LegalizeDAG.cpp revision ac6d9bec671252dd1e596fa71180ff6b39d06b5d
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SelectionDAG::Legalize method.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/ADT/SmallPtrSet.h"
16#include "llvm/ADT/SmallVector.h"
17#include "llvm/ADT/Triple.h"
18#include "llvm/CodeGen/Analysis.h"
19#include "llvm/CodeGen/MachineFunction.h"
20#include "llvm/CodeGen/MachineJumpTableInfo.h"
21#include "llvm/DebugInfo.h"
22#include "llvm/IR/CallingConv.h"
23#include "llvm/IR/Constants.h"
24#include "llvm/IR/DataLayout.h"
25#include "llvm/IR/DerivedTypes.h"
26#include "llvm/IR/Function.h"
27#include "llvm/IR/LLVMContext.h"
28#include "llvm/Support/Debug.h"
29#include "llvm/Support/ErrorHandling.h"
30#include "llvm/Support/MathExtras.h"
31#include "llvm/Support/raw_ostream.h"
32#include "llvm/Target/TargetFrameLowering.h"
33#include "llvm/Target/TargetLowering.h"
34#include "llvm/Target/TargetMachine.h"
35using namespace llvm;
36
37//===----------------------------------------------------------------------===//
38/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
39/// hacks on it until the target machine can handle it.  This involves
40/// eliminating value sizes the machine cannot handle (promoting small sizes to
41/// large sizes or splitting up large values into small values) as well as
42/// eliminating operations the machine cannot handle.
43///
44/// This code also does a small amount of optimization and recognition of idioms
45/// as part of its processing.  For example, if a target does not support a
46/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
47/// will attempt merge setcc and brc instructions into brcc's.
48///
49namespace {
50class SelectionDAGLegalize : public SelectionDAG::DAGUpdateListener {
51  const TargetMachine &TM;
52  const TargetLowering &TLI;
53  SelectionDAG &DAG;
54
55  /// LegalizePosition - The iterator for walking through the node list.
56  SelectionDAG::allnodes_iterator LegalizePosition;
57
58  /// LegalizedNodes - The set of nodes which have already been legalized.
59  SmallPtrSet<SDNode *, 16> LegalizedNodes;
60
61  EVT getSetCCResultType(EVT VT) const {
62    return TLI.getSetCCResultType(*DAG.getContext(), VT);
63  }
64
65  // Libcall insertion helpers.
66
67public:
68  explicit SelectionDAGLegalize(SelectionDAG &DAG);
69
70  void LegalizeDAG();
71
72private:
73  /// LegalizeOp - Legalizes the given operation.
74  void LegalizeOp(SDNode *Node);
75
76  SDValue OptimizeFloatStore(StoreSDNode *ST);
77
78  void LegalizeLoadOps(SDNode *Node);
79  void LegalizeStoreOps(SDNode *Node);
80
81  /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
82  /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
83  /// is necessary to spill the vector being inserted into to memory, perform
84  /// the insert there, and then read the result back.
85  SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
86                                         SDValue Idx, SDLoc dl);
87  SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
88                                  SDValue Idx, SDLoc dl);
89
90  /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
91  /// performs the same shuffe in terms of order or result bytes, but on a type
92  /// whose vector element type is narrower than the original shuffle type.
93  /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
94  SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, SDLoc dl,
95                                     SDValue N1, SDValue N2,
96                                     ArrayRef<int> Mask) const;
97
98  void LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
99                             SDLoc dl);
100
101  SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
102  SDValue ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, const SDValue *Ops,
103                        unsigned NumOps, bool isSigned, SDLoc dl);
104
105  std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC,
106                                                 SDNode *Node, bool isSigned);
107  SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
108                          RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
109                          RTLIB::Libcall Call_F128,
110                          RTLIB::Libcall Call_PPCF128);
111  SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
112                           RTLIB::Libcall Call_I8,
113                           RTLIB::Libcall Call_I16,
114                           RTLIB::Libcall Call_I32,
115                           RTLIB::Libcall Call_I64,
116                           RTLIB::Libcall Call_I128);
117  void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
118  void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
119
120  SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, SDLoc dl);
121  SDValue ExpandBUILD_VECTOR(SDNode *Node);
122  SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
123  void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
124                                SmallVectorImpl<SDValue> &Results);
125  SDValue ExpandFCOPYSIGN(SDNode *Node);
126  SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT,
127                               SDLoc dl);
128  SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned,
129                                SDLoc dl);
130  SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned,
131                                SDLoc dl);
132
133  SDValue ExpandBSWAP(SDValue Op, SDLoc dl);
134  SDValue ExpandBitCount(unsigned Opc, SDValue Op, SDLoc dl);
135
136  SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
137  SDValue ExpandInsertToVectorThroughStack(SDValue Op);
138  SDValue ExpandVectorBuildThroughStack(SDNode* Node);
139
140  SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP);
141
142  std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node);
143
144  void ExpandNode(SDNode *Node);
145  void PromoteNode(SDNode *Node);
146
147  void ForgetNode(SDNode *N) {
148    LegalizedNodes.erase(N);
149    if (LegalizePosition == SelectionDAG::allnodes_iterator(N))
150      ++LegalizePosition;
151  }
152
153public:
154  // DAGUpdateListener implementation.
155  virtual void NodeDeleted(SDNode *N, SDNode *E) {
156    ForgetNode(N);
157  }
158  virtual void NodeUpdated(SDNode *N) {}
159
160  // Node replacement helpers
161  void ReplacedNode(SDNode *N) {
162    if (N->use_empty()) {
163      DAG.RemoveDeadNode(N);
164    } else {
165      ForgetNode(N);
166    }
167  }
168  void ReplaceNode(SDNode *Old, SDNode *New) {
169    DAG.ReplaceAllUsesWith(Old, New);
170    ReplacedNode(Old);
171  }
172  void ReplaceNode(SDValue Old, SDValue New) {
173    DAG.ReplaceAllUsesWith(Old, New);
174    ReplacedNode(Old.getNode());
175  }
176  void ReplaceNode(SDNode *Old, const SDValue *New) {
177    DAG.ReplaceAllUsesWith(Old, New);
178    ReplacedNode(Old);
179  }
180};
181}
182
183/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
184/// performs the same shuffe in terms of order or result bytes, but on a type
185/// whose vector element type is narrower than the original shuffle type.
186/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
187SDValue
188SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT,  SDLoc dl,
189                                                 SDValue N1, SDValue N2,
190                                                 ArrayRef<int> Mask) const {
191  unsigned NumMaskElts = VT.getVectorNumElements();
192  unsigned NumDestElts = NVT.getVectorNumElements();
193  unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
194
195  assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
196
197  if (NumEltsGrowth == 1)
198    return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
199
200  SmallVector<int, 8> NewMask;
201  for (unsigned i = 0; i != NumMaskElts; ++i) {
202    int Idx = Mask[i];
203    for (unsigned j = 0; j != NumEltsGrowth; ++j) {
204      if (Idx < 0)
205        NewMask.push_back(-1);
206      else
207        NewMask.push_back(Idx * NumEltsGrowth + j);
208    }
209  }
210  assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
211  assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
212  return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
213}
214
215SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag)
216  : SelectionDAG::DAGUpdateListener(dag),
217    TM(dag.getTarget()), TLI(dag.getTargetLoweringInfo()),
218    DAG(dag) {
219}
220
221void SelectionDAGLegalize::LegalizeDAG() {
222  DAG.AssignTopologicalOrder();
223
224  // Visit all the nodes. We start in topological order, so that we see
225  // nodes with their original operands intact. Legalization can produce
226  // new nodes which may themselves need to be legalized. Iterate until all
227  // nodes have been legalized.
228  for (;;) {
229    bool AnyLegalized = false;
230    for (LegalizePosition = DAG.allnodes_end();
231         LegalizePosition != DAG.allnodes_begin(); ) {
232      --LegalizePosition;
233
234      SDNode *N = LegalizePosition;
235      if (LegalizedNodes.insert(N)) {
236        AnyLegalized = true;
237        LegalizeOp(N);
238      }
239    }
240    if (!AnyLegalized)
241      break;
242
243  }
244
245  // Remove dead nodes now.
246  DAG.RemoveDeadNodes();
247}
248
249/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
250/// a load from the constant pool.
251SDValue
252SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) {
253  bool Extend = false;
254  SDLoc dl(CFP);
255
256  // If a FP immediate is precise when represented as a float and if the
257  // target can do an extending load from float to double, we put it into
258  // the constant pool as a float, even if it's is statically typed as a
259  // double.  This shrinks FP constants and canonicalizes them for targets where
260  // an FP extending load is the same cost as a normal load (such as on the x87
261  // fp stack or PPC FP unit).
262  EVT VT = CFP->getValueType(0);
263  ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
264  if (!UseCP) {
265    assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
266    return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(),
267                           (VT == MVT::f64) ? MVT::i64 : MVT::i32);
268  }
269
270  EVT OrigVT = VT;
271  EVT SVT = VT;
272  while (SVT != MVT::f32) {
273    SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
274    if (ConstantFPSDNode::isValueValidForType(SVT, CFP->getValueAPF()) &&
275        // Only do this if the target has a native EXTLOAD instruction from
276        // smaller type.
277        TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
278        TLI.ShouldShrinkFPConstant(OrigVT)) {
279      Type *SType = SVT.getTypeForEVT(*DAG.getContext());
280      LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
281      VT = SVT;
282      Extend = true;
283    }
284  }
285
286  SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
287  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
288  if (Extend) {
289    SDValue Result =
290      DAG.getExtLoad(ISD::EXTLOAD, dl, OrigVT,
291                     DAG.getEntryNode(),
292                     CPIdx, MachinePointerInfo::getConstantPool(),
293                     VT, false, false, Alignment);
294    return Result;
295  }
296  SDValue Result =
297    DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
298                MachinePointerInfo::getConstantPool(), false, false, false,
299                Alignment);
300  return Result;
301}
302
303/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
304static void ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
305                                 const TargetLowering &TLI,
306                                 SelectionDAGLegalize *DAGLegalize) {
307  assert(ST->getAddressingMode() == ISD::UNINDEXED &&
308         "unaligned indexed stores not implemented!");
309  SDValue Chain = ST->getChain();
310  SDValue Ptr = ST->getBasePtr();
311  SDValue Val = ST->getValue();
312  EVT VT = Val.getValueType();
313  int Alignment = ST->getAlignment();
314  SDLoc dl(ST);
315  if (ST->getMemoryVT().isFloatingPoint() ||
316      ST->getMemoryVT().isVector()) {
317    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
318    if (TLI.isTypeLegal(intVT)) {
319      // Expand to a bitconvert of the value to the integer type of the
320      // same size, then a (misaligned) int store.
321      // FIXME: Does not handle truncating floating point stores!
322      SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
323      Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
324                           ST->isVolatile(), ST->isNonTemporal(), Alignment);
325      DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
326      return;
327    }
328    // Do a (aligned) store to a stack slot, then copy from the stack slot
329    // to the final destination using (unaligned) integer loads and stores.
330    EVT StoredVT = ST->getMemoryVT();
331    MVT RegVT =
332      TLI.getRegisterType(*DAG.getContext(),
333                          EVT::getIntegerVT(*DAG.getContext(),
334                                            StoredVT.getSizeInBits()));
335    unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
336    unsigned RegBytes = RegVT.getSizeInBits() / 8;
337    unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
338
339    // Make sure the stack slot is also aligned for the register type.
340    SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
341
342    // Perform the original store, only redirected to the stack slot.
343    SDValue Store = DAG.getTruncStore(Chain, dl,
344                                      Val, StackPtr, MachinePointerInfo(),
345                                      StoredVT, false, false, 0);
346    SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
347    SmallVector<SDValue, 8> Stores;
348    unsigned Offset = 0;
349
350    // Do all but one copies using the full register width.
351    for (unsigned i = 1; i < NumRegs; i++) {
352      // Load one integer register's worth from the stack slot.
353      SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr,
354                                 MachinePointerInfo(),
355                                 false, false, false, 0);
356      // Store it to the final location.  Remember the store.
357      Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
358                                  ST->getPointerInfo().getWithOffset(Offset),
359                                    ST->isVolatile(), ST->isNonTemporal(),
360                                    MinAlign(ST->getAlignment(), Offset)));
361      // Increment the pointers.
362      Offset += RegBytes;
363      StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
364                             Increment);
365      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
366    }
367
368    // The last store may be partial.  Do a truncating store.  On big-endian
369    // machines this requires an extending load from the stack slot to ensure
370    // that the bits are in the right place.
371    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
372                                  8 * (StoredBytes - Offset));
373
374    // Load from the stack slot.
375    SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
376                                  MachinePointerInfo(),
377                                  MemVT, false, false, 0);
378
379    Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
380                                       ST->getPointerInfo()
381                                         .getWithOffset(Offset),
382                                       MemVT, ST->isVolatile(),
383                                       ST->isNonTemporal(),
384                                       MinAlign(ST->getAlignment(), Offset)));
385    // The order of the stores doesn't matter - say it with a TokenFactor.
386    SDValue Result =
387      DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
388                  Stores.size());
389    DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
390    return;
391  }
392  assert(ST->getMemoryVT().isInteger() &&
393         !ST->getMemoryVT().isVector() &&
394         "Unaligned store of unknown type.");
395  // Get the half-size VT
396  EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
397  int NumBits = NewStoredVT.getSizeInBits();
398  int IncrementSize = NumBits / 8;
399
400  // Divide the stored value in two parts.
401  SDValue ShiftAmount = DAG.getConstant(NumBits,
402                                      TLI.getShiftAmountTy(Val.getValueType()));
403  SDValue Lo = Val;
404  SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
405
406  // Store the two parts
407  SDValue Store1, Store2;
408  Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
409                             ST->getPointerInfo(), NewStoredVT,
410                             ST->isVolatile(), ST->isNonTemporal(), Alignment);
411  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
412                    DAG.getConstant(IncrementSize, TLI.getPointerTy()));
413  Alignment = MinAlign(Alignment, IncrementSize);
414  Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
415                             ST->getPointerInfo().getWithOffset(IncrementSize),
416                             NewStoredVT, ST->isVolatile(), ST->isNonTemporal(),
417                             Alignment);
418
419  SDValue Result =
420    DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
421  DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
422}
423
424/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
425static void
426ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
427                    const TargetLowering &TLI,
428                    SDValue &ValResult, SDValue &ChainResult) {
429  assert(LD->getAddressingMode() == ISD::UNINDEXED &&
430         "unaligned indexed loads not implemented!");
431  SDValue Chain = LD->getChain();
432  SDValue Ptr = LD->getBasePtr();
433  EVT VT = LD->getValueType(0);
434  EVT LoadedVT = LD->getMemoryVT();
435  SDLoc dl(LD);
436  if (VT.isFloatingPoint() || VT.isVector()) {
437    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
438    if (TLI.isTypeLegal(intVT) && TLI.isTypeLegal(LoadedVT)) {
439      // Expand to a (misaligned) integer load of the same size,
440      // then bitconvert to floating point or vector.
441      SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getPointerInfo(),
442                                    LD->isVolatile(),
443                                    LD->isNonTemporal(),
444                                    LD->isInvariant(), LD->getAlignment());
445      SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
446      if (LoadedVT != VT)
447        Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
448                             ISD::ANY_EXTEND, dl, VT, Result);
449
450      ValResult = Result;
451      ChainResult = Chain;
452      return;
453    }
454
455    // Copy the value to a (aligned) stack slot using (unaligned) integer
456    // loads and stores, then do a (aligned) load from the stack slot.
457    MVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT);
458    unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
459    unsigned RegBytes = RegVT.getSizeInBits() / 8;
460    unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
461
462    // Make sure the stack slot is also aligned for the register type.
463    SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
464
465    SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
466    SmallVector<SDValue, 8> Stores;
467    SDValue StackPtr = StackBase;
468    unsigned Offset = 0;
469
470    // Do all but one copies using the full register width.
471    for (unsigned i = 1; i < NumRegs; i++) {
472      // Load one integer register's worth from the original location.
473      SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr,
474                                 LD->getPointerInfo().getWithOffset(Offset),
475                                 LD->isVolatile(), LD->isNonTemporal(),
476                                 LD->isInvariant(),
477                                 MinAlign(LD->getAlignment(), Offset));
478      // Follow the load with a store to the stack slot.  Remember the store.
479      Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
480                                    MachinePointerInfo(), false, false, 0));
481      // Increment the pointers.
482      Offset += RegBytes;
483      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
484      StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
485                             Increment);
486    }
487
488    // The last copy may be partial.  Do an extending load.
489    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
490                                  8 * (LoadedBytes - Offset));
491    SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
492                                  LD->getPointerInfo().getWithOffset(Offset),
493                                  MemVT, LD->isVolatile(),
494                                  LD->isNonTemporal(),
495                                  MinAlign(LD->getAlignment(), Offset));
496    // Follow the load with a store to the stack slot.  Remember the store.
497    // On big-endian machines this requires a truncating store to ensure
498    // that the bits end up in the right place.
499    Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
500                                       MachinePointerInfo(), MemVT,
501                                       false, false, 0));
502
503    // The order of the stores doesn't matter - say it with a TokenFactor.
504    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
505                             Stores.size());
506
507    // Finally, perform the original load only redirected to the stack slot.
508    Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
509                          MachinePointerInfo(), LoadedVT, false, false, 0);
510
511    // Callers expect a MERGE_VALUES node.
512    ValResult = Load;
513    ChainResult = TF;
514    return;
515  }
516  assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
517         "Unaligned load of unsupported type.");
518
519  // Compute the new VT that is half the size of the old one.  This is an
520  // integer MVT.
521  unsigned NumBits = LoadedVT.getSizeInBits();
522  EVT NewLoadedVT;
523  NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
524  NumBits >>= 1;
525
526  unsigned Alignment = LD->getAlignment();
527  unsigned IncrementSize = NumBits / 8;
528  ISD::LoadExtType HiExtType = LD->getExtensionType();
529
530  // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
531  if (HiExtType == ISD::NON_EXTLOAD)
532    HiExtType = ISD::ZEXTLOAD;
533
534  // Load the value in two parts
535  SDValue Lo, Hi;
536  if (TLI.isLittleEndian()) {
537    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
538                        NewLoadedVT, LD->isVolatile(),
539                        LD->isNonTemporal(), Alignment);
540    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
541                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
542    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
543                        LD->getPointerInfo().getWithOffset(IncrementSize),
544                        NewLoadedVT, LD->isVolatile(),
545                        LD->isNonTemporal(), MinAlign(Alignment,IncrementSize));
546  } else {
547    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
548                        NewLoadedVT, LD->isVolatile(),
549                        LD->isNonTemporal(), Alignment);
550    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
551                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
552    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
553                        LD->getPointerInfo().getWithOffset(IncrementSize),
554                        NewLoadedVT, LD->isVolatile(),
555                        LD->isNonTemporal(), MinAlign(Alignment,IncrementSize));
556  }
557
558  // aggregate the two parts
559  SDValue ShiftAmount = DAG.getConstant(NumBits,
560                                       TLI.getShiftAmountTy(Hi.getValueType()));
561  SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
562  Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
563
564  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
565                             Hi.getValue(1));
566
567  ValResult = Result;
568  ChainResult = TF;
569}
570
571/// PerformInsertVectorEltInMemory - Some target cannot handle a variable
572/// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
573/// is necessary to spill the vector being inserted into to memory, perform
574/// the insert there, and then read the result back.
575SDValue SelectionDAGLegalize::
576PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
577                               SDLoc dl) {
578  SDValue Tmp1 = Vec;
579  SDValue Tmp2 = Val;
580  SDValue Tmp3 = Idx;
581
582  // If the target doesn't support this, we have to spill the input vector
583  // to a temporary stack slot, update the element, then reload it.  This is
584  // badness.  We could also load the value into a vector register (either
585  // with a "move to register" or "extload into register" instruction, then
586  // permute it into place, if the idx is a constant and if the idx is
587  // supported by the target.
588  EVT VT    = Tmp1.getValueType();
589  EVT EltVT = VT.getVectorElementType();
590  EVT IdxVT = Tmp3.getValueType();
591  EVT PtrVT = TLI.getPointerTy();
592  SDValue StackPtr = DAG.CreateStackTemporary(VT);
593
594  int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
595
596  // Store the vector.
597  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr,
598                            MachinePointerInfo::getFixedStack(SPFI),
599                            false, false, 0);
600
601  // Truncate or zero extend offset to target pointer type.
602  unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
603  Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3);
604  // Add the offset to the index.
605  unsigned EltSize = EltVT.getSizeInBits()/8;
606  Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
607  SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
608  // Store the scalar value.
609  Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT,
610                         false, false, 0);
611  // Load the updated vector.
612  return DAG.getLoad(VT, dl, Ch, StackPtr,
613                     MachinePointerInfo::getFixedStack(SPFI), false, false,
614                     false, 0);
615}
616
617
618SDValue SelectionDAGLegalize::
619ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, SDLoc dl) {
620  if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
621    // SCALAR_TO_VECTOR requires that the type of the value being inserted
622    // match the element type of the vector being created, except for
623    // integers in which case the inserted value can be over width.
624    EVT EltVT = Vec.getValueType().getVectorElementType();
625    if (Val.getValueType() == EltVT ||
626        (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
627      SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
628                                  Vec.getValueType(), Val);
629
630      unsigned NumElts = Vec.getValueType().getVectorNumElements();
631      // We generate a shuffle of InVec and ScVec, so the shuffle mask
632      // should be 0,1,2,3,4,5... with the appropriate element replaced with
633      // elt 0 of the RHS.
634      SmallVector<int, 8> ShufOps;
635      for (unsigned i = 0; i != NumElts; ++i)
636        ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
637
638      return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
639                                  &ShufOps[0]);
640    }
641  }
642  return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
643}
644
645SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
646  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
647  // FIXME: We shouldn't do this for TargetConstantFP's.
648  // FIXME: move this to the DAG Combiner!  Note that we can't regress due
649  // to phase ordering between legalized code and the dag combiner.  This
650  // probably means that we need to integrate dag combiner and legalizer
651  // together.
652  // We generally can't do this one for long doubles.
653  SDValue Chain = ST->getChain();
654  SDValue Ptr = ST->getBasePtr();
655  unsigned Alignment = ST->getAlignment();
656  bool isVolatile = ST->isVolatile();
657  bool isNonTemporal = ST->isNonTemporal();
658  SDLoc dl(ST);
659  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
660    if (CFP->getValueType(0) == MVT::f32 &&
661        TLI.isTypeLegal(MVT::i32)) {
662      SDValue Con = DAG.getConstant(CFP->getValueAPF().
663                                      bitcastToAPInt().zextOrTrunc(32),
664                              MVT::i32);
665      return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
666                          isVolatile, isNonTemporal, Alignment);
667    }
668
669    if (CFP->getValueType(0) == MVT::f64) {
670      // If this target supports 64-bit registers, do a single 64-bit store.
671      if (TLI.isTypeLegal(MVT::i64)) {
672        SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
673                                  zextOrTrunc(64), MVT::i64);
674        return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
675                            isVolatile, isNonTemporal, Alignment);
676      }
677
678      if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) {
679        // Otherwise, if the target supports 32-bit registers, use 2 32-bit
680        // stores.  If the target supports neither 32- nor 64-bits, this
681        // xform is certainly not worth it.
682        const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt();
683        SDValue Lo = DAG.getConstant(IntVal.trunc(32), MVT::i32);
684        SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32);
685        if (TLI.isBigEndian()) std::swap(Lo, Hi);
686
687        Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), isVolatile,
688                          isNonTemporal, Alignment);
689        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
690                            DAG.getIntPtrConstant(4));
691        Hi = DAG.getStore(Chain, dl, Hi, Ptr,
692                          ST->getPointerInfo().getWithOffset(4),
693                          isVolatile, isNonTemporal, MinAlign(Alignment, 4U));
694
695        return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
696      }
697    }
698  }
699  return SDValue(0, 0);
700}
701
702void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) {
703    StoreSDNode *ST = cast<StoreSDNode>(Node);
704    SDValue Chain = ST->getChain();
705    SDValue Ptr = ST->getBasePtr();
706    SDLoc dl(Node);
707
708    unsigned Alignment = ST->getAlignment();
709    bool isVolatile = ST->isVolatile();
710    bool isNonTemporal = ST->isNonTemporal();
711
712    if (!ST->isTruncatingStore()) {
713      if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
714        ReplaceNode(ST, OptStore);
715        return;
716      }
717
718      {
719        SDValue Value = ST->getValue();
720        MVT VT = Value.getSimpleValueType();
721        switch (TLI.getOperationAction(ISD::STORE, VT)) {
722        default: llvm_unreachable("This action is not supported yet!");
723        case TargetLowering::Legal:
724          // If this is an unaligned store and the target doesn't support it,
725          // expand it.
726          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
727            Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
728            unsigned ABIAlignment= TLI.getDataLayout()->getABITypeAlignment(Ty);
729            if (ST->getAlignment() < ABIAlignment)
730              ExpandUnalignedStore(cast<StoreSDNode>(Node),
731                                   DAG, TLI, this);
732          }
733          break;
734        case TargetLowering::Custom: {
735          SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
736          if (Res.getNode())
737            ReplaceNode(SDValue(Node, 0), Res);
738          return;
739        }
740        case TargetLowering::Promote: {
741          MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT);
742          assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
743                 "Can only promote stores to same size type");
744          Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value);
745          SDValue Result =
746            DAG.getStore(Chain, dl, Value, Ptr,
747                         ST->getPointerInfo(), isVolatile,
748                         isNonTemporal, Alignment);
749          ReplaceNode(SDValue(Node, 0), Result);
750          break;
751        }
752        }
753        return;
754      }
755    } else {
756      SDValue Value = ST->getValue();
757
758      EVT StVT = ST->getMemoryVT();
759      unsigned StWidth = StVT.getSizeInBits();
760
761      if (StWidth != StVT.getStoreSizeInBits()) {
762        // Promote to a byte-sized store with upper bits zero if not
763        // storing an integral number of bytes.  For example, promote
764        // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
765        EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
766                                    StVT.getStoreSizeInBits());
767        Value = DAG.getZeroExtendInReg(Value, dl, StVT);
768        SDValue Result =
769          DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
770                            NVT, isVolatile, isNonTemporal, Alignment);
771        ReplaceNode(SDValue(Node, 0), Result);
772      } else if (StWidth & (StWidth - 1)) {
773        // If not storing a power-of-2 number of bits, expand as two stores.
774        assert(!StVT.isVector() && "Unsupported truncstore!");
775        unsigned RoundWidth = 1 << Log2_32(StWidth);
776        assert(RoundWidth < StWidth);
777        unsigned ExtraWidth = StWidth - RoundWidth;
778        assert(ExtraWidth < RoundWidth);
779        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
780               "Store size not an integral number of bytes!");
781        EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
782        EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
783        SDValue Lo, Hi;
784        unsigned IncrementSize;
785
786        if (TLI.isLittleEndian()) {
787          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
788          // Store the bottom RoundWidth bits.
789          Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
790                                 RoundVT,
791                                 isVolatile, isNonTemporal, Alignment);
792
793          // Store the remaining ExtraWidth bits.
794          IncrementSize = RoundWidth / 8;
795          Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
796                             DAG.getIntPtrConstant(IncrementSize));
797          Hi = DAG.getNode(ISD::SRL, dl, Value.getValueType(), Value,
798                           DAG.getConstant(RoundWidth,
799                                    TLI.getShiftAmountTy(Value.getValueType())));
800          Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr,
801                             ST->getPointerInfo().getWithOffset(IncrementSize),
802                                 ExtraVT, isVolatile, isNonTemporal,
803                                 MinAlign(Alignment, IncrementSize));
804        } else {
805          // Big endian - avoid unaligned stores.
806          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
807          // Store the top RoundWidth bits.
808          Hi = DAG.getNode(ISD::SRL, dl, Value.getValueType(), Value,
809                           DAG.getConstant(ExtraWidth,
810                                    TLI.getShiftAmountTy(Value.getValueType())));
811          Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(),
812                                 RoundVT, isVolatile, isNonTemporal, Alignment);
813
814          // Store the remaining ExtraWidth bits.
815          IncrementSize = RoundWidth / 8;
816          Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
817                             DAG.getIntPtrConstant(IncrementSize));
818          Lo = DAG.getTruncStore(Chain, dl, Value, Ptr,
819                              ST->getPointerInfo().getWithOffset(IncrementSize),
820                                 ExtraVT, isVolatile, isNonTemporal,
821                                 MinAlign(Alignment, IncrementSize));
822        }
823
824        // The order of the stores doesn't matter.
825        SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
826        ReplaceNode(SDValue(Node, 0), Result);
827      } else {
828        switch (TLI.getTruncStoreAction(ST->getValue().getSimpleValueType(),
829                                        StVT.getSimpleVT())) {
830        default: llvm_unreachable("This action is not supported yet!");
831        case TargetLowering::Legal:
832          // If this is an unaligned store and the target doesn't support it,
833          // expand it.
834          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
835            Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
836            unsigned ABIAlignment= TLI.getDataLayout()->getABITypeAlignment(Ty);
837            if (ST->getAlignment() < ABIAlignment)
838              ExpandUnalignedStore(cast<StoreSDNode>(Node), DAG, TLI, this);
839          }
840          break;
841        case TargetLowering::Custom: {
842          SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
843          if (Res.getNode())
844            ReplaceNode(SDValue(Node, 0), Res);
845          return;
846        }
847        case TargetLowering::Expand:
848          assert(!StVT.isVector() &&
849                 "Vector Stores are handled in LegalizeVectorOps");
850
851          // TRUNCSTORE:i16 i32 -> STORE i16
852          assert(TLI.isTypeLegal(StVT) &&
853                 "Do not know how to expand this store!");
854          Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value);
855          SDValue Result =
856            DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
857                         isVolatile, isNonTemporal, Alignment);
858          ReplaceNode(SDValue(Node, 0), Result);
859          break;
860        }
861      }
862    }
863}
864
865void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) {
866  LoadSDNode *LD = cast<LoadSDNode>(Node);
867  SDValue Chain = LD->getChain();  // The chain.
868  SDValue Ptr = LD->getBasePtr();  // The base pointer.
869  SDValue Value;                   // The value returned by the load op.
870  SDLoc dl(Node);
871
872  ISD::LoadExtType ExtType = LD->getExtensionType();
873  if (ExtType == ISD::NON_EXTLOAD) {
874    MVT VT = Node->getSimpleValueType(0);
875    SDValue RVal = SDValue(Node, 0);
876    SDValue RChain = SDValue(Node, 1);
877
878    switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
879    default: llvm_unreachable("This action is not supported yet!");
880    case TargetLowering::Legal:
881      // If this is an unaligned load and the target doesn't support it,
882      // expand it.
883      if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
884        Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
885        unsigned ABIAlignment =
886          TLI.getDataLayout()->getABITypeAlignment(Ty);
887        if (LD->getAlignment() < ABIAlignment){
888          ExpandUnalignedLoad(cast<LoadSDNode>(Node), DAG, TLI, RVal, RChain);
889        }
890      }
891      break;
892    case TargetLowering::Custom: {
893      SDValue Res = TLI.LowerOperation(RVal, DAG);
894      if (Res.getNode()) {
895        RVal = Res;
896        RChain = Res.getValue(1);
897      }
898      break;
899    }
900    case TargetLowering::Promote: {
901      MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
902      assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
903             "Can only promote loads to same size type");
904
905      SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getPointerInfo(),
906                         LD->isVolatile(), LD->isNonTemporal(),
907                         LD->isInvariant(), LD->getAlignment());
908      RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res);
909      RChain = Res.getValue(1);
910      break;
911    }
912    }
913    if (RChain.getNode() != Node) {
914      assert(RVal.getNode() != Node && "Load must be completely replaced");
915      DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal);
916      DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain);
917      ReplacedNode(Node);
918    }
919    return;
920  }
921
922  EVT SrcVT = LD->getMemoryVT();
923  unsigned SrcWidth = SrcVT.getSizeInBits();
924  unsigned Alignment = LD->getAlignment();
925  bool isVolatile = LD->isVolatile();
926  bool isNonTemporal = LD->isNonTemporal();
927
928  if (SrcWidth != SrcVT.getStoreSizeInBits() &&
929      // Some targets pretend to have an i1 loading operation, and actually
930      // load an i8.  This trick is correct for ZEXTLOAD because the top 7
931      // bits are guaranteed to be zero; it helps the optimizers understand
932      // that these bits are zero.  It is also useful for EXTLOAD, since it
933      // tells the optimizers that those bits are undefined.  It would be
934      // nice to have an effective generic way of getting these benefits...
935      // Until such a way is found, don't insist on promoting i1 here.
936      (SrcVT != MVT::i1 ||
937       TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
938    // Promote to a byte-sized load if not loading an integral number of
939    // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
940    unsigned NewWidth = SrcVT.getStoreSizeInBits();
941    EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
942    SDValue Ch;
943
944    // The extra bits are guaranteed to be zero, since we stored them that
945    // way.  A zext load from NVT thus automatically gives zext from SrcVT.
946
947    ISD::LoadExtType NewExtType =
948      ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
949
950    SDValue Result =
951      DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
952                     Chain, Ptr, LD->getPointerInfo(),
953                     NVT, isVolatile, isNonTemporal, Alignment);
954
955    Ch = Result.getValue(1); // The chain.
956
957    if (ExtType == ISD::SEXTLOAD)
958      // Having the top bits zero doesn't help when sign extending.
959      Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
960                           Result.getValueType(),
961                           Result, DAG.getValueType(SrcVT));
962    else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
963      // All the top bits are guaranteed to be zero - inform the optimizers.
964      Result = DAG.getNode(ISD::AssertZext, dl,
965                           Result.getValueType(), Result,
966                           DAG.getValueType(SrcVT));
967
968    Value = Result;
969    Chain = Ch;
970  } else if (SrcWidth & (SrcWidth - 1)) {
971    // If not loading a power-of-2 number of bits, expand as two loads.
972    assert(!SrcVT.isVector() && "Unsupported extload!");
973    unsigned RoundWidth = 1 << Log2_32(SrcWidth);
974    assert(RoundWidth < SrcWidth);
975    unsigned ExtraWidth = SrcWidth - RoundWidth;
976    assert(ExtraWidth < RoundWidth);
977    assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
978           "Load size not an integral number of bytes!");
979    EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
980    EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
981    SDValue Lo, Hi, Ch;
982    unsigned IncrementSize;
983
984    if (TLI.isLittleEndian()) {
985      // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
986      // Load the bottom RoundWidth bits.
987      Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0),
988                          Chain, Ptr,
989                          LD->getPointerInfo(), RoundVT, isVolatile,
990                          isNonTemporal, Alignment);
991
992      // Load the remaining ExtraWidth bits.
993      IncrementSize = RoundWidth / 8;
994      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
995                         DAG.getIntPtrConstant(IncrementSize));
996      Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
997                          LD->getPointerInfo().getWithOffset(IncrementSize),
998                          ExtraVT, isVolatile, isNonTemporal,
999                          MinAlign(Alignment, IncrementSize));
1000
1001      // Build a factor node to remember that this load is independent of
1002      // the other one.
1003      Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1004                       Hi.getValue(1));
1005
1006      // Move the top bits to the right place.
1007      Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1008                       DAG.getConstant(RoundWidth,
1009                                       TLI.getShiftAmountTy(Hi.getValueType())));
1010
1011      // Join the hi and lo parts.
1012      Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1013    } else {
1014      // Big endian - avoid unaligned loads.
1015      // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
1016      // Load the top RoundWidth bits.
1017      Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
1018                          LD->getPointerInfo(), RoundVT, isVolatile,
1019                          isNonTemporal, Alignment);
1020
1021      // Load the remaining ExtraWidth bits.
1022      IncrementSize = RoundWidth / 8;
1023      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
1024                         DAG.getIntPtrConstant(IncrementSize));
1025      Lo = DAG.getExtLoad(ISD::ZEXTLOAD,
1026                          dl, Node->getValueType(0), Chain, Ptr,
1027                          LD->getPointerInfo().getWithOffset(IncrementSize),
1028                          ExtraVT, isVolatile, isNonTemporal,
1029                          MinAlign(Alignment, IncrementSize));
1030
1031      // Build a factor node to remember that this load is independent of
1032      // the other one.
1033      Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1034                       Hi.getValue(1));
1035
1036      // Move the top bits to the right place.
1037      Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1038                       DAG.getConstant(ExtraWidth,
1039                                       TLI.getShiftAmountTy(Hi.getValueType())));
1040
1041      // Join the hi and lo parts.
1042      Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1043    }
1044
1045    Chain = Ch;
1046  } else {
1047    bool isCustom = false;
1048    switch (TLI.getLoadExtAction(ExtType, SrcVT.getSimpleVT())) {
1049    default: llvm_unreachable("This action is not supported yet!");
1050    case TargetLowering::Custom:
1051             isCustom = true;
1052             // FALLTHROUGH
1053    case TargetLowering::Legal: {
1054             Value = SDValue(Node, 0);
1055             Chain = SDValue(Node, 1);
1056
1057             if (isCustom) {
1058               SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
1059               if (Res.getNode()) {
1060                 Value = Res;
1061                 Chain = Res.getValue(1);
1062               }
1063             } else {
1064               // If this is an unaligned load and the target doesn't support it,
1065               // expand it.
1066               if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1067                 Type *Ty =
1068                   LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1069                 unsigned ABIAlignment =
1070                   TLI.getDataLayout()->getABITypeAlignment(Ty);
1071                 if (LD->getAlignment() < ABIAlignment){
1072                   ExpandUnalignedLoad(cast<LoadSDNode>(Node),
1073                                       DAG, TLI, Value, Chain);
1074                 }
1075               }
1076             }
1077             break;
1078    }
1079    case TargetLowering::Expand:
1080             if (!TLI.isLoadExtLegal(ISD::EXTLOAD, SrcVT) && TLI.isTypeLegal(SrcVT)) {
1081               SDValue Load = DAG.getLoad(SrcVT, dl, Chain, Ptr,
1082                                          LD->getPointerInfo(),
1083                                          LD->isVolatile(), LD->isNonTemporal(),
1084                                          LD->isInvariant(), LD->getAlignment());
1085               unsigned ExtendOp;
1086               switch (ExtType) {
1087               case ISD::EXTLOAD:
1088                 ExtendOp = (SrcVT.isFloatingPoint() ?
1089                             ISD::FP_EXTEND : ISD::ANY_EXTEND);
1090                 break;
1091               case ISD::SEXTLOAD: ExtendOp = ISD::SIGN_EXTEND; break;
1092               case ISD::ZEXTLOAD: ExtendOp = ISD::ZERO_EXTEND; break;
1093               default: llvm_unreachable("Unexpected extend load type!");
1094               }
1095               Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load);
1096               Chain = Load.getValue(1);
1097               break;
1098             }
1099
1100             assert(!SrcVT.isVector() &&
1101                    "Vector Loads are handled in LegalizeVectorOps");
1102
1103             // FIXME: This does not work for vectors on most targets.  Sign- and
1104             // zero-extend operations are currently folded into extending loads,
1105             // whether they are legal or not, and then we end up here without any
1106             // support for legalizing them.
1107             assert(ExtType != ISD::EXTLOAD &&
1108                    "EXTLOAD should always be supported!");
1109             // Turn the unsupported load into an EXTLOAD followed by an explicit
1110             // zero/sign extend inreg.
1111             SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0),
1112                                             Chain, Ptr, LD->getPointerInfo(), SrcVT,
1113                                             LD->isVolatile(), LD->isNonTemporal(),
1114                                             LD->getAlignment());
1115             SDValue ValRes;
1116             if (ExtType == ISD::SEXTLOAD)
1117               ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1118                                    Result.getValueType(),
1119                                    Result, DAG.getValueType(SrcVT));
1120             else
1121               ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType());
1122             Value = ValRes;
1123             Chain = Result.getValue(1);
1124             break;
1125    }
1126  }
1127
1128  // Since loads produce two values, make sure to remember that we legalized
1129  // both of them.
1130  if (Chain.getNode() != Node) {
1131    assert(Value.getNode() != Node && "Load must be completely replaced");
1132    DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value);
1133    DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
1134    ReplacedNode(Node);
1135  }
1136}
1137
1138/// LegalizeOp - Return a legal replacement for the given operation, with
1139/// all legal operands.
1140void SelectionDAGLegalize::LegalizeOp(SDNode *Node) {
1141  if (Node->getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
1142    return;
1143
1144  for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
1145    assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) ==
1146             TargetLowering::TypeLegal &&
1147           "Unexpected illegal type!");
1148
1149  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
1150    assert((TLI.getTypeAction(*DAG.getContext(),
1151                              Node->getOperand(i).getValueType()) ==
1152              TargetLowering::TypeLegal ||
1153            Node->getOperand(i).getOpcode() == ISD::TargetConstant) &&
1154           "Unexpected illegal type!");
1155
1156  // Figure out the correct action; the way to query this varies by opcode
1157  TargetLowering::LegalizeAction Action = TargetLowering::Legal;
1158  bool SimpleFinishLegalizing = true;
1159  switch (Node->getOpcode()) {
1160  case ISD::INTRINSIC_W_CHAIN:
1161  case ISD::INTRINSIC_WO_CHAIN:
1162  case ISD::INTRINSIC_VOID:
1163  case ISD::STACKSAVE:
1164    Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
1165    break;
1166  case ISD::VAARG:
1167    Action = TLI.getOperationAction(Node->getOpcode(),
1168                                    Node->getValueType(0));
1169    if (Action != TargetLowering::Promote)
1170      Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
1171    break;
1172  case ISD::SINT_TO_FP:
1173  case ISD::UINT_TO_FP:
1174  case ISD::EXTRACT_VECTOR_ELT:
1175    Action = TLI.getOperationAction(Node->getOpcode(),
1176                                    Node->getOperand(0).getValueType());
1177    break;
1178  case ISD::FP_ROUND_INREG:
1179  case ISD::SIGN_EXTEND_INREG: {
1180    EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
1181    Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
1182    break;
1183  }
1184  case ISD::ATOMIC_STORE: {
1185    Action = TLI.getOperationAction(Node->getOpcode(),
1186                                    Node->getOperand(2).getValueType());
1187    break;
1188  }
1189  case ISD::SELECT_CC:
1190  case ISD::SETCC:
1191  case ISD::BR_CC: {
1192    unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
1193                         Node->getOpcode() == ISD::SETCC ? 2 : 1;
1194    unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
1195    MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType();
1196    ISD::CondCode CCCode =
1197        cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
1198    Action = TLI.getCondCodeAction(CCCode, OpVT);
1199    if (Action == TargetLowering::Legal) {
1200      if (Node->getOpcode() == ISD::SELECT_CC)
1201        Action = TLI.getOperationAction(Node->getOpcode(),
1202                                        Node->getValueType(0));
1203      else
1204        Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
1205    }
1206    break;
1207  }
1208  case ISD::LOAD:
1209  case ISD::STORE:
1210    // FIXME: Model these properly.  LOAD and STORE are complicated, and
1211    // STORE expects the unlegalized operand in some cases.
1212    SimpleFinishLegalizing = false;
1213    break;
1214  case ISD::CALLSEQ_START:
1215  case ISD::CALLSEQ_END:
1216    // FIXME: This shouldn't be necessary.  These nodes have special properties
1217    // dealing with the recursive nature of legalization.  Removing this
1218    // special case should be done as part of making LegalizeDAG non-recursive.
1219    SimpleFinishLegalizing = false;
1220    break;
1221  case ISD::EXTRACT_ELEMENT:
1222  case ISD::FLT_ROUNDS_:
1223  case ISD::SADDO:
1224  case ISD::SSUBO:
1225  case ISD::UADDO:
1226  case ISD::USUBO:
1227  case ISD::SMULO:
1228  case ISD::UMULO:
1229  case ISD::FPOWI:
1230  case ISD::MERGE_VALUES:
1231  case ISD::EH_RETURN:
1232  case ISD::FRAME_TO_ARGS_OFFSET:
1233  case ISD::EH_SJLJ_SETJMP:
1234  case ISD::EH_SJLJ_LONGJMP:
1235    // These operations lie about being legal: when they claim to be legal,
1236    // they should actually be expanded.
1237    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1238    if (Action == TargetLowering::Legal)
1239      Action = TargetLowering::Expand;
1240    break;
1241  case ISD::INIT_TRAMPOLINE:
1242  case ISD::ADJUST_TRAMPOLINE:
1243  case ISD::FRAMEADDR:
1244  case ISD::RETURNADDR:
1245    // These operations lie about being legal: when they claim to be legal,
1246    // they should actually be custom-lowered.
1247    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1248    if (Action == TargetLowering::Legal)
1249      Action = TargetLowering::Custom;
1250    break;
1251  case ISD::DEBUGTRAP:
1252    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1253    if (Action == TargetLowering::Expand) {
1254      // replace ISD::DEBUGTRAP with ISD::TRAP
1255      SDValue NewVal;
1256      NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(),
1257                           Node->getOperand(0));
1258      ReplaceNode(Node, NewVal.getNode());
1259      LegalizeOp(NewVal.getNode());
1260      return;
1261    }
1262    break;
1263
1264  default:
1265    if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
1266      Action = TargetLowering::Legal;
1267    } else {
1268      Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1269    }
1270    break;
1271  }
1272
1273  if (SimpleFinishLegalizing) {
1274    SDNode *NewNode = Node;
1275    switch (Node->getOpcode()) {
1276    default: break;
1277    case ISD::SHL:
1278    case ISD::SRL:
1279    case ISD::SRA:
1280    case ISD::ROTL:
1281    case ISD::ROTR:
1282      // Legalizing shifts/rotates requires adjusting the shift amount
1283      // to the appropriate width.
1284      if (!Node->getOperand(1).getValueType().isVector()) {
1285        SDValue SAO =
1286          DAG.getShiftAmountOperand(Node->getOperand(0).getValueType(),
1287                                    Node->getOperand(1));
1288        HandleSDNode Handle(SAO);
1289        LegalizeOp(SAO.getNode());
1290        NewNode = DAG.UpdateNodeOperands(Node, Node->getOperand(0),
1291                                         Handle.getValue());
1292      }
1293      break;
1294    case ISD::SRL_PARTS:
1295    case ISD::SRA_PARTS:
1296    case ISD::SHL_PARTS:
1297      // Legalizing shifts/rotates requires adjusting the shift amount
1298      // to the appropriate width.
1299      if (!Node->getOperand(2).getValueType().isVector()) {
1300        SDValue SAO =
1301          DAG.getShiftAmountOperand(Node->getOperand(0).getValueType(),
1302                                    Node->getOperand(2));
1303        HandleSDNode Handle(SAO);
1304        LegalizeOp(SAO.getNode());
1305        NewNode = DAG.UpdateNodeOperands(Node, Node->getOperand(0),
1306                                         Node->getOperand(1),
1307                                         Handle.getValue());
1308      }
1309      break;
1310    }
1311
1312    if (NewNode != Node) {
1313      DAG.ReplaceAllUsesWith(Node, NewNode);
1314      for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
1315        DAG.TransferDbgValues(SDValue(Node, i), SDValue(NewNode, i));
1316      ReplacedNode(Node);
1317      Node = NewNode;
1318    }
1319    switch (Action) {
1320    case TargetLowering::Legal:
1321      return;
1322    case TargetLowering::Custom: {
1323      // FIXME: The handling for custom lowering with multiple results is
1324      // a complete mess.
1325      SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
1326      if (Res.getNode()) {
1327        SmallVector<SDValue, 8> ResultVals;
1328        for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
1329          if (e == 1)
1330            ResultVals.push_back(Res);
1331          else
1332            ResultVals.push_back(Res.getValue(i));
1333        }
1334        if (Res.getNode() != Node || Res.getResNo() != 0) {
1335          DAG.ReplaceAllUsesWith(Node, ResultVals.data());
1336          for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
1337            DAG.TransferDbgValues(SDValue(Node, i), ResultVals[i]);
1338          ReplacedNode(Node);
1339        }
1340        return;
1341      }
1342    }
1343      // FALL THROUGH
1344    case TargetLowering::Expand:
1345      ExpandNode(Node);
1346      return;
1347    case TargetLowering::Promote:
1348      PromoteNode(Node);
1349      return;
1350    }
1351  }
1352
1353  switch (Node->getOpcode()) {
1354  default:
1355#ifndef NDEBUG
1356    dbgs() << "NODE: ";
1357    Node->dump( &DAG);
1358    dbgs() << "\n";
1359#endif
1360    llvm_unreachable("Do not know how to legalize this operator!");
1361
1362  case ISD::CALLSEQ_START:
1363  case ISD::CALLSEQ_END:
1364    break;
1365  case ISD::LOAD: {
1366    return LegalizeLoadOps(Node);
1367  }
1368  case ISD::STORE: {
1369    return LegalizeStoreOps(Node);
1370  }
1371  }
1372}
1373
1374SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1375  SDValue Vec = Op.getOperand(0);
1376  SDValue Idx = Op.getOperand(1);
1377  SDLoc dl(Op);
1378  // Store the value to a temporary stack slot, then LOAD the returned part.
1379  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1380  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
1381                            MachinePointerInfo(), false, false, 0);
1382
1383  // Add the offset to the index.
1384  unsigned EltSize =
1385      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1386  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1387                    DAG.getConstant(EltSize, Idx.getValueType()));
1388
1389  if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1390    Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1391  else
1392    Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1393
1394  StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
1395
1396  if (Op.getValueType().isVector())
1397    return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr,MachinePointerInfo(),
1398                       false, false, false, 0);
1399  return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
1400                        MachinePointerInfo(),
1401                        Vec.getValueType().getVectorElementType(),
1402                        false, false, 0);
1403}
1404
1405SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) {
1406  assert(Op.getValueType().isVector() && "Non-vector insert subvector!");
1407
1408  SDValue Vec  = Op.getOperand(0);
1409  SDValue Part = Op.getOperand(1);
1410  SDValue Idx  = Op.getOperand(2);
1411  SDLoc dl(Op);
1412
1413  // Store the value to a temporary stack slot, then LOAD the returned part.
1414
1415  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1416  int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1417  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI);
1418
1419  // First store the whole vector.
1420  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo,
1421                            false, false, 0);
1422
1423  // Then store the inserted part.
1424
1425  // Add the offset to the index.
1426  unsigned EltSize =
1427      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1428
1429  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1430                    DAG.getConstant(EltSize, Idx.getValueType()));
1431
1432  if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1433    Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1434  else
1435    Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1436
1437  SDValue SubStackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx,
1438                                    StackPtr);
1439
1440  // Store the subvector.
1441  Ch = DAG.getStore(DAG.getEntryNode(), dl, Part, SubStackPtr,
1442                    MachinePointerInfo(), false, false, 0);
1443
1444  // Finally, load the updated vector.
1445  return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo,
1446                     false, false, false, 0);
1447}
1448
1449SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1450  // We can't handle this case efficiently.  Allocate a sufficiently
1451  // aligned object on the stack, store each element into it, then load
1452  // the result as a vector.
1453  // Create the stack frame object.
1454  EVT VT = Node->getValueType(0);
1455  EVT EltVT = VT.getVectorElementType();
1456  SDLoc dl(Node);
1457  SDValue FIPtr = DAG.CreateStackTemporary(VT);
1458  int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1459  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI);
1460
1461  // Emit a store of each element to the stack slot.
1462  SmallVector<SDValue, 8> Stores;
1463  unsigned TypeByteSize = EltVT.getSizeInBits() / 8;
1464  // Store (in the right endianness) the elements to memory.
1465  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1466    // Ignore undef elements.
1467    if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1468
1469    unsigned Offset = TypeByteSize*i;
1470
1471    SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType());
1472    Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
1473
1474    // If the destination vector element type is narrower than the source
1475    // element type, only store the bits necessary.
1476    if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) {
1477      Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
1478                                         Node->getOperand(i), Idx,
1479                                         PtrInfo.getWithOffset(Offset),
1480                                         EltVT, false, false, 0));
1481    } else
1482      Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl,
1483                                    Node->getOperand(i), Idx,
1484                                    PtrInfo.getWithOffset(Offset),
1485                                    false, false, 0));
1486  }
1487
1488  SDValue StoreChain;
1489  if (!Stores.empty())    // Not all undef elements?
1490    StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1491                             &Stores[0], Stores.size());
1492  else
1493    StoreChain = DAG.getEntryNode();
1494
1495  // Result is a load from the stack slot.
1496  return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo,
1497                     false, false, false, 0);
1498}
1499
1500SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) {
1501  SDLoc dl(Node);
1502  SDValue Tmp1 = Node->getOperand(0);
1503  SDValue Tmp2 = Node->getOperand(1);
1504
1505  // Get the sign bit of the RHS.  First obtain a value that has the same
1506  // sign as the sign bit, i.e. negative if and only if the sign bit is 1.
1507  SDValue SignBit;
1508  EVT FloatVT = Tmp2.getValueType();
1509  EVT IVT = EVT::getIntegerVT(*DAG.getContext(), FloatVT.getSizeInBits());
1510  if (TLI.isTypeLegal(IVT)) {
1511    // Convert to an integer with the same sign bit.
1512    SignBit = DAG.getNode(ISD::BITCAST, dl, IVT, Tmp2);
1513  } else {
1514    // Store the float to memory, then load the sign part out as an integer.
1515    MVT LoadTy = TLI.getPointerTy();
1516    // First create a temporary that is aligned for both the load and store.
1517    SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
1518    // Then store the float to it.
1519    SDValue Ch =
1520      DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StackPtr, MachinePointerInfo(),
1521                   false, false, 0);
1522    if (TLI.isBigEndian()) {
1523      assert(FloatVT.isByteSized() && "Unsupported floating point type!");
1524      // Load out a legal integer with the same sign bit as the float.
1525      SignBit = DAG.getLoad(LoadTy, dl, Ch, StackPtr, MachinePointerInfo(),
1526                            false, false, false, 0);
1527    } else { // Little endian
1528      SDValue LoadPtr = StackPtr;
1529      // The float may be wider than the integer we are going to load.  Advance
1530      // the pointer so that the loaded integer will contain the sign bit.
1531      unsigned Strides = (FloatVT.getSizeInBits()-1)/LoadTy.getSizeInBits();
1532      unsigned ByteOffset = (Strides * LoadTy.getSizeInBits()) / 8;
1533      LoadPtr = DAG.getNode(ISD::ADD, dl, LoadPtr.getValueType(),
1534                            LoadPtr, DAG.getIntPtrConstant(ByteOffset));
1535      // Load a legal integer containing the sign bit.
1536      SignBit = DAG.getLoad(LoadTy, dl, Ch, LoadPtr, MachinePointerInfo(),
1537                            false, false, false, 0);
1538      // Move the sign bit to the top bit of the loaded integer.
1539      unsigned BitShift = LoadTy.getSizeInBits() -
1540        (FloatVT.getSizeInBits() - 8 * ByteOffset);
1541      assert(BitShift < LoadTy.getSizeInBits() && "Pointer advanced wrong?");
1542      if (BitShift)
1543        SignBit = DAG.getNode(ISD::SHL, dl, LoadTy, SignBit,
1544                              DAG.getConstant(BitShift,
1545                                 TLI.getShiftAmountTy(SignBit.getValueType())));
1546    }
1547  }
1548  // Now get the sign bit proper, by seeing whether the value is negative.
1549  SignBit = DAG.getSetCC(dl, getSetCCResultType(SignBit.getValueType()),
1550                         SignBit, DAG.getConstant(0, SignBit.getValueType()),
1551                         ISD::SETLT);
1552  // Get the absolute value of the result.
1553  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1);
1554  // Select between the nabs and abs value based on the sign bit of
1555  // the input.
1556  return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit,
1557                     DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal),
1558                     AbsVal);
1559}
1560
1561void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1562                                           SmallVectorImpl<SDValue> &Results) {
1563  unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1564  assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1565          " not tell us which reg is the stack pointer!");
1566  SDLoc dl(Node);
1567  EVT VT = Node->getValueType(0);
1568  SDValue Tmp1 = SDValue(Node, 0);
1569  SDValue Tmp2 = SDValue(Node, 1);
1570  SDValue Tmp3 = Node->getOperand(2);
1571  SDValue Chain = Tmp1.getOperand(0);
1572
1573  // Chain the dynamic stack allocation so that it doesn't modify the stack
1574  // pointer when other instructions are using the stack.
1575  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
1576
1577  SDValue Size  = Tmp2.getOperand(1);
1578  SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1579  Chain = SP.getValue(1);
1580  unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1581  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
1582  if (Align > StackAlign)
1583    SP = DAG.getNode(ISD::AND, dl, VT, SP,
1584                      DAG.getConstant(-(uint64_t)Align, VT));
1585  Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size);       // Value
1586  Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain
1587
1588  Tmp2 = DAG.getCALLSEQ_END(Chain,  DAG.getIntPtrConstant(0, true),
1589                            DAG.getIntPtrConstant(0, true), SDValue());
1590
1591  Results.push_back(Tmp1);
1592  Results.push_back(Tmp2);
1593}
1594
1595/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
1596/// condition code CC on the current target. This routine expands SETCC with
1597/// illegal condition code into AND / OR of multiple SETCC values.
1598void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT,
1599                                                 SDValue &LHS, SDValue &RHS,
1600                                                 SDValue &CC,
1601                                                 SDLoc dl) {
1602  MVT OpVT = LHS.getSimpleValueType();
1603  ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1604  switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1605  default: llvm_unreachable("Unknown condition code action!");
1606  case TargetLowering::Legal:
1607    // Nothing to do.
1608    break;
1609  case TargetLowering::Expand: {
1610    ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1611    ISD::CondCode InvCC = ISD::SETCC_INVALID;
1612    unsigned Opc = 0;
1613    switch (CCCode) {
1614    default: llvm_unreachable("Don't know how to expand this condition!");
1615    case ISD::SETO:
1616        assert(TLI.getCondCodeAction(ISD::SETOEQ, OpVT)
1617            == TargetLowering::Legal
1618            && "If SETO is expanded, SETOEQ must be legal!");
1619        CC1 = ISD::SETOEQ; CC2 = ISD::SETOEQ; Opc = ISD::AND; break;
1620    case ISD::SETUO:
1621        assert(TLI.getCondCodeAction(ISD::SETUNE, OpVT)
1622            == TargetLowering::Legal
1623            && "If SETUO is expanded, SETUNE must be legal!");
1624        CC1 = ISD::SETUNE; CC2 = ISD::SETUNE; Opc = ISD::OR;  break;
1625    case ISD::SETOEQ:
1626    case ISD::SETOGT:
1627    case ISD::SETOGE:
1628    case ISD::SETOLT:
1629    case ISD::SETOLE:
1630    case ISD::SETONE:
1631    case ISD::SETUEQ:
1632    case ISD::SETUNE:
1633    case ISD::SETUGT:
1634    case ISD::SETUGE:
1635    case ISD::SETULT:
1636    case ISD::SETULE:
1637        // If we are floating point, assign and break, otherwise fall through.
1638        if (!OpVT.isInteger()) {
1639          // We can use the 4th bit to tell if we are the unordered
1640          // or ordered version of the opcode.
1641          CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
1642          Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
1643          CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
1644          break;
1645        }
1646        // Fallthrough if we are unsigned integer.
1647    case ISD::SETLE:
1648    case ISD::SETGT:
1649    case ISD::SETGE:
1650    case ISD::SETLT:
1651    case ISD::SETNE:
1652    case ISD::SETEQ:
1653      InvCC = ISD::getSetCCSwappedOperands(CCCode);
1654      if (TLI.getCondCodeAction(InvCC, OpVT) == TargetLowering::Expand) {
1655        // We only support using the inverted operation and not a
1656        // different manner of supporting expanding these cases.
1657        llvm_unreachable("Don't know how to expand this condition!");
1658      }
1659      LHS = DAG.getSetCC(dl, VT, RHS, LHS, InvCC);
1660      RHS = SDValue();
1661      CC = SDValue();
1662      return;
1663    }
1664
1665    SDValue SetCC1, SetCC2;
1666    if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
1667      // If we aren't the ordered or unorder operation,
1668      // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
1669      SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1670      SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
1671    } else {
1672      // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
1673      SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1);
1674      SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2);
1675    }
1676    LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1677    RHS = SDValue();
1678    CC  = SDValue();
1679    break;
1680  }
1681  }
1682}
1683
1684/// EmitStackConvert - Emit a store/load combination to the stack.  This stores
1685/// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
1686/// a load from the stack slot to DestVT, extending it if needed.
1687/// The resultant code need not be legal.
1688SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
1689                                               EVT SlotVT,
1690                                               EVT DestVT,
1691                                               SDLoc dl) {
1692  // Create the stack frame object.
1693  unsigned SrcAlign =
1694    TLI.getDataLayout()->getPrefTypeAlignment(SrcOp.getValueType().
1695                                              getTypeForEVT(*DAG.getContext()));
1696  SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1697
1698  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1699  int SPFI = StackPtrFI->getIndex();
1700  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(SPFI);
1701
1702  unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
1703  unsigned SlotSize = SlotVT.getSizeInBits();
1704  unsigned DestSize = DestVT.getSizeInBits();
1705  Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
1706  unsigned DestAlign = TLI.getDataLayout()->getPrefTypeAlignment(DestType);
1707
1708  // Emit a store to the stack slot.  Use a truncstore if the input value is
1709  // later than DestVT.
1710  SDValue Store;
1711
1712  if (SrcSize > SlotSize)
1713    Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1714                              PtrInfo, SlotVT, false, false, SrcAlign);
1715  else {
1716    assert(SrcSize == SlotSize && "Invalid store");
1717    Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1718                         PtrInfo, false, false, SrcAlign);
1719  }
1720
1721  // Result is a load from the stack slot.
1722  if (SlotSize == DestSize)
1723    return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo,
1724                       false, false, false, DestAlign);
1725
1726  assert(SlotSize < DestSize && "Unknown extension!");
1727  return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr,
1728                        PtrInfo, SlotVT, false, false, DestAlign);
1729}
1730
1731SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1732  SDLoc dl(Node);
1733  // Create a vector sized/aligned stack slot, store the value to element #0,
1734  // then load the whole vector back out.
1735  SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1736
1737  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1738  int SPFI = StackPtrFI->getIndex();
1739
1740  SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0),
1741                                 StackPtr,
1742                                 MachinePointerInfo::getFixedStack(SPFI),
1743                                 Node->getValueType(0).getVectorElementType(),
1744                                 false, false, 0);
1745  return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr,
1746                     MachinePointerInfo::getFixedStack(SPFI),
1747                     false, false, false, 0);
1748}
1749
1750
1751/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
1752/// support the operation, but do support the resultant vector type.
1753SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1754  unsigned NumElems = Node->getNumOperands();
1755  SDValue Value1, Value2;
1756  SDLoc dl(Node);
1757  EVT VT = Node->getValueType(0);
1758  EVT OpVT = Node->getOperand(0).getValueType();
1759  EVT EltVT = VT.getVectorElementType();
1760
1761  // If the only non-undef value is the low element, turn this into a
1762  // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
1763  bool isOnlyLowElement = true;
1764  bool MoreThanTwoValues = false;
1765  bool isConstant = true;
1766  for (unsigned i = 0; i < NumElems; ++i) {
1767    SDValue V = Node->getOperand(i);
1768    if (V.getOpcode() == ISD::UNDEF)
1769      continue;
1770    if (i > 0)
1771      isOnlyLowElement = false;
1772    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1773      isConstant = false;
1774
1775    if (!Value1.getNode()) {
1776      Value1 = V;
1777    } else if (!Value2.getNode()) {
1778      if (V != Value1)
1779        Value2 = V;
1780    } else if (V != Value1 && V != Value2) {
1781      MoreThanTwoValues = true;
1782    }
1783  }
1784
1785  if (!Value1.getNode())
1786    return DAG.getUNDEF(VT);
1787
1788  if (isOnlyLowElement)
1789    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1790
1791  // If all elements are constants, create a load from the constant pool.
1792  if (isConstant) {
1793    SmallVector<Constant*, 16> CV;
1794    for (unsigned i = 0, e = NumElems; i != e; ++i) {
1795      if (ConstantFPSDNode *V =
1796          dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1797        CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1798      } else if (ConstantSDNode *V =
1799                 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1800        if (OpVT==EltVT)
1801          CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1802        else {
1803          // If OpVT and EltVT don't match, EltVT is not legal and the
1804          // element values have been promoted/truncated earlier.  Undo this;
1805          // we don't want a v16i8 to become a v16i32 for example.
1806          const ConstantInt *CI = V->getConstantIntValue();
1807          CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
1808                                        CI->getZExtValue()));
1809        }
1810      } else {
1811        assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
1812        Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
1813        CV.push_back(UndefValue::get(OpNTy));
1814      }
1815    }
1816    Constant *CP = ConstantVector::get(CV);
1817    SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
1818    unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
1819    return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
1820                       MachinePointerInfo::getConstantPool(),
1821                       false, false, false, Alignment);
1822  }
1823
1824  if (!MoreThanTwoValues) {
1825    SmallVector<int, 8> ShuffleVec(NumElems, -1);
1826    for (unsigned i = 0; i < NumElems; ++i) {
1827      SDValue V = Node->getOperand(i);
1828      if (V.getOpcode() == ISD::UNDEF)
1829        continue;
1830      ShuffleVec[i] = V == Value1 ? 0 : NumElems;
1831    }
1832    if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
1833      // Get the splatted value into the low element of a vector register.
1834      SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
1835      SDValue Vec2;
1836      if (Value2.getNode())
1837        Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
1838      else
1839        Vec2 = DAG.getUNDEF(VT);
1840
1841      // Return shuffle(LowValVec, undef, <0,0,0,0>)
1842      return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
1843    }
1844  }
1845
1846  // Otherwise, we can't handle this case efficiently.
1847  return ExpandVectorBuildThroughStack(Node);
1848}
1849
1850// ExpandLibCall - Expand a node into a call to a libcall.  If the result value
1851// does not fit into a register, return the lo part and set the hi part to the
1852// by-reg argument.  If it does fit into a single register, return the result
1853// and leave the Hi part unset.
1854SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
1855                                            bool isSigned) {
1856  TargetLowering::ArgListTy Args;
1857  TargetLowering::ArgListEntry Entry;
1858  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1859    EVT ArgVT = Node->getOperand(i).getValueType();
1860    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1861    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
1862    Entry.isSExt = isSigned;
1863    Entry.isZExt = !isSigned;
1864    Args.push_back(Entry);
1865  }
1866  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1867                                         TLI.getPointerTy());
1868
1869  Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1870
1871  // By default, the input chain to this libcall is the entry node of the
1872  // function. If the libcall is going to be emitted as a tail call then
1873  // TLI.isUsedByReturnOnly will change it to the right chain if the return
1874  // node which is being folded has a non-entry input chain.
1875  SDValue InChain = DAG.getEntryNode();
1876
1877  // isTailCall may be true since the callee does not reference caller stack
1878  // frame. Check if it's in the right position.
1879  SDValue TCChain = InChain;
1880  bool isTailCall = TLI.isInTailCallPosition(DAG, Node, TCChain);
1881  if (isTailCall)
1882    InChain = TCChain;
1883
1884  TargetLowering::
1885  CallLoweringInfo CLI(InChain, RetTy, isSigned, !isSigned, false, false,
1886                    0, TLI.getLibcallCallingConv(LC), isTailCall,
1887                    /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
1888                    Callee, Args, DAG, SDLoc(Node));
1889  std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
1890
1891
1892  if (!CallInfo.second.getNode())
1893    // It's a tailcall, return the chain (which is the DAG root).
1894    return DAG.getRoot();
1895
1896  return CallInfo.first;
1897}
1898
1899/// ExpandLibCall - Generate a libcall taking the given operands as arguments
1900/// and returning a result of type RetVT.
1901SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, EVT RetVT,
1902                                            const SDValue *Ops, unsigned NumOps,
1903                                            bool isSigned, SDLoc dl) {
1904  TargetLowering::ArgListTy Args;
1905  Args.reserve(NumOps);
1906
1907  TargetLowering::ArgListEntry Entry;
1908  for (unsigned i = 0; i != NumOps; ++i) {
1909    Entry.Node = Ops[i];
1910    Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
1911    Entry.isSExt = isSigned;
1912    Entry.isZExt = !isSigned;
1913    Args.push_back(Entry);
1914  }
1915  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1916                                         TLI.getPointerTy());
1917
1918  Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
1919  TargetLowering::
1920  CallLoweringInfo CLI(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false,
1921                       false, 0, TLI.getLibcallCallingConv(LC),
1922                       /*isTailCall=*/false,
1923                  /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
1924                  Callee, Args, DAG, dl);
1925  std::pair<SDValue,SDValue> CallInfo = TLI.LowerCallTo(CLI);
1926
1927  return CallInfo.first;
1928}
1929
1930// ExpandChainLibCall - Expand a node into a call to a libcall. Similar to
1931// ExpandLibCall except that the first operand is the in-chain.
1932std::pair<SDValue, SDValue>
1933SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC,
1934                                         SDNode *Node,
1935                                         bool isSigned) {
1936  SDValue InChain = Node->getOperand(0);
1937
1938  TargetLowering::ArgListTy Args;
1939  TargetLowering::ArgListEntry Entry;
1940  for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) {
1941    EVT ArgVT = Node->getOperand(i).getValueType();
1942    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1943    Entry.Node = Node->getOperand(i);
1944    Entry.Ty = ArgTy;
1945    Entry.isSExt = isSigned;
1946    Entry.isZExt = !isSigned;
1947    Args.push_back(Entry);
1948  }
1949  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1950                                         TLI.getPointerTy());
1951
1952  Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1953  TargetLowering::
1954  CallLoweringInfo CLI(InChain, RetTy, isSigned, !isSigned, false, false,
1955                    0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false,
1956                    /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
1957                    Callee, Args, DAG, SDLoc(Node));
1958  std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
1959
1960  return CallInfo;
1961}
1962
1963SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
1964                                              RTLIB::Libcall Call_F32,
1965                                              RTLIB::Libcall Call_F64,
1966                                              RTLIB::Libcall Call_F80,
1967                                              RTLIB::Libcall Call_F128,
1968                                              RTLIB::Libcall Call_PPCF128) {
1969  RTLIB::Libcall LC;
1970  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1971  default: llvm_unreachable("Unexpected request for libcall!");
1972  case MVT::f32: LC = Call_F32; break;
1973  case MVT::f64: LC = Call_F64; break;
1974  case MVT::f80: LC = Call_F80; break;
1975  case MVT::f128: LC = Call_F128; break;
1976  case MVT::ppcf128: LC = Call_PPCF128; break;
1977  }
1978  return ExpandLibCall(LC, Node, false);
1979}
1980
1981SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
1982                                               RTLIB::Libcall Call_I8,
1983                                               RTLIB::Libcall Call_I16,
1984                                               RTLIB::Libcall Call_I32,
1985                                               RTLIB::Libcall Call_I64,
1986                                               RTLIB::Libcall Call_I128) {
1987  RTLIB::Libcall LC;
1988  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1989  default: llvm_unreachable("Unexpected request for libcall!");
1990  case MVT::i8:   LC = Call_I8; break;
1991  case MVT::i16:  LC = Call_I16; break;
1992  case MVT::i32:  LC = Call_I32; break;
1993  case MVT::i64:  LC = Call_I64; break;
1994  case MVT::i128: LC = Call_I128; break;
1995  }
1996  return ExpandLibCall(LC, Node, isSigned);
1997}
1998
1999/// isDivRemLibcallAvailable - Return true if divmod libcall is available.
2000static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned,
2001                                     const TargetLowering &TLI) {
2002  RTLIB::Libcall LC;
2003  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
2004  default: llvm_unreachable("Unexpected request for libcall!");
2005  case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
2006  case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
2007  case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
2008  case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
2009  case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
2010  }
2011
2012  return TLI.getLibcallName(LC) != 0;
2013}
2014
2015/// useDivRem - Only issue divrem libcall if both quotient and remainder are
2016/// needed.
2017static bool useDivRem(SDNode *Node, bool isSigned, bool isDIV) {
2018  // The other use might have been replaced with a divrem already.
2019  unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2020  unsigned OtherOpcode = 0;
2021  if (isSigned)
2022    OtherOpcode = isDIV ? ISD::SREM : ISD::SDIV;
2023  else
2024    OtherOpcode = isDIV ? ISD::UREM : ISD::UDIV;
2025
2026  SDValue Op0 = Node->getOperand(0);
2027  SDValue Op1 = Node->getOperand(1);
2028  for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
2029         UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
2030    SDNode *User = *UI;
2031    if (User == Node)
2032      continue;
2033    if ((User->getOpcode() == OtherOpcode || User->getOpcode() == DivRemOpc) &&
2034        User->getOperand(0) == Op0 &&
2035        User->getOperand(1) == Op1)
2036      return true;
2037  }
2038  return false;
2039}
2040
2041/// ExpandDivRemLibCall - Issue libcalls to __{u}divmod to compute div / rem
2042/// pairs.
2043void
2044SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node,
2045                                          SmallVectorImpl<SDValue> &Results) {
2046  unsigned Opcode = Node->getOpcode();
2047  bool isSigned = Opcode == ISD::SDIVREM;
2048
2049  RTLIB::Libcall LC;
2050  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
2051  default: llvm_unreachable("Unexpected request for libcall!");
2052  case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
2053  case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
2054  case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
2055  case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
2056  case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
2057  }
2058
2059  // The input chain to this libcall is the entry node of the function.
2060  // Legalizing the call will automatically add the previous call to the
2061  // dependence.
2062  SDValue InChain = DAG.getEntryNode();
2063
2064  EVT RetVT = Node->getValueType(0);
2065  Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2066
2067  TargetLowering::ArgListTy Args;
2068  TargetLowering::ArgListEntry Entry;
2069  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
2070    EVT ArgVT = Node->getOperand(i).getValueType();
2071    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2072    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
2073    Entry.isSExt = isSigned;
2074    Entry.isZExt = !isSigned;
2075    Args.push_back(Entry);
2076  }
2077
2078  // Also pass the return address of the remainder.
2079  SDValue FIPtr = DAG.CreateStackTemporary(RetVT);
2080  Entry.Node = FIPtr;
2081  Entry.Ty = RetTy->getPointerTo();
2082  Entry.isSExt = isSigned;
2083  Entry.isZExt = !isSigned;
2084  Args.push_back(Entry);
2085
2086  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2087                                         TLI.getPointerTy());
2088
2089  SDLoc dl(Node);
2090  TargetLowering::
2091  CallLoweringInfo CLI(InChain, RetTy, isSigned, !isSigned, false, false,
2092                    0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false,
2093                    /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
2094                    Callee, Args, DAG, dl);
2095  std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2096
2097  // Remainder is loaded back from the stack frame.
2098  SDValue Rem = DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr,
2099                            MachinePointerInfo(), false, false, false, 0);
2100  Results.push_back(CallInfo.first);
2101  Results.push_back(Rem);
2102}
2103
2104/// isSinCosLibcallAvailable - Return true if sincos libcall is available.
2105static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) {
2106  RTLIB::Libcall LC;
2107  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
2108  default: llvm_unreachable("Unexpected request for libcall!");
2109  case MVT::f32:     LC = RTLIB::SINCOS_F32; break;
2110  case MVT::f64:     LC = RTLIB::SINCOS_F64; break;
2111  case MVT::f80:     LC = RTLIB::SINCOS_F80; break;
2112  case MVT::f128:    LC = RTLIB::SINCOS_F128; break;
2113  case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
2114  }
2115  return TLI.getLibcallName(LC) != 0;
2116}
2117
2118/// canCombineSinCosLibcall - Return true if sincos libcall is available and
2119/// can be used to combine sin and cos.
2120static bool canCombineSinCosLibcall(SDNode *Node, const TargetLowering &TLI,
2121                                    const TargetMachine &TM) {
2122  if (!isSinCosLibcallAvailable(Node, TLI))
2123    return false;
2124  // GNU sin/cos functions set errno while sincos does not. Therefore
2125  // combining sin and cos is only safe if unsafe-fpmath is enabled.
2126  bool isGNU = Triple(TM.getTargetTriple()).getEnvironment() == Triple::GNU;
2127  if (isGNU && !TM.Options.UnsafeFPMath)
2128    return false;
2129  return true;
2130}
2131
2132/// useSinCos - Only issue sincos libcall if both sin and cos are
2133/// needed.
2134static bool useSinCos(SDNode *Node) {
2135  unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN
2136    ? ISD::FCOS : ISD::FSIN;
2137
2138  SDValue Op0 = Node->getOperand(0);
2139  for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
2140       UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
2141    SDNode *User = *UI;
2142    if (User == Node)
2143      continue;
2144    // The other user might have been turned into sincos already.
2145    if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS)
2146      return true;
2147  }
2148  return false;
2149}
2150
2151/// ExpandSinCosLibCall - Issue libcalls to sincos to compute sin / cos
2152/// pairs.
2153void
2154SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node,
2155                                          SmallVectorImpl<SDValue> &Results) {
2156  RTLIB::Libcall LC;
2157  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
2158  default: llvm_unreachable("Unexpected request for libcall!");
2159  case MVT::f32:     LC = RTLIB::SINCOS_F32; break;
2160  case MVT::f64:     LC = RTLIB::SINCOS_F64; break;
2161  case MVT::f80:     LC = RTLIB::SINCOS_F80; break;
2162  case MVT::f128:    LC = RTLIB::SINCOS_F128; break;
2163  case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
2164  }
2165
2166  // The input chain to this libcall is the entry node of the function.
2167  // Legalizing the call will automatically add the previous call to the
2168  // dependence.
2169  SDValue InChain = DAG.getEntryNode();
2170
2171  EVT RetVT = Node->getValueType(0);
2172  Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2173
2174  TargetLowering::ArgListTy Args;
2175  TargetLowering::ArgListEntry Entry;
2176
2177  // Pass the argument.
2178  Entry.Node = Node->getOperand(0);
2179  Entry.Ty = RetTy;
2180  Entry.isSExt = false;
2181  Entry.isZExt = false;
2182  Args.push_back(Entry);
2183
2184  // Pass the return address of sin.
2185  SDValue SinPtr = DAG.CreateStackTemporary(RetVT);
2186  Entry.Node = SinPtr;
2187  Entry.Ty = RetTy->getPointerTo();
2188  Entry.isSExt = false;
2189  Entry.isZExt = false;
2190  Args.push_back(Entry);
2191
2192  // Also pass the return address of the cos.
2193  SDValue CosPtr = DAG.CreateStackTemporary(RetVT);
2194  Entry.Node = CosPtr;
2195  Entry.Ty = RetTy->getPointerTo();
2196  Entry.isSExt = false;
2197  Entry.isZExt = false;
2198  Args.push_back(Entry);
2199
2200  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2201                                         TLI.getPointerTy());
2202
2203  SDLoc dl(Node);
2204  TargetLowering::
2205  CallLoweringInfo CLI(InChain, Type::getVoidTy(*DAG.getContext()),
2206                       false, false, false, false,
2207                       0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false,
2208                       /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
2209                       Callee, Args, DAG, dl);
2210  std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2211
2212  Results.push_back(DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr,
2213                                MachinePointerInfo(), false, false, false, 0));
2214  Results.push_back(DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr,
2215                                MachinePointerInfo(), false, false, false, 0));
2216}
2217
2218/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
2219/// INT_TO_FP operation of the specified operand when the target requests that
2220/// we expand it.  At this point, we know that the result and operand types are
2221/// legal for the target.
2222SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
2223                                                   SDValue Op0,
2224                                                   EVT DestVT,
2225                                                   SDLoc dl) {
2226  if (Op0.getValueType() == MVT::i32 && TLI.isTypeLegal(MVT::f64)) {
2227    // simple 32-bit [signed|unsigned] integer to float/double expansion
2228
2229    // Get the stack frame index of a 8 byte buffer.
2230    SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
2231
2232    // word offset constant for Hi/Lo address computation
2233    SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy());
2234    // set up Hi and Lo (into buffer) address based on endian
2235    SDValue Hi = StackSlot;
2236    SDValue Lo = DAG.getNode(ISD::ADD, dl,
2237                             TLI.getPointerTy(), StackSlot, WordOff);
2238    if (TLI.isLittleEndian())
2239      std::swap(Hi, Lo);
2240
2241    // if signed map to unsigned space
2242    SDValue Op0Mapped;
2243    if (isSigned) {
2244      // constant used to invert sign bit (signed to unsigned mapping)
2245      SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32);
2246      Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
2247    } else {
2248      Op0Mapped = Op0;
2249    }
2250    // store the lo of the constructed double - based on integer input
2251    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
2252                                  Op0Mapped, Lo, MachinePointerInfo(),
2253                                  false, false, 0);
2254    // initial hi portion of constructed double
2255    SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
2256    // store the hi of the constructed double - biased exponent
2257    SDValue Store2 = DAG.getStore(Store1, dl, InitialHi, Hi,
2258                                  MachinePointerInfo(),
2259                                  false, false, 0);
2260    // load the constructed double
2261    SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot,
2262                               MachinePointerInfo(), false, false, false, 0);
2263    // FP constant to bias correct the final result
2264    SDValue Bias = DAG.getConstantFP(isSigned ?
2265                                     BitsToDouble(0x4330000080000000ULL) :
2266                                     BitsToDouble(0x4330000000000000ULL),
2267                                     MVT::f64);
2268    // subtract the bias
2269    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2270    // final result
2271    SDValue Result;
2272    // handle final rounding
2273    if (DestVT == MVT::f64) {
2274      // do nothing
2275      Result = Sub;
2276    } else if (DestVT.bitsLT(MVT::f64)) {
2277      Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
2278                           DAG.getIntPtrConstant(0));
2279    } else if (DestVT.bitsGT(MVT::f64)) {
2280      Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
2281    }
2282    return Result;
2283  }
2284  assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2285  // Code below here assumes !isSigned without checking again.
2286
2287  // Implementation of unsigned i64 to f64 following the algorithm in
2288  // __floatundidf in compiler_rt. This implementation has the advantage
2289  // of performing rounding correctly, both in the default rounding mode
2290  // and in all alternate rounding modes.
2291  // TODO: Generalize this for use with other types.
2292  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) {
2293    SDValue TwoP52 =
2294      DAG.getConstant(UINT64_C(0x4330000000000000), MVT::i64);
2295    SDValue TwoP84PlusTwoP52 =
2296      DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), MVT::f64);
2297    SDValue TwoP84 =
2298      DAG.getConstant(UINT64_C(0x4530000000000000), MVT::i64);
2299
2300    SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32);
2301    SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0,
2302                             DAG.getConstant(32, MVT::i64));
2303    SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52);
2304    SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84);
2305    SDValue LoFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, LoOr);
2306    SDValue HiFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, HiOr);
2307    SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt,
2308                                TwoP84PlusTwoP52);
2309    return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub);
2310  }
2311
2312  // Implementation of unsigned i64 to f32.
2313  // TODO: Generalize this for use with other types.
2314  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) {
2315    // For unsigned conversions, convert them to signed conversions using the
2316    // algorithm from the x86_64 __floatundidf in compiler_rt.
2317    if (!isSigned) {
2318      SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Op0);
2319
2320      SDValue ShiftConst =
2321          DAG.getConstant(1, TLI.getShiftAmountTy(Op0.getValueType()));
2322      SDValue Shr = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, ShiftConst);
2323      SDValue AndConst = DAG.getConstant(1, MVT::i64);
2324      SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, AndConst);
2325      SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, Shr);
2326
2327      SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Or);
2328      SDValue Slow = DAG.getNode(ISD::FADD, dl, MVT::f32, SignCvt, SignCvt);
2329
2330      // TODO: This really should be implemented using a branch rather than a
2331      // select.  We happen to get lucky and machinesink does the right
2332      // thing most of the time.  This would be a good candidate for a
2333      //pseudo-op, or, even better, for whole-function isel.
2334      SDValue SignBitTest = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
2335        Op0, DAG.getConstant(0, MVT::i64), ISD::SETLT);
2336      return DAG.getNode(ISD::SELECT, dl, MVT::f32, SignBitTest, Slow, Fast);
2337    }
2338
2339    // Otherwise, implement the fully general conversion.
2340
2341    SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2342         DAG.getConstant(UINT64_C(0xfffffffffffff800), MVT::i64));
2343    SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And,
2344         DAG.getConstant(UINT64_C(0x800), MVT::i64));
2345    SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2346         DAG.getConstant(UINT64_C(0x7ff), MVT::i64));
2347    SDValue Ne = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
2348                   And2, DAG.getConstant(UINT64_C(0), MVT::i64), ISD::SETNE);
2349    SDValue Sel = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ne, Or, Op0);
2350    SDValue Ge = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
2351                   Op0, DAG.getConstant(UINT64_C(0x0020000000000000), MVT::i64),
2352                   ISD::SETUGE);
2353    SDValue Sel2 = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ge, Sel, Op0);
2354    EVT SHVT = TLI.getShiftAmountTy(Sel2.getValueType());
2355
2356    SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2,
2357                             DAG.getConstant(32, SHVT));
2358    SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh);
2359    SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc);
2360    SDValue TwoP32 =
2361      DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), MVT::f64);
2362    SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt);
2363    SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2);
2364    SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo);
2365    SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2);
2366    return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd,
2367                       DAG.getIntPtrConstant(0));
2368  }
2369
2370  SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2371
2372  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(Op0.getValueType()),
2373                                 Op0, DAG.getConstant(0, Op0.getValueType()),
2374                                 ISD::SETLT);
2375  SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
2376  SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(),
2377                                    SignSet, Four, Zero);
2378
2379  // If the sign bit of the integer is set, the large number will be treated
2380  // as a negative number.  To counteract this, the dynamic code adds an
2381  // offset depending on the data type.
2382  uint64_t FF;
2383  switch (Op0.getValueType().getSimpleVT().SimpleTy) {
2384  default: llvm_unreachable("Unsupported integer type!");
2385  case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
2386  case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
2387  case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
2388  case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
2389  }
2390  if (TLI.isLittleEndian()) FF <<= 32;
2391  Constant *FudgeFactor = ConstantInt::get(
2392                                       Type::getInt64Ty(*DAG.getContext()), FF);
2393
2394  SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
2395  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2396  CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset);
2397  Alignment = std::min(Alignment, 4u);
2398  SDValue FudgeInReg;
2399  if (DestVT == MVT::f32)
2400    FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2401                             MachinePointerInfo::getConstantPool(),
2402                             false, false, false, Alignment);
2403  else {
2404    SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT,
2405                                  DAG.getEntryNode(), CPIdx,
2406                                  MachinePointerInfo::getConstantPool(),
2407                                  MVT::f32, false, false, Alignment);
2408    HandleSDNode Handle(Load);
2409    LegalizeOp(Load.getNode());
2410    FudgeInReg = Handle.getValue();
2411  }
2412
2413  return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2414}
2415
2416/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
2417/// *INT_TO_FP operation of the specified operand when the target requests that
2418/// we promote it.  At this point, we know that the result and operand types are
2419/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2420/// operation that takes a larger input.
2421SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
2422                                                    EVT DestVT,
2423                                                    bool isSigned,
2424                                                    SDLoc dl) {
2425  // First step, figure out the appropriate *INT_TO_FP operation to use.
2426  EVT NewInTy = LegalOp.getValueType();
2427
2428  unsigned OpToUse = 0;
2429
2430  // Scan for the appropriate larger type to use.
2431  while (1) {
2432    NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2433    assert(NewInTy.isInteger() && "Ran out of possibilities!");
2434
2435    // If the target supports SINT_TO_FP of this type, use it.
2436    if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2437      OpToUse = ISD::SINT_TO_FP;
2438      break;
2439    }
2440    if (isSigned) continue;
2441
2442    // If the target supports UINT_TO_FP of this type, use it.
2443    if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2444      OpToUse = ISD::UINT_TO_FP;
2445      break;
2446    }
2447
2448    // Otherwise, try a larger type.
2449  }
2450
2451  // Okay, we found the operation and type to use.  Zero extend our input to the
2452  // desired type then run the operation on it.
2453  return DAG.getNode(OpToUse, dl, DestVT,
2454                     DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2455                                 dl, NewInTy, LegalOp));
2456}
2457
2458/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
2459/// FP_TO_*INT operation of the specified operand when the target requests that
2460/// we promote it.  At this point, we know that the result and operand types are
2461/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2462/// operation that returns a larger result.
2463SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
2464                                                    EVT DestVT,
2465                                                    bool isSigned,
2466                                                    SDLoc dl) {
2467  // First step, figure out the appropriate FP_TO*INT operation to use.
2468  EVT NewOutTy = DestVT;
2469
2470  unsigned OpToUse = 0;
2471
2472  // Scan for the appropriate larger type to use.
2473  while (1) {
2474    NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2475    assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2476
2477    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2478      OpToUse = ISD::FP_TO_SINT;
2479      break;
2480    }
2481
2482    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
2483      OpToUse = ISD::FP_TO_UINT;
2484      break;
2485    }
2486
2487    // Otherwise, try a larger type.
2488  }
2489
2490
2491  // Okay, we found the operation and type to use.
2492  SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2493
2494  // Truncate the result of the extended FP_TO_*INT operation to the desired
2495  // size.
2496  return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2497}
2498
2499/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
2500///
2501SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, SDLoc dl) {
2502  EVT VT = Op.getValueType();
2503  EVT SHVT = TLI.getShiftAmountTy(VT);
2504  SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2505  switch (VT.getSimpleVT().SimpleTy) {
2506  default: llvm_unreachable("Unhandled Expand type in BSWAP!");
2507  case MVT::i16:
2508    Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2509    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2510    return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2511  case MVT::i32:
2512    Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2513    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2514    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2515    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2516    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
2517    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT));
2518    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2519    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2520    return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2521  case MVT::i64:
2522    Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT));
2523    Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT));
2524    Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2525    Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2526    Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2527    Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2528    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT));
2529    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT));
2530    Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
2531    Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
2532    Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
2533    Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
2534    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
2535    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
2536    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2537    Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2538    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2539    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2540    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2541    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2542    return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2543  }
2544}
2545
2546/// ExpandBitCount - Expand the specified bitcount instruction into operations.
2547///
2548SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
2549                                             SDLoc dl) {
2550  switch (Opc) {
2551  default: llvm_unreachable("Cannot expand this yet!");
2552  case ISD::CTPOP: {
2553    EVT VT = Op.getValueType();
2554    EVT ShVT = TLI.getShiftAmountTy(VT);
2555    unsigned Len = VT.getSizeInBits();
2556
2557    assert(VT.isInteger() && Len <= 128 && Len % 8 == 0 &&
2558           "CTPOP not implemented for this type.");
2559
2560    // This is the "best" algorithm from
2561    // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
2562
2563    SDValue Mask55 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), VT);
2564    SDValue Mask33 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), VT);
2565    SDValue Mask0F = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), VT);
2566    SDValue Mask01 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), VT);
2567
2568    // v = v - ((v >> 1) & 0x55555555...)
2569    Op = DAG.getNode(ISD::SUB, dl, VT, Op,
2570                     DAG.getNode(ISD::AND, dl, VT,
2571                                 DAG.getNode(ISD::SRL, dl, VT, Op,
2572                                             DAG.getConstant(1, ShVT)),
2573                                 Mask55));
2574    // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
2575    Op = DAG.getNode(ISD::ADD, dl, VT,
2576                     DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
2577                     DAG.getNode(ISD::AND, dl, VT,
2578                                 DAG.getNode(ISD::SRL, dl, VT, Op,
2579                                             DAG.getConstant(2, ShVT)),
2580                                 Mask33));
2581    // v = (v + (v >> 4)) & 0x0F0F0F0F...
2582    Op = DAG.getNode(ISD::AND, dl, VT,
2583                     DAG.getNode(ISD::ADD, dl, VT, Op,
2584                                 DAG.getNode(ISD::SRL, dl, VT, Op,
2585                                             DAG.getConstant(4, ShVT))),
2586                     Mask0F);
2587    // v = (v * 0x01010101...) >> (Len - 8)
2588    Op = DAG.getNode(ISD::SRL, dl, VT,
2589                     DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
2590                     DAG.getConstant(Len - 8, ShVT));
2591
2592    return Op;
2593  }
2594  case ISD::CTLZ_ZERO_UNDEF:
2595    // This trivially expands to CTLZ.
2596    return DAG.getNode(ISD::CTLZ, dl, Op.getValueType(), Op);
2597  case ISD::CTLZ: {
2598    // for now, we do this:
2599    // x = x | (x >> 1);
2600    // x = x | (x >> 2);
2601    // ...
2602    // x = x | (x >>16);
2603    // x = x | (x >>32); // for 64-bit input
2604    // return popcount(~x);
2605    //
2606    // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
2607    EVT VT = Op.getValueType();
2608    EVT ShVT = TLI.getShiftAmountTy(VT);
2609    unsigned len = VT.getSizeInBits();
2610    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2611      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2612      Op = DAG.getNode(ISD::OR, dl, VT, Op,
2613                       DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
2614    }
2615    Op = DAG.getNOT(dl, Op, VT);
2616    return DAG.getNode(ISD::CTPOP, dl, VT, Op);
2617  }
2618  case ISD::CTTZ_ZERO_UNDEF:
2619    // This trivially expands to CTTZ.
2620    return DAG.getNode(ISD::CTTZ, dl, Op.getValueType(), Op);
2621  case ISD::CTTZ: {
2622    // for now, we use: { return popcount(~x & (x - 1)); }
2623    // unless the target has ctlz but not ctpop, in which case we use:
2624    // { return 32 - nlz(~x & (x-1)); }
2625    // see also http://www.hackersdelight.org/HDcode/ntz.cc
2626    EVT VT = Op.getValueType();
2627    SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
2628                               DAG.getNOT(dl, Op, VT),
2629                               DAG.getNode(ISD::SUB, dl, VT, Op,
2630                                           DAG.getConstant(1, VT)));
2631    // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
2632    if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
2633        TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
2634      return DAG.getNode(ISD::SUB, dl, VT,
2635                         DAG.getConstant(VT.getSizeInBits(), VT),
2636                         DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
2637    return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
2638  }
2639  }
2640}
2641
2642std::pair <SDValue, SDValue> SelectionDAGLegalize::ExpandAtomic(SDNode *Node) {
2643  unsigned Opc = Node->getOpcode();
2644  MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
2645  RTLIB::Libcall LC;
2646
2647  switch (Opc) {
2648  default:
2649    llvm_unreachable("Unhandled atomic intrinsic Expand!");
2650  case ISD::ATOMIC_SWAP:
2651    switch (VT.SimpleTy) {
2652    default: llvm_unreachable("Unexpected value type for atomic!");
2653    case MVT::i8:  LC = RTLIB::SYNC_LOCK_TEST_AND_SET_1; break;
2654    case MVT::i16: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_2; break;
2655    case MVT::i32: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_4; break;
2656    case MVT::i64: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_8; break;
2657    }
2658    break;
2659  case ISD::ATOMIC_CMP_SWAP:
2660    switch (VT.SimpleTy) {
2661    default: llvm_unreachable("Unexpected value type for atomic!");
2662    case MVT::i8:  LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1; break;
2663    case MVT::i16: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2; break;
2664    case MVT::i32: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4; break;
2665    case MVT::i64: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8; break;
2666    }
2667    break;
2668  case ISD::ATOMIC_LOAD_ADD:
2669    switch (VT.SimpleTy) {
2670    default: llvm_unreachable("Unexpected value type for atomic!");
2671    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_ADD_1; break;
2672    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_ADD_2; break;
2673    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_ADD_4; break;
2674    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_ADD_8; break;
2675    }
2676    break;
2677  case ISD::ATOMIC_LOAD_SUB:
2678    switch (VT.SimpleTy) {
2679    default: llvm_unreachable("Unexpected value type for atomic!");
2680    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_SUB_1; break;
2681    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_SUB_2; break;
2682    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_SUB_4; break;
2683    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_SUB_8; break;
2684    }
2685    break;
2686  case ISD::ATOMIC_LOAD_AND:
2687    switch (VT.SimpleTy) {
2688    default: llvm_unreachable("Unexpected value type for atomic!");
2689    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_AND_1; break;
2690    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_AND_2; break;
2691    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_AND_4; break;
2692    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_AND_8; break;
2693    }
2694    break;
2695  case ISD::ATOMIC_LOAD_OR:
2696    switch (VT.SimpleTy) {
2697    default: llvm_unreachable("Unexpected value type for atomic!");
2698    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_OR_1; break;
2699    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_OR_2; break;
2700    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_OR_4; break;
2701    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_OR_8; break;
2702    }
2703    break;
2704  case ISD::ATOMIC_LOAD_XOR:
2705    switch (VT.SimpleTy) {
2706    default: llvm_unreachable("Unexpected value type for atomic!");
2707    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_XOR_1; break;
2708    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_XOR_2; break;
2709    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_XOR_4; break;
2710    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_XOR_8; break;
2711    }
2712    break;
2713  case ISD::ATOMIC_LOAD_NAND:
2714    switch (VT.SimpleTy) {
2715    default: llvm_unreachable("Unexpected value type for atomic!");
2716    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_NAND_1; break;
2717    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_NAND_2; break;
2718    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_NAND_4; break;
2719    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_NAND_8; break;
2720    }
2721    break;
2722  }
2723
2724  return ExpandChainLibCall(LC, Node, false);
2725}
2726
2727void SelectionDAGLegalize::ExpandNode(SDNode *Node) {
2728  SmallVector<SDValue, 8> Results;
2729  SDLoc dl(Node);
2730  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2731  switch (Node->getOpcode()) {
2732  case ISD::CTPOP:
2733  case ISD::CTLZ:
2734  case ISD::CTLZ_ZERO_UNDEF:
2735  case ISD::CTTZ:
2736  case ISD::CTTZ_ZERO_UNDEF:
2737    Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
2738    Results.push_back(Tmp1);
2739    break;
2740  case ISD::BSWAP:
2741    Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2742    break;
2743  case ISD::FRAMEADDR:
2744  case ISD::RETURNADDR:
2745  case ISD::FRAME_TO_ARGS_OFFSET:
2746    Results.push_back(DAG.getConstant(0, Node->getValueType(0)));
2747    break;
2748  case ISD::FLT_ROUNDS_:
2749    Results.push_back(DAG.getConstant(1, Node->getValueType(0)));
2750    break;
2751  case ISD::EH_RETURN:
2752  case ISD::EH_LABEL:
2753  case ISD::PREFETCH:
2754  case ISD::VAEND:
2755  case ISD::EH_SJLJ_LONGJMP:
2756    // If the target didn't expand these, there's nothing to do, so just
2757    // preserve the chain and be done.
2758    Results.push_back(Node->getOperand(0));
2759    break;
2760  case ISD::EH_SJLJ_SETJMP:
2761    // If the target didn't expand this, just return 'zero' and preserve the
2762    // chain.
2763    Results.push_back(DAG.getConstant(0, MVT::i32));
2764    Results.push_back(Node->getOperand(0));
2765    break;
2766  case ISD::ATOMIC_FENCE: {
2767    // If the target didn't lower this, lower it to '__sync_synchronize()' call
2768    // FIXME: handle "fence singlethread" more efficiently.
2769    TargetLowering::ArgListTy Args;
2770    TargetLowering::
2771    CallLoweringInfo CLI(Node->getOperand(0),
2772                         Type::getVoidTy(*DAG.getContext()),
2773                      false, false, false, false, 0, CallingConv::C,
2774                      /*isTailCall=*/false,
2775                      /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
2776                      DAG.getExternalSymbol("__sync_synchronize",
2777                                            TLI.getPointerTy()),
2778                      Args, DAG, dl);
2779    std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
2780
2781    Results.push_back(CallResult.second);
2782    break;
2783  }
2784  case ISD::ATOMIC_LOAD: {
2785    // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP.
2786    SDValue Zero = DAG.getConstant(0, Node->getValueType(0));
2787    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
2788                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
2789                                 Node->getOperand(0),
2790                                 Node->getOperand(1), Zero, Zero,
2791                                 cast<AtomicSDNode>(Node)->getMemOperand(),
2792                                 cast<AtomicSDNode>(Node)->getOrdering(),
2793                                 cast<AtomicSDNode>(Node)->getSynchScope());
2794    Results.push_back(Swap.getValue(0));
2795    Results.push_back(Swap.getValue(1));
2796    break;
2797  }
2798  case ISD::ATOMIC_STORE: {
2799    // There is no libcall for atomic store; fake it with ATOMIC_SWAP.
2800    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
2801                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
2802                                 Node->getOperand(0),
2803                                 Node->getOperand(1), Node->getOperand(2),
2804                                 cast<AtomicSDNode>(Node)->getMemOperand(),
2805                                 cast<AtomicSDNode>(Node)->getOrdering(),
2806                                 cast<AtomicSDNode>(Node)->getSynchScope());
2807    Results.push_back(Swap.getValue(1));
2808    break;
2809  }
2810  // By default, atomic intrinsics are marked Legal and lowered. Targets
2811  // which don't support them directly, however, may want libcalls, in which
2812  // case they mark them Expand, and we get here.
2813  case ISD::ATOMIC_SWAP:
2814  case ISD::ATOMIC_LOAD_ADD:
2815  case ISD::ATOMIC_LOAD_SUB:
2816  case ISD::ATOMIC_LOAD_AND:
2817  case ISD::ATOMIC_LOAD_OR:
2818  case ISD::ATOMIC_LOAD_XOR:
2819  case ISD::ATOMIC_LOAD_NAND:
2820  case ISD::ATOMIC_LOAD_MIN:
2821  case ISD::ATOMIC_LOAD_MAX:
2822  case ISD::ATOMIC_LOAD_UMIN:
2823  case ISD::ATOMIC_LOAD_UMAX:
2824  case ISD::ATOMIC_CMP_SWAP: {
2825    std::pair<SDValue, SDValue> Tmp = ExpandAtomic(Node);
2826    Results.push_back(Tmp.first);
2827    Results.push_back(Tmp.second);
2828    break;
2829  }
2830  case ISD::DYNAMIC_STACKALLOC:
2831    ExpandDYNAMIC_STACKALLOC(Node, Results);
2832    break;
2833  case ISD::MERGE_VALUES:
2834    for (unsigned i = 0; i < Node->getNumValues(); i++)
2835      Results.push_back(Node->getOperand(i));
2836    break;
2837  case ISD::UNDEF: {
2838    EVT VT = Node->getValueType(0);
2839    if (VT.isInteger())
2840      Results.push_back(DAG.getConstant(0, VT));
2841    else {
2842      assert(VT.isFloatingPoint() && "Unknown value type!");
2843      Results.push_back(DAG.getConstantFP(0, VT));
2844    }
2845    break;
2846  }
2847  case ISD::TRAP: {
2848    // If this operation is not supported, lower it to 'abort()' call
2849    TargetLowering::ArgListTy Args;
2850    TargetLowering::
2851    CallLoweringInfo CLI(Node->getOperand(0),
2852                         Type::getVoidTy(*DAG.getContext()),
2853                      false, false, false, false, 0, CallingConv::C,
2854                      /*isTailCall=*/false,
2855                      /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
2856                      DAG.getExternalSymbol("abort", TLI.getPointerTy()),
2857                      Args, DAG, dl);
2858    std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
2859
2860    Results.push_back(CallResult.second);
2861    break;
2862  }
2863  case ISD::FP_ROUND:
2864  case ISD::BITCAST:
2865    Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
2866                            Node->getValueType(0), dl);
2867    Results.push_back(Tmp1);
2868    break;
2869  case ISD::FP_EXTEND:
2870    Tmp1 = EmitStackConvert(Node->getOperand(0),
2871                            Node->getOperand(0).getValueType(),
2872                            Node->getValueType(0), dl);
2873    Results.push_back(Tmp1);
2874    break;
2875  case ISD::SIGN_EXTEND_INREG: {
2876    // NOTE: we could fall back on load/store here too for targets without
2877    // SAR.  However, it is doubtful that any exist.
2878    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2879    EVT VT = Node->getValueType(0);
2880    EVT ShiftAmountTy = TLI.getShiftAmountTy(VT);
2881    if (VT.isVector())
2882      ShiftAmountTy = VT;
2883    unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
2884                        ExtraVT.getScalarType().getSizeInBits();
2885    SDValue ShiftCst = DAG.getConstant(BitsDiff, ShiftAmountTy);
2886    Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
2887                       Node->getOperand(0), ShiftCst);
2888    Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
2889    Results.push_back(Tmp1);
2890    break;
2891  }
2892  case ISD::FP_ROUND_INREG: {
2893    // The only way we can lower this is to turn it into a TRUNCSTORE,
2894    // EXTLOAD pair, targeting a temporary location (a stack slot).
2895
2896    // NOTE: there is a choice here between constantly creating new stack
2897    // slots and always reusing the same one.  We currently always create
2898    // new ones, as reuse may inhibit scheduling.
2899    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2900    Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
2901                            Node->getValueType(0), dl);
2902    Results.push_back(Tmp1);
2903    break;
2904  }
2905  case ISD::SINT_TO_FP:
2906  case ISD::UINT_TO_FP:
2907    Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
2908                                Node->getOperand(0), Node->getValueType(0), dl);
2909    Results.push_back(Tmp1);
2910    break;
2911  case ISD::FP_TO_UINT: {
2912    SDValue True, False;
2913    EVT VT =  Node->getOperand(0).getValueType();
2914    EVT NVT = Node->getValueType(0);
2915    APFloat apf(DAG.EVTToAPFloatSemantics(VT),
2916                APInt::getNullValue(VT.getSizeInBits()));
2917    APInt x = APInt::getSignBit(NVT.getSizeInBits());
2918    (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
2919    Tmp1 = DAG.getConstantFP(apf, VT);
2920    Tmp2 = DAG.getSetCC(dl, getSetCCResultType(VT),
2921                        Node->getOperand(0),
2922                        Tmp1, ISD::SETLT);
2923    True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
2924    False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
2925                        DAG.getNode(ISD::FSUB, dl, VT,
2926                                    Node->getOperand(0), Tmp1));
2927    False = DAG.getNode(ISD::XOR, dl, NVT, False,
2928                        DAG.getConstant(x, NVT));
2929    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False);
2930    Results.push_back(Tmp1);
2931    break;
2932  }
2933  case ISD::VAARG: {
2934    const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2935    EVT VT = Node->getValueType(0);
2936    Tmp1 = Node->getOperand(0);
2937    Tmp2 = Node->getOperand(1);
2938    unsigned Align = Node->getConstantOperandVal(3);
2939
2940    SDValue VAListLoad = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2,
2941                                     MachinePointerInfo(V),
2942                                     false, false, false, 0);
2943    SDValue VAList = VAListLoad;
2944
2945    if (Align > TLI.getMinStackArgumentAlignment()) {
2946      assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
2947
2948      VAList = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2949                           DAG.getConstant(Align - 1,
2950                                           TLI.getPointerTy()));
2951
2952      VAList = DAG.getNode(ISD::AND, dl, TLI.getPointerTy(), VAList,
2953                           DAG.getConstant(-(int64_t)Align,
2954                                           TLI.getPointerTy()));
2955    }
2956
2957    // Increment the pointer, VAList, to the next vaarg
2958    Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2959                       DAG.getConstant(TLI.getDataLayout()->
2960                          getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())),
2961                                       TLI.getPointerTy()));
2962    // Store the incremented VAList to the legalized pointer
2963    Tmp3 = DAG.getStore(VAListLoad.getValue(1), dl, Tmp3, Tmp2,
2964                        MachinePointerInfo(V), false, false, 0);
2965    // Load the actual argument out of the pointer VAList
2966    Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, MachinePointerInfo(),
2967                                  false, false, false, 0));
2968    Results.push_back(Results[0].getValue(1));
2969    break;
2970  }
2971  case ISD::VACOPY: {
2972    // This defaults to loading a pointer from the input and storing it to the
2973    // output, returning the chain.
2974    const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2975    const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2976    Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0),
2977                       Node->getOperand(2), MachinePointerInfo(VS),
2978                       false, false, false, 0);
2979    Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2980                        MachinePointerInfo(VD), false, false, 0);
2981    Results.push_back(Tmp1);
2982    break;
2983  }
2984  case ISD::EXTRACT_VECTOR_ELT:
2985    if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
2986      // This must be an access of the only element.  Return it.
2987      Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0),
2988                         Node->getOperand(0));
2989    else
2990      Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
2991    Results.push_back(Tmp1);
2992    break;
2993  case ISD::EXTRACT_SUBVECTOR:
2994    Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
2995    break;
2996  case ISD::INSERT_SUBVECTOR:
2997    Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0)));
2998    break;
2999  case ISD::CONCAT_VECTORS: {
3000    Results.push_back(ExpandVectorBuildThroughStack(Node));
3001    break;
3002  }
3003  case ISD::SCALAR_TO_VECTOR:
3004    Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
3005    break;
3006  case ISD::INSERT_VECTOR_ELT:
3007    Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
3008                                              Node->getOperand(1),
3009                                              Node->getOperand(2), dl));
3010    break;
3011  case ISD::VECTOR_SHUFFLE: {
3012    SmallVector<int, 32> NewMask;
3013    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
3014
3015    EVT VT = Node->getValueType(0);
3016    EVT EltVT = VT.getVectorElementType();
3017    SDValue Op0 = Node->getOperand(0);
3018    SDValue Op1 = Node->getOperand(1);
3019    if (!TLI.isTypeLegal(EltVT)) {
3020
3021      EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT);
3022
3023      // BUILD_VECTOR operands are allowed to be wider than the element type.
3024      // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept it
3025      if (NewEltVT.bitsLT(EltVT)) {
3026
3027        // Convert shuffle node.
3028        // If original node was v4i64 and the new EltVT is i32,
3029        // cast operands to v8i32 and re-build the mask.
3030
3031        // Calculate new VT, the size of the new VT should be equal to original.
3032        EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltVT,
3033                                      VT.getSizeInBits()/NewEltVT.getSizeInBits());
3034        assert(NewVT.bitsEq(VT));
3035
3036        // cast operands to new VT
3037        Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0);
3038        Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1);
3039
3040        // Convert the shuffle mask
3041        unsigned int factor = NewVT.getVectorNumElements()/VT.getVectorNumElements();
3042
3043        // EltVT gets smaller
3044        assert(factor > 0);
3045
3046        for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
3047          if (Mask[i] < 0) {
3048            for (unsigned fi = 0; fi < factor; ++fi)
3049              NewMask.push_back(Mask[i]);
3050          }
3051          else {
3052            for (unsigned fi = 0; fi < factor; ++fi)
3053              NewMask.push_back(Mask[i]*factor+fi);
3054          }
3055        }
3056        Mask = NewMask;
3057        VT = NewVT;
3058      }
3059      EltVT = NewEltVT;
3060    }
3061    unsigned NumElems = VT.getVectorNumElements();
3062    SmallVector<SDValue, 16> Ops;
3063    for (unsigned i = 0; i != NumElems; ++i) {
3064      if (Mask[i] < 0) {
3065        Ops.push_back(DAG.getUNDEF(EltVT));
3066        continue;
3067      }
3068      unsigned Idx = Mask[i];
3069      if (Idx < NumElems)
3070        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
3071                                  Op0,
3072                                  DAG.getIntPtrConstant(Idx)));
3073      else
3074        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
3075                                  Op1,
3076                                  DAG.getIntPtrConstant(Idx - NumElems)));
3077    }
3078
3079    Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size());
3080    // We may have changed the BUILD_VECTOR type. Cast it back to the Node type.
3081    Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1);
3082    Results.push_back(Tmp1);
3083    break;
3084  }
3085  case ISD::EXTRACT_ELEMENT: {
3086    EVT OpTy = Node->getOperand(0).getValueType();
3087    if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
3088      // 1 -> Hi
3089      Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
3090                         DAG.getConstant(OpTy.getSizeInBits()/2,
3091                    TLI.getShiftAmountTy(Node->getOperand(0).getValueType())));
3092      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
3093    } else {
3094      // 0 -> Lo
3095      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
3096                         Node->getOperand(0));
3097    }
3098    Results.push_back(Tmp1);
3099    break;
3100  }
3101  case ISD::STACKSAVE:
3102    // Expand to CopyFromReg if the target set
3103    // StackPointerRegisterToSaveRestore.
3104    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
3105      Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
3106                                           Node->getValueType(0)));
3107      Results.push_back(Results[0].getValue(1));
3108    } else {
3109      Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
3110      Results.push_back(Node->getOperand(0));
3111    }
3112    break;
3113  case ISD::STACKRESTORE:
3114    // Expand to CopyToReg if the target set
3115    // StackPointerRegisterToSaveRestore.
3116    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
3117      Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
3118                                         Node->getOperand(1)));
3119    } else {
3120      Results.push_back(Node->getOperand(0));
3121    }
3122    break;
3123  case ISD::FCOPYSIGN:
3124    Results.push_back(ExpandFCOPYSIGN(Node));
3125    break;
3126  case ISD::FNEG:
3127    // Expand Y = FNEG(X) ->  Y = SUB -0.0, X
3128    Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0));
3129    Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
3130                       Node->getOperand(0));
3131    Results.push_back(Tmp1);
3132    break;
3133  case ISD::FABS: {
3134    // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
3135    EVT VT = Node->getValueType(0);
3136    Tmp1 = Node->getOperand(0);
3137    Tmp2 = DAG.getConstantFP(0.0, VT);
3138    Tmp2 = DAG.getSetCC(dl, getSetCCResultType(Tmp1.getValueType()),
3139                        Tmp1, Tmp2, ISD::SETUGT);
3140    Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1);
3141    Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3);
3142    Results.push_back(Tmp1);
3143    break;
3144  }
3145  case ISD::FSQRT:
3146    Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
3147                                      RTLIB::SQRT_F80, RTLIB::SQRT_F128,
3148                                      RTLIB::SQRT_PPCF128));
3149    break;
3150  case ISD::FSIN:
3151  case ISD::FCOS: {
3152    EVT VT = Node->getValueType(0);
3153    bool isSIN = Node->getOpcode() == ISD::FSIN;
3154    // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin /
3155    // fcos which share the same operand and both are used.
3156    if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) ||
3157         canCombineSinCosLibcall(Node, TLI, TM))
3158        && useSinCos(Node)) {
3159      SDVTList VTs = DAG.getVTList(VT, VT);
3160      Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0));
3161      if (!isSIN)
3162        Tmp1 = Tmp1.getValue(1);
3163      Results.push_back(Tmp1);
3164    } else if (isSIN) {
3165      Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
3166                                        RTLIB::SIN_F80, RTLIB::SIN_F128,
3167                                        RTLIB::SIN_PPCF128));
3168    } else {
3169      Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
3170                                        RTLIB::COS_F80, RTLIB::COS_F128,
3171                                        RTLIB::COS_PPCF128));
3172    }
3173    break;
3174  }
3175  case ISD::FSINCOS:
3176    // Expand into sincos libcall.
3177    ExpandSinCosLibCall(Node, Results);
3178    break;
3179  case ISD::FLOG:
3180    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
3181                                      RTLIB::LOG_F80, RTLIB::LOG_F128,
3182                                      RTLIB::LOG_PPCF128));
3183    break;
3184  case ISD::FLOG2:
3185    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
3186                                      RTLIB::LOG2_F80, RTLIB::LOG2_F128,
3187                                      RTLIB::LOG2_PPCF128));
3188    break;
3189  case ISD::FLOG10:
3190    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
3191                                      RTLIB::LOG10_F80, RTLIB::LOG10_F128,
3192                                      RTLIB::LOG10_PPCF128));
3193    break;
3194  case ISD::FEXP:
3195    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
3196                                      RTLIB::EXP_F80, RTLIB::EXP_F128,
3197                                      RTLIB::EXP_PPCF128));
3198    break;
3199  case ISD::FEXP2:
3200    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
3201                                      RTLIB::EXP2_F80, RTLIB::EXP2_F128,
3202                                      RTLIB::EXP2_PPCF128));
3203    break;
3204  case ISD::FTRUNC:
3205    Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
3206                                      RTLIB::TRUNC_F80, RTLIB::TRUNC_F128,
3207                                      RTLIB::TRUNC_PPCF128));
3208    break;
3209  case ISD::FFLOOR:
3210    Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
3211                                      RTLIB::FLOOR_F80, RTLIB::FLOOR_F128,
3212                                      RTLIB::FLOOR_PPCF128));
3213    break;
3214  case ISD::FCEIL:
3215    Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
3216                                      RTLIB::CEIL_F80, RTLIB::CEIL_F128,
3217                                      RTLIB::CEIL_PPCF128));
3218    break;
3219  case ISD::FRINT:
3220    Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
3221                                      RTLIB::RINT_F80, RTLIB::RINT_F128,
3222                                      RTLIB::RINT_PPCF128));
3223    break;
3224  case ISD::FNEARBYINT:
3225    Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
3226                                      RTLIB::NEARBYINT_F64,
3227                                      RTLIB::NEARBYINT_F80,
3228                                      RTLIB::NEARBYINT_F128,
3229                                      RTLIB::NEARBYINT_PPCF128));
3230    break;
3231  case ISD::FPOWI:
3232    Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
3233                                      RTLIB::POWI_F80, RTLIB::POWI_F128,
3234                                      RTLIB::POWI_PPCF128));
3235    break;
3236  case ISD::FPOW:
3237    Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
3238                                      RTLIB::POW_F80, RTLIB::POW_F128,
3239                                      RTLIB::POW_PPCF128));
3240    break;
3241  case ISD::FDIV:
3242    Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
3243                                      RTLIB::DIV_F80, RTLIB::DIV_F128,
3244                                      RTLIB::DIV_PPCF128));
3245    break;
3246  case ISD::FREM:
3247    Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
3248                                      RTLIB::REM_F80, RTLIB::REM_F128,
3249                                      RTLIB::REM_PPCF128));
3250    break;
3251  case ISD::FMA:
3252    Results.push_back(ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64,
3253                                      RTLIB::FMA_F80, RTLIB::FMA_F128,
3254                                      RTLIB::FMA_PPCF128));
3255    break;
3256  case ISD::FP16_TO_FP32:
3257    Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
3258    break;
3259  case ISD::FP32_TO_FP16:
3260    Results.push_back(ExpandLibCall(RTLIB::FPROUND_F32_F16, Node, false));
3261    break;
3262  case ISD::ConstantFP: {
3263    ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
3264    // Check to see if this FP immediate is already legal.
3265    // If this is a legal constant, turn it into a TargetConstantFP node.
3266    if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0)))
3267      Results.push_back(ExpandConstantFP(CFP, true));
3268    break;
3269  }
3270  case ISD::EHSELECTION: {
3271    unsigned Reg = TLI.getExceptionSelectorRegister();
3272    assert(Reg && "Can't expand to unknown register!");
3273    Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg,
3274                                         Node->getValueType(0)));
3275    Results.push_back(Results[0].getValue(1));
3276    break;
3277  }
3278  case ISD::EXCEPTIONADDR: {
3279    unsigned Reg = TLI.getExceptionPointerRegister();
3280    assert(Reg && "Can't expand to unknown register!");
3281    Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg,
3282                                         Node->getValueType(0)));
3283    Results.push_back(Results[0].getValue(1));
3284    break;
3285  }
3286  case ISD::FSUB: {
3287    EVT VT = Node->getValueType(0);
3288    assert(TLI.isOperationLegalOrCustom(ISD::FADD, VT) &&
3289           TLI.isOperationLegalOrCustom(ISD::FNEG, VT) &&
3290           "Don't know how to expand this FP subtraction!");
3291    Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1));
3292    Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1);
3293    Results.push_back(Tmp1);
3294    break;
3295  }
3296  case ISD::SUB: {
3297    EVT VT = Node->getValueType(0);
3298    assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
3299           TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
3300           "Don't know how to expand this subtraction!");
3301    Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
3302               DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT));
3303    Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, VT));
3304    Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
3305    break;
3306  }
3307  case ISD::UREM:
3308  case ISD::SREM: {
3309    EVT VT = Node->getValueType(0);
3310    bool isSigned = Node->getOpcode() == ISD::SREM;
3311    unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
3312    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3313    Tmp2 = Node->getOperand(0);
3314    Tmp3 = Node->getOperand(1);
3315    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) ||
3316        (isDivRemLibcallAvailable(Node, isSigned, TLI) &&
3317         // If div is legal, it's better to do the normal expansion
3318         !TLI.isOperationLegalOrCustom(DivOpc, Node->getValueType(0)) &&
3319         useDivRem(Node, isSigned, false))) {
3320      SDVTList VTs = DAG.getVTList(VT, VT);
3321      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
3322    } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
3323      // X % Y -> X-X/Y*Y
3324      Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
3325      Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
3326      Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
3327    } else if (isSigned)
3328      Tmp1 = ExpandIntLibCall(Node, true,
3329                              RTLIB::SREM_I8,
3330                              RTLIB::SREM_I16, RTLIB::SREM_I32,
3331                              RTLIB::SREM_I64, RTLIB::SREM_I128);
3332    else
3333      Tmp1 = ExpandIntLibCall(Node, false,
3334                              RTLIB::UREM_I8,
3335                              RTLIB::UREM_I16, RTLIB::UREM_I32,
3336                              RTLIB::UREM_I64, RTLIB::UREM_I128);
3337    Results.push_back(Tmp1);
3338    break;
3339  }
3340  case ISD::UDIV:
3341  case ISD::SDIV: {
3342    bool isSigned = Node->getOpcode() == ISD::SDIV;
3343    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3344    EVT VT = Node->getValueType(0);
3345    SDVTList VTs = DAG.getVTList(VT, VT);
3346    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) ||
3347        (isDivRemLibcallAvailable(Node, isSigned, TLI) &&
3348         useDivRem(Node, isSigned, true)))
3349      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
3350                         Node->getOperand(1));
3351    else if (isSigned)
3352      Tmp1 = ExpandIntLibCall(Node, true,
3353                              RTLIB::SDIV_I8,
3354                              RTLIB::SDIV_I16, RTLIB::SDIV_I32,
3355                              RTLIB::SDIV_I64, RTLIB::SDIV_I128);
3356    else
3357      Tmp1 = ExpandIntLibCall(Node, false,
3358                              RTLIB::UDIV_I8,
3359                              RTLIB::UDIV_I16, RTLIB::UDIV_I32,
3360                              RTLIB::UDIV_I64, RTLIB::UDIV_I128);
3361    Results.push_back(Tmp1);
3362    break;
3363  }
3364  case ISD::MULHU:
3365  case ISD::MULHS: {
3366    unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
3367                                                              ISD::SMUL_LOHI;
3368    EVT VT = Node->getValueType(0);
3369    SDVTList VTs = DAG.getVTList(VT, VT);
3370    assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
3371           "If this wasn't legal, it shouldn't have been created!");
3372    Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
3373                       Node->getOperand(1));
3374    Results.push_back(Tmp1.getValue(1));
3375    break;
3376  }
3377  case ISD::SDIVREM:
3378  case ISD::UDIVREM:
3379    // Expand into divrem libcall
3380    ExpandDivRemLibCall(Node, Results);
3381    break;
3382  case ISD::MUL: {
3383    EVT VT = Node->getValueType(0);
3384    SDVTList VTs = DAG.getVTList(VT, VT);
3385    // See if multiply or divide can be lowered using two-result operations.
3386    // We just need the low half of the multiply; try both the signed
3387    // and unsigned forms. If the target supports both SMUL_LOHI and
3388    // UMUL_LOHI, form a preference by checking which forms of plain
3389    // MULH it supports.
3390    bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
3391    bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
3392    bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
3393    bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
3394    unsigned OpToUse = 0;
3395    if (HasSMUL_LOHI && !HasMULHS) {
3396      OpToUse = ISD::SMUL_LOHI;
3397    } else if (HasUMUL_LOHI && !HasMULHU) {
3398      OpToUse = ISD::UMUL_LOHI;
3399    } else if (HasSMUL_LOHI) {
3400      OpToUse = ISD::SMUL_LOHI;
3401    } else if (HasUMUL_LOHI) {
3402      OpToUse = ISD::UMUL_LOHI;
3403    }
3404    if (OpToUse) {
3405      Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
3406                                    Node->getOperand(1)));
3407      break;
3408    }
3409    Tmp1 = ExpandIntLibCall(Node, false,
3410                            RTLIB::MUL_I8,
3411                            RTLIB::MUL_I16, RTLIB::MUL_I32,
3412                            RTLIB::MUL_I64, RTLIB::MUL_I128);
3413    Results.push_back(Tmp1);
3414    break;
3415  }
3416  case ISD::SADDO:
3417  case ISD::SSUBO: {
3418    SDValue LHS = Node->getOperand(0);
3419    SDValue RHS = Node->getOperand(1);
3420    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
3421                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3422                              LHS, RHS);
3423    Results.push_back(Sum);
3424    EVT OType = Node->getValueType(1);
3425
3426    SDValue Zero = DAG.getConstant(0, LHS.getValueType());
3427
3428    //   LHSSign -> LHS >= 0
3429    //   RHSSign -> RHS >= 0
3430    //   SumSign -> Sum >= 0
3431    //
3432    //   Add:
3433    //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
3434    //   Sub:
3435    //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
3436    //
3437    SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
3438    SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
3439    SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
3440                                      Node->getOpcode() == ISD::SADDO ?
3441                                      ISD::SETEQ : ISD::SETNE);
3442
3443    SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
3444    SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
3445
3446    SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
3447    Results.push_back(Cmp);
3448    break;
3449  }
3450  case ISD::UADDO:
3451  case ISD::USUBO: {
3452    SDValue LHS = Node->getOperand(0);
3453    SDValue RHS = Node->getOperand(1);
3454    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
3455                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3456                              LHS, RHS);
3457    Results.push_back(Sum);
3458    Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS,
3459                                   Node->getOpcode () == ISD::UADDO ?
3460                                   ISD::SETULT : ISD::SETUGT));
3461    break;
3462  }
3463  case ISD::UMULO:
3464  case ISD::SMULO: {
3465    EVT VT = Node->getValueType(0);
3466    EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
3467    SDValue LHS = Node->getOperand(0);
3468    SDValue RHS = Node->getOperand(1);
3469    SDValue BottomHalf;
3470    SDValue TopHalf;
3471    static const unsigned Ops[2][3] =
3472        { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
3473          { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
3474    bool isSigned = Node->getOpcode() == ISD::SMULO;
3475    if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
3476      BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
3477      TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
3478    } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
3479      BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
3480                               RHS);
3481      TopHalf = BottomHalf.getValue(1);
3482    } else if (TLI.isTypeLegal(EVT::getIntegerVT(*DAG.getContext(),
3483                                                 VT.getSizeInBits() * 2))) {
3484      LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
3485      RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
3486      Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
3487      BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3488                               DAG.getIntPtrConstant(0));
3489      TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3490                            DAG.getIntPtrConstant(1));
3491    } else {
3492      // We can fall back to a libcall with an illegal type for the MUL if we
3493      // have a libcall big enough.
3494      // Also, we can fall back to a division in some cases, but that's a big
3495      // performance hit in the general case.
3496      RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
3497      if (WideVT == MVT::i16)
3498        LC = RTLIB::MUL_I16;
3499      else if (WideVT == MVT::i32)
3500        LC = RTLIB::MUL_I32;
3501      else if (WideVT == MVT::i64)
3502        LC = RTLIB::MUL_I64;
3503      else if (WideVT == MVT::i128)
3504        LC = RTLIB::MUL_I128;
3505      assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
3506
3507      // The high part is obtained by SRA'ing all but one of the bits of low
3508      // part.
3509      unsigned LoSize = VT.getSizeInBits();
3510      SDValue HiLHS = DAG.getNode(ISD::SRA, dl, VT, RHS,
3511                                DAG.getConstant(LoSize-1, TLI.getPointerTy()));
3512      SDValue HiRHS = DAG.getNode(ISD::SRA, dl, VT, LHS,
3513                                DAG.getConstant(LoSize-1, TLI.getPointerTy()));
3514
3515      // Here we're passing the 2 arguments explicitly as 4 arguments that are
3516      // pre-lowered to the correct types. This all depends upon WideVT not
3517      // being a legal type for the architecture and thus has to be split to
3518      // two arguments.
3519      SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
3520      SDValue Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl);
3521      BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret,
3522                               DAG.getIntPtrConstant(0));
3523      TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret,
3524                            DAG.getIntPtrConstant(1));
3525      // Ret is a node with an illegal type. Because such things are not
3526      // generally permitted during this phase of legalization, delete the
3527      // node. The above EXTRACT_ELEMENT nodes should have been folded.
3528      DAG.DeleteNode(Ret.getNode());
3529    }
3530
3531    if (isSigned) {
3532      Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1,
3533                             TLI.getShiftAmountTy(BottomHalf.getValueType()));
3534      Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1);
3535      TopHalf = DAG.getSetCC(dl, getSetCCResultType(VT), TopHalf, Tmp1,
3536                             ISD::SETNE);
3537    } else {
3538      TopHalf = DAG.getSetCC(dl, getSetCCResultType(VT), TopHalf,
3539                             DAG.getConstant(0, VT), ISD::SETNE);
3540    }
3541    Results.push_back(BottomHalf);
3542    Results.push_back(TopHalf);
3543    break;
3544  }
3545  case ISD::BUILD_PAIR: {
3546    EVT PairTy = Node->getValueType(0);
3547    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
3548    Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
3549    Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
3550                       DAG.getConstant(PairTy.getSizeInBits()/2,
3551                                       TLI.getShiftAmountTy(PairTy)));
3552    Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
3553    break;
3554  }
3555  case ISD::SELECT:
3556    Tmp1 = Node->getOperand(0);
3557    Tmp2 = Node->getOperand(1);
3558    Tmp3 = Node->getOperand(2);
3559    if (Tmp1.getOpcode() == ISD::SETCC) {
3560      Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
3561                             Tmp2, Tmp3,
3562                             cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
3563    } else {
3564      Tmp1 = DAG.getSelectCC(dl, Tmp1,
3565                             DAG.getConstant(0, Tmp1.getValueType()),
3566                             Tmp2, Tmp3, ISD::SETNE);
3567    }
3568    Results.push_back(Tmp1);
3569    break;
3570  case ISD::BR_JT: {
3571    SDValue Chain = Node->getOperand(0);
3572    SDValue Table = Node->getOperand(1);
3573    SDValue Index = Node->getOperand(2);
3574
3575    EVT PTy = TLI.getPointerTy();
3576
3577    const DataLayout &TD = *TLI.getDataLayout();
3578    unsigned EntrySize =
3579      DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
3580
3581    Index = DAG.getNode(ISD::MUL, dl, PTy,
3582                        Index, DAG.getConstant(EntrySize, PTy));
3583    SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
3584
3585    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
3586    SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr,
3587                                MachinePointerInfo::getJumpTable(), MemVT,
3588                                false, false, 0);
3589    Addr = LD;
3590    if (TM.getRelocationModel() == Reloc::PIC_) {
3591      // For PIC, the sequence is:
3592      // BRIND(load(Jumptable + index) + RelocBase)
3593      // RelocBase can be JumpTable, GOT or some sort of global base.
3594      Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
3595                          TLI.getPICJumpTableRelocBase(Table, DAG));
3596    }
3597    Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
3598    Results.push_back(Tmp1);
3599    break;
3600  }
3601  case ISD::BRCOND:
3602    // Expand brcond's setcc into its constituent parts and create a BR_CC
3603    // Node.
3604    Tmp1 = Node->getOperand(0);
3605    Tmp2 = Node->getOperand(1);
3606    if (Tmp2.getOpcode() == ISD::SETCC) {
3607      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
3608                         Tmp1, Tmp2.getOperand(2),
3609                         Tmp2.getOperand(0), Tmp2.getOperand(1),
3610                         Node->getOperand(2));
3611    } else {
3612      // We test only the i1 bit.  Skip the AND if UNDEF.
3613      Tmp3 = (Tmp2.getOpcode() == ISD::UNDEF) ? Tmp2 :
3614        DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2,
3615                    DAG.getConstant(1, Tmp2.getValueType()));
3616      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
3617                         DAG.getCondCode(ISD::SETNE), Tmp3,
3618                         DAG.getConstant(0, Tmp3.getValueType()),
3619                         Node->getOperand(2));
3620    }
3621    Results.push_back(Tmp1);
3622    break;
3623  case ISD::SETCC: {
3624    Tmp1 = Node->getOperand(0);
3625    Tmp2 = Node->getOperand(1);
3626    Tmp3 = Node->getOperand(2);
3627    LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl);
3628
3629    // If we expanded the SETCC into an AND/OR, return the new node
3630    if (Tmp2.getNode() == 0) {
3631      Results.push_back(Tmp1);
3632      break;
3633    }
3634
3635    // Otherwise, SETCC for the given comparison type must be completely
3636    // illegal; expand it into a SELECT_CC.
3637    EVT VT = Node->getValueType(0);
3638    int TrueValue;
3639    switch (TLI.getBooleanContents(VT.isVector())) {
3640    case TargetLowering::ZeroOrOneBooleanContent:
3641    case TargetLowering::UndefinedBooleanContent:
3642      TrueValue = 1;
3643      break;
3644    case TargetLowering::ZeroOrNegativeOneBooleanContent:
3645      TrueValue = -1;
3646      break;
3647    }
3648    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
3649                       DAG.getConstant(TrueValue, VT), DAG.getConstant(0, VT),
3650                       Tmp3);
3651    Results.push_back(Tmp1);
3652    break;
3653  }
3654  case ISD::SELECT_CC: {
3655    Tmp1 = Node->getOperand(0);   // LHS
3656    Tmp2 = Node->getOperand(1);   // RHS
3657    Tmp3 = Node->getOperand(2);   // True
3658    Tmp4 = Node->getOperand(3);   // False
3659    SDValue CC = Node->getOperand(4);
3660
3661    LegalizeSetCCCondCode(getSetCCResultType(Tmp1.getValueType()),
3662                          Tmp1, Tmp2, CC, dl);
3663
3664    assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!");
3665    Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
3666    CC = DAG.getCondCode(ISD::SETNE);
3667    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2,
3668                       Tmp3, Tmp4, CC);
3669    Results.push_back(Tmp1);
3670    break;
3671  }
3672  case ISD::BR_CC: {
3673    Tmp1 = Node->getOperand(0);              // Chain
3674    Tmp2 = Node->getOperand(2);              // LHS
3675    Tmp3 = Node->getOperand(3);              // RHS
3676    Tmp4 = Node->getOperand(1);              // CC
3677
3678    LegalizeSetCCCondCode(getSetCCResultType(Tmp2.getValueType()),
3679                          Tmp2, Tmp3, Tmp4, dl);
3680
3681    assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!");
3682    Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
3683    Tmp4 = DAG.getCondCode(ISD::SETNE);
3684    Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2,
3685                       Tmp3, Node->getOperand(4));
3686    Results.push_back(Tmp1);
3687    break;
3688  }
3689  case ISD::BUILD_VECTOR:
3690    Results.push_back(ExpandBUILD_VECTOR(Node));
3691    break;
3692  case ISD::SRA:
3693  case ISD::SRL:
3694  case ISD::SHL: {
3695    // Scalarize vector SRA/SRL/SHL.
3696    EVT VT = Node->getValueType(0);
3697    assert(VT.isVector() && "Unable to legalize non-vector shift");
3698    assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal");
3699    unsigned NumElem = VT.getVectorNumElements();
3700
3701    SmallVector<SDValue, 8> Scalars;
3702    for (unsigned Idx = 0; Idx < NumElem; Idx++) {
3703      SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
3704                               VT.getScalarType(),
3705                               Node->getOperand(0), DAG.getIntPtrConstant(Idx));
3706      SDValue Sh = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
3707                               VT.getScalarType(),
3708                               Node->getOperand(1), DAG.getIntPtrConstant(Idx));
3709      Scalars.push_back(DAG.getNode(Node->getOpcode(), dl,
3710                                    VT.getScalarType(), Ex, Sh));
3711    }
3712    SDValue Result =
3713      DAG.getNode(ISD::BUILD_VECTOR, dl, Node->getValueType(0),
3714                  &Scalars[0], Scalars.size());
3715    ReplaceNode(SDValue(Node, 0), Result);
3716    break;
3717  }
3718  case ISD::GLOBAL_OFFSET_TABLE:
3719  case ISD::GlobalAddress:
3720  case ISD::GlobalTLSAddress:
3721  case ISD::ExternalSymbol:
3722  case ISD::ConstantPool:
3723  case ISD::JumpTable:
3724  case ISD::INTRINSIC_W_CHAIN:
3725  case ISD::INTRINSIC_WO_CHAIN:
3726  case ISD::INTRINSIC_VOID:
3727    // FIXME: Custom lowering for these operations shouldn't return null!
3728    break;
3729  }
3730
3731  // Replace the original node with the legalized result.
3732  if (!Results.empty())
3733    ReplaceNode(Node, Results.data());
3734}
3735
3736void SelectionDAGLegalize::PromoteNode(SDNode *Node) {
3737  SmallVector<SDValue, 8> Results;
3738  MVT OVT = Node->getSimpleValueType(0);
3739  if (Node->getOpcode() == ISD::UINT_TO_FP ||
3740      Node->getOpcode() == ISD::SINT_TO_FP ||
3741      Node->getOpcode() == ISD::SETCC) {
3742    OVT = Node->getOperand(0).getSimpleValueType();
3743  }
3744  MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
3745  SDLoc dl(Node);
3746  SDValue Tmp1, Tmp2, Tmp3;
3747  switch (Node->getOpcode()) {
3748  case ISD::CTTZ:
3749  case ISD::CTTZ_ZERO_UNDEF:
3750  case ISD::CTLZ:
3751  case ISD::CTLZ_ZERO_UNDEF:
3752  case ISD::CTPOP:
3753    // Zero extend the argument.
3754    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3755    // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is
3756    // already the correct result.
3757    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
3758    if (Node->getOpcode() == ISD::CTTZ) {
3759      // FIXME: This should set a bit in the zero extended value instead.
3760      Tmp2 = DAG.getSetCC(dl, getSetCCResultType(NVT),
3761                          Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT),
3762                          ISD::SETEQ);
3763      Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2,
3764                          DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1);
3765    } else if (Node->getOpcode() == ISD::CTLZ ||
3766               Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) {
3767      // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
3768      Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
3769                          DAG.getConstant(NVT.getSizeInBits() -
3770                                          OVT.getSizeInBits(), NVT));
3771    }
3772    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
3773    break;
3774  case ISD::BSWAP: {
3775    unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
3776    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3777    Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
3778    Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
3779                          DAG.getConstant(DiffBits, TLI.getShiftAmountTy(NVT)));
3780    Results.push_back(Tmp1);
3781    break;
3782  }
3783  case ISD::FP_TO_UINT:
3784  case ISD::FP_TO_SINT:
3785    Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
3786                                 Node->getOpcode() == ISD::FP_TO_SINT, dl);
3787    Results.push_back(Tmp1);
3788    break;
3789  case ISD::UINT_TO_FP:
3790  case ISD::SINT_TO_FP:
3791    Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
3792                                 Node->getOpcode() == ISD::SINT_TO_FP, dl);
3793    Results.push_back(Tmp1);
3794    break;
3795  case ISD::VAARG: {
3796    SDValue Chain = Node->getOperand(0); // Get the chain.
3797    SDValue Ptr = Node->getOperand(1); // Get the pointer.
3798
3799    unsigned TruncOp;
3800    if (OVT.isVector()) {
3801      TruncOp = ISD::BITCAST;
3802    } else {
3803      assert(OVT.isInteger()
3804        && "VAARG promotion is supported only for vectors or integer types");
3805      TruncOp = ISD::TRUNCATE;
3806    }
3807
3808    // Perform the larger operation, then convert back
3809    Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2),
3810             Node->getConstantOperandVal(3));
3811    Chain = Tmp1.getValue(1);
3812
3813    Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1);
3814
3815    // Modified the chain result - switch anything that used the old chain to
3816    // use the new one.
3817    DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2);
3818    DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
3819    ReplacedNode(Node);
3820    break;
3821  }
3822  case ISD::AND:
3823  case ISD::OR:
3824  case ISD::XOR: {
3825    unsigned ExtOp, TruncOp;
3826    if (OVT.isVector()) {
3827      ExtOp   = ISD::BITCAST;
3828      TruncOp = ISD::BITCAST;
3829    } else {
3830      assert(OVT.isInteger() && "Cannot promote logic operation");
3831      ExtOp   = ISD::ANY_EXTEND;
3832      TruncOp = ISD::TRUNCATE;
3833    }
3834    // Promote each of the values to the new type.
3835    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3836    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3837    // Perform the larger operation, then convert back
3838    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3839    Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
3840    break;
3841  }
3842  case ISD::SELECT: {
3843    unsigned ExtOp, TruncOp;
3844    if (Node->getValueType(0).isVector()) {
3845      ExtOp   = ISD::BITCAST;
3846      TruncOp = ISD::BITCAST;
3847    } else if (Node->getValueType(0).isInteger()) {
3848      ExtOp   = ISD::ANY_EXTEND;
3849      TruncOp = ISD::TRUNCATE;
3850    } else {
3851      ExtOp   = ISD::FP_EXTEND;
3852      TruncOp = ISD::FP_ROUND;
3853    }
3854    Tmp1 = Node->getOperand(0);
3855    // Promote each of the values to the new type.
3856    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3857    Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
3858    // Perform the larger operation, then round down.
3859    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3);
3860    if (TruncOp != ISD::FP_ROUND)
3861      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
3862    else
3863      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
3864                         DAG.getIntPtrConstant(0));
3865    Results.push_back(Tmp1);
3866    break;
3867  }
3868  case ISD::VECTOR_SHUFFLE: {
3869    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
3870
3871    // Cast the two input vectors.
3872    Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0));
3873    Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1));
3874
3875    // Convert the shuffle mask to the right # elements.
3876    Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
3877    Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1);
3878    Results.push_back(Tmp1);
3879    break;
3880  }
3881  case ISD::SETCC: {
3882    unsigned ExtOp = ISD::FP_EXTEND;
3883    if (NVT.isInteger()) {
3884      ISD::CondCode CCCode =
3885        cast<CondCodeSDNode>(Node->getOperand(2))->get();
3886      ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3887    }
3888    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3889    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3890    Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3891                                  Tmp1, Tmp2, Node->getOperand(2)));
3892    break;
3893  }
3894  case ISD::FDIV:
3895  case ISD::FREM:
3896  case ISD::FPOW: {
3897    Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
3898    Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
3899    Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3900    Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
3901                                  Tmp3, DAG.getIntPtrConstant(0)));
3902    break;
3903  }
3904  case ISD::FLOG2:
3905  case ISD::FEXP2:
3906  case ISD::FLOG:
3907  case ISD::FEXP: {
3908    Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
3909    Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
3910    Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
3911                                  Tmp2, DAG.getIntPtrConstant(0)));
3912    break;
3913  }
3914  }
3915
3916  // Replace the original node with the legalized result.
3917  if (!Results.empty())
3918    ReplaceNode(Node, Results.data());
3919}
3920
3921// SelectionDAG::Legalize - This is the entry point for the file.
3922//
3923void SelectionDAG::Legalize() {
3924  /// run - This is the main entry point to this class.
3925  ///
3926  SelectionDAGLegalize(*this).LegalizeDAG();
3927}
3928