADDR: 846 case ISD::RETURNADDR: 847 // The only option for these nodes is to custom lower them. If the target 848 // does not custom lower them, then return zero. 849 Tmp1 = TLI.LowerOperation(Op, DAG); 850 if (Tmp1.Val) 851 Result = Tmp1; 852 else 853 Result = DAG.getConstant(0, TLI.getPointerTy()); 854 break; 855 case ISD::FRAME_TO_ARGS_OFFSET: { 856 MVT::ValueType VT = Node->getValueType(0); 857 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 858 default: assert(0 && "This action is not supported yet!"); 859 case TargetLowering::Custom: 860 Result = TLI.LowerOperation(Op, DAG); 861 if (Result.Val) break; 862 // Fall Thru 863 case TargetLowering::Legal: 864 Result = DAG.getConstant(0, VT); 865 break; 866 } 867 } 868 break; 869 case ISD::EXCEPTIONADDR: { 870 Tmp1 = LegalizeOp(Node->getOperand(0)); 871 MVT::ValueType VT = Node->getValueType(0); 872 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 873 default: assert(0 && "This action is not supported yet!"); 874 case TargetLowering::Expand: { 875 unsigned Reg = TLI.getExceptionAddressRegister(); 876 Result = DAG.getCopyFromReg(Tmp1, Reg, VT); 877 } 878 break; 879 case TargetLowering::Custom: 880 Result = TLI.LowerOperation(Op, DAG); 881 if (Result.Val) break; 882 // Fall Thru 883 case TargetLowering::Legal: { 884 SDOperand Ops[] = { DAG.getConstant(0, VT), Tmp1 }; 885 Result = DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, MVT::Other), 886 Ops, 2); 887 break; 888 } 889 } 890 } 891 if (Result.Val->getNumValues() == 1) break; 892 893 assert(Result.Val->getNumValues() == 2 && 894 "Cannot return more than two values!"); 895 896 // Since we produced two values, make sure to remember that we 897 // legalized both of them. 898 Tmp1 = LegalizeOp(Result); 899 Tmp2 = LegalizeOp(Result.getValue(1)); 900 AddLegalizedOperand(Op.getValue(0), Tmp1); 901 AddLegalizedOperand(Op.getValue(1), Tmp2); 902 return Op.ResNo ? Tmp2 : Tmp1; 903 case ISD::EHSELECTION: { 904 Tmp1 = LegalizeOp(Node->getOperand(0)); 905 Tmp2 = LegalizeOp(Node->getOperand(1)); 906 MVT::ValueType VT = Node->getValueType(0); 907 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 908 default: assert(0 && "This action is not supported yet!"); 909 case TargetLowering::Expand: { 910 unsigned Reg = TLI.getExceptionSelectorRegister(); 911 Result = DAG.getCopyFromReg(Tmp2, Reg, VT); 912 } 913 break; 914 case TargetLowering::Custom: 915 Result = TLI.LowerOperation(Op, DAG); 916 if (Result.Val) break; 917 // Fall Thru 918 case TargetLowering::Legal: { 919 SDOperand Ops[] = { DAG.getConstant(0, VT), Tmp2 }; 920 Result = DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, MVT::Other), 921 Ops, 2); 922 break; 923 } 924 } 925 } 926 if (Result.Val->getNumValues() == 1) break; 927 928 assert(Result.Val->getNumValues() == 2 && 929 "Cannot return more than two values!"); 930 931 // Since we produced two values, make sure to remember that we 932 // legalized both of them. 933 Tmp1 = LegalizeOp(Result); 934 Tmp2 = LegalizeOp(Result.getValue(1)); 935 AddLegalizedOperand(Op.getValue(0), Tmp1); 936 AddLegalizedOperand(Op.getValue(1), Tmp2); 937 return Op.ResNo ? Tmp2 : Tmp1; 938 case ISD::EH_RETURN: { 939 MVT::ValueType VT = Node->getValueType(0); 940 // The only "good" option for this node is to custom lower it. 941 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 942 default: assert(0 && "This action is not supported at all!"); 943 case TargetLowering::Custom: 944 Result = TLI.LowerOperation(Op, DAG); 945 if (Result.Val) break; 946 // Fall Thru 947 case TargetLowering::Legal: 948 // Target does not know, how to lower this, lower to noop 949 Result = LegalizeOp(Node->getOperand(0)); 950 break; 951 } 952 } 953 break; 954 case ISD::AssertSext: 955 case ISD::AssertZext: 956 Tmp1 = LegalizeOp(Node->getOperand(0)); 957 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 958 break; 959 case ISD::MERGE_VALUES: 960 // Legalize eliminates MERGE_VALUES nodes. 961 Result = Node->getOperand(Op.ResNo); 962 break; 963 case ISD::CopyFromReg: 964 Tmp1 = LegalizeOp(Node->getOperand(0)); 965 Result = Op.getValue(0); 966 if (Node->getNumValues() == 2) { 967 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 968 } else { 969 assert(Node->getNumValues() == 3 && "Invalid copyfromreg!"); 970 if (Node->getNumOperands() == 3) { 971 Tmp2 = LegalizeOp(Node->getOperand(2)); 972 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1),Tmp2); 973 } else { 974 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 975 } 976 AddLegalizedOperand(Op.getValue(2), Result.getValue(2)); 977 } 978 // Since CopyFromReg produces two values, make sure to remember that we 979 // legalized both of them. 980 AddLegalizedOperand(Op.getValue(0), Result); 981 AddLegalizedOperand(Op.getValue(1), Result.getValue(1)); 982 return Result.getValue(Op.ResNo); 983 case ISD::UNDEF: { 984 MVT::ValueType VT = Op.getValueType(); 985 switch (TLI.getOperationAction(ISD::UNDEF, VT)) { 986 default: assert(0 && "This action is not supported yet!"); 987 case TargetLowering::Expand: 988 if (MVT::isInteger(VT)) 989 Result = DAG.getConstant(0, VT); 990 else if (MVT::isFloatingPoint(VT)) 991 Result = DAG.getConstantFP(APFloat(APInt(MVT::getSizeInBits(VT), 0)), 992 VT); 993 else 994 assert(0 && "Unknown value type!"); 995 break; 996 case TargetLowering::Legal: 997 break; 998 } 999 break; 1000 } 1001 1002 case ISD::INTRINSIC_W_CHAIN: 1003 case ISD::INTRINSIC_WO_CHAIN: 1004 case ISD::INTRINSIC_VOID: { 1005 SmallVector<SDOperand, 8> Ops; 1006 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 1007 Ops.push_back(LegalizeOp(Node->getOperand(i))); 1008 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1009 1010 // Allow the target to custom lower its intrinsics if it wants to. 1011 if (TLI.getOperationAction(Node->getOpcode(), MVT::Other) == 1012 TargetLowering::Custom) { 1013 Tmp3 = TLI.LowerOperation(Result, DAG); 1014 if (Tmp3.Val) Result = Tmp3; 1015 } 1016 1017 if (Result.Val->getNumValues() == 1) break; 1018 1019 // Must have return value and chain result. 1020 assert(Result.Val->getNumValues() == 2 && 1021 "Cannot return more than two values!"); 1022 1023 // Since loads produce two values, make sure to remember that we 1024 // legalized both of them. 1025 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 1026 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 1027 return Result.getValue(Op.ResNo); 1028 } 1029 1030 case ISD::LOCATION: 1031 assert(Node->getNumOperands() == 5 && "Invalid LOCATION node!"); 1032 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the input chain. 1033 1034 switch (TLI.getOperationAction(ISD::LOCATION, MVT::Other)) { 1035 case TargetLowering::Promote: 1036 default: assert(0 && "This action is not supported yet!"); 1037 case TargetLowering::Expand: { 1038 MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); 1039 bool useDEBUG_LOC = TLI.isOperationLegal(ISD::DEBUG_LOC, MVT::Other); 1040 bool useLABEL = TLI.isOperationLegal(ISD::LABEL, MVT::Other); 1041 1042 if (MMI && (useDEBUG_LOC || useLABEL)) { 1043 const std::string &FName = 1044 cast<StringSDNode>(Node->getOperand(3))->getValue(); 1045 const std::string &DirName = 1046 cast<StringSDNode>(Node->getOperand(4))->getValue(); 1047 unsigned SrcFile = MMI->RecordSource(DirName, FName); 1048 1049 SmallVector<SDOperand, 8> Ops; 1050 Ops.push_back(Tmp1); // chain 1051 SDOperand LineOp = Node->getOperand(1); 1052 SDOperand ColOp = Node->getOperand(2); 1053 1054 if (useDEBUG_LOC) { 1055 Ops.push_back(LineOp); // line # 1056 Ops.push_back(ColOp); // col # 1057 Ops.push_back(DAG.getConstant(SrcFile, MVT::i32)); // source file id 1058 Result = DAG.getNode(ISD::DEBUG_LOC, MVT::Other, &Ops[0], Ops.size()); 1059 } else { 1060 unsigned Line = cast<ConstantSDNode>(LineOp)->getValue(); 1061 unsigned Col = cast<ConstantSDNode>(ColOp)->getValue(); 1062 unsigned ID = MMI->RecordSourceLine(Line, Col, SrcFile); 1063 Ops.push_back(DAG.getConstant(ID, MVT::i32)); 1064 Ops.push_back(DAG.getConstant(0, MVT::i32)); // a debug label 1065 Result = DAG.getNode(ISD::LABEL, MVT::Other, &Ops[0], Ops.size()); 1066 } 1067 } else { 1068 Result = Tmp1; // chain 1069 } 1070 break; 1071 } 1072 case TargetLowering::Legal: 1073 if (Tmp1 != Node->getOperand(0) || 1074 getTypeAction(Node->getOperand(1).getValueType()) == Promote) { 1075 SmallVector<SDOperand, 8> Ops; 1076 Ops.push_back(Tmp1); 1077 if (getTypeAction(Node->getOperand(1).getValueType()) == Legal) { 1078 Ops.push_back(Node->getOperand(1)); // line # must be legal. 1079 Ops.push_back(Node->getOperand(2)); // col # must be legal. 1080 } else { 1081 // Otherwise promote them. 1082 Ops.push_back(PromoteOp(Node->getOperand(1))); 1083 Ops.push_back(PromoteOp(Node->getOperand(2))); 1084 } 1085 Ops.push_back(Node->getOperand(3)); // filename must be legal. 1086 Ops.push_back(Node->getOperand(4)); // working dir # must be legal. 1087 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1088 } 1089 break; 1090 } 1091 break; 1092 1093 case ISD::DECLARE: 1094 assert(Node->getNumOperands() == 3 && "Invalid DECLARE node!"); 1095 switch (TLI.getOperationAction(ISD::DECLARE, MVT::Other)) { 1096 default: assert(0 && "This action is not supported yet!"); 1097 case TargetLowering::Legal: 1098 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1099 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the address. 1100 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the variable. 1101 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1102 break; 1103 } 1104 break; 1105 1106 case ISD::DEBUG_LOC: 1107 assert(Node->getNumOperands() == 4 && "Invalid DEBUG_LOC node!"); 1108 switch (TLI.getOperationAction(ISD::DEBUG_LOC, MVT::Other)) { 1109 default: assert(0 && "This action is not supported yet!"); 1110 case TargetLowering::Legal: 1111 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1112 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the line #. 1113 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the col #. 1114 Tmp4 = LegalizeOp(Node->getOperand(3)); // Legalize the source file id. 1115 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, Tmp4); 1116 break; 1117 } 1118 break; 1119 1120 case ISD::LABEL: 1121 assert(Node->getNumOperands() == 3 && "Invalid LABEL node!"); 1122 switch (TLI.getOperationAction(ISD::LABEL, MVT::Other)) { 1123 default: assert(0 && "This action is not supported yet!"); 1124 case TargetLowering::Legal: 1125 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1126 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the label id. 1127 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the "flavor" operand. 1128 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1129 break; 1130 case TargetLowering::Expand: 1131 Result = LegalizeOp(Node->getOperand(0)); 1132 break; 1133 } 1134 break; 1135 1136 case ISD::MEMBARRIER: { 1137 assert(Node->getNumOperands() == 6 && "Invalid MemBarrier node!"); 1138 switch (TLI.getOperationAction(ISD::MEMBARRIER, MVT::Other)) { 1139 default: assert(0 && "This action is not supported yet!"); 1140 case TargetLowering::Legal: { 1141 SDOperand Ops[6]; 1142 Ops[0] = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1143 for (int x = 1; x < 6; ++x) 1144 Ops[x] = PromoteOp(Node->getOperand(x)); 1145 Result = DAG.UpdateNodeOperands(Result, &Ops[0], 6); 1146 break; 1147 } 1148 case TargetLowering::Expand: 1149 //There is no libgcc call for this op 1150 Result = Node->getOperand(0); // Noop 1151 break; 1152 } 1153 break; 1154 } 1155 1156 case ISD::ATOMIC_LCS: 1157 case ISD::ATOMIC_LAS: 1158 case ISD::ATOMIC_SWAP: { 1159 assert(((Node->getNumOperands() == 4 && Node->getOpcode() == ISD::ATOMIC_LCS) || 1160 (Node->getNumOperands() == 3 && Node->getOpcode() == ISD::ATOMIC_LAS) || 1161 (Node->getNumOperands() == 3 && Node->getOpcode() == ISD::ATOMIC_SWAP)) && 1162 "Invalid MemBarrier node!"); 1163 int num = Node->getOpcode() == ISD::ATOMIC_LCS ? 4 : 3; 1164 MVT::ValueType VT = Node->getValueType(0); 1165 switch (TLI.getOperationAction(ISD::ATOMIC_LCS, VT)) { 1166 default: assert(0 && "This action is not supported yet!"); 1167 case TargetLowering::Legal: { 1168 SDOperand Ops[4]; 1169 for (int x = 0; x < num; ++x) 1170 Ops[x] = LegalizeOp(Node->getOperand(x)); 1171 Result = DAG.UpdateNodeOperands(Result, &Ops[0], num); 1172 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 1173 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 1174 return Result.getValue(Op.ResNo); 1175 break; 1176 } 1177 } 1178 break; 1179 } 1180 1181 case ISD::Constant: { 1182 ConstantSDNode *CN = cast<ConstantSDNode>(Node); 1183 unsigned opAction = 1184 TLI.getOperationAction(ISD::Constant, CN->getValueType(0)); 1185 1186 // We know we don't need to expand constants here, constants only have one 1187 // value and we check that it is fine above. 1188 1189 if (opAction == TargetLowering::Custom) { 1190 Tmp1 = TLI.LowerOperation(Result, DAG); 1191 if (Tmp1.Val) 1192 Result = Tmp1; 1193 } 1194 break; 1195 } 1196 case ISD::ConstantFP: { 1197 // Spill FP immediates to the constant pool if the target cannot directly 1198 // codegen them. Targets often have some immediate values that can be 1199 // efficiently generated into an FP register without a load. We explicitly 1200 // leave these constants as ConstantFP nodes for the target to deal with. 1201 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 1202 1203 switch (TLI.getOperationAction(ISD::ConstantFP, CFP->getValueType(0))) { 1204 default: assert(0 && "This action is not supported yet!"); 1205 case TargetLowering::Legal: 1206 break; 1207 case TargetLowering::Custom: 1208 Tmp3 = TLI.LowerOperation(Result, DAG); 1209 if (Tmp3.Val) { 1210 Result = Tmp3; 1211 break; 1212 } 1213 // FALLTHROUGH 1214 case TargetLowering::Expand: { 1215 // Check to see if this FP immediate is already legal. 1216 bool isLegal = false; 1217 for (TargetLowering::legal_fpimm_iterator I = TLI.legal_fpimm_begin(), 1218 E = TLI.legal_fpimm_end(); I != E; ++I) { 1219 if (CFP->isExactlyValue(*I)) { 1220 isLegal = true; 1221 break; 1222 } 1223 } 1224 // If this is a legal constant, turn it into a TargetConstantFP node. 1225 if (isLegal) 1226 break; 1227 Result = ExpandConstantFP(CFP, true, DAG, TLI); 1228 } 1229 } 1230 break; 1231 } 1232 case ISD::TokenFactor: 1233 if (Node->getNumOperands() == 2) { 1234 Tmp1 = LegalizeOp(Node->getOperand(0)); 1235 Tmp2 = LegalizeOp(Node->getOperand(1)); 1236 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1237 } else if (Node->getNumOperands() == 3) { 1238 Tmp1 = LegalizeOp(Node->getOperand(0)); 1239 Tmp2 = LegalizeOp(Node->getOperand(1)); 1240 Tmp3 = LegalizeOp(Node->getOperand(2)); 1241 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1242 } else { 1243 SmallVector<SDOperand, 8> Ops; 1244 // Legalize the operands. 1245 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 1246 Ops.push_back(LegalizeOp(Node->getOperand(i))); 1247 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1248 } 1249 break; 1250 1251 case ISD::FORMAL_ARGUMENTS: 1252 case ISD::CALL: 1253 // The only option for this is to custom lower it. 1254 Tmp3 = TLI.LowerOperation(Result.getValue(0), DAG); 1255 assert(Tmp3.Val && "Target didn't custom lower this node!"); 1256 1257 // The number of incoming and outgoing values should match; unless the final 1258 // outgoing value is a flag. 1259 assert((Tmp3.Val->getNumValues() == Result.Val->getNumValues() || 1260 (Tmp3.Val->getNumValues() == Result.Val->getNumValues() + 1 && 1261 Tmp3.Val->getValueType(Tmp3.Val->getNumValues() - 1) == 1262 MVT::Flag)) && 1263 "Lowering call/formal_arguments produced unexpected # results!"); 1264 1265 // Since CALL/FORMAL_ARGUMENTS nodes produce multiple values, make sure to 1266 // remember that we legalized all of them, so it doesn't get relegalized. 1267 for (unsigned i = 0, e = Tmp3.Val->getNumValues(); i != e; ++i) { 1268 if (Tmp3.Val->getValueType(i) == MVT::Flag) 1269 continue; 1270 Tmp1 = LegalizeOp(Tmp3.getValue(i)); 1271 if (Op.ResNo == i) 1272 Tmp2 = Tmp1; 1273 AddLegalizedOperand(SDOperand(Node, i), Tmp1); 1274 } 1275 return Tmp2; 1276 case ISD::EXTRACT_SUBREG: { 1277 Tmp1 = LegalizeOp(Node->getOperand(0)); 1278 ConstantSDNode *idx = dyn_cast<ConstantSDNode>(Node->getOperand(1)); 1279 assert(idx && "Operand must be a constant"); 1280 Tmp2 = DAG.getTargetConstant(idx->getValue(), idx->getValueType(0)); 1281 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1282 } 1283 break; 1284 case ISD::INSERT_SUBREG: { 1285 Tmp1 = LegalizeOp(Node->getOperand(0)); 1286 Tmp2 = LegalizeOp(Node->getOperand(1)); 1287 ConstantSDNode *idx = dyn_cast<ConstantSDNode>(Node->getOperand(2)); 1288 assert(idx && "Operand must be a constant"); 1289 Tmp3 = DAG.getTargetConstant(idx->getValue(), idx->getValueType(0)); 1290 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1291 } 1292 break; 1293 case ISD::BUILD_VECTOR: 1294 switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) { 1295 default: assert(0 && "This action is not supported yet!"); 1296 case TargetLowering::Custom: 1297 Tmp3 = TLI.LowerOperation(Result, DAG); 1298 if (Tmp3.Val) { 1299 Result = Tmp3; 1300 break; 1301 } 1302 // FALLTHROUGH 1303 case TargetLowering::Expand: 1304 Result = ExpandBUILD_VECTOR(Result.Val); 1305 break; 1306 } 1307 break; 1308 case ISD::INSERT_VECTOR_ELT: 1309 Tmp1 = LegalizeOp(Node->getOperand(0)); // InVec 1310 Tmp3 = LegalizeOp(Node->getOperand(2)); // InEltNo 1311 1312 // The type of the value to insert may not be legal, even though the vector 1313 // type is legal. Legalize/Promote accordingly. We do not handle Expand 1314 // here. 1315 switch (getTypeAction(Node->getOperand(1).getValueType())) { 1316 default: assert(0 && "Cannot expand insert element operand"); 1317 case Legal: Tmp2 = LegalizeOp(Node->getOperand(1)); break; 1318 case Promote: Tmp2 = PromoteOp(Node->getOperand(1)); break; 1319 } 1320 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1321 1322 switch (TLI.getOperationAction(ISD::INSERT_VECTOR_ELT, 1323 Node->getValueType(0))) { 1324 default: assert(0 && "This action is not supported yet!"); 1325 case TargetLowering::Legal: 1326 break; 1327 case TargetLowering::Custom: 1328 Tmp4 = TLI.LowerOperation(Result, DAG); 1329 if (Tmp4.Val) { 1330 Result = Tmp4; 1331 break; 1332 } 1333 // FALLTHROUGH 1334 case TargetLowering::Expand: { 1335 // If the insert index is a constant, codegen this as a scalar_to_vector, 1336 // then a shuffle that inserts it into the right position in the vector. 1337 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Tmp3)) { 1338 // SCALAR_TO_VECTOR requires that the type of the value being inserted 1339 // match the element type of the vector being created. 1340 if (Tmp2.getValueType() == 1341 MVT::getVectorElementType(Op.getValueType())) { 1342 SDOperand ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, 1343 Tmp1.getValueType(), Tmp2); 1344 1345 unsigned NumElts = MVT::getVectorNumElements(Tmp1.getValueType()); 1346 MVT::ValueType ShufMaskVT = MVT::getIntVectorWithNumElements(NumElts); 1347 MVT::ValueType ShufMaskEltVT = MVT::getVectorElementType(ShufMaskVT); 1348 1349 // We generate a shuffle of InVec and ScVec, so the shuffle mask 1350 // should be 0,1,2,3,4,5... with the appropriate element replaced with 1351 // elt 0 of the RHS. 1352 SmallVector<SDOperand, 8> ShufOps; 1353 for (unsigned i = 0; i != NumElts; ++i) { 1354 if (i != InsertPos->getValue()) 1355 ShufOps.push_back(DAG.getConstant(i, ShufMaskEltVT)); 1356 else 1357 ShufOps.push_back(DAG.getConstant(NumElts, ShufMaskEltVT)); 1358 } 1359 SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, ShufMaskVT, 1360 &ShufOps[0], ShufOps.size()); 1361 1362 Result = DAG.getNode(ISD::VECTOR_SHUFFLE, Tmp1.getValueType(), 1363 Tmp1, ScVec, ShufMask); 1364 Result = LegalizeOp(Result); 1365 break; 1366 } 1367 } 1368 1369 // If the target doesn't support this, we have to spill the input vector 1370 // to a temporary stack slot, update the element, then reload it. This is 1371 // badness. We could also load the value into a vector register (either 1372 // with a "move to register" or "extload into register" instruction, then 1373 // permute it into place, if the idx is a constant and if the idx is 1374 // supported by the target. 1375 MVT::ValueType VT = Tmp1.getValueType(); 1376 MVT::ValueType EltVT = MVT::getVectorElementType(VT); 1377 MVT::ValueType IdxVT = Tmp3.getValueType(); 1378 MVT::ValueType PtrVT = TLI.getPointerTy(); 1379 SDOperand StackPtr = DAG.CreateStackTemporary(VT); 1380 1381 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr.Val); 1382 int SPFI = StackPtrFI->getIndex(); 1383 1384 // Store the vector. 1385 SDOperand Ch = DAG.getStore(DAG.getEntryNode(), Tmp1, StackPtr, 1386 PseudoSourceValue::getFixedStack(), 1387 SPFI); 1388 1389 // Truncate or zero extend offset to target pointer type. 1390 unsigned CastOpc = (IdxVT > PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND; 1391 Tmp3 = DAG.getNode(CastOpc, PtrVT, Tmp3); 1392 // Add the offset to the index. 1393 unsigned EltSize = MVT::getSizeInBits(EltVT)/8; 1394 Tmp3 = DAG.getNode(ISD::MUL, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT)); 1395 SDOperand StackPtr2 = DAG.getNode(ISD::ADD, IdxVT, Tmp3, StackPtr); 1396 // Store the scalar value. 1397 Ch = DAG.getTruncStore(Ch, Tmp2, StackPtr2, 1398 PseudoSourceValue::getFixedStack(), SPFI, EltVT); 1399 // Load the updated vector. 1400 Result = DAG.getLoad(VT, Ch, StackPtr, 1401 PseudoSourceValue::getFixedStack(), SPFI); 1402 break; 1403 } 1404 } 1405 break; 1406 case ISD::SCALAR_TO_VECTOR: 1407 if (!TLI.isTypeLegal(Node->getOperand(0).getValueType())) { 1408 Result = LegalizeOp(ExpandSCALAR_TO_VECTOR(Node)); 1409 break; 1410 } 1411 1412 Tmp1 = LegalizeOp(Node->getOperand(0)); // InVal 1413 Result = DAG.UpdateNodeOperands(Result, Tmp1); 1414 switch (TLI.getOperationAction(ISD::SCALAR_TO_VECTOR, 1415 Node->getValueType(0))) { 1416 default: assert(0 && "This action is not supported yet!"); 1417 case TargetLowering::Legal: 1418 break; 1419 case TargetLowering::Custom: 1420 Tmp3 = TLI.LowerOperation(Result, DAG); 1421 if (Tmp3.Val) { 1422 Result = Tmp3; 1423 break; 1424 } 1425 // FALLTHROUGH 1426 case TargetLowering::Expand: 1427 Result = LegalizeOp(ExpandSCALAR_TO_VECTOR(Node)); 1428 break; 1429 } 1430 break; 1431 case ISD::VECTOR_SHUFFLE: 1432 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the input vectors, 1433 Tmp2 = LegalizeOp(Node->getOperand(1)); // but not the shuffle mask. 1434 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 1435 1436 // Allow targets to custom lower the SHUFFLEs they support. 1437 switch (TLI.getOperationAction(ISD::VECTOR_SHUFFLE,Result.getValueType())) { 1438 default: assert(0 && "Unknown operation action!"); 1439 case TargetLowering::Legal: 1440 assert(isShuffleLegal(Result.getValueType(), Node->getOperand(2)) && 1441 "vector shuffle should not be created if not legal!"); 1442 break; 1443 case TargetLowering::Custom: 1444 Tmp3 = TLI.LowerOperation(Result, DAG); 1445 if (Tmp3.Val) { 1446 Result = Tmp3; 1447 break; 1448 } 1449 // FALLTHROUGH 1450 case TargetLowering::Expand: { 1451 MVT::ValueType VT = Node->getValueType(0); 1452 MVT::ValueType EltVT = MVT::getVectorElementType(VT); 1453 MVT::ValueType PtrVT = TLI.getPointerTy(); 1454 SDOperand Mask = Node->getOperand(2); 1455 unsigned NumElems = Mask.getNumOperands(); 1456 SmallVector<SDOperand,8> Ops; 1457 for (unsigned i = 0; i != NumElems; ++i) { 1458 SDOperand Arg = Mask.getOperand(i); 1459 if (Arg.getOpcode() == ISD::UNDEF) { 1460 Ops.push_back(DAG.getNode(ISD::UNDEF, EltVT)); 1461 } else { 1462 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); 1463 unsigned Idx = cast<ConstantSDNode>(Arg)->getValue(); 1464 if (Idx < NumElems) 1465 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EltVT, Tmp1, 1466 DAG.getConstant(Idx, PtrVT))); 1467 else 1468 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EltVT, Tmp2, 1469 DAG.getConstant(Idx - NumElems, PtrVT))); 1470 } 1471 } 1472 Result = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size()); 1473 break; 1474 } 1475 case TargetLowering::Promote: { 1476 // Change base type to a different vector type. 1477 MVT::ValueType OVT = Node->getValueType(0); 1478 MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 1479 1480 // Cast the two input vectors. 1481 Tmp1 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp1); 1482 Tmp2 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp2); 1483 1484 // Convert the shuffle mask to the right # elements. 1485 Tmp3 = SDOperand(isShuffleLegal(OVT, Node->getOperand(2)), 0); 1486 assert(Tmp3.Val && "Shuffle not legal?"); 1487 Result = DAG.getNode(ISD::VECTOR_SHUFFLE, NVT, Tmp1, Tmp2, Tmp3); 1488 Result = DAG.getNode(ISD::BIT_CONVERT, OVT, Result); 1489 break; 1490 } 1491 } 1492 break; 1493 1494 case ISD::EXTRACT_VECTOR_ELT: 1495 Tmp1 = Node->getOperand(0); 1496 Tmp2 = LegalizeOp(Node->getOperand(1)); 1497 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1498 Result = ExpandEXTRACT_VECTOR_ELT(Result); 1499 break; 1500 1501 case ISD::EXTRACT_SUBVECTOR: 1502 Tmp1 = Node->getOperand(0); 1503 Tmp2 = LegalizeOp(Node->getOperand(1)); 1504 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1505 Result = ExpandEXTRACT_SUBVECTOR(Result); 1506 break; 1507 1508 case ISD::CALLSEQ_START: { 1509 SDNode *CallEnd = FindCallEndFromCallStart(Node); 1510 1511 // Recursively Legalize all of the inputs of the call end that do not lead 1512 // to this call start. This ensures that any libcalls that need be inserted 1513 // are inserted *before* the CALLSEQ_START. 1514 {SmallPtrSet<SDNode*, 32> NodesLeadingTo; 1515 for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i) 1516 LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).Val, Node, 1517 NodesLeadingTo); 1518 } 1519 1520 // Now that we legalized all of the inputs (which may have inserted 1521 // libcalls) create the new CALLSEQ_START node. 1522 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1523 1524 // Merge in the last call, to ensure that this call start after the last 1525 // call ended. 1526 if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) { 1527 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1528 Tmp1 = LegalizeOp(Tmp1); 1529 } 1530 1531 // Do not try to legalize the target-specific arguments (#1+). 1532 if (Tmp1 != Node->getOperand(0)) { 1533 SmallVector<SDOperand, 8> Ops(Node->op_begin(), Node->op_end()); 1534 Ops[0] = Tmp1; 1535 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1536 } 1537 1538 // Remember that the CALLSEQ_START is legalized. 1539 AddLegalizedOperand(Op.getValue(0), Result); 1540 if (Node->getNumValues() == 2) // If this has a flag result, remember it. 1541 AddLegalizedOperand(Op.getValue(1), Result.getValue(1)); 1542 1543 // Now that the callseq_start and all of the non-call nodes above this call 1544 // sequence have been legalized, legalize the call itself. During this 1545 // process, no libcalls can/will be inserted, guaranteeing that no calls 1546 // can overlap. 1547 assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!"); 1548 SDOperand InCallSEQ = LastCALLSEQ_END; 1549 // Note that we are selecting this call! 1550 LastCALLSEQ_END = SDOperand(CallEnd, 0); 1551 IsLegalizingCall = true; 1552 1553 // Legalize the call, starting from the CALLSEQ_END. 1554 LegalizeOp(LastCALLSEQ_END); 1555 assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!"); 1556 return Result; 1557 } 1558 case ISD::CALLSEQ_END: 1559 // If the CALLSEQ_START node hasn't been legalized first, legalize it. This 1560 // will cause this node to be legalized as well as handling libcalls right. 1561 if (LastCALLSEQ_END.Val != Node) { 1562 LegalizeOp(SDOperand(FindCallStartFromCallEnd(Node), 0)); 1563 DenseMap<SDOperand, SDOperand>::iterator I = LegalizedNodes.find(Op); 1564 assert(I != LegalizedNodes.end() && 1565 "Legalizing the call start should have legalized this node!"); 1566 return I->second; 1567 } 1568 1569 // Otherwise, the call start has been legalized and everything is going 1570 // according to plan. Just legalize ourselves normally here. 1571 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1572 // Do not try to legalize the target-specific arguments (#1+), except for 1573 // an optional flag input. 1574 if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Flag){ 1575 if (Tmp1 != Node->getOperand(0)) { 1576 SmallVector<SDOperand, 8> Ops(Node->op_begin(), Node->op_end()); 1577 Ops[0] = Tmp1; 1578 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1579 } 1580 } else { 1581 Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1)); 1582 if (Tmp1 != Node->getOperand(0) || 1583 Tmp2 != Node->getOperand(Node->getNumOperands()-1)) { 1584 SmallVector<SDOperand, 8> Ops(Node->op_begin(), Node->op_end()); 1585 Ops[0] = Tmp1; 1586 Ops.back() = Tmp2; 1587 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1588 } 1589 } 1590 assert(IsLegalizingCall && "Call sequence imbalance between start/end?"); 1591 // This finishes up call legalization. 1592 IsLegalizingCall = false; 1593 1594 // If the CALLSEQ_END node has a flag, remember that we legalized it. 1595 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 1596 if (Node->getNumValues() == 2) 1597 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 1598 return Result.getValue(Op.ResNo); 1599 case ISD::DYNAMIC_STACKALLOC: { 1600 MVT::ValueType VT = Node->getValueType(0); 1601 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1602 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the size. 1603 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the alignment. 1604 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1605 1606 Tmp1 = Result.getValue(0); 1607 Tmp2 = Result.getValue(1); 1608 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 1609 default: assert(0 && "This action is not supported yet!"); 1610 case TargetLowering::Expand: { 1611 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1612 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" 1613 " not tell us which reg is the stack pointer!"); 1614 SDOperand Chain = Tmp1.getOperand(0); 1615 1616 // Chain the dynamic stack allocation so that it doesn't modify the stack 1617 // pointer when other instructions are using the stack. 1618 Chain = DAG.getCALLSEQ_START(Chain, 1619 DAG.getConstant(0, TLI.getPointerTy())); 1620 1621 SDOperand Size = Tmp2.getOperand(1); 1622 SDOperand SP = DAG.getCopyFromReg(Chain, SPReg, VT); 1623 Chain = SP.getValue(1); 1624 unsigned Align = cast<ConstantSDNode>(Tmp3)->getValue(); 1625 unsigned StackAlign = 1626 TLI.getTargetMachine().getFrameInfo()->getStackAlignment(); 1627 if (Align > StackAlign) 1628 SP = DAG.getNode(ISD::AND, VT, SP, 1629 DAG.getConstant(-(uint64_t)Align, VT)); 1630 Tmp1 = DAG.getNode(ISD::SUB, VT, SP, Size); // Value 1631 Chain = DAG.getCopyToReg(Chain, SPReg, Tmp1); // Output chain 1632 1633 Tmp2 = 1634 DAG.getCALLSEQ_END(Chain, 1635 DAG.getConstant(0, TLI.getPointerTy()), 1636 DAG.getConstant(0, TLI.getPointerTy()), 1637 SDOperand()); 1638 1639 Tmp1 = LegalizeOp(Tmp1); 1640 Tmp2 = LegalizeOp(Tmp2); 1641 break; 1642 } 1643 case TargetLowering::Custom: 1644 Tmp3 = TLI.LowerOperation(Tmp1, DAG); 1645 if (Tmp3.Val) { 1646 Tmp1 = LegalizeOp(Tmp3); 1647 Tmp2 = LegalizeOp(Tmp3.getValue(1)); 1648 } 1649 break; 1650 case TargetLowering::Legal: 1651 break; 1652 } 1653 // Since this op produce two values, make sure to remember that we 1654 // legalized both of them. 1655 AddLegalizedOperand(SDOperand(Node, 0), Tmp1); 1656 AddLegalizedOperand(SDOperand(Node, 1), Tmp2); 1657 return Op.ResNo ? Tmp2 : Tmp1; 1658 } 1659 case ISD::INLINEASM: { 1660 SmallVector<SDOperand, 8> Ops(Node->op_begin(), Node->op_end()); 1661 bool Changed = false; 1662 // Legalize all of the operands of the inline asm, in case they are nodes 1663 // that need to be expanded or something. Note we skip the asm string and 1664 // all of the TargetConstant flags. 1665 SDOperand Op = LegalizeOp(Ops[0]); 1666 Changed = Op != Ops[0]; 1667 Ops[0] = Op; 1668 1669 bool HasInFlag = Ops.back().getValueType() == MVT::Flag; 1670 for (unsigned i = 2, e = Ops.size()-HasInFlag; i < e; ) { 1671 unsigned NumVals = cast<ConstantSDNode>(Ops[i])->getValue() >> 3; 1672 for (++i; NumVals; ++i, --NumVals) { 1673 SDOperand Op = LegalizeOp(Ops[i]); 1674 if (Op != Ops[i]) { 1675 Changed = true; 1676 Ops[i] = Op; 1677 } 1678 } 1679 } 1680 1681 if (HasInFlag) { 1682 Op = LegalizeOp(Ops.back()); 1683 Changed |= Op != Ops.back(); 1684 Ops.back() = Op; 1685 } 1686 1687 if (Changed) 1688 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1689 1690 // INLINE asm returns a chain and flag, make sure to add both to the map. 1691 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 1692 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 1693 return Result.getValue(Op.ResNo); 1694 } 1695 case ISD::BR: 1696 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1697 // Ensure that libcalls are emitted before a branch. 1698 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1699 Tmp1 = LegalizeOp(Tmp1); 1700 LastCALLSEQ_END = DAG.getEntryNode(); 1701 1702 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 1703 break; 1704 case ISD::BRIND: 1705 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1706 // Ensure that libcalls are emitted before a branch. 1707 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1708 Tmp1 = LegalizeOp(Tmp1); 1709 LastCALLSEQ_END = DAG.getEntryNode(); 1710 1711 switch (getTypeAction(Node->getOperand(1).getValueType())) { 1712 default: assert(0 && "Indirect target must be legal type (pointer)!"); 1713 case Legal: 1714 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the condition. 1715 break; 1716 } 1717 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1718 break; 1719 case ISD::BR_JT: 1720 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1721 // Ensure that libcalls are emitted before a branch. 1722 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1723 Tmp1 = LegalizeOp(Tmp1); 1724 LastCALLSEQ_END = DAG.getEntryNode(); 1725 1726 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the jumptable node. 1727 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 1728 1729 switch (TLI.getOperationAction(ISD::BR_JT, MVT::Other)) { 1730 default: assert(0 && "This action is not supported yet!"); 1731 case TargetLowering::Legal: break; 1732 case TargetLowering::Custom: 1733 Tmp1 = TLI.LowerOperation(Result, DAG); 1734 if (Tmp1.Val) Result = Tmp1; 1735 break; 1736 case TargetLowering::Expand: { 1737 SDOperand Chain = Result.getOperand(0); 1738 SDOperand Table = Result.getOperand(1); 1739 SDOperand Index = Result.getOperand(2); 1740 1741 MVT::ValueType PTy = TLI.getPointerTy(); 1742 MachineFunction &MF = DAG.getMachineFunction(); 1743 unsigned EntrySize = MF.getJumpTableInfo()->getEntrySize(); 1744 Index= DAG.getNode(ISD::MUL, PTy, Index, DAG.getConstant(EntrySize, PTy)); 1745 SDOperand Addr = DAG.getNode(ISD::ADD, PTy, Index, Table); 1746 1747 SDOperand LD; 1748 switch (EntrySize) { 1749 default: assert(0 && "Size of jump table not supported yet."); break; 1750 case 4: LD = DAG.getLoad(MVT::i32, Chain, Addr, 1751 PseudoSourceValue::getJumpTable(), 0); break; 1752 case 8: LD = DAG.getLoad(MVT::i64, Chain, Addr, 1753 PseudoSourceValue::getJumpTable(), 0); break; 1754 } 1755 1756 Addr = LD; 1757 if (TLI.getTargetMachine().getRelocationModel() == Reloc::PIC_) { 1758 // For PIC, the sequence is: 1759 // BRIND(load(Jumptable + index) + RelocBase) 1760 // RelocBase can be JumpTable, GOT or some sort of global base. 1761 if (PTy != MVT::i32) 1762 Addr = DAG.getNode(ISD::SIGN_EXTEND, PTy, Addr); 1763 Addr = DAG.getNode(ISD::ADD, PTy, Addr, 1764 TLI.getPICJumpTableRelocBase(Table, DAG)); 1765 } 1766 Result = DAG.getNode(ISD::BRIND, MVT::Other, LD.getValue(1), Addr); 1767 } 1768 } 1769 break; 1770 case ISD::BRCOND: 1771 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1772 // Ensure that libcalls are emitted before a return. 1773 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1774 Tmp1 = LegalizeOp(Tmp1); 1775 LastCALLSEQ_END = DAG.getEntryNode(); 1776 1777 switch (getTypeAction(Node->getOperand(1).getValueType())) { 1778 case Expand: assert(0 && "It's impossible to expand bools"); 1779 case Legal: 1780 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the condition. 1781 break; 1782 case Promote: 1783 Tmp2 = PromoteOp(Node->getOperand(1)); // Promote the condition. 1784 1785 // The top bits of the promoted condition are not necessarily zero, ensure 1786 // that the value is properly zero extended. 1787 if (!DAG.MaskedValueIsZero(Tmp2, 1788 MVT::getIntVTBitMask(Tmp2.getValueType())^1)) 1789 Tmp2 = DAG.getZeroExtendInReg(Tmp2, MVT::i1); 1790 break; 1791 } 1792 1793 // Basic block destination (Op#2) is always legal. 1794 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 1795 1796 switch (TLI.getOperationAction(ISD::BRCOND, MVT::Other)) { 1797 default: assert(0 && "This action is not supported yet!"); 1798 case TargetLowering::Legal: break; 1799 case TargetLowering::Custom: 1800 Tmp1 = TLI.LowerOperation(Result, DAG); 1801 if (Tmp1.Val) Result = Tmp1; 1802 break; 1803 case TargetLowering::Expand: 1804 // Expand brcond's setcc into its constituent parts and create a BR_CC 1805 // Node. 1806 if (Tmp2.getOpcode() == ISD::SETCC) { 1807 Result = DAG.getNode(ISD::BR_CC, MVT::Other, Tmp1, Tmp2.getOperand(2), 1808 Tmp2.getOperand(0), Tmp2.getOperand(1), 1809 Node->getOperand(2)); 1810 } else { 1811 Result = DAG.getNode(ISD::BR_CC, MVT::Other, Tmp1, 1812 DAG.getCondCode(ISD::SETNE), Tmp2, 1813 DAG.getConstant(0, Tmp2.getValueType()), 1814 Node->getOperand(2)); 1815 } 1816 break; 1817 } 1818 break; 1819 case ISD::BR_CC: 1820 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1821 // Ensure that libcalls are emitted before a branch. 1822 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1823 Tmp1 = LegalizeOp(Tmp1); 1824 Tmp2 = Node->getOperand(2); // LHS 1825 Tmp3 = Node->getOperand(3); // RHS 1826 Tmp4 = Node->getOperand(1); // CC 1827 1828 LegalizeSetCCOperands(Tmp2, Tmp3, Tmp4); 1829 LastCALLSEQ_END = DAG.getEntryNode(); 1830 1831 // If we didn't get both a LHS and RHS back from LegalizeSetCCOperands, 1832 // the LHS is a legal SETCC itself. In this case, we need to compare 1833 // the result against zero to select between true and false values. 1834 if (Tmp3.Val == 0) { 1835 Tmp3 = DAG.getConstant(0, Tmp2.getValueType()); 1836 Tmp4 = DAG.getCondCode(ISD::SETNE); 1837 } 1838 1839 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp4, Tmp2, Tmp3, 1840 Node->getOperand(4)); 1841 1842 switch (TLI.getOperationAction(ISD::BR_CC, Tmp3.getValueType())) { 1843 default: assert(0 && "Unexpected action for BR_CC!"); 1844 case TargetLowering::Legal: break; 1845 case TargetLowering::Custom: 1846 Tmp4 = TLI.LowerOperation(Result, DAG); 1847 if (Tmp4.Val) Result = Tmp4; 1848 break; 1849 } 1850 break; 1851 case ISD::LOAD: { 1852 LoadSDNode *LD = cast<LoadSDNode>(Node); 1853 Tmp1 = LegalizeOp(LD->getChain()); // Legalize the chain. 1854 Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer. 1855 1856 ISD::LoadExtType ExtType = LD->getExtensionType(); 1857 if (ExtType == ISD::NON_EXTLOAD) { 1858 MVT::ValueType VT = Node->getValueType(0); 1859 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset()); 1860 Tmp3 = Result.getValue(0); 1861 Tmp4 = Result.getValue(1); 1862 1863 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 1864 default: assert(0 && "This action is not supported yet!"); 1865 case TargetLowering::Legal: 1866 // If this is an unaligned load and the target doesn't support it, 1867 // expand it. 1868 if (!TLI.allowsUnalignedMemoryAccesses()) { 1869 unsigned ABIAlignment = TLI.getTargetData()-> 1870 getABITypeAlignment(MVT::getTypeForValueType(LD->getMemoryVT())); 1871 if (LD->getAlignment() < ABIAlignment){ 1872 Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.Val), DAG, 1873 TLI); 1874 Tmp3 = Result.getOperand(0); 1875 Tmp4 = Result.getOperand(1); 1876 Tmp3 = LegalizeOp(Tmp3); 1877 Tmp4 = LegalizeOp(Tmp4); 1878 } 1879 } 1880 break; 1881 case TargetLowering::Custom: 1882 Tmp1 = TLI.LowerOperation(Tmp3, DAG); 1883 if (Tmp1.Val) { 1884 Tmp3 = LegalizeOp(Tmp1); 1885 Tmp4 = LegalizeOp(Tmp1.getValue(1)); 1886 } 1887 break; 1888 case TargetLowering::Promote: { 1889 // Only promote a load of vector type to another. 1890 assert(MVT::isVector(VT) && "Cannot promote this load!"); 1891 // Change base type to a different vector type. 1892 MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 1893 1894 Tmp1 = DAG.getLoad(NVT, Tmp1, Tmp2, LD->getSrcValue(), 1895 LD->getSrcValueOffset(), 1896 LD->isVolatile(), LD->getAlignment()); 1897 Tmp3 = LegalizeOp(DAG.getNode(ISD::BIT_CONVERT, VT, Tmp1)); 1898 Tmp4 = LegalizeOp(Tmp1.getValue(1)); 1899 break; 1900 } 1901 } 1902 // Since loads produce two values, make sure to remember that we 1903 // legalized both of them. 1904 AddLegalizedOperand(SDOperand(Node, 0), Tmp3); 1905 AddLegalizedOperand(SDOperand(Node, 1), Tmp4); 1906 return Op.ResNo ? Tmp4 : Tmp3; 1907 } else { 1908 MVT::ValueType SrcVT = LD->getMemoryVT(); 1909 unsigned SrcWidth = MVT::getSizeInBits(SrcVT); 1910 int SVOffset = LD->getSrcValueOffset(); 1911 unsigned Alignment = LD->getAlignment(); 1912 bool isVolatile = LD->isVolatile(); 1913 1914 if (SrcWidth != MVT::getStoreSizeInBits(SrcVT) && 1915 // Some targets pretend to have an i1 loading operation, and actually 1916 // load an i8. This trick is correct for ZEXTLOAD because the top 7 1917 // bits are guaranteed to be zero; it helps the optimizers understand 1918 // that these bits are zero. It is also useful for EXTLOAD, since it 1919 // tells the optimizers that those bits are undefined. It would be 1920 // nice to have an effective generic way of getting these benefits... 1921 // Until such a way is found, don't insist on promoting i1 here. 1922 (SrcVT != MVT::i1 || 1923 TLI.getLoadXAction(ExtType, MVT::i1) == TargetLowering::Promote)) { 1924 // Promote to a byte-sized load if not loading an integral number of 1925 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 1926 unsigned NewWidth = MVT::getStoreSizeInBits(SrcVT); 1927 MVT::ValueType NVT = MVT::getIntegerType(NewWidth); 1928 SDOperand Ch; 1929 1930 // The extra bits are guaranteed to be zero, since we stored them that 1931 // way. A zext load from NVT thus automatically gives zext from SrcVT. 1932 1933 ISD::LoadExtType NewExtType = 1934 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; 1935 1936 Result = DAG.getExtLoad(NewExtType, Node->getValueType(0), 1937 Tmp1, Tmp2, LD->getSrcValue(), SVOffset, 1938 NVT, isVolatile, Alignment); 1939 1940 Ch = Result.getValue(1); // The chain. 1941 1942 if (ExtType == ISD::SEXTLOAD) 1943 // Having the top bits zero doesn't help when sign extending. 1944 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(), 1945 Result, DAG.getValueType(SrcVT)); 1946 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) 1947 // All the top bits are guaranteed to be zero - inform the optimizers. 1948 Result = DAG.getNode(ISD::AssertZext, Result.getValueType(), Result, 1949 DAG.getValueType(SrcVT)); 1950 1951 Tmp1 = LegalizeOp(Result); 1952 Tmp2 = LegalizeOp(Ch); 1953 } else if (SrcWidth & (SrcWidth - 1)) { 1954 // If not loading a power-of-2 number of bits, expand as two loads. 1955 assert(MVT::isExtendedVT(SrcVT) && !MVT::isVector(SrcVT) && 1956 "Unsupported extload!"); 1957 unsigned RoundWidth = 1 << Log2_32(SrcWidth); 1958 assert(RoundWidth < SrcWidth); 1959 unsigned ExtraWidth = SrcWidth - RoundWidth; 1960 assert(ExtraWidth < RoundWidth); 1961 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 1962 "Load size not an integral number of bytes!"); 1963 MVT::ValueType RoundVT = MVT::getIntegerType(RoundWidth); 1964 MVT::ValueType ExtraVT = MVT::getIntegerType(ExtraWidth); 1965 SDOperand Lo, Hi, Ch; 1966 unsigned IncrementSize; 1967 1968 if (TLI.isLittleEndian()) { 1969 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) 1970 // Load the bottom RoundWidth bits. 1971 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, Node->getValueType(0), Tmp1, Tmp2, 1972 LD->getSrcValue(), SVOffset, RoundVT, isVolatile, 1973 Alignment); 1974 1975 // Load the remaining ExtraWidth bits. 1976 IncrementSize = RoundWidth / 8; 1977 Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, 1978 DAG.getIntPtrConstant(IncrementSize)); 1979 Hi = DAG.getExtLoad(ExtType, Node->getValueType(0), Tmp1, Tmp2, 1980 LD->getSrcValue(), SVOffset + IncrementSize, 1981 ExtraVT, isVolatile, 1982 MinAlign(Alignment, IncrementSize)); 1983 1984 // Build a factor node to remember that this load is independent of the 1985 // other one. 1986 Ch = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), 1987 Hi.getValue(1)); 1988 1989 // Move the top bits to the right place. 1990 Hi = DAG.getNode(ISD::SHL, Hi.getValueType(), Hi, 1991 DAG.getConstant(RoundWidth, TLI.getShiftAmountTy())); 1992 1993 // Join the hi and lo parts. 1994 Result = DAG.getNode(ISD::OR, Node->getValueType(0), Lo, Hi); 1995 } else { 1996 // Big endian - avoid unaligned loads. 1997 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 1998 // Load the top RoundWidth bits. 1999 Hi = DAG.getExtLoad(ExtType, Node->getValueType(0), Tmp1, Tmp2, 2000 LD->getSrcValue(), SVOffset, RoundVT, isVolatile, 2001 Alignment); 2002 2003 // Load the remaining ExtraWidth bits. 2004 IncrementSize = RoundWidth / 8; 2005 Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, 2006 DAG.getIntPtrConstant(IncrementSize)); 2007 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, Node->getValueType(0), Tmp1, Tmp2, 2008 LD->getSrcValue(), SVOffset + IncrementSize, 2009 ExtraVT, isVolatile, 2010 MinAlign(Alignment, IncrementSize)); 2011 2012 // Build a factor node to remember that this load is independent of the 2013 // other one. 2014 Ch = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), 2015 Hi.getValue(1)); 2016 2017 // Move the top bits to the right place. 2018 Hi = DAG.getNode(ISD::SHL, Hi.getValueType(), Hi, 2019 DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy())); 2020 2021 // Join the hi and lo parts. 2022 Result = DAG.getNode(ISD::OR, Node->getValueType(0), Lo, Hi); 2023 } 2024 2025 Tmp1 = LegalizeOp(Result); 2026 Tmp2 = LegalizeOp(Ch); 2027 } else { 2028 switch (TLI.getLoadXAction(ExtType, SrcVT)) { 2029 default: assert(0 && "This action is not supported yet!"); 2030 case TargetLowering::Custom: 2031 isCustom = true; 2032 // FALLTHROUGH 2033 case TargetLowering::Legal: 2034 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset()); 2035 Tmp1 = Result.getValue(0); 2036 Tmp2 = Result.getValue(1); 2037 2038 if (isCustom) { 2039 Tmp3 = TLI.LowerOperation(Result, DAG); 2040 if (Tmp3.Val) { 2041 Tmp1 = LegalizeOp(Tmp3); 2042 Tmp2 = LegalizeOp(Tmp3.getValue(1)); 2043 } 2044 } else { 2045 // If this is an unaligned load and the target doesn't support it, 2046 // expand it. 2047 if (!TLI.allowsUnalignedMemoryAccesses()) { 2048 unsigned ABIAlignment = TLI.getTargetData()-> 2049 getABITypeAlignment(MVT::getTypeForValueType(LD->getMemoryVT())); 2050 if (LD->getAlignment() < ABIAlignment){ 2051 Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.Val), DAG, 2052 TLI); 2053 Tmp1 = Result.getOperand(0); 2054 Tmp2 = Result.getOperand(1); 2055 Tmp1 = LegalizeOp(Tmp1); 2056 Tmp2 = LegalizeOp(Tmp2); 2057 } 2058 } 2059 } 2060 break; 2061 case TargetLowering::Expand: 2062 // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND 2063 if (SrcVT == MVT::f32 && Node->getValueType(0) == MVT::f64) { 2064 SDOperand Load = DAG.getLoad(SrcVT, Tmp1, Tmp2, LD->getSrcValue(), 2065 LD->getSrcValueOffset(), 2066 LD->isVolatile(), LD->getAlignment()); 2067 Result = DAG.getNode(ISD::FP_EXTEND, Node->getValueType(0), Load); 2068 Tmp1 = LegalizeOp(Result); // Relegalize new nodes. 2069 Tmp2 = LegalizeOp(Load.getValue(1)); 2070 break; 2071 } 2072 assert(ExtType != ISD::EXTLOAD &&"EXTLOAD should always be supported!"); 2073 // Turn the unsupported load into an EXTLOAD followed by an explicit 2074 // zero/sign extend inreg. 2075 Result = DAG.getExtLoad(ISD::EXTLOAD, Node->getValueType(0), 2076 Tmp1, Tmp2, LD->getSrcValue(), 2077 LD->getSrcValueOffset(), SrcVT, 2078 LD->isVolatile(), LD->getAlignment()); 2079 SDOperand ValRes; 2080 if (ExtType == ISD::SEXTLOAD) 2081 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(), 2082 Result, DAG.getValueType(SrcVT)); 2083 else 2084 ValRes = DAG.getZeroExtendInReg(Result, SrcVT); 2085 Tmp1 = LegalizeOp(ValRes); // Relegalize new nodes. 2086 Tmp2 = LegalizeOp(Result.getValue(1)); // Relegalize new nodes. 2087 break; 2088 } 2089 } 2090 2091 // Since loads produce two values, make sure to remember that we legalized 2092 // both of them. 2093 AddLegalizedOperand(SDOperand(Node, 0), Tmp1); 2094 AddLegalizedOperand(SDOperand(Node, 1), Tmp2); 2095 return Op.ResNo ? Tmp2 : Tmp1; 2096 } 2097 } 2098 case ISD::EXTRACT_ELEMENT: { 2099 MVT::ValueType OpTy = Node->getOperand(0).getValueType(); 2100 switch (getTypeAction(OpTy)) { 2101 default: assert(0 && "EXTRACT_ELEMENT action for type unimplemented!"); 2102 case Legal: 2103 if (cast<ConstantSDNode>(Node->getOperand(1))->getValue()) { 2104 // 1 -> Hi 2105 Result = DAG.getNode(ISD::SRL, OpTy, Node->getOperand(0), 2106 DAG.getConstant(MVT::getSizeInBits(OpTy)/2, 2107 TLI.getShiftAmountTy())); 2108 Result = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), Result); 2109 } else { 2110 // 0 -> Lo 2111 Result = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), 2112 Node->getOperand(0)); 2113 } 2114 break; 2115 case Expand: 2116 // Get both the low and high parts. 2117 ExpandOp(Node->getOperand(0), Tmp1, Tmp2); 2118 if (cast<ConstantSDNode>(Node->getOperand(1))->getValue()) 2119 Result = Tmp2; // 1 -> Hi 2120 else 2121 Result = Tmp1; // 0 -> Lo 2122 break; 2123 } 2124 break; 2125 } 2126 2127 case ISD::CopyToReg: 2128 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2129 2130 assert(isTypeLegal(Node->getOperand(2).getValueType()) && 2131 "Register type must be legal!"); 2132 // Legalize the incoming value (must be a legal type). 2133 Tmp2 = LegalizeOp(Node->getOperand(2)); 2134 if (Node->getNumValues() == 1) { 2135 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1), Tmp2); 2136 } else { 2137 assert(Node->getNumValues() == 2 && "Unknown CopyToReg"); 2138 if (Node->getNumOperands() == 4) { 2139 Tmp3 = LegalizeOp(Node->getOperand(3)); 2140 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1), Tmp2, 2141 Tmp3); 2142 } else { 2143 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1),Tmp2); 2144 } 2145 2146 // Since this produces two values, make sure to remember that we legalized 2147 // both of them. 2148 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 2149 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 2150 return Result; 2151 } 2152 break; 2153 2154 case ISD::RET: 2155 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2156 2157 // Ensure that libcalls are emitted before a return. 2158 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 2159 Tmp1 = LegalizeOp(Tmp1); 2160 LastCALLSEQ_END = DAG.getEntryNode(); 2161 2162 switch (Node->getNumOperands()) { 2163 case 3: // ret val 2164 Tmp2 = Node->getOperand(1); 2165 Tmp3 = Node->getOperand(2); // Signness 2166 switch (getTypeAction(Tmp2.getValueType())) { 2167 case Legal: 2168 Result = DAG.UpdateNodeOperands(Result, Tmp1, LegalizeOp(Tmp2), Tmp3); 2169 break; 2170 case Expand: 2171 if (!MVT::isVector(Tmp2.getValueType())) { 2172 SDOperand Lo, Hi; 2173 ExpandOp(Tmp2, Lo, Hi); 2174 2175 // Big endian systems want the hi reg first. 2176 if (TLI.isBigEndian()) 2177 std::swap(Lo, Hi); 2178 2179 if (Hi.Val) 2180 Result = DAG.getNode(ISD::RET, MVT::Other, Tmp1, Lo, Tmp3, Hi,Tmp3); 2181 else 2182 Result = DAG.getNode(ISD::RET, MVT::Other, Tmp1, Lo, Tmp3); 2183 Result = LegalizeOp(Result); 2184 } else { 2185 SDNode *InVal = Tmp2.Val; 2186 int InIx = Tmp2.ResNo; 2187 unsigned NumElems = MVT::getVectorNumElements(InVal->getValueType(InIx)); 2188 MVT::ValueType EVT = MVT::getVectorElementType(InVal->getValueType(InIx)); 2189 2190 // Figure out if there is a simple type corresponding to this Vector 2191 // type. If so, convert to the vector type. 2192 MVT::ValueType TVT = MVT::getVectorType(EVT, NumElems); 2193 if (TLI.isTypeLegal(TVT)) { 2194 // Turn this into a return of the vector type. 2195 Tmp2 = LegalizeOp(Tmp2); 2196 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2197 } else if (NumElems == 1) { 2198 // Turn this into a return of the scalar type. 2199 Tmp2 = ScalarizeVectorOp(Tmp2); 2200 Tmp2 = LegalizeOp(Tmp2); 2201 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2202 2203 // FIXME: Returns of gcc generic vectors smaller than a legal type 2204 // should be returned in integer registers! 2205 2206 // The scalarized value type may not be legal, e.g. it might require 2207 // promotion or expansion. Relegalize the return. 2208 Result = LegalizeOp(Result); 2209 } else { 2210 // FIXME: Returns of gcc generic vectors larger than a legal vector 2211 // type should be returned by reference! 2212 SDOperand Lo, Hi; 2213 SplitVectorOp(Tmp2, Lo, Hi); 2214 Result = DAG.getNode(ISD::RET, MVT::Other, Tmp1, Lo, Tmp3, Hi,Tmp3); 2215 Result = LegalizeOp(Result); 2216 } 2217 } 2218 break; 2219 case Promote: 2220 Tmp2 = PromoteOp(Node->getOperand(1)); 2221 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2222 Result = LegalizeOp(Result); 2223 break; 2224 } 2225 break; 2226 case 1: // ret void 2227 Result = DAG.UpdateNodeOperands(Result, Tmp1); 2228 break; 2229 default: { // ret <values> 2230 SmallVector<SDOperand, 8> NewValues; 2231 NewValues.push_back(Tmp1); 2232 for (unsigned i = 1, e = Node->getNumOperands(); i < e; i += 2) 2233 switch (getTypeAction(Node->getOperand(i).getValueType())) { 2234 case Legal: 2235 NewValues.push_back(LegalizeOp(Node->getOperand(i))); 2236 NewValues.push_back(Node->getOperand(i+1)); 2237 break; 2238 case Expand: { 2239 SDOperand Lo, Hi; 2240 assert(!MVT::isExtendedVT(Node->getOperand(i).getValueType()) && 2241 "FIXME: TODO: implement returning non-legal vector types!"); 2242 ExpandOp(Node->getOperand(i), Lo, Hi); 2243 NewValues.push_back(Lo); 2244 NewValues.push_back(Node->getOperand(i+1)); 2245 if (Hi.Val) { 2246 NewValues.push_back(Hi); 2247 NewValues.push_back(Node->getOperand(i+1)); 2248 } 2249 break; 2250 } 2251 case Promote: 2252 assert(0 && "Can't promote multiple return value yet!"); 2253 } 2254 2255 if (NewValues.size() == Node->getNumOperands()) 2256 Result = DAG.UpdateNodeOperands(Result, &NewValues[0],NewValues.size()); 2257 else 2258 Result = DAG.getNode(ISD::RET, MVT::Other, 2259 &NewValues[0], NewValues.size()); 2260 break; 2261 } 2262 } 2263 2264 if (Result.getOpcode() == ISD::RET) { 2265 switch (TLI.getOperationAction(Result.getOpcode(), MVT::Other)) { 2266 default: assert(0 && "This action is not supported yet!"); 2267 case TargetLowering::Legal: break; 2268 case TargetLowering::Custom: 2269 Tmp1 = TLI.LowerOperation(Result, DAG); 2270 if (Tmp1.Val) Result = Tmp1; 2271 break; 2272 } 2273 } 2274 break; 2275 case ISD::STORE: { 2276 StoreSDNode *ST = cast<StoreSDNode>(Node); 2277 Tmp1 = LegalizeOp(ST->getChain()); // Legalize the chain. 2278 Tmp2 = LegalizeOp(ST->getBasePtr()); // Legalize the pointer. 2279 int SVOffset = ST->getSrcValueOffset(); 2280 unsigned Alignment = ST->getAlignment(); 2281 bool isVolatile = ST->isVolatile(); 2282 2283 if (!ST->isTruncatingStore()) { 2284 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 2285 // FIXME: We shouldn't do this for TargetConstantFP's. 2286 // FIXME: move this to the DAG Combiner! Note that we can't regress due 2287 // to phase ordering between legalized code and the dag combiner. This 2288 // probably means that we need to integrate dag combiner and legalizer 2289 // together. 2290 // We generally can't do this one for long doubles. 2291 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) { 2292 if (CFP->getValueType(0) == MVT::f32 && 2293 getTypeAction(MVT::i32) == Legal) { 2294 Tmp3 = DAG.getConstant((uint32_t)CFP->getValueAPF(). 2295 convertToAPInt().getZExtValue(), 2296 MVT::i32); 2297 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2298 SVOffset, isVolatile, Alignment); 2299 break; 2300 } else if (CFP->getValueType(0) == MVT::f64) { 2301 // If this target supports 64-bit registers, do a single 64-bit store. 2302 if (getTypeAction(MVT::i64) == Legal) { 2303 Tmp3 = DAG.getConstant(CFP->getValueAPF().convertToAPInt(). 2304 getZExtValue(), MVT::i64); 2305 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2306 SVOffset, isVolatile, Alignment); 2307 break; 2308 } else if (getTypeAction(MVT::i32) == Legal) { 2309 // Otherwise, if the target supports 32-bit registers, use 2 32-bit 2310 // stores. If the target supports neither 32- nor 64-bits, this 2311 // xform is certainly not worth it. 2312 uint64_t IntVal =CFP->getValueAPF().convertToAPInt().getZExtValue(); 2313 SDOperand Lo = DAG.getConstant(uint32_t(IntVal), MVT::i32); 2314 SDOperand Hi = DAG.getConstant(uint32_t(IntVal >>32), MVT::i32); 2315 if (TLI.isBigEndian()) std::swap(Lo, Hi); 2316 2317 Lo = DAG.getStore(Tmp1, Lo, Tmp2, ST->getSrcValue(), 2318 SVOffset, isVolatile, Alignment); 2319 Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, 2320 DAG.getIntPtrConstant(4)); 2321 Hi = DAG.getStore(Tmp1, Hi, Tmp2, ST->getSrcValue(), SVOffset+4, 2322 isVolatile, MinAlign(Alignment, 4U)); 2323 2324 Result = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi); 2325 break; 2326 } 2327 } 2328 } 2329 2330 switch (getTypeAction(ST->getMemoryVT())) { 2331 case Legal: { 2332 Tmp3 = LegalizeOp(ST->getValue()); 2333 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2, 2334 ST->getOffset()); 2335 2336 MVT::ValueType VT = Tmp3.getValueType(); 2337 switch (TLI.getOperationAction(ISD::STORE, VT)) { 2338 default: assert(0 && "This action is not supported yet!"); 2339 case TargetLowering::Legal: 2340 // If this is an unaligned store and the target doesn't support it, 2341 // expand it. 2342 if (!TLI.allowsUnalignedMemoryAccesses()) { 2343 unsigned ABIAlignment = TLI.getTargetData()-> 2344 getABITypeAlignment(MVT::getTypeForValueType(ST->getMemoryVT())); 2345 if (ST->getAlignment() < ABIAlignment) 2346 Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.Val), DAG, 2347 TLI); 2348 } 2349 break; 2350 case TargetLowering::Custom: 2351 Tmp1 = TLI.LowerOperation(Result, DAG); 2352 if (Tmp1.Val) Result = Tmp1; 2353 break; 2354 case TargetLowering::Promote: 2355 assert(MVT::isVector(VT) && "Unknown legal promote case!"); 2356 Tmp3 = DAG.getNode(ISD::BIT_CONVERT, 2357 TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3); 2358 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, 2359 ST->getSrcValue(), SVOffset, isVolatile, 2360 Alignment); 2361 break; 2362 } 2363 break; 2364 } 2365 case Promote: 2366 // Truncate the value and store the result. 2367 Tmp3 = PromoteOp(ST->getValue()); 2368 Result = DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2369 SVOffset, ST->getMemoryVT(), 2370 isVolatile, Alignment); 2371 break; 2372 2373 case Expand: 2374 unsigned IncrementSize = 0; 2375 SDOperand Lo, Hi; 2376 2377 // If this is a vector type, then we have to calculate the increment as 2378 // the product of the element size in bytes, and the number of elements 2379 // in the high half of the vector. 2380 if (MVT::isVector(ST->getValue().getValueType())) { 2381 SDNode *InVal = ST->getValue().Val; 2382 int InIx = ST->getValue().ResNo; 2383 MVT::ValueType InVT = InVal->getValueType(InIx); 2384 unsigned NumElems = MVT::getVectorNumElements(InVT); 2385 MVT::ValueType EVT = MVT::getVectorElementType(InVT); 2386 2387 // Figure out if there is a simple type corresponding to this Vector 2388 // type. If so, convert to the vector type. 2389 MVT::ValueType TVT = MVT::getVectorType(EVT, NumElems); 2390 if (TLI.isTypeLegal(TVT)) { 2391 // Turn this into a normal store of the vector type. 2392 Tmp3 = LegalizeOp(ST->getValue()); 2393 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2394 SVOffset, isVolatile, Alignment); 2395 Result = LegalizeOp(Result); 2396 break; 2397 } else if (NumElems == 1) { 2398 // Turn this into a normal store of the scalar type. 2399 Tmp3 = ScalarizeVectorOp(ST->getValue()); 2400 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2401 SVOffset, isVolatile, Alignment); 2402 // The scalarized value type may not be legal, e.g. it might require 2403 // promotion or expansion. Relegalize the scalar store. 2404 Result = LegalizeOp(Result); 2405 break; 2406 } else { 2407 SplitVectorOp(ST->getValue(), Lo, Hi); 2408 IncrementSize = MVT::getVectorNumElements(Lo.Val->getValueType(0)) * 2409 MVT::getSizeInBits(EVT)/8; 2410 } 2411 } else { 2412 ExpandOp(ST->getValue(), Lo, Hi); 2413 IncrementSize = Hi.Val ? MVT::getSizeInBits(Hi.getValueType())/8 : 0; 2414 2415 if (TLI.isBigEndian()) 2416 std::swap(Lo, Hi); 2417 } 2418 2419 Lo = DAG.getStore(Tmp1, Lo, Tmp2, ST->getSrcValue(), 2420 SVOffset, isVolatile, Alignment); 2421 2422 if (Hi.Val == NULL) { 2423 // Must be int <-> float one-to-one expansion. 2424 Result = Lo; 2425 break; 2426 } 2427 2428 Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, 2429 DAG.getIntPtrConstant(IncrementSize)); 2430 assert(isTypeLegal(Tmp2.getValueType()) && 2431 "Pointers must be legal!"); 2432 SVOffset += IncrementSize; 2433 Alignment = MinAlign(Alignment, IncrementSize); 2434 Hi = DAG.getStore(Tmp1, Hi, Tmp2, ST->getSrcValue(), 2435 SVOffset, isVolatile, Alignment); 2436 Result = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi); 2437 break; 2438 } 2439 } else { 2440 switch (getTypeAction(ST->getValue().getValueType())) { 2441 case Legal: 2442 Tmp3 = LegalizeOp(ST->getValue()); 2443 break; 2444 case Promote: 2445 // We can promote the value, the truncstore will still take care of it. 2446 Tmp3 = PromoteOp(ST->getValue()); 2447 break; 2448 case Expand: 2449 // Just store the low part. This may become a non-trunc store, so make 2450 // sure to use getTruncStore, not UpdateNodeOperands below. 2451 ExpandOp(ST->getValue(), Tmp3, Tmp4); 2452 return DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2453 SVOffset, MVT::i8, isVolatile, Alignment); 2454 } 2455 2456 MVT::ValueType StVT = ST->getMemoryVT(); 2457 unsigned StWidth = MVT::getSizeInBits(StVT); 2458 2459 if (StWidth != MVT::getStoreSizeInBits(StVT)) { 2460 // Promote to a byte-sized store with upper bits zero if not 2461 // storing an integral number of bytes. For example, promote 2462 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 2463 MVT::ValueType NVT = MVT::getIntegerType(MVT::getStoreSizeInBits(StVT)); 2464 Tmp3 = DAG.getZeroExtendInReg(Tmp3, StVT); 2465 Result = DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2466 SVOffset, NVT, isVolatile, Alignment); 2467 } else if (StWidth & (StWidth - 1)) { 2468 // If not storing a power-of-2 number of bits, expand as two stores. 2469 assert(MVT::isExtendedVT(StVT) && !MVT::isVector(StVT) && 2470 "Unsupported truncstore!"); 2471 unsigned RoundWidth = 1 << Log2_32(StWidth); 2472 assert(RoundWidth < StWidth); 2473 unsigned ExtraWidth = StWidth - RoundWidth; 2474 assert(ExtraWidth < RoundWidth); 2475 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 2476 "Store size not an integral number of bytes!"); 2477 MVT::ValueType RoundVT = MVT::getIntegerType(RoundWidth); 2478 MVT::ValueType ExtraVT = MVT::getIntegerType(ExtraWidth); 2479 SDOperand Lo, Hi; 2480 unsigned IncrementSize; 2481 2482 if (TLI.isLittleEndian()) { 2483 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) 2484 // Store the bottom RoundWidth bits. 2485 Lo = DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2486 SVOffset, RoundVT, 2487 isVolatile, Alignment); 2488 2489 // Store the remaining ExtraWidth bits. 2490 IncrementSize = RoundWidth / 8; 2491 Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, 2492 DAG.getIntPtrConstant(IncrementSize)); 2493 Hi = DAG.getNode(ISD::SRL, Tmp3.getValueType(), Tmp3, 2494 DAG.getConstant(RoundWidth, TLI.getShiftAmountTy())); 2495 Hi = DAG.getTruncStore(Tmp1, Hi, Tmp2, ST->getSrcValue(), 2496 SVOffset + IncrementSize, ExtraVT, isVolatile, 2497 MinAlign(Alignment, IncrementSize)); 2498 } else { 2499 // Big endian - avoid unaligned stores. 2500 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X 2501 // Store the top RoundWidth bits. 2502 Hi = DAG.getNode(ISD::SRL, Tmp3.getValueType(), Tmp3, 2503 DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy())); 2504 Hi = DAG.getTruncStore(Tmp1, Hi, Tmp2, ST->getSrcValue(), SVOffset, 2505 RoundVT, isVolatile, Alignment); 2506 2507 // Store the remaining ExtraWidth bits. 2508 IncrementSize = RoundWidth / 8; 2509 Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, 2510 DAG.getIntPtrConstant(IncrementSize)); 2511 Lo = DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2512 SVOffset + IncrementSize, ExtraVT, isVolatile, 2513 MinAlign(Alignment, IncrementSize)); 2514 } 2515 2516 // The order of the stores doesn't matter. 2517 Result = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi); 2518 } else { 2519 if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() || 2520 Tmp2 != ST->getBasePtr()) 2521 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2, 2522 ST->getOffset()); 2523 2524 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { 2525 default: assert(0 && "This action is not supported yet!"); 2526 case TargetLowering::Legal: 2527 // If this is an unaligned store and the target doesn't support it, 2528 // expand it. 2529 if (!TLI.allowsUnalignedMemoryAccesses()) { 2530 unsigned ABIAlignment = TLI.getTargetData()-> 2531 getABITypeAlignment(MVT::getTypeForValueType(ST->getMemoryVT())); 2532 if (ST->getAlignment() < ABIAlignment) 2533 Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.Val), DAG, 2534 TLI); 2535 } 2536 break; 2537 case TargetLowering::Custom: 2538 Result = TLI.LowerOperation(Result, DAG); 2539 break; 2540 case Expand: 2541 // TRUNCSTORE:i16 i32 -> STORE i16 2542 assert(isTypeLegal(StVT) && "Do not know how to expand this store!"); 2543 Tmp3 = DAG.getNode(ISD::TRUNCATE, StVT, Tmp3); 2544 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), SVOffset, 2545 isVolatile, Alignment); 2546 break; 2547 } 2548 } 2549 } 2550 break; 2551 } 2552 case ISD::PCMARKER: 2553 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2554 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 2555 break; 2556 case ISD::STACKSAVE: 2557 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2558 Result = DAG.UpdateNodeOperands(Result, Tmp1); 2559 Tmp1 = Result.getValue(0); 2560 Tmp2 = Result.getValue(1); 2561 2562 switch (TLI.getOperationAction(ISD::STACKSAVE, MVT::Other)) { 2563 default: assert(0 && "This action is not supported yet!"); 2564 case TargetLowering::Legal: break; 2565 case TargetLowering::Custom: 2566 Tmp3 = TLI.LowerOperation(Result, DAG); 2567 if (Tmp3.Val) { 2568 Tmp1 = LegalizeOp(Tmp3); 2569 Tmp2 = LegalizeOp(Tmp3.getValue(1)); 2570 } 2571 break; 2572 case TargetLowering::Expand: 2573 // Expand to CopyFromReg if the target set 2574 // StackPointerRegisterToSaveRestore. 2575 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 2576 Tmp1 = DAG.getCopyFromReg(Result.getOperand(0), SP, 2577 Node->getValueType(0)); 2578 Tmp2 = Tmp1.getValue(1); 2579 } else { 2580 Tmp1 = DAG.getNode(ISD::UNDEF, Node->getValueType(0)); 2581 Tmp2 = Node->getOperand(0); 2582 } 2583 break; 2584 } 2585 2586 // Since stacksave produce two values, make sure to remember that we 2587 // legalized both of them. 2588 AddLegalizedOperand(SDOperand(Node, 0), Tmp1); 2589 AddLegalizedOperand(SDOperand(Node, 1), Tmp2); 2590 return Op.ResNo ? Tmp2 : Tmp1; 2591 2592 case ISD::STACKRESTORE: 2593 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2594 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. 2595 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 2596 2597 switch (TLI.getOperationAction(ISD::STACKRESTORE, MVT::Other)) { 2598 default: assert(0 && "This action is not supported yet!"); 2599 case TargetLowering::Legal: break; 2600 case TargetLowering::Custom: 2601 Tmp1 = TLI.LowerOperation(Result, DAG); 2602 if (Tmp1.Val) Result = Tmp1; 2603 break; 2604 case TargetLowering::Expand: 2605 // Expand to CopyToReg if the target set 2606 // StackPointerRegisterToSaveRestore. 2607 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 2608 Result = DAG.getCopyToReg(Tmp1, SP, Tmp2); 2609 } else { 2610 Result = Tmp1; 2611 } 2612 break; 2613 } 2614 break; 2615 2616 case ISD::READCYCLECOUNTER: 2617 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain 2618 Result = DAG.UpdateNodeOperands(Result, Tmp1); 2619 switch (TLI.getOperationAction(ISD::READCYCLECOUNTER, 2620 Node->getValueType(0))) { 2621 default: assert(0 && "This action is not supported yet!"); 2622 case TargetLowering::Legal: 2623 Tmp1 = Result.getValue(0); 2624 Tmp2 = Result.getValue(1); 2625 break; 2626 case TargetLowering::Custom: 2627 Result = TLI.LowerOperation(Result, DAG); 2628 Tmp1 = LegalizeOp(Result.getValue(0)); 2629 Tmp2 = LegalizeOp(Result.getValue(1)); 2630 break; 2631 } 2632 2633 // Since rdcc produce two values, make sure to remember that we legalized 2634 // both of them. 2635 AddLegalizedOperand(SDOperand(Node, 0), Tmp1); 2636 AddLegalizedOperand(SDOperand(Node, 1), Tmp2); 2637 return Result; 2638 2639 case ISD::SELECT: 2640 switch (getTypeAction(Node->getOperand(0).getValueType())) { 2641 case Expand: assert(0 && "It's impossible to expand bools"); 2642 case Legal: 2643 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the condition. 2644 break; 2645 case Promote: 2646 Tmp1 = PromoteOp(Node->getOperand(0)); // Promote the condition. 2647 // Make sure the condition is either zero or one. 2648 if (!DAG.MaskedValueIsZero(Tmp1, 2649 MVT::getIntVTBitMask(Tmp1.getValueType())^1)) 2650 Tmp1 = DAG.getZeroExtendInReg(Tmp1, MVT::i1); 2651 break; 2652 } 2653 Tmp2 = LegalizeOp(Node->getOperand(1)); // TrueVal 2654 Tmp3 = LegalizeOp(Node->getOperand(2)); // FalseVal 2655 2656 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2657 2658 switch (TLI.getOperationAction(ISD::SELECT, Tmp2.getValueType())) { 2659 default: assert(0 && "This action is not supported yet!"); 2660 case TargetLowering::Legal: break; 2661 case TargetLowering::Custom: { 2662 Tmp1 = TLI.LowerOperation(Result, DAG); 2663 if (Tmp1.Val) Result = Tmp1; 2664 break; 2665 } 2666 case TargetLowering::Expand: 2667 if (Tmp1.getOpcode() == ISD::SETCC) { 2668 Result = DAG.getSelectCC(Tmp1.getOperand(0), Tmp1.getOperand(1), 2669 Tmp2, Tmp3, 2670 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); 2671 } else { 2672 Result = DAG.getSelectCC(Tmp1, 2673 DAG.getConstant(0, Tmp1.getValueType()), 2674 Tmp2, Tmp3, ISD::SETNE); 2675 } 2676 break; 2677 case TargetLowering::Promote: { 2678 MVT::ValueType NVT = 2679 TLI.getTypeToPromoteTo(ISD::SELECT, Tmp2.getValueType()); 2680 unsigned ExtOp, TruncOp; 2681 if (MVT::isVector(Tmp2.getValueType())) { 2682 ExtOp = ISD::BIT_CONVERT; 2683 TruncOp = ISD::BIT_CONVERT; 2684 } else if (MVT::isInteger(Tmp2.getValueType())) { 2685 ExtOp = ISD::ANY_EXTEND; 2686 TruncOp = ISD::TRUNCATE; 2687 } else { 2688 ExtOp = ISD::FP_EXTEND; 2689 TruncOp = ISD::FP_ROUND; 2690 } 2691 // Promote each of the values to the new type. 2692 Tmp2 = DAG.getNode(ExtOp, NVT, Tmp2); 2693 Tmp3 = DAG.getNode(ExtOp, NVT, Tmp3); 2694 // Perform the larger operation, then round down. 2695 Result = DAG.getNode(ISD::SELECT, NVT, Tmp1, Tmp2,Tmp3); 2696 if (TruncOp != ISD::FP_ROUND) 2697 Result = DAG.getNode(TruncOp, Node->getValueType(0), Result); 2698 else 2699 Result = DAG.getNode(TruncOp, Node->getValueType(0), Result, 2700 DAG.getIntPtrConstant(0)); 2701 break; 2702 } 2703 } 2704 break; 2705 case ISD::SELECT_CC: { 2706 Tmp1 = Node->getOperand(0); // LHS 2707 Tmp2 = Node->getOperand(1); // RHS 2708 Tmp3 = LegalizeOp(Node->getOperand(2)); // True 2709 Tmp4 = LegalizeOp(Node->getOperand(3)); // False 2710 SDOperand CC = Node->getOperand(4); 2711 2712 LegalizeSetCCOperands(Tmp1, Tmp2, CC); 2713 2714 // If we didn't get both a LHS and RHS back from LegalizeSetCCOperands, 2715 // the LHS is a legal SETCC itself. In this case, we need to compare 2716 // the result against zero to select between true and false values. 2717 if (Tmp2.Val == 0) { 2718 Tmp2 = DAG.getConstant(0, Tmp1.getValueType()); 2719 CC = DAG.getCondCode(ISD::SETNE); 2720 } 2721 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, Tmp4, CC); 2722 2723 // Everything is legal, see if we should expand this op or something. 2724 switch (TLI.getOperationAction(ISD::SELECT_CC, Tmp3.getValueType())) { 2725 default: assert(0 && "This action is not supported yet!"); 2726 case TargetLowering::Legal: break; 2727 case TargetLowering::Custom: 2728 Tmp1 = TLI.LowerOperation(Result, DAG); 2729 if (Tmp1.Val) Result = Tmp1; 2730 break; 2731 } 2732 break; 2733 } 2734 case ISD::SETCC: 2735 Tmp1 = Node->getOperand(0); 2736 Tmp2 = Node->getOperand(1); 2737 Tmp3 = Node->getOperand(2); 2738 LegalizeSetCCOperands(Tmp1, Tmp2, Tmp3); 2739 2740 // If we had to Expand the SetCC operands into a SELECT node, then it may 2741 // not always be possible to return a true LHS & RHS. In this case, just 2742 // return the value we legalized, returned in the LHS 2743 if (Tmp2.Val == 0) { 2744 Result = Tmp1; 2745 break; 2746 } 2747 2748 switch (TLI.getOperationAction(ISD::SETCC, Tmp1.getValueType())) { 2749 default: assert(0 && "Cannot handle this action for SETCC yet!"); 2750 case TargetLowering::Custom: 2751 isCustom = true; 2752 // FALLTHROUGH. 2753 case TargetLowering::Legal: 2754 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2755 if (isCustom) { 2756 Tmp4 = TLI.LowerOperation(Result, DAG); 2757 if (Tmp4.Val) Result = Tmp4; 2758 } 2759 break; 2760 case TargetLowering::Promote: { 2761 // First step, figure out the appropriate operation to use. 2762 // Allow SETCC to not be supported for all legal data types 2763 // Mostly this targets FP 2764 MVT::ValueType NewInTy = Node->getOperand(0).getValueType(); 2765 MVT::ValueType OldVT = NewInTy; OldVT = OldVT; 2766 2767 // Scan for the appropriate larger type to use. 2768 while (1) { 2769 NewInTy = (MVT::ValueType)(NewInTy+1); 2770 2771 assert(MVT::isInteger(NewInTy) == MVT::isInteger(OldVT) && 2772 "Fell off of the edge of the integer world"); 2773 assert(MVT::isFloatingPoint(NewInTy) == MVT::isFloatingPoint(OldVT) && 2774 "Fell off of the edge of the floating point world"); 2775 2776 // If the target supports SETCC of this type, use it. 2777 if (TLI.isOperationLegal(ISD::SETCC, NewInTy)) 2778 break; 2779 } 2780 if (MVT::isInteger(NewInTy)) 2781 assert(0 && "Cannot promote Legal Integer SETCC yet"); 2782 else { 2783 Tmp1 = DAG.getNode(ISD::FP_EXTEND, NewInTy, Tmp1); 2784 Tmp2 = DAG.getNode(ISD::FP_EXTEND, NewInTy, Tmp2); 2785 } 2786 Tmp1 = LegalizeOp(Tmp1); 2787 Tmp2 = LegalizeOp(Tmp2); 2788 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2789 Result = LegalizeOp(Result); 2790 break; 2791 } 2792 case TargetLowering::Expand: 2793 // Expand a setcc node into a select_cc of the same condition, lhs, and 2794 // rhs that selects between const 1 (true) and const 0 (false). 2795 MVT::ValueType VT = Node->getValueType(0); 2796 Result = DAG.getNode(ISD::SELECT_CC, VT, Tmp1, Tmp2, 2797 DAG.getConstant(1, VT), DAG.getConstant(0, VT), 2798 Tmp3); 2799 break; 2800 } 2801 break; 2802 case ISD::MEMSET: 2803 case ISD::MEMCPY: 2804 case ISD::MEMMOVE: { 2805 Tmp1 = LegalizeOp(Node->getOperand(0)); // Chain 2806 Tmp2 = LegalizeOp(Node->getOperand(1)); // Pointer 2807 2808 if (Node->getOpcode() == ISD::MEMSET) { // memset = ubyte 2809 switch (getTypeAction(Node->getOperand(2).getValueType())) { 2810 case Expand: assert(0 && "Cannot expand a byte!"); 2811 case Legal: 2812 Tmp3 = LegalizeOp(Node->getOperand(2)); 2813 break; 2814 case Promote: 2815 Tmp3 = PromoteOp(Node->getOperand(2)); 2816 break; 2817 } 2818 } else { 2819 Tmp3 = LegalizeOp(Node->getOperand(2)); // memcpy/move = pointer, 2820 } 2821 2822 SDOperand Tmp4; 2823 switch (getTypeAction(Node->getOperand(3).getValueType())) { 2824 case Expand: { 2825 // Length is too big, just take the lo-part of the length. 2826 SDOperand HiPart; 2827 ExpandOp(Node->getOperand(3), Tmp4, HiPart); 2828 break; 2829 } 2830 case Legal: 2831 Tmp4 = LegalizeOp(Node->getOperand(3)); 2832 break; 2833 case Promote: 2834 Tmp4 = PromoteOp(Node->getOperand(3)); 2835 break; 2836 } 2837 2838 SDOperand Tmp5; 2839 switch (getTypeAction(Node->getOperand(4).getValueType())) { // uint 2840 case Expand: assert(0 && "Cannot expand this yet!"); 2841 case Legal: 2842 Tmp5 = LegalizeOp(Node->getOperand(4)); 2843 break; 2844 case Promote: 2845 Tmp5 = PromoteOp(Node->getOperand(4)); 2846 break; 2847 } 2848 2849 SDOperand Tmp6; 2850 switch (getTypeAction(Node->getOperand(5).getValueType())) { // bool 2851 case Expand: assert(0 && "Cannot expand this yet!"); 2852 case Legal: 2853 Tmp6 = LegalizeOp(Node->getOperand(5)); 2854 break; 2855 case Promote: 2856 Tmp6 = PromoteOp(Node->getOperand(5)); 2857 break; 2858 } 2859 2860 switch (TLI.getOperationAction(Node->getOpcode(), MVT::Other)) { 2861 default: assert(0 && "This action not implemented for this operation!"); 2862 case TargetLowering::Custom: 2863 isCustom = true; 2864 // FALLTHROUGH 2865 case TargetLowering::Legal: { 2866 SDOperand Ops[] = { Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6 }; 2867 Result = DAG.UpdateNodeOperands(Result, Ops, 6); 2868 if (isCustom) { 2869 Tmp1 = TLI.LowerOperation(Result, DAG); 2870 if (Tmp1.Val) Result = Tmp1; 2871 } 2872 break; 2873 } 2874 case TargetLowering::Expand: { 2875 // Otherwise, the target does not support this operation. Lower the 2876 // operation to an explicit libcall as appropriate. 2877 MVT::ValueType IntPtr = TLI.getPointerTy(); 2878 const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(); 2879 TargetLowering::ArgListTy Args; 2880 TargetLowering::ArgListEntry Entry; 2881 2882 const char *FnName = 0; 2883 if (Node->getOpcode() == ISD::MEMSET) { 2884 Entry.Node = Tmp2; Entry.Ty = IntPtrTy; 2885 Args.push_back(Entry); 2886 // Extend the (previously legalized) ubyte argument to be an int value 2887 // for the call. 2888 if (Tmp3.getValueType() > MVT::i32) 2889 Tmp3 = DAG.getNode(ISD::TRUNCATE, MVT::i32, Tmp3); 2890 else 2891 Tmp3 = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Tmp3); 2892 Entry.Node = Tmp3; Entry.Ty = Type::Int32Ty; Entry.isSExt = true; 2893 Args.push_back(Entry); 2894 Entry.Node = Tmp4; Entry.Ty = IntPtrTy; Entry.isSExt = false; 2895 Args.push_back(Entry); 2896 2897 FnName = "memset"; 2898 } else if (Node->getOpcode() == ISD::MEMCPY || 2899 Node->getOpcode() == ISD::MEMMOVE) { 2900 Entry.Ty = IntPtrTy; 2901 Entry.Node = Tmp2; Args.push_back(Entry); 2902 Entry.Node = Tmp3; Args.push_back(Entry); 2903 Entry.Node = Tmp4; Args.push_back(Entry); 2904 FnName = Node->getOpcode() == ISD::MEMMOVE ? "memmove" : "memcpy"; 2905 } else { 2906 assert(0 && "Unknown op!"); 2907 } 2908 2909 std::pair<SDOperand,SDOperand> CallResult = 2910 TLI.LowerCallTo(Tmp1, Type::VoidTy, 2911 false, false, false, CallingConv::C, false, 2912 DAG.getExternalSymbol(FnName, IntPtr), Args, DAG); 2913 Result = CallResult.second; 2914 break; 2915 } 2916 } 2917 break; 2918 } 2919 2920 case ISD::SHL_PARTS: 2921 case ISD::SRA_PARTS: 2922 case ISD::SRL_PARTS: { 2923 SmallVector<SDOperand, 8> Ops; 2924 bool Changed = false; 2925 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 2926 Ops.push_back(LegalizeOp(Node->getOperand(i))); 2927 Changed |= Ops.back() != Node->getOperand(i); 2928 } 2929 if (Changed) 2930 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 2931 2932 switch (TLI.getOperationAction(Node->getOpcode(), 2933 Node->getValueType(0))) { 2934 default: assert(0 && "This action is not supported yet!"); 2935 case TargetLowering::Legal: break; 2936 case TargetLowering::Custom: 2937 Tmp1 = TLI.LowerOperation(Result, DAG); 2938 if (Tmp1.Val) { 2939 SDOperand Tmp2, RetVal(0, 0); 2940 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) { 2941 Tmp2 = LegalizeOp(Tmp1.getValue(i)); 2942 AddLegalizedOperand(SDOperand(Node, i), Tmp2); 2943 if (i == Op.ResNo) 2944 RetVal = Tmp2; 2945 } 2946 assert(RetVal.Val && "Illegal result number"); 2947 return RetVal; 2948 } 2949 break; 2950 } 2951 2952 // Since these produce multiple values, make sure to remember that we 2953 // legalized all of them. 2954 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 2955 AddLegalizedOperand(SDOperand(Node, i), Result.getValue(i)); 2956 return Result.getValue(Op.ResNo); 2957 } 2958 2959 // Binary operators 2960 case ISD::ADD: 2961 case ISD::SUB: 2962 case ISD::MUL: 2963 case ISD::MULHS: 2964 case ISD::MULHU: 2965 case ISD::UDIV: 2966 case ISD::SDIV: 2967 case ISD::AND: 2968 case ISD::OR: 2969 case ISD::XOR: 2970 case ISD::SHL: 2971 case ISD::SRL: 2972 case ISD::SRA: 2973 case ISD::FADD: 2974 case ISD::FSUB: 2975 case ISD::FMUL: 2976 case ISD::FDIV: 2977 case ISD::FPOW: 2978 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 2979 switch (getTypeAction(Node->getOperand(1).getValueType())) { 2980 case Expand: assert(0 && "Not possible"); 2981 case Legal: 2982 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the RHS. 2983 break; 2984 case Promote: 2985 Tmp2 = PromoteOp(Node->getOperand(1)); // Promote the RHS. 2986 break; 2987 } 2988 2989 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 2990 2991 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 2992 default: assert(0 && "BinOp legalize operation not supported"); 2993 case TargetLowering::Legal: break; 2994 case TargetLowering::Custom: 2995 Tmp1 = TLI.LowerOperation(Result, DAG); 2996 if (Tmp1.Val) Result = Tmp1; 2997 break; 2998 case TargetLowering::Expand: { 2999 MVT::ValueType VT = Op.getValueType(); 3000 3001 // See if multiply or divide can be lowered using two-result operations. 3002 SDVTList VTs = DAG.getVTList(VT, VT); 3003 if (Node->getOpcode() == ISD::MUL) { 3004 // We just need the low half of the multiply; try both the signed 3005 // and unsigned forms. If the target supports both SMUL_LOHI and 3006 // UMUL_LOHI, form a preference by checking which forms of plain 3007 // MULH it supports. 3008 bool HasSMUL_LOHI = TLI.isOperationLegal(ISD::SMUL_LOHI, VT); 3009 bool HasUMUL_LOHI = TLI.isOperationLegal(ISD::UMUL_LOHI, VT); 3010 bool HasMULHS = TLI.isOperationLegal(ISD::MULHS, VT); 3011 bool HasMULHU = TLI.isOperationLegal(ISD::MULHU, VT); 3012 unsigned OpToUse = 0; 3013 if (HasSMUL_LOHI && !HasMULHS) { 3014 OpToUse = ISD::SMUL_LOHI; 3015 } else if (HasUMUL_LOHI && !HasMULHU) { 3016 OpToUse = ISD::UMUL_LOHI; 3017 } else if (HasSMUL_LOHI) { 3018 OpToUse = ISD::SMUL_LOHI; 3019 } else if (HasUMUL_LOHI) { 3020 OpToUse = ISD::UMUL_LOHI; 3021 } 3022 if (OpToUse) { 3023 Result = SDOperand(DAG.getNode(OpToUse, VTs, Tmp1, Tmp2).Val, 0); 3024 break; 3025 } 3026 } 3027 if (Node->getOpcode() == ISD::MULHS && 3028 TLI.isOperationLegal(ISD::SMUL_LOHI, VT)) { 3029 Result = SDOperand(DAG.getNode(ISD::SMUL_LOHI, VTs, Tmp1, Tmp2).Val, 1); 3030 break; 3031 } 3032 if (Node->getOpcode() == ISD::MULHU && 3033 TLI.isOperationLegal(ISD::UMUL_LOHI, VT)) { 3034 Result = SDOperand(DAG.getNode(ISD::UMUL_LOHI, VTs, Tmp1, Tmp2).Val, 1); 3035 break; 3036 } 3037 if (Node->getOpcode() == ISD::SDIV && 3038 TLI.isOperationLegal(ISD::SDIVREM, VT)) { 3039 Result = SDOperand(DAG.getNode(ISD::SDIVREM, VTs, Tmp1, Tmp2).Val, 0); 3040 break; 3041 } 3042 if (Node->getOpcode() == ISD::UDIV && 3043 TLI.isOperationLegal(ISD::UDIVREM, VT)) { 3044 Result = SDOperand(DAG.getNode(ISD::UDIVREM, VTs, Tmp1, Tmp2).Val, 0); 3045 break; 3046 } 3047 3048 // Check to see if we have a libcall for this operator. 3049 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 3050 bool isSigned = false; 3051 switch (Node->getOpcode()) { 3052 case ISD::UDIV: 3053 case ISD::SDIV: 3054 if (VT == MVT::i32) { 3055 LC = Node->getOpcode() == ISD::UDIV 3056 ? RTLIB::UDIV_I32 : RTLIB::SDIV_I32; 3057 isSigned = Node->getOpcode() == ISD::SDIV; 3058 } 3059 break; 3060 case ISD::FPOW: 3061 LC = GetFPLibCall(VT, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80, 3062 RTLIB::POW_PPCF128); 3063 break; 3064 default: break; 3065 } 3066 if (LC != RTLIB::UNKNOWN_LIBCALL) { 3067 SDOperand Dummy; 3068 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, isSigned, Dummy); 3069 break; 3070 } 3071 3072 assert(MVT::isVector(Node->getValueType(0)) && 3073 "Cannot expand this binary operator!"); 3074 // Expand the operation into a bunch of nasty scalar code. 3075 Result = LegalizeOp(UnrollVectorOp(Op)); 3076 break; 3077 } 3078 case TargetLowering::Promote: { 3079 switch (Node->getOpcode()) { 3080 default: assert(0 && "Do not know how to promote this BinOp!"); 3081 case ISD::AND: 3082 case ISD::OR: 3083 case ISD::XOR: { 3084 MVT::ValueType OVT = Node->getValueType(0); 3085 MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 3086 assert(MVT::isVector(OVT) && "Cannot promote this BinOp!"); 3087 // Bit convert each of the values to the new type. 3088 Tmp1 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp1); 3089 Tmp2 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp2); 3090 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 3091 // Bit convert the result back the original type. 3092 Result = DAG.getNode(ISD::BIT_CONVERT, OVT, Result); 3093 break; 3094 } 3095 } 3096 } 3097 } 3098 break; 3099 3100 case ISD::SMUL_LOHI: 3101 case ISD::UMUL_LOHI: 3102 case ISD::SDIVREM: 3103 case ISD::UDIVREM: 3104 // These nodes will only be produced by target-specific lowering, so 3105 // they shouldn't be here if they aren't legal. 3106 assert(TLI.isOperationLegal(Node->getOpcode(), Node->getValueType(0)) && 3107 "This must be legal!"); 3108 3109 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 3110 Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS 3111 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3112 break; 3113 3114 case ISD::FCOPYSIGN: // FCOPYSIGN does not require LHS/RHS to match type! 3115 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 3116 switch (getTypeAction(Node->getOperand(1).getValueType())) { 3117 case Expand: assert(0 && "Not possible"); 3118 case Legal: 3119 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the RHS. 3120 break; 3121 case Promote: 3122 Tmp2 = PromoteOp(Node->getOperand(1)); // Promote the RHS. 3123 break; 3124 } 3125 3126 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3127 3128 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3129 default: assert(0 && "Operation not supported"); 3130 case TargetLowering::Custom: 3131 Tmp1 = TLI.LowerOperation(Result, DAG); 3132 if (Tmp1.Val) Result = Tmp1; 3133 break; 3134 case TargetLowering::Legal: break; 3135 case TargetLowering::Expand: { 3136 // If this target supports fabs/fneg natively and select is cheap, 3137 // do this efficiently. 3138 if (!TLI.isSelectExpensive() && 3139 TLI.getOperationAction(ISD::FABS, Tmp1.getValueType()) == 3140 TargetLowering::Legal && 3141 TLI.getOperationAction(ISD::FNEG, Tmp1.getValueType()) == 3142 TargetLowering::Legal) { 3143 // Get the sign bit of the RHS. 3144 MVT::ValueType IVT = 3145 Tmp2.getValueType() == MVT::f32 ? MVT::i32 : MVT::i64; 3146 SDOperand SignBit = DAG.getNode(ISD::BIT_CONVERT, IVT, Tmp2); 3147 SignBit = DAG.getSetCC(TLI.getSetCCResultTy(), 3148 SignBit, DAG.getConstant(0, IVT), ISD::SETLT); 3149 // Get the absolute value of the result. 3150 SDOperand AbsVal = DAG.getNode(ISD::FABS, Tmp1.getValueType(), Tmp1); 3151 // Select between the nabs and abs value based on the sign bit of 3152 // the input. 3153 Result = DAG.getNode(ISD::SELECT, AbsVal.getValueType(), SignBit, 3154 DAG.getNode(ISD::FNEG, AbsVal.getValueType(), 3155 AbsVal), 3156 AbsVal); 3157 Result = LegalizeOp(Result); 3158 break; 3159 } 3160 3161 // Otherwise, do bitwise ops! 3162 MVT::ValueType NVT = 3163 Node->getValueType(0) == MVT::f32 ? MVT::i32 : MVT::i64; 3164 Result = ExpandFCOPYSIGNToBitwiseOps(Node, NVT, DAG, TLI); 3165 Result = DAG.getNode(ISD::BIT_CONVERT, Node->getValueType(0), Result); 3166 Result = LegalizeOp(Result); 3167 break; 3168 } 3169 } 3170 break; 3171 3172 case ISD::ADDC: 3173 case ISD::SUBC: 3174 Tmp1 = LegalizeOp(Node->getOperand(0)); 3175 Tmp2 = LegalizeOp(Node->getOperand(1)); 3176 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3177 // Since this produces two values, make sure to remember that we legalized 3178 // both of them. 3179 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 3180 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 3181 return Result; 3182 3183 case ISD::ADDE: 3184 case ISD::SUBE: 3185 Tmp1 = LegalizeOp(Node->getOperand(0)); 3186 Tmp2 = LegalizeOp(Node->getOperand(1)); 3187 Tmp3 = LegalizeOp(Node->getOperand(2)); 3188 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 3189 // Since this produces two values, make sure to remember that we legalized 3190 // both of them. 3191 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 3192 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 3193 return Result; 3194 3195 case ISD::BUILD_PAIR: { 3196 MVT::ValueType PairTy = Node->getValueType(0); 3197 // TODO: handle the case where the Lo and Hi operands are not of legal type 3198 Tmp1 = LegalizeOp(Node->getOperand(0)); // Lo 3199 Tmp2 = LegalizeOp(Node->getOperand(1)); // Hi 3200 switch (TLI.getOperationAction(ISD::BUILD_PAIR, PairTy)) { 3201 case TargetLowering::Promote: 3202 case TargetLowering::Custom: 3203 assert(0 && "Cannot promote/custom this yet!"); 3204 case TargetLowering::Legal: 3205 if (Tmp1 != Node->getOperand(0) || Tmp2 != Node->getOperand(1)) 3206 Result = DAG.getNode(ISD::BUILD_PAIR, PairTy, Tmp1, Tmp2); 3207 break; 3208 case TargetLowering::Expand: 3209 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, PairTy, Tmp1); 3210 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, PairTy, Tmp2); 3211 Tmp2 = DAG.getNode(ISD::SHL, PairTy, Tmp2, 3212 DAG.getConstant(MVT::getSizeInBits(PairTy)/2, 3213 TLI.getShiftAmountTy())); 3214 Result = DAG.getNode(ISD::OR, PairTy, Tmp1, Tmp2); 3215 break; 3216 } 3217 break; 3218 } 3219 3220 case ISD::UREM: 3221 case ISD::SREM: 3222 case ISD::FREM: 3223 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 3224 Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS 3225 3226 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3227 case TargetLowering::Promote: assert(0 && "Cannot promote this yet!"); 3228 case TargetLowering::Custom: 3229 isCustom = true; 3230 // FALLTHROUGH 3231 case TargetLowering::Legal: 3232 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3233 if (isCustom) { 3234 Tmp1 = TLI.LowerOperation(Result, DAG); 3235 if (Tmp1.Val) Result = Tmp1; 3236 } 3237 break; 3238 case TargetLowering::Expand: { 3239 unsigned DivOpc= (Node->getOpcode() == ISD::UREM) ? ISD::UDIV : ISD::SDIV; 3240 bool isSigned = DivOpc == ISD::SDIV; 3241 MVT::ValueType VT = Node->getValueType(0); 3242 3243 // See if remainder can be lowered using two-result operations. 3244 SDVTList VTs = DAG.getVTList(VT, VT); 3245 if (Node->getOpcode() == ISD::SREM && 3246 TLI.isOperationLegal(ISD::SDIVREM, VT)) { 3247 Result = SDOperand(DAG.getNode(ISD::SDIVREM, VTs, Tmp1, Tmp2).Val, 1); 3248 break; 3249 } 3250 if (Node->getOpcode() == ISD::UREM && 3251 TLI.isOperationLegal(ISD::UDIVREM, VT)) { 3252 Result = SDOperand(DAG.getNode(ISD::UDIVREM, VTs, Tmp1, Tmp2).Val, 1); 3253 break; 3254 } 3255 3256 if (MVT::isInteger(VT)) { 3257 if (TLI.getOperationAction(DivOpc, VT) == 3258 TargetLowering::Legal) { 3259 // X % Y -> X-X/Y*Y 3260 Result = DAG.getNode(DivOpc, VT, Tmp1, Tmp2); 3261 Result = DAG.getNode(ISD::MUL, VT, Result, Tmp2); 3262 Result = DAG.getNode(ISD::SUB, VT, Tmp1, Result); 3263 } else if (MVT::isVector(VT)) { 3264 Result = LegalizeOp(UnrollVectorOp(Op)); 3265 } else { 3266 assert(VT == MVT::i32 && 3267 "Cannot expand this binary operator!"); 3268 RTLIB::Libcall LC = Node->getOpcode() == ISD::UREM 3269 ? RTLIB::UREM_I32 : RTLIB::SREM_I32; 3270 SDOperand Dummy; 3271 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, isSigned, Dummy); 3272 } 3273 } else { 3274 assert(MVT::isFloatingPoint(VT) && 3275 "remainder op must have integer or floating-point type"); 3276 if (MVT::isVector(VT)) { 3277 Result = LegalizeOp(UnrollVectorOp(Op)); 3278 } else { 3279 // Floating point mod -> fmod libcall. 3280 RTLIB::Libcall LC = GetFPLibCall(VT, RTLIB::REM_F32, RTLIB::REM_F64, 3281 RTLIB::REM_F80, RTLIB::REM_PPCF128); 3282 SDOperand Dummy; 3283 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, 3284 false/*sign irrelevant*/, Dummy); 3285 } 3286 } 3287 break; 3288 } 3289 } 3290 break; 3291 case ISD::VAARG: { 3292 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 3293 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. 3294 3295 MVT::ValueType VT = Node->getValueType(0); 3296 switch (TLI.getOperationAction(Node->getOpcode(), MVT::Other)) { 3297 default: assert(0 && "This action is not supported yet!"); 3298 case TargetLowering::Custom: 3299 isCustom = true; 3300 // FALLTHROUGH 3301 case TargetLowering::Legal: 3302 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 3303 Result = Result.getValue(0); 3304 Tmp1 = Result.getValue(1); 3305 3306 if (isCustom) { 3307 Tmp2 = TLI.LowerOperation(Result, DAG); 3308 if (Tmp2.Val) { 3309 Result = LegalizeOp(Tmp2); 3310 Tmp1 = LegalizeOp(Tmp2.getValue(1)); 3311 } 3312 } 3313 break; 3314 case TargetLowering::Expand: { 3315 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 3316 SDOperand VAList = DAG.getLoad(TLI.getPointerTy(), Tmp1, Tmp2, V, 0); 3317 // Increment the pointer, VAList, to the next vaarg 3318 Tmp3 = DAG.getNode(ISD::ADD, TLI.getPointerTy(), VAList, 3319 DAG.getConstant(MVT::getSizeInBits(VT)/8, 3320 TLI.getPointerTy())); 3321 // Store the incremented VAList to the legalized pointer 3322 Tmp3 = DAG.getStore(VAList.getValue(1), Tmp3, Tmp2, V, 0); 3323 // Load the actual argument out of the pointer VAList 3324 Result = DAG.getLoad(VT, Tmp3, VAList, NULL, 0); 3325 Tmp1 = LegalizeOp(Result.getValue(1)); 3326 Result = LegalizeOp(Result); 3327 break; 3328 } 3329 } 3330 // Since VAARG produces two values, make sure to remember that we 3331 // legalized both of them. 3332 AddLegalizedOperand(SDOperand(Node, 0), Result); 3333 AddLegalizedOperand(SDOperand(Node, 1), Tmp1); 3334 return Op.ResNo ? Tmp1 : Result; 3335 } 3336 3337 case ISD::VACOPY: 3338 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 3339 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the dest pointer. 3340 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the source pointer. 3341 3342 switch (TLI.getOperationAction(ISD::VACOPY, MVT::Other)) { 3343 default: assert(0 && "This action is not supported yet!"); 3344 case TargetLowering::Custom: 3345 isCustom = true; 3346 // FALLTHROUGH 3347 case TargetLowering::Legal: 3348 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, 3349 Node->getOperand(3), Node->getOperand(4)); 3350 if (isCustom) { 3351 Tmp1 = TLI.LowerOperation(Result, DAG); 3352 if (Tmp1.Val) Result = Tmp1; 3353 } 3354 break; 3355 case TargetLowering::Expand: 3356 // This defaults to loading a pointer from the input and storing it to the 3357 // output, returning the chain. 3358 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 3359 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 3360 Tmp4 = DAG.getLoad(TLI.getPointerTy(), Tmp1, Tmp3, VD, 0); 3361 Result = DAG.getStore(Tmp4.getValue(1), Tmp4, Tmp2, VS, 0); 3362 break; 3363 } 3364 break; 3365 3366 case ISD::VAEND: 3367 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 3368 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. 3369 3370 switch (TLI.getOperationAction(ISD::VAEND, MVT::Other)) { 3371 default: assert(0 && "This action is not supported yet!"); 3372 case TargetLowering::Custom: 3373 isCustom = true; 3374 // FALLTHROUGH 3375 case TargetLowering::Legal: 3376 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 3377 if (isCustom) { 3378 Tmp1 = TLI.LowerOperation(Tmp1, DAG); 3379 if (Tmp1.Val) Result = Tmp1; 3380 } 3381 break; 3382 case TargetLowering::Expand: 3383 Result = Tmp1; // Default to a no-op, return the chain 3384 break; 3385 } 3386 break; 3387 3388 case ISD::VASTART: 3389 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 3390 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. 3391 3392 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 3393 3394 switch (TLI.getOperationAction(ISD::VASTART, MVT::Other)) { 3395 default: assert(0 && "This action is not supported yet!"); 3396 case TargetLowering::Legal: break; 3397 case TargetLowering::Custom: 3398 Tmp1 = TLI.LowerOperation(Result, DAG); 3399 if (Tmp1.Val) Result = Tmp1; 3400 break; 3401 } 3402 break; 3403 3404 case ISD::ROTL: 3405 case ISD::ROTR: 3406 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 3407 Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS 3408 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3409 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3410 default: 3411 assert(0 && "ROTL/ROTR legalize operation not supported"); 3412 break; 3413 case TargetLowering::Legal: 3414 break; 3415 case TargetLowering::Custom: 3416 Tmp1 = TLI.LowerOperation(Result, DAG); 3417 if (Tmp1.Val) Result = Tmp1; 3418 break; 3419 case TargetLowering::Promote: 3420 assert(0 && "Do not know how to promote ROTL/ROTR"); 3421 break; 3422 case TargetLowering::Expand: 3423 assert(0 && "Do not know how to expand ROTL/ROTR"); 3424 break; 3425 } 3426 break; 3427 3428 case ISD::BSWAP: 3429 Tmp1 = LegalizeOp(Node->getOperand(0)); // Op 3430 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3431 case TargetLowering::Custom: 3432 assert(0 && "Cannot custom legalize this yet!"); 3433 case TargetLowering::Legal: 3434 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3435 break; 3436 case TargetLowering::Promote: { 3437 MVT::ValueType OVT = Tmp1.getValueType(); 3438 MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 3439 unsigned DiffBits = MVT::getSizeInBits(NVT) - MVT::getSizeInBits(OVT); 3440 3441 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Tmp1); 3442 Tmp1 = DAG.getNode(ISD::BSWAP, NVT, Tmp1); 3443 Result = DAG.getNode(ISD::SRL, NVT, Tmp1, 3444 DAG.getConstant(DiffBits, TLI.getShiftAmountTy())); 3445 break; 3446 } 3447 case TargetLowering::Expand: 3448 Result = ExpandBSWAP(Tmp1); 3449 break; 3450 } 3451 break; 3452 3453 case ISD::CTPOP: 3454 case ISD::CTTZ: 3455 case ISD::CTLZ: 3456 Tmp1 = LegalizeOp(Node->getOperand(0)); // Op 3457 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3458 case TargetLowering::Custom: 3459 case TargetLowering::Legal: 3460 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3461 if (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)) == 3462 TargetLowering::Custom) { 3463 Tmp1 = TLI.LowerOperation(Result, DAG); 3464 if (Tmp1.Val) { 3465 Result = Tmp1; 3466 } 3467 } 3468 break; 3469 case TargetLowering::Promote: { 3470 MVT::ValueType OVT = Tmp1.getValueType(); 3471 MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 3472 3473 // Zero extend the argument. 3474 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Tmp1); 3475 // Perform the larger operation, then subtract if needed. 3476 Tmp1 = DAG.getNode(Node->getOpcode(), Node->getValueType(0), Tmp1); 3477 switch (Node->getOpcode()) { 3478 case ISD::CTPOP: 3479 Result = Tmp1; 3480 break; 3481 case ISD::CTTZ: 3482 //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT) 3483 Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), Tmp1, 3484 DAG.getConstant(MVT::getSizeInBits(NVT), NVT), 3485 ISD::SETEQ); 3486 Result = DAG.getNode(ISD::SELECT, NVT, Tmp2, 3487 DAG.getConstant(MVT::getSizeInBits(OVT),NVT), Tmp1); 3488 break; 3489 case ISD::CTLZ: 3490 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 3491 Result = DAG.getNode(ISD::SUB, NVT, Tmp1, 3492 DAG.getConstant(MVT::getSizeInBits(NVT) - 3493 MVT::getSizeInBits(OVT), NVT)); 3494 break; 3495 } 3496 break; 3497 } 3498 case TargetLowering::Expand: 3499 Result = ExpandBitCount(Node->getOpcode(), Tmp1); 3500 break; 3501 } 3502 break; 3503 3504 // Unary operators 3505 case ISD::FABS: 3506 case ISD::FNEG: 3507 case ISD::FSQRT: 3508 case ISD::FSIN: 3509 case ISD::FCOS: 3510 Tmp1 = LegalizeOp(Node->getOperand(0)); 3511 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3512 case TargetLowering::Promote: 3513 case TargetLowering::Custom: 3514 isCustom = true; 3515 // FALLTHROUGH 3516 case TargetLowering::Legal: 3517 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3518 if (isCustom) { 3519 Tmp1 = TLI.LowerOperation(Result, DAG); 3520 if (Tmp1.Val) Result = Tmp1; 3521 } 3522 break; 3523 case TargetLowering::Expand: 3524 switch (Node->getOpcode()) { 3525 default: assert(0 && "Unreachable!"); 3526 case ISD::FNEG: 3527 // Expand Y = FNEG(X) -> Y = SUB -0.0, X 3528 Tmp2 = DAG.getConstantFP(-0.0, Node->getValueType(0)); 3529 Result = DAG.getNode(ISD::FSUB, Node->getValueType(0), Tmp2, Tmp1); 3530 break; 3531 case ISD::FABS: { 3532 // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X). 3533 MVT::ValueType VT = Node->getValueType(0); 3534 Tmp2 = DAG.getConstantFP(0.0, VT); 3535 Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), Tmp1, Tmp2, ISD::SETUGT); 3536 Tmp3 = DAG.getNode(ISD::FNEG, VT, Tmp1); 3537 Result = DAG.getNode(ISD::SELECT, VT, Tmp2, Tmp1, Tmp3); 3538 break; 3539 } 3540 case ISD::FSQRT: 3541 case ISD::FSIN: 3542 case ISD::FCOS: { 3543 MVT::ValueType VT = Node->getValueType(0); 3544 3545 // Expand unsupported unary vector operators by unrolling them. 3546 if (MVT::isVector(VT)) { 3547 Result = LegalizeOp(UnrollVectorOp(Op)); 3548 break; 3549 } 3550 3551 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 3552 switch(Node->getOpcode()) { 3553 case ISD::FSQRT: 3554 LC = GetFPLibCall(VT, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 3555 RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128); 3556 break; 3557 case ISD::FSIN: 3558 LC = GetFPLibCall(VT, RTLIB::SIN_F32, RTLIB::SIN_F64, 3559 RTLIB::SIN_F80, RTLIB::SIN_PPCF128); 3560 break; 3561 case ISD::FCOS: 3562 LC = GetFPLibCall(VT, RTLIB::COS_F32, RTLIB::COS_F64, 3563 RTLIB::COS_F80, RTLIB::COS_PPCF128); 3564 break; 3565 default: assert(0 && "Unreachable!"); 3566 } 3567 SDOperand Dummy; 3568 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, 3569 false/*sign irrelevant*/, Dummy); 3570 break; 3571 } 3572 } 3573 break; 3574 } 3575 break; 3576 case ISD::FPOWI: { 3577 MVT::ValueType VT = Node->getValueType(0); 3578 3579 // Expand unsupported unary vector operators by unrolling them. 3580 if (MVT::isVector(VT)) { 3581 Result = LegalizeOp(UnrollVectorOp(Op)); 3582 break; 3583 } 3584 3585 // We always lower FPOWI into a libcall. No target support for it yet. 3586 RTLIB::Libcall LC = GetFPLibCall(VT, RTLIB::POWI_F32, RTLIB::POWI_F64, 3587 RTLIB::POWI_F80, RTLIB::POWI_PPCF128); 3588 SDOperand Dummy; 3589 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, 3590 false/*sign irrelevant*/, Dummy); 3591 break; 3592 } 3593 case ISD::BIT_CONVERT: 3594 if (!isTypeLegal(Node->getOperand(0).getValueType())) { 3595 Result = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 3596 Node->getValueType(0)); 3597 } else if (MVT::isVector(Op.getOperand(0).getValueType())) { 3598 // The input has to be a vector type, we have to either scalarize it, pack 3599 // it, or convert it based on whether the input vector type is legal. 3600 SDNode *InVal = Node->getOperand(0).Val; 3601 int InIx = Node->getOperand(0).ResNo; 3602 unsigned NumElems = MVT::getVectorNumElements(InVal->getValueType(InIx)); 3603 MVT::ValueType EVT = MVT::getVectorElementType(InVal->getValueType(InIx)); 3604 3605 // Figure out if there is a simple type corresponding to this Vector 3606 // type. If so, convert to the vector type. 3607 MVT::ValueType TVT = MVT::getVectorType(EVT, NumElems); 3608 if (TLI.isTypeLegal(TVT)) { 3609 // Turn this into a bit convert of the vector input. 3610 Result = DAG.getNode(ISD::BIT_CONVERT, Node->getValueType(0), 3611 LegalizeOp(Node->getOperand(0))); 3612 break; 3613 } else if (NumElems == 1) { 3614 // Turn this into a bit convert of the scalar input. 3615 Result = DAG.getNode(ISD::BIT_CONVERT, Node->getValueType(0), 3616 ScalarizeVectorOp(Node->getOperand(0))); 3617 break; 3618 } else { 3619 // FIXME: UNIMP! Store then reload 3620 assert(0 && "Cast from unsupported vector type not implemented yet!"); 3621 } 3622 } else { 3623 switch (TLI.getOperationAction(ISD::BIT_CONVERT, 3624 Node->getOperand(0).getValueType())) { 3625 default: assert(0 && "Unknown operation action!"); 3626 case TargetLowering::Expand: 3627 Result = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 3628 Node->getValueType(0)); 3629 break; 3630 case TargetLowering::Legal: 3631 Tmp1 = LegalizeOp(Node->getOperand(0)); 3632 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3633 break; 3634 } 3635 } 3636 break; 3637 3638 // Conversion operators. The source and destination have different types. 3639 case ISD::SINT_TO_FP: 3640 case ISD::UINT_TO_FP: { 3641 bool isSigned = Node->getOpcode() == ISD::SINT_TO_FP; 3642 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3643 case Legal: 3644 switch (TLI.getOperationAction(Node->getOpcode(), 3645 Node->getOperand(0).getValueType())) { 3646 default: assert(0 && "Unknown operation action!"); 3647 case TargetLowering::Custom: 3648 isCustom = true; 3649 // FALLTHROUGH 3650 case TargetLowering::Legal: 3651 Tmp1 = LegalizeOp(Node->getOperand(0)); 3652 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3653 if (isCustom) { 3654 Tmp1 = TLI.LowerOperation(Result, DAG); 3655 if (Tmp1.Val) Result = Tmp1; 3656 } 3657 break; 3658 case TargetLowering::Expand: 3659 Result = ExpandLegalINT_TO_FP(isSigned, 3660 LegalizeOp(Node->getOperand(0)), 3661 Node->getValueType(0)); 3662 break; 3663 case TargetLowering::Promote: 3664 Result = PromoteLegalINT_TO_FP(LegalizeOp(Node->getOperand(0)), 3665 Node->getValueType(0), 3666 isSigned); 3667 break; 3668 } 3669 break; 3670 case Expand: 3671 Result = ExpandIntToFP(Node->getOpcode() == ISD::SINT_TO_FP, 3672 Node->getValueType(0), Node->getOperand(0)); 3673 break; 3674 case Promote: 3675 Tmp1 = PromoteOp(Node->getOperand(0)); 3676 if (isSigned) { 3677 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, Tmp1.getValueType(), 3678 Tmp1, DAG.getValueType(Node->getOperand(0).getValueType())); 3679 } else { 3680 Tmp1 = DAG.getZeroExtendInReg(Tmp1, 3681 Node->getOperand(0).getValueType()); 3682 } 3683 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3684 Result = LegalizeOp(Result); // The 'op' is not necessarily legal! 3685 break; 3686 } 3687 break; 3688 } 3689 case ISD::TRUNCATE: 3690 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3691 case Legal: 3692 Tmp1 = LegalizeOp(Node->getOperand(0)); 3693 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3694 break; 3695 case Expand: 3696 ExpandOp(Node->getOperand(0), Tmp1, Tmp2); 3697 3698 // Since the result is legal, we should just be able to truncate the low 3699 // part of the source. 3700 Result = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), Tmp1); 3701 break; 3702 case Promote: 3703 Result = PromoteOp(Node->getOperand(0)); 3704 Result = DAG.getNode(ISD::TRUNCATE, Op.getValueType(), Result); 3705 break; 3706 } 3707 break; 3708 3709 case ISD::FP_TO_SINT: 3710 case ISD::FP_TO_UINT: 3711 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3712 case Legal: 3713 Tmp1 = LegalizeOp(Node->getOperand(0)); 3714 3715 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))){ 3716 default: assert(0 && "Unknown operation action!"); 3717 case TargetLowering::Custom: 3718 isCustom = true; 3719 // FALLTHROUGH 3720 case TargetLowering::Legal: 3721 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3722 if (isCustom) { 3723 Tmp1 = TLI.LowerOperation(Result, DAG); 3724 if (Tmp1.Val) Result = Tmp1; 3725 } 3726 break; 3727 case TargetLowering::Promote: 3728 Result = PromoteLegalFP_TO_INT(Tmp1, Node->getValueType(0), 3729 Node->getOpcode() == ISD::FP_TO_SINT); 3730 break; 3731 case TargetLowering::Expand: 3732 if (Node->getOpcode() == ISD::FP_TO_UINT) { 3733 SDOperand True, False; 3734 MVT::ValueType VT = Node->getOperand(0).getValueType(); 3735 MVT::ValueType NVT = Node->getValueType(0); 3736 unsigned ShiftAmt = MVT::getSizeInBits(NVT)-1; 3737 const uint64_t zero[] = {0, 0}; 3738 APFloat apf = APFloat(APInt(MVT::getSizeInBits(VT), 2, zero)); 3739 uint64_t x = 1ULL << ShiftAmt; 3740 (void)apf.convertFromZeroExtendedInteger 3741 (&x, MVT::getSizeInBits(NVT), false, APFloat::rmNearestTiesToEven); 3742 Tmp2 = DAG.getConstantFP(apf, VT); 3743 Tmp3 = DAG.getSetCC(TLI.getSetCCResultTy(), 3744 Node->getOperand(0), Tmp2, ISD::SETLT); 3745 True = DAG.getNode(ISD::FP_TO_SINT, NVT, Node->getOperand(0)); 3746 False = DAG.getNode(ISD::FP_TO_SINT, NVT, 3747 DAG.getNode(ISD::FSUB, VT, Node->getOperand(0), 3748 Tmp2)); 3749 False = DAG.getNode(ISD::XOR, NVT, False, 3750 DAG.getConstant(1ULL << ShiftAmt, NVT)); 3751 Result = DAG.getNode(ISD::SELECT, NVT, Tmp3, True, False); 3752 break; 3753 } else { 3754 assert(0 && "Do not know how to expand FP_TO_SINT yet!"); 3755 } 3756 break; 3757 } 3758 break; 3759 case Expand: { 3760 MVT::ValueType VT = Op.getValueType(); 3761 MVT::ValueType OVT = Node->getOperand(0).getValueType(); 3762 // Convert ppcf128 to i32 3763 if (OVT == MVT::ppcf128 && VT == MVT::i32) { 3764 if (Node->getOpcode() == ISD::FP_TO_SINT) { 3765 Result = DAG.getNode(ISD::FP_ROUND_INREG, MVT::ppcf128, 3766 Node->getOperand(0), DAG.getValueType(MVT::f64)); 3767 Result = DAG.getNode(ISD::FP_ROUND, MVT::f64, Result, 3768 DAG.getIntPtrConstant(1)); 3769 Result = DAG.getNode(ISD::FP_TO_SINT, VT, Result); 3770 } else { 3771 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 3772 APFloat apf = APFloat(APInt(128, 2, TwoE31)); 3773 Tmp2 = DAG.getConstantFP(apf, OVT); 3774 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 3775 // FIXME: generated code sucks. 3776 Result = DAG.getNode(ISD::SELECT_CC, VT, Node->getOperand(0), Tmp2, 3777 DAG.getNode(ISD::ADD, MVT::i32, 3778 DAG.getNode(ISD::FP_TO_SINT, VT, 3779 DAG.getNode(ISD::FSUB, OVT, 3780 Node->getOperand(0), Tmp2)), 3781 DAG.getConstant(0x80000000, MVT::i32)), 3782 DAG.getNode(ISD::FP_TO_SINT, VT, 3783 Node->getOperand(0)), 3784 DAG.getCondCode(ISD::SETGE)); 3785 } 3786 break; 3787 } 3788 // Convert f32 / f64 to i32 / i64. 3789 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 3790 switch (Node->getOpcode()) { 3791 case ISD::FP_TO_SINT: { 3792 if (OVT == MVT::f32) 3793 LC = (VT == MVT::i32) 3794 ? RTLIB::FPTOSINT_F32_I32 : RTLIB::FPTOSINT_F32_I64; 3795 else if (OVT == MVT::f64) 3796 LC = (VT == MVT::i32) 3797 ? RTLIB::FPTOSINT_F64_I32 : RTLIB::FPTOSINT_F64_I64; 3798 else if (OVT == MVT::f80) { 3799 assert(VT == MVT::i64); 3800 LC = RTLIB::FPTOSINT_F80_I64; 3801 } 3802 else if (OVT == MVT::ppcf128) { 3803 assert(VT == MVT::i64); 3804 LC = RTLIB::FPTOSINT_PPCF128_I64; 3805 } 3806 break; 3807 } 3808 case ISD::FP_TO_UINT: { 3809 if (OVT == MVT::f32) 3810 LC = (VT == MVT::i32) 3811 ? RTLIB::FPTOUINT_F32_I32 : RTLIB::FPTOSINT_F32_I64; 3812 else if (OVT == MVT::f64) 3813 LC = (VT == MVT::i32) 3814 ? RTLIB::FPTOUINT_F64_I32 : RTLIB::FPTOSINT_F64_I64; 3815 else if (OVT == MVT::f80) { 3816 LC = (VT == MVT::i32) 3817 ? RTLIB::FPTOUINT_F80_I32 : RTLIB::FPTOUINT_F80_I64; 3818 } 3819 else if (OVT == MVT::ppcf128) { 3820 assert(VT == MVT::i64); 3821 LC = RTLIB::FPTOUINT_PPCF128_I64; 3822 } 3823 break; 3824 } 3825 default: assert(0 && "Unreachable!"); 3826 } 3827 SDOperand Dummy; 3828 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, 3829 false/*sign irrelevant*/, Dummy); 3830 break; 3831 } 3832 case Promote: 3833 Tmp1 = PromoteOp(Node->getOperand(0)); 3834 Result = DAG.UpdateNodeOperands(Result, LegalizeOp(Tmp1)); 3835 Result = LegalizeOp(Result); 3836 break; 3837 } 3838 break; 3839 3840 case ISD::FP_EXTEND: { 3841 MVT::ValueType DstVT = Op.getValueType(); 3842 MVT::ValueType SrcVT = Op.getOperand(0).getValueType(); 3843 if (TLI.getConvertAction(SrcVT, DstVT) == TargetLowering::Expand) { 3844 // The only other way we can lower this is to turn it into a STORE, 3845 // LOAD pair, targetting a temporary location (a stack slot). 3846 Result = EmitStackConvert(Node->getOperand(0), SrcVT, DstVT); 3847 break; 3848 } 3849 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3850 case Expand: assert(0 && "Shouldn't need to expand other operators here!"); 3851 case Legal: 3852 Tmp1 = LegalizeOp(Node->getOperand(0)); 3853 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3854 break; 3855 case Promote: 3856 Tmp1 = PromoteOp(Node->getOperand(0)); 3857 Result = DAG.getNode(ISD::FP_EXTEND, Op.getValueType(), Tmp1); 3858 break; 3859 } 3860 break; 3861 } 3862 case ISD::FP_ROUND: { 3863 MVT::ValueType DstVT = Op.getValueType(); 3864 MVT::ValueType SrcVT = Op.getOperand(0).getValueType(); 3865 if (TLI.getConvertAction(SrcVT, DstVT) == TargetLowering::Expand) { 3866 if (SrcVT == MVT::ppcf128) { 3867 SDOperand Lo; 3868 ExpandOp(Node->getOperand(0), Lo, Result); 3869 // Round it the rest of the way (e.g. to f32) if needed. 3870 if (DstVT!=MVT::f64) 3871 Result = DAG.getNode(ISD::FP_ROUND, DstVT, Result, Op.getOperand(1)); 3872 break; 3873 } 3874 // The only other way we can lower this is to turn it into a STORE, 3875 // LOAD pair, targetting a temporary location (a stack slot). 3876 Result = EmitStackConvert(Node->getOperand(0), DstVT, DstVT); 3877 break; 3878 } 3879 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3880 case Expand: assert(0 && "Shouldn't need to expand other operators here!"); 3881 case Legal: 3882 Tmp1 = LegalizeOp(Node->getOperand(0)); 3883 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 3884 break; 3885 case Promote: 3886 Tmp1 = PromoteOp(Node->getOperand(0)); 3887 Result = DAG.getNode(ISD::FP_ROUND, Op.getValueType(), Tmp1, 3888 Node->getOperand(1)); 3889 break; 3890 } 3891 break; 3892 } 3893 case ISD::ANY_EXTEND: 3894 case ISD::ZERO_EXTEND: 3895 case ISD::SIGN_EXTEND: 3896 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3897 case Expand: assert(0 && "Shouldn't need to expand other operators here!"); 3898 case Legal: 3899 Tmp1 = LegalizeOp(Node->getOperand(0)); 3900 if (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)) == 3901 TargetLowering::Custom) { 3902 Tmp2 = TLI.LowerOperation(Result, DAG); 3903 if (Tmp2.Val) { 3904 Tmp1 = Tmp2; 3905 } 3906 } 3907 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3908 break; 3909 case Promote: 3910 switch (Node->getOpcode()) { 3911 case ISD::ANY_EXTEND: 3912 Tmp1 = PromoteOp(Node->getOperand(0)); 3913 Result = DAG.getNode(ISD::ANY_EXTEND, Op.getValueType(), Tmp1); 3914 break; 3915 case ISD::ZERO_EXTEND: 3916 Result = PromoteOp(Node->getOperand(0)); 3917 Result = DAG.getNode(ISD::ANY_EXTEND, Op.getValueType(), Result); 3918 Result = DAG.getZeroExtendInReg(Result, 3919 Node->getOperand(0).getValueType()); 3920 break; 3921 case ISD::SIGN_EXTEND: 3922 Result = PromoteOp(Node->getOperand(0)); 3923 Result = DAG.getNode(ISD::ANY_EXTEND, Op.getValueType(), Result); 3924 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(), 3925 Result, 3926 DAG.getValueType(Node->getOperand(0).getValueType())); 3927 break; 3928 } 3929 } 3930 break; 3931 case ISD::FP_ROUND_INREG: 3932 case ISD::SIGN_EXTEND_INREG: { 3933 Tmp1 = LegalizeOp(Node->getOperand(0)); 3934 MVT::ValueType ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 3935 3936 // If this operation is not supported, convert it to a shl/shr or load/store 3937 // pair. 3938 switch (TLI.getOperationAction(Node->getOpcode(), ExtraVT)) { 3939 default: assert(0 && "This action not supported for this op yet!"); 3940 case TargetLowering::Legal: 3941 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 3942 break; 3943 case TargetLowering::Expand: 3944 // If this is an integer extend and shifts are supported, do that. 3945 if (Node->getOpcode() == ISD::SIGN_EXTEND_INREG) { 3946 // NOTE: we could fall back on load/store here too for targets without 3947 // SAR. However, it is doubtful that any exist. 3948 unsigned BitsDiff = MVT::getSizeInBits(Node->getValueType(0)) - 3949 MVT::getSizeInBits(ExtraVT); 3950 SDOperand ShiftCst = DAG.getConstant(BitsDiff, TLI.getShiftAmountTy()); 3951 Result = DAG.getNode(ISD::SHL, Node->getValueType(0), 3952 Node->getOperand(0), ShiftCst); 3953 Result = DAG.getNode(ISD::SRA, Node->getValueType(0), 3954 Result, ShiftCst); 3955 } else if (Node->getOpcode() == ISD::FP_ROUND_INREG) { 3956 // The only way we can lower this is to turn it into a TRUNCSTORE, 3957 // EXTLOAD pair, targetting a temporary location (a stack slot). 3958 3959 // NOTE: there is a choice here between constantly creating new stack 3960 // slots and always reusing the same one. We currently always create 3961 // new ones, as reuse may inhibit scheduling. 3962 Result = EmitStackConvert(Node->getOperand(0), ExtraVT, 3963 Node->getValueType(0)); 3964 } else { 3965 assert(0 && "Unknown op"); 3966 } 3967 break; 3968 } 3969 break; 3970 } 3971 case ISD::TRAMPOLINE: { 3972 SDOperand Ops[6]; 3973 for (unsigned i = 0; i != 6; ++i) 3974 Ops[i] = LegalizeOp(Node->getOperand(i)); 3975 Result = DAG.UpdateNodeOperands(Result, Ops, 6); 3976 // The only option for this node is to custom lower it. 3977 Result = TLI.LowerOperation(Result, DAG); 3978 assert(Result.Val && "Should always custom lower!"); 3979 3980 // Since trampoline produces two values, make sure to remember that we 3981 // legalized both of them. 3982 Tmp1 = LegalizeOp(Result.getValue(1)); 3983 Result = LegalizeOp(Result); 3984 AddLegalizedOperand(SDOperand(Node, 0), Result); 3985 AddLegalizedOperand(SDOperand(Node, 1), Tmp1); 3986 return Op.ResNo ? Tmp1 : Result; 3987 } 3988 case ISD::FLT_ROUNDS_: { 3989 MVT::ValueType VT = Node->getValueType(0); 3990 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 3991 default: assert(0 && "This action not supported for this op yet!"); 3992 case TargetLowering::Custom: 3993 Result = TLI.LowerOperation(Op, DAG); 3994 if (Result.Val) break; 3995 // Fall Thru 3996 case TargetLowering::Legal: 3997 // If this operation is not supported, lower it to constant 1 3998 Result = DAG.getConstant(1, VT); 3999 break; 4000 } 4001 } 4002 case ISD::TRAP: { 4003 MVT::ValueType VT = Node->getValueType(0); 4004 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 4005 default: assert(0 && "This action not supported for this op yet!"); 4006 case TargetLowering::Legal: 4007 Tmp1 = LegalizeOp(Node->getOperand(0)); 4008 Result = DAG.UpdateNodeOperands(Result, Tmp1); 4009 break; 4010 case TargetLowering::Custom: 4011 Result = TLI.LowerOperation(Op, DAG); 4012 if (Result.Val) break; 4013 // Fall Thru 4014 case TargetLowering::Expand: 4015 // If this operation is not supported, lower it to 'abort()' call 4016 Tmp1 = LegalizeOp(Node->getOperand(0)); 4017 TargetLowering::ArgListTy Args; 4018 std::pair<SDOperand,SDOperand> CallResult = 4019 TLI.LowerCallTo(Tmp1, Type::VoidTy, 4020 false, false, false, CallingConv::C, false, 4021 DAG.getExternalSymbol("abort", TLI.getPointerTy()), 4022 Args, DAG); 4023 Result = CallResult.second; 4024 break; 4025 } 4026 break; 4027 } 4028 } 4029 4030 assert(Result.getValueType() == Op.getValueType() && 4031 "Bad legalization!"); 4032 4033 // Make sure that the generated code is itself legal. 4034 if (Result != Op) 4035 Result = LegalizeOp(Result); 4036 4037 // Note that LegalizeOp may be reentered even from single-use nodes, which 4038 // means that we always must cache transformed nodes. 4039 AddLegalizedOperand(Op, Result); 4040 return Result; 4041} 4042 4043/// PromoteOp - Given an operation that produces a value in an invalid type, 4044/// promote it to compute the value into a larger type. The produced value will 4045/// have the correct bits for the low portion of the register, but no guarantee 4046/// is made about the top bits: it may be zero, sign-extended, or garbage. 4047SDOperand SelectionDAGLegalize::PromoteOp(SDOperand Op) { 4048 MVT::ValueType VT = Op.getValueType(); 4049 MVT::ValueType NVT = TLI.getTypeToTransformTo(VT); 4050 assert(getTypeAction(VT) == Promote && 4051 "Caller should expand or legalize operands that are not promotable!"); 4052 assert(NVT > VT && MVT::isInteger(NVT) == MVT::isInteger(VT) && 4053 "Cannot promote to smaller type!"); 4054 4055 SDOperand Tmp1, Tmp2, Tmp3; 4056 SDOperand Result; 4057 SDNode *Node = Op.Val; 4058 4059 DenseMap<SDOperand, SDOperand>::iterator I = PromotedNodes.find(Op); 4060 if (I != PromotedNodes.end()) return I->second; 4061 4062 switch (Node->getOpcode()) { 4063 case ISD::CopyFromReg: 4064 assert(0 && "CopyFromReg must be legal!"); 4065 default: 4066#ifndef NDEBUG 4067 cerr << "NODE: "; Node->dump(&DAG); cerr << "\n"; 4068#endif 4069 assert(0 && "Do not know how to promote this operator!"); 4070 abort(); 4071 case ISD::UNDEF: 4072 Result = DAG.getNode(ISD::UNDEF, NVT); 4073 break; 4074 case ISD::Constant: 4075 if (VT != MVT::i1) 4076 Result = DAG.getNode(ISD::SIGN_EXTEND, NVT, Op); 4077 else 4078 Result = DAG.getNode(ISD::ZERO_EXTEND, NVT, Op); 4079 assert(isa<ConstantSDNode>(Result) && "Didn't constant fold zext?"); 4080 break; 4081 case ISD::ConstantFP: 4082 Result = DAG.getNode(ISD::FP_EXTEND, NVT, Op); 4083 assert(isa<ConstantFPSDNode>(Result) && "Didn't constant fold fp_extend?"); 4084 break; 4085 4086 case ISD::SETCC: 4087 assert(isTypeLegal(TLI.getSetCCResultTy()) && "SetCC type is not legal??"); 4088 Result = DAG.getNode(ISD::SETCC, TLI.getSetCCResultTy(),Node->getOperand(0), 4089 Node->getOperand(1), Node->getOperand(2)); 4090 break; 4091 4092 case ISD::TRUNCATE: 4093 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4094 case Legal: 4095 Result = LegalizeOp(Node->getOperand(0)); 4096 assert(Result.getValueType() >= NVT && 4097 "This truncation doesn't make sense!"); 4098 if (Result.getValueType() > NVT) // Truncate to NVT instead of VT 4099 Result = DAG.getNode(ISD::TRUNCATE, NVT, Result); 4100 break; 4101 case Promote: 4102 // The truncation is not required, because we don't guarantee anything 4103 // about high bits anyway. 4104 Result = PromoteOp(Node->getOperand(0)); 4105 break; 4106 case Expand: 4107 ExpandOp(Node->getOperand(0), Tmp1, Tmp2); 4108 // Truncate the low part of the expanded value to the result type 4109 Result = DAG.getNode(ISD::TRUNCATE, NVT, Tmp1); 4110 } 4111 break; 4112 case ISD::SIGN_EXTEND: 4113 case ISD::ZERO_EXTEND: 4114 case ISD::ANY_EXTEND: 4115 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4116 case Expand: assert(0 && "BUG: Smaller reg should have been promoted!"); 4117 case Legal: 4118 // Input is legal? Just do extend all the way to the larger type. 4119 Result = DAG.getNode(Node->getOpcode(), NVT, Node->getOperand(0)); 4120 break; 4121 case Promote: 4122 // Promote the reg if it's smaller. 4123 Result = PromoteOp(Node->getOperand(0)); 4124 // The high bits are not guaranteed to be anything. Insert an extend. 4125 if (Node->getOpcode() == ISD::SIGN_EXTEND) 4126 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Result, 4127 DAG.getValueType(Node->getOperand(0).getValueType())); 4128 else if (Node->getOpcode() == ISD::ZERO_EXTEND) 4129 Result = DAG.getZeroExtendInReg(Result, 4130 Node->getOperand(0).getValueType()); 4131 break; 4132 } 4133 break; 4134 case ISD::BIT_CONVERT: 4135 Result = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 4136 Node->getValueType(0)); 4137 Result = PromoteOp(Result); 4138 break; 4139 4140 case ISD::FP_EXTEND: 4141 assert(0 && "Case not implemented. Dynamically dead with 2 FP types!"); 4142 case ISD::FP_ROUND: 4143 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4144 case Expand: assert(0 && "BUG: Cannot expand FP regs!"); 4145 case Promote: assert(0 && "Unreachable with 2 FP types!"); 4146 case Legal: 4147 if (Node->getConstantOperandVal(1) == 0) { 4148 // Input is legal? Do an FP_ROUND_INREG. 4149 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Node->getOperand(0), 4150 DAG.getValueType(VT)); 4151 } else { 4152 // Just remove the truncate, it isn't affecting the value. 4153 Result = DAG.getNode(ISD::FP_ROUND, NVT, Node->getOperand(0), 4154 Node->getOperand(1)); 4155 } 4156 break; 4157 } 4158 break; 4159 case ISD::SINT_TO_FP: 4160 case ISD::UINT_TO_FP: 4161 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4162 case Legal: 4163 // No extra round required here. 4164 Result = DAG.getNode(Node->getOpcode(), NVT, Node->getOperand(0)); 4165 break; 4166 4167 case Promote: 4168 Result = PromoteOp(Node->getOperand(0)); 4169 if (Node->getOpcode() == ISD::SINT_TO_FP) 4170 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(), 4171 Result, 4172 DAG.getValueType(Node->getOperand(0).getValueType())); 4173 else 4174 Result = DAG.getZeroExtendInReg(Result, 4175 Node->getOperand(0).getValueType()); 4176 // No extra round required here. 4177 Result = DAG.getNode(Node->getOpcode(), NVT, Result); 4178 break; 4179 case Expand: 4180 Result = ExpandIntToFP(Node->getOpcode() == ISD::SINT_TO_FP, NVT, 4181 Node->getOperand(0)); 4182 // Round if we cannot tolerate excess precision. 4183 if (NoExcessFPPrecision) 4184 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 4185 DAG.getValueType(VT)); 4186 break; 4187 } 4188 break; 4189 4190 case ISD::SIGN_EXTEND_INREG: 4191 Result = PromoteOp(Node->getOperand(0)); 4192 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Result, 4193 Node->getOperand(1)); 4194 break; 4195 case ISD::FP_TO_SINT: 4196 case ISD::FP_TO_UINT: 4197 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4198 case Legal: 4199 case Expand: 4200 Tmp1 = Node->getOperand(0); 4201 break; 4202 case Promote: 4203 // The input result is prerounded, so we don't have to do anything 4204 // special. 4205 Tmp1 = PromoteOp(Node->getOperand(0)); 4206 break; 4207 } 4208 // If we're promoting a UINT to a larger size, check to see if the new node 4209 // will be legal. If it isn't, check to see if FP_TO_SINT is legal, since 4210 // we can use that instead. This allows us to generate better code for 4211 // FP_TO_UINT for small destination sizes on targets where FP_TO_UINT is not 4212 // legal, such as PowerPC. 4213 if (Node->getOpcode() == ISD::FP_TO_UINT && 4214 !TLI.isOperationLegal(ISD::FP_TO_UINT, NVT) && 4215 (TLI.isOperationLegal(ISD::FP_TO_SINT, NVT) || 4216 TLI.getOperationAction(ISD::FP_TO_SINT, NVT)==TargetLowering::Custom)){ 4217 Result = DAG.getNode(ISD::FP_TO_SINT, NVT, Tmp1); 4218 } else { 4219 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1); 4220 } 4221 break; 4222 4223 case ISD::FABS: 4224 case ISD::FNEG: 4225 Tmp1 = PromoteOp(Node->getOperand(0)); 4226 assert(Tmp1.getValueType() == NVT); 4227 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1); 4228 // NOTE: we do not have to do any extra rounding here for 4229 // NoExcessFPPrecision, because we know the input will have the appropriate 4230 // precision, and these operations don't modify precision at all. 4231 break; 4232 4233 case ISD::FSQRT: 4234 case ISD::FSIN: 4235 case ISD::FCOS: 4236 Tmp1 = PromoteOp(Node->getOperand(0)); 4237 assert(Tmp1.getValueType() == NVT); 4238 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1); 4239 if (NoExcessFPPrecision) 4240 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 4241 DAG.getValueType(VT)); 4242 break; 4243 4244 case ISD::FPOWI: { 4245 // Promote f32 powi to f64 powi. Note that this could insert a libcall 4246 // directly as well, which may be better. 4247 Tmp1 = PromoteOp(Node->getOperand(0)); 4248 assert(Tmp1.getValueType() == NVT); 4249 Result = DAG.getNode(ISD::FPOWI, NVT, Tmp1, Node->getOperand(1)); 4250 if (NoExcessFPPrecision) 4251 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 4252 DAG.getValueType(VT)); 4253 break; 4254 } 4255 4256 case ISD::ATOMIC_LCS: { 4257 Tmp2 = PromoteOp(Node->getOperand(2)); 4258 Tmp3 = PromoteOp(Node->getOperand(3)); 4259 Result = DAG.getAtomic(Node->getOpcode(), Node->getOperand(0), 4260 Node->getOperand(1), Tmp2, Tmp3, 4261 cast<AtomicSDNode>(Node)->getVT()); 4262 // Remember that we legalized the chain. 4263 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); 4264 break; 4265 } 4266 case ISD::ATOMIC_LAS: 4267 case ISD::ATOMIC_SWAP: { 4268 Tmp2 = PromoteOp(Node->getOperand(2)); 4269 Result = DAG.getAtomic(Node->getOpcode(), Node->getOperand(0), 4270 Node->getOperand(1), Tmp2, 4271 cast<AtomicSDNode>(Node)->getVT()); 4272 // Remember that we legalized the chain. 4273 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); 4274 break; 4275 } 4276 4277 case ISD::AND: 4278 case ISD::OR: 4279 case ISD::XOR: 4280 case ISD::ADD: 4281 case ISD::SUB: 4282 case ISD::MUL: 4283 // The input may have strange things in the top bits of the registers, but 4284 // these operations don't care. They may have weird bits going out, but 4285 // that too is okay if they are integer operations. 4286 Tmp1 = PromoteOp(Node->getOperand(0)); 4287 Tmp2 = PromoteOp(Node->getOperand(1)); 4288 assert(Tmp1.getValueType() == NVT && Tmp2.getValueType() == NVT); 4289 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 4290 break; 4291 case ISD::FADD: 4292 case ISD::FSUB: 4293 case ISD::FMUL: 4294 Tmp1 = PromoteOp(Node->getOperand(0)); 4295 Tmp2 = PromoteOp(Node->getOperand(1)); 4296 assert(Tmp1.getValueType() == NVT && Tmp2.getValueType() == NVT); 4297 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 4298 4299 // Floating point operations will give excess precision that we may not be 4300 // able to tolerate. If we DO allow excess precision, just leave it, 4301 // otherwise excise it. 4302 // FIXME: Why would we need to round FP ops more than integer ones? 4303 // Is Round(Add(Add(A,B),C)) != Round(Add(Round(Add(A,B)), C)) 4304 if (NoExcessFPPrecision) 4305 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 4306 DAG.getValueType(VT)); 4307 break; 4308 4309 case ISD::SDIV: 4310 case ISD::SREM: 4311 // These operators require that their input be sign extended. 4312 Tmp1 = PromoteOp(Node->getOperand(0)); 4313 Tmp2 = PromoteOp(Node->getOperand(1)); 4314 if (MVT::isInteger(NVT)) { 4315 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp1, 4316 DAG.getValueType(VT)); 4317 Tmp2 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp2, 4318 DAG.getValueType(VT)); 4319 } 4320 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 4321 4322 // Perform FP_ROUND: this is probably overly pessimistic. 4323 if (MVT::isFloatingPoint(NVT) && NoExcessFPPrecision) 4324 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 4325 DAG.getValueType(VT)); 4326 break; 4327 case ISD::FDIV: 4328 case ISD::FREM: 4329 case ISD::FCOPYSIGN: 4330 // These operators require that their input be fp extended. 4331 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4332 case Expand: assert(0 && "not implemented"); 4333 case Legal: Tmp1 = LegalizeOp(Node->getOperand(0)); break; 4334 case Promote: Tmp1 = PromoteOp(Node->getOperand(0)); break; 4335 } 4336 switch (getTypeAction(Node->getOperand(1).getValueType())) { 4337 case Expand: assert(0 && "not implemented"); 4338 case Legal: Tmp2 = LegalizeOp(Node->getOperand(1)); break; 4339 case Promote: Tmp2 = PromoteOp(Node->getOperand(1)); break; 4340 } 4341 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 4342 4343 // Perform FP_ROUND: this is probably overly pessimistic. 4344 if (NoExcessFPPrecision && Node->getOpcode() != ISD::FCOPYSIGN) 4345 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 4346 DAG.getValueType(VT)); 4347 break; 4348 4349 case ISD::UDIV: 4350 case ISD::UREM: 4351 // These operators require that their input be zero extended. 4352 Tmp1 = PromoteOp(Node->getOperand(0)); 4353 Tmp2 = PromoteOp(Node->getOperand(1)); 4354 assert(MVT::isInteger(NVT) && "Operators don't apply to FP!"); 4355 Tmp1 = DAG.getZeroExtendInReg(Tmp1, VT); 4356 Tmp2 = DAG.getZeroExtendInReg(Tmp2, VT); 4357 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 4358 break; 4359 4360 case ISD::SHL: 4361 Tmp1 = PromoteOp(Node->getOperand(0)); 4362 Result = DAG.getNode(ISD::SHL, NVT, Tmp1, Node->getOperand(1)); 4363 break; 4364 case ISD::SRA: 4365 // The input value must be properly sign extended. 4366 Tmp1 = PromoteOp(Node->getOperand(0)); 4367 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp1, 4368 DAG.getValueType(VT)); 4369 Result = DAG.getNode(ISD::SRA, NVT, Tmp1, Node->getOperand(1)); 4370 break; 4371 case ISD::SRL: 4372 // The input value must be properly zero extended. 4373 Tmp1 = PromoteOp(Node->getOperand(0)); 4374 Tmp1 = DAG.getZeroExtendInReg(Tmp1, VT); 4375 Result = DAG.getNode(ISD::SRL, NVT, Tmp1, Node->getOperand(1)); 4376 break; 4377 4378 case ISD::VAARG: 4379 Tmp1 = Node->getOperand(0); // Get the chain. 4380 Tmp2 = Node->getOperand(1); // Get the pointer. 4381 if (TLI.getOperationAction(ISD::VAARG, VT) == TargetLowering::Custom) { 4382 Tmp3 = DAG.getVAArg(VT, Tmp1, Tmp2, Node->getOperand(2)); 4383 Result = TLI.CustomPromoteOperation(Tmp3, DAG); 4384 } else { 4385 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 4386 SDOperand VAList = DAG.getLoad(TLI.getPointerTy(), Tmp1, Tmp2, V, 0); 4387 // Increment the pointer, VAList, to the next vaarg 4388 Tmp3 = DAG.getNode(ISD::ADD, TLI.getPointerTy(), VAList, 4389 DAG.getConstant(MVT::getSizeInBits(VT)/8, 4390 TLI.getPointerTy())); 4391 // Store the incremented VAList to the legalized pointer 4392 Tmp3 = DAG.getStore(VAList.getValue(1), Tmp3, Tmp2, V, 0); 4393 // Load the actual argument out of the pointer VAList 4394 Result = DAG.getExtLoad(ISD::EXTLOAD, NVT, Tmp3, VAList, NULL, 0, VT); 4395 } 4396 // Remember that we legalized the chain. 4397 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); 4398 break; 4399 4400 case ISD::LOAD: { 4401 LoadSDNode *LD = cast<LoadSDNode>(Node); 4402 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(Node) 4403 ? ISD::EXTLOAD : LD->getExtensionType(); 4404 Result = DAG.getExtLoad(ExtType, NVT, 4405 LD->getChain(), LD->getBasePtr(), 4406 LD->getSrcValue(), LD->getSrcValueOffset(), 4407 LD->getMemoryVT(), 4408 LD->isVolatile(), 4409 LD->getAlignment()); 4410 // Remember that we legalized the chain. 4411 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); 4412 break; 4413 } 4414 case ISD::SELECT: 4415 Tmp2 = PromoteOp(Node->getOperand(1)); // Legalize the op0 4416 Tmp3 = PromoteOp(Node->getOperand(2)); // Legalize the op1 4417 Result = DAG.getNode(ISD::SELECT, NVT, Node->getOperand(0), Tmp2, Tmp3); 4418 break; 4419 case ISD::SELECT_CC: 4420 Tmp2 = PromoteOp(Node->getOperand(2)); // True 4421 Tmp3 = PromoteOp(Node->getOperand(3)); // False 4422 Result = DAG.getNode(ISD::SELECT_CC, NVT, Node->getOperand(0), 4423 Node->getOperand(1), Tmp2, Tmp3, Node->getOperand(4)); 4424 break; 4425 case ISD::BSWAP: 4426 Tmp1 = Node->getOperand(0); 4427 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Tmp1); 4428 Tmp1 = DAG.getNode(ISD::BSWAP, NVT, Tmp1); 4429 Result = DAG.getNode(ISD::SRL, NVT, Tmp1, 4430 DAG.getConstant(MVT::getSizeInBits(NVT) - 4431 MVT::getSizeInBits(VT), 4432 TLI.getShiftAmountTy())); 4433 break; 4434 case ISD::CTPOP: 4435 case ISD::CTTZ: 4436 case ISD::CTLZ: 4437 // Zero extend the argument 4438 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Node->getOperand(0)); 4439 // Perform the larger operation, then subtract if needed. 4440 Tmp1 = DAG.getNode(Node->getOpcode(), NVT, Tmp1); 4441 switch(Node->getOpcode()) { 4442 case ISD::CTPOP: 4443 Result = Tmp1; 4444 break; 4445 case ISD::CTTZ: 4446 // if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT) 4447 Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), Tmp1, 4448 DAG.getConstant(MVT::getSizeInBits(NVT), NVT), 4449 ISD::SETEQ); 4450 Result = DAG.getNode(ISD::SELECT, NVT, Tmp2, 4451 DAG.getConstant(MVT::getSizeInBits(VT), NVT), Tmp1); 4452 break; 4453 case ISD::CTLZ: 4454 //Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 4455 Result = DAG.getNode(ISD::SUB, NVT, Tmp1, 4456 DAG.getConstant(MVT::getSizeInBits(NVT) - 4457 MVT::getSizeInBits(VT), NVT)); 4458 break; 4459 } 4460 break; 4461 case ISD::EXTRACT_SUBVECTOR: 4462 Result = PromoteOp(ExpandEXTRACT_SUBVECTOR(Op)); 4463 break; 4464 case ISD::EXTRACT_VECTOR_ELT: 4465 Result = PromoteOp(ExpandEXTRACT_VECTOR_ELT(Op)); 4466 break; 4467 } 4468 4469 assert(Result.Val && "Didn't set a result!"); 4470 4471 // Make sure the result is itself legal. 4472 Result = LegalizeOp(Result); 4473 4474 // Remember that we promoted this! 4475 AddPromotedOperand(Op, Result); 4476 return Result; 4477} 4478 4479/// ExpandEXTRACT_VECTOR_ELT - Expand an EXTRACT_VECTOR_ELT operation into 4480/// a legal EXTRACT_VECTOR_ELT operation, scalar code, or memory traffic, 4481/// based on the vector type. The return type of this matches the element type 4482/// of the vector, which may not be legal for the target. 4483SDOperand SelectionDAGLegalize::ExpandEXTRACT_VECTOR_ELT(SDOperand Op) { 4484 // We know that operand #0 is the Vec vector. If the index is a constant 4485 // or if the invec is a supported hardware type, we can use it. Otherwise, 4486 // lower to a store then an indexed load. 4487 SDOperand Vec = Op.getOperand(0); 4488 SDOperand Idx = Op.getOperand(1); 4489 4490 MVT::ValueType TVT = Vec.getValueType(); 4491 unsigned NumElems = MVT::getVectorNumElements(TVT); 4492 4493 switch (TLI.getOperationAction(ISD::EXTRACT_VECTOR_ELT, TVT)) { 4494 default: assert(0 && "This action is not supported yet!"); 4495 case TargetLowering::Custom: { 4496 Vec = LegalizeOp(Vec); 4497 Op = DAG.UpdateNodeOperands(Op, Vec, Idx); 4498 SDOperand Tmp3 = TLI.LowerOperation(Op, DAG); 4499 if (Tmp3.Val) 4500 return Tmp3; 4501 break; 4502 } 4503 case TargetLowering::Legal: 4504 if (isTypeLegal(TVT)) { 4505 Vec = LegalizeOp(Vec); 4506 Op = DAG.UpdateNodeOperands(Op, Vec, Idx); 4507 return Op; 4508 } 4509 break; 4510 case TargetLowering::Expand: 4511 break; 4512 } 4513 4514 if (NumElems == 1) { 4515 // This must be an access of the only element. Return it. 4516 Op = ScalarizeVectorOp(Vec); 4517 } else if (!TLI.isTypeLegal(TVT) && isa<ConstantSDNode>(Idx)) { 4518 unsigned NumLoElts = 1 << Log2_32(NumElems-1); 4519 ConstantSDNode *CIdx = cast<ConstantSDNode>(Idx); 4520 SDOperand Lo, Hi; 4521 SplitVectorOp(Vec, Lo, Hi); 4522 if (CIdx->getValue() < NumLoElts) { 4523 Vec = Lo; 4524 } else { 4525 Vec = Hi; 4526 Idx = DAG.getConstant(CIdx->getValue() - NumLoElts, 4527 Idx.getValueType()); 4528 } 4529 4530 // It's now an extract from the appropriate high or low part. Recurse. 4531 Op = DAG.UpdateNodeOperands(Op, Vec, Idx); 4532 Op = ExpandEXTRACT_VECTOR_ELT(Op); 4533 } else { 4534 // Store the value to a temporary stack slot, then LOAD the scalar 4535 // element back out. 4536 SDOperand StackPtr = DAG.CreateStackTemporary(Vec.getValueType()); 4537 SDOperand Ch = DAG.getStore(DAG.getEntryNode(), Vec, StackPtr, NULL, 0); 4538 4539 // Add the offset to the index. 4540 unsigned EltSize = MVT::getSizeInBits(Op.getValueType())/8; 4541 Idx = DAG.getNode(ISD::MUL, Idx.getValueType(), Idx, 4542 DAG.getConstant(EltSize, Idx.getValueType())); 4543 4544 if (MVT::getSizeInBits(Idx.getValueType()) > 4545 MVT::getSizeInBits(TLI.getPointerTy())) 4546 Idx = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), Idx); 4547 else 4548 Idx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), Idx); 4549 4550 StackPtr = DAG.getNode(ISD::ADD, Idx.getValueType(), Idx, StackPtr); 4551 4552 Op = DAG.getLoad(Op.getValueType(), Ch, StackPtr, NULL, 0); 4553 } 4554 return Op; 4555} 4556 4557/// ExpandEXTRACT_SUBVECTOR - Expand a EXTRACT_SUBVECTOR operation. For now 4558/// we assume the operation can be split if it is not already legal. 4559SDOperand SelectionDAGLegalize::ExpandEXTRACT_SUBVECTOR(SDOperand Op) { 4560 // We know that operand #0 is the Vec vector. For now we assume the index 4561 // is a constant and that the extracted result is a supported hardware type. 4562 SDOperand Vec = Op.getOperand(0); 4563 SDOperand Idx = LegalizeOp(Op.getOperand(1)); 4564 4565 unsigned NumElems = MVT::getVectorNumElements(Vec.getValueType()); 4566 4567 if (NumElems == MVT::getVectorNumElements(Op.getValueType())) { 4568 // This must be an access of the desired vector length. Return it. 4569 return Vec; 4570 } 4571 4572 ConstantSDNode *CIdx = cast<ConstantSDNode>(Idx); 4573 SDOperand Lo, Hi; 4574 SplitVectorOp(Vec, Lo, Hi); 4575 if (CIdx->getValue() < NumElems/2) { 4576 Vec = Lo; 4577 } else { 4578 Vec = Hi; 4579 Idx = DAG.getConstant(CIdx->getValue() - NumElems/2, Idx.getValueType()); 4580 } 4581 4582 // It's now an extract from the appropriate high or low part. Recurse. 4583 Op = DAG.UpdateNodeOperands(Op, Vec, Idx); 4584 return ExpandEXTRACT_SUBVECTOR(Op); 4585} 4586 4587/// LegalizeSetCCOperands - Attempts to create a legal LHS and RHS for a SETCC 4588/// with condition CC on the current target. This usually involves legalizing 4589/// or promoting the arguments. In the case where LHS and RHS must be expanded, 4590/// there may be no choice but to create a new SetCC node to represent the 4591/// legalized value of setcc lhs, rhs. In this case, the value is returned in 4592/// LHS, and the SDOperand returned in RHS has a nil SDNode value. 4593void SelectionDAGLegalize::LegalizeSetCCOperands(SDOperand &LHS, 4594 SDOperand &RHS, 4595 SDOperand &CC) { 4596 SDOperand Tmp1, Tmp2, Tmp3, Result; 4597 4598 switch (getTypeAction(LHS.getValueType())) { 4599 case Legal: 4600 Tmp1 = LegalizeOp(LHS); // LHS 4601 Tmp2 = LegalizeOp(RHS); // RHS 4602 break; 4603 case Promote: 4604 Tmp1 = PromoteOp(LHS); // LHS 4605 Tmp2 = PromoteOp(RHS); // RHS 4606 4607 // If this is an FP compare, the operands have already been extended. 4608 if (MVT::isInteger(LHS.getValueType())) { 4609 MVT::ValueType VT = LHS.getValueType(); 4610 MVT::ValueType NVT = TLI.getTypeToTransformTo(VT); 4611 4612 // Otherwise, we have to insert explicit sign or zero extends. Note 4613 // that we could insert sign extends for ALL conditions, but zero extend 4614 // is cheaper on many machines (an AND instead of two shifts), so prefer 4615 // it. 4616 switch (cast<CondCodeSDNode>(CC)->get()) { 4617 default: assert(0 && "Unknown integer comparison!"); 4618 case ISD::SETEQ: 4619 case ISD::SETNE: 4620 case ISD::SETUGE: 4621 case ISD::SETUGT: 4622 case ISD::SETULE: 4623 case ISD::SETULT: 4624 // ALL of these operations will work if we either sign or zero extend 4625 // the operands (including the unsigned comparisons!). Zero extend is 4626 // usually a simpler/cheaper operation, so prefer it. 4627 Tmp1 = DAG.getZeroExtendInReg(Tmp1, VT); 4628 Tmp2 = DAG.getZeroExtendInReg(Tmp2, VT); 4629 break; 4630 case ISD::SETGE: 4631 case ISD::SETGT: 4632 case ISD::SETLT: 4633 case ISD::SETLE: 4634 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp1, 4635 DAG.getValueType(VT)); 4636 Tmp2 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp2, 4637 DAG.getValueType(VT)); 4638 break; 4639 } 4640 } 4641 break; 4642 case Expand: { 4643 MVT::ValueType VT = LHS.getValueType(); 4644 if (VT == MVT::f32 || VT == MVT::f64) { 4645 // Expand into one or more soft-fp libcall(s). 4646 RTLIB::Libcall LC1, LC2 = RTLIB::UNKNOWN_LIBCALL; 4647 switch (cast<CondCodeSDNode>(CC)->get()) { 4648 case ISD::SETEQ: 4649 case ISD::SETOEQ: 4650 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : RTLIB::OEQ_F64; 4651 break; 4652 case ISD::SETNE: 4653 case ISD::SETUNE: 4654 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : RTLIB::UNE_F64; 4655 break; 4656 case ISD::SETGE: 4657 case ISD::SETOGE: 4658 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : RTLIB::OGE_F64; 4659 break; 4660 case ISD::SETLT: 4661 case ISD::SETOLT: 4662 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64; 4663 break; 4664 case ISD::SETLE: 4665 case ISD::SETOLE: 4666 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : RTLIB::OLE_F64; 4667 break; 4668 case ISD::SETGT: 4669 case ISD::SETOGT: 4670 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : RTLIB::OGT_F64; 4671 break; 4672 case ISD::SETUO: 4673 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : RTLIB::UO_F64; 4674 break; 4675 case ISD::SETO: 4676 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : RTLIB::O_F64; 4677 break; 4678 default: 4679 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : RTLIB::UO_F64; 4680 switch (cast<CondCodeSDNode>(CC)->get()) { 4681 case ISD::SETONE: 4682 // SETONE = SETOLT | SETOGT 4683 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64; 4684 // Fallthrough 4685 case ISD::SETUGT: 4686 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : RTLIB::OGT_F64; 4687 break; 4688 case ISD::SETUGE: 4689 LC2 = (VT == MVT::f32) ? RTLIB::OGE_F32 : RTLIB::OGE_F64; 4690 break; 4691 case ISD::SETULT: 4692 LC2 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64; 4693 break; 4694 case ISD::SETULE: 4695 LC2 = (VT == MVT::f32) ? RTLIB::OLE_F32 : RTLIB::OLE_F64; 4696 break; 4697 case ISD::SETUEQ: 4698 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : RTLIB::OEQ_F64; 4699 break; 4700 default: assert(0 && "Unsupported FP setcc!"); 4701 } 4702 } 4703 4704 SDOperand Dummy; 4705 Tmp1 = ExpandLibCall(TLI.getLibcallName(LC1), 4706 DAG.getNode(ISD::MERGE_VALUES, VT, LHS, RHS).Val, 4707 false /*sign irrelevant*/, Dummy); 4708 Tmp2 = DAG.getConstant(0, MVT::i32); 4709 CC = DAG.getCondCode(TLI.getCmpLibcallCC(LC1)); 4710 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 4711 Tmp1 = DAG.getNode(ISD::SETCC, TLI.getSetCCResultTy(), Tmp1, Tmp2, CC); 4712 LHS = ExpandLibCall(TLI.getLibcallName(LC2), 4713 DAG.getNode(ISD::MERGE_VALUES, VT, LHS, RHS).Val, 4714 false /*sign irrelevant*/, Dummy); 4715 Tmp2 = DAG.getNode(ISD::SETCC, TLI.getSetCCResultTy(), LHS, Tmp2, 4716 DAG.getCondCode(TLI.getCmpLibcallCC(LC2))); 4717 Tmp1 = DAG.getNode(ISD::OR, Tmp1.getValueType(), Tmp1, Tmp2); 4718 Tmp2 = SDOperand(); 4719 } 4720 LHS = Tmp1; 4721 RHS = Tmp2; 4722 return; 4723 } 4724 4725 SDOperand LHSLo, LHSHi, RHSLo, RHSHi; 4726 ExpandOp(LHS, LHSLo, LHSHi); 4727 ExpandOp(RHS, RHSLo, RHSHi); 4728 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 4729 4730 if (VT==MVT::ppcf128) { 4731 // FIXME: This generated code sucks. We want to generate 4732 // FCMP crN, hi1, hi2 4733 // BNE crN, L: 4734 // FCMP crN, lo1, lo2 4735 // The following can be improved, but not that much. 4736 Tmp1 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, ISD::SETEQ); 4737 Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSLo, RHSLo, CCCode); 4738 Tmp3 = DAG.getNode(ISD::AND, Tmp1.getValueType(), Tmp1, Tmp2); 4739 Tmp1 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, ISD::SETNE); 4740 Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, CCCode); 4741 Tmp1 = DAG.getNode(ISD::AND, Tmp1.getValueType(), Tmp1, Tmp2); 4742 Tmp1 = DAG.getNode(ISD::OR, Tmp1.getValueType(), Tmp1, Tmp3); 4743 Tmp2 = SDOperand(); 4744 break; 4745 } 4746 4747 switch (CCCode) { 4748 case ISD::SETEQ: 4749 case ISD::SETNE: 4750 if (RHSLo == RHSHi) 4751 if (ConstantSDNode *RHSCST = dyn_cast<ConstantSDNode>(RHSLo)) 4752 if (RHSCST->isAllOnesValue()) { 4753 // Comparison to -1. 4754 Tmp1 = DAG.getNode(ISD::AND, LHSLo.getValueType(), LHSLo, LHSHi); 4755 Tmp2 = RHSLo; 4756 break; 4757 } 4758 4759 Tmp1 = DAG.getNode(ISD::XOR, LHSLo.getValueType(), LHSLo, RHSLo); 4760 Tmp2 = DAG.getNode(ISD::XOR, LHSLo.getValueType(), LHSHi, RHSHi); 4761 Tmp1 = DAG.getNode(ISD::OR, Tmp1.getValueType(), Tmp1, Tmp2); 4762 Tmp2 = DAG.getConstant(0, Tmp1.getValueType()); 4763 break; 4764 default: 4765 // If this is a comparison of the sign bit, just look at the top part. 4766 // X > -1, x < 0 4767 if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(RHS)) 4768 if ((cast<CondCodeSDNode>(CC)->get() == ISD::SETLT && 4769 CST->getValue() == 0) || // X < 0 4770 (cast<CondCodeSDNode>(CC)->get() == ISD::SETGT && 4771 CST->isAllOnesValue())) { // X > -1 4772 Tmp1 = LHSHi; 4773 Tmp2 = RHSHi; 4774 break; 4775 } 4776 4777 // FIXME: This generated code sucks. 4778 ISD::CondCode LowCC; 4779 switch (CCCode) { 4780 default: assert(0 && "Unknown integer setcc!"); 4781 case ISD::SETLT: 4782 case ISD::SETULT: LowCC = ISD::SETULT; break; 4783 case ISD::SETGT: 4784 case ISD::SETUGT: LowCC = ISD::SETUGT; break; 4785 case ISD::SETLE: 4786 case ISD::SETULE: LowCC = ISD::SETULE; break; 4787 case ISD::SETGE: 4788 case ISD::SETUGE: LowCC = ISD::SETUGE; break; 4789 } 4790 4791 // Tmp1 = lo(op1) < lo(op2) // Always unsigned comparison 4792 // Tmp2 = hi(op1) < hi(op2) // Signedness depends on operands 4793 // dest = hi(op1) == hi(op2) ? Tmp1 : Tmp2; 4794 4795 // NOTE: on targets without efficient SELECT of bools, we can always use 4796 // this identity: (B1 ? B2 : B3) --> (B1 & B2)|(!B1&B3) 4797 TargetLowering::DAGCombinerInfo DagCombineInfo(DAG, false, true, NULL); 4798 Tmp1 = TLI.SimplifySetCC(TLI.getSetCCResultTy(), LHSLo, RHSLo, LowCC, 4799 false, DagCombineInfo); 4800 if (!Tmp1.Val) 4801 Tmp1 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSLo, RHSLo, LowCC); 4802 Tmp2 = TLI.SimplifySetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, 4803 CCCode, false, DagCombineInfo); 4804 if (!Tmp2.Val) 4805 Tmp2 = DAG.getNode(ISD::SETCC, TLI.getSetCCResultTy(), LHSHi, RHSHi,CC); 4806 4807 ConstantSDNode *Tmp1C = dyn_cast<ConstantSDNode>(Tmp1.Val); 4808 ConstantSDNode *Tmp2C = dyn_cast<ConstantSDNode>(Tmp2.Val); 4809 if ((Tmp1C && Tmp1C->getValue() == 0) || 4810 (Tmp2C && Tmp2C->getValue() == 0 && 4811 (CCCode == ISD::SETLE || CCCode == ISD::SETGE || 4812 CCCode == ISD::SETUGE || CCCode == ISD::SETULE)) || 4813 (Tmp2C && Tmp2C->getValue() == 1 && 4814 (CCCode == ISD::SETLT || CCCode == ISD::SETGT || 4815 CCCode == ISD::SETUGT || CCCode == ISD::SETULT))) { 4816 // low part is known false, returns high part. 4817 // For LE / GE, if high part is known false, ignore the low part. 4818 // For LT / GT, if high part is known true, ignore the low part. 4819 Tmp1 = Tmp2; 4820 Tmp2 = SDOperand(); 4821 } else { 4822 Result = TLI.SimplifySetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, 4823 ISD::SETEQ, false, DagCombineInfo); 4824 if (!Result.Val) 4825 Result=DAG.getSetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, ISD::SETEQ); 4826 Result = LegalizeOp(DAG.getNode(ISD::SELECT, Tmp1.getValueType(), 4827 Result, Tmp1, Tmp2)); 4828 Tmp1 = Result; 4829 Tmp2 = SDOperand(); 4830 } 4831 } 4832 } 4833 } 4834 LHS = Tmp1; 4835 RHS = Tmp2; 4836} 4837 4838/// EmitStackConvert - Emit a store/load combination to the stack. This stores 4839/// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does 4840/// a load from the stack slot to DestVT, extending it if needed. 4841/// The resultant code need not be legal. 4842SDOperand SelectionDAGLegalize::EmitStackConvert(SDOperand SrcOp, 4843 MVT::ValueType SlotVT, 4844 MVT::ValueType DestVT) { 4845 // Create the stack frame object. 4846 SDOperand FIPtr = DAG.CreateStackTemporary(SlotVT); 4847 4848 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); 4849 int SPFI = StackPtrFI->getIndex(); 4850 4851 unsigned SrcSize = MVT::getSizeInBits(SrcOp.getValueType()); 4852 unsigned SlotSize = MVT::getSizeInBits(SlotVT); 4853 unsigned DestSize = MVT::getSizeInBits(DestVT); 4854 4855 // Emit a store to the stack slot. Use a truncstore if the input value is 4856 // later than DestVT. 4857 SDOperand Store; 4858 if (SrcSize > SlotSize) 4859 Store = DAG.getTruncStore(DAG.getEntryNode(), SrcOp, FIPtr, 4860 PseudoSourceValue::getFixedStack(), 4861 SPFI, SlotVT); 4862 else { 4863 assert(SrcSize == SlotSize && "Invalid store"); 4864 Store = DAG.getStore(DAG.getEntryNode(), SrcOp, FIPtr, 4865 PseudoSourceValue::getFixedStack(), 4866 SPFI, SlotVT); 4867 } 4868 4869 // Result is a load from the stack slot. 4870 if (SlotSize == DestSize) 4871 return DAG.getLoad(DestVT, Store, FIPtr, NULL, 0); 4872 4873 assert(SlotSize < DestSize && "Unknown extension!"); 4874 return DAG.getExtLoad(ISD::EXTLOAD, DestVT, Store, FIPtr, NULL, 0, SlotVT); 4875} 4876 4877SDOperand SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { 4878 // Create a vector sized/aligned stack slot, store the value to element #0, 4879 // then load the whole vector back out. 4880 SDOperand StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); 4881 4882 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); 4883 int SPFI = StackPtrFI->getIndex(); 4884 4885 SDOperand Ch = DAG.getStore(DAG.getEntryNode(), Node->getOperand(0), StackPtr, 4886 PseudoSourceValue::getFixedStack(), SPFI); 4887 return DAG.getLoad(Node->getValueType(0), Ch, StackPtr, 4888 PseudoSourceValue::getFixedStack(), SPFI); 4889} 4890 4891 4892/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't 4893/// support the operation, but do support the resultant vector type. 4894SDOperand SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { 4895 4896 // If the only non-undef value is the low element, turn this into a 4897 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. 4898 unsigned NumElems = Node->getNumOperands(); 4899 bool isOnlyLowElement = true; 4900 SDOperand SplatValue = Node->getOperand(0); 4901 std::map<SDOperand, std::vector<unsigned> > Values; 4902 Values[SplatValue].push_back(0); 4903 bool isConstant = true; 4904 if (!isa<ConstantFPSDNode>(SplatValue) && !isa<ConstantSDNode>(SplatValue) && 4905 SplatValue.getOpcode() != ISD::UNDEF) 4906 isConstant = false; 4907 4908 for (unsigned i = 1; i < NumElems; ++i) { 4909 SDOperand V = Node->getOperand(i); 4910 Values[V].push_back(i); 4911 if (V.getOpcode() != ISD::UNDEF) 4912 isOnlyLowElement = false; 4913 if (SplatValue != V) 4914 SplatValue = SDOperand(0,0); 4915 4916 // If this isn't a constant element or an undef, we can't use a constant 4917 // pool load. 4918 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V) && 4919 V.getOpcode() != ISD::UNDEF) 4920 isConstant = false; 4921 } 4922 4923 if (isOnlyLowElement) { 4924 // If the low element is an undef too, then this whole things is an undef. 4925 if (Node->getOperand(0).getOpcode() == ISD::UNDEF) 4926 return DAG.getNode(ISD::UNDEF, Node->getValueType(0)); 4927 // Otherwise, turn this into a scalar_to_vector node. 4928 return DAG.getNode(ISD::SCALAR_TO_VECTOR, Node->getValueType(0), 4929 Node->getOperand(0)); 4930 } 4931 4932 // If all elements are constants, create a load from the constant pool. 4933 if (isConstant) { 4934 MVT::ValueType VT = Node->getValueType(0); 4935 const Type *OpNTy = 4936 MVT::getTypeForValueType(Node->getOperand(0).getValueType()); 4937 std::vector<Constant*> CV; 4938 for (unsigned i = 0, e = NumElems; i != e; ++i) { 4939 if (ConstantFPSDNode *V = 4940 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { 4941 CV.push_back(ConstantFP::get(OpNTy, V->getValueAPF())); 4942 } else if (ConstantSDNode *V = 4943 dyn_cast<ConstantSDNode>(Node->getOperand(i))) { 4944 CV.push_back(ConstantInt::get(OpNTy, V->getValue())); 4945 } else { 4946 assert(Node->getOperand(i).getOpcode() == ISD::UNDEF); 4947 CV.push_back(UndefValue::get(OpNTy)); 4948 } 4949 } 4950 Constant *CP = ConstantVector::get(CV); 4951 SDOperand CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy()); 4952 return DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, 4953 PseudoSourceValue::getConstantPool(), 0); 4954 } 4955 4956 if (SplatValue.Val) { // Splat of one value? 4957 // Build the shuffle constant vector: <0, 0, 0, 0> 4958 MVT::ValueType MaskVT = 4959 MVT::getIntVectorWithNumElements(NumElems); 4960 SDOperand Zero = DAG.getConstant(0, MVT::getVectorElementType(MaskVT)); 4961 std::vector<SDOperand> ZeroVec(NumElems, Zero); 4962 SDOperand SplatMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 4963 &ZeroVec[0], ZeroVec.size()); 4964 4965 // If the target supports VECTOR_SHUFFLE and this shuffle mask, use it. 4966 if (isShuffleLegal(Node->getValueType(0), SplatMask)) { 4967 // Get the splatted value into the low element of a vector register. 4968 SDOperand LowValVec = 4969 DAG.getNode(ISD::SCALAR_TO_VECTOR, Node->getValueType(0), SplatValue); 4970 4971 // Return shuffle(LowValVec, undef, <0,0,0,0>) 4972 return DAG.getNode(ISD::VECTOR_SHUFFLE, Node->getValueType(0), LowValVec, 4973 DAG.getNode(ISD::UNDEF, Node->getValueType(0)), 4974 SplatMask); 4975 } 4976 } 4977 4978 // If there are only two unique elements, we may be able to turn this into a 4979 // vector shuffle. 4980 if (Values.size() == 2) { 4981 // Build the shuffle constant vector: e.g. <0, 4, 0, 4> 4982 MVT::ValueType MaskVT = 4983 MVT::getIntVectorWithNumElements(NumElems); 4984 std::vector<SDOperand> MaskVec(NumElems); 4985 unsigned i = 0; 4986 for (std::map<SDOperand,std::vector<unsigned> >::iterator I=Values.begin(), 4987 E = Values.end(); I != E; ++I) { 4988 for (std::vector<unsigned>::iterator II = I->second.begin(), 4989 EE = I->second.end(); II != EE; ++II) 4990 MaskVec[*II] = DAG.getConstant(i, MVT::getVectorElementType(MaskVT)); 4991 i += NumElems; 4992 } 4993 SDOperand ShuffleMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 4994 &MaskVec[0], MaskVec.size()); 4995 4996 // If the target supports VECTOR_SHUFFLE and this shuffle mask, use it. 4997 if (TLI.isOperationLegal(ISD::SCALAR_TO_VECTOR, Node->getValueType(0)) && 4998 isShuffleLegal(Node->getValueType(0), ShuffleMask)) { 4999 SmallVector<SDOperand, 8> Ops; 5000 for(std::map<SDOperand,std::vector<unsigned> >::iterator I=Values.begin(), 5001 E = Values.end(); I != E; ++I) { 5002 SDOperand Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, Node->getValueType(0), 5003 I->first); 5004 Ops.push_back(Op); 5005 } 5006 Ops.push_back(ShuffleMask); 5007 5008 // Return shuffle(LoValVec, HiValVec, <0,1,0,1>) 5009 return DAG.getNode(ISD::VECTOR_SHUFFLE, Node->getValueType(0), 5010 &Ops[0], Ops.size()); 5011 } 5012 } 5013 5014 // Otherwise, we can't handle this case efficiently. Allocate a sufficiently 5015 // aligned object on the stack, store each element into it, then load 5016 // the result as a vector. 5017 MVT::ValueType VT = Node->getValueType(0); 5018 // Create the stack frame object. 5019 SDOperand FIPtr = DAG.CreateStackTemporary(VT); 5020 5021 // Emit a store of each element to the stack slot. 5022 SmallVector<SDOperand, 8> Stores; 5023 unsigned TypeByteSize = 5024 MVT::getSizeInBits(Node->getOperand(0).getValueType())/8; 5025 // Store (in the right endianness) the elements to memory. 5026 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 5027 // Ignore undef elements. 5028 if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue; 5029 5030 unsigned Offset = TypeByteSize*i; 5031 5032 SDOperand Idx = DAG.getConstant(Offset, FIPtr.getValueType()); 5033 Idx = DAG.getNode(ISD::ADD, FIPtr.getValueType(), FIPtr, Idx); 5034 5035 Stores.push_back(DAG.getStore(DAG.getEntryNode(), Node->getOperand(i), Idx, 5036 NULL, 0)); 5037 } 5038 5039 SDOperand StoreChain; 5040 if (!Stores.empty()) // Not all undef elements? 5041 StoreChain = DAG.getNode(ISD::TokenFactor, MVT::Other, 5042 &Stores[0], Stores.size()); 5043 else 5044 StoreChain = DAG.getEntryNode(); 5045 5046 // Result is a load from the stack slot. 5047 return DAG.getLoad(VT, StoreChain, FIPtr, NULL, 0); 5048} 5049 5050void SelectionDAGLegalize::ExpandShiftParts(unsigned NodeOp, 5051 SDOperand Op, SDOperand Amt, 5052 SDOperand &Lo, SDOperand &Hi) { 5053 // Expand the subcomponents. 5054 SDOperand LHSL, LHSH; 5055 ExpandOp(Op, LHSL, LHSH); 5056 5057 SDOperand Ops[] = { LHSL, LHSH, Amt }; 5058 MVT::ValueType VT = LHSL.getValueType(); 5059 Lo = DAG.getNode(NodeOp, DAG.getNodeValueTypes(VT, VT), 2, Ops, 3); 5060 Hi = Lo.getValue(1); 5061} 5062 5063 5064/// ExpandShift - Try to find a clever way to expand this shift operation out to 5065/// smaller elements. If we can't find a way that is more efficient than a 5066/// libcall on this target, return false. Otherwise, return true with the 5067/// low-parts expanded into Lo and Hi. 5068bool SelectionDAGLegalize::ExpandShift(unsigned Opc, SDOperand Op,SDOperand Amt, 5069 SDOperand &Lo, SDOperand &Hi) { 5070 assert((Opc == ISD::SHL || Opc == ISD::SRA || Opc == ISD::SRL) && 5071 "This is not a shift!"); 5072 5073 MVT::ValueType NVT = TLI.getTypeToTransformTo(Op.getValueType()); 5074 SDOperand ShAmt = LegalizeOp(Amt); 5075 MVT::ValueType ShTy = ShAmt.getValueType(); 5076 unsigned ShBits = MVT::getSizeInBits(ShTy); 5077 unsigned VTBits = MVT::getSizeInBits(Op.getValueType()); 5078 unsigned NVTBits = MVT::getSizeInBits(NVT); 5079 5080 // Handle the case when Amt is an immediate. 5081 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Amt.Val)) { 5082 unsigned Cst = CN->getValue(); 5083 // Expand the incoming operand to be shifted, so that we have its parts 5084 SDOperand InL, InH; 5085 ExpandOp(Op, InL, InH); 5086 switch(Opc) { 5087 case ISD::SHL: 5088 if (Cst > VTBits) { 5089 Lo = DAG.getConstant(0, NVT); 5090 Hi = DAG.getConstant(0, NVT); 5091 } else if (Cst > NVTBits) { 5092 Lo = DAG.getConstant(0, NVT); 5093 Hi = DAG.getNode(ISD::SHL, NVT, InL, DAG.getConstant(Cst-NVTBits,ShTy)); 5094 } else if (Cst == NVTBits) { 5095 Lo = DAG.getConstant(0, NVT); 5096 Hi = InL; 5097 } else { 5098 Lo = DAG.getNode(ISD::SHL, NVT, InL, DAG.getConstant(Cst, ShTy)); 5099 Hi = DAG.getNode(ISD::OR, NVT, 5100 DAG.getNode(ISD::SHL, NVT, InH, DAG.getConstant(Cst, ShTy)), 5101 DAG.getNode(ISD::SRL, NVT, InL, DAG.getConstant(NVTBits-Cst, ShTy))); 5102 } 5103 return true; 5104 case ISD::SRL: 5105 if (Cst > VTBits) { 5106 Lo = DAG.getConstant(0, NVT); 5107 Hi = DAG.getConstant(0, NVT); 5108 } else if (Cst > NVTBits) { 5109 Lo = DAG.getNode(ISD::SRL, NVT, InH, DAG.getConstant(Cst-NVTBits,ShTy)); 5110 Hi = DAG.getConstant(0, NVT); 5111 } else if (Cst == NVTBits) { 5112 Lo = InH; 5113 Hi = DAG.getConstant(0, NVT); 5114 } else { 5115 Lo = DAG.getNode(ISD::OR, NVT, 5116 DAG.getNode(ISD::SRL, NVT, InL, DAG.getConstant(Cst, ShTy)), 5117 DAG.getNode(ISD::SHL, NVT, InH, DAG.getConstant(NVTBits-Cst, ShTy))); 5118 Hi = DAG.getNode(ISD::SRL, NVT, InH, DAG.getConstant(Cst, ShTy)); 5119 } 5120 return true; 5121 case ISD::SRA: 5122 if (Cst > VTBits) { 5123 Hi = Lo = DAG.getNode(ISD::SRA, NVT, InH, 5124 DAG.getConstant(NVTBits-1, ShTy)); 5125 } else if (Cst > NVTBits) { 5126 Lo = DAG.getNode(ISD::SRA, NVT, InH, 5127 DAG.getConstant(Cst-NVTBits, ShTy)); 5128 Hi = DAG.getNode(ISD::SRA, NVT, InH, 5129 DAG.getConstant(NVTBits-1, ShTy)); 5130 } else if (Cst == NVTBits) { 5131 Lo = InH; 5132 Hi = DAG.getNode(ISD::SRA, NVT, InH, 5133 DAG.getConstant(NVTBits-1, ShTy)); 5134 } else { 5135 Lo = DAG.getNode(ISD::OR, NVT, 5136 DAG.getNode(ISD::SRL, NVT, InL, DAG.getConstant(Cst, ShTy)), 5137 DAG.getNode(ISD::SHL, NVT, InH, DAG.getConstant(NVTBits-Cst, ShTy))); 5138 Hi = DAG.getNode(ISD::SRA, NVT, InH, DAG.getConstant(Cst, ShTy)); 5139 } 5140 return true; 5141 } 5142 } 5143 5144 // Okay, the shift amount isn't constant. However, if we can tell that it is 5145 // >= 32 or < 32, we can still simplify it, without knowing the actual value. 5146 APInt Mask = APInt::getHighBitsSet(ShBits, ShBits - Log2_32(NVTBits)); 5147 APInt KnownZero, KnownOne; 5148 DAG.ComputeMaskedBits(Amt, Mask, KnownZero, KnownOne); 5149 5150 // If we know that the high bit of the shift amount is one, then we can do 5151 // this as a couple of simple shifts. 5152 if (KnownOne.intersects(Mask)) { 5153 // Mask out the high bit, which we know is set. 5154 Amt = DAG.getNode(ISD::AND, Amt.getValueType(), Amt, 5155 DAG.getConstant(~Mask, Amt.getValueType())); 5156 5157 // Expand the incoming operand to be shifted, so that we have its parts 5158 SDOperand InL, InH; 5159 ExpandOp(Op, InL, InH); 5160 switch(Opc) { 5161 case ISD::SHL: 5162 Lo = DAG.getConstant(0, NVT); // Low part is zero. 5163 Hi = DAG.getNode(ISD::SHL, NVT, InL, Amt); // High part from Lo part. 5164 return true; 5165 case ISD::SRL: 5166 Hi = DAG.getConstant(0, NVT); // Hi part is zero. 5167 Lo = DAG.getNode(ISD::SRL, NVT, InH, Amt); // Lo part from Hi part. 5168 return true; 5169 case ISD::SRA: 5170 Hi = DAG.getNode(ISD::SRA, NVT, InH, // Sign extend high part. 5171 DAG.getConstant(NVTBits-1, Amt.getValueType())); 5172 Lo = DAG.getNode(ISD::SRA, NVT, InH, Amt); // Lo part from Hi part. 5173 return true; 5174 } 5175 } 5176 5177 // If we know that the high bit of the shift amount is zero, then we can do 5178 // this as a couple of simple shifts. 5179 if (KnownZero.intersects(Mask)) { 5180 // Compute 32-amt. 5181 SDOperand Amt2 = DAG.getNode(ISD::SUB, Amt.getValueType(), 5182 DAG.getConstant(NVTBits, Amt.getValueType()), 5183 Amt); 5184 5185 // Expand the incoming operand to be shifted, so that we have its parts 5186 SDOperand InL, InH; 5187 ExpandOp(Op, InL, InH); 5188 switch(Opc) { 5189 case ISD::SHL: 5190 Lo = DAG.getNode(ISD::SHL, NVT, InL, Amt); 5191 Hi = DAG.getNode(ISD::OR, NVT, 5192 DAG.getNode(ISD::SHL, NVT, InH, Amt), 5193 DAG.getNode(ISD::SRL, NVT, InL, Amt2)); 5194 return true; 5195 case ISD::SRL: 5196 Hi = DAG.getNode(ISD::SRL, NVT, InH, Amt); 5197 Lo = DAG.getNode(ISD::OR, NVT, 5198 DAG.getNode(ISD::SRL, NVT, InL, Amt), 5199 DAG.getNode(ISD::SHL, NVT, InH, Amt2)); 5200 return true; 5201 case ISD::SRA: 5202 Hi = DAG.getNode(ISD::SRA, NVT, InH, Amt); 5203 Lo = DAG.getNode(ISD::OR, NVT, 5204 DAG.getNode(ISD::SRL, NVT, InL, Amt), 5205 DAG.getNode(ISD::SHL, NVT, InH, Amt2)); 5206 return true; 5207 } 5208 } 5209 5210 return false; 5211} 5212 5213 5214// ExpandLibCall - Expand a node into a call to a libcall. If the result value 5215// does not fit into a register, return the lo part and set the hi part to the 5216// by-reg argument. If it does fit into a single register, return the result 5217// and leave the Hi part unset. 5218SDOperand SelectionDAGLegalize::ExpandLibCall(const char *Name, SDNode *Node, 5219 bool isSigned, SDOperand &Hi) { 5220 assert(!IsLegalizingCall && "Cannot overlap legalization of calls!"); 5221 // The input chain to this libcall is the entry node of the function. 5222 // Legalizing the call will automatically add the previous call to the 5223 // dependence. 5224 SDOperand InChain = DAG.getEntryNode(); 5225 5226 TargetLowering::ArgListTy Args; 5227 TargetLowering::ArgListEntry Entry; 5228 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 5229 MVT::ValueType ArgVT = Node->getOperand(i).getValueType(); 5230 const Type *ArgTy = MVT::getTypeForValueType(ArgVT); 5231 Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy; 5232 Entry.isSExt = isSigned; 5233 Entry.isZExt = !isSigned; 5234 Args.push_back(Entry); 5235 } 5236 SDOperand Callee = DAG.getExternalSymbol(Name, TLI.getPointerTy()); 5237 5238 // Splice the libcall in wherever FindInputOutputChains tells us to. 5239 const Type *RetTy = MVT::getTypeForValueType(Node->getValueType(0)); 5240 std::pair<SDOperand,SDOperand> CallInfo = 5241 TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, CallingConv::C, 5242 false, Callee, Args, DAG); 5243 5244 // Legalize the call sequence, starting with the chain. This will advance 5245 // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that 5246 // was added by LowerCallTo (guaranteeing proper serialization of calls). 5247 LegalizeOp(CallInfo.second); 5248 SDOperand Result; 5249 switch (getTypeAction(CallInfo.first.getValueType())) { 5250 default: assert(0 && "Unknown thing"); 5251 case Legal: 5252 Result = CallInfo.first; 5253 break; 5254 case Expand: 5255 ExpandOp(CallInfo.first, Result, Hi); 5256 break; 5257 } 5258 return Result; 5259} 5260 5261 5262/// ExpandIntToFP - Expand a [US]INT_TO_FP operation. 5263/// 5264SDOperand SelectionDAGLegalize:: 5265ExpandIntToFP(bool isSigned, MVT::ValueType DestTy, SDOperand Source) { 5266 assert(getTypeAction(Source.getValueType()) == Expand && 5267 "This is not an expansion!"); 5268 assert(Source.getValueType() == MVT::i64 && "Only handle expand from i64!"); 5269 5270 if (!isSigned) { 5271 assert(Source.getValueType() == MVT::i64 && 5272 "This only works for 64-bit -> FP"); 5273 // The 64-bit value loaded will be incorrectly if the 'sign bit' of the 5274 // incoming integer is set. To handle this, we dynamically test to see if 5275 // it is set, and, if so, add a fudge factor. 5276 SDOperand Lo, Hi; 5277 ExpandOp(Source, Lo, Hi); 5278 5279 // If this is unsigned, and not supported, first perform the conversion to 5280 // signed, then adjust the result if the sign bit is set. 5281 SDOperand SignedConv = ExpandIntToFP(true, DestTy, 5282 DAG.getNode(ISD::BUILD_PAIR, Source.getValueType(), Lo, Hi)); 5283 5284 SDOperand SignSet = DAG.getSetCC(TLI.getSetCCResultTy(), Hi, 5285 DAG.getConstant(0, Hi.getValueType()), 5286 ISD::SETLT); 5287 SDOperand Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4); 5288 SDOperand CstOffset = DAG.getNode(ISD::SELECT, Zero.getValueType(), 5289 SignSet, Four, Zero); 5290 uint64_t FF = 0x5f800000ULL; 5291 if (TLI.isLittleEndian()) FF <<= 32; 5292 static Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF); 5293 5294 SDOperand CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy()); 5295 CPIdx = DAG.getNode(ISD::ADD, TLI.getPointerTy(), CPIdx, CstOffset); 5296 SDOperand FudgeInReg; 5297 if (DestTy == MVT::f32) 5298 FudgeInReg = DAG.getLoad(MVT::f32, DAG.getEntryNode(), CPIdx, 5299 PseudoSourceValue::getConstantPool(), 0); 5300 else if (MVT::getSizeInBits(DestTy) > MVT::getSizeInBits(MVT::f32)) 5301 // FIXME: Avoid the extend by construction the right constantpool? 5302 FudgeInReg = DAG.getExtLoad(ISD::EXTLOAD, DestTy, DAG.getEntryNode(), 5303 CPIdx, 5304 PseudoSourceValue::getConstantPool(), 0, 5305 MVT::f32); 5306 else 5307 assert(0 && "Unexpected conversion"); 5308 5309 MVT::ValueType SCVT = SignedConv.getValueType(); 5310 if (SCVT != DestTy) { 5311 // Destination type needs to be expanded as well. The FADD now we are 5312 // constructing will be expanded into a libcall. 5313 if (MVT::getSizeInBits(SCVT) != MVT::getSizeInBits(DestTy)) { 5314 assert(SCVT == MVT::i32 && DestTy == MVT::f64); 5315 SignedConv = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, 5316 SignedConv, SignedConv.getValue(1)); 5317 } 5318 SignedConv = DAG.getNode(ISD::BIT_CONVERT, DestTy, SignedConv); 5319 } 5320 return DAG.getNode(ISD::FADD, DestTy, SignedConv, FudgeInReg); 5321 } 5322 5323 // Check to see if the target has a custom way to lower this. If so, use it. 5324 switch (TLI.getOperationAction(ISD::SINT_TO_FP, Source.getValueType())) { 5325 default: assert(0 && "This action not implemented for this operation!"); 5326 case TargetLowering::Legal: 5327 case TargetLowering::Expand: 5328 break; // This case is handled below. 5329 case TargetLowering::Custom: { 5330 SDOperand NV = TLI.LowerOperation(DAG.getNode(ISD::SINT_TO_FP, DestTy, 5331 Source), DAG); 5332 if (NV.Val) 5333 return LegalizeOp(NV); 5334 break; // The target decided this was legal after all 5335 } 5336 } 5337 5338 // Expand the source, then glue it back together for the call. We must expand 5339 // the source in case it is shared (this pass of legalize must traverse it). 5340 SDOperand SrcLo, SrcHi; 5341 ExpandOp(Source, SrcLo, SrcHi); 5342 Source = DAG.getNode(ISD::BUILD_PAIR, Source.getValueType(), SrcLo, SrcHi); 5343 5344 RTLIB::Libcall LC; 5345 if (DestTy == MVT::f32) 5346 LC = RTLIB::SINTTOFP_I64_F32; 5347 else { 5348 assert(DestTy == MVT::f64 && "Unknown fp value type!"); 5349 LC = RTLIB::SINTTOFP_I64_F64; 5350 } 5351 5352 assert(TLI.getLibcallName(LC) && "Don't know how to expand this SINT_TO_FP!"); 5353 Source = DAG.getNode(ISD::SINT_TO_FP, DestTy, Source); 5354 SDOperand UnusedHiPart; 5355 return ExpandLibCall(TLI.getLibcallName(LC), Source.Val, isSigned, 5356 UnusedHiPart); 5357} 5358 5359/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a 5360/// INT_TO_FP operation of the specified operand when the target requests that 5361/// we expand it. At this point, we know that the result and operand types are 5362/// legal for the target. 5363SDOperand SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned, 5364 SDOperand Op0, 5365 MVT::ValueType DestVT) { 5366 if (Op0.getValueType() == MVT::i32) { 5367 // simple 32-bit [signed|unsigned] integer to float/double expansion 5368 5369 // Get the stack frame index of a 8 byte buffer. 5370 SDOperand StackSlot = DAG.CreateStackTemporary(MVT::f64); 5371 5372 // word offset constant for Hi/Lo address computation 5373 SDOperand WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy()); 5374 // set up Hi and Lo (into buffer) address based on endian 5375 SDOperand Hi = StackSlot; 5376 SDOperand Lo = DAG.getNode(ISD::ADD, TLI.getPointerTy(), StackSlot,WordOff); 5377 if (TLI.isLittleEndian()) 5378 std::swap(Hi, Lo); 5379 5380 // if signed map to unsigned space 5381 SDOperand Op0Mapped; 5382 if (isSigned) { 5383 // constant used to invert sign bit (signed to unsigned mapping) 5384 SDOperand SignBit = DAG.getConstant(0x80000000u, MVT::i32); 5385 Op0Mapped = DAG.getNode(ISD::XOR, MVT::i32, Op0, SignBit); 5386 } else { 5387 Op0Mapped = Op0; 5388 } 5389 // store the lo of the constructed double - based on integer input 5390 SDOperand Store1 = DAG.getStore(DAG.getEntryNode(), 5391 Op0Mapped, Lo, NULL, 0); 5392 // initial hi portion of constructed double 5393 SDOperand InitialHi = DAG.getConstant(0x43300000u, MVT::i32); 5394 // store the hi of the constructed double - biased exponent 5395 SDOperand Store2=DAG.getStore(Store1, InitialHi, Hi, NULL, 0); 5396 // load the constructed double 5397 SDOperand Load = DAG.getLoad(MVT::f64, Store2, StackSlot, NULL, 0); 5398 // FP constant to bias correct the final result 5399 SDOperand Bias = DAG.getConstantFP(isSigned ? 5400 BitsToDouble(0x4330000080000000ULL) 5401 : BitsToDouble(0x4330000000000000ULL), 5402 MVT::f64); 5403 // subtract the bias 5404 SDOperand Sub = DAG.getNode(ISD::FSUB, MVT::f64, Load, Bias); 5405 // final result 5406 SDOperand Result; 5407 // handle final rounding 5408 if (DestVT == MVT::f64) { 5409 // do nothing 5410 Result = Sub; 5411 } else if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(MVT::f64)) { 5412 Result = DAG.getNode(ISD::FP_ROUND, DestVT, Sub, 5413 DAG.getIntPtrConstant(0)); 5414 } else if (MVT::getSizeInBits(DestVT) > MVT::getSizeInBits(MVT::f64)) { 5415 Result = DAG.getNode(ISD::FP_EXTEND, DestVT, Sub); 5416 } 5417 return Result; 5418 } 5419 assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet"); 5420 SDOperand Tmp1 = DAG.getNode(ISD::SINT_TO_FP, DestVT, Op0); 5421 5422 SDOperand SignSet = DAG.getSetCC(TLI.getSetCCResultTy(), Op0, 5423 DAG.getConstant(0, Op0.getValueType()), 5424 ISD::SETLT); 5425 SDOperand Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4); 5426 SDOperand CstOffset = DAG.getNode(ISD::SELECT, Zero.getValueType(), 5427 SignSet, Four, Zero); 5428 5429 // If the sign bit of the integer is set, the large number will be treated 5430 // as a negative number. To counteract this, the dynamic code adds an 5431 // offset depending on the data type. 5432 uint64_t FF; 5433 switch (Op0.getValueType()) { 5434 default: assert(0 && "Unsupported integer type!"); 5435 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) 5436 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) 5437 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) 5438 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) 5439 } 5440 if (TLI.isLittleEndian()) FF <<= 32; 5441 static Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF); 5442 5443 SDOperand CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy()); 5444 CPIdx = DAG.getNode(ISD::ADD, TLI.getPointerTy(), CPIdx, CstOffset); 5445 SDOperand FudgeInReg; 5446 if (DestVT == MVT::f32) 5447 FudgeInReg = DAG.getLoad(MVT::f32, DAG.getEntryNode(), CPIdx, 5448 PseudoSourceValue::getConstantPool(), 0); 5449 else { 5450 FudgeInReg = 5451 LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, DestVT, 5452 DAG.getEntryNode(), CPIdx, 5453 PseudoSourceValue::getConstantPool(), 0, 5454 MVT::f32)); 5455 } 5456 5457 return DAG.getNode(ISD::FADD, DestVT, Tmp1, FudgeInReg); 5458} 5459 5460/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a 5461/// *INT_TO_FP operation of the specified operand when the target requests that 5462/// we promote it. At this point, we know that the result and operand types are 5463/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP 5464/// operation that takes a larger input. 5465SDOperand SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDOperand LegalOp, 5466 MVT::ValueType DestVT, 5467 bool isSigned) { 5468 // First step, figure out the appropriate *INT_TO_FP operation to use. 5469 MVT::ValueType NewInTy = LegalOp.getValueType(); 5470 5471 unsigned OpToUse = 0; 5472 5473 // Scan for the appropriate larger type to use. 5474 while (1) { 5475 NewInTy = (MVT::ValueType)(NewInTy+1); 5476 assert(MVT::isInteger(NewInTy) && "Ran out of possibilities!"); 5477 5478 // If the target supports SINT_TO_FP of this type, use it. 5479 switch (TLI.getOperationAction(ISD::SINT_TO_FP, NewInTy)) { 5480 default: break; 5481 case TargetLowering::Legal: 5482 if (!TLI.isTypeLegal(NewInTy)) 5483 break; // Can't use this datatype. 5484 // FALL THROUGH. 5485 case TargetLowering::Custom: 5486 OpToUse = ISD::SINT_TO_FP; 5487 break; 5488 } 5489 if (OpToUse) break; 5490 if (isSigned) continue; 5491 5492 // If the target supports UINT_TO_FP of this type, use it. 5493 switch (TLI.getOperationAction(ISD::UINT_TO_FP, NewInTy)) { 5494 default: break; 5495 case TargetLowering::Legal: 5496 if (!TLI.isTypeLegal(NewInTy)) 5497 break; // Can't use this datatype. 5498 // FALL THROUGH. 5499 case TargetLowering::Custom: 5500 OpToUse = ISD::UINT_TO_FP; 5501 break; 5502 } 5503 if (OpToUse) break; 5504 5505 // Otherwise, try a larger type. 5506 } 5507 5508 // Okay, we found the operation and type to use. Zero extend our input to the 5509 // desired type then run the operation on it. 5510 return DAG.getNode(OpToUse, DestVT, 5511 DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 5512 NewInTy, LegalOp)); 5513} 5514 5515/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a 5516/// FP_TO_*INT operation of the specified operand when the target requests that 5517/// we promote it. At this point, we know that the result and operand types are 5518/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT 5519/// operation that returns a larger result. 5520SDOperand SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDOperand LegalOp, 5521 MVT::ValueType DestVT, 5522 bool isSigned) { 5523 // First step, figure out the appropriate FP_TO*INT operation to use. 5524 MVT::ValueType NewOutTy = DestVT; 5525 5526 unsigned OpToUse = 0; 5527 5528 // Scan for the appropriate larger type to use. 5529 while (1) { 5530 NewOutTy = (MVT::ValueType)(NewOutTy+1); 5531 assert(MVT::isInteger(NewOutTy) && "Ran out of possibilities!"); 5532 5533 // If the target supports FP_TO_SINT returning this type, use it. 5534 switch (TLI.getOperationAction(ISD::FP_TO_SINT, NewOutTy)) { 5535 default: break; 5536 case TargetLowering::Legal: 5537 if (!TLI.isTypeLegal(NewOutTy)) 5538 break; // Can't use this datatype. 5539 // FALL THROUGH. 5540 case TargetLowering::Custom: 5541 OpToUse = ISD::FP_TO_SINT; 5542 break; 5543 } 5544 if (OpToUse) break; 5545 5546 // If the target supports FP_TO_UINT of this type, use it. 5547 switch (TLI.getOperationAction(ISD::FP_TO_UINT, NewOutTy)) { 5548 default: break; 5549 case TargetLowering::Legal: 5550 if (!TLI.isTypeLegal(NewOutTy)) 5551 break; // Can't use this datatype. 5552 // FALL THROUGH. 5553 case TargetLowering::Custom: 5554 OpToUse = ISD::FP_TO_UINT; 5555 break; 5556 } 5557 if (OpToUse) break; 5558 5559 // Otherwise, try a larger type. 5560 } 5561 5562 5563 // Okay, we found the operation and type to use. 5564 SDOperand Operation = DAG.getNode(OpToUse, NewOutTy, LegalOp); 5565 5566 // If the operation produces an invalid type, it must be custom lowered. Use 5567 // the target lowering hooks to expand it. Just keep the low part of the 5568 // expanded operation, we know that we're truncating anyway. 5569 if (getTypeAction(NewOutTy) == Expand) { 5570 Operation = SDOperand(TLI.ExpandOperationResult(Operation.Val, DAG), 0); 5571 assert(Operation.Val && "Didn't return anything"); 5572 } 5573 5574 // Truncate the result of the extended FP_TO_*INT operation to the desired 5575 // size. 5576 return DAG.getNode(ISD::TRUNCATE, DestVT, Operation); 5577} 5578 5579/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation. 5580/// 5581SDOperand SelectionDAGLegalize::ExpandBSWAP(SDOperand Op) { 5582 MVT::ValueType VT = Op.getValueType(); 5583 MVT::ValueType SHVT = TLI.getShiftAmountTy(); 5584 SDOperand Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 5585 switch (VT) { 5586 default: assert(0 && "Unhandled Expand type in BSWAP!"); abort(); 5587 case MVT::i16: 5588 Tmp2 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(8, SHVT)); 5589 Tmp1 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(8, SHVT)); 5590 return DAG.getNode(ISD::OR, VT, Tmp1, Tmp2); 5591 case MVT::i32: 5592 Tmp4 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(24, SHVT)); 5593 Tmp3 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(8, SHVT)); 5594 Tmp2 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(8, SHVT)); 5595 Tmp1 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(24, SHVT)); 5596 Tmp3 = DAG.getNode(ISD::AND, VT, Tmp3, DAG.getConstant(0xFF0000, VT)); 5597 Tmp2 = DAG.getNode(ISD::AND, VT, Tmp2, DAG.getConstant(0xFF00, VT)); 5598 Tmp4 = DAG.getNode(ISD::OR, VT, Tmp4, Tmp3); 5599 Tmp2 = DAG.getNode(ISD::OR, VT, Tmp2, Tmp1); 5600 return DAG.getNode(ISD::OR, VT, Tmp4, Tmp2); 5601 case MVT::i64: 5602 Tmp8 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(56, SHVT)); 5603 Tmp7 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(40, SHVT)); 5604 Tmp6 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(24, SHVT)); 5605 Tmp5 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(8, SHVT)); 5606 Tmp4 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(8, SHVT)); 5607 Tmp3 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(24, SHVT)); 5608 Tmp2 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(40, SHVT)); 5609 Tmp1 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(56, SHVT)); 5610 Tmp7 = DAG.getNode(ISD::AND, VT, Tmp7, DAG.getConstant(255ULL<<48, VT)); 5611 Tmp6 = DAG.getNode(ISD::AND, VT, Tmp6, DAG.getConstant(255ULL<<40, VT)); 5612 Tmp5 = DAG.getNode(ISD::AND, VT, Tmp5, DAG.getConstant(255ULL<<32, VT)); 5613 Tmp4 = DAG.getNode(ISD::AND, VT, Tmp4, DAG.getConstant(255ULL<<24, VT)); 5614 Tmp3 = DAG.getNode(ISD::AND, VT, Tmp3, DAG.getConstant(255ULL<<16, VT)); 5615 Tmp2 = DAG.getNode(ISD::AND, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT)); 5616 Tmp8 = DAG.getNode(ISD::OR, VT, Tmp8, Tmp7); 5617 Tmp6 = DAG.getNode(ISD::OR, VT, Tmp6, Tmp5); 5618 Tmp4 = DAG.getNode(ISD::OR, VT, Tmp4, Tmp3); 5619 Tmp2 = DAG.getNode(ISD::OR, VT, Tmp2, Tmp1); 5620 Tmp8 = DAG.getNode(ISD::OR, VT, Tmp8, Tmp6); 5621 Tmp4 = DAG.getNode(ISD::OR, VT, Tmp4, Tmp2); 5622 return DAG.getNode(ISD::OR, VT, Tmp8, Tmp4); 5623 } 5624} 5625 5626/// ExpandBitCount - Expand the specified bitcount instruction into operations. 5627/// 5628SDOperand SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDOperand Op) { 5629 switch (Opc) { 5630 default: assert(0 && "Cannot expand this yet!"); 5631 case ISD::CTPOP: { 5632 static const uint64_t mask[6] = { 5633 0x5555555555555555ULL, 0x3333333333333333ULL, 5634 0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL, 5635 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL 5636 }; 5637 MVT::ValueType VT = Op.getValueType(); 5638 MVT::ValueType ShVT = TLI.getShiftAmountTy(); 5639 unsigned len = MVT::getSizeInBits(VT); 5640 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) { 5641 //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8]) 5642 SDOperand Tmp2 = DAG.getConstant(mask[i], VT); 5643 SDOperand Tmp3 = DAG.getConstant(1ULL << i, ShVT); 5644 Op = DAG.getNode(ISD::ADD, VT, DAG.getNode(ISD::AND, VT, Op, Tmp2), 5645 DAG.getNode(ISD::AND, VT, 5646 DAG.getNode(ISD::SRL, VT, Op, Tmp3),Tmp2)); 5647 } 5648 return Op; 5649 } 5650 case ISD::CTLZ: { 5651 // for now, we do this: 5652 // x = x | (x >> 1); 5653 // x = x | (x >> 2); 5654 // ... 5655 // x = x | (x >>16); 5656 // x = x | (x >>32); // for 64-bit input 5657 // return popcount(~x); 5658 // 5659 // but see also: http://www.hackersdelight.org/HDcode/nlz.cc 5660 MVT::ValueType VT = Op.getValueType(); 5661 MVT::ValueType ShVT = TLI.getShiftAmountTy(); 5662 unsigned len = MVT::getSizeInBits(VT); 5663 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) { 5664 SDOperand Tmp3 = DAG.getConstant(1ULL << i, ShVT); 5665 Op = DAG.getNode(ISD::OR, VT, Op, DAG.getNode(ISD::SRL, VT, Op, Tmp3)); 5666 } 5667 Op = DAG.getNode(ISD::XOR, VT, Op, DAG.getConstant(~0ULL, VT)); 5668 return DAG.getNode(ISD::CTPOP, VT, Op); 5669 } 5670 case ISD::CTTZ: { 5671 // for now, we use: { return popcount(~x & (x - 1)); } 5672 // unless the target has ctlz but not ctpop, in which case we use: 5673 // { return 32 - nlz(~x & (x-1)); } 5674 // see also http://www.hackersdelight.org/HDcode/ntz.cc 5675 MVT::ValueType VT = Op.getValueType(); 5676 SDOperand Tmp2 = DAG.getConstant(~0ULL, VT); 5677 SDOperand Tmp3 = DAG.getNode(ISD::AND, VT, 5678 DAG.getNode(ISD::XOR, VT, Op, Tmp2), 5679 DAG.getNode(ISD::SUB, VT, Op, DAG.getConstant(1, VT))); 5680 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 5681 if (!TLI.isOperationLegal(ISD::CTPOP, VT) && 5682 TLI.isOperationLegal(ISD::CTLZ, VT)) 5683 return DAG.getNode(ISD::SUB, VT, 5684 DAG.getConstant(MVT::getSizeInBits(VT), VT), 5685 DAG.getNode(ISD::CTLZ, VT, Tmp3)); 5686 return DAG.getNode(ISD::CTPOP, VT, Tmp3); 5687 } 5688 } 5689} 5690 5691/// ExpandOp - Expand the specified SDOperand into its two component pieces 5692/// Lo&Hi. Note that the Op MUST be an expanded type. As a result of this, the 5693/// LegalizeNodes map is filled in for any results that are not expanded, the 5694/// ExpandedNodes map is filled in for any results that are expanded, and the 5695/// Lo/Hi values are returned. 5696void SelectionDAGLegalize::ExpandOp(SDOperand Op, SDOperand &Lo, SDOperand &Hi){ 5697 MVT::ValueType VT = Op.getValueType(); 5698 MVT::ValueType NVT = TLI.getTypeToTransformTo(VT); 5699 SDNode *Node = Op.Val; 5700 assert(getTypeAction(VT) == Expand && "Not an expanded type!"); 5701 assert(((MVT::isInteger(NVT) && NVT < VT) || MVT::isFloatingPoint(VT) || 5702 MVT::isVector(VT)) && 5703 "Cannot expand to FP value or to larger int value!"); 5704 5705 // See if we already expanded it. 5706 DenseMap<SDOperand, std::pair<SDOperand, SDOperand> >::iterator I 5707 = ExpandedNodes.find(Op); 5708 if (I != ExpandedNodes.end()) { 5709 Lo = I->second.first; 5710 Hi = I->second.second; 5711 return; 5712 } 5713 5714 switch (Node->getOpcode()) { 5715 case ISD::CopyFromReg: 5716 assert(0 && "CopyFromReg must be legal!"); 5717 case ISD::FP_ROUND_INREG: 5718 if (VT == MVT::ppcf128 && 5719 TLI.getOperationAction(ISD::FP_ROUND_INREG, VT) == 5720 TargetLowering::Custom) { 5721 SDOperand SrcLo, SrcHi, Src; 5722 ExpandOp(Op.getOperand(0), SrcLo, SrcHi); 5723 Src = DAG.getNode(ISD::BUILD_PAIR, VT, SrcLo, SrcHi); 5724 SDOperand Result = TLI.LowerOperation( 5725 DAG.getNode(ISD::FP_ROUND_INREG, VT, Src, Op.getOperand(1)), DAG); 5726 assert(Result.Val->getOpcode() == ISD::BUILD_PAIR); 5727 Lo = Result.Val->getOperand(0); 5728 Hi = Result.Val->getOperand(1); 5729 break; 5730 } 5731 // fall through 5732 default: 5733#ifndef NDEBUG 5734 cerr << "NODE: "; Node->dump(&DAG); cerr << "\n"; 5735#endif 5736 assert(0 && "Do not know how to expand this operator!"); 5737 abort(); 5738 case ISD::EXTRACT_VECTOR_ELT: 5739 assert(VT==MVT::i64 && "Do not know how to expand this operator!"); 5740 // ExpandEXTRACT_VECTOR_ELT tolerates invalid result types. 5741 Lo = ExpandEXTRACT_VECTOR_ELT(Op); 5742 return ExpandOp(Lo, Lo, Hi); 5743 case ISD::UNDEF: 5744 NVT = TLI.getTypeToExpandTo(VT); 5745 Lo = DAG.getNode(ISD::UNDEF, NVT); 5746 Hi = DAG.getNode(ISD::UNDEF, NVT); 5747 break; 5748 case ISD::Constant: { 5749 uint64_t Cst = cast<ConstantSDNode>(Node)->getValue(); 5750 Lo = DAG.getConstant(Cst, NVT); 5751 Hi = DAG.getConstant(Cst >> MVT::getSizeInBits(NVT), NVT); 5752 break; 5753 } 5754 case ISD::ConstantFP: { 5755 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 5756 if (CFP->getValueType(0) == MVT::ppcf128) { 5757 APInt api = CFP->getValueAPF().convertToAPInt(); 5758 Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &api.getRawData()[1])), 5759 MVT::f64); 5760 Hi = DAG.getConstantFP(APFloat(APInt(64, 1, &api.getRawData()[0])), 5761 MVT::f64); 5762 break; 5763 } 5764 Lo = ExpandConstantFP(CFP, false, DAG, TLI); 5765 if (getTypeAction(Lo.getValueType()) == Expand) 5766 ExpandOp(Lo, Lo, Hi); 5767 break; 5768 } 5769 case ISD::BUILD_PAIR: 5770 // Return the operands. 5771 Lo = Node->getOperand(0); 5772 Hi = Node->getOperand(1); 5773 break; 5774 5775 case ISD::MERGE_VALUES: 5776 if (Node->getNumValues() == 1) { 5777 ExpandOp(Op.getOperand(0), Lo, Hi); 5778 break; 5779 } 5780 // FIXME: For now only expand i64,chain = MERGE_VALUES (x, y) 5781 assert(Op.ResNo == 0 && Node->getNumValues() == 2 && 5782 Op.getValue(1).getValueType() == MVT::Other && 5783 "unhandled MERGE_VALUES"); 5784 ExpandOp(Op.getOperand(0), Lo, Hi); 5785 // Remember that we legalized the chain. 5786 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Op.getOperand(1))); 5787 break; 5788 5789 case ISD::SIGN_EXTEND_INREG: 5790 ExpandOp(Node->getOperand(0), Lo, Hi); 5791 // sext_inreg the low part if needed. 5792 Lo = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Lo, Node->getOperand(1)); 5793 5794 // The high part gets the sign extension from the lo-part. This handles 5795 // things like sextinreg V:i64 from i8. 5796 Hi = DAG.getNode(ISD::SRA, NVT, Lo, 5797 DAG.getConstant(MVT::getSizeInBits(NVT)-1, 5798 TLI.getShiftAmountTy())); 5799 break; 5800 5801 case ISD::BSWAP: { 5802 ExpandOp(Node->getOperand(0), Lo, Hi); 5803 SDOperand TempLo = DAG.getNode(ISD::BSWAP, NVT, Hi); 5804 Hi = DAG.getNode(ISD::BSWAP, NVT, Lo); 5805 Lo = TempLo; 5806 break; 5807 } 5808 5809 case ISD::CTPOP: 5810 ExpandOp(Node->getOperand(0), Lo, Hi); 5811 Lo = DAG.getNode(ISD::ADD, NVT, // ctpop(HL) -> ctpop(H)+ctpop(L) 5812 DAG.getNode(ISD::CTPOP, NVT, Lo), 5813 DAG.getNode(ISD::CTPOP, NVT, Hi)); 5814 Hi = DAG.getConstant(0, NVT); 5815 break; 5816 5817 case ISD::CTLZ: { 5818 // ctlz (HL) -> ctlz(H) != 32 ? ctlz(H) : (ctlz(L)+32) 5819 ExpandOp(Node->getOperand(0), Lo, Hi); 5820 SDOperand BitsC = DAG.getConstant(MVT::getSizeInBits(NVT), NVT); 5821 SDOperand HLZ = DAG.getNode(ISD::CTLZ, NVT, Hi); 5822 SDOperand TopNotZero = DAG.getSetCC(TLI.getSetCCResultTy(), HLZ, BitsC, 5823 ISD::SETNE); 5824 SDOperand LowPart = DAG.getNode(ISD::CTLZ, NVT, Lo); 5825 LowPart = DAG.getNode(ISD::ADD, NVT, LowPart, BitsC); 5826 5827 Lo = DAG.getNode(ISD::SELECT, NVT, TopNotZero, HLZ, LowPart); 5828 Hi = DAG.getConstant(0, NVT); 5829 break; 5830 } 5831 5832 case ISD::CTTZ: { 5833 // cttz (HL) -> cttz(L) != 32 ? cttz(L) : (cttz(H)+32) 5834 ExpandOp(Node->getOperand(0), Lo, Hi); 5835 SDOperand BitsC = DAG.getConstant(MVT::getSizeInBits(NVT), NVT); 5836 SDOperand LTZ = DAG.getNode(ISD::CTTZ, NVT, Lo); 5837 SDOperand BotNotZero = DAG.getSetCC(TLI.getSetCCResultTy(), LTZ, BitsC, 5838 ISD::SETNE); 5839 SDOperand HiPart = DAG.getNode(ISD::CTTZ, NVT, Hi); 5840 HiPart = DAG.getNode(ISD::ADD, NVT, HiPart, BitsC); 5841 5842 Lo = DAG.getNode(ISD::SELECT, NVT, BotNotZero, LTZ, HiPart); 5843 Hi = DAG.getConstant(0, NVT); 5844 break; 5845 } 5846 5847 case ISD::VAARG: { 5848 SDOperand Ch = Node->getOperand(0); // Legalize the chain. 5849 SDOperand Ptr = Node->getOperand(1); // Legalize the pointer. 5850 Lo = DAG.getVAArg(NVT, Ch, Ptr, Node->getOperand(2)); 5851 Hi = DAG.getVAArg(NVT, Lo.getValue(1), Ptr, Node->getOperand(2)); 5852 5853 // Remember that we legalized the chain. 5854 Hi = LegalizeOp(Hi); 5855 AddLegalizedOperand(Op.getValue(1), Hi.getValue(1)); 5856 if (TLI.isBigEndian()) 5857 std::swap(Lo, Hi); 5858 break; 5859 } 5860 5861 case ISD::LOAD: { 5862 LoadSDNode *LD = cast<LoadSDNode>(Node); 5863 SDOperand Ch = LD->getChain(); // Legalize the chain. 5864 SDOperand Ptr = LD->getBasePtr(); // Legalize the pointer. 5865 ISD::LoadExtType ExtType = LD->getExtensionType(); 5866 int SVOffset = LD->getSrcValueOffset(); 5867 unsigned Alignment = LD->getAlignment(); 5868 bool isVolatile = LD->isVolatile(); 5869 5870 if (ExtType == ISD::NON_EXTLOAD) { 5871 Lo = DAG.getLoad(NVT, Ch, Ptr, LD->getSrcValue(), SVOffset, 5872 isVolatile, Alignment); 5873 if (VT == MVT::f32 || VT == MVT::f64) { 5874 // f32->i32 or f64->i64 one to one expansion. 5875 // Remember that we legalized the chain. 5876 AddLegalizedOperand(SDOperand(Node, 1), LegalizeOp(Lo.getValue(1))); 5877 // Recursively expand the new load. 5878 if (getTypeAction(NVT) == Expand) 5879 ExpandOp(Lo, Lo, Hi); 5880 break; 5881 } 5882 5883 // Increment the pointer to the other half. 5884 unsigned IncrementSize = MVT::getSizeInBits(Lo.getValueType())/8; 5885 Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, 5886 DAG.getIntPtrConstant(IncrementSize)); 5887 SVOffset += IncrementSize; 5888 Alignment = MinAlign(Alignment, IncrementSize); 5889 Hi = DAG.getLoad(NVT, Ch, Ptr, LD->getSrcValue(), SVOffset, 5890 isVolatile, Alignment); 5891 5892 // Build a factor node to remember that this load is independent of the 5893 // other one. 5894 SDOperand TF = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), 5895 Hi.getValue(1)); 5896 5897 // Remember that we legalized the chain. 5898 AddLegalizedOperand(Op.getValue(1), LegalizeOp(TF)); 5899 if (TLI.isBigEndian()) 5900 std::swap(Lo, Hi); 5901 } else { 5902 MVT::ValueType EVT = LD->getMemoryVT(); 5903 5904 if ((VT == MVT::f64 && EVT == MVT::f32) || 5905 (VT == MVT::ppcf128 && (EVT==MVT::f64 || EVT==MVT::f32))) { 5906 // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND 5907 SDOperand Load = DAG.getLoad(EVT, Ch, Ptr, LD->getSrcValue(), 5908 SVOffset, isVolatile, Alignment); 5909 // Remember that we legalized the chain. 5910 AddLegalizedOperand(SDOperand(Node, 1), LegalizeOp(Load.getValue(1))); 5911 ExpandOp(DAG.getNode(ISD::FP_EXTEND, VT, Load), Lo, Hi); 5912 break; 5913 } 5914 5915 if (EVT == NVT) 5916 Lo = DAG.getLoad(NVT, Ch, Ptr, LD->getSrcValue(), 5917 SVOffset, isVolatile, Alignment); 5918 else 5919 Lo = DAG.getExtLoad(ExtType, NVT, Ch, Ptr, LD->getSrcValue(), 5920 SVOffset, EVT, isVolatile, 5921 Alignment); 5922 5923 // Remember that we legalized the chain. 5924 AddLegalizedOperand(SDOperand(Node, 1), LegalizeOp(Lo.getValue(1))); 5925 5926 if (ExtType == ISD::SEXTLOAD) { 5927 // The high part is obtained by SRA'ing all but one of the bits of the 5928 // lo part. 5929 unsigned LoSize = MVT::getSizeInBits(Lo.getValueType()); 5930 Hi = DAG.getNode(ISD::SRA, NVT, Lo, 5931 DAG.getConstant(LoSize-1, TLI.getShiftAmountTy())); 5932 } else if (ExtType == ISD::ZEXTLOAD) { 5933 // The high part is just a zero. 5934 Hi = DAG.getConstant(0, NVT); 5935 } else /* if (ExtType == ISD::EXTLOAD) */ { 5936 // The high part is undefined. 5937 Hi = DAG.getNode(ISD::UNDEF, NVT); 5938 } 5939 } 5940 break; 5941 } 5942 case ISD::AND: 5943 case ISD::OR: 5944 case ISD::XOR: { // Simple logical operators -> two trivial pieces. 5945 SDOperand LL, LH, RL, RH; 5946 ExpandOp(Node->getOperand(0), LL, LH); 5947 ExpandOp(Node->getOperand(1), RL, RH); 5948 Lo = DAG.getNode(Node->getOpcode(), NVT, LL, RL); 5949 Hi = DAG.getNode(Node->getOpcode(), NVT, LH, RH); 5950 break; 5951 } 5952 case ISD::SELECT: { 5953 SDOperand LL, LH, RL, RH; 5954 ExpandOp(Node->getOperand(1), LL, LH); 5955 ExpandOp(Node->getOperand(2), RL, RH); 5956 if (getTypeAction(NVT) == Expand) 5957 NVT = TLI.getTypeToExpandTo(NVT); 5958 Lo = DAG.getNode(ISD::SELECT, NVT, Node->getOperand(0), LL, RL); 5959 if (VT != MVT::f32) 5960 Hi = DAG.getNode(ISD::SELECT, NVT, Node->getOperand(0), LH, RH); 5961 break; 5962 } 5963 case ISD::SELECT_CC: { 5964 SDOperand TL, TH, FL, FH; 5965 ExpandOp(Node->getOperand(2), TL, TH); 5966 ExpandOp(Node->getOperand(3), FL, FH); 5967 if (getTypeAction(NVT) == Expand) 5968 NVT = TLI.getTypeToExpandTo(NVT); 5969 Lo = DAG.getNode(ISD::SELECT_CC, NVT, Node->getOperand(0), 5970 Node->getOperand(1), TL, FL, Node->getOperand(4)); 5971 if (VT != MVT::f32) 5972 Hi = DAG.getNode(ISD::SELECT_CC, NVT, Node->getOperand(0), 5973 Node->getOperand(1), TH, FH, Node->getOperand(4)); 5974 break; 5975 } 5976 case ISD::ANY_EXTEND: 5977 // The low part is any extension of the input (which degenerates to a copy). 5978 Lo = DAG.getNode(ISD::ANY_EXTEND, NVT, Node->getOperand(0)); 5979 // The high part is undefined. 5980 Hi = DAG.getNode(ISD::UNDEF, NVT); 5981 break; 5982 case ISD::SIGN_EXTEND: { 5983 // The low part is just a sign extension of the input (which degenerates to 5984 // a copy). 5985 Lo = DAG.getNode(ISD::SIGN_EXTEND, NVT, Node->getOperand(0)); 5986 5987 // The high part is obtained by SRA'ing all but one of the bits of the lo 5988 // part. 5989 unsigned LoSize = MVT::getSizeInBits(Lo.getValueType()); 5990 Hi = DAG.getNode(ISD::SRA, NVT, Lo, 5991 DAG.getConstant(LoSize-1, TLI.getShiftAmountTy())); 5992 break; 5993 } 5994 case ISD::ZERO_EXTEND: 5995 // The low part is just a zero extension of the input (which degenerates to 5996 // a copy). 5997 Lo = DAG.getNode(ISD::ZERO_EXTEND, NVT, Node->getOperand(0)); 5998 5999 // The high part is just a zero. 6000 Hi = DAG.getConstant(0, NVT); 6001 break; 6002 6003 case ISD::TRUNCATE: { 6004 // The input value must be larger than this value. Expand *it*. 6005 SDOperand NewLo; 6006 ExpandOp(Node->getOperand(0), NewLo, Hi); 6007 6008 // The low part is now either the right size, or it is closer. If not the 6009 // right size, make an illegal truncate so we recursively expand it. 6010 if (NewLo.getValueType() != Node->getValueType(0)) 6011 NewLo = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), NewLo); 6012 ExpandOp(NewLo, Lo, Hi); 6013 break; 6014 } 6015 6016 case ISD::BIT_CONVERT: { 6017 SDOperand Tmp; 6018 if (TLI.getOperationAction(ISD::BIT_CONVERT, VT) == TargetLowering::Custom){ 6019 // If the target wants to, allow it to lower this itself. 6020 switch (getTypeAction(Node->getOperand(0).getValueType())) { 6021 case Expand: assert(0 && "cannot expand FP!"); 6022 case Legal: Tmp = LegalizeOp(Node->getOperand(0)); break; 6023 case Promote: Tmp = PromoteOp (Node->getOperand(0)); break; 6024 } 6025 Tmp = TLI.LowerOperation(DAG.getNode(ISD::BIT_CONVERT, VT, Tmp), DAG); 6026 } 6027 6028 // f32 / f64 must be expanded to i32 / i64. 6029 if (VT == MVT::f32 || VT == MVT::f64) { 6030 Lo = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0)); 6031 if (getTypeAction(NVT) == Expand) 6032 ExpandOp(Lo, Lo, Hi); 6033 break; 6034 } 6035 6036 // If source operand will be expanded to the same type as VT, i.e. 6037 // i64 <- f64, i32 <- f32, expand the source operand instead. 6038 MVT::ValueType VT0 = Node->getOperand(0).getValueType(); 6039 if (getTypeAction(VT0) == Expand && TLI.getTypeToTransformTo(VT0) == VT) { 6040 ExpandOp(Node->getOperand(0), Lo, Hi); 6041 break; 6042 } 6043 6044 // Turn this into a load/store pair by default. 6045 if (Tmp.Val == 0) 6046 Tmp = EmitStackConvert(Node->getOperand(0), VT, VT); 6047 6048 ExpandOp(Tmp, Lo, Hi); 6049 break; 6050 } 6051 6052 case ISD::READCYCLECOUNTER: { 6053 assert(TLI.getOperationAction(ISD::READCYCLECOUNTER, VT) == 6054 TargetLowering::Custom && 6055 "Must custom expand ReadCycleCounter"); 6056 SDOperand Tmp = TLI.LowerOperation(Op, DAG); 6057 assert(Tmp.Val && "Node must be custom expanded!"); 6058 ExpandOp(Tmp.getValue(0), Lo, Hi); 6059 AddLegalizedOperand(SDOperand(Node, 1), // Remember we legalized the chain. 6060 LegalizeOp(Tmp.getValue(1))); 6061 break; 6062 } 6063 6064 // These operators cannot be expanded directly, emit them as calls to 6065 // library functions. 6066 case ISD::FP_TO_SINT: { 6067 if (TLI.getOperationAction(ISD::FP_TO_SINT, VT) == TargetLowering::Custom) { 6068 SDOperand Op; 6069 switch (getTypeAction(Node->getOperand(0).getValueType())) { 6070 case Expand: assert(0 && "cannot expand FP!"); 6071 case Legal: Op = LegalizeOp(Node->getOperand(0)); break; 6072 case Promote: Op = PromoteOp (Node->getOperand(0)); break; 6073 } 6074 6075 Op = TLI.LowerOperation(DAG.getNode(ISD::FP_TO_SINT, VT, Op), DAG); 6076 6077 // Now that the custom expander is done, expand the result, which is still 6078 // VT. 6079 if (Op.Val) { 6080 ExpandOp(Op, Lo, Hi); 6081 break; 6082 } 6083 } 6084 6085 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 6086 if (Node->getOperand(0).getValueType() == MVT::f32) 6087 LC = RTLIB::FPTOSINT_F32_I64; 6088 else if (Node->getOperand(0).getValueType() == MVT::f64) 6089 LC = RTLIB::FPTOSINT_F64_I64; 6090 else if (Node->getOperand(0).getValueType() == MVT::f80) 6091 LC = RTLIB::FPTOSINT_F80_I64; 6092 else if (Node->getOperand(0).getValueType() == MVT::ppcf128) 6093 LC = RTLIB::FPTOSINT_PPCF128_I64; 6094 Lo = ExpandLibCall(TLI.getLibcallName(LC), Node, 6095 false/*sign irrelevant*/, Hi); 6096 break; 6097 } 6098 6099 case ISD::FP_TO_UINT: { 6100 if (TLI.getOperationAction(ISD::FP_TO_UINT, VT) == TargetLowering::Custom) { 6101 SDOperand Op; 6102 switch (getTypeAction(Node->getOperand(0).getValueType())) { 6103 case Expand: assert(0 && "cannot expand FP!"); 6104 case Legal: Op = LegalizeOp(Node->getOperand(0)); break; 6105 case Promote: Op = PromoteOp (Node->getOperand(0)); break; 6106 } 6107 6108 Op = TLI.LowerOperation(DAG.getNode(ISD::FP_TO_UINT, VT, Op), DAG); 6109 6110 // Now that the custom expander is done, expand the result. 6111 if (Op.Val) { 6112 ExpandOp(Op, Lo, Hi); 6113 break; 6114 } 6115 } 6116 6117 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 6118 if (Node->getOperand(0).getValueType() == MVT::f32) 6119 LC = RTLIB::FPTOUINT_F32_I64; 6120 else if (Node->getOperand(0).getValueType() == MVT::f64) 6121 LC = RTLIB::FPTOUINT_F64_I64; 6122 else if (Node->getOperand(0).getValueType() == MVT::f80) 6123 LC = RTLIB::FPTOUINT_F80_I64; 6124 else if (Node->getOperand(0).getValueType() == MVT::ppcf128) 6125 LC = RTLIB::FPTOUINT_PPCF128_I64; 6126 Lo = ExpandLibCall(TLI.getLibcallName(LC), Node, 6127 false/*sign irrelevant*/, Hi); 6128 break; 6129 } 6130 6131 case ISD::SHL: { 6132 // If the target wants custom lowering, do so. 6133 SDOperand ShiftAmt = LegalizeOp(Node->getOperand(1)); 6134 if (TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Custom) { 6135 SDOperand Op = DAG.getNode(ISD::SHL, VT, Node->getOperand(0), ShiftAmt); 6136 Op = TLI.LowerOperation(Op, DAG); 6137 if (Op.Val) { 6138 // Now that the custom expander is done, expand the result, which is 6139 // still VT. 6140 ExpandOp(Op, Lo, Hi); 6141 break; 6142 } 6143 } 6144 6145 // If ADDC/ADDE are supported and if the shift amount is a constant 1, emit 6146 // this X << 1 as X+X. 6147 if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(ShiftAmt)) { 6148 if (ShAmt->getValue() == 1 && TLI.isOperationLegal(ISD::ADDC, NVT) && 6149 TLI.isOperationLegal(ISD::ADDE, NVT)) { 6150 SDOperand LoOps[2], HiOps[3]; 6151 ExpandOp(Node->getOperand(0), LoOps[0], HiOps[0]); 6152 SDVTList VTList = DAG.getVTList(LoOps[0].getValueType(), MVT::Flag); 6153 LoOps[1] = LoOps[0]; 6154 Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2); 6155 6156 HiOps[1] = HiOps[0]; 6157 HiOps[2] = Lo.getValue(1); 6158 Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3); 6159 break; 6160 } 6161 } 6162 6163 // If we can emit an efficient shift operation, do so now. 6164 if (ExpandShift(ISD::SHL, Node->getOperand(0), ShiftAmt, Lo, Hi)) 6165 break; 6166 6167 // If this target supports SHL_PARTS, use it. 6168 TargetLowering::LegalizeAction Action = 6169 TLI.getOperationAction(ISD::SHL_PARTS, NVT); 6170 if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) || 6171 Action == TargetLowering::Custom) { 6172 ExpandShiftParts(ISD::SHL_PARTS, Node->getOperand(0), ShiftAmt, Lo, Hi); 6173 break; 6174 } 6175 6176 // Otherwise, emit a libcall. 6177 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SHL_I64), Node, 6178 false/*left shift=unsigned*/, Hi); 6179 break; 6180 } 6181 6182 case ISD::SRA: { 6183 // If the target wants custom lowering, do so. 6184 SDOperand ShiftAmt = LegalizeOp(Node->getOperand(1)); 6185 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Custom) { 6186 SDOperand Op = DAG.getNode(ISD::SRA, VT, Node->getOperand(0), ShiftAmt); 6187 Op = TLI.LowerOperation(Op, DAG); 6188 if (Op.Val) { 6189 // Now that the custom expander is done, expand the result, which is 6190 // still VT. 6191 ExpandOp(Op, Lo, Hi); 6192 break; 6193 } 6194 } 6195 6196 // If we can emit an efficient shift operation, do so now. 6197 if (ExpandShift(ISD::SRA, Node->getOperand(0), ShiftAmt, Lo, Hi)) 6198 break; 6199 6200 // If this target supports SRA_PARTS, use it. 6201 TargetLowering::LegalizeAction Action = 6202 TLI.getOperationAction(ISD::SRA_PARTS, NVT); 6203 if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) || 6204 Action == TargetLowering::Custom) { 6205 ExpandShiftParts(ISD::SRA_PARTS, Node->getOperand(0), ShiftAmt, Lo, Hi); 6206 break; 6207 } 6208 6209 // Otherwise, emit a libcall. 6210 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SRA_I64), Node, 6211 true/*ashr is signed*/, Hi); 6212 break; 6213 } 6214 6215 case ISD::SRL: { 6216 // If the target wants custom lowering, do so. 6217 SDOperand ShiftAmt = LegalizeOp(Node->getOperand(1)); 6218 if (TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Custom) { 6219 SDOperand Op = DAG.getNode(ISD::SRL, VT, Node->getOperand(0), ShiftAmt); 6220 Op = TLI.LowerOperation(Op, DAG); 6221 if (Op.Val) { 6222 // Now that the custom expander is done, expand the result, which is 6223 // still VT. 6224 ExpandOp(Op, Lo, Hi); 6225 break; 6226 } 6227 } 6228 6229 // If we can emit an efficient shift operation, do so now. 6230 if (ExpandShift(ISD::SRL, Node->getOperand(0), ShiftAmt, Lo, Hi)) 6231 break; 6232 6233 // If this target supports SRL_PARTS, use it. 6234 TargetLowering::LegalizeAction Action = 6235 TLI.getOperationAction(ISD::SRL_PARTS, NVT); 6236 if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) || 6237 Action == TargetLowering::Custom) { 6238 ExpandShiftParts(ISD::SRL_PARTS, Node->getOperand(0), ShiftAmt, Lo, Hi); 6239 break; 6240 } 6241 6242 // Otherwise, emit a libcall. 6243 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SRL_I64), Node, 6244 false/*lshr is unsigned*/, Hi); 6245 break; 6246 } 6247 6248 case ISD::ADD: 6249 case ISD::SUB: { 6250 // If the target wants to custom expand this, let them. 6251 if (TLI.getOperationAction(Node->getOpcode(), VT) == 6252 TargetLowering::Custom) { 6253 Op = TLI.LowerOperation(Op, DAG); 6254 if (Op.Val) { 6255 ExpandOp(Op, Lo, Hi); 6256 break; 6257 } 6258 } 6259 6260 // Expand the subcomponents. 6261 SDOperand LHSL, LHSH, RHSL, RHSH; 6262 ExpandOp(Node->getOperand(0), LHSL, LHSH); 6263 ExpandOp(Node->getOperand(1), RHSL, RHSH); 6264 SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); 6265 SDOperand LoOps[2], HiOps[3]; 6266 LoOps[0] = LHSL; 6267 LoOps[1] = RHSL; 6268 HiOps[0] = LHSH; 6269 HiOps[1] = RHSH; 6270 if (Node->getOpcode() == ISD::ADD) { 6271 Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2); 6272 HiOps[2] = Lo.getValue(1); 6273 Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3); 6274 } else { 6275 Lo = DAG.getNode(ISD::SUBC, VTList, LoOps, 2); 6276 HiOps[2] = Lo.getValue(1); 6277 Hi = DAG.getNode(ISD::SUBE, VTList, HiOps, 3); 6278 } 6279 break; 6280 } 6281 6282 case ISD::ADDC: 6283 case ISD::SUBC: { 6284 // Expand the subcomponents. 6285 SDOperand LHSL, LHSH, RHSL, RHSH; 6286 ExpandOp(Node->getOperand(0), LHSL, LHSH); 6287 ExpandOp(Node->getOperand(1), RHSL, RHSH); 6288 SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); 6289 SDOperand LoOps[2] = { LHSL, RHSL }; 6290 SDOperand HiOps[3] = { LHSH, RHSH }; 6291 6292 if (Node->getOpcode() == ISD::ADDC) { 6293 Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2); 6294 HiOps[2] = Lo.getValue(1); 6295 Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3); 6296 } else { 6297 Lo = DAG.getNode(ISD::SUBC, VTList, LoOps, 2); 6298 HiOps[2] = Lo.getValue(1); 6299 Hi = DAG.getNode(ISD::SUBE, VTList, HiOps, 3); 6300 } 6301 // Remember that we legalized the flag. 6302 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Hi.getValue(1))); 6303 break; 6304 } 6305 case ISD::ADDE: 6306 case ISD::SUBE: { 6307 // Expand the subcomponents. 6308 SDOperand LHSL, LHSH, RHSL, RHSH; 6309 ExpandOp(Node->getOperand(0), LHSL, LHSH); 6310 ExpandOp(Node->getOperand(1), RHSL, RHSH); 6311 SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); 6312 SDOperand LoOps[3] = { LHSL, RHSL, Node->getOperand(2) }; 6313 SDOperand HiOps[3] = { LHSH, RHSH }; 6314 6315 Lo = DAG.getNode(Node->getOpcode(), VTList, LoOps, 3); 6316 HiOps[2] = Lo.getValue(1); 6317 Hi = DAG.getNode(Node->getOpcode(), VTList, HiOps, 3); 6318 6319 // Remember that we legalized the flag. 6320 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Hi.getValue(1))); 6321 break; 6322 } 6323 case ISD::MUL: { 6324 // If the target wants to custom expand this, let them. 6325 if (TLI.getOperationAction(ISD::MUL, VT) == TargetLowering::Custom) { 6326 SDOperand New = TLI.LowerOperation(Op, DAG); 6327 if (New.Val) { 6328 ExpandOp(New, Lo, Hi); 6329 break; 6330 } 6331 } 6332 6333 bool HasMULHS = TLI.isOperationLegal(ISD::MULHS, NVT); 6334 bool HasMULHU = TLI.isOperationLegal(ISD::MULHU, NVT); 6335 bool HasSMUL_LOHI = TLI.isOperationLegal(ISD::SMUL_LOHI, NVT); 6336 bool HasUMUL_LOHI = TLI.isOperationLegal(ISD::UMUL_LOHI, NVT); 6337 if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) { 6338 SDOperand LL, LH, RL, RH; 6339 ExpandOp(Node->getOperand(0), LL, LH); 6340 ExpandOp(Node->getOperand(1), RL, RH); 6341 unsigned BitSize = MVT::getSizeInBits(RH.getValueType()); 6342 unsigned LHSSB = DAG.ComputeNumSignBits(Op.getOperand(0)); 6343 unsigned RHSSB = DAG.ComputeNumSignBits(Op.getOperand(1)); 6344 // FIXME: generalize this to handle other bit sizes 6345 if (LHSSB == 32 && RHSSB == 32 && 6346 DAG.MaskedValueIsZero(Op.getOperand(0), 0xFFFFFFFF00000000ULL) && 6347 DAG.MaskedValueIsZero(Op.getOperand(1), 0xFFFFFFFF00000000ULL)) { 6348 // The inputs are both zero-extended. 6349 if (HasUMUL_LOHI) { 6350 // We can emit a umul_lohi. 6351 Lo = DAG.getNode(ISD::UMUL_LOHI, DAG.getVTList(NVT, NVT), LL, RL); 6352 Hi = SDOperand(Lo.Val, 1); 6353 break; 6354 } 6355 if (HasMULHU) { 6356 // We can emit a mulhu+mul. 6357 Lo = DAG.getNode(ISD::MUL, NVT, LL, RL); 6358 Hi = DAG.getNode(ISD::MULHU, NVT, LL, RL); 6359 break; 6360 } 6361 } 6362 if (LHSSB > BitSize && RHSSB > BitSize) { 6363 // The input values are both sign-extended. 6364 if (HasSMUL_LOHI) { 6365 // We can emit a smul_lohi. 6366 Lo = DAG.getNode(ISD::SMUL_LOHI, DAG.getVTList(NVT, NVT), LL, RL); 6367 Hi = SDOperand(Lo.Val, 1); 6368 break; 6369 } 6370 if (HasMULHS) { 6371 // We can emit a mulhs+mul. 6372 Lo = DAG.getNode(ISD::MUL, NVT, LL, RL); 6373 Hi = DAG.getNode(ISD::MULHS, NVT, LL, RL); 6374 break; 6375 } 6376 } 6377 if (HasUMUL_LOHI) { 6378 // Lo,Hi = umul LHS, RHS. 6379 SDOperand UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, 6380 DAG.getVTList(NVT, NVT), LL, RL); 6381 Lo = UMulLOHI; 6382 Hi = UMulLOHI.getValue(1); 6383 RH = DAG.getNode(ISD::MUL, NVT, LL, RH); 6384 LH = DAG.getNode(ISD::MUL, NVT, LH, RL); 6385 Hi = DAG.getNode(ISD::ADD, NVT, Hi, RH); 6386 Hi = DAG.getNode(ISD::ADD, NVT, Hi, LH); 6387 break; 6388 } 6389 if (HasMULHU) { 6390 Lo = DAG.getNode(ISD::MUL, NVT, LL, RL); 6391 Hi = DAG.getNode(ISD::MULHU, NVT, LL, RL); 6392 RH = DAG.getNode(ISD::MUL, NVT, LL, RH); 6393 LH = DAG.getNode(ISD::MUL, NVT, LH, RL); 6394 Hi = DAG.getNode(ISD::ADD, NVT, Hi, RH); 6395 Hi = DAG.getNode(ISD::ADD, NVT, Hi, LH); 6396 break; 6397 } 6398 } 6399 6400 // If nothing else, we can make a libcall. 6401 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::MUL_I64), Node, 6402 false/*sign irrelevant*/, Hi); 6403 break; 6404 } 6405 case ISD::SDIV: 6406 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SDIV_I64), Node, true, Hi); 6407 break; 6408 case ISD::UDIV: 6409 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::UDIV_I64), Node, true, Hi); 6410 break; 6411 case ISD::SREM: 6412 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SREM_I64), Node, true, Hi); 6413 break; 6414 case ISD::UREM: 6415 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::UREM_I64), Node, true, Hi); 6416 break; 6417 6418 case ISD::FADD: 6419 Lo = ExpandLibCall(TLI.getLibcallName(GetFPLibCall(VT, RTLIB::ADD_F32, 6420 RTLIB::ADD_F64, 6421 RTLIB::ADD_F80, 6422 RTLIB::ADD_PPCF128)), 6423 Node, false, Hi); 6424 break; 6425 case ISD::FSUB: 6426 Lo = ExpandLibCall(TLI.getLibcallName(GetFPLibCall(VT, RTLIB::SUB_F32, 6427 RTLIB::SUB_F64, 6428 RTLIB::SUB_F80, 6429 RTLIB::SUB_PPCF128)), 6430 Node, false, Hi); 6431 break; 6432 case ISD::FMUL: 6433 Lo = ExpandLibCall(TLI.getLibcallName(GetFPLibCall(VT, RTLIB::MUL_F32, 6434 RTLIB::MUL_F64, 6435 RTLIB::MUL_F80, 6436 RTLIB::MUL_PPCF128)), 6437 Node, false, Hi); 6438 break; 6439 case ISD::FDIV: 6440 Lo = ExpandLibCall(TLI.getLibcallName(GetFPLibCall(VT, RTLIB::DIV_F32, 6441 RTLIB::DIV_F64, 6442 RTLIB::DIV_F80, 6443 RTLIB::DIV_PPCF128)), 6444 Node, false, Hi); 6445 break; 6446 case ISD::FP_EXTEND: 6447 if (VT == MVT::ppcf128) { 6448 assert(Node->getOperand(0).getValueType()==MVT::f32 || 6449 Node->getOperand(0).getValueType()==MVT::f64); 6450 const uint64_t zero = 0; 6451 if (Node->getOperand(0).getValueType()==MVT::f32) 6452 Hi = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Node->getOperand(0)); 6453 else 6454 Hi = Node->getOperand(0); 6455 Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &zero)), MVT::f64); 6456 break; 6457 } 6458 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::FPEXT_F32_F64), Node, true,Hi); 6459 break; 6460 case ISD::FP_ROUND: 6461 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::FPROUND_F64_F32),Node,true,Hi); 6462 break; 6463 case ISD::FPOWI: 6464 Lo = ExpandLibCall(TLI.getLibcallName(GetFPLibCall(VT, RTLIB::POWI_F32, 6465 RTLIB::POWI_F64, 6466 RTLIB::POWI_F80, 6467 RTLIB::POWI_PPCF128)), 6468 Node, false, Hi); 6469 break; 6470 case ISD::FSQRT: 6471 case ISD::FSIN: 6472 case ISD::FCOS: { 6473 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 6474 switch(Node->getOpcode()) { 6475 case ISD::FSQRT: 6476 LC = GetFPLibCall(VT, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 6477 RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128); 6478 break; 6479 case ISD::FSIN: 6480 LC = GetFPLibCall(VT, RTLIB::SIN_F32, RTLIB::SIN_F64, 6481 RTLIB::SIN_F80, RTLIB::SIN_PPCF128); 6482 break; 6483 case ISD::FCOS: 6484 LC = GetFPLibCall(VT, RTLIB::COS_F32, RTLIB::COS_F64, 6485 RTLIB::COS_F80, RTLIB::COS_PPCF128); 6486 break; 6487 default: assert(0 && "Unreachable!"); 6488 } 6489 Lo = ExpandLibCall(TLI.getLibcallName(LC), Node, false, Hi); 6490 break; 6491 } 6492 case ISD::FABS: { 6493 if (VT == MVT::ppcf128) { 6494 SDOperand Tmp; 6495 ExpandOp(Node->getOperand(0), Lo, Tmp); 6496 Hi = DAG.getNode(ISD::FABS, NVT, Tmp); 6497 // lo = hi==fabs(hi) ? lo : -lo; 6498 Lo = DAG.getNode(ISD::SELECT_CC, NVT, Hi, Tmp, 6499 Lo, DAG.getNode(ISD::FNEG, NVT, Lo), 6500 DAG.getCondCode(ISD::SETEQ)); 6501 break; 6502 } 6503 SDOperand Mask = (VT == MVT::f64) 6504 ? DAG.getConstantFP(BitsToDouble(~(1ULL << 63)), VT) 6505 : DAG.getConstantFP(BitsToFloat(~(1U << 31)), VT); 6506 Mask = DAG.getNode(ISD::BIT_CONVERT, NVT, Mask); 6507 Lo = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0)); 6508 Lo = DAG.getNode(ISD::AND, NVT, Lo, Mask); 6509 if (getTypeAction(NVT) == Expand) 6510 ExpandOp(Lo, Lo, Hi); 6511 break; 6512 } 6513 case ISD::FNEG: { 6514 if (VT == MVT::ppcf128) { 6515 ExpandOp(Node->getOperand(0), Lo, Hi); 6516 Lo = DAG.getNode(ISD::FNEG, MVT::f64, Lo); 6517 Hi = DAG.getNode(ISD::FNEG, MVT::f64, Hi); 6518 break; 6519 } 6520 SDOperand Mask = (VT == MVT::f64) 6521 ? DAG.getConstantFP(BitsToDouble(1ULL << 63), VT) 6522 : DAG.getConstantFP(BitsToFloat(1U << 31), VT); 6523 Mask = DAG.getNode(ISD::BIT_CONVERT, NVT, Mask); 6524 Lo = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0)); 6525 Lo = DAG.getNode(ISD::XOR, NVT, Lo, Mask); 6526 if (getTypeAction(NVT) == Expand) 6527 ExpandOp(Lo, Lo, Hi); 6528 break; 6529 } 6530 case ISD::FCOPYSIGN: { 6531 Lo = ExpandFCOPYSIGNToBitwiseOps(Node, NVT, DAG, TLI); 6532 if (getTypeAction(NVT) == Expand) 6533 ExpandOp(Lo, Lo, Hi); 6534 break; 6535 } 6536 case ISD::SINT_TO_FP: 6537 case ISD::UINT_TO_FP: { 6538 bool isSigned = Node->getOpcode() == ISD::SINT_TO_FP; 6539 MVT::ValueType SrcVT = Node->getOperand(0).getValueType(); 6540 if (VT == MVT::ppcf128 && SrcVT != MVT::i64) { 6541 static uint64_t zero = 0; 6542 if (isSigned) { 6543 Hi = LegalizeOp(DAG.getNode(ISD::SINT_TO_FP, MVT::f64, 6544 Node->getOperand(0))); 6545 Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &zero)), MVT::f64); 6546 } else { 6547 static uint64_t TwoE32[] = { 0x41f0000000000000LL, 0 }; 6548 Hi = LegalizeOp(DAG.getNode(ISD::SINT_TO_FP, MVT::f64, 6549 Node->getOperand(0))); 6550 Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &zero)), MVT::f64); 6551 Hi = DAG.getNode(ISD::BUILD_PAIR, VT, Lo, Hi); 6552 // X>=0 ? {(f64)x, 0} : {(f64)x, 0} + 2^32 6553 ExpandOp(DAG.getNode(ISD::SELECT_CC, MVT::ppcf128, Node->getOperand(0), 6554 DAG.getConstant(0, MVT::i32), 6555 DAG.getNode(ISD::FADD, MVT::ppcf128, Hi, 6556 DAG.getConstantFP( 6557 APFloat(APInt(128, 2, TwoE32)), 6558 MVT::ppcf128)), 6559 Hi, 6560 DAG.getCondCode(ISD::SETLT)), 6561 Lo, Hi); 6562 } 6563 break; 6564 } 6565 if (VT == MVT::ppcf128 && SrcVT == MVT::i64 && !isSigned) { 6566 // si64->ppcf128 done by libcall, below 6567 static uint64_t TwoE64[] = { 0x43f0000000000000LL, 0 }; 6568 ExpandOp(DAG.getNode(ISD::SINT_TO_FP, MVT::ppcf128, Node->getOperand(0)), 6569 Lo, Hi); 6570 Hi = DAG.getNode(ISD::BUILD_PAIR, VT, Lo, Hi); 6571 // x>=0 ? (ppcf128)(i64)x : (ppcf128)(i64)x + 2^64 6572 ExpandOp(DAG.getNode(ISD::SELECT_CC, MVT::ppcf128, Node->getOperand(0), 6573 DAG.getConstant(0, MVT::i64), 6574 DAG.getNode(ISD::FADD, MVT::ppcf128, Hi, 6575 DAG.getConstantFP( 6576 APFloat(APInt(128, 2, TwoE64)), 6577 MVT::ppcf128)), 6578 Hi, 6579 DAG.getCondCode(ISD::SETLT)), 6580 Lo, Hi); 6581 break; 6582 } 6583 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 6584 if (Node->getOperand(0).getValueType() == MVT::i64) { 6585 if (VT == MVT::f32) 6586 LC = isSigned ? RTLIB::SINTTOFP_I64_F32 : RTLIB::UINTTOFP_I64_F32; 6587 else if (VT == MVT::f64) 6588 LC = isSigned ? RTLIB::SINTTOFP_I64_F64 : RTLIB::UINTTOFP_I64_F64; 6589 else if (VT == MVT::f80) { 6590 assert(isSigned); 6591 LC = RTLIB::SINTTOFP_I64_F80; 6592 } 6593 else if (VT == MVT::ppcf128) { 6594 assert(isSigned); 6595 LC = RTLIB::SINTTOFP_I64_PPCF128; 6596 } 6597 } else { 6598 if (VT == MVT::f32) 6599 LC = isSigned ? RTLIB::SINTTOFP_I32_F32 : RTLIB::UINTTOFP_I32_F32; 6600 else 6601 LC = isSigned ? RTLIB::SINTTOFP_I32_F64 : RTLIB::UINTTOFP_I32_F64; 6602 } 6603 6604 // Promote the operand if needed. 6605 if (getTypeAction(SrcVT) == Promote) { 6606 SDOperand Tmp = PromoteOp(Node->getOperand(0)); 6607 Tmp = isSigned 6608 ? DAG.getNode(ISD::SIGN_EXTEND_INREG, Tmp.getValueType(), Tmp, 6609 DAG.getValueType(SrcVT)) 6610 : DAG.getZeroExtendInReg(Tmp, SrcVT); 6611 Node = DAG.UpdateNodeOperands(Op, Tmp).Val; 6612 } 6613 6614 const char *LibCall = TLI.getLibcallName(LC); 6615 if (LibCall) 6616 Lo = ExpandLibCall(TLI.getLibcallName(LC), Node, isSigned, Hi); 6617 else { 6618 Lo = ExpandIntToFP(Node->getOpcode() == ISD::SINT_TO_FP, VT, 6619 Node->getOperand(0)); 6620 if (getTypeAction(Lo.getValueType()) == Expand) 6621 ExpandOp(Lo, Lo, Hi); 6622 } 6623 break; 6624 } 6625 } 6626 6627 // Make sure the resultant values have been legalized themselves, unless this 6628 // is a type that requires multi-step expansion. 6629 if (getTypeAction(NVT) != Expand && NVT != MVT::isVoid) { 6630 Lo = LegalizeOp(Lo); 6631 if (Hi.Val) 6632 // Don't legalize the high part if it is expanded to a single node. 6633 Hi = LegalizeOp(Hi); 6634 } 6635 6636 // Remember in a map if the values will be reused later. 6637 bool isNew = ExpandedNodes.insert(std::make_pair(Op, std::make_pair(Lo, Hi))); 6638 assert(isNew && "Value already expanded?!?"); 6639} 6640 6641/// SplitVectorOp - Given an operand of vector type, break it down into 6642/// two smaller values, still of vector type. 6643void SelectionDAGLegalize::SplitVectorOp(SDOperand Op, SDOperand &Lo, 6644 SDOperand &Hi) { 6645 assert(MVT::isVector(Op.getValueType()) && "Cannot split non-vector type!"); 6646 SDNode *Node = Op.Val; 6647 unsigned NumElements = MVT::getVectorNumElements(Op.getValueType()); 6648 assert(NumElements > 1 && "Cannot split a single element vector!"); 6649 6650 MVT::ValueType NewEltVT = MVT::getVectorElementType(Op.getValueType()); 6651 6652 unsigned NewNumElts_Lo = 1 << Log2_32(NumElements-1); 6653 unsigned NewNumElts_Hi = NumElements - NewNumElts_Lo; 6654 6655 MVT::ValueType NewVT_Lo = MVT::getVectorType(NewEltVT, NewNumElts_Lo); 6656 MVT::ValueType NewVT_Hi = MVT::getVectorType(NewEltVT, NewNumElts_Hi); 6657 6658 // See if we already split it. 6659 std::map<SDOperand, std::pair<SDOperand, SDOperand> >::iterator I 6660 = SplitNodes.find(Op); 6661 if (I != SplitNodes.end()) { 6662 Lo = I->second.first; 6663 Hi = I->second.second; 6664 return; 6665 } 6666 6667 switch (Node->getOpcode()) { 6668 default: 6669#ifndef NDEBUG 6670 Node->dump(&DAG); 6671#endif 6672 assert(0 && "Unhandled operation in SplitVectorOp!"); 6673 case ISD::UNDEF: 6674 Lo = DAG.getNode(ISD::UNDEF, NewVT_Lo); 6675 Hi = DAG.getNode(ISD::UNDEF, NewVT_Hi); 6676 break; 6677 case ISD::BUILD_PAIR: 6678 Lo = Node->getOperand(0); 6679 Hi = Node->getOperand(1); 6680 break; 6681 case ISD::INSERT_VECTOR_ELT: { 6682 SplitVectorOp(Node->getOperand(0), Lo, Hi); 6683 unsigned Index = cast<ConstantSDNode>(Node->getOperand(2))->getValue(); 6684 SDOperand ScalarOp = Node->getOperand(1); 6685 if (Index < NewNumElts_Lo) 6686 Lo = DAG.getNode(ISD::INSERT_VECTOR_ELT, NewVT_Lo, Lo, ScalarOp, 6687 DAG.getConstant(Index, TLI.getPointerTy())); 6688 else 6689 Hi = DAG.getNode(ISD::INSERT_VECTOR_ELT, NewVT_Hi, Hi, ScalarOp, 6690 DAG.getConstant(Index - NewNumElts_Lo, 6691 TLI.getPointerTy())); 6692 break; 6693 } 6694 case ISD::VECTOR_SHUFFLE: { 6695 // Build the low part. 6696 SDOperand Mask = Node->getOperand(2); 6697 SmallVector<SDOperand, 8> Ops; 6698 MVT::ValueType PtrVT = TLI.getPointerTy(); 6699 6700 // Insert all of the elements from the input that are needed. We use 6701 // buildvector of extractelement here because the input vectors will have 6702 // to be legalized, so this makes the code simpler. 6703 for (unsigned i = 0; i != NewNumElts_Lo; ++i) { 6704 unsigned Idx = cast<ConstantSDNode>(Mask.getOperand(i))->getValue(); 6705 SDOperand InVec = Node->getOperand(0); 6706 if (Idx >= NumElements) { 6707 InVec = Node->getOperand(1); 6708 Idx -= NumElements; 6709 } 6710 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, NewEltVT, InVec, 6711 DAG.getConstant(Idx, PtrVT))); 6712 } 6713 Lo = DAG.getNode(ISD::BUILD_VECTOR, NewVT_Lo, &Ops[0], Ops.size()); 6714 Ops.clear(); 6715 6716 for (unsigned i = NewNumElts_Lo; i != NumElements; ++i) { 6717 unsigned Idx = cast<ConstantSDNode>(Mask.getOperand(i))->getValue(); 6718 SDOperand InVec = Node->getOperand(0); 6719 if (Idx >= NumElements) { 6720 InVec = Node->getOperand(1); 6721 Idx -= NumElements; 6722 } 6723 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, NewEltVT, InVec, 6724 DAG.getConstant(Idx, PtrVT))); 6725 } 6726 Hi = DAG.getNode(ISD::BUILD_VECTOR, NewVT_Lo, &Ops[0], Ops.size()); 6727 break; 6728 } 6729 case ISD::BUILD_VECTOR: { 6730 SmallVector<SDOperand, 8> LoOps(Node->op_begin(), 6731 Node->op_begin()+NewNumElts_Lo); 6732 Lo = DAG.getNode(ISD::BUILD_VECTOR, NewVT_Lo, &LoOps[0], LoOps.size()); 6733 6734 SmallVector<SDOperand, 8> HiOps(Node->op_begin()+NewNumElts_Lo, 6735 Node->op_end()); 6736 Hi = DAG.getNode(ISD::BUILD_VECTOR, NewVT_Hi, &HiOps[0], HiOps.size()); 6737 break; 6738 } 6739 case ISD::CONCAT_VECTORS: { 6740 // FIXME: Handle non-power-of-two vectors? 6741 unsigned NewNumSubvectors = Node->getNumOperands() / 2; 6742 if (NewNumSubvectors == 1) { 6743 Lo = Node->getOperand(0); 6744 Hi = Node->getOperand(1); 6745 } else { 6746 SmallVector<SDOperand, 8> LoOps(Node->op_begin(), 6747 Node->op_begin()+NewNumSubvectors); 6748 Lo = DAG.getNode(ISD::CONCAT_VECTORS, NewVT_Lo, &LoOps[0], LoOps.size()); 6749 6750 SmallVector<SDOperand, 8> HiOps(Node->op_begin()+NewNumSubvectors, 6751 Node->op_end()); 6752 Hi = DAG.getNode(ISD::CONCAT_VECTORS, NewVT_Hi, &HiOps[0], HiOps.size()); 6753 } 6754 break; 6755 } 6756 case ISD::SELECT: { 6757 SDOperand Cond = Node->getOperand(0); 6758 6759 SDOperand LL, LH, RL, RH; 6760 SplitVectorOp(Node->getOperand(1), LL, LH); 6761 SplitVectorOp(Node->getOperand(2), RL, RH); 6762 6763 if (MVT::isVector(Cond.getValueType())) { 6764 // Handle a vector merge. 6765 SDOperand CL, CH; 6766 SplitVectorOp(Cond, CL, CH); 6767 Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, CL, LL, RL); 6768 Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, CH, LH, RH); 6769 } else { 6770 // Handle a simple select with vector operands. 6771 Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, Cond, LL, RL); 6772 Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, Cond, LH, RH); 6773 } 6774 break; 6775 } 6776 case ISD::ADD: 6777 case ISD::SUB: 6778 case ISD::MUL: 6779 case ISD::FADD: 6780 case ISD::FSUB: 6781 case ISD::FMUL: 6782 case ISD::SDIV: 6783 case ISD::UDIV: 6784 case ISD::FDIV: 6785 case ISD::FPOW: 6786 case ISD::AND: 6787 case ISD::OR: 6788 case ISD::XOR: 6789 case ISD::UREM: 6790 case ISD::SREM: 6791 case ISD::FREM: { 6792 SDOperand LL, LH, RL, RH; 6793 SplitVectorOp(Node->getOperand(0), LL, LH); 6794 SplitVectorOp(Node->getOperand(1), RL, RH); 6795 6796 Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, LL, RL); 6797 Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, LH, RH); 6798 break; 6799 } 6800 case ISD::FPOWI: { 6801 SDOperand L, H; 6802 SplitVectorOp(Node->getOperand(0), L, H); 6803 6804 Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, L, Node->getOperand(1)); 6805 Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, H, Node->getOperand(1)); 6806 break; 6807 } 6808 case ISD::CTTZ: 6809 case ISD::CTLZ: 6810 case ISD::CTPOP: 6811 case ISD::FNEG: 6812 case ISD::FABS: 6813 case ISD::FSQRT: 6814 case ISD::FSIN: 6815 case ISD::FCOS: 6816 case ISD::FP_TO_SINT: 6817 case ISD::FP_TO_UINT: 6818 case ISD::SINT_TO_FP: 6819 case ISD::UINT_TO_FP: { 6820 SDOperand L, H; 6821 SplitVectorOp(Node->getOperand(0), L, H); 6822 6823 Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, L); 6824 Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, H); 6825 break; 6826 } 6827 case ISD::LOAD: { 6828 LoadSDNode *LD = cast<LoadSDNode>(Node); 6829 SDOperand Ch = LD->getChain(); 6830 SDOperand Ptr = LD->getBasePtr(); 6831 const Value *SV = LD->getSrcValue(); 6832 int SVOffset = LD->getSrcValueOffset(); 6833 unsigned Alignment = LD->getAlignment(); 6834 bool isVolatile = LD->isVolatile(); 6835 6836 Lo = DAG.getLoad(NewVT_Lo, Ch, Ptr, SV, SVOffset, isVolatile, Alignment); 6837 unsigned IncrementSize = NewNumElts_Lo * MVT::getSizeInBits(NewEltVT)/8; 6838 Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, 6839 DAG.getIntPtrConstant(IncrementSize)); 6840 SVOffset += IncrementSize; 6841 Alignment = MinAlign(Alignment, IncrementSize); 6842 Hi = DAG.getLoad(NewVT_Hi, Ch, Ptr, SV, SVOffset, isVolatile, Alignment); 6843 6844 // Build a factor node to remember that this load is independent of the 6845 // other one. 6846 SDOperand TF = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), 6847 Hi.getValue(1)); 6848 6849 // Remember that we legalized the chain. 6850 AddLegalizedOperand(Op.getValue(1), LegalizeOp(TF)); 6851 break; 6852 } 6853 case ISD::BIT_CONVERT: { 6854 // We know the result is a vector. The input may be either a vector or a 6855 // scalar value. 6856 SDOperand InOp = Node->getOperand(0); 6857 if (!MVT::isVector(InOp.getValueType()) || 6858 MVT::getVectorNumElements(InOp.getValueType()) == 1) { 6859 // The input is a scalar or single-element vector. 6860 // Lower to a store/load so that it can be split. 6861 // FIXME: this could be improved probably. 6862 SDOperand Ptr = DAG.CreateStackTemporary(InOp.getValueType()); 6863 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(Ptr.Val); 6864 6865 SDOperand St = DAG.getStore(DAG.getEntryNode(), 6866 InOp, Ptr, 6867 PseudoSourceValue::getFixedStack(), 6868 FI->getIndex()); 6869 InOp = DAG.getLoad(Op.getValueType(), St, Ptr, 6870 PseudoSourceValue::getFixedStack(), 6871 FI->getIndex()); 6872 } 6873 // Split the vector and convert each of the pieces now. 6874 SplitVectorOp(InOp, Lo, Hi); 6875 Lo = DAG.getNode(ISD::BIT_CONVERT, NewVT_Lo, Lo); 6876 Hi = DAG.getNode(ISD::BIT_CONVERT, NewVT_Hi, Hi); 6877 break; 6878 } 6879 } 6880 6881 // Remember in a map if the values will be reused later. 6882 bool isNew = 6883 SplitNodes.insert(std::make_pair(Op, std::make_pair(Lo, Hi))).second; 6884 assert(isNew && "Value already split?!?"); 6885} 6886 6887 6888/// ScalarizeVectorOp - Given an operand of single-element vector type 6889/// (e.g. v1f32), convert it into the equivalent operation that returns a 6890/// scalar (e.g. f32) value. 6891SDOperand SelectionDAGLegalize::ScalarizeVectorOp(SDOperand Op) { 6892 assert(MVT::isVector(Op.getValueType()) && 6893 "Bad ScalarizeVectorOp invocation!"); 6894 SDNode *Node = Op.Val; 6895 MVT::ValueType NewVT = MVT::getVectorElementType(Op.getValueType()); 6896 assert(MVT::getVectorNumElements(Op.getValueType()) == 1); 6897 6898 // See if we already scalarized it. 6899 std::map<SDOperand, SDOperand>::iterator I = ScalarizedNodes.find(Op); 6900 if (I != ScalarizedNodes.end()) return I->second; 6901 6902 SDOperand Result; 6903 switch (Node->getOpcode()) { 6904 default: 6905#ifndef NDEBUG 6906 Node->dump(&DAG); cerr << "\n"; 6907#endif 6908 assert(0 && "Unknown vector operation in ScalarizeVectorOp!"); 6909 case ISD::ADD: 6910 case ISD::FADD: 6911 case ISD::SUB: 6912 case ISD::FSUB: 6913 case ISD::MUL: 6914 case ISD::FMUL: 6915 case ISD::SDIV: 6916 case ISD::UDIV: 6917 case ISD::FDIV: 6918 case ISD::SREM: 6919 case ISD::UREM: 6920 case ISD::FREM: 6921 case ISD::FPOW: 6922 case ISD::AND: 6923 case ISD::OR: 6924 case ISD::XOR: 6925 Result = DAG.getNode(Node->getOpcode(), 6926 NewVT, 6927 ScalarizeVectorOp(Node->getOperand(0)), 6928 ScalarizeVectorOp(Node->getOperand(1))); 6929 break; 6930 case ISD::FNEG: 6931 case ISD::FABS: 6932 case ISD::FSQRT: 6933 case ISD::FSIN: 6934 case ISD::FCOS: 6935 Result = DAG.getNode(Node->getOpcode(), 6936 NewVT, 6937 ScalarizeVectorOp(Node->getOperand(0))); 6938 break; 6939 case ISD::FPOWI: 6940 Result = DAG.getNode(Node->getOpcode(), 6941 NewVT, 6942 ScalarizeVectorOp(Node->getOperand(0)), 6943 Node->getOperand(1)); 6944 break; 6945 case ISD::LOAD: { 6946 LoadSDNode *LD = cast<LoadSDNode>(Node); 6947 SDOperand Ch = LegalizeOp(LD->getChain()); // Legalize the chain. 6948 SDOperand Ptr = LegalizeOp(LD->getBasePtr()); // Legalize the pointer. 6949 6950 const Value *SV = LD->getSrcValue(); 6951 int SVOffset = LD->getSrcValueOffset(); 6952 Result = DAG.getLoad(NewVT, Ch, Ptr, SV, SVOffset, 6953 LD->isVolatile(), LD->getAlignment()); 6954 6955 // Remember that we legalized the chain. 6956 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); 6957 break; 6958 } 6959 case ISD::BUILD_VECTOR: 6960 Result = Node->getOperand(0); 6961 break; 6962 case ISD::INSERT_VECTOR_ELT: 6963 // Returning the inserted scalar element. 6964 Result = Node->getOperand(1); 6965 break; 6966 case ISD::CONCAT_VECTORS: 6967 assert(Node->getOperand(0).getValueType() == NewVT && 6968 "Concat of non-legal vectors not yet supported!"); 6969 Result = Node->getOperand(0); 6970 break; 6971 case ISD::VECTOR_SHUFFLE: { 6972 // Figure out if the scalar is the LHS or RHS and return it. 6973 SDOperand EltNum = Node->getOperand(2).getOperand(0); 6974 if (cast<ConstantSDNode>(EltNum)->getValue()) 6975 Result = ScalarizeVectorOp(Node->getOperand(1)); 6976 else 6977 Result = ScalarizeVectorOp(Node->getOperand(0)); 6978 break; 6979 } 6980 case ISD::EXTRACT_SUBVECTOR: 6981 Result = Node->getOperand(0); 6982 assert(Result.getValueType() == NewVT); 6983 break; 6984 case ISD::BIT_CONVERT: 6985 Result = DAG.getNode(ISD::BIT_CONVERT, NewVT, Op.getOperand(0)); 6986 break; 6987 case ISD::SELECT: 6988 Result = DAG.getNode(ISD::SELECT, NewVT, Op.getOperand(0), 6989 ScalarizeVectorOp(Op.getOperand(1)), 6990 ScalarizeVectorOp(Op.getOperand(2))); 6991 break; 6992 } 6993 6994 if (TLI.isTypeLegal(NewVT)) 6995 Result = LegalizeOp(Result); 6996 bool isNew = ScalarizedNodes.insert(std::make_pair(Op, Result)).second; 6997 assert(isNew && "Value already scalarized?"); 6998 return Result; 6999} 7000 7001 7002// SelectionDAG::Legalize - This is the entry point for the file. 7003// 7004void SelectionDAG::Legalize() { 7005 if (ViewLegalizeDAGs) viewGraph(); 7006 7007 /// run - This is the main entry point to this class. 7008 /// 7009 SelectionDAGLegalize(*this).LegalizeDAG(); 7010} 7011 7012