LegalizeDAG.cpp revision b3dbd4a0b61d9c26df358384bdb66a41326f1a9d
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SelectionDAG::Legalize method.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Analysis/DebugInfo.h"
15#include "llvm/CodeGen/Analysis.h"
16#include "llvm/CodeGen/MachineFunction.h"
17#include "llvm/CodeGen/MachineJumpTableInfo.h"
18#include "llvm/CodeGen/SelectionDAG.h"
19#include "llvm/Target/TargetFrameLowering.h"
20#include "llvm/Target/TargetLowering.h"
21#include "llvm/Target/TargetData.h"
22#include "llvm/Target/TargetMachine.h"
23#include "llvm/CallingConv.h"
24#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/LLVMContext.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/Support/ErrorHandling.h"
29#include "llvm/Support/MathExtras.h"
30#include "llvm/Support/raw_ostream.h"
31#include "llvm/ADT/DenseMap.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/SmallPtrSet.h"
34using namespace llvm;
35
36//===----------------------------------------------------------------------===//
37/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
38/// hacks on it until the target machine can handle it.  This involves
39/// eliminating value sizes the machine cannot handle (promoting small sizes to
40/// large sizes or splitting up large values into small values) as well as
41/// eliminating operations the machine cannot handle.
42///
43/// This code also does a small amount of optimization and recognition of idioms
44/// as part of its processing.  For example, if a target does not support a
45/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
46/// will attempt merge setcc and brc instructions into brcc's.
47///
48namespace {
49class SelectionDAGLegalize {
50  const TargetMachine &TM;
51  const TargetLowering &TLI;
52  SelectionDAG &DAG;
53  CodeGenOpt::Level OptLevel;
54
55  // Libcall insertion helpers.
56
57  /// LastCALLSEQ - This keeps track of the CALLSEQ_END node that has been
58  /// legalized.  We use this to ensure that calls are properly serialized
59  /// against each other, including inserted libcalls.
60  SmallVector<SDValue, 8> LastCALLSEQ;
61
62  enum LegalizeAction {
63    Legal,      // The target natively supports this operation.
64    Promote,    // This operation should be executed in a larger type.
65    Expand      // Try to expand this to other ops, otherwise use a libcall.
66  };
67
68  /// ValueTypeActions - This is a bitvector that contains two bits for each
69  /// value type, where the two bits correspond to the LegalizeAction enum.
70  /// This can be queried with "getTypeAction(VT)".
71  TargetLowering::ValueTypeActionImpl ValueTypeActions;
72
73  /// LegalizedNodes - For nodes that are of legal width, and that have more
74  /// than one use, this map indicates what regularized operand to use.  This
75  /// allows us to avoid legalizing the same thing more than once.
76  DenseMap<SDValue, SDValue> LegalizedNodes;
77
78  void AddLegalizedOperand(SDValue From, SDValue To) {
79    LegalizedNodes.insert(std::make_pair(From, To));
80    // If someone requests legalization of the new node, return itself.
81    if (From != To)
82      LegalizedNodes.insert(std::make_pair(To, To));
83
84    // Transfer SDDbgValues.
85    DAG.TransferDbgValues(From, To);
86  }
87
88public:
89  SelectionDAGLegalize(SelectionDAG &DAG, CodeGenOpt::Level ol);
90
91  /// getTypeAction - Return how we should legalize values of this type, either
92  /// it is already legal or we need to expand it into multiple registers of
93  /// smaller integer type, or we need to promote it to a larger type.
94  LegalizeAction getTypeAction(EVT VT) const {
95    return (LegalizeAction)ValueTypeActions.getTypeAction(VT);
96  }
97
98  /// isTypeLegal - Return true if this type is legal on this target.
99  ///
100  bool isTypeLegal(EVT VT) const {
101    return getTypeAction(VT) == Legal;
102  }
103
104  void LegalizeDAG();
105
106private:
107  /// LegalizeOp - We know that the specified value has a legal type.
108  /// Recursively ensure that the operands have legal types, then return the
109  /// result.
110  SDValue LegalizeOp(SDValue O);
111
112  SDValue OptimizeFloatStore(StoreSDNode *ST);
113
114  /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
115  /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
116  /// is necessary to spill the vector being inserted into to memory, perform
117  /// the insert there, and then read the result back.
118  SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
119                                         SDValue Idx, DebugLoc dl);
120  SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
121                                  SDValue Idx, DebugLoc dl);
122
123  /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
124  /// performs the same shuffe in terms of order or result bytes, but on a type
125  /// whose vector element type is narrower than the original shuffle type.
126  /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
127  SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl,
128                                     SDValue N1, SDValue N2,
129                                     SmallVectorImpl<int> &Mask) const;
130
131  bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
132                                    SmallPtrSet<SDNode*, 32> &NodesLeadingTo);
133
134  void LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
135                             DebugLoc dl);
136
137  SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
138  SDValue ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, const SDValue *Ops,
139                        unsigned NumOps, bool isSigned, DebugLoc dl);
140
141  std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC,
142                                                 SDNode *Node, bool isSigned);
143  SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
144                          RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
145                          RTLIB::Libcall Call_PPCF128);
146  SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
147                           RTLIB::Libcall Call_I8,
148                           RTLIB::Libcall Call_I16,
149                           RTLIB::Libcall Call_I32,
150                           RTLIB::Libcall Call_I64,
151                           RTLIB::Libcall Call_I128);
152  void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
153
154  SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, DebugLoc dl);
155  SDValue ExpandBUILD_VECTOR(SDNode *Node);
156  SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
157  void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
158                                SmallVectorImpl<SDValue> &Results);
159  SDValue ExpandFCOPYSIGN(SDNode *Node);
160  SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT,
161                               DebugLoc dl);
162  SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned,
163                                DebugLoc dl);
164  SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned,
165                                DebugLoc dl);
166
167  SDValue ExpandBSWAP(SDValue Op, DebugLoc dl);
168  SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl);
169
170  SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
171  SDValue ExpandInsertToVectorThroughStack(SDValue Op);
172  SDValue ExpandVectorBuildThroughStack(SDNode* Node);
173
174  std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node);
175
176  void ExpandNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
177  void PromoteNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
178
179  SDValue getLastCALLSEQ() { return LastCALLSEQ.back();  }
180  void setLastCALLSEQ(const SDValue s) { LastCALLSEQ.back() = s; }
181  void pushLastCALLSEQ(SDValue s) {
182    LastCALLSEQ.push_back(s);
183  }
184  void popLastCALLSEQ() {
185    LastCALLSEQ.pop_back();
186  }
187};
188}
189
190/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
191/// performs the same shuffe in terms of order or result bytes, but on a type
192/// whose vector element type is narrower than the original shuffle type.
193/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
194SDValue
195SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT,  DebugLoc dl,
196                                                 SDValue N1, SDValue N2,
197                                             SmallVectorImpl<int> &Mask) const {
198  unsigned NumMaskElts = VT.getVectorNumElements();
199  unsigned NumDestElts = NVT.getVectorNumElements();
200  unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
201
202  assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
203
204  if (NumEltsGrowth == 1)
205    return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
206
207  SmallVector<int, 8> NewMask;
208  for (unsigned i = 0; i != NumMaskElts; ++i) {
209    int Idx = Mask[i];
210    for (unsigned j = 0; j != NumEltsGrowth; ++j) {
211      if (Idx < 0)
212        NewMask.push_back(-1);
213      else
214        NewMask.push_back(Idx * NumEltsGrowth + j);
215    }
216  }
217  assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
218  assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
219  return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
220}
221
222SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag,
223                                           CodeGenOpt::Level ol)
224  : TM(dag.getTarget()), TLI(dag.getTargetLoweringInfo()),
225    DAG(dag), OptLevel(ol),
226    ValueTypeActions(TLI.getValueTypeActions()) {
227  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
228         "Too many value types for ValueTypeActions to hold!");
229}
230
231void SelectionDAGLegalize::LegalizeDAG() {
232  pushLastCALLSEQ(DAG.getEntryNode());
233
234  // The legalize process is inherently a bottom-up recursive process (users
235  // legalize their uses before themselves).  Given infinite stack space, we
236  // could just start legalizing on the root and traverse the whole graph.  In
237  // practice however, this causes us to run out of stack space on large basic
238  // blocks.  To avoid this problem, compute an ordering of the nodes where each
239  // node is only legalized after all of its operands are legalized.
240  DAG.AssignTopologicalOrder();
241  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
242       E = prior(DAG.allnodes_end()); I != llvm::next(E); ++I)
243    LegalizeOp(SDValue(I, 0));
244
245  // Finally, it's possible the root changed.  Get the new root.
246  SDValue OldRoot = DAG.getRoot();
247  assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
248  DAG.setRoot(LegalizedNodes[OldRoot]);
249
250  LegalizedNodes.clear();
251
252  // Remove dead nodes now.
253  DAG.RemoveDeadNodes();
254}
255
256
257/// FindCallEndFromCallStart - Given a chained node that is part of a call
258/// sequence, find the CALLSEQ_END node that terminates the call sequence.
259static SDNode *FindCallEndFromCallStart(SDNode *Node, int depth = 0) {
260  int next_depth = depth;
261  if (Node->getOpcode() == ISD::CALLSEQ_START)
262    next_depth = depth + 1;
263  if (Node->getOpcode() == ISD::CALLSEQ_END) {
264    assert(depth > 0 && "negative depth!");
265    if (depth == 1)
266      return Node;
267    else
268      next_depth = depth - 1;
269  }
270  if (Node->use_empty())
271    return 0;   // No CallSeqEnd
272
273  // The chain is usually at the end.
274  SDValue TheChain(Node, Node->getNumValues()-1);
275  if (TheChain.getValueType() != MVT::Other) {
276    // Sometimes it's at the beginning.
277    TheChain = SDValue(Node, 0);
278    if (TheChain.getValueType() != MVT::Other) {
279      // Otherwise, hunt for it.
280      for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i)
281        if (Node->getValueType(i) == MVT::Other) {
282          TheChain = SDValue(Node, i);
283          break;
284        }
285
286      // Otherwise, we walked into a node without a chain.
287      if (TheChain.getValueType() != MVT::Other)
288        return 0;
289    }
290  }
291
292  for (SDNode::use_iterator UI = Node->use_begin(),
293       E = Node->use_end(); UI != E; ++UI) {
294
295    // Make sure to only follow users of our token chain.
296    SDNode *User = *UI;
297    for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
298      if (User->getOperand(i) == TheChain)
299        if (SDNode *Result = FindCallEndFromCallStart(User, next_depth))
300          return Result;
301  }
302  return 0;
303}
304
305/// FindCallStartFromCallEnd - Given a chained node that is part of a call
306/// sequence, find the CALLSEQ_START node that initiates the call sequence.
307static SDNode *FindCallStartFromCallEnd(SDNode *Node) {
308  int nested = 0;
309  assert(Node && "Didn't find callseq_start for a call??");
310  while (Node->getOpcode() != ISD::CALLSEQ_START || nested) {
311    Node = Node->getOperand(0).getNode();
312    assert(Node->getOperand(0).getValueType() == MVT::Other &&
313           "Node doesn't have a token chain argument!");
314    switch (Node->getOpcode()) {
315    default:
316      break;
317    case ISD::CALLSEQ_START:
318      if (!nested)
319        return Node;
320      Node = Node->getOperand(0).getNode();
321      nested--;
322      break;
323    case ISD::CALLSEQ_END:
324      nested++;
325      break;
326    }
327  }
328  return (Node->getOpcode() == ISD::CALLSEQ_START) ? Node : 0;
329}
330
331/// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to
332/// see if any uses can reach Dest.  If no dest operands can get to dest,
333/// legalize them, legalize ourself, and return false, otherwise, return true.
334///
335/// Keep track of the nodes we fine that actually do lead to Dest in
336/// NodesLeadingTo.  This avoids retraversing them exponential number of times.
337///
338bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
339                                     SmallPtrSet<SDNode*, 32> &NodesLeadingTo) {
340  if (N == Dest) return true;  // N certainly leads to Dest :)
341
342  // If we've already processed this node and it does lead to Dest, there is no
343  // need to reprocess it.
344  if (NodesLeadingTo.count(N)) return true;
345
346  // If the first result of this node has been already legalized, then it cannot
347  // reach N.
348  if (LegalizedNodes.count(SDValue(N, 0))) return false;
349
350  // Okay, this node has not already been legalized.  Check and legalize all
351  // operands.  If none lead to Dest, then we can legalize this node.
352  bool OperandsLeadToDest = false;
353  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
354    OperandsLeadToDest |=     // If an operand leads to Dest, so do we.
355      LegalizeAllNodesNotLeadingTo(N->getOperand(i).getNode(), Dest,
356                                   NodesLeadingTo);
357
358  if (OperandsLeadToDest) {
359    NodesLeadingTo.insert(N);
360    return true;
361  }
362
363  // Okay, this node looks safe, legalize it and return false.
364  LegalizeOp(SDValue(N, 0));
365  return false;
366}
367
368/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
369/// a load from the constant pool.
370static SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP,
371                                SelectionDAG &DAG, const TargetLowering &TLI) {
372  bool Extend = false;
373  DebugLoc dl = CFP->getDebugLoc();
374
375  // If a FP immediate is precise when represented as a float and if the
376  // target can do an extending load from float to double, we put it into
377  // the constant pool as a float, even if it's is statically typed as a
378  // double.  This shrinks FP constants and canonicalizes them for targets where
379  // an FP extending load is the same cost as a normal load (such as on the x87
380  // fp stack or PPC FP unit).
381  EVT VT = CFP->getValueType(0);
382  ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
383  if (!UseCP) {
384    assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
385    return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(),
386                           (VT == MVT::f64) ? MVT::i64 : MVT::i32);
387  }
388
389  EVT OrigVT = VT;
390  EVT SVT = VT;
391  while (SVT != MVT::f32) {
392    SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
393    if (ConstantFPSDNode::isValueValidForType(SVT, CFP->getValueAPF()) &&
394        // Only do this if the target has a native EXTLOAD instruction from
395        // smaller type.
396        TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
397        TLI.ShouldShrinkFPConstant(OrigVT)) {
398      const Type *SType = SVT.getTypeForEVT(*DAG.getContext());
399      LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
400      VT = SVT;
401      Extend = true;
402    }
403  }
404
405  SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
406  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
407  if (Extend)
408    return DAG.getExtLoad(ISD::EXTLOAD, dl, OrigVT,
409                          DAG.getEntryNode(),
410                          CPIdx, MachinePointerInfo::getConstantPool(),
411                          VT, false, false, Alignment);
412  return DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
413                     MachinePointerInfo::getConstantPool(), false, false,
414                     Alignment);
415}
416
417/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
418static
419SDValue ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
420                             const TargetLowering &TLI) {
421  SDValue Chain = ST->getChain();
422  SDValue Ptr = ST->getBasePtr();
423  SDValue Val = ST->getValue();
424  EVT VT = Val.getValueType();
425  int Alignment = ST->getAlignment();
426  DebugLoc dl = ST->getDebugLoc();
427  if (ST->getMemoryVT().isFloatingPoint() ||
428      ST->getMemoryVT().isVector()) {
429    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
430    if (TLI.isTypeLegal(intVT)) {
431      // Expand to a bitconvert of the value to the integer type of the
432      // same size, then a (misaligned) int store.
433      // FIXME: Does not handle truncating floating point stores!
434      SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
435      return DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
436                          ST->isVolatile(), ST->isNonTemporal(), Alignment);
437    } else {
438      // Do a (aligned) store to a stack slot, then copy from the stack slot
439      // to the final destination using (unaligned) integer loads and stores.
440      EVT StoredVT = ST->getMemoryVT();
441      EVT RegVT =
442        TLI.getRegisterType(*DAG.getContext(),
443                            EVT::getIntegerVT(*DAG.getContext(),
444                                              StoredVT.getSizeInBits()));
445      unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
446      unsigned RegBytes = RegVT.getSizeInBits() / 8;
447      unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
448
449      // Make sure the stack slot is also aligned for the register type.
450      SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
451
452      // Perform the original store, only redirected to the stack slot.
453      SDValue Store = DAG.getTruncStore(Chain, dl,
454                                        Val, StackPtr, MachinePointerInfo(),
455                                        StoredVT, false, false, 0);
456      SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
457      SmallVector<SDValue, 8> Stores;
458      unsigned Offset = 0;
459
460      // Do all but one copies using the full register width.
461      for (unsigned i = 1; i < NumRegs; i++) {
462        // Load one integer register's worth from the stack slot.
463        SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr,
464                                   MachinePointerInfo(),
465                                   false, false, 0);
466        // Store it to the final location.  Remember the store.
467        Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
468                                    ST->getPointerInfo().getWithOffset(Offset),
469                                      ST->isVolatile(), ST->isNonTemporal(),
470                                      MinAlign(ST->getAlignment(), Offset)));
471        // Increment the pointers.
472        Offset += RegBytes;
473        StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
474                               Increment);
475        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
476      }
477
478      // The last store may be partial.  Do a truncating store.  On big-endian
479      // machines this requires an extending load from the stack slot to ensure
480      // that the bits are in the right place.
481      EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
482                                    8 * (StoredBytes - Offset));
483
484      // Load from the stack slot.
485      SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
486                                    MachinePointerInfo(),
487                                    MemVT, false, false, 0);
488
489      Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
490                                         ST->getPointerInfo()
491                                           .getWithOffset(Offset),
492                                         MemVT, ST->isVolatile(),
493                                         ST->isNonTemporal(),
494                                         MinAlign(ST->getAlignment(), Offset)));
495      // The order of the stores doesn't matter - say it with a TokenFactor.
496      return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
497                         Stores.size());
498    }
499  }
500  assert(ST->getMemoryVT().isInteger() &&
501         !ST->getMemoryVT().isVector() &&
502         "Unaligned store of unknown type.");
503  // Get the half-size VT
504  EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
505  int NumBits = NewStoredVT.getSizeInBits();
506  int IncrementSize = NumBits / 8;
507
508  // Divide the stored value in two parts.
509  SDValue ShiftAmount = DAG.getConstant(NumBits,
510                                      TLI.getShiftAmountTy(Val.getValueType()));
511  SDValue Lo = Val;
512  SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
513
514  // Store the two parts
515  SDValue Store1, Store2;
516  Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
517                             ST->getPointerInfo(), NewStoredVT,
518                             ST->isVolatile(), ST->isNonTemporal(), Alignment);
519  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
520                    DAG.getConstant(IncrementSize, TLI.getPointerTy()));
521  Alignment = MinAlign(Alignment, IncrementSize);
522  Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
523                             ST->getPointerInfo().getWithOffset(IncrementSize),
524                             NewStoredVT, ST->isVolatile(), ST->isNonTemporal(),
525                             Alignment);
526
527  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
528}
529
530/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
531static
532SDValue ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
533                            const TargetLowering &TLI) {
534  SDValue Chain = LD->getChain();
535  SDValue Ptr = LD->getBasePtr();
536  EVT VT = LD->getValueType(0);
537  EVT LoadedVT = LD->getMemoryVT();
538  DebugLoc dl = LD->getDebugLoc();
539  if (VT.isFloatingPoint() || VT.isVector()) {
540    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
541    if (TLI.isTypeLegal(intVT)) {
542      // Expand to a (misaligned) integer load of the same size,
543      // then bitconvert to floating point or vector.
544      SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getPointerInfo(),
545                                    LD->isVolatile(),
546                                    LD->isNonTemporal(), LD->getAlignment());
547      SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
548      if (VT.isFloatingPoint() && LoadedVT != VT)
549        Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result);
550
551      SDValue Ops[] = { Result, Chain };
552      return DAG.getMergeValues(Ops, 2, dl);
553    }
554
555    // Copy the value to a (aligned) stack slot using (unaligned) integer
556    // loads and stores, then do a (aligned) load from the stack slot.
557    EVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT);
558    unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
559    unsigned RegBytes = RegVT.getSizeInBits() / 8;
560    unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
561
562    // Make sure the stack slot is also aligned for the register type.
563    SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
564
565    SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
566    SmallVector<SDValue, 8> Stores;
567    SDValue StackPtr = StackBase;
568    unsigned Offset = 0;
569
570    // Do all but one copies using the full register width.
571    for (unsigned i = 1; i < NumRegs; i++) {
572      // Load one integer register's worth from the original location.
573      SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr,
574                                 LD->getPointerInfo().getWithOffset(Offset),
575                                 LD->isVolatile(), LD->isNonTemporal(),
576                                 MinAlign(LD->getAlignment(), Offset));
577      // Follow the load with a store to the stack slot.  Remember the store.
578      Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
579                                    MachinePointerInfo(), false, false, 0));
580      // Increment the pointers.
581      Offset += RegBytes;
582      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
583      StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
584                             Increment);
585    }
586
587    // The last copy may be partial.  Do an extending load.
588    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
589                                  8 * (LoadedBytes - Offset));
590    SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
591                                  LD->getPointerInfo().getWithOffset(Offset),
592                                  MemVT, LD->isVolatile(),
593                                  LD->isNonTemporal(),
594                                  MinAlign(LD->getAlignment(), Offset));
595    // Follow the load with a store to the stack slot.  Remember the store.
596    // On big-endian machines this requires a truncating store to ensure
597    // that the bits end up in the right place.
598    Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
599                                       MachinePointerInfo(), MemVT,
600                                       false, false, 0));
601
602    // The order of the stores doesn't matter - say it with a TokenFactor.
603    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
604                             Stores.size());
605
606    // Finally, perform the original load only redirected to the stack slot.
607    Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
608                          MachinePointerInfo(), LoadedVT, false, false, 0);
609
610    // Callers expect a MERGE_VALUES node.
611    SDValue Ops[] = { Load, TF };
612    return DAG.getMergeValues(Ops, 2, dl);
613  }
614  assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
615         "Unaligned load of unsupported type.");
616
617  // Compute the new VT that is half the size of the old one.  This is an
618  // integer MVT.
619  unsigned NumBits = LoadedVT.getSizeInBits();
620  EVT NewLoadedVT;
621  NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
622  NumBits >>= 1;
623
624  unsigned Alignment = LD->getAlignment();
625  unsigned IncrementSize = NumBits / 8;
626  ISD::LoadExtType HiExtType = LD->getExtensionType();
627
628  // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
629  if (HiExtType == ISD::NON_EXTLOAD)
630    HiExtType = ISD::ZEXTLOAD;
631
632  // Load the value in two parts
633  SDValue Lo, Hi;
634  if (TLI.isLittleEndian()) {
635    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
636                        NewLoadedVT, LD->isVolatile(),
637                        LD->isNonTemporal(), Alignment);
638    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
639                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
640    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
641                        LD->getPointerInfo().getWithOffset(IncrementSize),
642                        NewLoadedVT, LD->isVolatile(),
643                        LD->isNonTemporal(), MinAlign(Alignment,IncrementSize));
644  } else {
645    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
646                        NewLoadedVT, LD->isVolatile(),
647                        LD->isNonTemporal(), Alignment);
648    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
649                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
650    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
651                        LD->getPointerInfo().getWithOffset(IncrementSize),
652                        NewLoadedVT, LD->isVolatile(),
653                        LD->isNonTemporal(), MinAlign(Alignment,IncrementSize));
654  }
655
656  // aggregate the two parts
657  SDValue ShiftAmount = DAG.getConstant(NumBits,
658                                       TLI.getShiftAmountTy(Hi.getValueType()));
659  SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
660  Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
661
662  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
663                             Hi.getValue(1));
664
665  SDValue Ops[] = { Result, TF };
666  return DAG.getMergeValues(Ops, 2, dl);
667}
668
669/// PerformInsertVectorEltInMemory - Some target cannot handle a variable
670/// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
671/// is necessary to spill the vector being inserted into to memory, perform
672/// the insert there, and then read the result back.
673SDValue SelectionDAGLegalize::
674PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
675                               DebugLoc dl) {
676  SDValue Tmp1 = Vec;
677  SDValue Tmp2 = Val;
678  SDValue Tmp3 = Idx;
679
680  // If the target doesn't support this, we have to spill the input vector
681  // to a temporary stack slot, update the element, then reload it.  This is
682  // badness.  We could also load the value into a vector register (either
683  // with a "move to register" or "extload into register" instruction, then
684  // permute it into place, if the idx is a constant and if the idx is
685  // supported by the target.
686  EVT VT    = Tmp1.getValueType();
687  EVT EltVT = VT.getVectorElementType();
688  EVT IdxVT = Tmp3.getValueType();
689  EVT PtrVT = TLI.getPointerTy();
690  SDValue StackPtr = DAG.CreateStackTemporary(VT);
691
692  int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
693
694  // Store the vector.
695  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr,
696                            MachinePointerInfo::getFixedStack(SPFI),
697                            false, false, 0);
698
699  // Truncate or zero extend offset to target pointer type.
700  unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
701  Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3);
702  // Add the offset to the index.
703  unsigned EltSize = EltVT.getSizeInBits()/8;
704  Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
705  SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
706  // Store the scalar value.
707  Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT,
708                         false, false, 0);
709  // Load the updated vector.
710  return DAG.getLoad(VT, dl, Ch, StackPtr,
711                     MachinePointerInfo::getFixedStack(SPFI), false, false, 0);
712}
713
714
715SDValue SelectionDAGLegalize::
716ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) {
717  if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
718    // SCALAR_TO_VECTOR requires that the type of the value being inserted
719    // match the element type of the vector being created, except for
720    // integers in which case the inserted value can be over width.
721    EVT EltVT = Vec.getValueType().getVectorElementType();
722    if (Val.getValueType() == EltVT ||
723        (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
724      SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
725                                  Vec.getValueType(), Val);
726
727      unsigned NumElts = Vec.getValueType().getVectorNumElements();
728      // We generate a shuffle of InVec and ScVec, so the shuffle mask
729      // should be 0,1,2,3,4,5... with the appropriate element replaced with
730      // elt 0 of the RHS.
731      SmallVector<int, 8> ShufOps;
732      for (unsigned i = 0; i != NumElts; ++i)
733        ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
734
735      return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
736                                  &ShufOps[0]);
737    }
738  }
739  return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
740}
741
742SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
743  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
744  // FIXME: We shouldn't do this for TargetConstantFP's.
745  // FIXME: move this to the DAG Combiner!  Note that we can't regress due
746  // to phase ordering between legalized code and the dag combiner.  This
747  // probably means that we need to integrate dag combiner and legalizer
748  // together.
749  // We generally can't do this one for long doubles.
750  SDValue Tmp1 = ST->getChain();
751  SDValue Tmp2 = ST->getBasePtr();
752  SDValue Tmp3;
753  unsigned Alignment = ST->getAlignment();
754  bool isVolatile = ST->isVolatile();
755  bool isNonTemporal = ST->isNonTemporal();
756  DebugLoc dl = ST->getDebugLoc();
757  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
758    if (CFP->getValueType(0) == MVT::f32 &&
759        getTypeAction(MVT::i32) == Legal) {
760      Tmp3 = DAG.getConstant(CFP->getValueAPF().
761                                      bitcastToAPInt().zextOrTrunc(32),
762                              MVT::i32);
763      return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
764                          isVolatile, isNonTemporal, Alignment);
765    }
766
767    if (CFP->getValueType(0) == MVT::f64) {
768      // If this target supports 64-bit registers, do a single 64-bit store.
769      if (getTypeAction(MVT::i64) == Legal) {
770        Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
771                                  zextOrTrunc(64), MVT::i64);
772        return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
773                            isVolatile, isNonTemporal, Alignment);
774      }
775
776      if (getTypeAction(MVT::i32) == Legal && !ST->isVolatile()) {
777        // Otherwise, if the target supports 32-bit registers, use 2 32-bit
778        // stores.  If the target supports neither 32- nor 64-bits, this
779        // xform is certainly not worth it.
780        const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt();
781        SDValue Lo = DAG.getConstant(IntVal.trunc(32), MVT::i32);
782        SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32);
783        if (TLI.isBigEndian()) std::swap(Lo, Hi);
784
785        Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getPointerInfo(), isVolatile,
786                          isNonTemporal, Alignment);
787        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
788                            DAG.getIntPtrConstant(4));
789        Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2,
790                          ST->getPointerInfo().getWithOffset(4),
791                          isVolatile, isNonTemporal, MinAlign(Alignment, 4U));
792
793        return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
794      }
795    }
796  }
797  return SDValue(0, 0);
798}
799
800/// LegalizeOp - We know that the specified value has a legal type, and
801/// that its operands are legal.  Now ensure that the operation itself
802/// is legal, recursively ensuring that the operands' operations remain
803/// legal.
804SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
805  if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
806    return Op;
807
808  SDNode *Node = Op.getNode();
809  DebugLoc dl = Node->getDebugLoc();
810
811  for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
812    assert(getTypeAction(Node->getValueType(i)) == Legal &&
813           "Unexpected illegal type!");
814
815  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
816    assert((isTypeLegal(Node->getOperand(i).getValueType()) ||
817            Node->getOperand(i).getOpcode() == ISD::TargetConstant) &&
818           "Unexpected illegal type!");
819
820  // Note that LegalizeOp may be reentered even from single-use nodes, which
821  // means that we always must cache transformed nodes.
822  DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
823  if (I != LegalizedNodes.end()) return I->second;
824
825  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
826  SDValue Result = Op;
827  bool isCustom = false;
828
829  // Figure out the correct action; the way to query this varies by opcode
830  TargetLowering::LegalizeAction Action = TargetLowering::Legal;
831  bool SimpleFinishLegalizing = true;
832  switch (Node->getOpcode()) {
833  case ISD::INTRINSIC_W_CHAIN:
834  case ISD::INTRINSIC_WO_CHAIN:
835  case ISD::INTRINSIC_VOID:
836  case ISD::VAARG:
837  case ISD::STACKSAVE:
838    Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
839    break;
840  case ISD::SINT_TO_FP:
841  case ISD::UINT_TO_FP:
842  case ISD::EXTRACT_VECTOR_ELT:
843    Action = TLI.getOperationAction(Node->getOpcode(),
844                                    Node->getOperand(0).getValueType());
845    break;
846  case ISD::FP_ROUND_INREG:
847  case ISD::SIGN_EXTEND_INREG: {
848    EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
849    Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
850    break;
851  }
852  case ISD::SELECT_CC:
853  case ISD::SETCC:
854  case ISD::BR_CC: {
855    unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
856                         Node->getOpcode() == ISD::SETCC ? 2 : 1;
857    unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
858    EVT OpVT = Node->getOperand(CompareOperand).getValueType();
859    ISD::CondCode CCCode =
860        cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
861    Action = TLI.getCondCodeAction(CCCode, OpVT);
862    if (Action == TargetLowering::Legal) {
863      if (Node->getOpcode() == ISD::SELECT_CC)
864        Action = TLI.getOperationAction(Node->getOpcode(),
865                                        Node->getValueType(0));
866      else
867        Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
868    }
869    break;
870  }
871  case ISD::LOAD:
872  case ISD::STORE:
873    // FIXME: Model these properly.  LOAD and STORE are complicated, and
874    // STORE expects the unlegalized operand in some cases.
875    SimpleFinishLegalizing = false;
876    break;
877  case ISD::CALLSEQ_START:
878  case ISD::CALLSEQ_END:
879    // FIXME: This shouldn't be necessary.  These nodes have special properties
880    // dealing with the recursive nature of legalization.  Removing this
881    // special case should be done as part of making LegalizeDAG non-recursive.
882    SimpleFinishLegalizing = false;
883    break;
884  case ISD::EXTRACT_ELEMENT:
885  case ISD::FLT_ROUNDS_:
886  case ISD::SADDO:
887  case ISD::SSUBO:
888  case ISD::UADDO:
889  case ISD::USUBO:
890  case ISD::SMULO:
891  case ISD::UMULO:
892  case ISD::FPOWI:
893  case ISD::MERGE_VALUES:
894  case ISD::EH_RETURN:
895  case ISD::FRAME_TO_ARGS_OFFSET:
896  case ISD::EH_SJLJ_SETJMP:
897  case ISD::EH_SJLJ_LONGJMP:
898  case ISD::EH_SJLJ_DISPATCHSETUP:
899    // These operations lie about being legal: when they claim to be legal,
900    // they should actually be expanded.
901    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
902    if (Action == TargetLowering::Legal)
903      Action = TargetLowering::Expand;
904    break;
905  case ISD::TRAMPOLINE:
906  case ISD::FRAMEADDR:
907  case ISD::RETURNADDR:
908    // These operations lie about being legal: when they claim to be legal,
909    // they should actually be custom-lowered.
910    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
911    if (Action == TargetLowering::Legal)
912      Action = TargetLowering::Custom;
913    break;
914  case ISD::BUILD_VECTOR:
915    // A weird case: legalization for BUILD_VECTOR never legalizes the
916    // operands!
917    // FIXME: This really sucks... changing it isn't semantically incorrect,
918    // but it massively pessimizes the code for floating-point BUILD_VECTORs
919    // because ConstantFP operands get legalized into constant pool loads
920    // before the BUILD_VECTOR code can see them.  It doesn't usually bite,
921    // though, because BUILD_VECTORS usually get lowered into other nodes
922    // which get legalized properly.
923    SimpleFinishLegalizing = false;
924    break;
925  default:
926    if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
927      Action = TargetLowering::Legal;
928    } else {
929      Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
930    }
931    break;
932  }
933
934  if (SimpleFinishLegalizing) {
935    SmallVector<SDValue, 8> Ops, ResultVals;
936    for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
937      Ops.push_back(LegalizeOp(Node->getOperand(i)));
938    switch (Node->getOpcode()) {
939    default: break;
940    case ISD::BR:
941    case ISD::BRIND:
942    case ISD::BR_JT:
943    case ISD::BR_CC:
944    case ISD::BRCOND:
945      assert(LastCALLSEQ.size() == 1 && "branch inside CALLSEQ_BEGIN/END?");
946      // Branches tweak the chain to include LastCALLSEQ
947      Ops[0] = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ops[0],
948                           getLastCALLSEQ());
949      Ops[0] = LegalizeOp(Ops[0]);
950      setLastCALLSEQ(DAG.getEntryNode());
951      break;
952    case ISD::SHL:
953    case ISD::SRL:
954    case ISD::SRA:
955    case ISD::ROTL:
956    case ISD::ROTR:
957      // Legalizing shifts/rotates requires adjusting the shift amount
958      // to the appropriate width.
959      if (!Ops[1].getValueType().isVector())
960        Ops[1] = LegalizeOp(DAG.getShiftAmountOperand(Ops[0].getValueType(),
961                                                      Ops[1]));
962      break;
963    case ISD::SRL_PARTS:
964    case ISD::SRA_PARTS:
965    case ISD::SHL_PARTS:
966      // Legalizing shifts/rotates requires adjusting the shift amount
967      // to the appropriate width.
968      if (!Ops[2].getValueType().isVector())
969        Ops[2] = LegalizeOp(DAG.getShiftAmountOperand(Ops[0].getValueType(),
970                                                      Ops[2]));
971      break;
972    }
973
974    Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), Ops.data(),
975                                            Ops.size()), 0);
976    switch (Action) {
977    case TargetLowering::Legal:
978      for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
979        ResultVals.push_back(Result.getValue(i));
980      break;
981    case TargetLowering::Custom:
982      // FIXME: The handling for custom lowering with multiple results is
983      // a complete mess.
984      Tmp1 = TLI.LowerOperation(Result, DAG);
985      if (Tmp1.getNode()) {
986        for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
987          if (e == 1)
988            ResultVals.push_back(Tmp1);
989          else
990            ResultVals.push_back(Tmp1.getValue(i));
991        }
992        break;
993      }
994
995      // FALL THROUGH
996    case TargetLowering::Expand:
997      ExpandNode(Result.getNode(), ResultVals);
998      break;
999    case TargetLowering::Promote:
1000      PromoteNode(Result.getNode(), ResultVals);
1001      break;
1002    }
1003    if (!ResultVals.empty()) {
1004      for (unsigned i = 0, e = ResultVals.size(); i != e; ++i) {
1005        if (ResultVals[i] != SDValue(Node, i))
1006          ResultVals[i] = LegalizeOp(ResultVals[i]);
1007        AddLegalizedOperand(SDValue(Node, i), ResultVals[i]);
1008      }
1009      return ResultVals[Op.getResNo()];
1010    }
1011  }
1012
1013  switch (Node->getOpcode()) {
1014  default:
1015#ifndef NDEBUG
1016    dbgs() << "NODE: ";
1017    Node->dump( &DAG);
1018    dbgs() << "\n";
1019#endif
1020    assert(0 && "Do not know how to legalize this operator!");
1021
1022  case ISD::BUILD_VECTOR:
1023    switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) {
1024    default: assert(0 && "This action is not supported yet!");
1025    case TargetLowering::Custom:
1026      Tmp3 = TLI.LowerOperation(Result, DAG);
1027      if (Tmp3.getNode()) {
1028        Result = Tmp3;
1029        break;
1030      }
1031      // FALLTHROUGH
1032    case TargetLowering::Expand:
1033      Result = ExpandBUILD_VECTOR(Result.getNode());
1034      break;
1035    }
1036    break;
1037  case ISD::CALLSEQ_START: {
1038    SDNode *CallEnd = FindCallEndFromCallStart(Node);
1039    assert(CallEnd && "didn't find CALLSEQ_END!");
1040
1041    // Recursively Legalize all of the inputs of the call end that do not lead
1042    // to this call start.  This ensures that any libcalls that need be inserted
1043    // are inserted *before* the CALLSEQ_START.
1044    {SmallPtrSet<SDNode*, 32> NodesLeadingTo;
1045    for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i)
1046      LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).getNode(), Node,
1047                                   NodesLeadingTo);
1048    }
1049
1050    // Now that we have legalized all of the inputs (which may have inserted
1051    // libcalls), create the new CALLSEQ_START node.
1052    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1053
1054    // Merge in the last call to ensure that this call starts after the last
1055    // call ended.
1056    if (getLastCALLSEQ().getOpcode() != ISD::EntryToken) {
1057      Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1058                         Tmp1, getLastCALLSEQ());
1059      Tmp1 = LegalizeOp(Tmp1);
1060    }
1061
1062    // Do not try to legalize the target-specific arguments (#1+).
1063    if (Tmp1 != Node->getOperand(0)) {
1064      SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1065      Ops[0] = Tmp1;
1066      Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), &Ops[0],
1067                                              Ops.size()), Result.getResNo());
1068    }
1069
1070    // Remember that the CALLSEQ_START is legalized.
1071    AddLegalizedOperand(Op.getValue(0), Result);
1072    if (Node->getNumValues() == 2)    // If this has a flag result, remember it.
1073      AddLegalizedOperand(Op.getValue(1), Result.getValue(1));
1074
1075    // Now that the callseq_start and all of the non-call nodes above this call
1076    // sequence have been legalized, legalize the call itself.  During this
1077    // process, no libcalls can/will be inserted, guaranteeing that no calls
1078    // can overlap.
1079    // Note that we are selecting this call!
1080    setLastCALLSEQ(SDValue(CallEnd, 0));
1081
1082    // Legalize the call, starting from the CALLSEQ_END.
1083    LegalizeOp(getLastCALLSEQ());
1084    return Result;
1085  }
1086  case ISD::CALLSEQ_END:
1087    {
1088      SDNode *myCALLSEQ_BEGIN = FindCallStartFromCallEnd(Node);
1089
1090      // If the CALLSEQ_START node hasn't been legalized first, legalize it.
1091      // This will cause this node to be legalized as well as handling libcalls
1092      // right.
1093      if (getLastCALLSEQ().getNode() != Node) {
1094        LegalizeOp(SDValue(myCALLSEQ_BEGIN, 0));
1095        DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
1096        assert(I != LegalizedNodes.end() &&
1097               "Legalizing the call start should have legalized this node!");
1098        return I->second;
1099      }
1100
1101      pushLastCALLSEQ(SDValue(myCALLSEQ_BEGIN, 0));
1102    }
1103
1104    // Otherwise, the call start has been legalized and everything is going
1105    // according to plan.  Just legalize ourselves normally here.
1106    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1107    // Do not try to legalize the target-specific arguments (#1+), except for
1108    // an optional flag input.
1109    if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Glue){
1110      if (Tmp1 != Node->getOperand(0)) {
1111        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1112        Ops[0] = Tmp1;
1113        Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1114                                                &Ops[0], Ops.size()),
1115                         Result.getResNo());
1116      }
1117    } else {
1118      Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1));
1119      if (Tmp1 != Node->getOperand(0) ||
1120          Tmp2 != Node->getOperand(Node->getNumOperands()-1)) {
1121        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1122        Ops[0] = Tmp1;
1123        Ops.back() = Tmp2;
1124        Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1125                                                &Ops[0], Ops.size()),
1126                         Result.getResNo());
1127      }
1128    }
1129    // This finishes up call legalization.
1130    popLastCALLSEQ();
1131
1132    // If the CALLSEQ_END node has a flag, remember that we legalized it.
1133    AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0));
1134    if (Node->getNumValues() == 2)
1135      AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1));
1136    return Result.getValue(Op.getResNo());
1137  case ISD::LOAD: {
1138    LoadSDNode *LD = cast<LoadSDNode>(Node);
1139    Tmp1 = LegalizeOp(LD->getChain());   // Legalize the chain.
1140    Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer.
1141
1142    ISD::LoadExtType ExtType = LD->getExtensionType();
1143    if (ExtType == ISD::NON_EXTLOAD) {
1144      EVT VT = Node->getValueType(0);
1145      Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1146                                              Tmp1, Tmp2, LD->getOffset()),
1147                       Result.getResNo());
1148      Tmp3 = Result.getValue(0);
1149      Tmp4 = Result.getValue(1);
1150
1151      switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
1152      default: assert(0 && "This action is not supported yet!");
1153      case TargetLowering::Legal:
1154        // If this is an unaligned load and the target doesn't support it,
1155        // expand it.
1156        if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1157          const Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1158          unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1159          if (LD->getAlignment() < ABIAlignment){
1160            Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
1161                                         DAG, TLI);
1162            Tmp3 = Result.getOperand(0);
1163            Tmp4 = Result.getOperand(1);
1164            Tmp3 = LegalizeOp(Tmp3);
1165            Tmp4 = LegalizeOp(Tmp4);
1166          }
1167        }
1168        break;
1169      case TargetLowering::Custom:
1170        Tmp1 = TLI.LowerOperation(Tmp3, DAG);
1171        if (Tmp1.getNode()) {
1172          Tmp3 = LegalizeOp(Tmp1);
1173          Tmp4 = LegalizeOp(Tmp1.getValue(1));
1174        }
1175        break;
1176      case TargetLowering::Promote: {
1177        // Only promote a load of vector type to another.
1178        assert(VT.isVector() && "Cannot promote this load!");
1179        // Change base type to a different vector type.
1180        EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
1181
1182        Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getPointerInfo(),
1183                           LD->isVolatile(), LD->isNonTemporal(),
1184                           LD->getAlignment());
1185        Tmp3 = LegalizeOp(DAG.getNode(ISD::BITCAST, dl, VT, Tmp1));
1186        Tmp4 = LegalizeOp(Tmp1.getValue(1));
1187        break;
1188      }
1189      }
1190      // Since loads produce two values, make sure to remember that we
1191      // legalized both of them.
1192      AddLegalizedOperand(SDValue(Node, 0), Tmp3);
1193      AddLegalizedOperand(SDValue(Node, 1), Tmp4);
1194      return Op.getResNo() ? Tmp4 : Tmp3;
1195    }
1196
1197    EVT SrcVT = LD->getMemoryVT();
1198    unsigned SrcWidth = SrcVT.getSizeInBits();
1199    unsigned Alignment = LD->getAlignment();
1200    bool isVolatile = LD->isVolatile();
1201    bool isNonTemporal = LD->isNonTemporal();
1202
1203    if (SrcWidth != SrcVT.getStoreSizeInBits() &&
1204        // Some targets pretend to have an i1 loading operation, and actually
1205        // load an i8.  This trick is correct for ZEXTLOAD because the top 7
1206        // bits are guaranteed to be zero; it helps the optimizers understand
1207        // that these bits are zero.  It is also useful for EXTLOAD, since it
1208        // tells the optimizers that those bits are undefined.  It would be
1209        // nice to have an effective generic way of getting these benefits...
1210        // Until such a way is found, don't insist on promoting i1 here.
1211        (SrcVT != MVT::i1 ||
1212         TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
1213      // Promote to a byte-sized load if not loading an integral number of
1214      // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
1215      unsigned NewWidth = SrcVT.getStoreSizeInBits();
1216      EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
1217      SDValue Ch;
1218
1219      // The extra bits are guaranteed to be zero, since we stored them that
1220      // way.  A zext load from NVT thus automatically gives zext from SrcVT.
1221
1222      ISD::LoadExtType NewExtType =
1223        ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
1224
1225      Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
1226                              Tmp1, Tmp2, LD->getPointerInfo(),
1227                              NVT, isVolatile, isNonTemporal, Alignment);
1228
1229      Ch = Result.getValue(1); // The chain.
1230
1231      if (ExtType == ISD::SEXTLOAD)
1232        // Having the top bits zero doesn't help when sign extending.
1233        Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1234                             Result.getValueType(),
1235                             Result, DAG.getValueType(SrcVT));
1236      else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
1237        // All the top bits are guaranteed to be zero - inform the optimizers.
1238        Result = DAG.getNode(ISD::AssertZext, dl,
1239                             Result.getValueType(), Result,
1240                             DAG.getValueType(SrcVT));
1241
1242      Tmp1 = LegalizeOp(Result);
1243      Tmp2 = LegalizeOp(Ch);
1244    } else if (SrcWidth & (SrcWidth - 1)) {
1245      // If not loading a power-of-2 number of bits, expand as two loads.
1246      assert(!SrcVT.isVector() && "Unsupported extload!");
1247      unsigned RoundWidth = 1 << Log2_32(SrcWidth);
1248      assert(RoundWidth < SrcWidth);
1249      unsigned ExtraWidth = SrcWidth - RoundWidth;
1250      assert(ExtraWidth < RoundWidth);
1251      assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1252             "Load size not an integral number of bytes!");
1253      EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1254      EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1255      SDValue Lo, Hi, Ch;
1256      unsigned IncrementSize;
1257
1258      if (TLI.isLittleEndian()) {
1259        // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
1260        // Load the bottom RoundWidth bits.
1261        Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0),
1262                            Tmp1, Tmp2,
1263                            LD->getPointerInfo(), RoundVT, isVolatile,
1264                            isNonTemporal, Alignment);
1265
1266        // Load the remaining ExtraWidth bits.
1267        IncrementSize = RoundWidth / 8;
1268        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1269                           DAG.getIntPtrConstant(IncrementSize));
1270        Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1271                            LD->getPointerInfo().getWithOffset(IncrementSize),
1272                            ExtraVT, isVolatile, isNonTemporal,
1273                            MinAlign(Alignment, IncrementSize));
1274
1275        // Build a factor node to remember that this load is independent of
1276        // the other one.
1277        Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1278                         Hi.getValue(1));
1279
1280        // Move the top bits to the right place.
1281        Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1282                         DAG.getConstant(RoundWidth,
1283                                      TLI.getShiftAmountTy(Hi.getValueType())));
1284
1285        // Join the hi and lo parts.
1286        Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1287      } else {
1288        // Big endian - avoid unaligned loads.
1289        // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
1290        // Load the top RoundWidth bits.
1291        Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1292                            LD->getPointerInfo(), RoundVT, isVolatile,
1293                            isNonTemporal, Alignment);
1294
1295        // Load the remaining ExtraWidth bits.
1296        IncrementSize = RoundWidth / 8;
1297        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1298                           DAG.getIntPtrConstant(IncrementSize));
1299        Lo = DAG.getExtLoad(ISD::ZEXTLOAD,
1300                            dl, Node->getValueType(0), Tmp1, Tmp2,
1301                            LD->getPointerInfo().getWithOffset(IncrementSize),
1302                            ExtraVT, isVolatile, isNonTemporal,
1303                            MinAlign(Alignment, IncrementSize));
1304
1305        // Build a factor node to remember that this load is independent of
1306        // the other one.
1307        Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1308                         Hi.getValue(1));
1309
1310        // Move the top bits to the right place.
1311        Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1312                         DAG.getConstant(ExtraWidth,
1313                                      TLI.getShiftAmountTy(Hi.getValueType())));
1314
1315        // Join the hi and lo parts.
1316        Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1317      }
1318
1319      Tmp1 = LegalizeOp(Result);
1320      Tmp2 = LegalizeOp(Ch);
1321    } else {
1322      switch (TLI.getLoadExtAction(ExtType, SrcVT)) {
1323      default: assert(0 && "This action is not supported yet!");
1324      case TargetLowering::Custom:
1325        isCustom = true;
1326        // FALLTHROUGH
1327      case TargetLowering::Legal:
1328        Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1329                                                Tmp1, Tmp2, LD->getOffset()),
1330                         Result.getResNo());
1331        Tmp1 = Result.getValue(0);
1332        Tmp2 = Result.getValue(1);
1333
1334        if (isCustom) {
1335          Tmp3 = TLI.LowerOperation(Result, DAG);
1336          if (Tmp3.getNode()) {
1337            Tmp1 = LegalizeOp(Tmp3);
1338            Tmp2 = LegalizeOp(Tmp3.getValue(1));
1339          }
1340        } else {
1341          // If this is an unaligned load and the target doesn't support it,
1342          // expand it.
1343          if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1344            const Type *Ty =
1345              LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1346            unsigned ABIAlignment =
1347              TLI.getTargetData()->getABITypeAlignment(Ty);
1348            if (LD->getAlignment() < ABIAlignment){
1349              Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
1350                                           DAG, TLI);
1351              Tmp1 = Result.getOperand(0);
1352              Tmp2 = Result.getOperand(1);
1353              Tmp1 = LegalizeOp(Tmp1);
1354              Tmp2 = LegalizeOp(Tmp2);
1355            }
1356          }
1357        }
1358        break;
1359      case TargetLowering::Expand:
1360        if (!TLI.isLoadExtLegal(ISD::EXTLOAD, SrcVT) && isTypeLegal(SrcVT)) {
1361          SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2,
1362                                     LD->getPointerInfo(),
1363                                     LD->isVolatile(), LD->isNonTemporal(),
1364                                     LD->getAlignment());
1365          unsigned ExtendOp;
1366          switch (ExtType) {
1367          case ISD::EXTLOAD:
1368            ExtendOp = (SrcVT.isFloatingPoint() ?
1369                        ISD::FP_EXTEND : ISD::ANY_EXTEND);
1370            break;
1371          case ISD::SEXTLOAD: ExtendOp = ISD::SIGN_EXTEND; break;
1372          case ISD::ZEXTLOAD: ExtendOp = ISD::ZERO_EXTEND; break;
1373          default: llvm_unreachable("Unexpected extend load type!");
1374          }
1375          Result = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load);
1376          Tmp1 = LegalizeOp(Result);  // Relegalize new nodes.
1377          Tmp2 = LegalizeOp(Load.getValue(1));
1378          break;
1379        }
1380        // FIXME: This does not work for vectors on most targets.  Sign- and
1381        // zero-extend operations are currently folded into extending loads,
1382        // whether they are legal or not, and then we end up here without any
1383        // support for legalizing them.
1384        assert(ExtType != ISD::EXTLOAD &&
1385               "EXTLOAD should always be supported!");
1386        // Turn the unsupported load into an EXTLOAD followed by an explicit
1387        // zero/sign extend inreg.
1388        Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0),
1389                                Tmp1, Tmp2, LD->getPointerInfo(), SrcVT,
1390                                LD->isVolatile(), LD->isNonTemporal(),
1391                                LD->getAlignment());
1392        SDValue ValRes;
1393        if (ExtType == ISD::SEXTLOAD)
1394          ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1395                               Result.getValueType(),
1396                               Result, DAG.getValueType(SrcVT));
1397        else
1398          ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType());
1399        Tmp1 = LegalizeOp(ValRes);  // Relegalize new nodes.
1400        Tmp2 = LegalizeOp(Result.getValue(1));  // Relegalize new nodes.
1401        break;
1402      }
1403    }
1404
1405    // Since loads produce two values, make sure to remember that we legalized
1406    // both of them.
1407    AddLegalizedOperand(SDValue(Node, 0), Tmp1);
1408    AddLegalizedOperand(SDValue(Node, 1), Tmp2);
1409    return Op.getResNo() ? Tmp2 : Tmp1;
1410  }
1411  case ISD::STORE: {
1412    StoreSDNode *ST = cast<StoreSDNode>(Node);
1413    Tmp1 = LegalizeOp(ST->getChain());    // Legalize the chain.
1414    Tmp2 = LegalizeOp(ST->getBasePtr());  // Legalize the pointer.
1415    unsigned Alignment = ST->getAlignment();
1416    bool isVolatile = ST->isVolatile();
1417    bool isNonTemporal = ST->isNonTemporal();
1418
1419    if (!ST->isTruncatingStore()) {
1420      if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
1421        Result = SDValue(OptStore, 0);
1422        break;
1423      }
1424
1425      {
1426        Tmp3 = LegalizeOp(ST->getValue());
1427        Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1428                                                Tmp1, Tmp3, Tmp2,
1429                                                ST->getOffset()),
1430                         Result.getResNo());
1431
1432        EVT VT = Tmp3.getValueType();
1433        switch (TLI.getOperationAction(ISD::STORE, VT)) {
1434        default: assert(0 && "This action is not supported yet!");
1435        case TargetLowering::Legal:
1436          // If this is an unaligned store and the target doesn't support it,
1437          // expand it.
1438          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1439            const Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1440            unsigned ABIAlignment= TLI.getTargetData()->getABITypeAlignment(Ty);
1441            if (ST->getAlignment() < ABIAlignment)
1442              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()),
1443                                            DAG, TLI);
1444          }
1445          break;
1446        case TargetLowering::Custom:
1447          Tmp1 = TLI.LowerOperation(Result, DAG);
1448          if (Tmp1.getNode()) Result = Tmp1;
1449          break;
1450        case TargetLowering::Promote:
1451          assert(VT.isVector() && "Unknown legal promote case!");
1452          Tmp3 = DAG.getNode(ISD::BITCAST, dl,
1453                             TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3);
1454          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2,
1455                                ST->getPointerInfo(), isVolatile,
1456                                isNonTemporal, Alignment);
1457          break;
1458        }
1459        break;
1460      }
1461    } else {
1462      Tmp3 = LegalizeOp(ST->getValue());
1463
1464      EVT StVT = ST->getMemoryVT();
1465      unsigned StWidth = StVT.getSizeInBits();
1466
1467      if (StWidth != StVT.getStoreSizeInBits()) {
1468        // Promote to a byte-sized store with upper bits zero if not
1469        // storing an integral number of bytes.  For example, promote
1470        // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
1471        EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
1472                                    StVT.getStoreSizeInBits());
1473        Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT);
1474        Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
1475                                   NVT, isVolatile, isNonTemporal, Alignment);
1476      } else if (StWidth & (StWidth - 1)) {
1477        // If not storing a power-of-2 number of bits, expand as two stores.
1478        assert(!StVT.isVector() && "Unsupported truncstore!");
1479        unsigned RoundWidth = 1 << Log2_32(StWidth);
1480        assert(RoundWidth < StWidth);
1481        unsigned ExtraWidth = StWidth - RoundWidth;
1482        assert(ExtraWidth < RoundWidth);
1483        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1484               "Store size not an integral number of bytes!");
1485        EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1486        EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1487        SDValue Lo, Hi;
1488        unsigned IncrementSize;
1489
1490        if (TLI.isLittleEndian()) {
1491          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
1492          // Store the bottom RoundWidth bits.
1493          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
1494                                 RoundVT,
1495                                 isVolatile, isNonTemporal, Alignment);
1496
1497          // Store the remaining ExtraWidth bits.
1498          IncrementSize = RoundWidth / 8;
1499          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1500                             DAG.getIntPtrConstant(IncrementSize));
1501          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1502                           DAG.getConstant(RoundWidth,
1503                                    TLI.getShiftAmountTy(Tmp3.getValueType())));
1504          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2,
1505                             ST->getPointerInfo().getWithOffset(IncrementSize),
1506                                 ExtraVT, isVolatile, isNonTemporal,
1507                                 MinAlign(Alignment, IncrementSize));
1508        } else {
1509          // Big endian - avoid unaligned stores.
1510          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
1511          // Store the top RoundWidth bits.
1512          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1513                           DAG.getConstant(ExtraWidth,
1514                                    TLI.getShiftAmountTy(Tmp3.getValueType())));
1515          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getPointerInfo(),
1516                                 RoundVT, isVolatile, isNonTemporal, Alignment);
1517
1518          // Store the remaining ExtraWidth bits.
1519          IncrementSize = RoundWidth / 8;
1520          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1521                             DAG.getIntPtrConstant(IncrementSize));
1522          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2,
1523                              ST->getPointerInfo().getWithOffset(IncrementSize),
1524                                 ExtraVT, isVolatile, isNonTemporal,
1525                                 MinAlign(Alignment, IncrementSize));
1526        }
1527
1528        // The order of the stores doesn't matter.
1529        Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
1530      } else {
1531        if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() ||
1532            Tmp2 != ST->getBasePtr())
1533          Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1534                                                  Tmp1, Tmp3, Tmp2,
1535                                                  ST->getOffset()),
1536                           Result.getResNo());
1537
1538        switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
1539        default: assert(0 && "This action is not supported yet!");
1540        case TargetLowering::Legal:
1541          // If this is an unaligned store and the target doesn't support it,
1542          // expand it.
1543          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1544            const Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1545            unsigned ABIAlignment= TLI.getTargetData()->getABITypeAlignment(Ty);
1546            if (ST->getAlignment() < ABIAlignment)
1547              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()),
1548                                            DAG, TLI);
1549          }
1550          break;
1551        case TargetLowering::Custom:
1552          Result = TLI.LowerOperation(Result, DAG);
1553          break;
1554        case Expand:
1555          // TRUNCSTORE:i16 i32 -> STORE i16
1556          assert(isTypeLegal(StVT) && "Do not know how to expand this store!");
1557          Tmp3 = DAG.getNode(ISD::TRUNCATE, dl, StVT, Tmp3);
1558          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
1559                                isVolatile, isNonTemporal, Alignment);
1560          break;
1561        }
1562      }
1563    }
1564    break;
1565  }
1566  }
1567  assert(Result.getValueType() == Op.getValueType() &&
1568         "Bad legalization!");
1569
1570  // Make sure that the generated code is itself legal.
1571  if (Result != Op)
1572    Result = LegalizeOp(Result);
1573
1574  // Note that LegalizeOp may be reentered even from single-use nodes, which
1575  // means that we always must cache transformed nodes.
1576  AddLegalizedOperand(Op, Result);
1577  return Result;
1578}
1579
1580SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1581  SDValue Vec = Op.getOperand(0);
1582  SDValue Idx = Op.getOperand(1);
1583  DebugLoc dl = Op.getDebugLoc();
1584  // Store the value to a temporary stack slot, then LOAD the returned part.
1585  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1586  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
1587                            MachinePointerInfo(), false, false, 0);
1588
1589  // Add the offset to the index.
1590  unsigned EltSize =
1591      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1592  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1593                    DAG.getConstant(EltSize, Idx.getValueType()));
1594
1595  if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1596    Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1597  else
1598    Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1599
1600  StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
1601
1602  if (Op.getValueType().isVector())
1603    return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr,MachinePointerInfo(),
1604                       false, false, 0);
1605  return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
1606                        MachinePointerInfo(),
1607                        Vec.getValueType().getVectorElementType(),
1608                        false, false, 0);
1609}
1610
1611SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) {
1612  assert(Op.getValueType().isVector() && "Non-vector insert subvector!");
1613
1614  SDValue Vec  = Op.getOperand(0);
1615  SDValue Part = Op.getOperand(1);
1616  SDValue Idx  = Op.getOperand(2);
1617  DebugLoc dl  = Op.getDebugLoc();
1618
1619  // Store the value to a temporary stack slot, then LOAD the returned part.
1620
1621  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1622  int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1623  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI);
1624
1625  // First store the whole vector.
1626  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo,
1627                            false, false, 0);
1628
1629  // Then store the inserted part.
1630
1631  // Add the offset to the index.
1632  unsigned EltSize =
1633      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1634
1635  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1636                    DAG.getConstant(EltSize, Idx.getValueType()));
1637
1638  if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1639    Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1640  else
1641    Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1642
1643  SDValue SubStackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx,
1644                                    StackPtr);
1645
1646  // Store the subvector.
1647  Ch = DAG.getStore(DAG.getEntryNode(), dl, Part, SubStackPtr,
1648                    MachinePointerInfo(), false, false, 0);
1649
1650  // Finally, load the updated vector.
1651  return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo,
1652                     false, false, 0);
1653}
1654
1655SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1656  // We can't handle this case efficiently.  Allocate a sufficiently
1657  // aligned object on the stack, store each element into it, then load
1658  // the result as a vector.
1659  // Create the stack frame object.
1660  EVT VT = Node->getValueType(0);
1661  EVT EltVT = VT.getVectorElementType();
1662  DebugLoc dl = Node->getDebugLoc();
1663  SDValue FIPtr = DAG.CreateStackTemporary(VT);
1664  int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1665  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI);
1666
1667  // Emit a store of each element to the stack slot.
1668  SmallVector<SDValue, 8> Stores;
1669  unsigned TypeByteSize = EltVT.getSizeInBits() / 8;
1670  // Store (in the right endianness) the elements to memory.
1671  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1672    // Ignore undef elements.
1673    if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1674
1675    unsigned Offset = TypeByteSize*i;
1676
1677    SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType());
1678    Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
1679
1680    // If the destination vector element type is narrower than the source
1681    // element type, only store the bits necessary.
1682    if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) {
1683      Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
1684                                         Node->getOperand(i), Idx,
1685                                         PtrInfo.getWithOffset(Offset),
1686                                         EltVT, false, false, 0));
1687    } else
1688      Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl,
1689                                    Node->getOperand(i), Idx,
1690                                    PtrInfo.getWithOffset(Offset),
1691                                    false, false, 0));
1692  }
1693
1694  SDValue StoreChain;
1695  if (!Stores.empty())    // Not all undef elements?
1696    StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1697                             &Stores[0], Stores.size());
1698  else
1699    StoreChain = DAG.getEntryNode();
1700
1701  // Result is a load from the stack slot.
1702  return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo, false, false, 0);
1703}
1704
1705SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) {
1706  DebugLoc dl = Node->getDebugLoc();
1707  SDValue Tmp1 = Node->getOperand(0);
1708  SDValue Tmp2 = Node->getOperand(1);
1709
1710  // Get the sign bit of the RHS.  First obtain a value that has the same
1711  // sign as the sign bit, i.e. negative if and only if the sign bit is 1.
1712  SDValue SignBit;
1713  EVT FloatVT = Tmp2.getValueType();
1714  EVT IVT = EVT::getIntegerVT(*DAG.getContext(), FloatVT.getSizeInBits());
1715  if (isTypeLegal(IVT)) {
1716    // Convert to an integer with the same sign bit.
1717    SignBit = DAG.getNode(ISD::BITCAST, dl, IVT, Tmp2);
1718  } else {
1719    // Store the float to memory, then load the sign part out as an integer.
1720    MVT LoadTy = TLI.getPointerTy();
1721    // First create a temporary that is aligned for both the load and store.
1722    SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
1723    // Then store the float to it.
1724    SDValue Ch =
1725      DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StackPtr, MachinePointerInfo(),
1726                   false, false, 0);
1727    if (TLI.isBigEndian()) {
1728      assert(FloatVT.isByteSized() && "Unsupported floating point type!");
1729      // Load out a legal integer with the same sign bit as the float.
1730      SignBit = DAG.getLoad(LoadTy, dl, Ch, StackPtr, MachinePointerInfo(),
1731                            false, false, 0);
1732    } else { // Little endian
1733      SDValue LoadPtr = StackPtr;
1734      // The float may be wider than the integer we are going to load.  Advance
1735      // the pointer so that the loaded integer will contain the sign bit.
1736      unsigned Strides = (FloatVT.getSizeInBits()-1)/LoadTy.getSizeInBits();
1737      unsigned ByteOffset = (Strides * LoadTy.getSizeInBits()) / 8;
1738      LoadPtr = DAG.getNode(ISD::ADD, dl, LoadPtr.getValueType(),
1739                            LoadPtr, DAG.getIntPtrConstant(ByteOffset));
1740      // Load a legal integer containing the sign bit.
1741      SignBit = DAG.getLoad(LoadTy, dl, Ch, LoadPtr, MachinePointerInfo(),
1742                            false, false, 0);
1743      // Move the sign bit to the top bit of the loaded integer.
1744      unsigned BitShift = LoadTy.getSizeInBits() -
1745        (FloatVT.getSizeInBits() - 8 * ByteOffset);
1746      assert(BitShift < LoadTy.getSizeInBits() && "Pointer advanced wrong?");
1747      if (BitShift)
1748        SignBit = DAG.getNode(ISD::SHL, dl, LoadTy, SignBit,
1749                              DAG.getConstant(BitShift,
1750                                 TLI.getShiftAmountTy(SignBit.getValueType())));
1751    }
1752  }
1753  // Now get the sign bit proper, by seeing whether the value is negative.
1754  SignBit = DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()),
1755                         SignBit, DAG.getConstant(0, SignBit.getValueType()),
1756                         ISD::SETLT);
1757  // Get the absolute value of the result.
1758  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1);
1759  // Select between the nabs and abs value based on the sign bit of
1760  // the input.
1761  return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit,
1762                     DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal),
1763                     AbsVal);
1764}
1765
1766void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1767                                           SmallVectorImpl<SDValue> &Results) {
1768  unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1769  assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1770          " not tell us which reg is the stack pointer!");
1771  DebugLoc dl = Node->getDebugLoc();
1772  EVT VT = Node->getValueType(0);
1773  SDValue Tmp1 = SDValue(Node, 0);
1774  SDValue Tmp2 = SDValue(Node, 1);
1775  SDValue Tmp3 = Node->getOperand(2);
1776  SDValue Chain = Tmp1.getOperand(0);
1777
1778  // Chain the dynamic stack allocation so that it doesn't modify the stack
1779  // pointer when other instructions are using the stack.
1780  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
1781
1782  SDValue Size  = Tmp2.getOperand(1);
1783  SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1784  Chain = SP.getValue(1);
1785  unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1786  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
1787  if (Align > StackAlign)
1788    SP = DAG.getNode(ISD::AND, dl, VT, SP,
1789                      DAG.getConstant(-(uint64_t)Align, VT));
1790  Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size);       // Value
1791  Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain
1792
1793  Tmp2 = DAG.getCALLSEQ_END(Chain,  DAG.getIntPtrConstant(0, true),
1794                            DAG.getIntPtrConstant(0, true), SDValue());
1795
1796  Results.push_back(Tmp1);
1797  Results.push_back(Tmp2);
1798}
1799
1800/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
1801/// condition code CC on the current target. This routine expands SETCC with
1802/// illegal condition code into AND / OR of multiple SETCC values.
1803void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT,
1804                                                 SDValue &LHS, SDValue &RHS,
1805                                                 SDValue &CC,
1806                                                 DebugLoc dl) {
1807  EVT OpVT = LHS.getValueType();
1808  ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1809  switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1810  default: assert(0 && "Unknown condition code action!");
1811  case TargetLowering::Legal:
1812    // Nothing to do.
1813    break;
1814  case TargetLowering::Expand: {
1815    ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1816    unsigned Opc = 0;
1817    switch (CCCode) {
1818    default: assert(0 && "Don't know how to expand this condition!");
1819    case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1820    case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1821    case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1822    case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1823    case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1824    case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1825    case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1826    case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1827    case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1828    case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1829    case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1830    case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1831    // FIXME: Implement more expansions.
1832    }
1833
1834    SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1835    SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
1836    LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1837    RHS = SDValue();
1838    CC  = SDValue();
1839    break;
1840  }
1841  }
1842}
1843
1844/// EmitStackConvert - Emit a store/load combination to the stack.  This stores
1845/// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
1846/// a load from the stack slot to DestVT, extending it if needed.
1847/// The resultant code need not be legal.
1848SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
1849                                               EVT SlotVT,
1850                                               EVT DestVT,
1851                                               DebugLoc dl) {
1852  // Create the stack frame object.
1853  unsigned SrcAlign =
1854    TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType().
1855                                              getTypeForEVT(*DAG.getContext()));
1856  SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1857
1858  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1859  int SPFI = StackPtrFI->getIndex();
1860  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(SPFI);
1861
1862  unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
1863  unsigned SlotSize = SlotVT.getSizeInBits();
1864  unsigned DestSize = DestVT.getSizeInBits();
1865  const Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
1866  unsigned DestAlign = TLI.getTargetData()->getPrefTypeAlignment(DestType);
1867
1868  // Emit a store to the stack slot.  Use a truncstore if the input value is
1869  // later than DestVT.
1870  SDValue Store;
1871
1872  if (SrcSize > SlotSize)
1873    Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1874                              PtrInfo, SlotVT, false, false, SrcAlign);
1875  else {
1876    assert(SrcSize == SlotSize && "Invalid store");
1877    Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1878                         PtrInfo, false, false, SrcAlign);
1879  }
1880
1881  // Result is a load from the stack slot.
1882  if (SlotSize == DestSize)
1883    return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo,
1884                       false, false, DestAlign);
1885
1886  assert(SlotSize < DestSize && "Unknown extension!");
1887  return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr,
1888                        PtrInfo, SlotVT, false, false, DestAlign);
1889}
1890
1891SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1892  DebugLoc dl = Node->getDebugLoc();
1893  // Create a vector sized/aligned stack slot, store the value to element #0,
1894  // then load the whole vector back out.
1895  SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1896
1897  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1898  int SPFI = StackPtrFI->getIndex();
1899
1900  SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0),
1901                                 StackPtr,
1902                                 MachinePointerInfo::getFixedStack(SPFI),
1903                                 Node->getValueType(0).getVectorElementType(),
1904                                 false, false, 0);
1905  return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr,
1906                     MachinePointerInfo::getFixedStack(SPFI),
1907                     false, false, 0);
1908}
1909
1910
1911/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
1912/// support the operation, but do support the resultant vector type.
1913SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1914  unsigned NumElems = Node->getNumOperands();
1915  SDValue Value1, Value2;
1916  DebugLoc dl = Node->getDebugLoc();
1917  EVT VT = Node->getValueType(0);
1918  EVT OpVT = Node->getOperand(0).getValueType();
1919  EVT EltVT = VT.getVectorElementType();
1920
1921  // If the only non-undef value is the low element, turn this into a
1922  // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
1923  bool isOnlyLowElement = true;
1924  bool MoreThanTwoValues = false;
1925  bool isConstant = true;
1926  for (unsigned i = 0; i < NumElems; ++i) {
1927    SDValue V = Node->getOperand(i);
1928    if (V.getOpcode() == ISD::UNDEF)
1929      continue;
1930    if (i > 0)
1931      isOnlyLowElement = false;
1932    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1933      isConstant = false;
1934
1935    if (!Value1.getNode()) {
1936      Value1 = V;
1937    } else if (!Value2.getNode()) {
1938      if (V != Value1)
1939        Value2 = V;
1940    } else if (V != Value1 && V != Value2) {
1941      MoreThanTwoValues = true;
1942    }
1943  }
1944
1945  if (!Value1.getNode())
1946    return DAG.getUNDEF(VT);
1947
1948  if (isOnlyLowElement)
1949    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1950
1951  // If all elements are constants, create a load from the constant pool.
1952  if (isConstant) {
1953    std::vector<Constant*> CV;
1954    for (unsigned i = 0, e = NumElems; i != e; ++i) {
1955      if (ConstantFPSDNode *V =
1956          dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1957        CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1958      } else if (ConstantSDNode *V =
1959                 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1960        if (OpVT==EltVT)
1961          CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1962        else {
1963          // If OpVT and EltVT don't match, EltVT is not legal and the
1964          // element values have been promoted/truncated earlier.  Undo this;
1965          // we don't want a v16i8 to become a v16i32 for example.
1966          const ConstantInt *CI = V->getConstantIntValue();
1967          CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
1968                                        CI->getZExtValue()));
1969        }
1970      } else {
1971        assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
1972        const Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
1973        CV.push_back(UndefValue::get(OpNTy));
1974      }
1975    }
1976    Constant *CP = ConstantVector::get(CV);
1977    SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
1978    unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
1979    return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
1980                       MachinePointerInfo::getConstantPool(),
1981                       false, false, Alignment);
1982  }
1983
1984  if (!MoreThanTwoValues) {
1985    SmallVector<int, 8> ShuffleVec(NumElems, -1);
1986    for (unsigned i = 0; i < NumElems; ++i) {
1987      SDValue V = Node->getOperand(i);
1988      if (V.getOpcode() == ISD::UNDEF)
1989        continue;
1990      ShuffleVec[i] = V == Value1 ? 0 : NumElems;
1991    }
1992    if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
1993      // Get the splatted value into the low element of a vector register.
1994      SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
1995      SDValue Vec2;
1996      if (Value2.getNode())
1997        Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
1998      else
1999        Vec2 = DAG.getUNDEF(VT);
2000
2001      // Return shuffle(LowValVec, undef, <0,0,0,0>)
2002      return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
2003    }
2004  }
2005
2006  // Otherwise, we can't handle this case efficiently.
2007  return ExpandVectorBuildThroughStack(Node);
2008}
2009
2010// ExpandLibCall - Expand a node into a call to a libcall.  If the result value
2011// does not fit into a register, return the lo part and set the hi part to the
2012// by-reg argument.  If it does fit into a single register, return the result
2013// and leave the Hi part unset.
2014SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
2015                                            bool isSigned) {
2016  // The input chain to this libcall is the entry node of the function.
2017  // Legalizing the call will automatically add the previous call to the
2018  // dependence.
2019  SDValue InChain = DAG.getEntryNode();
2020
2021  TargetLowering::ArgListTy Args;
2022  TargetLowering::ArgListEntry Entry;
2023  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
2024    EVT ArgVT = Node->getOperand(i).getValueType();
2025    const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2026    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
2027    Entry.isSExt = isSigned;
2028    Entry.isZExt = !isSigned;
2029    Args.push_back(Entry);
2030  }
2031  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2032                                         TLI.getPointerTy());
2033
2034  // Splice the libcall in wherever FindInputOutputChains tells us to.
2035  const Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
2036
2037  // isTailCall may be true since the callee does not reference caller stack
2038  // frame. Check if it's in the right position.
2039  bool isTailCall = isInTailCallPosition(DAG, Node, TLI);
2040  std::pair<SDValue, SDValue> CallInfo =
2041    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
2042                    0, TLI.getLibcallCallingConv(LC), isTailCall,
2043                    /*isReturnValueUsed=*/true,
2044                    Callee, Args, DAG, Node->getDebugLoc());
2045
2046  if (!CallInfo.second.getNode())
2047    // It's a tailcall, return the chain (which is the DAG root).
2048    return DAG.getRoot();
2049
2050  // Legalize the call sequence, starting with the chain.  This will advance
2051  // the LastCALLSEQ to the legalized version of the CALLSEQ_END node that
2052  // was added by LowerCallTo (guaranteeing proper serialization of calls).
2053  LegalizeOp(CallInfo.second);
2054  return CallInfo.first;
2055}
2056
2057/// ExpandLibCall - Generate a libcall taking the given operands as arguments
2058/// and returning a result of type RetVT.
2059SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, EVT RetVT,
2060                                            const SDValue *Ops, unsigned NumOps,
2061                                            bool isSigned, DebugLoc dl) {
2062  TargetLowering::ArgListTy Args;
2063  Args.reserve(NumOps);
2064
2065  TargetLowering::ArgListEntry Entry;
2066  for (unsigned i = 0; i != NumOps; ++i) {
2067    Entry.Node = Ops[i];
2068    Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
2069    Entry.isSExt = isSigned;
2070    Entry.isZExt = !isSigned;
2071    Args.push_back(Entry);
2072  }
2073  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2074                                         TLI.getPointerTy());
2075
2076  const Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2077  std::pair<SDValue,SDValue> CallInfo =
2078  TLI.LowerCallTo(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false,
2079                  false, 0, TLI.getLibcallCallingConv(LC), false,
2080                  /*isReturnValueUsed=*/true,
2081                  Callee, Args, DAG, dl);
2082
2083  // Legalize the call sequence, starting with the chain.  This will advance
2084  // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
2085  // was added by LowerCallTo (guaranteeing proper serialization of calls).
2086  LegalizeOp(CallInfo.second);
2087
2088  return CallInfo.first;
2089}
2090
2091// ExpandChainLibCall - Expand a node into a call to a libcall. Similar to
2092// ExpandLibCall except that the first operand is the in-chain.
2093std::pair<SDValue, SDValue>
2094SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC,
2095                                         SDNode *Node,
2096                                         bool isSigned) {
2097  SDValue InChain = Node->getOperand(0);
2098
2099  TargetLowering::ArgListTy Args;
2100  TargetLowering::ArgListEntry Entry;
2101  for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) {
2102    EVT ArgVT = Node->getOperand(i).getValueType();
2103    const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2104    Entry.Node = Node->getOperand(i);
2105    Entry.Ty = ArgTy;
2106    Entry.isSExt = isSigned;
2107    Entry.isZExt = !isSigned;
2108    Args.push_back(Entry);
2109  }
2110  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2111                                         TLI.getPointerTy());
2112
2113  // Splice the libcall in wherever FindInputOutputChains tells us to.
2114  const Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
2115  std::pair<SDValue, SDValue> CallInfo =
2116    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
2117                    0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false,
2118                    /*isReturnValueUsed=*/true,
2119                    Callee, Args, DAG, Node->getDebugLoc());
2120
2121  // Legalize the call sequence, starting with the chain.  This will advance
2122  // the LastCALLSEQ to the legalized version of the CALLSEQ_END node that
2123  // was added by LowerCallTo (guaranteeing proper serialization of calls).
2124  LegalizeOp(CallInfo.second);
2125  return CallInfo;
2126}
2127
2128SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
2129                                              RTLIB::Libcall Call_F32,
2130                                              RTLIB::Libcall Call_F64,
2131                                              RTLIB::Libcall Call_F80,
2132                                              RTLIB::Libcall Call_PPCF128) {
2133  RTLIB::Libcall LC;
2134  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
2135  default: assert(0 && "Unexpected request for libcall!");
2136  case MVT::f32: LC = Call_F32; break;
2137  case MVT::f64: LC = Call_F64; break;
2138  case MVT::f80: LC = Call_F80; break;
2139  case MVT::ppcf128: LC = Call_PPCF128; break;
2140  }
2141  return ExpandLibCall(LC, Node, false);
2142}
2143
2144SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
2145                                               RTLIB::Libcall Call_I8,
2146                                               RTLIB::Libcall Call_I16,
2147                                               RTLIB::Libcall Call_I32,
2148                                               RTLIB::Libcall Call_I64,
2149                                               RTLIB::Libcall Call_I128) {
2150  RTLIB::Libcall LC;
2151  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
2152  default: assert(0 && "Unexpected request for libcall!");
2153  case MVT::i8:   LC = Call_I8; break;
2154  case MVT::i16:  LC = Call_I16; break;
2155  case MVT::i32:  LC = Call_I32; break;
2156  case MVT::i64:  LC = Call_I64; break;
2157  case MVT::i128: LC = Call_I128; break;
2158  }
2159  return ExpandLibCall(LC, Node, isSigned);
2160}
2161
2162/// isDivRemLibcallAvailable - Return true if divmod libcall is available.
2163static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned,
2164                                     const TargetLowering &TLI) {
2165  RTLIB::Libcall LC;
2166  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
2167  default: assert(0 && "Unexpected request for libcall!");
2168  case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
2169  case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
2170  case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
2171  case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
2172  case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
2173  }
2174
2175  return TLI.getLibcallName(LC) != 0;
2176}
2177
2178/// UseDivRem - Only issue divrem libcall if both quotient and remainder are
2179/// needed.
2180static bool UseDivRem(SDNode *Node, bool isSigned, bool isDIV) {
2181  unsigned OtherOpcode = 0;
2182  if (isSigned)
2183    OtherOpcode = isDIV ? ISD::SREM : ISD::SDIV;
2184  else
2185    OtherOpcode = isDIV ? ISD::UREM : ISD::UDIV;
2186
2187  SDValue Op0 = Node->getOperand(0);
2188  SDValue Op1 = Node->getOperand(1);
2189  for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
2190         UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
2191    SDNode *User = *UI;
2192    if (User == Node)
2193      continue;
2194    if (User->getOpcode() == OtherOpcode &&
2195        User->getOperand(0) == Op0 &&
2196        User->getOperand(1) == Op1)
2197      return true;
2198  }
2199  return false;
2200}
2201
2202/// ExpandDivRemLibCall - Issue libcalls to __{u}divmod to compute div / rem
2203/// pairs.
2204void
2205SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node,
2206                                          SmallVectorImpl<SDValue> &Results) {
2207  unsigned Opcode = Node->getOpcode();
2208  bool isSigned = Opcode == ISD::SDIVREM;
2209
2210  RTLIB::Libcall LC;
2211  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
2212  default: assert(0 && "Unexpected request for libcall!");
2213  case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
2214  case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
2215  case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
2216  case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
2217  case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
2218  }
2219
2220  // The input chain to this libcall is the entry node of the function.
2221  // Legalizing the call will automatically add the previous call to the
2222  // dependence.
2223  SDValue InChain = DAG.getEntryNode();
2224
2225  EVT RetVT = Node->getValueType(0);
2226  const Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2227
2228  TargetLowering::ArgListTy Args;
2229  TargetLowering::ArgListEntry Entry;
2230  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
2231    EVT ArgVT = Node->getOperand(i).getValueType();
2232    const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2233    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
2234    Entry.isSExt = isSigned;
2235    Entry.isZExt = !isSigned;
2236    Args.push_back(Entry);
2237  }
2238
2239  // Also pass the return address of the remainder.
2240  SDValue FIPtr = DAG.CreateStackTemporary(RetVT);
2241  Entry.Node = FIPtr;
2242  Entry.Ty = RetTy->getPointerTo();
2243  Entry.isSExt = isSigned;
2244  Entry.isZExt = !isSigned;
2245  Args.push_back(Entry);
2246
2247  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2248                                         TLI.getPointerTy());
2249
2250  // Splice the libcall in wherever FindInputOutputChains tells us to.
2251  DebugLoc dl = Node->getDebugLoc();
2252  std::pair<SDValue, SDValue> CallInfo =
2253    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
2254                    0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false,
2255                    /*isReturnValueUsed=*/true, Callee, Args, DAG, dl);
2256
2257  // Legalize the call sequence, starting with the chain.  This will advance
2258  // the LastCALLSEQ to the legalized version of the CALLSEQ_END node that
2259  // was added by LowerCallTo (guaranteeing proper serialization of calls).
2260  LegalizeOp(CallInfo.second);
2261
2262  // Remainder is loaded back from the stack frame.
2263  SDValue Rem = DAG.getLoad(RetVT, dl, getLastCALLSEQ(), FIPtr,
2264                            MachinePointerInfo(), false, false, 0);
2265  Results.push_back(CallInfo.first);
2266  Results.push_back(Rem);
2267}
2268
2269/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
2270/// INT_TO_FP operation of the specified operand when the target requests that
2271/// we expand it.  At this point, we know that the result and operand types are
2272/// legal for the target.
2273SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
2274                                                   SDValue Op0,
2275                                                   EVT DestVT,
2276                                                   DebugLoc dl) {
2277  if (Op0.getValueType() == MVT::i32) {
2278    // simple 32-bit [signed|unsigned] integer to float/double expansion
2279
2280    // Get the stack frame index of a 8 byte buffer.
2281    SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
2282
2283    // word offset constant for Hi/Lo address computation
2284    SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy());
2285    // set up Hi and Lo (into buffer) address based on endian
2286    SDValue Hi = StackSlot;
2287    SDValue Lo = DAG.getNode(ISD::ADD, dl,
2288                             TLI.getPointerTy(), StackSlot, WordOff);
2289    if (TLI.isLittleEndian())
2290      std::swap(Hi, Lo);
2291
2292    // if signed map to unsigned space
2293    SDValue Op0Mapped;
2294    if (isSigned) {
2295      // constant used to invert sign bit (signed to unsigned mapping)
2296      SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32);
2297      Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
2298    } else {
2299      Op0Mapped = Op0;
2300    }
2301    // store the lo of the constructed double - based on integer input
2302    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
2303                                  Op0Mapped, Lo, MachinePointerInfo(),
2304                                  false, false, 0);
2305    // initial hi portion of constructed double
2306    SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
2307    // store the hi of the constructed double - biased exponent
2308    SDValue Store2 = DAG.getStore(Store1, dl, InitialHi, Hi,
2309                                  MachinePointerInfo(),
2310                                  false, false, 0);
2311    // load the constructed double
2312    SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot,
2313                               MachinePointerInfo(), false, false, 0);
2314    // FP constant to bias correct the final result
2315    SDValue Bias = DAG.getConstantFP(isSigned ?
2316                                     BitsToDouble(0x4330000080000000ULL) :
2317                                     BitsToDouble(0x4330000000000000ULL),
2318                                     MVT::f64);
2319    // subtract the bias
2320    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2321    // final result
2322    SDValue Result;
2323    // handle final rounding
2324    if (DestVT == MVT::f64) {
2325      // do nothing
2326      Result = Sub;
2327    } else if (DestVT.bitsLT(MVT::f64)) {
2328      Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
2329                           DAG.getIntPtrConstant(0));
2330    } else if (DestVT.bitsGT(MVT::f64)) {
2331      Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
2332    }
2333    return Result;
2334  }
2335  assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2336  // Code below here assumes !isSigned without checking again.
2337
2338  // Implementation of unsigned i64 to f64 following the algorithm in
2339  // __floatundidf in compiler_rt. This implementation has the advantage
2340  // of performing rounding correctly, both in the default rounding mode
2341  // and in all alternate rounding modes.
2342  // TODO: Generalize this for use with other types.
2343  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) {
2344    SDValue TwoP52 =
2345      DAG.getConstant(UINT64_C(0x4330000000000000), MVT::i64);
2346    SDValue TwoP84PlusTwoP52 =
2347      DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), MVT::f64);
2348    SDValue TwoP84 =
2349      DAG.getConstant(UINT64_C(0x4530000000000000), MVT::i64);
2350
2351    SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32);
2352    SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0,
2353                             DAG.getConstant(32, MVT::i64));
2354    SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52);
2355    SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84);
2356    SDValue LoFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, LoOr);
2357    SDValue HiFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, HiOr);
2358    SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt,
2359                                TwoP84PlusTwoP52);
2360    return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub);
2361  }
2362
2363  // Implementation of unsigned i64 to f32.
2364  // TODO: Generalize this for use with other types.
2365  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) {
2366    // For unsigned conversions, convert them to signed conversions using the
2367    // algorithm from the x86_64 __floatundidf in compiler_rt.
2368    if (!isSigned) {
2369      SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Op0);
2370
2371      SDValue ShiftConst =
2372          DAG.getConstant(1, TLI.getShiftAmountTy(Op0.getValueType()));
2373      SDValue Shr = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, ShiftConst);
2374      SDValue AndConst = DAG.getConstant(1, MVT::i64);
2375      SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, AndConst);
2376      SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, Shr);
2377
2378      SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Or);
2379      SDValue Slow = DAG.getNode(ISD::FADD, dl, MVT::f32, SignCvt, SignCvt);
2380
2381      // TODO: This really should be implemented using a branch rather than a
2382      // select.  We happen to get lucky and machinesink does the right
2383      // thing most of the time.  This would be a good candidate for a
2384      //pseudo-op, or, even better, for whole-function isel.
2385      SDValue SignBitTest = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2386        Op0, DAG.getConstant(0, MVT::i64), ISD::SETLT);
2387      return DAG.getNode(ISD::SELECT, dl, MVT::f32, SignBitTest, Slow, Fast);
2388    }
2389
2390    // Otherwise, implement the fully general conversion.
2391
2392    SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2393         DAG.getConstant(UINT64_C(0xfffffffffffff800), MVT::i64));
2394    SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And,
2395         DAG.getConstant(UINT64_C(0x800), MVT::i64));
2396    SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2397         DAG.getConstant(UINT64_C(0x7ff), MVT::i64));
2398    SDValue Ne = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2399                   And2, DAG.getConstant(UINT64_C(0), MVT::i64), ISD::SETNE);
2400    SDValue Sel = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ne, Or, Op0);
2401    SDValue Ge = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2402                   Op0, DAG.getConstant(UINT64_C(0x0020000000000000), MVT::i64),
2403                   ISD::SETUGE);
2404    SDValue Sel2 = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ge, Sel, Op0);
2405    EVT SHVT = TLI.getShiftAmountTy(Sel2.getValueType());
2406
2407    SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2,
2408                             DAG.getConstant(32, SHVT));
2409    SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh);
2410    SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc);
2411    SDValue TwoP32 =
2412      DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), MVT::f64);
2413    SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt);
2414    SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2);
2415    SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo);
2416    SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2);
2417    return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd,
2418                       DAG.getIntPtrConstant(0));
2419  }
2420
2421  SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2422
2423  SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()),
2424                                 Op0, DAG.getConstant(0, Op0.getValueType()),
2425                                 ISD::SETLT);
2426  SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
2427  SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(),
2428                                    SignSet, Four, Zero);
2429
2430  // If the sign bit of the integer is set, the large number will be treated
2431  // as a negative number.  To counteract this, the dynamic code adds an
2432  // offset depending on the data type.
2433  uint64_t FF;
2434  switch (Op0.getValueType().getSimpleVT().SimpleTy) {
2435  default: assert(0 && "Unsupported integer type!");
2436  case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
2437  case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
2438  case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
2439  case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
2440  }
2441  if (TLI.isLittleEndian()) FF <<= 32;
2442  Constant *FudgeFactor = ConstantInt::get(
2443                                       Type::getInt64Ty(*DAG.getContext()), FF);
2444
2445  SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
2446  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2447  CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset);
2448  Alignment = std::min(Alignment, 4u);
2449  SDValue FudgeInReg;
2450  if (DestVT == MVT::f32)
2451    FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2452                             MachinePointerInfo::getConstantPool(),
2453                             false, false, Alignment);
2454  else {
2455    FudgeInReg =
2456      LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT,
2457                                DAG.getEntryNode(), CPIdx,
2458                                MachinePointerInfo::getConstantPool(),
2459                                MVT::f32, false, false, Alignment));
2460  }
2461
2462  return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2463}
2464
2465/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
2466/// *INT_TO_FP operation of the specified operand when the target requests that
2467/// we promote it.  At this point, we know that the result and operand types are
2468/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2469/// operation that takes a larger input.
2470SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
2471                                                    EVT DestVT,
2472                                                    bool isSigned,
2473                                                    DebugLoc dl) {
2474  // First step, figure out the appropriate *INT_TO_FP operation to use.
2475  EVT NewInTy = LegalOp.getValueType();
2476
2477  unsigned OpToUse = 0;
2478
2479  // Scan for the appropriate larger type to use.
2480  while (1) {
2481    NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2482    assert(NewInTy.isInteger() && "Ran out of possibilities!");
2483
2484    // If the target supports SINT_TO_FP of this type, use it.
2485    if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2486      OpToUse = ISD::SINT_TO_FP;
2487      break;
2488    }
2489    if (isSigned) continue;
2490
2491    // If the target supports UINT_TO_FP of this type, use it.
2492    if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2493      OpToUse = ISD::UINT_TO_FP;
2494      break;
2495    }
2496
2497    // Otherwise, try a larger type.
2498  }
2499
2500  // Okay, we found the operation and type to use.  Zero extend our input to the
2501  // desired type then run the operation on it.
2502  return DAG.getNode(OpToUse, dl, DestVT,
2503                     DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2504                                 dl, NewInTy, LegalOp));
2505}
2506
2507/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
2508/// FP_TO_*INT operation of the specified operand when the target requests that
2509/// we promote it.  At this point, we know that the result and operand types are
2510/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2511/// operation that returns a larger result.
2512SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
2513                                                    EVT DestVT,
2514                                                    bool isSigned,
2515                                                    DebugLoc dl) {
2516  // First step, figure out the appropriate FP_TO*INT operation to use.
2517  EVT NewOutTy = DestVT;
2518
2519  unsigned OpToUse = 0;
2520
2521  // Scan for the appropriate larger type to use.
2522  while (1) {
2523    NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2524    assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2525
2526    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2527      OpToUse = ISD::FP_TO_SINT;
2528      break;
2529    }
2530
2531    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
2532      OpToUse = ISD::FP_TO_UINT;
2533      break;
2534    }
2535
2536    // Otherwise, try a larger type.
2537  }
2538
2539
2540  // Okay, we found the operation and type to use.
2541  SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2542
2543  // Truncate the result of the extended FP_TO_*INT operation to the desired
2544  // size.
2545  return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2546}
2547
2548/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
2549///
2550SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) {
2551  EVT VT = Op.getValueType();
2552  EVT SHVT = TLI.getShiftAmountTy(VT);
2553  SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2554  switch (VT.getSimpleVT().SimpleTy) {
2555  default: assert(0 && "Unhandled Expand type in BSWAP!");
2556  case MVT::i16:
2557    Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2558    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2559    return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2560  case MVT::i32:
2561    Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2562    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2563    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2564    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2565    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
2566    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT));
2567    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2568    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2569    return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2570  case MVT::i64:
2571    Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT));
2572    Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT));
2573    Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2574    Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2575    Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2576    Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2577    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT));
2578    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT));
2579    Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
2580    Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
2581    Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
2582    Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
2583    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
2584    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
2585    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2586    Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2587    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2588    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2589    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2590    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2591    return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2592  }
2593}
2594
2595/// SplatByte - Distribute ByteVal over NumBits bits.
2596// FIXME: Move this helper to a common place.
2597static APInt SplatByte(unsigned NumBits, uint8_t ByteVal) {
2598  APInt Val = APInt(NumBits, ByteVal);
2599  unsigned Shift = 8;
2600  for (unsigned i = NumBits; i > 8; i >>= 1) {
2601    Val = (Val << Shift) | Val;
2602    Shift <<= 1;
2603  }
2604  return Val;
2605}
2606
2607/// ExpandBitCount - Expand the specified bitcount instruction into operations.
2608///
2609SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
2610                                             DebugLoc dl) {
2611  switch (Opc) {
2612  default: assert(0 && "Cannot expand this yet!");
2613  case ISD::CTPOP: {
2614    EVT VT = Op.getValueType();
2615    EVT ShVT = TLI.getShiftAmountTy(VT);
2616    unsigned Len = VT.getSizeInBits();
2617
2618    assert(VT.isInteger() && Len <= 128 && Len % 8 == 0 &&
2619           "CTPOP not implemented for this type.");
2620
2621    // This is the "best" algorithm from
2622    // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
2623
2624    SDValue Mask55 = DAG.getConstant(SplatByte(Len, 0x55), VT);
2625    SDValue Mask33 = DAG.getConstant(SplatByte(Len, 0x33), VT);
2626    SDValue Mask0F = DAG.getConstant(SplatByte(Len, 0x0F), VT);
2627    SDValue Mask01 = DAG.getConstant(SplatByte(Len, 0x01), VT);
2628
2629    // v = v - ((v >> 1) & 0x55555555...)
2630    Op = DAG.getNode(ISD::SUB, dl, VT, Op,
2631                     DAG.getNode(ISD::AND, dl, VT,
2632                                 DAG.getNode(ISD::SRL, dl, VT, Op,
2633                                             DAG.getConstant(1, ShVT)),
2634                                 Mask55));
2635    // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
2636    Op = DAG.getNode(ISD::ADD, dl, VT,
2637                     DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
2638                     DAG.getNode(ISD::AND, dl, VT,
2639                                 DAG.getNode(ISD::SRL, dl, VT, Op,
2640                                             DAG.getConstant(2, ShVT)),
2641                                 Mask33));
2642    // v = (v + (v >> 4)) & 0x0F0F0F0F...
2643    Op = DAG.getNode(ISD::AND, dl, VT,
2644                     DAG.getNode(ISD::ADD, dl, VT, Op,
2645                                 DAG.getNode(ISD::SRL, dl, VT, Op,
2646                                             DAG.getConstant(4, ShVT))),
2647                     Mask0F);
2648    // v = (v * 0x01010101...) >> (Len - 8)
2649    Op = DAG.getNode(ISD::SRL, dl, VT,
2650                     DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
2651                     DAG.getConstant(Len - 8, ShVT));
2652
2653    return Op;
2654  }
2655  case ISD::CTLZ: {
2656    // for now, we do this:
2657    // x = x | (x >> 1);
2658    // x = x | (x >> 2);
2659    // ...
2660    // x = x | (x >>16);
2661    // x = x | (x >>32); // for 64-bit input
2662    // return popcount(~x);
2663    //
2664    // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
2665    EVT VT = Op.getValueType();
2666    EVT ShVT = TLI.getShiftAmountTy(VT);
2667    unsigned len = VT.getSizeInBits();
2668    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2669      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2670      Op = DAG.getNode(ISD::OR, dl, VT, Op,
2671                       DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
2672    }
2673    Op = DAG.getNOT(dl, Op, VT);
2674    return DAG.getNode(ISD::CTPOP, dl, VT, Op);
2675  }
2676  case ISD::CTTZ: {
2677    // for now, we use: { return popcount(~x & (x - 1)); }
2678    // unless the target has ctlz but not ctpop, in which case we use:
2679    // { return 32 - nlz(~x & (x-1)); }
2680    // see also http://www.hackersdelight.org/HDcode/ntz.cc
2681    EVT VT = Op.getValueType();
2682    SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
2683                               DAG.getNOT(dl, Op, VT),
2684                               DAG.getNode(ISD::SUB, dl, VT, Op,
2685                                           DAG.getConstant(1, VT)));
2686    // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
2687    if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
2688        TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
2689      return DAG.getNode(ISD::SUB, dl, VT,
2690                         DAG.getConstant(VT.getSizeInBits(), VT),
2691                         DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
2692    return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
2693  }
2694  }
2695}
2696
2697std::pair <SDValue, SDValue> SelectionDAGLegalize::ExpandAtomic(SDNode *Node) {
2698  unsigned Opc = Node->getOpcode();
2699  MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
2700  RTLIB::Libcall LC;
2701
2702  switch (Opc) {
2703  default:
2704    llvm_unreachable("Unhandled atomic intrinsic Expand!");
2705    break;
2706  case ISD::ATOMIC_SWAP:
2707    switch (VT.SimpleTy) {
2708    default: llvm_unreachable("Unexpected value type for atomic!");
2709    case MVT::i8:  LC = RTLIB::SYNC_LOCK_TEST_AND_SET_1; break;
2710    case MVT::i16: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_2; break;
2711    case MVT::i32: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_4; break;
2712    case MVT::i64: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_8; break;
2713    }
2714    break;
2715  case ISD::ATOMIC_CMP_SWAP:
2716    switch (VT.SimpleTy) {
2717    default: llvm_unreachable("Unexpected value type for atomic!");
2718    case MVT::i8:  LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1; break;
2719    case MVT::i16: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2; break;
2720    case MVT::i32: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4; break;
2721    case MVT::i64: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8; break;
2722    }
2723    break;
2724  case ISD::ATOMIC_LOAD_ADD:
2725    switch (VT.SimpleTy) {
2726    default: llvm_unreachable("Unexpected value type for atomic!");
2727    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_ADD_1; break;
2728    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_ADD_2; break;
2729    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_ADD_4; break;
2730    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_ADD_8; break;
2731    }
2732    break;
2733  case ISD::ATOMIC_LOAD_SUB:
2734    switch (VT.SimpleTy) {
2735    default: llvm_unreachable("Unexpected value type for atomic!");
2736    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_SUB_1; break;
2737    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_SUB_2; break;
2738    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_SUB_4; break;
2739    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_SUB_8; break;
2740    }
2741    break;
2742  case ISD::ATOMIC_LOAD_AND:
2743    switch (VT.SimpleTy) {
2744    default: llvm_unreachable("Unexpected value type for atomic!");
2745    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_AND_1; break;
2746    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_AND_2; break;
2747    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_AND_4; break;
2748    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_AND_8; break;
2749    }
2750    break;
2751  case ISD::ATOMIC_LOAD_OR:
2752    switch (VT.SimpleTy) {
2753    default: llvm_unreachable("Unexpected value type for atomic!");
2754    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_OR_1; break;
2755    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_OR_2; break;
2756    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_OR_4; break;
2757    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_OR_8; break;
2758    }
2759    break;
2760  case ISD::ATOMIC_LOAD_XOR:
2761    switch (VT.SimpleTy) {
2762    default: llvm_unreachable("Unexpected value type for atomic!");
2763    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_XOR_1; break;
2764    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_XOR_2; break;
2765    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_XOR_4; break;
2766    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_XOR_8; break;
2767    }
2768    break;
2769  case ISD::ATOMIC_LOAD_NAND:
2770    switch (VT.SimpleTy) {
2771    default: llvm_unreachable("Unexpected value type for atomic!");
2772    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_NAND_1; break;
2773    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_NAND_2; break;
2774    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_NAND_4; break;
2775    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_NAND_8; break;
2776    }
2777    break;
2778  }
2779
2780  return ExpandChainLibCall(LC, Node, false);
2781}
2782
2783void SelectionDAGLegalize::ExpandNode(SDNode *Node,
2784                                      SmallVectorImpl<SDValue> &Results) {
2785  DebugLoc dl = Node->getDebugLoc();
2786  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2787  switch (Node->getOpcode()) {
2788  case ISD::CTPOP:
2789  case ISD::CTLZ:
2790  case ISD::CTTZ:
2791    Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
2792    Results.push_back(Tmp1);
2793    break;
2794  case ISD::BSWAP:
2795    Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2796    break;
2797  case ISD::FRAMEADDR:
2798  case ISD::RETURNADDR:
2799  case ISD::FRAME_TO_ARGS_OFFSET:
2800    Results.push_back(DAG.getConstant(0, Node->getValueType(0)));
2801    break;
2802  case ISD::FLT_ROUNDS_:
2803    Results.push_back(DAG.getConstant(1, Node->getValueType(0)));
2804    break;
2805  case ISD::EH_RETURN:
2806  case ISD::EH_LABEL:
2807  case ISD::PREFETCH:
2808  case ISD::VAEND:
2809  case ISD::EH_SJLJ_LONGJMP:
2810  case ISD::EH_SJLJ_DISPATCHSETUP:
2811    // If the target didn't expand these, there's nothing to do, so just
2812    // preserve the chain and be done.
2813    Results.push_back(Node->getOperand(0));
2814    break;
2815  case ISD::EH_SJLJ_SETJMP:
2816    // If the target didn't expand this, just return 'zero' and preserve the
2817    // chain.
2818    Results.push_back(DAG.getConstant(0, MVT::i32));
2819    Results.push_back(Node->getOperand(0));
2820    break;
2821  case ISD::MEMBARRIER: {
2822    // If the target didn't lower this, lower it to '__sync_synchronize()' call
2823    TargetLowering::ArgListTy Args;
2824    std::pair<SDValue, SDValue> CallResult =
2825      TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()),
2826                      false, false, false, false, 0, CallingConv::C,
2827                      /*isTailCall=*/false,
2828                      /*isReturnValueUsed=*/true,
2829                      DAG.getExternalSymbol("__sync_synchronize",
2830                                            TLI.getPointerTy()),
2831                      Args, DAG, dl);
2832    Results.push_back(CallResult.second);
2833    break;
2834  }
2835  // By default, atomic intrinsics are marked Legal and lowered. Targets
2836  // which don't support them directly, however, may want libcalls, in which
2837  // case they mark them Expand, and we get here.
2838  case ISD::ATOMIC_SWAP:
2839  case ISD::ATOMIC_LOAD_ADD:
2840  case ISD::ATOMIC_LOAD_SUB:
2841  case ISD::ATOMIC_LOAD_AND:
2842  case ISD::ATOMIC_LOAD_OR:
2843  case ISD::ATOMIC_LOAD_XOR:
2844  case ISD::ATOMIC_LOAD_NAND:
2845  case ISD::ATOMIC_LOAD_MIN:
2846  case ISD::ATOMIC_LOAD_MAX:
2847  case ISD::ATOMIC_LOAD_UMIN:
2848  case ISD::ATOMIC_LOAD_UMAX:
2849  case ISD::ATOMIC_CMP_SWAP: {
2850    std::pair<SDValue, SDValue> Tmp = ExpandAtomic(Node);
2851    Results.push_back(Tmp.first);
2852    Results.push_back(Tmp.second);
2853    break;
2854  }
2855  case ISD::DYNAMIC_STACKALLOC:
2856    ExpandDYNAMIC_STACKALLOC(Node, Results);
2857    break;
2858  case ISD::MERGE_VALUES:
2859    for (unsigned i = 0; i < Node->getNumValues(); i++)
2860      Results.push_back(Node->getOperand(i));
2861    break;
2862  case ISD::UNDEF: {
2863    EVT VT = Node->getValueType(0);
2864    if (VT.isInteger())
2865      Results.push_back(DAG.getConstant(0, VT));
2866    else {
2867      assert(VT.isFloatingPoint() && "Unknown value type!");
2868      Results.push_back(DAG.getConstantFP(0, VT));
2869    }
2870    break;
2871  }
2872  case ISD::TRAP: {
2873    // If this operation is not supported, lower it to 'abort()' call
2874    TargetLowering::ArgListTy Args;
2875    std::pair<SDValue, SDValue> CallResult =
2876      TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()),
2877                      false, false, false, false, 0, CallingConv::C,
2878                      /*isTailCall=*/false,
2879                      /*isReturnValueUsed=*/true,
2880                      DAG.getExternalSymbol("abort", TLI.getPointerTy()),
2881                      Args, DAG, dl);
2882    Results.push_back(CallResult.second);
2883    break;
2884  }
2885  case ISD::FP_ROUND:
2886  case ISD::BITCAST:
2887    Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
2888                            Node->getValueType(0), dl);
2889    Results.push_back(Tmp1);
2890    break;
2891  case ISD::FP_EXTEND:
2892    Tmp1 = EmitStackConvert(Node->getOperand(0),
2893                            Node->getOperand(0).getValueType(),
2894                            Node->getValueType(0), dl);
2895    Results.push_back(Tmp1);
2896    break;
2897  case ISD::SIGN_EXTEND_INREG: {
2898    // NOTE: we could fall back on load/store here too for targets without
2899    // SAR.  However, it is doubtful that any exist.
2900    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2901    EVT VT = Node->getValueType(0);
2902    EVT ShiftAmountTy = TLI.getShiftAmountTy(VT);
2903    if (VT.isVector())
2904      ShiftAmountTy = VT;
2905    unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
2906                        ExtraVT.getScalarType().getSizeInBits();
2907    SDValue ShiftCst = DAG.getConstant(BitsDiff, ShiftAmountTy);
2908    Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
2909                       Node->getOperand(0), ShiftCst);
2910    Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
2911    Results.push_back(Tmp1);
2912    break;
2913  }
2914  case ISD::FP_ROUND_INREG: {
2915    // The only way we can lower this is to turn it into a TRUNCSTORE,
2916    // EXTLOAD pair, targeting a temporary location (a stack slot).
2917
2918    // NOTE: there is a choice here between constantly creating new stack
2919    // slots and always reusing the same one.  We currently always create
2920    // new ones, as reuse may inhibit scheduling.
2921    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2922    Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
2923                            Node->getValueType(0), dl);
2924    Results.push_back(Tmp1);
2925    break;
2926  }
2927  case ISD::SINT_TO_FP:
2928  case ISD::UINT_TO_FP:
2929    Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
2930                                Node->getOperand(0), Node->getValueType(0), dl);
2931    Results.push_back(Tmp1);
2932    break;
2933  case ISD::FP_TO_UINT: {
2934    SDValue True, False;
2935    EVT VT =  Node->getOperand(0).getValueType();
2936    EVT NVT = Node->getValueType(0);
2937    APFloat apf(APInt::getNullValue(VT.getSizeInBits()));
2938    APInt x = APInt::getSignBit(NVT.getSizeInBits());
2939    (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
2940    Tmp1 = DAG.getConstantFP(apf, VT);
2941    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT),
2942                        Node->getOperand(0),
2943                        Tmp1, ISD::SETLT);
2944    True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
2945    False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
2946                        DAG.getNode(ISD::FSUB, dl, VT,
2947                                    Node->getOperand(0), Tmp1));
2948    False = DAG.getNode(ISD::XOR, dl, NVT, False,
2949                        DAG.getConstant(x, NVT));
2950    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False);
2951    Results.push_back(Tmp1);
2952    break;
2953  }
2954  case ISD::VAARG: {
2955    const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2956    EVT VT = Node->getValueType(0);
2957    Tmp1 = Node->getOperand(0);
2958    Tmp2 = Node->getOperand(1);
2959    unsigned Align = Node->getConstantOperandVal(3);
2960
2961    SDValue VAListLoad = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2,
2962                                     MachinePointerInfo(V), false, false, 0);
2963    SDValue VAList = VAListLoad;
2964
2965    if (Align > TLI.getMinStackArgumentAlignment()) {
2966      assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
2967
2968      VAList = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2969                           DAG.getConstant(Align - 1,
2970                                           TLI.getPointerTy()));
2971
2972      VAList = DAG.getNode(ISD::AND, dl, TLI.getPointerTy(), VAList,
2973                           DAG.getConstant(-(int64_t)Align,
2974                                           TLI.getPointerTy()));
2975    }
2976
2977    // Increment the pointer, VAList, to the next vaarg
2978    Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2979                       DAG.getConstant(TLI.getTargetData()->
2980                          getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())),
2981                                       TLI.getPointerTy()));
2982    // Store the incremented VAList to the legalized pointer
2983    Tmp3 = DAG.getStore(VAListLoad.getValue(1), dl, Tmp3, Tmp2,
2984                        MachinePointerInfo(V), false, false, 0);
2985    // Load the actual argument out of the pointer VAList
2986    Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, MachinePointerInfo(),
2987                                  false, false, 0));
2988    Results.push_back(Results[0].getValue(1));
2989    break;
2990  }
2991  case ISD::VACOPY: {
2992    // This defaults to loading a pointer from the input and storing it to the
2993    // output, returning the chain.
2994    const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2995    const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2996    Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0),
2997                       Node->getOperand(2), MachinePointerInfo(VS),
2998                       false, false, 0);
2999    Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
3000                        MachinePointerInfo(VD), false, false, 0);
3001    Results.push_back(Tmp1);
3002    break;
3003  }
3004  case ISD::EXTRACT_VECTOR_ELT:
3005    if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
3006      // This must be an access of the only element.  Return it.
3007      Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0),
3008                         Node->getOperand(0));
3009    else
3010      Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
3011    Results.push_back(Tmp1);
3012    break;
3013  case ISD::EXTRACT_SUBVECTOR:
3014    Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
3015    break;
3016  case ISD::INSERT_SUBVECTOR:
3017    Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0)));
3018    break;
3019  case ISD::CONCAT_VECTORS: {
3020    Results.push_back(ExpandVectorBuildThroughStack(Node));
3021    break;
3022  }
3023  case ISD::SCALAR_TO_VECTOR:
3024    Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
3025    break;
3026  case ISD::INSERT_VECTOR_ELT:
3027    Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
3028                                              Node->getOperand(1),
3029                                              Node->getOperand(2), dl));
3030    break;
3031  case ISD::VECTOR_SHUFFLE: {
3032    SmallVector<int, 8> Mask;
3033    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
3034
3035    EVT VT = Node->getValueType(0);
3036    EVT EltVT = VT.getVectorElementType();
3037    if (getTypeAction(EltVT) == Promote)
3038      EltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT);
3039    unsigned NumElems = VT.getVectorNumElements();
3040    SmallVector<SDValue, 8> Ops;
3041    for (unsigned i = 0; i != NumElems; ++i) {
3042      if (Mask[i] < 0) {
3043        Ops.push_back(DAG.getUNDEF(EltVT));
3044        continue;
3045      }
3046      unsigned Idx = Mask[i];
3047      if (Idx < NumElems)
3048        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
3049                                  Node->getOperand(0),
3050                                  DAG.getIntPtrConstant(Idx)));
3051      else
3052        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
3053                                  Node->getOperand(1),
3054                                  DAG.getIntPtrConstant(Idx - NumElems)));
3055    }
3056    Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size());
3057    Results.push_back(Tmp1);
3058    break;
3059  }
3060  case ISD::EXTRACT_ELEMENT: {
3061    EVT OpTy = Node->getOperand(0).getValueType();
3062    if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
3063      // 1 -> Hi
3064      Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
3065                         DAG.getConstant(OpTy.getSizeInBits()/2,
3066                    TLI.getShiftAmountTy(Node->getOperand(0).getValueType())));
3067      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
3068    } else {
3069      // 0 -> Lo
3070      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
3071                         Node->getOperand(0));
3072    }
3073    Results.push_back(Tmp1);
3074    break;
3075  }
3076  case ISD::STACKSAVE:
3077    // Expand to CopyFromReg if the target set
3078    // StackPointerRegisterToSaveRestore.
3079    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
3080      Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
3081                                           Node->getValueType(0)));
3082      Results.push_back(Results[0].getValue(1));
3083    } else {
3084      Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
3085      Results.push_back(Node->getOperand(0));
3086    }
3087    break;
3088  case ISD::STACKRESTORE:
3089    // Expand to CopyToReg if the target set
3090    // StackPointerRegisterToSaveRestore.
3091    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
3092      Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
3093                                         Node->getOperand(1)));
3094    } else {
3095      Results.push_back(Node->getOperand(0));
3096    }
3097    break;
3098  case ISD::FCOPYSIGN:
3099    Results.push_back(ExpandFCOPYSIGN(Node));
3100    break;
3101  case ISD::FNEG:
3102    // Expand Y = FNEG(X) ->  Y = SUB -0.0, X
3103    Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0));
3104    Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
3105                       Node->getOperand(0));
3106    Results.push_back(Tmp1);
3107    break;
3108  case ISD::FABS: {
3109    // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
3110    EVT VT = Node->getValueType(0);
3111    Tmp1 = Node->getOperand(0);
3112    Tmp2 = DAG.getConstantFP(0.0, VT);
3113    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
3114                        Tmp1, Tmp2, ISD::SETUGT);
3115    Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1);
3116    Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3);
3117    Results.push_back(Tmp1);
3118    break;
3119  }
3120  case ISD::FSQRT:
3121    Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
3122                                      RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128));
3123    break;
3124  case ISD::FSIN:
3125    Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
3126                                      RTLIB::SIN_F80, RTLIB::SIN_PPCF128));
3127    break;
3128  case ISD::FCOS:
3129    Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
3130                                      RTLIB::COS_F80, RTLIB::COS_PPCF128));
3131    break;
3132  case ISD::FLOG:
3133    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
3134                                      RTLIB::LOG_F80, RTLIB::LOG_PPCF128));
3135    break;
3136  case ISD::FLOG2:
3137    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
3138                                      RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128));
3139    break;
3140  case ISD::FLOG10:
3141    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
3142                                      RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128));
3143    break;
3144  case ISD::FEXP:
3145    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
3146                                      RTLIB::EXP_F80, RTLIB::EXP_PPCF128));
3147    break;
3148  case ISD::FEXP2:
3149    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
3150                                      RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128));
3151    break;
3152  case ISD::FTRUNC:
3153    Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
3154                                      RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128));
3155    break;
3156  case ISD::FFLOOR:
3157    Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
3158                                      RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128));
3159    break;
3160  case ISD::FCEIL:
3161    Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
3162                                      RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128));
3163    break;
3164  case ISD::FRINT:
3165    Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
3166                                      RTLIB::RINT_F80, RTLIB::RINT_PPCF128));
3167    break;
3168  case ISD::FNEARBYINT:
3169    Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
3170                                      RTLIB::NEARBYINT_F64,
3171                                      RTLIB::NEARBYINT_F80,
3172                                      RTLIB::NEARBYINT_PPCF128));
3173    break;
3174  case ISD::FPOWI:
3175    Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
3176                                      RTLIB::POWI_F80, RTLIB::POWI_PPCF128));
3177    break;
3178  case ISD::FPOW:
3179    Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
3180                                      RTLIB::POW_F80, RTLIB::POW_PPCF128));
3181    break;
3182  case ISD::FDIV:
3183    Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
3184                                      RTLIB::DIV_F80, RTLIB::DIV_PPCF128));
3185    break;
3186  case ISD::FREM:
3187    Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
3188                                      RTLIB::REM_F80, RTLIB::REM_PPCF128));
3189    break;
3190  case ISD::FP16_TO_FP32:
3191    Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
3192    break;
3193  case ISD::FP32_TO_FP16:
3194    Results.push_back(ExpandLibCall(RTLIB::FPROUND_F32_F16, Node, false));
3195    break;
3196  case ISD::ConstantFP: {
3197    ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
3198    // Check to see if this FP immediate is already legal.
3199    // If this is a legal constant, turn it into a TargetConstantFP node.
3200    if (TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0)))
3201      Results.push_back(SDValue(Node, 0));
3202    else
3203      Results.push_back(ExpandConstantFP(CFP, true, DAG, TLI));
3204    break;
3205  }
3206  case ISD::EHSELECTION: {
3207    unsigned Reg = TLI.getExceptionSelectorRegister();
3208    assert(Reg && "Can't expand to unknown register!");
3209    Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg,
3210                                         Node->getValueType(0)));
3211    Results.push_back(Results[0].getValue(1));
3212    break;
3213  }
3214  case ISD::EXCEPTIONADDR: {
3215    unsigned Reg = TLI.getExceptionAddressRegister();
3216    assert(Reg && "Can't expand to unknown register!");
3217    Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg,
3218                                         Node->getValueType(0)));
3219    Results.push_back(Results[0].getValue(1));
3220    break;
3221  }
3222  case ISD::SUB: {
3223    EVT VT = Node->getValueType(0);
3224    assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
3225           TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
3226           "Don't know how to expand this subtraction!");
3227    Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
3228               DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT));
3229    Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp2, DAG.getConstant(1, VT));
3230    Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
3231    break;
3232  }
3233  case ISD::UREM:
3234  case ISD::SREM: {
3235    EVT VT = Node->getValueType(0);
3236    SDVTList VTs = DAG.getVTList(VT, VT);
3237    bool isSigned = Node->getOpcode() == ISD::SREM;
3238    unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
3239    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3240    Tmp2 = Node->getOperand(0);
3241    Tmp3 = Node->getOperand(1);
3242    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) ||
3243        (isDivRemLibcallAvailable(Node, isSigned, TLI) &&
3244         UseDivRem(Node, isSigned, false))) {
3245      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
3246    } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
3247      // X % Y -> X-X/Y*Y
3248      Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
3249      Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
3250      Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
3251    } else if (isSigned)
3252      Tmp1 = ExpandIntLibCall(Node, true,
3253                              RTLIB::SREM_I8,
3254                              RTLIB::SREM_I16, RTLIB::SREM_I32,
3255                              RTLIB::SREM_I64, RTLIB::SREM_I128);
3256    else
3257      Tmp1 = ExpandIntLibCall(Node, false,
3258                              RTLIB::UREM_I8,
3259                              RTLIB::UREM_I16, RTLIB::UREM_I32,
3260                              RTLIB::UREM_I64, RTLIB::UREM_I128);
3261    Results.push_back(Tmp1);
3262    break;
3263  }
3264  case ISD::UDIV:
3265  case ISD::SDIV: {
3266    bool isSigned = Node->getOpcode() == ISD::SDIV;
3267    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3268    EVT VT = Node->getValueType(0);
3269    SDVTList VTs = DAG.getVTList(VT, VT);
3270    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) ||
3271        (isDivRemLibcallAvailable(Node, isSigned, TLI) &&
3272         UseDivRem(Node, isSigned, true)))
3273      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
3274                         Node->getOperand(1));
3275    else if (isSigned)
3276      Tmp1 = ExpandIntLibCall(Node, true,
3277                              RTLIB::SDIV_I8,
3278                              RTLIB::SDIV_I16, RTLIB::SDIV_I32,
3279                              RTLIB::SDIV_I64, RTLIB::SDIV_I128);
3280    else
3281      Tmp1 = ExpandIntLibCall(Node, false,
3282                              RTLIB::UDIV_I8,
3283                              RTLIB::UDIV_I16, RTLIB::UDIV_I32,
3284                              RTLIB::UDIV_I64, RTLIB::UDIV_I128);
3285    Results.push_back(Tmp1);
3286    break;
3287  }
3288  case ISD::MULHU:
3289  case ISD::MULHS: {
3290    unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
3291                                                              ISD::SMUL_LOHI;
3292    EVT VT = Node->getValueType(0);
3293    SDVTList VTs = DAG.getVTList(VT, VT);
3294    assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
3295           "If this wasn't legal, it shouldn't have been created!");
3296    Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
3297                       Node->getOperand(1));
3298    Results.push_back(Tmp1.getValue(1));
3299    break;
3300  }
3301  case ISD::SDIVREM:
3302  case ISD::UDIVREM:
3303    // Expand into divrem libcall
3304    ExpandDivRemLibCall(Node, Results);
3305    break;
3306  case ISD::MUL: {
3307    EVT VT = Node->getValueType(0);
3308    SDVTList VTs = DAG.getVTList(VT, VT);
3309    // See if multiply or divide can be lowered using two-result operations.
3310    // We just need the low half of the multiply; try both the signed
3311    // and unsigned forms. If the target supports both SMUL_LOHI and
3312    // UMUL_LOHI, form a preference by checking which forms of plain
3313    // MULH it supports.
3314    bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
3315    bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
3316    bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
3317    bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
3318    unsigned OpToUse = 0;
3319    if (HasSMUL_LOHI && !HasMULHS) {
3320      OpToUse = ISD::SMUL_LOHI;
3321    } else if (HasUMUL_LOHI && !HasMULHU) {
3322      OpToUse = ISD::UMUL_LOHI;
3323    } else if (HasSMUL_LOHI) {
3324      OpToUse = ISD::SMUL_LOHI;
3325    } else if (HasUMUL_LOHI) {
3326      OpToUse = ISD::UMUL_LOHI;
3327    }
3328    if (OpToUse) {
3329      Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
3330                                    Node->getOperand(1)));
3331      break;
3332    }
3333    Tmp1 = ExpandIntLibCall(Node, false,
3334                            RTLIB::MUL_I8,
3335                            RTLIB::MUL_I16, RTLIB::MUL_I32,
3336                            RTLIB::MUL_I64, RTLIB::MUL_I128);
3337    Results.push_back(Tmp1);
3338    break;
3339  }
3340  case ISD::SADDO:
3341  case ISD::SSUBO: {
3342    SDValue LHS = Node->getOperand(0);
3343    SDValue RHS = Node->getOperand(1);
3344    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
3345                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3346                              LHS, RHS);
3347    Results.push_back(Sum);
3348    EVT OType = Node->getValueType(1);
3349
3350    SDValue Zero = DAG.getConstant(0, LHS.getValueType());
3351
3352    //   LHSSign -> LHS >= 0
3353    //   RHSSign -> RHS >= 0
3354    //   SumSign -> Sum >= 0
3355    //
3356    //   Add:
3357    //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
3358    //   Sub:
3359    //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
3360    //
3361    SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
3362    SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
3363    SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
3364                                      Node->getOpcode() == ISD::SADDO ?
3365                                      ISD::SETEQ : ISD::SETNE);
3366
3367    SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
3368    SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
3369
3370    SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
3371    Results.push_back(Cmp);
3372    break;
3373  }
3374  case ISD::UADDO:
3375  case ISD::USUBO: {
3376    SDValue LHS = Node->getOperand(0);
3377    SDValue RHS = Node->getOperand(1);
3378    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
3379                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3380                              LHS, RHS);
3381    Results.push_back(Sum);
3382    Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS,
3383                                   Node->getOpcode () == ISD::UADDO ?
3384                                   ISD::SETULT : ISD::SETUGT));
3385    break;
3386  }
3387  case ISD::UMULO:
3388  case ISD::SMULO: {
3389    EVT VT = Node->getValueType(0);
3390    EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
3391    SDValue LHS = Node->getOperand(0);
3392    SDValue RHS = Node->getOperand(1);
3393    SDValue BottomHalf;
3394    SDValue TopHalf;
3395    static const unsigned Ops[2][3] =
3396        { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
3397          { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
3398    bool isSigned = Node->getOpcode() == ISD::SMULO;
3399    if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
3400      BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
3401      TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
3402    } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
3403      BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
3404                               RHS);
3405      TopHalf = BottomHalf.getValue(1);
3406    } else if (TLI.isTypeLegal(EVT::getIntegerVT(*DAG.getContext(),
3407                                                 VT.getSizeInBits() * 2))) {
3408      LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
3409      RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
3410      Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
3411      BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3412                               DAG.getIntPtrConstant(0));
3413      TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3414                            DAG.getIntPtrConstant(1));
3415    } else {
3416      // We can fall back to a libcall with an illegal type for the MUL if we
3417      // have a libcall big enough.
3418      // Also, we can fall back to a division in some cases, but that's a big
3419      // performance hit in the general case.
3420      RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
3421      if (WideVT == MVT::i16)
3422        LC = RTLIB::MUL_I16;
3423      else if (WideVT == MVT::i32)
3424        LC = RTLIB::MUL_I32;
3425      else if (WideVT == MVT::i64)
3426        LC = RTLIB::MUL_I64;
3427      else if (WideVT == MVT::i128)
3428        LC = RTLIB::MUL_I128;
3429      assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
3430
3431      // The high part is obtained by SRA'ing all but one of the bits of low
3432      // part.
3433      unsigned LoSize = VT.getSizeInBits();
3434      SDValue HiLHS = DAG.getNode(ISD::SRA, dl, VT, RHS,
3435                                DAG.getConstant(LoSize-1, TLI.getPointerTy()));
3436      SDValue HiRHS = DAG.getNode(ISD::SRA, dl, VT, LHS,
3437                                DAG.getConstant(LoSize-1, TLI.getPointerTy()));
3438
3439      // Here we're passing the 2 arguments explicitly as 4 arguments that are
3440      // pre-lowered to the correct types. This all depends upon WideVT not
3441      // being a legal type for the architecture and thus has to be split to
3442      // two arguments.
3443      SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
3444      SDValue Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl);
3445      BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret,
3446                               DAG.getIntPtrConstant(0));
3447      TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret,
3448                            DAG.getIntPtrConstant(1));
3449    }
3450
3451    if (isSigned) {
3452      Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1,
3453                             TLI.getShiftAmountTy(BottomHalf.getValueType()));
3454      Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1);
3455      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1,
3456                             ISD::SETNE);
3457    } else {
3458      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf,
3459                             DAG.getConstant(0, VT), ISD::SETNE);
3460    }
3461    Results.push_back(BottomHalf);
3462    Results.push_back(TopHalf);
3463    break;
3464  }
3465  case ISD::BUILD_PAIR: {
3466    EVT PairTy = Node->getValueType(0);
3467    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
3468    Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
3469    Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
3470                       DAG.getConstant(PairTy.getSizeInBits()/2,
3471                                       TLI.getShiftAmountTy(PairTy)));
3472    Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
3473    break;
3474  }
3475  case ISD::SELECT:
3476    Tmp1 = Node->getOperand(0);
3477    Tmp2 = Node->getOperand(1);
3478    Tmp3 = Node->getOperand(2);
3479    if (Tmp1.getOpcode() == ISD::SETCC) {
3480      Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
3481                             Tmp2, Tmp3,
3482                             cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
3483    } else {
3484      Tmp1 = DAG.getSelectCC(dl, Tmp1,
3485                             DAG.getConstant(0, Tmp1.getValueType()),
3486                             Tmp2, Tmp3, ISD::SETNE);
3487    }
3488    Results.push_back(Tmp1);
3489    break;
3490  case ISD::BR_JT: {
3491    SDValue Chain = Node->getOperand(0);
3492    SDValue Table = Node->getOperand(1);
3493    SDValue Index = Node->getOperand(2);
3494
3495    EVT PTy = TLI.getPointerTy();
3496
3497    const TargetData &TD = *TLI.getTargetData();
3498    unsigned EntrySize =
3499      DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
3500
3501    Index = DAG.getNode(ISD::MUL, dl, PTy,
3502                        Index, DAG.getConstant(EntrySize, PTy));
3503    SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
3504
3505    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
3506    SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr,
3507                                MachinePointerInfo::getJumpTable(), MemVT,
3508                                false, false, 0);
3509    Addr = LD;
3510    if (TM.getRelocationModel() == Reloc::PIC_) {
3511      // For PIC, the sequence is:
3512      // BRIND(load(Jumptable + index) + RelocBase)
3513      // RelocBase can be JumpTable, GOT or some sort of global base.
3514      Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
3515                          TLI.getPICJumpTableRelocBase(Table, DAG));
3516    }
3517    Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
3518    Results.push_back(Tmp1);
3519    break;
3520  }
3521  case ISD::BRCOND:
3522    // Expand brcond's setcc into its constituent parts and create a BR_CC
3523    // Node.
3524    Tmp1 = Node->getOperand(0);
3525    Tmp2 = Node->getOperand(1);
3526    if (Tmp2.getOpcode() == ISD::SETCC) {
3527      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
3528                         Tmp1, Tmp2.getOperand(2),
3529                         Tmp2.getOperand(0), Tmp2.getOperand(1),
3530                         Node->getOperand(2));
3531    } else {
3532      // We test only the i1 bit.  Skip the AND if UNDEF.
3533      Tmp3 = (Tmp2.getOpcode() == ISD::UNDEF) ? Tmp2 :
3534        DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2,
3535                    DAG.getConstant(1, Tmp2.getValueType()));
3536      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
3537                         DAG.getCondCode(ISD::SETNE), Tmp3,
3538                         DAG.getConstant(0, Tmp3.getValueType()),
3539                         Node->getOperand(2));
3540    }
3541    Results.push_back(Tmp1);
3542    break;
3543  case ISD::SETCC: {
3544    Tmp1 = Node->getOperand(0);
3545    Tmp2 = Node->getOperand(1);
3546    Tmp3 = Node->getOperand(2);
3547    LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl);
3548
3549    // If we expanded the SETCC into an AND/OR, return the new node
3550    if (Tmp2.getNode() == 0) {
3551      Results.push_back(Tmp1);
3552      break;
3553    }
3554
3555    // Otherwise, SETCC for the given comparison type must be completely
3556    // illegal; expand it into a SELECT_CC.
3557    EVT VT = Node->getValueType(0);
3558    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
3559                       DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3);
3560    Results.push_back(Tmp1);
3561    break;
3562  }
3563  case ISD::SELECT_CC: {
3564    Tmp1 = Node->getOperand(0);   // LHS
3565    Tmp2 = Node->getOperand(1);   // RHS
3566    Tmp3 = Node->getOperand(2);   // True
3567    Tmp4 = Node->getOperand(3);   // False
3568    SDValue CC = Node->getOperand(4);
3569
3570    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()),
3571                          Tmp1, Tmp2, CC, dl);
3572
3573    assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!");
3574    Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
3575    CC = DAG.getCondCode(ISD::SETNE);
3576    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2,
3577                       Tmp3, Tmp4, CC);
3578    Results.push_back(Tmp1);
3579    break;
3580  }
3581  case ISD::BR_CC: {
3582    Tmp1 = Node->getOperand(0);              // Chain
3583    Tmp2 = Node->getOperand(2);              // LHS
3584    Tmp3 = Node->getOperand(3);              // RHS
3585    Tmp4 = Node->getOperand(1);              // CC
3586
3587    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()),
3588                          Tmp2, Tmp3, Tmp4, dl);
3589    assert(LastCALLSEQ.size() == 1 && "branch inside CALLSEQ_BEGIN/END?");
3590    setLastCALLSEQ(DAG.getEntryNode());
3591
3592    assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!");
3593    Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
3594    Tmp4 = DAG.getCondCode(ISD::SETNE);
3595    Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2,
3596                       Tmp3, Node->getOperand(4));
3597    Results.push_back(Tmp1);
3598    break;
3599  }
3600  case ISD::GLOBAL_OFFSET_TABLE:
3601  case ISD::GlobalAddress:
3602  case ISD::GlobalTLSAddress:
3603  case ISD::ExternalSymbol:
3604  case ISD::ConstantPool:
3605  case ISD::JumpTable:
3606  case ISD::INTRINSIC_W_CHAIN:
3607  case ISD::INTRINSIC_WO_CHAIN:
3608  case ISD::INTRINSIC_VOID:
3609    // FIXME: Custom lowering for these operations shouldn't return null!
3610    for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
3611      Results.push_back(SDValue(Node, i));
3612    break;
3613  }
3614}
3615void SelectionDAGLegalize::PromoteNode(SDNode *Node,
3616                                       SmallVectorImpl<SDValue> &Results) {
3617  EVT OVT = Node->getValueType(0);
3618  if (Node->getOpcode() == ISD::UINT_TO_FP ||
3619      Node->getOpcode() == ISD::SINT_TO_FP ||
3620      Node->getOpcode() == ISD::SETCC) {
3621    OVT = Node->getOperand(0).getValueType();
3622  }
3623  EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
3624  DebugLoc dl = Node->getDebugLoc();
3625  SDValue Tmp1, Tmp2, Tmp3;
3626  switch (Node->getOpcode()) {
3627  case ISD::CTTZ:
3628  case ISD::CTLZ:
3629  case ISD::CTPOP:
3630    // Zero extend the argument.
3631    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3632    // Perform the larger operation.
3633    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
3634    if (Node->getOpcode() == ISD::CTTZ) {
3635      //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT)
3636      Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT),
3637                          Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT),
3638                          ISD::SETEQ);
3639      Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2,
3640                          DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1);
3641    } else if (Node->getOpcode() == ISD::CTLZ) {
3642      // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
3643      Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
3644                          DAG.getConstant(NVT.getSizeInBits() -
3645                                          OVT.getSizeInBits(), NVT));
3646    }
3647    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
3648    break;
3649  case ISD::BSWAP: {
3650    unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
3651    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3652    Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
3653    Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
3654                          DAG.getConstant(DiffBits, TLI.getShiftAmountTy(NVT)));
3655    Results.push_back(Tmp1);
3656    break;
3657  }
3658  case ISD::FP_TO_UINT:
3659  case ISD::FP_TO_SINT:
3660    Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
3661                                 Node->getOpcode() == ISD::FP_TO_SINT, dl);
3662    Results.push_back(Tmp1);
3663    break;
3664  case ISD::UINT_TO_FP:
3665  case ISD::SINT_TO_FP:
3666    Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
3667                                 Node->getOpcode() == ISD::SINT_TO_FP, dl);
3668    Results.push_back(Tmp1);
3669    break;
3670  case ISD::AND:
3671  case ISD::OR:
3672  case ISD::XOR: {
3673    unsigned ExtOp, TruncOp;
3674    if (OVT.isVector()) {
3675      ExtOp   = ISD::BITCAST;
3676      TruncOp = ISD::BITCAST;
3677    } else {
3678      assert(OVT.isInteger() && "Cannot promote logic operation");
3679      ExtOp   = ISD::ANY_EXTEND;
3680      TruncOp = ISD::TRUNCATE;
3681    }
3682    // Promote each of the values to the new type.
3683    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3684    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3685    // Perform the larger operation, then convert back
3686    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3687    Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
3688    break;
3689  }
3690  case ISD::SELECT: {
3691    unsigned ExtOp, TruncOp;
3692    if (Node->getValueType(0).isVector()) {
3693      ExtOp   = ISD::BITCAST;
3694      TruncOp = ISD::BITCAST;
3695    } else if (Node->getValueType(0).isInteger()) {
3696      ExtOp   = ISD::ANY_EXTEND;
3697      TruncOp = ISD::TRUNCATE;
3698    } else {
3699      ExtOp   = ISD::FP_EXTEND;
3700      TruncOp = ISD::FP_ROUND;
3701    }
3702    Tmp1 = Node->getOperand(0);
3703    // Promote each of the values to the new type.
3704    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3705    Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
3706    // Perform the larger operation, then round down.
3707    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3);
3708    if (TruncOp != ISD::FP_ROUND)
3709      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
3710    else
3711      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
3712                         DAG.getIntPtrConstant(0));
3713    Results.push_back(Tmp1);
3714    break;
3715  }
3716  case ISD::VECTOR_SHUFFLE: {
3717    SmallVector<int, 8> Mask;
3718    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
3719
3720    // Cast the two input vectors.
3721    Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0));
3722    Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1));
3723
3724    // Convert the shuffle mask to the right # elements.
3725    Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
3726    Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1);
3727    Results.push_back(Tmp1);
3728    break;
3729  }
3730  case ISD::SETCC: {
3731    unsigned ExtOp = ISD::FP_EXTEND;
3732    if (NVT.isInteger()) {
3733      ISD::CondCode CCCode =
3734        cast<CondCodeSDNode>(Node->getOperand(2))->get();
3735      ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3736    }
3737    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3738    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3739    Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3740                                  Tmp1, Tmp2, Node->getOperand(2)));
3741    break;
3742  }
3743  }
3744}
3745
3746// SelectionDAG::Legalize - This is the entry point for the file.
3747//
3748void SelectionDAG::Legalize(CodeGenOpt::Level OptLevel) {
3749  /// run - This is the main entry point to this class.
3750  ///
3751  SelectionDAGLegalize(*this, OptLevel).LegalizeDAG();
3752}
3753