LegalizeDAG.cpp revision b6210fc92b643a5440d8373b5f36b6e579b5feb8
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file was developed by the LLVM research group and is distributed under 6// the University of Illinois Open Source License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the SelectionDAG::Legalize method. 11// 12//===----------------------------------------------------------------------===// 13 14#include "llvm/CodeGen/SelectionDAG.h" 15#include "llvm/CodeGen/MachineFunction.h" 16#include "llvm/CodeGen/MachineFrameInfo.h" 17#include "llvm/CodeGen/MachineJumpTableInfo.h" 18#include "llvm/Target/TargetFrameInfo.h" 19#include "llvm/Target/TargetLowering.h" 20#include "llvm/Target/TargetData.h" 21#include "llvm/Target/TargetMachine.h" 22#include "llvm/Target/TargetOptions.h" 23#include "llvm/CallingConv.h" 24#include "llvm/Constants.h" 25#include "llvm/DerivedTypes.h" 26#include "llvm/Support/MathExtras.h" 27#include "llvm/Support/CommandLine.h" 28#include "llvm/Support/Compiler.h" 29#include "llvm/ADT/DenseMap.h" 30#include "llvm/ADT/SmallVector.h" 31#include "llvm/ADT/SmallPtrSet.h" 32#include <map> 33using namespace llvm; 34 35#ifndef NDEBUG 36static cl::opt<bool> 37ViewLegalizeDAGs("view-legalize-dags", cl::Hidden, 38 cl::desc("Pop up a window to show dags before legalize")); 39#else 40static const bool ViewLegalizeDAGs = 0; 41#endif 42 43//===----------------------------------------------------------------------===// 44/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and 45/// hacks on it until the target machine can handle it. This involves 46/// eliminating value sizes the machine cannot handle (promoting small sizes to 47/// large sizes or splitting up large values into small values) as well as 48/// eliminating operations the machine cannot handle. 49/// 50/// This code also does a small amount of optimization and recognition of idioms 51/// as part of its processing. For example, if a target does not support a 52/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this 53/// will attempt merge setcc and brc instructions into brcc's. 54/// 55namespace { 56class VISIBILITY_HIDDEN SelectionDAGLegalize { 57 TargetLowering &TLI; 58 SelectionDAG &DAG; 59 60 // Libcall insertion helpers. 61 62 /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been 63 /// legalized. We use this to ensure that calls are properly serialized 64 /// against each other, including inserted libcalls. 65 SDOperand LastCALLSEQ_END; 66 67 /// IsLegalizingCall - This member is used *only* for purposes of providing 68 /// helpful assertions that a libcall isn't created while another call is 69 /// being legalized (which could lead to non-serialized call sequences). 70 bool IsLegalizingCall; 71 72 enum LegalizeAction { 73 Legal, // The target natively supports this operation. 74 Promote, // This operation should be executed in a larger type. 75 Expand // Try to expand this to other ops, otherwise use a libcall. 76 }; 77 78 /// ValueTypeActions - This is a bitvector that contains two bits for each 79 /// value type, where the two bits correspond to the LegalizeAction enum. 80 /// This can be queried with "getTypeAction(VT)". 81 TargetLowering::ValueTypeActionImpl ValueTypeActions; 82 83 /// LegalizedNodes - For nodes that are of legal width, and that have more 84 /// than one use, this map indicates what regularized operand to use. This 85 /// allows us to avoid legalizing the same thing more than once. 86 DenseMap<SDOperand, SDOperand> LegalizedNodes; 87 88 /// PromotedNodes - For nodes that are below legal width, and that have more 89 /// than one use, this map indicates what promoted value to use. This allows 90 /// us to avoid promoting the same thing more than once. 91 DenseMap<SDOperand, SDOperand> PromotedNodes; 92 93 /// ExpandedNodes - For nodes that need to be expanded this map indicates 94 /// which which operands are the expanded version of the input. This allows 95 /// us to avoid expanding the same node more than once. 96 DenseMap<SDOperand, std::pair<SDOperand, SDOperand> > ExpandedNodes; 97 98 /// SplitNodes - For vector nodes that need to be split, this map indicates 99 /// which which operands are the split version of the input. This allows us 100 /// to avoid splitting the same node more than once. 101 std::map<SDOperand, std::pair<SDOperand, SDOperand> > SplitNodes; 102 103 /// ScalarizedNodes - For nodes that need to be converted from vector types to 104 /// scalar types, this contains the mapping of ones we have already 105 /// processed to the result. 106 std::map<SDOperand, SDOperand> ScalarizedNodes; 107 108 void AddLegalizedOperand(SDOperand From, SDOperand To) { 109 LegalizedNodes.insert(std::make_pair(From, To)); 110 // If someone requests legalization of the new node, return itself. 111 if (From != To) 112 LegalizedNodes.insert(std::make_pair(To, To)); 113 } 114 void AddPromotedOperand(SDOperand From, SDOperand To) { 115 bool isNew = PromotedNodes.insert(std::make_pair(From, To)); 116 assert(isNew && "Got into the map somehow?"); 117 // If someone requests legalization of the new node, return itself. 118 LegalizedNodes.insert(std::make_pair(To, To)); 119 } 120 121public: 122 123 SelectionDAGLegalize(SelectionDAG &DAG); 124 125 /// getTypeAction - Return how we should legalize values of this type, either 126 /// it is already legal or we need to expand it into multiple registers of 127 /// smaller integer type, or we need to promote it to a larger type. 128 LegalizeAction getTypeAction(MVT::ValueType VT) const { 129 return (LegalizeAction)ValueTypeActions.getTypeAction(VT); 130 } 131 132 /// isTypeLegal - Return true if this type is legal on this target. 133 /// 134 bool isTypeLegal(MVT::ValueType VT) const { 135 return getTypeAction(VT) == Legal; 136 } 137 138 void LegalizeDAG(); 139 140private: 141 /// HandleOp - Legalize, Promote, or Expand the specified operand as 142 /// appropriate for its type. 143 void HandleOp(SDOperand Op); 144 145 /// LegalizeOp - We know that the specified value has a legal type. 146 /// Recursively ensure that the operands have legal types, then return the 147 /// result. 148 SDOperand LegalizeOp(SDOperand O); 149 150 /// UnrollVectorOp - We know that the given vector has a legal type, however 151 /// the operation it performs is not legal and is an operation that we have 152 /// no way of lowering. "Unroll" the vector, splitting out the scalars and 153 /// operating on each element individually. 154 SDOperand UnrollVectorOp(SDOperand O); 155 156 /// PromoteOp - Given an operation that produces a value in an invalid type, 157 /// promote it to compute the value into a larger type. The produced value 158 /// will have the correct bits for the low portion of the register, but no 159 /// guarantee is made about the top bits: it may be zero, sign-extended, or 160 /// garbage. 161 SDOperand PromoteOp(SDOperand O); 162 163 /// ExpandOp - Expand the specified SDOperand into its two component pieces 164 /// Lo&Hi. Note that the Op MUST be an expanded type. As a result of this, 165 /// the LegalizeNodes map is filled in for any results that are not expanded, 166 /// the ExpandedNodes map is filled in for any results that are expanded, and 167 /// the Lo/Hi values are returned. This applies to integer types and Vector 168 /// types. 169 void ExpandOp(SDOperand O, SDOperand &Lo, SDOperand &Hi); 170 171 /// SplitVectorOp - Given an operand of vector type, break it down into 172 /// two smaller values. 173 void SplitVectorOp(SDOperand O, SDOperand &Lo, SDOperand &Hi); 174 175 /// ScalarizeVectorOp - Given an operand of single-element vector type 176 /// (e.g. v1f32), convert it into the equivalent operation that returns a 177 /// scalar (e.g. f32) value. 178 SDOperand ScalarizeVectorOp(SDOperand O); 179 180 /// isShuffleLegal - Return true if a vector shuffle is legal with the 181 /// specified mask and type. Targets can specify exactly which masks they 182 /// support and the code generator is tasked with not creating illegal masks. 183 /// 184 /// Note that this will also return true for shuffles that are promoted to a 185 /// different type. 186 /// 187 /// If this is a legal shuffle, this method returns the (possibly promoted) 188 /// build_vector Mask. If it's not a legal shuffle, it returns null. 189 SDNode *isShuffleLegal(MVT::ValueType VT, SDOperand Mask) const; 190 191 bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest, 192 SmallPtrSet<SDNode*, 32> &NodesLeadingTo); 193 194 void LegalizeSetCCOperands(SDOperand &LHS, SDOperand &RHS, SDOperand &CC); 195 196 SDOperand ExpandLibCall(const char *Name, SDNode *Node, bool isSigned, 197 SDOperand &Hi); 198 SDOperand ExpandIntToFP(bool isSigned, MVT::ValueType DestTy, 199 SDOperand Source); 200 201 SDOperand ExpandBIT_CONVERT(MVT::ValueType DestVT, SDOperand SrcOp); 202 SDOperand ExpandBUILD_VECTOR(SDNode *Node); 203 SDOperand ExpandSCALAR_TO_VECTOR(SDNode *Node); 204 SDOperand ExpandLegalINT_TO_FP(bool isSigned, 205 SDOperand LegalOp, 206 MVT::ValueType DestVT); 207 SDOperand PromoteLegalINT_TO_FP(SDOperand LegalOp, MVT::ValueType DestVT, 208 bool isSigned); 209 SDOperand PromoteLegalFP_TO_INT(SDOperand LegalOp, MVT::ValueType DestVT, 210 bool isSigned); 211 212 SDOperand ExpandBSWAP(SDOperand Op); 213 SDOperand ExpandBitCount(unsigned Opc, SDOperand Op); 214 bool ExpandShift(unsigned Opc, SDOperand Op, SDOperand Amt, 215 SDOperand &Lo, SDOperand &Hi); 216 void ExpandShiftParts(unsigned NodeOp, SDOperand Op, SDOperand Amt, 217 SDOperand &Lo, SDOperand &Hi); 218 219 SDOperand ExpandEXTRACT_SUBVECTOR(SDOperand Op); 220 SDOperand ExpandEXTRACT_VECTOR_ELT(SDOperand Op); 221 222 SDOperand getIntPtrConstant(uint64_t Val) { 223 return DAG.getConstant(Val, TLI.getPointerTy()); 224 } 225}; 226} 227 228/// isVectorShuffleLegal - Return true if a vector shuffle is legal with the 229/// specified mask and type. Targets can specify exactly which masks they 230/// support and the code generator is tasked with not creating illegal masks. 231/// 232/// Note that this will also return true for shuffles that are promoted to a 233/// different type. 234SDNode *SelectionDAGLegalize::isShuffleLegal(MVT::ValueType VT, 235 SDOperand Mask) const { 236 switch (TLI.getOperationAction(ISD::VECTOR_SHUFFLE, VT)) { 237 default: return 0; 238 case TargetLowering::Legal: 239 case TargetLowering::Custom: 240 break; 241 case TargetLowering::Promote: { 242 // If this is promoted to a different type, convert the shuffle mask and 243 // ask if it is legal in the promoted type! 244 MVT::ValueType NVT = TLI.getTypeToPromoteTo(ISD::VECTOR_SHUFFLE, VT); 245 246 // If we changed # elements, change the shuffle mask. 247 unsigned NumEltsGrowth = 248 MVT::getVectorNumElements(NVT) / MVT::getVectorNumElements(VT); 249 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); 250 if (NumEltsGrowth > 1) { 251 // Renumber the elements. 252 SmallVector<SDOperand, 8> Ops; 253 for (unsigned i = 0, e = Mask.getNumOperands(); i != e; ++i) { 254 SDOperand InOp = Mask.getOperand(i); 255 for (unsigned j = 0; j != NumEltsGrowth; ++j) { 256 if (InOp.getOpcode() == ISD::UNDEF) 257 Ops.push_back(DAG.getNode(ISD::UNDEF, MVT::i32)); 258 else { 259 unsigned InEltNo = cast<ConstantSDNode>(InOp)->getValue(); 260 Ops.push_back(DAG.getConstant(InEltNo*NumEltsGrowth+j, MVT::i32)); 261 } 262 } 263 } 264 Mask = DAG.getNode(ISD::BUILD_VECTOR, NVT, &Ops[0], Ops.size()); 265 } 266 VT = NVT; 267 break; 268 } 269 } 270 return TLI.isShuffleMaskLegal(Mask, VT) ? Mask.Val : 0; 271} 272 273SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag) 274 : TLI(dag.getTargetLoweringInfo()), DAG(dag), 275 ValueTypeActions(TLI.getValueTypeActions()) { 276 assert(MVT::LAST_VALUETYPE <= 32 && 277 "Too many value types for ValueTypeActions to hold!"); 278} 279 280/// ComputeTopDownOrdering - Compute a top-down ordering of the dag, where Order 281/// contains all of a nodes operands before it contains the node. 282static void ComputeTopDownOrdering(SelectionDAG &DAG, 283 SmallVector<SDNode*, 64> &Order) { 284 285 DenseMap<SDNode*, unsigned> Visited; 286 std::vector<SDNode*> Worklist; 287 Worklist.reserve(128); 288 289 // Compute ordering from all of the leaves in the graphs, those (like the 290 // entry node) that have no operands. 291 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 292 E = DAG.allnodes_end(); I != E; ++I) { 293 if (I->getNumOperands() == 0) { 294 Visited[I] = 0 - 1U; 295 Worklist.push_back(I); 296 } 297 } 298 299 while (!Worklist.empty()) { 300 SDNode *N = Worklist.back(); 301 Worklist.pop_back(); 302 303 if (++Visited[N] != N->getNumOperands()) 304 continue; // Haven't visited all operands yet 305 306 Order.push_back(N); 307 308 // Now that we have N in, add anything that uses it if all of their operands 309 // are now done. 310 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 311 UI != E; ++UI) 312 Worklist.push_back(*UI); 313 } 314 315 assert(Order.size() == Visited.size() && 316 Order.size() == 317 (unsigned)std::distance(DAG.allnodes_begin(), DAG.allnodes_end()) && 318 "Error: DAG is cyclic!"); 319} 320 321 322void SelectionDAGLegalize::LegalizeDAG() { 323 LastCALLSEQ_END = DAG.getEntryNode(); 324 IsLegalizingCall = false; 325 326 // The legalize process is inherently a bottom-up recursive process (users 327 // legalize their uses before themselves). Given infinite stack space, we 328 // could just start legalizing on the root and traverse the whole graph. In 329 // practice however, this causes us to run out of stack space on large basic 330 // blocks. To avoid this problem, compute an ordering of the nodes where each 331 // node is only legalized after all of its operands are legalized. 332 SmallVector<SDNode*, 64> Order; 333 ComputeTopDownOrdering(DAG, Order); 334 335 for (unsigned i = 0, e = Order.size(); i != e; ++i) 336 HandleOp(SDOperand(Order[i], 0)); 337 338 // Finally, it's possible the root changed. Get the new root. 339 SDOperand OldRoot = DAG.getRoot(); 340 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 341 DAG.setRoot(LegalizedNodes[OldRoot]); 342 343 ExpandedNodes.clear(); 344 LegalizedNodes.clear(); 345 PromotedNodes.clear(); 346 SplitNodes.clear(); 347 ScalarizedNodes.clear(); 348 349 // Remove dead nodes now. 350 DAG.RemoveDeadNodes(); 351} 352 353 354/// FindCallEndFromCallStart - Given a chained node that is part of a call 355/// sequence, find the CALLSEQ_END node that terminates the call sequence. 356static SDNode *FindCallEndFromCallStart(SDNode *Node) { 357 if (Node->getOpcode() == ISD::CALLSEQ_END) 358 return Node; 359 if (Node->use_empty()) 360 return 0; // No CallSeqEnd 361 362 // The chain is usually at the end. 363 SDOperand TheChain(Node, Node->getNumValues()-1); 364 if (TheChain.getValueType() != MVT::Other) { 365 // Sometimes it's at the beginning. 366 TheChain = SDOperand(Node, 0); 367 if (TheChain.getValueType() != MVT::Other) { 368 // Otherwise, hunt for it. 369 for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i) 370 if (Node->getValueType(i) == MVT::Other) { 371 TheChain = SDOperand(Node, i); 372 break; 373 } 374 375 // Otherwise, we walked into a node without a chain. 376 if (TheChain.getValueType() != MVT::Other) 377 return 0; 378 } 379 } 380 381 for (SDNode::use_iterator UI = Node->use_begin(), 382 E = Node->use_end(); UI != E; ++UI) { 383 384 // Make sure to only follow users of our token chain. 385 SDNode *User = *UI; 386 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) 387 if (User->getOperand(i) == TheChain) 388 if (SDNode *Result = FindCallEndFromCallStart(User)) 389 return Result; 390 } 391 return 0; 392} 393 394/// FindCallStartFromCallEnd - Given a chained node that is part of a call 395/// sequence, find the CALLSEQ_START node that initiates the call sequence. 396static SDNode *FindCallStartFromCallEnd(SDNode *Node) { 397 assert(Node && "Didn't find callseq_start for a call??"); 398 if (Node->getOpcode() == ISD::CALLSEQ_START) return Node; 399 400 assert(Node->getOperand(0).getValueType() == MVT::Other && 401 "Node doesn't have a token chain argument!"); 402 return FindCallStartFromCallEnd(Node->getOperand(0).Val); 403} 404 405/// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to 406/// see if any uses can reach Dest. If no dest operands can get to dest, 407/// legalize them, legalize ourself, and return false, otherwise, return true. 408/// 409/// Keep track of the nodes we fine that actually do lead to Dest in 410/// NodesLeadingTo. This avoids retraversing them exponential number of times. 411/// 412bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest, 413 SmallPtrSet<SDNode*, 32> &NodesLeadingTo) { 414 if (N == Dest) return true; // N certainly leads to Dest :) 415 416 // If we've already processed this node and it does lead to Dest, there is no 417 // need to reprocess it. 418 if (NodesLeadingTo.count(N)) return true; 419 420 // If the first result of this node has been already legalized, then it cannot 421 // reach N. 422 switch (getTypeAction(N->getValueType(0))) { 423 case Legal: 424 if (LegalizedNodes.count(SDOperand(N, 0))) return false; 425 break; 426 case Promote: 427 if (PromotedNodes.count(SDOperand(N, 0))) return false; 428 break; 429 case Expand: 430 if (ExpandedNodes.count(SDOperand(N, 0))) return false; 431 break; 432 } 433 434 // Okay, this node has not already been legalized. Check and legalize all 435 // operands. If none lead to Dest, then we can legalize this node. 436 bool OperandsLeadToDest = false; 437 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) 438 OperandsLeadToDest |= // If an operand leads to Dest, so do we. 439 LegalizeAllNodesNotLeadingTo(N->getOperand(i).Val, Dest, NodesLeadingTo); 440 441 if (OperandsLeadToDest) { 442 NodesLeadingTo.insert(N); 443 return true; 444 } 445 446 // Okay, this node looks safe, legalize it and return false. 447 HandleOp(SDOperand(N, 0)); 448 return false; 449} 450 451/// HandleOp - Legalize, Promote, or Expand the specified operand as 452/// appropriate for its type. 453void SelectionDAGLegalize::HandleOp(SDOperand Op) { 454 MVT::ValueType VT = Op.getValueType(); 455 switch (getTypeAction(VT)) { 456 default: assert(0 && "Bad type action!"); 457 case Legal: (void)LegalizeOp(Op); break; 458 case Promote: (void)PromoteOp(Op); break; 459 case Expand: 460 if (!MVT::isVector(VT)) { 461 // If this is an illegal scalar, expand it into its two component 462 // pieces. 463 SDOperand X, Y; 464 if (Op.getOpcode() == ISD::TargetConstant) 465 break; // Allow illegal target nodes. 466 ExpandOp(Op, X, Y); 467 } else if (MVT::getVectorNumElements(VT) == 1) { 468 // If this is an illegal single element vector, convert it to a 469 // scalar operation. 470 (void)ScalarizeVectorOp(Op); 471 } else { 472 // Otherwise, this is an illegal multiple element vector. 473 // Split it in half and legalize both parts. 474 SDOperand X, Y; 475 SplitVectorOp(Op, X, Y); 476 } 477 break; 478 } 479} 480 481/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or 482/// a load from the constant pool. 483static SDOperand ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP, 484 SelectionDAG &DAG, TargetLowering &TLI) { 485 bool Extend = false; 486 487 // If a FP immediate is precise when represented as a float and if the 488 // target can do an extending load from float to double, we put it into 489 // the constant pool as a float, even if it's is statically typed as a 490 // double. 491 MVT::ValueType VT = CFP->getValueType(0); 492 bool isDouble = VT == MVT::f64; 493 ConstantFP *LLVMC = ConstantFP::get(MVT::getTypeForValueType(VT), 494 CFP->getValueAPF()); 495 if (!UseCP) { 496 if (VT!=MVT::f64 && VT!=MVT::f32) 497 assert(0 && "Invalid type expansion"); 498 return DAG.getConstant(LLVMC->getValueAPF().convertToAPInt().getZExtValue(), 499 isDouble ? MVT::i64 : MVT::i32); 500 } 501 502 if (isDouble && CFP->isValueValidForType(MVT::f32, CFP->getValueAPF()) && 503 // Only do this if the target has a native EXTLOAD instruction from f32. 504 // Do not try to be clever about long doubles (so far) 505 TLI.isLoadXLegal(ISD::EXTLOAD, MVT::f32)) { 506 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC,Type::FloatTy)); 507 VT = MVT::f32; 508 Extend = true; 509 } 510 511 SDOperand CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy()); 512 if (Extend) { 513 return DAG.getExtLoad(ISD::EXTLOAD, MVT::f64, DAG.getEntryNode(), 514 CPIdx, NULL, 0, MVT::f32); 515 } else { 516 return DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0); 517 } 518} 519 520 521/// ExpandFCOPYSIGNToBitwiseOps - Expands fcopysign to a series of bitwise 522/// operations. 523static 524SDOperand ExpandFCOPYSIGNToBitwiseOps(SDNode *Node, MVT::ValueType NVT, 525 SelectionDAG &DAG, TargetLowering &TLI) { 526 MVT::ValueType VT = Node->getValueType(0); 527 MVT::ValueType SrcVT = Node->getOperand(1).getValueType(); 528 assert((SrcVT == MVT::f32 || SrcVT == MVT::f64) && 529 "fcopysign expansion only supported for f32 and f64"); 530 MVT::ValueType SrcNVT = (SrcVT == MVT::f64) ? MVT::i64 : MVT::i32; 531 532 // First get the sign bit of second operand. 533 SDOperand Mask1 = (SrcVT == MVT::f64) 534 ? DAG.getConstantFP(BitsToDouble(1ULL << 63), SrcVT) 535 : DAG.getConstantFP(BitsToFloat(1U << 31), SrcVT); 536 Mask1 = DAG.getNode(ISD::BIT_CONVERT, SrcNVT, Mask1); 537 SDOperand SignBit= DAG.getNode(ISD::BIT_CONVERT, SrcNVT, Node->getOperand(1)); 538 SignBit = DAG.getNode(ISD::AND, SrcNVT, SignBit, Mask1); 539 // Shift right or sign-extend it if the two operands have different types. 540 int SizeDiff = MVT::getSizeInBits(SrcNVT) - MVT::getSizeInBits(NVT); 541 if (SizeDiff > 0) { 542 SignBit = DAG.getNode(ISD::SRL, SrcNVT, SignBit, 543 DAG.getConstant(SizeDiff, TLI.getShiftAmountTy())); 544 SignBit = DAG.getNode(ISD::TRUNCATE, NVT, SignBit); 545 } else if (SizeDiff < 0) 546 SignBit = DAG.getNode(ISD::SIGN_EXTEND, NVT, SignBit); 547 548 // Clear the sign bit of first operand. 549 SDOperand Mask2 = (VT == MVT::f64) 550 ? DAG.getConstantFP(BitsToDouble(~(1ULL << 63)), VT) 551 : DAG.getConstantFP(BitsToFloat(~(1U << 31)), VT); 552 Mask2 = DAG.getNode(ISD::BIT_CONVERT, NVT, Mask2); 553 SDOperand Result = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0)); 554 Result = DAG.getNode(ISD::AND, NVT, Result, Mask2); 555 556 // Or the value with the sign bit. 557 Result = DAG.getNode(ISD::OR, NVT, Result, SignBit); 558 return Result; 559} 560 561/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores. 562static 563SDOperand ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG, 564 TargetLowering &TLI) { 565 SDOperand Chain = ST->getChain(); 566 SDOperand Ptr = ST->getBasePtr(); 567 SDOperand Val = ST->getValue(); 568 MVT::ValueType VT = Val.getValueType(); 569 int Alignment = ST->getAlignment(); 570 int SVOffset = ST->getSrcValueOffset(); 571 if (MVT::isFloatingPoint(ST->getStoredVT())) { 572 // Expand to a bitconvert of the value to the integer type of the 573 // same size, then a (misaligned) int store. 574 MVT::ValueType intVT; 575 if (VT==MVT::f64) 576 intVT = MVT::i64; 577 else if (VT==MVT::f32) 578 intVT = MVT::i32; 579 else 580 assert(0 && "Unaligned load of unsupported floating point type"); 581 582 SDOperand Result = DAG.getNode(ISD::BIT_CONVERT, intVT, Val); 583 return DAG.getStore(Chain, Result, Ptr, ST->getSrcValue(), 584 SVOffset, ST->isVolatile(), Alignment); 585 } 586 assert(MVT::isInteger(ST->getStoredVT()) && 587 "Unaligned store of unknown type."); 588 // Get the half-size VT 589 MVT::ValueType NewStoredVT = ST->getStoredVT() - 1; 590 int NumBits = MVT::getSizeInBits(NewStoredVT); 591 int IncrementSize = NumBits / 8; 592 593 // Divide the stored value in two parts. 594 SDOperand ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy()); 595 SDOperand Lo = Val; 596 SDOperand Hi = DAG.getNode(ISD::SRL, VT, Val, ShiftAmount); 597 598 // Store the two parts 599 SDOperand Store1, Store2; 600 Store1 = DAG.getTruncStore(Chain, TLI.isLittleEndian()?Lo:Hi, Ptr, 601 ST->getSrcValue(), SVOffset, NewStoredVT, 602 ST->isVolatile(), Alignment); 603 Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, 604 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 605 Store2 = DAG.getTruncStore(Chain, TLI.isLittleEndian()?Hi:Lo, Ptr, 606 ST->getSrcValue(), SVOffset + IncrementSize, 607 NewStoredVT, ST->isVolatile(), Alignment); 608 609 return DAG.getNode(ISD::TokenFactor, MVT::Other, Store1, Store2); 610} 611 612/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads. 613static 614SDOperand ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG, 615 TargetLowering &TLI) { 616 int SVOffset = LD->getSrcValueOffset(); 617 SDOperand Chain = LD->getChain(); 618 SDOperand Ptr = LD->getBasePtr(); 619 MVT::ValueType VT = LD->getValueType(0); 620 MVT::ValueType LoadedVT = LD->getLoadedVT(); 621 if (MVT::isFloatingPoint(VT)) { 622 // Expand to a (misaligned) integer load of the same size, 623 // then bitconvert to floating point. 624 MVT::ValueType intVT; 625 if (LoadedVT==MVT::f64) 626 intVT = MVT::i64; 627 else if (LoadedVT==MVT::f32) 628 intVT = MVT::i32; 629 else 630 assert(0 && "Unaligned load of unsupported floating point type"); 631 632 SDOperand newLoad = DAG.getLoad(intVT, Chain, Ptr, LD->getSrcValue(), 633 SVOffset, LD->isVolatile(), 634 LD->getAlignment()); 635 SDOperand Result = DAG.getNode(ISD::BIT_CONVERT, LoadedVT, newLoad); 636 if (LoadedVT != VT) 637 Result = DAG.getNode(ISD::FP_EXTEND, VT, Result); 638 639 SDOperand Ops[] = { Result, Chain }; 640 return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, MVT::Other), 641 Ops, 2); 642 } 643 assert(MVT::isInteger(LoadedVT) && "Unaligned load of unsupported type."); 644 MVT::ValueType NewLoadedVT = LoadedVT - 1; 645 int NumBits = MVT::getSizeInBits(NewLoadedVT); 646 int Alignment = LD->getAlignment(); 647 int IncrementSize = NumBits / 8; 648 ISD::LoadExtType HiExtType = LD->getExtensionType(); 649 650 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 651 if (HiExtType == ISD::NON_EXTLOAD) 652 HiExtType = ISD::ZEXTLOAD; 653 654 // Load the value in two parts 655 SDOperand Lo, Hi; 656 if (TLI.isLittleEndian()) { 657 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, VT, Chain, Ptr, LD->getSrcValue(), 658 SVOffset, NewLoadedVT, LD->isVolatile(), Alignment); 659 Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, 660 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 661 Hi = DAG.getExtLoad(HiExtType, VT, Chain, Ptr, LD->getSrcValue(), 662 SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(), 663 Alignment); 664 } else { 665 Hi = DAG.getExtLoad(HiExtType, VT, Chain, Ptr, LD->getSrcValue(), SVOffset, 666 NewLoadedVT,LD->isVolatile(), Alignment); 667 Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, 668 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 669 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, VT, Chain, Ptr, LD->getSrcValue(), 670 SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(), 671 Alignment); 672 } 673 674 // aggregate the two parts 675 SDOperand ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy()); 676 SDOperand Result = DAG.getNode(ISD::SHL, VT, Hi, ShiftAmount); 677 Result = DAG.getNode(ISD::OR, VT, Result, Lo); 678 679 SDOperand TF = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), 680 Hi.getValue(1)); 681 682 SDOperand Ops[] = { Result, TF }; 683 return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, MVT::Other), Ops, 2); 684} 685 686/// UnrollVectorOp - We know that the given vector has a legal type, however 687/// the operation it performs is not legal and is an operation that we have 688/// no way of lowering. "Unroll" the vector, splitting out the scalars and 689/// operating on each element individually. 690SDOperand SelectionDAGLegalize::UnrollVectorOp(SDOperand Op) { 691 MVT::ValueType VT = Op.getValueType(); 692 assert(isTypeLegal(VT) && 693 "Caller should expand or promote operands that are not legal!"); 694 assert(Op.Val->getNumValues() == 1 && 695 "Can't unroll a vector with multiple results!"); 696 unsigned NE = MVT::getVectorNumElements(VT); 697 MVT::ValueType EltVT = MVT::getVectorElementType(VT); 698 699 SmallVector<SDOperand, 8> Scalars; 700 SmallVector<SDOperand, 4> Operands(Op.getNumOperands()); 701 for (unsigned i = 0; i != NE; ++i) { 702 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 703 SDOperand Operand = Op.getOperand(j); 704 MVT::ValueType OperandVT = Operand.getValueType(); 705 if (MVT::isVector(OperandVT)) { 706 // A vector operand; extract a single element. 707 MVT::ValueType OperandEltVT = MVT::getVectorElementType(OperandVT); 708 Operands[j] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, 709 OperandEltVT, 710 Operand, 711 DAG.getConstant(i, MVT::i32)); 712 } else { 713 // A scalar operand; just use it as is. 714 Operands[j] = Operand; 715 } 716 } 717 Scalars.push_back(DAG.getNode(Op.getOpcode(), EltVT, 718 &Operands[0], Operands.size())); 719 } 720 721 return DAG.getNode(ISD::BUILD_VECTOR, VT, &Scalars[0], Scalars.size()); 722} 723 724/// LegalizeOp - We know that the specified value has a legal type, and 725/// that its operands are legal. Now ensure that the operation itself 726/// is legal, recursively ensuring that the operands' operations remain 727/// legal. 728SDOperand SelectionDAGLegalize::LegalizeOp(SDOperand Op) { 729 if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes. 730 return Op; 731 732 assert(isTypeLegal(Op.getValueType()) && 733 "Caller should expand or promote operands that are not legal!"); 734 SDNode *Node = Op.Val; 735 736 // If this operation defines any values that cannot be represented in a 737 // register on this target, make sure to expand or promote them. 738 if (Node->getNumValues() > 1) { 739 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 740 if (getTypeAction(Node->getValueType(i)) != Legal) { 741 HandleOp(Op.getValue(i)); 742 assert(LegalizedNodes.count(Op) && 743 "Handling didn't add legal operands!"); 744 return LegalizedNodes[Op]; 745 } 746 } 747 748 // Note that LegalizeOp may be reentered even from single-use nodes, which 749 // means that we always must cache transformed nodes. 750 DenseMap<SDOperand, SDOperand>::iterator I = LegalizedNodes.find(Op); 751 if (I != LegalizedNodes.end()) return I->second; 752 753 SDOperand Tmp1, Tmp2, Tmp3, Tmp4; 754 SDOperand Result = Op; 755 bool isCustom = false; 756 757 switch (Node->getOpcode()) { 758 case ISD::FrameIndex: 759 case ISD::EntryToken: 760 case ISD::Register: 761 case ISD::BasicBlock: 762 case ISD::TargetFrameIndex: 763 case ISD::TargetJumpTable: 764 case ISD::TargetConstant: 765 case ISD::TargetConstantFP: 766 case ISD::TargetConstantPool: 767 case ISD::TargetGlobalAddress: 768 case ISD::TargetGlobalTLSAddress: 769 case ISD::TargetExternalSymbol: 770 case ISD::VALUETYPE: 771 case ISD::SRCVALUE: 772 case ISD::STRING: 773 case ISD::CONDCODE: 774 // Primitives must all be legal. 775 assert(TLI.isOperationLegal(Node->getOpcode(), Node->getValueType(0)) && 776 "This must be legal!"); 777 break; 778 default: 779 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { 780 // If this is a target node, legalize it by legalizing the operands then 781 // passing it through. 782 SmallVector<SDOperand, 8> Ops; 783 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 784 Ops.push_back(LegalizeOp(Node->getOperand(i))); 785 786 Result = DAG.UpdateNodeOperands(Result.getValue(0), &Ops[0], Ops.size()); 787 788 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 789 AddLegalizedOperand(Op.getValue(i), Result.getValue(i)); 790 return Result.getValue(Op.ResNo); 791 } 792 // Otherwise this is an unhandled builtin node. splat. 793#ifndef NDEBUG 794 cerr << "NODE: "; Node->dump(&DAG); cerr << "\n"; 795#endif 796 assert(0 && "Do not know how to legalize this operator!"); 797 abort(); 798 case ISD::GLOBAL_OFFSET_TABLE: 799 case ISD::GlobalAddress: 800 case ISD::GlobalTLSAddress: 801 case ISD::ExternalSymbol: 802 case ISD::ConstantPool: 803 case ISD::JumpTable: // Nothing to do. 804 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 805 default: assert(0 && "This action is not supported yet!"); 806 case TargetLowering::Custom: 807 Tmp1 = TLI.LowerOperation(Op, DAG); 808 if (Tmp1.Val) Result = Tmp1; 809 // FALLTHROUGH if the target doesn't want to lower this op after all. 810 case TargetLowering::Legal: 811 break; 812 } 813 break; 814 case ISD::FRAMEADDR: 815 case ISD::RETURNADDR: 816 // The only option for these nodes is to custom lower them. If the target 817 // does not custom lower them, then return zero. 818 Tmp1 = TLI.LowerOperation(Op, DAG); 819 if (Tmp1.Val) 820 Result = Tmp1; 821 else 822 Result = DAG.getConstant(0, TLI.getPointerTy()); 823 break; 824 case ISD::FRAME_TO_ARGS_OFFSET: { 825 MVT::ValueType VT = Node->getValueType(0); 826 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 827 default: assert(0 && "This action is not supported yet!"); 828 case TargetLowering::Custom: 829 Result = TLI.LowerOperation(Op, DAG); 830 if (Result.Val) break; 831 // Fall Thru 832 case TargetLowering::Legal: 833 Result = DAG.getConstant(0, VT); 834 break; 835 } 836 } 837 break; 838 case ISD::EXCEPTIONADDR: { 839 Tmp1 = LegalizeOp(Node->getOperand(0)); 840 MVT::ValueType VT = Node->getValueType(0); 841 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 842 default: assert(0 && "This action is not supported yet!"); 843 case TargetLowering::Expand: { 844 unsigned Reg = TLI.getExceptionAddressRegister(); 845 Result = DAG.getCopyFromReg(Tmp1, Reg, VT).getValue(Op.ResNo); 846 } 847 break; 848 case TargetLowering::Custom: 849 Result = TLI.LowerOperation(Op, DAG); 850 if (Result.Val) break; 851 // Fall Thru 852 case TargetLowering::Legal: { 853 SDOperand Ops[] = { DAG.getConstant(0, VT), Tmp1 }; 854 Result = DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, MVT::Other), 855 Ops, 2).getValue(Op.ResNo); 856 break; 857 } 858 } 859 } 860 break; 861 case ISD::EHSELECTION: { 862 Tmp1 = LegalizeOp(Node->getOperand(0)); 863 Tmp2 = LegalizeOp(Node->getOperand(1)); 864 MVT::ValueType VT = Node->getValueType(0); 865 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 866 default: assert(0 && "This action is not supported yet!"); 867 case TargetLowering::Expand: { 868 unsigned Reg = TLI.getExceptionSelectorRegister(); 869 Result = DAG.getCopyFromReg(Tmp2, Reg, VT).getValue(Op.ResNo); 870 } 871 break; 872 case TargetLowering::Custom: 873 Result = TLI.LowerOperation(Op, DAG); 874 if (Result.Val) break; 875 // Fall Thru 876 case TargetLowering::Legal: { 877 SDOperand Ops[] = { DAG.getConstant(0, VT), Tmp2 }; 878 Result = DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, MVT::Other), 879 Ops, 2).getValue(Op.ResNo); 880 break; 881 } 882 } 883 } 884 break; 885 case ISD::EH_RETURN: { 886 MVT::ValueType VT = Node->getValueType(0); 887 // The only "good" option for this node is to custom lower it. 888 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 889 default: assert(0 && "This action is not supported at all!"); 890 case TargetLowering::Custom: 891 Result = TLI.LowerOperation(Op, DAG); 892 if (Result.Val) break; 893 // Fall Thru 894 case TargetLowering::Legal: 895 // Target does not know, how to lower this, lower to noop 896 Result = LegalizeOp(Node->getOperand(0)); 897 break; 898 } 899 } 900 break; 901 case ISD::AssertSext: 902 case ISD::AssertZext: 903 Tmp1 = LegalizeOp(Node->getOperand(0)); 904 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 905 break; 906 case ISD::MERGE_VALUES: 907 // Legalize eliminates MERGE_VALUES nodes. 908 Result = Node->getOperand(Op.ResNo); 909 break; 910 case ISD::CopyFromReg: 911 Tmp1 = LegalizeOp(Node->getOperand(0)); 912 Result = Op.getValue(0); 913 if (Node->getNumValues() == 2) { 914 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 915 } else { 916 assert(Node->getNumValues() == 3 && "Invalid copyfromreg!"); 917 if (Node->getNumOperands() == 3) { 918 Tmp2 = LegalizeOp(Node->getOperand(2)); 919 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1),Tmp2); 920 } else { 921 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 922 } 923 AddLegalizedOperand(Op.getValue(2), Result.getValue(2)); 924 } 925 // Since CopyFromReg produces two values, make sure to remember that we 926 // legalized both of them. 927 AddLegalizedOperand(Op.getValue(0), Result); 928 AddLegalizedOperand(Op.getValue(1), Result.getValue(1)); 929 return Result.getValue(Op.ResNo); 930 case ISD::UNDEF: { 931 MVT::ValueType VT = Op.getValueType(); 932 switch (TLI.getOperationAction(ISD::UNDEF, VT)) { 933 default: assert(0 && "This action is not supported yet!"); 934 case TargetLowering::Expand: 935 if (MVT::isInteger(VT)) 936 Result = DAG.getConstant(0, VT); 937 else if (MVT::isFloatingPoint(VT)) 938 Result = DAG.getConstantFP(APFloat(APInt(MVT::getSizeInBits(VT), 0)), 939 VT); 940 else 941 assert(0 && "Unknown value type!"); 942 break; 943 case TargetLowering::Legal: 944 break; 945 } 946 break; 947 } 948 949 case ISD::INTRINSIC_W_CHAIN: 950 case ISD::INTRINSIC_WO_CHAIN: 951 case ISD::INTRINSIC_VOID: { 952 SmallVector<SDOperand, 8> Ops; 953 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 954 Ops.push_back(LegalizeOp(Node->getOperand(i))); 955 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 956 957 // Allow the target to custom lower its intrinsics if it wants to. 958 if (TLI.getOperationAction(Node->getOpcode(), MVT::Other) == 959 TargetLowering::Custom) { 960 Tmp3 = TLI.LowerOperation(Result, DAG); 961 if (Tmp3.Val) Result = Tmp3; 962 } 963 964 if (Result.Val->getNumValues() == 1) break; 965 966 // Must have return value and chain result. 967 assert(Result.Val->getNumValues() == 2 && 968 "Cannot return more than two values!"); 969 970 // Since loads produce two values, make sure to remember that we 971 // legalized both of them. 972 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 973 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 974 return Result.getValue(Op.ResNo); 975 } 976 977 case ISD::LOCATION: 978 assert(Node->getNumOperands() == 5 && "Invalid LOCATION node!"); 979 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the input chain. 980 981 switch (TLI.getOperationAction(ISD::LOCATION, MVT::Other)) { 982 case TargetLowering::Promote: 983 default: assert(0 && "This action is not supported yet!"); 984 case TargetLowering::Expand: { 985 MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); 986 bool useDEBUG_LOC = TLI.isOperationLegal(ISD::DEBUG_LOC, MVT::Other); 987 bool useLABEL = TLI.isOperationLegal(ISD::LABEL, MVT::Other); 988 989 if (MMI && (useDEBUG_LOC || useLABEL)) { 990 const std::string &FName = 991 cast<StringSDNode>(Node->getOperand(3))->getValue(); 992 const std::string &DirName = 993 cast<StringSDNode>(Node->getOperand(4))->getValue(); 994 unsigned SrcFile = MMI->RecordSource(DirName, FName); 995 996 SmallVector<SDOperand, 8> Ops; 997 Ops.push_back(Tmp1); // chain 998 SDOperand LineOp = Node->getOperand(1); 999 SDOperand ColOp = Node->getOperand(2); 1000 1001 if (useDEBUG_LOC) { 1002 Ops.push_back(LineOp); // line # 1003 Ops.push_back(ColOp); // col # 1004 Ops.push_back(DAG.getConstant(SrcFile, MVT::i32)); // source file id 1005 Result = DAG.getNode(ISD::DEBUG_LOC, MVT::Other, &Ops[0], Ops.size()); 1006 } else { 1007 unsigned Line = cast<ConstantSDNode>(LineOp)->getValue(); 1008 unsigned Col = cast<ConstantSDNode>(ColOp)->getValue(); 1009 unsigned ID = MMI->RecordLabel(Line, Col, SrcFile); 1010 Ops.push_back(DAG.getConstant(ID, MVT::i32)); 1011 Result = DAG.getNode(ISD::LABEL, MVT::Other,&Ops[0],Ops.size()); 1012 } 1013 } else { 1014 Result = Tmp1; // chain 1015 } 1016 break; 1017 } 1018 case TargetLowering::Legal: 1019 if (Tmp1 != Node->getOperand(0) || 1020 getTypeAction(Node->getOperand(1).getValueType()) == Promote) { 1021 SmallVector<SDOperand, 8> Ops; 1022 Ops.push_back(Tmp1); 1023 if (getTypeAction(Node->getOperand(1).getValueType()) == Legal) { 1024 Ops.push_back(Node->getOperand(1)); // line # must be legal. 1025 Ops.push_back(Node->getOperand(2)); // col # must be legal. 1026 } else { 1027 // Otherwise promote them. 1028 Ops.push_back(PromoteOp(Node->getOperand(1))); 1029 Ops.push_back(PromoteOp(Node->getOperand(2))); 1030 } 1031 Ops.push_back(Node->getOperand(3)); // filename must be legal. 1032 Ops.push_back(Node->getOperand(4)); // working dir # must be legal. 1033 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1034 } 1035 break; 1036 } 1037 break; 1038 1039 case ISD::DEBUG_LOC: 1040 assert(Node->getNumOperands() == 4 && "Invalid DEBUG_LOC node!"); 1041 switch (TLI.getOperationAction(ISD::DEBUG_LOC, MVT::Other)) { 1042 default: assert(0 && "This action is not supported yet!"); 1043 case TargetLowering::Legal: 1044 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1045 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the line #. 1046 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the col #. 1047 Tmp4 = LegalizeOp(Node->getOperand(3)); // Legalize the source file id. 1048 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, Tmp4); 1049 break; 1050 } 1051 break; 1052 1053 case ISD::LABEL: 1054 assert(Node->getNumOperands() == 2 && "Invalid LABEL node!"); 1055 switch (TLI.getOperationAction(ISD::LABEL, MVT::Other)) { 1056 default: assert(0 && "This action is not supported yet!"); 1057 case TargetLowering::Legal: 1058 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1059 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the label id. 1060 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1061 break; 1062 case TargetLowering::Expand: 1063 Result = LegalizeOp(Node->getOperand(0)); 1064 break; 1065 } 1066 break; 1067 1068 case ISD::Constant: { 1069 ConstantSDNode *CN = cast<ConstantSDNode>(Node); 1070 unsigned opAction = 1071 TLI.getOperationAction(ISD::Constant, CN->getValueType(0)); 1072 1073 // We know we don't need to expand constants here, constants only have one 1074 // value and we check that it is fine above. 1075 1076 if (opAction == TargetLowering::Custom) { 1077 Tmp1 = TLI.LowerOperation(Result, DAG); 1078 if (Tmp1.Val) 1079 Result = Tmp1; 1080 } 1081 break; 1082 } 1083 case ISD::ConstantFP: { 1084 // Spill FP immediates to the constant pool if the target cannot directly 1085 // codegen them. Targets often have some immediate values that can be 1086 // efficiently generated into an FP register without a load. We explicitly 1087 // leave these constants as ConstantFP nodes for the target to deal with. 1088 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 1089 1090 // Check to see if this FP immediate is already legal. 1091 bool isLegal = false; 1092 for (TargetLowering::legal_fpimm_iterator I = TLI.legal_fpimm_begin(), 1093 E = TLI.legal_fpimm_end(); I != E; ++I) 1094 if (CFP->isExactlyValue(*I)) { 1095 isLegal = true; 1096 break; 1097 } 1098 1099 // If this is a legal constant, turn it into a TargetConstantFP node. 1100 if (isLegal) { 1101 Result = DAG.getTargetConstantFP(CFP->getValueAPF(), 1102 CFP->getValueType(0)); 1103 break; 1104 } 1105 1106 switch (TLI.getOperationAction(ISD::ConstantFP, CFP->getValueType(0))) { 1107 default: assert(0 && "This action is not supported yet!"); 1108 case TargetLowering::Custom: 1109 Tmp3 = TLI.LowerOperation(Result, DAG); 1110 if (Tmp3.Val) { 1111 Result = Tmp3; 1112 break; 1113 } 1114 // FALLTHROUGH 1115 case TargetLowering::Expand: 1116 Result = ExpandConstantFP(CFP, true, DAG, TLI); 1117 } 1118 break; 1119 } 1120 case ISD::TokenFactor: 1121 if (Node->getNumOperands() == 2) { 1122 Tmp1 = LegalizeOp(Node->getOperand(0)); 1123 Tmp2 = LegalizeOp(Node->getOperand(1)); 1124 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1125 } else if (Node->getNumOperands() == 3) { 1126 Tmp1 = LegalizeOp(Node->getOperand(0)); 1127 Tmp2 = LegalizeOp(Node->getOperand(1)); 1128 Tmp3 = LegalizeOp(Node->getOperand(2)); 1129 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1130 } else { 1131 SmallVector<SDOperand, 8> Ops; 1132 // Legalize the operands. 1133 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 1134 Ops.push_back(LegalizeOp(Node->getOperand(i))); 1135 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1136 } 1137 break; 1138 1139 case ISD::FORMAL_ARGUMENTS: 1140 case ISD::CALL: 1141 // The only option for this is to custom lower it. 1142 Tmp3 = TLI.LowerOperation(Result.getValue(0), DAG); 1143 assert(Tmp3.Val && "Target didn't custom lower this node!"); 1144 assert(Tmp3.Val->getNumValues() == Result.Val->getNumValues() && 1145 "Lowering call/formal_arguments produced unexpected # results!"); 1146 1147 // Since CALL/FORMAL_ARGUMENTS nodes produce multiple values, make sure to 1148 // remember that we legalized all of them, so it doesn't get relegalized. 1149 for (unsigned i = 0, e = Tmp3.Val->getNumValues(); i != e; ++i) { 1150 Tmp1 = LegalizeOp(Tmp3.getValue(i)); 1151 if (Op.ResNo == i) 1152 Tmp2 = Tmp1; 1153 AddLegalizedOperand(SDOperand(Node, i), Tmp1); 1154 } 1155 return Tmp2; 1156 case ISD::EXTRACT_SUBREG: { 1157 Tmp1 = LegalizeOp(Node->getOperand(0)); 1158 ConstantSDNode *idx = dyn_cast<ConstantSDNode>(Node->getOperand(1)); 1159 assert(idx && "Operand must be a constant"); 1160 Tmp2 = DAG.getTargetConstant(idx->getValue(), idx->getValueType(0)); 1161 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1162 } 1163 break; 1164 case ISD::INSERT_SUBREG: { 1165 Tmp1 = LegalizeOp(Node->getOperand(0)); 1166 Tmp2 = LegalizeOp(Node->getOperand(1)); 1167 ConstantSDNode *idx = dyn_cast<ConstantSDNode>(Node->getOperand(2)); 1168 assert(idx && "Operand must be a constant"); 1169 Tmp3 = DAG.getTargetConstant(idx->getValue(), idx->getValueType(0)); 1170 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1171 } 1172 break; 1173 case ISD::BUILD_VECTOR: 1174 switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) { 1175 default: assert(0 && "This action is not supported yet!"); 1176 case TargetLowering::Custom: 1177 Tmp3 = TLI.LowerOperation(Result, DAG); 1178 if (Tmp3.Val) { 1179 Result = Tmp3; 1180 break; 1181 } 1182 // FALLTHROUGH 1183 case TargetLowering::Expand: 1184 Result = ExpandBUILD_VECTOR(Result.Val); 1185 break; 1186 } 1187 break; 1188 case ISD::INSERT_VECTOR_ELT: 1189 Tmp1 = LegalizeOp(Node->getOperand(0)); // InVec 1190 Tmp2 = LegalizeOp(Node->getOperand(1)); // InVal 1191 Tmp3 = LegalizeOp(Node->getOperand(2)); // InEltNo 1192 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1193 1194 switch (TLI.getOperationAction(ISD::INSERT_VECTOR_ELT, 1195 Node->getValueType(0))) { 1196 default: assert(0 && "This action is not supported yet!"); 1197 case TargetLowering::Legal: 1198 break; 1199 case TargetLowering::Custom: 1200 Tmp3 = TLI.LowerOperation(Result, DAG); 1201 if (Tmp3.Val) { 1202 Result = Tmp3; 1203 break; 1204 } 1205 // FALLTHROUGH 1206 case TargetLowering::Expand: { 1207 // If the insert index is a constant, codegen this as a scalar_to_vector, 1208 // then a shuffle that inserts it into the right position in the vector. 1209 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Tmp3)) { 1210 SDOperand ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, 1211 Tmp1.getValueType(), Tmp2); 1212 1213 unsigned NumElts = MVT::getVectorNumElements(Tmp1.getValueType()); 1214 MVT::ValueType ShufMaskVT = MVT::getIntVectorWithNumElements(NumElts); 1215 MVT::ValueType ShufMaskEltVT = MVT::getVectorElementType(ShufMaskVT); 1216 1217 // We generate a shuffle of InVec and ScVec, so the shuffle mask should 1218 // be 0,1,2,3,4,5... with the appropriate element replaced with elt 0 of 1219 // the RHS. 1220 SmallVector<SDOperand, 8> ShufOps; 1221 for (unsigned i = 0; i != NumElts; ++i) { 1222 if (i != InsertPos->getValue()) 1223 ShufOps.push_back(DAG.getConstant(i, ShufMaskEltVT)); 1224 else 1225 ShufOps.push_back(DAG.getConstant(NumElts, ShufMaskEltVT)); 1226 } 1227 SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, ShufMaskVT, 1228 &ShufOps[0], ShufOps.size()); 1229 1230 Result = DAG.getNode(ISD::VECTOR_SHUFFLE, Tmp1.getValueType(), 1231 Tmp1, ScVec, ShufMask); 1232 Result = LegalizeOp(Result); 1233 break; 1234 } 1235 1236 // If the target doesn't support this, we have to spill the input vector 1237 // to a temporary stack slot, update the element, then reload it. This is 1238 // badness. We could also load the value into a vector register (either 1239 // with a "move to register" or "extload into register" instruction, then 1240 // permute it into place, if the idx is a constant and if the idx is 1241 // supported by the target. 1242 MVT::ValueType VT = Tmp1.getValueType(); 1243 MVT::ValueType EltVT = Tmp2.getValueType(); 1244 MVT::ValueType IdxVT = Tmp3.getValueType(); 1245 MVT::ValueType PtrVT = TLI.getPointerTy(); 1246 SDOperand StackPtr = DAG.CreateStackTemporary(VT); 1247 // Store the vector. 1248 SDOperand Ch = DAG.getStore(DAG.getEntryNode(), Tmp1, StackPtr, NULL, 0); 1249 1250 // Truncate or zero extend offset to target pointer type. 1251 unsigned CastOpc = (IdxVT > PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND; 1252 Tmp3 = DAG.getNode(CastOpc, PtrVT, Tmp3); 1253 // Add the offset to the index. 1254 unsigned EltSize = MVT::getSizeInBits(EltVT)/8; 1255 Tmp3 = DAG.getNode(ISD::MUL, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT)); 1256 SDOperand StackPtr2 = DAG.getNode(ISD::ADD, IdxVT, Tmp3, StackPtr); 1257 // Store the scalar value. 1258 Ch = DAG.getStore(Ch, Tmp2, StackPtr2, NULL, 0); 1259 // Load the updated vector. 1260 Result = DAG.getLoad(VT, Ch, StackPtr, NULL, 0); 1261 break; 1262 } 1263 } 1264 break; 1265 case ISD::SCALAR_TO_VECTOR: 1266 if (!TLI.isTypeLegal(Node->getOperand(0).getValueType())) { 1267 Result = LegalizeOp(ExpandSCALAR_TO_VECTOR(Node)); 1268 break; 1269 } 1270 1271 Tmp1 = LegalizeOp(Node->getOperand(0)); // InVal 1272 Result = DAG.UpdateNodeOperands(Result, Tmp1); 1273 switch (TLI.getOperationAction(ISD::SCALAR_TO_VECTOR, 1274 Node->getValueType(0))) { 1275 default: assert(0 && "This action is not supported yet!"); 1276 case TargetLowering::Legal: 1277 break; 1278 case TargetLowering::Custom: 1279 Tmp3 = TLI.LowerOperation(Result, DAG); 1280 if (Tmp3.Val) { 1281 Result = Tmp3; 1282 break; 1283 } 1284 // FALLTHROUGH 1285 case TargetLowering::Expand: 1286 Result = LegalizeOp(ExpandSCALAR_TO_VECTOR(Node)); 1287 break; 1288 } 1289 break; 1290 case ISD::VECTOR_SHUFFLE: 1291 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the input vectors, 1292 Tmp2 = LegalizeOp(Node->getOperand(1)); // but not the shuffle mask. 1293 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 1294 1295 // Allow targets to custom lower the SHUFFLEs they support. 1296 switch (TLI.getOperationAction(ISD::VECTOR_SHUFFLE,Result.getValueType())) { 1297 default: assert(0 && "Unknown operation action!"); 1298 case TargetLowering::Legal: 1299 assert(isShuffleLegal(Result.getValueType(), Node->getOperand(2)) && 1300 "vector shuffle should not be created if not legal!"); 1301 break; 1302 case TargetLowering::Custom: 1303 Tmp3 = TLI.LowerOperation(Result, DAG); 1304 if (Tmp3.Val) { 1305 Result = Tmp3; 1306 break; 1307 } 1308 // FALLTHROUGH 1309 case TargetLowering::Expand: { 1310 MVT::ValueType VT = Node->getValueType(0); 1311 MVT::ValueType EltVT = MVT::getVectorElementType(VT); 1312 MVT::ValueType PtrVT = TLI.getPointerTy(); 1313 SDOperand Mask = Node->getOperand(2); 1314 unsigned NumElems = Mask.getNumOperands(); 1315 SmallVector<SDOperand,8> Ops; 1316 for (unsigned i = 0; i != NumElems; ++i) { 1317 SDOperand Arg = Mask.getOperand(i); 1318 if (Arg.getOpcode() == ISD::UNDEF) { 1319 Ops.push_back(DAG.getNode(ISD::UNDEF, EltVT)); 1320 } else { 1321 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); 1322 unsigned Idx = cast<ConstantSDNode>(Arg)->getValue(); 1323 if (Idx < NumElems) 1324 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EltVT, Tmp1, 1325 DAG.getConstant(Idx, PtrVT))); 1326 else 1327 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EltVT, Tmp2, 1328 DAG.getConstant(Idx - NumElems, PtrVT))); 1329 } 1330 } 1331 Result = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size()); 1332 break; 1333 } 1334 case TargetLowering::Promote: { 1335 // Change base type to a different vector type. 1336 MVT::ValueType OVT = Node->getValueType(0); 1337 MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 1338 1339 // Cast the two input vectors. 1340 Tmp1 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp1); 1341 Tmp2 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp2); 1342 1343 // Convert the shuffle mask to the right # elements. 1344 Tmp3 = SDOperand(isShuffleLegal(OVT, Node->getOperand(2)), 0); 1345 assert(Tmp3.Val && "Shuffle not legal?"); 1346 Result = DAG.getNode(ISD::VECTOR_SHUFFLE, NVT, Tmp1, Tmp2, Tmp3); 1347 Result = DAG.getNode(ISD::BIT_CONVERT, OVT, Result); 1348 break; 1349 } 1350 } 1351 break; 1352 1353 case ISD::EXTRACT_VECTOR_ELT: 1354 Tmp1 = Node->getOperand(0); 1355 Tmp2 = LegalizeOp(Node->getOperand(1)); 1356 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1357 Result = ExpandEXTRACT_VECTOR_ELT(Result); 1358 break; 1359 1360 case ISD::EXTRACT_SUBVECTOR: 1361 Tmp1 = Node->getOperand(0); 1362 Tmp2 = LegalizeOp(Node->getOperand(1)); 1363 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1364 Result = ExpandEXTRACT_SUBVECTOR(Result); 1365 break; 1366 1367 case ISD::CALLSEQ_START: { 1368 SDNode *CallEnd = FindCallEndFromCallStart(Node); 1369 1370 // Recursively Legalize all of the inputs of the call end that do not lead 1371 // to this call start. This ensures that any libcalls that need be inserted 1372 // are inserted *before* the CALLSEQ_START. 1373 {SmallPtrSet<SDNode*, 32> NodesLeadingTo; 1374 for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i) 1375 LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).Val, Node, 1376 NodesLeadingTo); 1377 } 1378 1379 // Now that we legalized all of the inputs (which may have inserted 1380 // libcalls) create the new CALLSEQ_START node. 1381 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1382 1383 // Merge in the last call, to ensure that this call start after the last 1384 // call ended. 1385 if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) { 1386 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1387 Tmp1 = LegalizeOp(Tmp1); 1388 } 1389 1390 // Do not try to legalize the target-specific arguments (#1+). 1391 if (Tmp1 != Node->getOperand(0)) { 1392 SmallVector<SDOperand, 8> Ops(Node->op_begin(), Node->op_end()); 1393 Ops[0] = Tmp1; 1394 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1395 } 1396 1397 // Remember that the CALLSEQ_START is legalized. 1398 AddLegalizedOperand(Op.getValue(0), Result); 1399 if (Node->getNumValues() == 2) // If this has a flag result, remember it. 1400 AddLegalizedOperand(Op.getValue(1), Result.getValue(1)); 1401 1402 // Now that the callseq_start and all of the non-call nodes above this call 1403 // sequence have been legalized, legalize the call itself. During this 1404 // process, no libcalls can/will be inserted, guaranteeing that no calls 1405 // can overlap. 1406 assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!"); 1407 SDOperand InCallSEQ = LastCALLSEQ_END; 1408 // Note that we are selecting this call! 1409 LastCALLSEQ_END = SDOperand(CallEnd, 0); 1410 IsLegalizingCall = true; 1411 1412 // Legalize the call, starting from the CALLSEQ_END. 1413 LegalizeOp(LastCALLSEQ_END); 1414 assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!"); 1415 return Result; 1416 } 1417 case ISD::CALLSEQ_END: 1418 // If the CALLSEQ_START node hasn't been legalized first, legalize it. This 1419 // will cause this node to be legalized as well as handling libcalls right. 1420 if (LastCALLSEQ_END.Val != Node) { 1421 LegalizeOp(SDOperand(FindCallStartFromCallEnd(Node), 0)); 1422 DenseMap<SDOperand, SDOperand>::iterator I = LegalizedNodes.find(Op); 1423 assert(I != LegalizedNodes.end() && 1424 "Legalizing the call start should have legalized this node!"); 1425 return I->second; 1426 } 1427 1428 // Otherwise, the call start has been legalized and everything is going 1429 // according to plan. Just legalize ourselves normally here. 1430 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1431 // Do not try to legalize the target-specific arguments (#1+), except for 1432 // an optional flag input. 1433 if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Flag){ 1434 if (Tmp1 != Node->getOperand(0)) { 1435 SmallVector<SDOperand, 8> Ops(Node->op_begin(), Node->op_end()); 1436 Ops[0] = Tmp1; 1437 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1438 } 1439 } else { 1440 Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1)); 1441 if (Tmp1 != Node->getOperand(0) || 1442 Tmp2 != Node->getOperand(Node->getNumOperands()-1)) { 1443 SmallVector<SDOperand, 8> Ops(Node->op_begin(), Node->op_end()); 1444 Ops[0] = Tmp1; 1445 Ops.back() = Tmp2; 1446 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1447 } 1448 } 1449 assert(IsLegalizingCall && "Call sequence imbalance between start/end?"); 1450 // This finishes up call legalization. 1451 IsLegalizingCall = false; 1452 1453 // If the CALLSEQ_END node has a flag, remember that we legalized it. 1454 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 1455 if (Node->getNumValues() == 2) 1456 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 1457 return Result.getValue(Op.ResNo); 1458 case ISD::DYNAMIC_STACKALLOC: { 1459 MVT::ValueType VT = Node->getValueType(0); 1460 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1461 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the size. 1462 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the alignment. 1463 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1464 1465 Tmp1 = Result.getValue(0); 1466 Tmp2 = Result.getValue(1); 1467 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 1468 default: assert(0 && "This action is not supported yet!"); 1469 case TargetLowering::Expand: { 1470 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1471 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" 1472 " not tell us which reg is the stack pointer!"); 1473 SDOperand Chain = Tmp1.getOperand(0); 1474 SDOperand Size = Tmp2.getOperand(1); 1475 SDOperand SP = DAG.getCopyFromReg(Chain, SPReg, VT); 1476 Chain = SP.getValue(1); 1477 unsigned Align = cast<ConstantSDNode>(Tmp3)->getValue(); 1478 unsigned StackAlign = 1479 TLI.getTargetMachine().getFrameInfo()->getStackAlignment(); 1480 if (Align > StackAlign) 1481 SP = DAG.getNode(ISD::AND, VT, SP, 1482 DAG.getConstant(-(uint64_t)Align, VT)); 1483 Tmp1 = DAG.getNode(ISD::SUB, VT, SP, Size); // Value 1484 Tmp2 = DAG.getCopyToReg(Chain, SPReg, Tmp1); // Output chain 1485 Tmp1 = LegalizeOp(Tmp1); 1486 Tmp2 = LegalizeOp(Tmp2); 1487 break; 1488 } 1489 case TargetLowering::Custom: 1490 Tmp3 = TLI.LowerOperation(Tmp1, DAG); 1491 if (Tmp3.Val) { 1492 Tmp1 = LegalizeOp(Tmp3); 1493 Tmp2 = LegalizeOp(Tmp3.getValue(1)); 1494 } 1495 break; 1496 case TargetLowering::Legal: 1497 break; 1498 } 1499 // Since this op produce two values, make sure to remember that we 1500 // legalized both of them. 1501 AddLegalizedOperand(SDOperand(Node, 0), Tmp1); 1502 AddLegalizedOperand(SDOperand(Node, 1), Tmp2); 1503 return Op.ResNo ? Tmp2 : Tmp1; 1504 } 1505 case ISD::INLINEASM: { 1506 SmallVector<SDOperand, 8> Ops(Node->op_begin(), Node->op_end()); 1507 bool Changed = false; 1508 // Legalize all of the operands of the inline asm, in case they are nodes 1509 // that need to be expanded or something. Note we skip the asm string and 1510 // all of the TargetConstant flags. 1511 SDOperand Op = LegalizeOp(Ops[0]); 1512 Changed = Op != Ops[0]; 1513 Ops[0] = Op; 1514 1515 bool HasInFlag = Ops.back().getValueType() == MVT::Flag; 1516 for (unsigned i = 2, e = Ops.size()-HasInFlag; i < e; ) { 1517 unsigned NumVals = cast<ConstantSDNode>(Ops[i])->getValue() >> 3; 1518 for (++i; NumVals; ++i, --NumVals) { 1519 SDOperand Op = LegalizeOp(Ops[i]); 1520 if (Op != Ops[i]) { 1521 Changed = true; 1522 Ops[i] = Op; 1523 } 1524 } 1525 } 1526 1527 if (HasInFlag) { 1528 Op = LegalizeOp(Ops.back()); 1529 Changed |= Op != Ops.back(); 1530 Ops.back() = Op; 1531 } 1532 1533 if (Changed) 1534 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1535 1536 // INLINE asm returns a chain and flag, make sure to add both to the map. 1537 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 1538 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 1539 return Result.getValue(Op.ResNo); 1540 } 1541 case ISD::BR: 1542 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1543 // Ensure that libcalls are emitted before a branch. 1544 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1545 Tmp1 = LegalizeOp(Tmp1); 1546 LastCALLSEQ_END = DAG.getEntryNode(); 1547 1548 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 1549 break; 1550 case ISD::BRIND: 1551 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1552 // Ensure that libcalls are emitted before a branch. 1553 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1554 Tmp1 = LegalizeOp(Tmp1); 1555 LastCALLSEQ_END = DAG.getEntryNode(); 1556 1557 switch (getTypeAction(Node->getOperand(1).getValueType())) { 1558 default: assert(0 && "Indirect target must be legal type (pointer)!"); 1559 case Legal: 1560 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the condition. 1561 break; 1562 } 1563 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1564 break; 1565 case ISD::BR_JT: 1566 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1567 // Ensure that libcalls are emitted before a branch. 1568 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1569 Tmp1 = LegalizeOp(Tmp1); 1570 LastCALLSEQ_END = DAG.getEntryNode(); 1571 1572 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the jumptable node. 1573 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 1574 1575 switch (TLI.getOperationAction(ISD::BR_JT, MVT::Other)) { 1576 default: assert(0 && "This action is not supported yet!"); 1577 case TargetLowering::Legal: break; 1578 case TargetLowering::Custom: 1579 Tmp1 = TLI.LowerOperation(Result, DAG); 1580 if (Tmp1.Val) Result = Tmp1; 1581 break; 1582 case TargetLowering::Expand: { 1583 SDOperand Chain = Result.getOperand(0); 1584 SDOperand Table = Result.getOperand(1); 1585 SDOperand Index = Result.getOperand(2); 1586 1587 MVT::ValueType PTy = TLI.getPointerTy(); 1588 MachineFunction &MF = DAG.getMachineFunction(); 1589 unsigned EntrySize = MF.getJumpTableInfo()->getEntrySize(); 1590 Index= DAG.getNode(ISD::MUL, PTy, Index, DAG.getConstant(EntrySize, PTy)); 1591 SDOperand Addr = DAG.getNode(ISD::ADD, PTy, Index, Table); 1592 1593 SDOperand LD; 1594 switch (EntrySize) { 1595 default: assert(0 && "Size of jump table not supported yet."); break; 1596 case 4: LD = DAG.getLoad(MVT::i32, Chain, Addr, NULL, 0); break; 1597 case 8: LD = DAG.getLoad(MVT::i64, Chain, Addr, NULL, 0); break; 1598 } 1599 1600 if (TLI.getTargetMachine().getRelocationModel() == Reloc::PIC_) { 1601 // For PIC, the sequence is: 1602 // BRIND(load(Jumptable + index) + RelocBase) 1603 // RelocBase is the JumpTable on PPC and X86, GOT on Alpha 1604 SDOperand Reloc; 1605 if (TLI.usesGlobalOffsetTable()) 1606 Reloc = DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, PTy); 1607 else 1608 Reloc = Table; 1609 Addr = (PTy != MVT::i32) ? DAG.getNode(ISD::SIGN_EXTEND, PTy, LD) : LD; 1610 Addr = DAG.getNode(ISD::ADD, PTy, Addr, Reloc); 1611 Result = DAG.getNode(ISD::BRIND, MVT::Other, LD.getValue(1), Addr); 1612 } else { 1613 Result = DAG.getNode(ISD::BRIND, MVT::Other, LD.getValue(1), LD); 1614 } 1615 } 1616 } 1617 break; 1618 case ISD::BRCOND: 1619 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1620 // Ensure that libcalls are emitted before a return. 1621 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1622 Tmp1 = LegalizeOp(Tmp1); 1623 LastCALLSEQ_END = DAG.getEntryNode(); 1624 1625 switch (getTypeAction(Node->getOperand(1).getValueType())) { 1626 case Expand: assert(0 && "It's impossible to expand bools"); 1627 case Legal: 1628 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the condition. 1629 break; 1630 case Promote: 1631 Tmp2 = PromoteOp(Node->getOperand(1)); // Promote the condition. 1632 1633 // The top bits of the promoted condition are not necessarily zero, ensure 1634 // that the value is properly zero extended. 1635 if (!DAG.MaskedValueIsZero(Tmp2, 1636 MVT::getIntVTBitMask(Tmp2.getValueType())^1)) 1637 Tmp2 = DAG.getZeroExtendInReg(Tmp2, MVT::i1); 1638 break; 1639 } 1640 1641 // Basic block destination (Op#2) is always legal. 1642 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 1643 1644 switch (TLI.getOperationAction(ISD::BRCOND, MVT::Other)) { 1645 default: assert(0 && "This action is not supported yet!"); 1646 case TargetLowering::Legal: break; 1647 case TargetLowering::Custom: 1648 Tmp1 = TLI.LowerOperation(Result, DAG); 1649 if (Tmp1.Val) Result = Tmp1; 1650 break; 1651 case TargetLowering::Expand: 1652 // Expand brcond's setcc into its constituent parts and create a BR_CC 1653 // Node. 1654 if (Tmp2.getOpcode() == ISD::SETCC) { 1655 Result = DAG.getNode(ISD::BR_CC, MVT::Other, Tmp1, Tmp2.getOperand(2), 1656 Tmp2.getOperand(0), Tmp2.getOperand(1), 1657 Node->getOperand(2)); 1658 } else { 1659 Result = DAG.getNode(ISD::BR_CC, MVT::Other, Tmp1, 1660 DAG.getCondCode(ISD::SETNE), Tmp2, 1661 DAG.getConstant(0, Tmp2.getValueType()), 1662 Node->getOperand(2)); 1663 } 1664 break; 1665 } 1666 break; 1667 case ISD::BR_CC: 1668 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1669 // Ensure that libcalls are emitted before a branch. 1670 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1671 Tmp1 = LegalizeOp(Tmp1); 1672 Tmp2 = Node->getOperand(2); // LHS 1673 Tmp3 = Node->getOperand(3); // RHS 1674 Tmp4 = Node->getOperand(1); // CC 1675 1676 LegalizeSetCCOperands(Tmp2, Tmp3, Tmp4); 1677 LastCALLSEQ_END = DAG.getEntryNode(); 1678 1679 // If we didn't get both a LHS and RHS back from LegalizeSetCCOperands, 1680 // the LHS is a legal SETCC itself. In this case, we need to compare 1681 // the result against zero to select between true and false values. 1682 if (Tmp3.Val == 0) { 1683 Tmp3 = DAG.getConstant(0, Tmp2.getValueType()); 1684 Tmp4 = DAG.getCondCode(ISD::SETNE); 1685 } 1686 1687 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp4, Tmp2, Tmp3, 1688 Node->getOperand(4)); 1689 1690 switch (TLI.getOperationAction(ISD::BR_CC, Tmp3.getValueType())) { 1691 default: assert(0 && "Unexpected action for BR_CC!"); 1692 case TargetLowering::Legal: break; 1693 case TargetLowering::Custom: 1694 Tmp4 = TLI.LowerOperation(Result, DAG); 1695 if (Tmp4.Val) Result = Tmp4; 1696 break; 1697 } 1698 break; 1699 case ISD::LOAD: { 1700 LoadSDNode *LD = cast<LoadSDNode>(Node); 1701 Tmp1 = LegalizeOp(LD->getChain()); // Legalize the chain. 1702 Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer. 1703 1704 ISD::LoadExtType ExtType = LD->getExtensionType(); 1705 if (ExtType == ISD::NON_EXTLOAD) { 1706 MVT::ValueType VT = Node->getValueType(0); 1707 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset()); 1708 Tmp3 = Result.getValue(0); 1709 Tmp4 = Result.getValue(1); 1710 1711 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 1712 default: assert(0 && "This action is not supported yet!"); 1713 case TargetLowering::Legal: 1714 // If this is an unaligned load and the target doesn't support it, 1715 // expand it. 1716 if (!TLI.allowsUnalignedMemoryAccesses()) { 1717 unsigned ABIAlignment = TLI.getTargetData()-> 1718 getABITypeAlignment(MVT::getTypeForValueType(LD->getLoadedVT())); 1719 if (LD->getAlignment() < ABIAlignment){ 1720 Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.Val), DAG, 1721 TLI); 1722 Tmp3 = Result.getOperand(0); 1723 Tmp4 = Result.getOperand(1); 1724 Tmp3 = LegalizeOp(Tmp3); 1725 Tmp4 = LegalizeOp(Tmp4); 1726 } 1727 } 1728 break; 1729 case TargetLowering::Custom: 1730 Tmp1 = TLI.LowerOperation(Tmp3, DAG); 1731 if (Tmp1.Val) { 1732 Tmp3 = LegalizeOp(Tmp1); 1733 Tmp4 = LegalizeOp(Tmp1.getValue(1)); 1734 } 1735 break; 1736 case TargetLowering::Promote: { 1737 // Only promote a load of vector type to another. 1738 assert(MVT::isVector(VT) && "Cannot promote this load!"); 1739 // Change base type to a different vector type. 1740 MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 1741 1742 Tmp1 = DAG.getLoad(NVT, Tmp1, Tmp2, LD->getSrcValue(), 1743 LD->getSrcValueOffset(), 1744 LD->isVolatile(), LD->getAlignment()); 1745 Tmp3 = LegalizeOp(DAG.getNode(ISD::BIT_CONVERT, VT, Tmp1)); 1746 Tmp4 = LegalizeOp(Tmp1.getValue(1)); 1747 break; 1748 } 1749 } 1750 // Since loads produce two values, make sure to remember that we 1751 // legalized both of them. 1752 AddLegalizedOperand(SDOperand(Node, 0), Tmp3); 1753 AddLegalizedOperand(SDOperand(Node, 1), Tmp4); 1754 return Op.ResNo ? Tmp4 : Tmp3; 1755 } else { 1756 MVT::ValueType SrcVT = LD->getLoadedVT(); 1757 switch (TLI.getLoadXAction(ExtType, SrcVT)) { 1758 default: assert(0 && "This action is not supported yet!"); 1759 case TargetLowering::Promote: 1760 assert(SrcVT == MVT::i1 && 1761 "Can only promote extending LOAD from i1 -> i8!"); 1762 Result = DAG.getExtLoad(ExtType, Node->getValueType(0), Tmp1, Tmp2, 1763 LD->getSrcValue(), LD->getSrcValueOffset(), 1764 MVT::i8, LD->isVolatile(), LD->getAlignment()); 1765 Tmp1 = Result.getValue(0); 1766 Tmp2 = Result.getValue(1); 1767 break; 1768 case TargetLowering::Custom: 1769 isCustom = true; 1770 // FALLTHROUGH 1771 case TargetLowering::Legal: 1772 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset()); 1773 Tmp1 = Result.getValue(0); 1774 Tmp2 = Result.getValue(1); 1775 1776 if (isCustom) { 1777 Tmp3 = TLI.LowerOperation(Result, DAG); 1778 if (Tmp3.Val) { 1779 Tmp1 = LegalizeOp(Tmp3); 1780 Tmp2 = LegalizeOp(Tmp3.getValue(1)); 1781 } 1782 } else { 1783 // If this is an unaligned load and the target doesn't support it, 1784 // expand it. 1785 if (!TLI.allowsUnalignedMemoryAccesses()) { 1786 unsigned ABIAlignment = TLI.getTargetData()-> 1787 getABITypeAlignment(MVT::getTypeForValueType(LD->getLoadedVT())); 1788 if (LD->getAlignment() < ABIAlignment){ 1789 Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.Val), DAG, 1790 TLI); 1791 Tmp1 = Result.getOperand(0); 1792 Tmp2 = Result.getOperand(1); 1793 Tmp1 = LegalizeOp(Tmp1); 1794 Tmp2 = LegalizeOp(Tmp2); 1795 } 1796 } 1797 } 1798 break; 1799 case TargetLowering::Expand: 1800 // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND 1801 if (SrcVT == MVT::f32 && Node->getValueType(0) == MVT::f64) { 1802 SDOperand Load = DAG.getLoad(SrcVT, Tmp1, Tmp2, LD->getSrcValue(), 1803 LD->getSrcValueOffset(), 1804 LD->isVolatile(), LD->getAlignment()); 1805 Result = DAG.getNode(ISD::FP_EXTEND, Node->getValueType(0), Load); 1806 Tmp1 = LegalizeOp(Result); // Relegalize new nodes. 1807 Tmp2 = LegalizeOp(Load.getValue(1)); 1808 break; 1809 } 1810 assert(ExtType != ISD::EXTLOAD &&"EXTLOAD should always be supported!"); 1811 // Turn the unsupported load into an EXTLOAD followed by an explicit 1812 // zero/sign extend inreg. 1813 Result = DAG.getExtLoad(ISD::EXTLOAD, Node->getValueType(0), 1814 Tmp1, Tmp2, LD->getSrcValue(), 1815 LD->getSrcValueOffset(), SrcVT, 1816 LD->isVolatile(), LD->getAlignment()); 1817 SDOperand ValRes; 1818 if (ExtType == ISD::SEXTLOAD) 1819 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(), 1820 Result, DAG.getValueType(SrcVT)); 1821 else 1822 ValRes = DAG.getZeroExtendInReg(Result, SrcVT); 1823 Tmp1 = LegalizeOp(ValRes); // Relegalize new nodes. 1824 Tmp2 = LegalizeOp(Result.getValue(1)); // Relegalize new nodes. 1825 break; 1826 } 1827 // Since loads produce two values, make sure to remember that we legalized 1828 // both of them. 1829 AddLegalizedOperand(SDOperand(Node, 0), Tmp1); 1830 AddLegalizedOperand(SDOperand(Node, 1), Tmp2); 1831 return Op.ResNo ? Tmp2 : Tmp1; 1832 } 1833 } 1834 case ISD::EXTRACT_ELEMENT: { 1835 MVT::ValueType OpTy = Node->getOperand(0).getValueType(); 1836 switch (getTypeAction(OpTy)) { 1837 default: assert(0 && "EXTRACT_ELEMENT action for type unimplemented!"); 1838 case Legal: 1839 if (cast<ConstantSDNode>(Node->getOperand(1))->getValue()) { 1840 // 1 -> Hi 1841 Result = DAG.getNode(ISD::SRL, OpTy, Node->getOperand(0), 1842 DAG.getConstant(MVT::getSizeInBits(OpTy)/2, 1843 TLI.getShiftAmountTy())); 1844 Result = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), Result); 1845 } else { 1846 // 0 -> Lo 1847 Result = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), 1848 Node->getOperand(0)); 1849 } 1850 break; 1851 case Expand: 1852 // Get both the low and high parts. 1853 ExpandOp(Node->getOperand(0), Tmp1, Tmp2); 1854 if (cast<ConstantSDNode>(Node->getOperand(1))->getValue()) 1855 Result = Tmp2; // 1 -> Hi 1856 else 1857 Result = Tmp1; // 0 -> Lo 1858 break; 1859 } 1860 break; 1861 } 1862 1863 case ISD::CopyToReg: 1864 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1865 1866 assert(isTypeLegal(Node->getOperand(2).getValueType()) && 1867 "Register type must be legal!"); 1868 // Legalize the incoming value (must be a legal type). 1869 Tmp2 = LegalizeOp(Node->getOperand(2)); 1870 if (Node->getNumValues() == 1) { 1871 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1), Tmp2); 1872 } else { 1873 assert(Node->getNumValues() == 2 && "Unknown CopyToReg"); 1874 if (Node->getNumOperands() == 4) { 1875 Tmp3 = LegalizeOp(Node->getOperand(3)); 1876 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1), Tmp2, 1877 Tmp3); 1878 } else { 1879 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1),Tmp2); 1880 } 1881 1882 // Since this produces two values, make sure to remember that we legalized 1883 // both of them. 1884 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 1885 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 1886 return Result; 1887 } 1888 break; 1889 1890 case ISD::RET: 1891 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1892 1893 // Ensure that libcalls are emitted before a return. 1894 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1895 Tmp1 = LegalizeOp(Tmp1); 1896 LastCALLSEQ_END = DAG.getEntryNode(); 1897 1898 switch (Node->getNumOperands()) { 1899 case 3: // ret val 1900 Tmp2 = Node->getOperand(1); 1901 Tmp3 = Node->getOperand(2); // Signness 1902 switch (getTypeAction(Tmp2.getValueType())) { 1903 case Legal: 1904 Result = DAG.UpdateNodeOperands(Result, Tmp1, LegalizeOp(Tmp2), Tmp3); 1905 break; 1906 case Expand: 1907 if (!MVT::isVector(Tmp2.getValueType())) { 1908 SDOperand Lo, Hi; 1909 ExpandOp(Tmp2, Lo, Hi); 1910 1911 // Big endian systems want the hi reg first. 1912 if (!TLI.isLittleEndian()) 1913 std::swap(Lo, Hi); 1914 1915 if (Hi.Val) 1916 Result = DAG.getNode(ISD::RET, MVT::Other, Tmp1, Lo, Tmp3, Hi,Tmp3); 1917 else 1918 Result = DAG.getNode(ISD::RET, MVT::Other, Tmp1, Lo, Tmp3); 1919 Result = LegalizeOp(Result); 1920 } else { 1921 SDNode *InVal = Tmp2.Val; 1922 unsigned NumElems = MVT::getVectorNumElements(InVal->getValueType(0)); 1923 MVT::ValueType EVT = MVT::getVectorElementType(InVal->getValueType(0)); 1924 1925 // Figure out if there is a simple type corresponding to this Vector 1926 // type. If so, convert to the vector type. 1927 MVT::ValueType TVT = MVT::getVectorType(EVT, NumElems); 1928 if (TLI.isTypeLegal(TVT)) { 1929 // Turn this into a return of the vector type. 1930 Tmp2 = LegalizeOp(Tmp2); 1931 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1932 } else if (NumElems == 1) { 1933 // Turn this into a return of the scalar type. 1934 Tmp2 = ScalarizeVectorOp(Tmp2); 1935 Tmp2 = LegalizeOp(Tmp2); 1936 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1937 1938 // FIXME: Returns of gcc generic vectors smaller than a legal type 1939 // should be returned in integer registers! 1940 1941 // The scalarized value type may not be legal, e.g. it might require 1942 // promotion or expansion. Relegalize the return. 1943 Result = LegalizeOp(Result); 1944 } else { 1945 // FIXME: Returns of gcc generic vectors larger than a legal vector 1946 // type should be returned by reference! 1947 SDOperand Lo, Hi; 1948 SplitVectorOp(Tmp2, Lo, Hi); 1949 Result = DAG.getNode(ISD::RET, MVT::Other, Tmp1, Lo, Tmp3, Hi,Tmp3); 1950 Result = LegalizeOp(Result); 1951 } 1952 } 1953 break; 1954 case Promote: 1955 Tmp2 = PromoteOp(Node->getOperand(1)); 1956 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1957 Result = LegalizeOp(Result); 1958 break; 1959 } 1960 break; 1961 case 1: // ret void 1962 Result = DAG.UpdateNodeOperands(Result, Tmp1); 1963 break; 1964 default: { // ret <values> 1965 SmallVector<SDOperand, 8> NewValues; 1966 NewValues.push_back(Tmp1); 1967 for (unsigned i = 1, e = Node->getNumOperands(); i < e; i += 2) 1968 switch (getTypeAction(Node->getOperand(i).getValueType())) { 1969 case Legal: 1970 NewValues.push_back(LegalizeOp(Node->getOperand(i))); 1971 NewValues.push_back(Node->getOperand(i+1)); 1972 break; 1973 case Expand: { 1974 SDOperand Lo, Hi; 1975 assert(!MVT::isExtendedVT(Node->getOperand(i).getValueType()) && 1976 "FIXME: TODO: implement returning non-legal vector types!"); 1977 ExpandOp(Node->getOperand(i), Lo, Hi); 1978 NewValues.push_back(Lo); 1979 NewValues.push_back(Node->getOperand(i+1)); 1980 if (Hi.Val) { 1981 NewValues.push_back(Hi); 1982 NewValues.push_back(Node->getOperand(i+1)); 1983 } 1984 break; 1985 } 1986 case Promote: 1987 assert(0 && "Can't promote multiple return value yet!"); 1988 } 1989 1990 if (NewValues.size() == Node->getNumOperands()) 1991 Result = DAG.UpdateNodeOperands(Result, &NewValues[0],NewValues.size()); 1992 else 1993 Result = DAG.getNode(ISD::RET, MVT::Other, 1994 &NewValues[0], NewValues.size()); 1995 break; 1996 } 1997 } 1998 1999 if (Result.getOpcode() == ISD::RET) { 2000 switch (TLI.getOperationAction(Result.getOpcode(), MVT::Other)) { 2001 default: assert(0 && "This action is not supported yet!"); 2002 case TargetLowering::Legal: break; 2003 case TargetLowering::Custom: 2004 Tmp1 = TLI.LowerOperation(Result, DAG); 2005 if (Tmp1.Val) Result = Tmp1; 2006 break; 2007 } 2008 } 2009 break; 2010 case ISD::STORE: { 2011 StoreSDNode *ST = cast<StoreSDNode>(Node); 2012 Tmp1 = LegalizeOp(ST->getChain()); // Legalize the chain. 2013 Tmp2 = LegalizeOp(ST->getBasePtr()); // Legalize the pointer. 2014 int SVOffset = ST->getSrcValueOffset(); 2015 unsigned Alignment = ST->getAlignment(); 2016 bool isVolatile = ST->isVolatile(); 2017 2018 if (!ST->isTruncatingStore()) { 2019 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 2020 // FIXME: We shouldn't do this for TargetConstantFP's. 2021 // FIXME: move this to the DAG Combiner! Note that we can't regress due 2022 // to phase ordering between legalized code and the dag combiner. This 2023 // probably means that we need to integrate dag combiner and legalizer 2024 // together. 2025 // We generally can't do this one for long doubles. 2026 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) { 2027 if (CFP->getValueType(0) == MVT::f32 && 2028 getTypeAction(MVT::i32) == Legal) { 2029 Tmp3 = DAG.getConstant((uint32_t)CFP->getValueAPF(). 2030 convertToAPInt().getZExtValue(), 2031 MVT::i32); 2032 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2033 SVOffset, isVolatile, Alignment); 2034 break; 2035 } else if (CFP->getValueType(0) == MVT::f64) { 2036 // If this target supports 64-bit registers, do a single 64-bit store. 2037 if (getTypeAction(MVT::i64) == Legal) { 2038 Tmp3 = DAG.getConstant(CFP->getValueAPF().convertToAPInt(). 2039 getZExtValue(), MVT::i64); 2040 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2041 SVOffset, isVolatile, Alignment); 2042 break; 2043 } else if (getTypeAction(MVT::i32) == Legal) { 2044 // Otherwise, if the target supports 32-bit registers, use 2 32-bit 2045 // stores. If the target supports neither 32- nor 64-bits, this 2046 // xform is certainly not worth it. 2047 uint64_t IntVal =CFP->getValueAPF().convertToAPInt().getZExtValue(); 2048 SDOperand Lo = DAG.getConstant(uint32_t(IntVal), MVT::i32); 2049 SDOperand Hi = DAG.getConstant(uint32_t(IntVal >>32), MVT::i32); 2050 if (!TLI.isLittleEndian()) std::swap(Lo, Hi); 2051 2052 Lo = DAG.getStore(Tmp1, Lo, Tmp2, ST->getSrcValue(), 2053 SVOffset, isVolatile, Alignment); 2054 Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, 2055 getIntPtrConstant(4)); 2056 Hi = DAG.getStore(Tmp1, Hi, Tmp2, ST->getSrcValue(), SVOffset+4, 2057 isVolatile, std::max(Alignment, 4U)); 2058 2059 Result = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi); 2060 break; 2061 } 2062 } 2063 } 2064 2065 switch (getTypeAction(ST->getStoredVT())) { 2066 case Legal: { 2067 Tmp3 = LegalizeOp(ST->getValue()); 2068 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2, 2069 ST->getOffset()); 2070 2071 MVT::ValueType VT = Tmp3.getValueType(); 2072 switch (TLI.getOperationAction(ISD::STORE, VT)) { 2073 default: assert(0 && "This action is not supported yet!"); 2074 case TargetLowering::Legal: 2075 // If this is an unaligned store and the target doesn't support it, 2076 // expand it. 2077 if (!TLI.allowsUnalignedMemoryAccesses()) { 2078 unsigned ABIAlignment = TLI.getTargetData()-> 2079 getABITypeAlignment(MVT::getTypeForValueType(ST->getStoredVT())); 2080 if (ST->getAlignment() < ABIAlignment) 2081 Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.Val), DAG, 2082 TLI); 2083 } 2084 break; 2085 case TargetLowering::Custom: 2086 Tmp1 = TLI.LowerOperation(Result, DAG); 2087 if (Tmp1.Val) Result = Tmp1; 2088 break; 2089 case TargetLowering::Promote: 2090 assert(MVT::isVector(VT) && "Unknown legal promote case!"); 2091 Tmp3 = DAG.getNode(ISD::BIT_CONVERT, 2092 TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3); 2093 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, 2094 ST->getSrcValue(), SVOffset, isVolatile, 2095 Alignment); 2096 break; 2097 } 2098 break; 2099 } 2100 case Promote: 2101 // Truncate the value and store the result. 2102 Tmp3 = PromoteOp(ST->getValue()); 2103 Result = DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2104 SVOffset, ST->getStoredVT(), 2105 isVolatile, Alignment); 2106 break; 2107 2108 case Expand: 2109 unsigned IncrementSize = 0; 2110 SDOperand Lo, Hi; 2111 2112 // If this is a vector type, then we have to calculate the increment as 2113 // the product of the element size in bytes, and the number of elements 2114 // in the high half of the vector. 2115 if (MVT::isVector(ST->getValue().getValueType())) { 2116 SDNode *InVal = ST->getValue().Val; 2117 unsigned NumElems = MVT::getVectorNumElements(InVal->getValueType(0)); 2118 MVT::ValueType EVT = MVT::getVectorElementType(InVal->getValueType(0)); 2119 2120 // Figure out if there is a simple type corresponding to this Vector 2121 // type. If so, convert to the vector type. 2122 MVT::ValueType TVT = MVT::getVectorType(EVT, NumElems); 2123 if (TLI.isTypeLegal(TVT)) { 2124 // Turn this into a normal store of the vector type. 2125 Tmp3 = LegalizeOp(Node->getOperand(1)); 2126 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2127 SVOffset, isVolatile, Alignment); 2128 Result = LegalizeOp(Result); 2129 break; 2130 } else if (NumElems == 1) { 2131 // Turn this into a normal store of the scalar type. 2132 Tmp3 = ScalarizeVectorOp(Node->getOperand(1)); 2133 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2134 SVOffset, isVolatile, Alignment); 2135 // The scalarized value type may not be legal, e.g. it might require 2136 // promotion or expansion. Relegalize the scalar store. 2137 Result = LegalizeOp(Result); 2138 break; 2139 } else { 2140 SplitVectorOp(Node->getOperand(1), Lo, Hi); 2141 IncrementSize = NumElems/2 * MVT::getSizeInBits(EVT)/8; 2142 } 2143 } else { 2144 ExpandOp(Node->getOperand(1), Lo, Hi); 2145 IncrementSize = Hi.Val ? MVT::getSizeInBits(Hi.getValueType())/8 : 0; 2146 2147 if (!TLI.isLittleEndian()) 2148 std::swap(Lo, Hi); 2149 } 2150 2151 Lo = DAG.getStore(Tmp1, Lo, Tmp2, ST->getSrcValue(), 2152 SVOffset, isVolatile, Alignment); 2153 2154 if (Hi.Val == NULL) { 2155 // Must be int <-> float one-to-one expansion. 2156 Result = Lo; 2157 break; 2158 } 2159 2160 Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, 2161 getIntPtrConstant(IncrementSize)); 2162 assert(isTypeLegal(Tmp2.getValueType()) && 2163 "Pointers must be legal!"); 2164 SVOffset += IncrementSize; 2165 if (Alignment > IncrementSize) 2166 Alignment = IncrementSize; 2167 Hi = DAG.getStore(Tmp1, Hi, Tmp2, ST->getSrcValue(), 2168 SVOffset, isVolatile, Alignment); 2169 Result = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi); 2170 break; 2171 } 2172 } else { 2173 // Truncating store 2174 assert(isTypeLegal(ST->getValue().getValueType()) && 2175 "Cannot handle illegal TRUNCSTORE yet!"); 2176 Tmp3 = LegalizeOp(ST->getValue()); 2177 2178 // The only promote case we handle is TRUNCSTORE:i1 X into 2179 // -> TRUNCSTORE:i8 (and X, 1) 2180 if (ST->getStoredVT() == MVT::i1 && 2181 TLI.getStoreXAction(MVT::i1) == TargetLowering::Promote) { 2182 // Promote the bool to a mask then store. 2183 Tmp3 = DAG.getNode(ISD::AND, Tmp3.getValueType(), Tmp3, 2184 DAG.getConstant(1, Tmp3.getValueType())); 2185 Result = DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2186 SVOffset, MVT::i8, 2187 isVolatile, Alignment); 2188 } else if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() || 2189 Tmp2 != ST->getBasePtr()) { 2190 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2, 2191 ST->getOffset()); 2192 } 2193 2194 MVT::ValueType StVT = cast<StoreSDNode>(Result.Val)->getStoredVT(); 2195 switch (TLI.getStoreXAction(StVT)) { 2196 default: assert(0 && "This action is not supported yet!"); 2197 case TargetLowering::Legal: 2198 // If this is an unaligned store and the target doesn't support it, 2199 // expand it. 2200 if (!TLI.allowsUnalignedMemoryAccesses()) { 2201 unsigned ABIAlignment = TLI.getTargetData()-> 2202 getABITypeAlignment(MVT::getTypeForValueType(ST->getStoredVT())); 2203 if (ST->getAlignment() < ABIAlignment) 2204 Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.Val), DAG, 2205 TLI); 2206 } 2207 break; 2208 case TargetLowering::Custom: 2209 Tmp1 = TLI.LowerOperation(Result, DAG); 2210 if (Tmp1.Val) Result = Tmp1; 2211 break; 2212 } 2213 } 2214 break; 2215 } 2216 case ISD::PCMARKER: 2217 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2218 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 2219 break; 2220 case ISD::STACKSAVE: 2221 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2222 Result = DAG.UpdateNodeOperands(Result, Tmp1); 2223 Tmp1 = Result.getValue(0); 2224 Tmp2 = Result.getValue(1); 2225 2226 switch (TLI.getOperationAction(ISD::STACKSAVE, MVT::Other)) { 2227 default: assert(0 && "This action is not supported yet!"); 2228 case TargetLowering::Legal: break; 2229 case TargetLowering::Custom: 2230 Tmp3 = TLI.LowerOperation(Result, DAG); 2231 if (Tmp3.Val) { 2232 Tmp1 = LegalizeOp(Tmp3); 2233 Tmp2 = LegalizeOp(Tmp3.getValue(1)); 2234 } 2235 break; 2236 case TargetLowering::Expand: 2237 // Expand to CopyFromReg if the target set 2238 // StackPointerRegisterToSaveRestore. 2239 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 2240 Tmp1 = DAG.getCopyFromReg(Result.getOperand(0), SP, 2241 Node->getValueType(0)); 2242 Tmp2 = Tmp1.getValue(1); 2243 } else { 2244 Tmp1 = DAG.getNode(ISD::UNDEF, Node->getValueType(0)); 2245 Tmp2 = Node->getOperand(0); 2246 } 2247 break; 2248 } 2249 2250 // Since stacksave produce two values, make sure to remember that we 2251 // legalized both of them. 2252 AddLegalizedOperand(SDOperand(Node, 0), Tmp1); 2253 AddLegalizedOperand(SDOperand(Node, 1), Tmp2); 2254 return Op.ResNo ? Tmp2 : Tmp1; 2255 2256 case ISD::STACKRESTORE: 2257 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2258 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. 2259 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 2260 2261 switch (TLI.getOperationAction(ISD::STACKRESTORE, MVT::Other)) { 2262 default: assert(0 && "This action is not supported yet!"); 2263 case TargetLowering::Legal: break; 2264 case TargetLowering::Custom: 2265 Tmp1 = TLI.LowerOperation(Result, DAG); 2266 if (Tmp1.Val) Result = Tmp1; 2267 break; 2268 case TargetLowering::Expand: 2269 // Expand to CopyToReg if the target set 2270 // StackPointerRegisterToSaveRestore. 2271 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 2272 Result = DAG.getCopyToReg(Tmp1, SP, Tmp2); 2273 } else { 2274 Result = Tmp1; 2275 } 2276 break; 2277 } 2278 break; 2279 2280 case ISD::READCYCLECOUNTER: 2281 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain 2282 Result = DAG.UpdateNodeOperands(Result, Tmp1); 2283 switch (TLI.getOperationAction(ISD::READCYCLECOUNTER, 2284 Node->getValueType(0))) { 2285 default: assert(0 && "This action is not supported yet!"); 2286 case TargetLowering::Legal: 2287 Tmp1 = Result.getValue(0); 2288 Tmp2 = Result.getValue(1); 2289 break; 2290 case TargetLowering::Custom: 2291 Result = TLI.LowerOperation(Result, DAG); 2292 Tmp1 = LegalizeOp(Result.getValue(0)); 2293 Tmp2 = LegalizeOp(Result.getValue(1)); 2294 break; 2295 } 2296 2297 // Since rdcc produce two values, make sure to remember that we legalized 2298 // both of them. 2299 AddLegalizedOperand(SDOperand(Node, 0), Tmp1); 2300 AddLegalizedOperand(SDOperand(Node, 1), Tmp2); 2301 return Result; 2302 2303 case ISD::SELECT: 2304 switch (getTypeAction(Node->getOperand(0).getValueType())) { 2305 case Expand: assert(0 && "It's impossible to expand bools"); 2306 case Legal: 2307 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the condition. 2308 break; 2309 case Promote: 2310 Tmp1 = PromoteOp(Node->getOperand(0)); // Promote the condition. 2311 // Make sure the condition is either zero or one. 2312 if (!DAG.MaskedValueIsZero(Tmp1, 2313 MVT::getIntVTBitMask(Tmp1.getValueType())^1)) 2314 Tmp1 = DAG.getZeroExtendInReg(Tmp1, MVT::i1); 2315 break; 2316 } 2317 Tmp2 = LegalizeOp(Node->getOperand(1)); // TrueVal 2318 Tmp3 = LegalizeOp(Node->getOperand(2)); // FalseVal 2319 2320 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2321 2322 switch (TLI.getOperationAction(ISD::SELECT, Tmp2.getValueType())) { 2323 default: assert(0 && "This action is not supported yet!"); 2324 case TargetLowering::Legal: break; 2325 case TargetLowering::Custom: { 2326 Tmp1 = TLI.LowerOperation(Result, DAG); 2327 if (Tmp1.Val) Result = Tmp1; 2328 break; 2329 } 2330 case TargetLowering::Expand: 2331 if (Tmp1.getOpcode() == ISD::SETCC) { 2332 Result = DAG.getSelectCC(Tmp1.getOperand(0), Tmp1.getOperand(1), 2333 Tmp2, Tmp3, 2334 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); 2335 } else { 2336 Result = DAG.getSelectCC(Tmp1, 2337 DAG.getConstant(0, Tmp1.getValueType()), 2338 Tmp2, Tmp3, ISD::SETNE); 2339 } 2340 break; 2341 case TargetLowering::Promote: { 2342 MVT::ValueType NVT = 2343 TLI.getTypeToPromoteTo(ISD::SELECT, Tmp2.getValueType()); 2344 unsigned ExtOp, TruncOp; 2345 if (MVT::isVector(Tmp2.getValueType())) { 2346 ExtOp = ISD::BIT_CONVERT; 2347 TruncOp = ISD::BIT_CONVERT; 2348 } else if (MVT::isInteger(Tmp2.getValueType())) { 2349 ExtOp = ISD::ANY_EXTEND; 2350 TruncOp = ISD::TRUNCATE; 2351 } else { 2352 ExtOp = ISD::FP_EXTEND; 2353 TruncOp = ISD::FP_ROUND; 2354 } 2355 // Promote each of the values to the new type. 2356 Tmp2 = DAG.getNode(ExtOp, NVT, Tmp2); 2357 Tmp3 = DAG.getNode(ExtOp, NVT, Tmp3); 2358 // Perform the larger operation, then round down. 2359 Result = DAG.getNode(ISD::SELECT, NVT, Tmp1, Tmp2,Tmp3); 2360 Result = DAG.getNode(TruncOp, Node->getValueType(0), Result); 2361 break; 2362 } 2363 } 2364 break; 2365 case ISD::SELECT_CC: { 2366 Tmp1 = Node->getOperand(0); // LHS 2367 Tmp2 = Node->getOperand(1); // RHS 2368 Tmp3 = LegalizeOp(Node->getOperand(2)); // True 2369 Tmp4 = LegalizeOp(Node->getOperand(3)); // False 2370 SDOperand CC = Node->getOperand(4); 2371 2372 LegalizeSetCCOperands(Tmp1, Tmp2, CC); 2373 2374 // If we didn't get both a LHS and RHS back from LegalizeSetCCOperands, 2375 // the LHS is a legal SETCC itself. In this case, we need to compare 2376 // the result against zero to select between true and false values. 2377 if (Tmp2.Val == 0) { 2378 Tmp2 = DAG.getConstant(0, Tmp1.getValueType()); 2379 CC = DAG.getCondCode(ISD::SETNE); 2380 } 2381 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, Tmp4, CC); 2382 2383 // Everything is legal, see if we should expand this op or something. 2384 switch (TLI.getOperationAction(ISD::SELECT_CC, Tmp3.getValueType())) { 2385 default: assert(0 && "This action is not supported yet!"); 2386 case TargetLowering::Legal: break; 2387 case TargetLowering::Custom: 2388 Tmp1 = TLI.LowerOperation(Result, DAG); 2389 if (Tmp1.Val) Result = Tmp1; 2390 break; 2391 } 2392 break; 2393 } 2394 case ISD::SETCC: 2395 Tmp1 = Node->getOperand(0); 2396 Tmp2 = Node->getOperand(1); 2397 Tmp3 = Node->getOperand(2); 2398 LegalizeSetCCOperands(Tmp1, Tmp2, Tmp3); 2399 2400 // If we had to Expand the SetCC operands into a SELECT node, then it may 2401 // not always be possible to return a true LHS & RHS. In this case, just 2402 // return the value we legalized, returned in the LHS 2403 if (Tmp2.Val == 0) { 2404 Result = Tmp1; 2405 break; 2406 } 2407 2408 switch (TLI.getOperationAction(ISD::SETCC, Tmp1.getValueType())) { 2409 default: assert(0 && "Cannot handle this action for SETCC yet!"); 2410 case TargetLowering::Custom: 2411 isCustom = true; 2412 // FALLTHROUGH. 2413 case TargetLowering::Legal: 2414 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2415 if (isCustom) { 2416 Tmp4 = TLI.LowerOperation(Result, DAG); 2417 if (Tmp4.Val) Result = Tmp4; 2418 } 2419 break; 2420 case TargetLowering::Promote: { 2421 // First step, figure out the appropriate operation to use. 2422 // Allow SETCC to not be supported for all legal data types 2423 // Mostly this targets FP 2424 MVT::ValueType NewInTy = Node->getOperand(0).getValueType(); 2425 MVT::ValueType OldVT = NewInTy; OldVT = OldVT; 2426 2427 // Scan for the appropriate larger type to use. 2428 while (1) { 2429 NewInTy = (MVT::ValueType)(NewInTy+1); 2430 2431 assert(MVT::isInteger(NewInTy) == MVT::isInteger(OldVT) && 2432 "Fell off of the edge of the integer world"); 2433 assert(MVT::isFloatingPoint(NewInTy) == MVT::isFloatingPoint(OldVT) && 2434 "Fell off of the edge of the floating point world"); 2435 2436 // If the target supports SETCC of this type, use it. 2437 if (TLI.isOperationLegal(ISD::SETCC, NewInTy)) 2438 break; 2439 } 2440 if (MVT::isInteger(NewInTy)) 2441 assert(0 && "Cannot promote Legal Integer SETCC yet"); 2442 else { 2443 Tmp1 = DAG.getNode(ISD::FP_EXTEND, NewInTy, Tmp1); 2444 Tmp2 = DAG.getNode(ISD::FP_EXTEND, NewInTy, Tmp2); 2445 } 2446 Tmp1 = LegalizeOp(Tmp1); 2447 Tmp2 = LegalizeOp(Tmp2); 2448 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2449 Result = LegalizeOp(Result); 2450 break; 2451 } 2452 case TargetLowering::Expand: 2453 // Expand a setcc node into a select_cc of the same condition, lhs, and 2454 // rhs that selects between const 1 (true) and const 0 (false). 2455 MVT::ValueType VT = Node->getValueType(0); 2456 Result = DAG.getNode(ISD::SELECT_CC, VT, Tmp1, Tmp2, 2457 DAG.getConstant(1, VT), DAG.getConstant(0, VT), 2458 Tmp3); 2459 break; 2460 } 2461 break; 2462 case ISD::MEMSET: 2463 case ISD::MEMCPY: 2464 case ISD::MEMMOVE: { 2465 Tmp1 = LegalizeOp(Node->getOperand(0)); // Chain 2466 Tmp2 = LegalizeOp(Node->getOperand(1)); // Pointer 2467 2468 if (Node->getOpcode() == ISD::MEMSET) { // memset = ubyte 2469 switch (getTypeAction(Node->getOperand(2).getValueType())) { 2470 case Expand: assert(0 && "Cannot expand a byte!"); 2471 case Legal: 2472 Tmp3 = LegalizeOp(Node->getOperand(2)); 2473 break; 2474 case Promote: 2475 Tmp3 = PromoteOp(Node->getOperand(2)); 2476 break; 2477 } 2478 } else { 2479 Tmp3 = LegalizeOp(Node->getOperand(2)); // memcpy/move = pointer, 2480 } 2481 2482 SDOperand Tmp4; 2483 switch (getTypeAction(Node->getOperand(3).getValueType())) { 2484 case Expand: { 2485 // Length is too big, just take the lo-part of the length. 2486 SDOperand HiPart; 2487 ExpandOp(Node->getOperand(3), Tmp4, HiPart); 2488 break; 2489 } 2490 case Legal: 2491 Tmp4 = LegalizeOp(Node->getOperand(3)); 2492 break; 2493 case Promote: 2494 Tmp4 = PromoteOp(Node->getOperand(3)); 2495 break; 2496 } 2497 2498 SDOperand Tmp5; 2499 switch (getTypeAction(Node->getOperand(4).getValueType())) { // uint 2500 case Expand: assert(0 && "Cannot expand this yet!"); 2501 case Legal: 2502 Tmp5 = LegalizeOp(Node->getOperand(4)); 2503 break; 2504 case Promote: 2505 Tmp5 = PromoteOp(Node->getOperand(4)); 2506 break; 2507 } 2508 2509 SDOperand Tmp6; 2510 switch (getTypeAction(Node->getOperand(5).getValueType())) { // bool 2511 case Expand: assert(0 && "Cannot expand this yet!"); 2512 case Legal: 2513 Tmp6 = LegalizeOp(Node->getOperand(5)); 2514 break; 2515 case Promote: 2516 Tmp6 = PromoteOp(Node->getOperand(5)); 2517 break; 2518 } 2519 2520 switch (TLI.getOperationAction(Node->getOpcode(), MVT::Other)) { 2521 default: assert(0 && "This action not implemented for this operation!"); 2522 case TargetLowering::Custom: 2523 isCustom = true; 2524 // FALLTHROUGH 2525 case TargetLowering::Legal: { 2526 SDOperand Ops[] = { Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6 }; 2527 Result = DAG.UpdateNodeOperands(Result, Ops, 6); 2528 if (isCustom) { 2529 Tmp1 = TLI.LowerOperation(Result, DAG); 2530 if (Tmp1.Val) Result = Tmp1; 2531 } 2532 break; 2533 } 2534 case TargetLowering::Expand: { 2535 // Otherwise, the target does not support this operation. Lower the 2536 // operation to an explicit libcall as appropriate. 2537 MVT::ValueType IntPtr = TLI.getPointerTy(); 2538 const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(); 2539 TargetLowering::ArgListTy Args; 2540 TargetLowering::ArgListEntry Entry; 2541 2542 const char *FnName = 0; 2543 if (Node->getOpcode() == ISD::MEMSET) { 2544 Entry.Node = Tmp2; Entry.Ty = IntPtrTy; 2545 Args.push_back(Entry); 2546 // Extend the (previously legalized) ubyte argument to be an int value 2547 // for the call. 2548 if (Tmp3.getValueType() > MVT::i32) 2549 Tmp3 = DAG.getNode(ISD::TRUNCATE, MVT::i32, Tmp3); 2550 else 2551 Tmp3 = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Tmp3); 2552 Entry.Node = Tmp3; Entry.Ty = Type::Int32Ty; Entry.isSExt = true; 2553 Args.push_back(Entry); 2554 Entry.Node = Tmp4; Entry.Ty = IntPtrTy; Entry.isSExt = false; 2555 Args.push_back(Entry); 2556 2557 FnName = "memset"; 2558 } else if (Node->getOpcode() == ISD::MEMCPY || 2559 Node->getOpcode() == ISD::MEMMOVE) { 2560 Entry.Ty = IntPtrTy; 2561 Entry.Node = Tmp2; Args.push_back(Entry); 2562 Entry.Node = Tmp3; Args.push_back(Entry); 2563 Entry.Node = Tmp4; Args.push_back(Entry); 2564 FnName = Node->getOpcode() == ISD::MEMMOVE ? "memmove" : "memcpy"; 2565 } else { 2566 assert(0 && "Unknown op!"); 2567 } 2568 2569 std::pair<SDOperand,SDOperand> CallResult = 2570 TLI.LowerCallTo(Tmp1, Type::VoidTy, false, false, CallingConv::C, false, 2571 DAG.getExternalSymbol(FnName, IntPtr), Args, DAG); 2572 Result = CallResult.second; 2573 break; 2574 } 2575 } 2576 break; 2577 } 2578 2579 case ISD::SHL_PARTS: 2580 case ISD::SRA_PARTS: 2581 case ISD::SRL_PARTS: { 2582 SmallVector<SDOperand, 8> Ops; 2583 bool Changed = false; 2584 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 2585 Ops.push_back(LegalizeOp(Node->getOperand(i))); 2586 Changed |= Ops.back() != Node->getOperand(i); 2587 } 2588 if (Changed) 2589 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 2590 2591 switch (TLI.getOperationAction(Node->getOpcode(), 2592 Node->getValueType(0))) { 2593 default: assert(0 && "This action is not supported yet!"); 2594 case TargetLowering::Legal: break; 2595 case TargetLowering::Custom: 2596 Tmp1 = TLI.LowerOperation(Result, DAG); 2597 if (Tmp1.Val) { 2598 SDOperand Tmp2, RetVal(0, 0); 2599 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) { 2600 Tmp2 = LegalizeOp(Tmp1.getValue(i)); 2601 AddLegalizedOperand(SDOperand(Node, i), Tmp2); 2602 if (i == Op.ResNo) 2603 RetVal = Tmp2; 2604 } 2605 assert(RetVal.Val && "Illegal result number"); 2606 return RetVal; 2607 } 2608 break; 2609 } 2610 2611 // Since these produce multiple values, make sure to remember that we 2612 // legalized all of them. 2613 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 2614 AddLegalizedOperand(SDOperand(Node, i), Result.getValue(i)); 2615 return Result.getValue(Op.ResNo); 2616 } 2617 2618 // Binary operators 2619 case ISD::ADD: 2620 case ISD::SUB: 2621 case ISD::MUL: 2622 case ISD::MULHS: 2623 case ISD::MULHU: 2624 case ISD::UDIV: 2625 case ISD::SDIV: 2626 case ISD::AND: 2627 case ISD::OR: 2628 case ISD::XOR: 2629 case ISD::SHL: 2630 case ISD::SRL: 2631 case ISD::SRA: 2632 case ISD::FADD: 2633 case ISD::FSUB: 2634 case ISD::FMUL: 2635 case ISD::FDIV: 2636 case ISD::FPOW: 2637 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 2638 switch (getTypeAction(Node->getOperand(1).getValueType())) { 2639 case Expand: assert(0 && "Not possible"); 2640 case Legal: 2641 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the RHS. 2642 break; 2643 case Promote: 2644 Tmp2 = PromoteOp(Node->getOperand(1)); // Promote the RHS. 2645 break; 2646 } 2647 2648 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 2649 2650 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 2651 default: assert(0 && "BinOp legalize operation not supported"); 2652 case TargetLowering::Legal: break; 2653 case TargetLowering::Custom: 2654 Tmp1 = TLI.LowerOperation(Result, DAG); 2655 if (Tmp1.Val) Result = Tmp1; 2656 break; 2657 case TargetLowering::Expand: { 2658 MVT::ValueType VT = Op.getValueType(); 2659 2660 // See if multiply or divide can be lowered using two-result operations. 2661 SDVTList VTs = DAG.getVTList(VT, VT); 2662 if (Node->getOpcode() == ISD::MUL) { 2663 // We just need the low half of the multiply; try both the signed 2664 // and unsigned forms. If the target supports both SMUL_LOHI and 2665 // UMUL_LOHI, form a preference by checking which forms of plain 2666 // MULH it supports. 2667 bool HasSMUL_LOHI = TLI.isOperationLegal(ISD::SMUL_LOHI, VT); 2668 bool HasUMUL_LOHI = TLI.isOperationLegal(ISD::UMUL_LOHI, VT); 2669 bool HasMULHS = TLI.isOperationLegal(ISD::MULHS, VT); 2670 bool HasMULHU = TLI.isOperationLegal(ISD::MULHU, VT); 2671 unsigned OpToUse = 0; 2672 if (HasSMUL_LOHI && !HasMULHS) { 2673 OpToUse = ISD::SMUL_LOHI; 2674 } else if (HasUMUL_LOHI && !HasMULHU) { 2675 OpToUse = ISD::UMUL_LOHI; 2676 } else if (HasSMUL_LOHI) { 2677 OpToUse = ISD::SMUL_LOHI; 2678 } else if (HasUMUL_LOHI) { 2679 OpToUse = ISD::UMUL_LOHI; 2680 } 2681 if (OpToUse) { 2682 Result = SDOperand(DAG.getNode(OpToUse, VTs, Tmp1, Tmp2).Val, 0); 2683 break; 2684 } 2685 } 2686 if (Node->getOpcode() == ISD::MULHS && 2687 TLI.isOperationLegal(ISD::SMUL_LOHI, VT)) { 2688 Result = SDOperand(DAG.getNode(ISD::SMUL_LOHI, VTs, Tmp1, Tmp2).Val, 1); 2689 break; 2690 } 2691 if (Node->getOpcode() == ISD::MULHU && 2692 TLI.isOperationLegal(ISD::UMUL_LOHI, VT)) { 2693 Result = SDOperand(DAG.getNode(ISD::UMUL_LOHI, VTs, Tmp1, Tmp2).Val, 1); 2694 break; 2695 } 2696 if (Node->getOpcode() == ISD::SDIV && 2697 TLI.isOperationLegal(ISD::SDIVREM, VT)) { 2698 Result = SDOperand(DAG.getNode(ISD::SDIVREM, VTs, Tmp1, Tmp2).Val, 0); 2699 break; 2700 } 2701 if (Node->getOpcode() == ISD::UDIV && 2702 TLI.isOperationLegal(ISD::UDIVREM, VT)) { 2703 Result = SDOperand(DAG.getNode(ISD::UDIVREM, VTs, Tmp1, Tmp2).Val, 0); 2704 break; 2705 } 2706 2707 // Check to see if we have a libcall for this operator. 2708 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 2709 bool isSigned = false; 2710 switch (Node->getOpcode()) { 2711 case ISD::UDIV: 2712 case ISD::SDIV: 2713 if (VT == MVT::i32) { 2714 LC = Node->getOpcode() == ISD::UDIV 2715 ? RTLIB::UDIV_I32 : RTLIB::SDIV_I32; 2716 isSigned = Node->getOpcode() == ISD::SDIV; 2717 } 2718 break; 2719 case ISD::FPOW: 2720 LC = VT == MVT::f32 ? RTLIB::POW_F32 : 2721 VT == MVT::f64 ? RTLIB::POW_F64 : 2722 VT == MVT::f80 ? RTLIB::POW_F80 : 2723 VT == MVT::ppcf128 ? RTLIB::POW_PPCF128 : 2724 RTLIB::UNKNOWN_LIBCALL; 2725 break; 2726 default: break; 2727 } 2728 if (LC != RTLIB::UNKNOWN_LIBCALL) { 2729 SDOperand Dummy; 2730 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, isSigned, Dummy); 2731 break; 2732 } 2733 2734 assert(MVT::isVector(Node->getValueType(0)) && 2735 "Cannot expand this binary operator!"); 2736 // Expand the operation into a bunch of nasty scalar code. 2737 Result = LegalizeOp(UnrollVectorOp(Op)); 2738 break; 2739 } 2740 case TargetLowering::Promote: { 2741 switch (Node->getOpcode()) { 2742 default: assert(0 && "Do not know how to promote this BinOp!"); 2743 case ISD::AND: 2744 case ISD::OR: 2745 case ISD::XOR: { 2746 MVT::ValueType OVT = Node->getValueType(0); 2747 MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 2748 assert(MVT::isVector(OVT) && "Cannot promote this BinOp!"); 2749 // Bit convert each of the values to the new type. 2750 Tmp1 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp1); 2751 Tmp2 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp2); 2752 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 2753 // Bit convert the result back the original type. 2754 Result = DAG.getNode(ISD::BIT_CONVERT, OVT, Result); 2755 break; 2756 } 2757 } 2758 } 2759 } 2760 break; 2761 2762 case ISD::SMUL_LOHI: 2763 case ISD::UMUL_LOHI: 2764 case ISD::SDIVREM: 2765 case ISD::UDIVREM: 2766 // These nodes will only be produced by target-specific lowering, so 2767 // they shouldn't be here if they aren't legal. 2768 assert(TLI.isOperationLegal(Node->getOpcode(), Node->getValueType(0)) && 2769 "This must be legal!"); 2770 2771 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 2772 Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS 2773 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 2774 break; 2775 2776 case ISD::FCOPYSIGN: // FCOPYSIGN does not require LHS/RHS to match type! 2777 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 2778 switch (getTypeAction(Node->getOperand(1).getValueType())) { 2779 case Expand: assert(0 && "Not possible"); 2780 case Legal: 2781 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the RHS. 2782 break; 2783 case Promote: 2784 Tmp2 = PromoteOp(Node->getOperand(1)); // Promote the RHS. 2785 break; 2786 } 2787 2788 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 2789 2790 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 2791 default: assert(0 && "Operation not supported"); 2792 case TargetLowering::Custom: 2793 Tmp1 = TLI.LowerOperation(Result, DAG); 2794 if (Tmp1.Val) Result = Tmp1; 2795 break; 2796 case TargetLowering::Legal: break; 2797 case TargetLowering::Expand: { 2798 // If this target supports fabs/fneg natively and select is cheap, 2799 // do this efficiently. 2800 if (!TLI.isSelectExpensive() && 2801 TLI.getOperationAction(ISD::FABS, Tmp1.getValueType()) == 2802 TargetLowering::Legal && 2803 TLI.getOperationAction(ISD::FNEG, Tmp1.getValueType()) == 2804 TargetLowering::Legal) { 2805 // Get the sign bit of the RHS. 2806 MVT::ValueType IVT = 2807 Tmp2.getValueType() == MVT::f32 ? MVT::i32 : MVT::i64; 2808 SDOperand SignBit = DAG.getNode(ISD::BIT_CONVERT, IVT, Tmp2); 2809 SignBit = DAG.getSetCC(TLI.getSetCCResultTy(), 2810 SignBit, DAG.getConstant(0, IVT), ISD::SETLT); 2811 // Get the absolute value of the result. 2812 SDOperand AbsVal = DAG.getNode(ISD::FABS, Tmp1.getValueType(), Tmp1); 2813 // Select between the nabs and abs value based on the sign bit of 2814 // the input. 2815 Result = DAG.getNode(ISD::SELECT, AbsVal.getValueType(), SignBit, 2816 DAG.getNode(ISD::FNEG, AbsVal.getValueType(), 2817 AbsVal), 2818 AbsVal); 2819 Result = LegalizeOp(Result); 2820 break; 2821 } 2822 2823 // Otherwise, do bitwise ops! 2824 MVT::ValueType NVT = 2825 Node->getValueType(0) == MVT::f32 ? MVT::i32 : MVT::i64; 2826 Result = ExpandFCOPYSIGNToBitwiseOps(Node, NVT, DAG, TLI); 2827 Result = DAG.getNode(ISD::BIT_CONVERT, Node->getValueType(0), Result); 2828 Result = LegalizeOp(Result); 2829 break; 2830 } 2831 } 2832 break; 2833 2834 case ISD::ADDC: 2835 case ISD::SUBC: 2836 Tmp1 = LegalizeOp(Node->getOperand(0)); 2837 Tmp2 = LegalizeOp(Node->getOperand(1)); 2838 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 2839 // Since this produces two values, make sure to remember that we legalized 2840 // both of them. 2841 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 2842 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 2843 return Result; 2844 2845 case ISD::ADDE: 2846 case ISD::SUBE: 2847 Tmp1 = LegalizeOp(Node->getOperand(0)); 2848 Tmp2 = LegalizeOp(Node->getOperand(1)); 2849 Tmp3 = LegalizeOp(Node->getOperand(2)); 2850 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2851 // Since this produces two values, make sure to remember that we legalized 2852 // both of them. 2853 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 2854 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 2855 return Result; 2856 2857 case ISD::BUILD_PAIR: { 2858 MVT::ValueType PairTy = Node->getValueType(0); 2859 // TODO: handle the case where the Lo and Hi operands are not of legal type 2860 Tmp1 = LegalizeOp(Node->getOperand(0)); // Lo 2861 Tmp2 = LegalizeOp(Node->getOperand(1)); // Hi 2862 switch (TLI.getOperationAction(ISD::BUILD_PAIR, PairTy)) { 2863 case TargetLowering::Promote: 2864 case TargetLowering::Custom: 2865 assert(0 && "Cannot promote/custom this yet!"); 2866 case TargetLowering::Legal: 2867 if (Tmp1 != Node->getOperand(0) || Tmp2 != Node->getOperand(1)) 2868 Result = DAG.getNode(ISD::BUILD_PAIR, PairTy, Tmp1, Tmp2); 2869 break; 2870 case TargetLowering::Expand: 2871 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, PairTy, Tmp1); 2872 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, PairTy, Tmp2); 2873 Tmp2 = DAG.getNode(ISD::SHL, PairTy, Tmp2, 2874 DAG.getConstant(MVT::getSizeInBits(PairTy)/2, 2875 TLI.getShiftAmountTy())); 2876 Result = DAG.getNode(ISD::OR, PairTy, Tmp1, Tmp2); 2877 break; 2878 } 2879 break; 2880 } 2881 2882 case ISD::UREM: 2883 case ISD::SREM: 2884 case ISD::FREM: 2885 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 2886 Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS 2887 2888 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 2889 case TargetLowering::Promote: assert(0 && "Cannot promote this yet!"); 2890 case TargetLowering::Custom: 2891 isCustom = true; 2892 // FALLTHROUGH 2893 case TargetLowering::Legal: 2894 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 2895 if (isCustom) { 2896 Tmp1 = TLI.LowerOperation(Result, DAG); 2897 if (Tmp1.Val) Result = Tmp1; 2898 } 2899 break; 2900 case TargetLowering::Expand: { 2901 unsigned DivOpc= (Node->getOpcode() == ISD::UREM) ? ISD::UDIV : ISD::SDIV; 2902 bool isSigned = DivOpc == ISD::SDIV; 2903 MVT::ValueType VT = Node->getValueType(0); 2904 2905 // See if remainder can be lowered using two-result operations. 2906 SDVTList VTs = DAG.getVTList(VT, VT); 2907 if (Node->getOpcode() == ISD::SREM && 2908 TLI.isOperationLegal(ISD::SDIVREM, VT)) { 2909 Result = SDOperand(DAG.getNode(ISD::SDIVREM, VTs, Tmp1, Tmp2).Val, 1); 2910 break; 2911 } 2912 if (Node->getOpcode() == ISD::UREM && 2913 TLI.isOperationLegal(ISD::UDIVREM, VT)) { 2914 Result = SDOperand(DAG.getNode(ISD::UDIVREM, VTs, Tmp1, Tmp2).Val, 1); 2915 break; 2916 } 2917 2918 if (MVT::isInteger(VT)) { 2919 if (TLI.getOperationAction(DivOpc, VT) == 2920 TargetLowering::Legal) { 2921 // X % Y -> X-X/Y*Y 2922 Result = DAG.getNode(DivOpc, VT, Tmp1, Tmp2); 2923 Result = DAG.getNode(ISD::MUL, VT, Result, Tmp2); 2924 Result = DAG.getNode(ISD::SUB, VT, Tmp1, Result); 2925 } else { 2926 assert(VT == MVT::i32 && 2927 "Cannot expand this binary operator!"); 2928 RTLIB::Libcall LC = Node->getOpcode() == ISD::UREM 2929 ? RTLIB::UREM_I32 : RTLIB::SREM_I32; 2930 SDOperand Dummy; 2931 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, isSigned, Dummy); 2932 } 2933 } else { 2934 // Floating point mod -> fmod libcall. 2935 RTLIB::Libcall LC = VT == MVT::f32 2936 ? RTLIB::REM_F32 : RTLIB::REM_F64; 2937 SDOperand Dummy; 2938 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, 2939 false/*sign irrelevant*/, Dummy); 2940 } 2941 break; 2942 } 2943 } 2944 break; 2945 case ISD::VAARG: { 2946 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2947 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. 2948 2949 MVT::ValueType VT = Node->getValueType(0); 2950 switch (TLI.getOperationAction(Node->getOpcode(), MVT::Other)) { 2951 default: assert(0 && "This action is not supported yet!"); 2952 case TargetLowering::Custom: 2953 isCustom = true; 2954 // FALLTHROUGH 2955 case TargetLowering::Legal: 2956 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 2957 Result = Result.getValue(0); 2958 Tmp1 = Result.getValue(1); 2959 2960 if (isCustom) { 2961 Tmp2 = TLI.LowerOperation(Result, DAG); 2962 if (Tmp2.Val) { 2963 Result = LegalizeOp(Tmp2); 2964 Tmp1 = LegalizeOp(Tmp2.getValue(1)); 2965 } 2966 } 2967 break; 2968 case TargetLowering::Expand: { 2969 SrcValueSDNode *SV = cast<SrcValueSDNode>(Node->getOperand(2)); 2970 SDOperand VAList = DAG.getLoad(TLI.getPointerTy(), Tmp1, Tmp2, 2971 SV->getValue(), SV->getOffset()); 2972 // Increment the pointer, VAList, to the next vaarg 2973 Tmp3 = DAG.getNode(ISD::ADD, TLI.getPointerTy(), VAList, 2974 DAG.getConstant(MVT::getSizeInBits(VT)/8, 2975 TLI.getPointerTy())); 2976 // Store the incremented VAList to the legalized pointer 2977 Tmp3 = DAG.getStore(VAList.getValue(1), Tmp3, Tmp2, SV->getValue(), 2978 SV->getOffset()); 2979 // Load the actual argument out of the pointer VAList 2980 Result = DAG.getLoad(VT, Tmp3, VAList, NULL, 0); 2981 Tmp1 = LegalizeOp(Result.getValue(1)); 2982 Result = LegalizeOp(Result); 2983 break; 2984 } 2985 } 2986 // Since VAARG produces two values, make sure to remember that we 2987 // legalized both of them. 2988 AddLegalizedOperand(SDOperand(Node, 0), Result); 2989 AddLegalizedOperand(SDOperand(Node, 1), Tmp1); 2990 return Op.ResNo ? Tmp1 : Result; 2991 } 2992 2993 case ISD::VACOPY: 2994 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2995 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the dest pointer. 2996 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the source pointer. 2997 2998 switch (TLI.getOperationAction(ISD::VACOPY, MVT::Other)) { 2999 default: assert(0 && "This action is not supported yet!"); 3000 case TargetLowering::Custom: 3001 isCustom = true; 3002 // FALLTHROUGH 3003 case TargetLowering::Legal: 3004 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, 3005 Node->getOperand(3), Node->getOperand(4)); 3006 if (isCustom) { 3007 Tmp1 = TLI.LowerOperation(Result, DAG); 3008 if (Tmp1.Val) Result = Tmp1; 3009 } 3010 break; 3011 case TargetLowering::Expand: 3012 // This defaults to loading a pointer from the input and storing it to the 3013 // output, returning the chain. 3014 SrcValueSDNode *SVD = cast<SrcValueSDNode>(Node->getOperand(3)); 3015 SrcValueSDNode *SVS = cast<SrcValueSDNode>(Node->getOperand(4)); 3016 Tmp4 = DAG.getLoad(TLI.getPointerTy(), Tmp1, Tmp3, SVD->getValue(), 3017 SVD->getOffset()); 3018 Result = DAG.getStore(Tmp4.getValue(1), Tmp4, Tmp2, SVS->getValue(), 3019 SVS->getOffset()); 3020 break; 3021 } 3022 break; 3023 3024 case ISD::VAEND: 3025 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 3026 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. 3027 3028 switch (TLI.getOperationAction(ISD::VAEND, MVT::Other)) { 3029 default: assert(0 && "This action is not supported yet!"); 3030 case TargetLowering::Custom: 3031 isCustom = true; 3032 // FALLTHROUGH 3033 case TargetLowering::Legal: 3034 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 3035 if (isCustom) { 3036 Tmp1 = TLI.LowerOperation(Tmp1, DAG); 3037 if (Tmp1.Val) Result = Tmp1; 3038 } 3039 break; 3040 case TargetLowering::Expand: 3041 Result = Tmp1; // Default to a no-op, return the chain 3042 break; 3043 } 3044 break; 3045 3046 case ISD::VASTART: 3047 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 3048 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. 3049 3050 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 3051 3052 switch (TLI.getOperationAction(ISD::VASTART, MVT::Other)) { 3053 default: assert(0 && "This action is not supported yet!"); 3054 case TargetLowering::Legal: break; 3055 case TargetLowering::Custom: 3056 Tmp1 = TLI.LowerOperation(Result, DAG); 3057 if (Tmp1.Val) Result = Tmp1; 3058 break; 3059 } 3060 break; 3061 3062 case ISD::ROTL: 3063 case ISD::ROTR: 3064 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 3065 Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS 3066 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3067 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3068 default: 3069 assert(0 && "ROTL/ROTR legalize operation not supported"); 3070 break; 3071 case TargetLowering::Legal: 3072 break; 3073 case TargetLowering::Custom: 3074 Tmp1 = TLI.LowerOperation(Result, DAG); 3075 if (Tmp1.Val) Result = Tmp1; 3076 break; 3077 case TargetLowering::Promote: 3078 assert(0 && "Do not know how to promote ROTL/ROTR"); 3079 break; 3080 case TargetLowering::Expand: 3081 assert(0 && "Do not know how to expand ROTL/ROTR"); 3082 break; 3083 } 3084 break; 3085 3086 case ISD::BSWAP: 3087 Tmp1 = LegalizeOp(Node->getOperand(0)); // Op 3088 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3089 case TargetLowering::Custom: 3090 assert(0 && "Cannot custom legalize this yet!"); 3091 case TargetLowering::Legal: 3092 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3093 break; 3094 case TargetLowering::Promote: { 3095 MVT::ValueType OVT = Tmp1.getValueType(); 3096 MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 3097 unsigned DiffBits = MVT::getSizeInBits(NVT) - MVT::getSizeInBits(OVT); 3098 3099 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Tmp1); 3100 Tmp1 = DAG.getNode(ISD::BSWAP, NVT, Tmp1); 3101 Result = DAG.getNode(ISD::SRL, NVT, Tmp1, 3102 DAG.getConstant(DiffBits, TLI.getShiftAmountTy())); 3103 break; 3104 } 3105 case TargetLowering::Expand: 3106 Result = ExpandBSWAP(Tmp1); 3107 break; 3108 } 3109 break; 3110 3111 case ISD::CTPOP: 3112 case ISD::CTTZ: 3113 case ISD::CTLZ: 3114 Tmp1 = LegalizeOp(Node->getOperand(0)); // Op 3115 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3116 case TargetLowering::Custom: 3117 case TargetLowering::Legal: 3118 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3119 if (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)) == 3120 TargetLowering::Custom) { 3121 Tmp1 = TLI.LowerOperation(Result, DAG); 3122 if (Tmp1.Val) { 3123 Result = Tmp1; 3124 } 3125 } 3126 break; 3127 case TargetLowering::Promote: { 3128 MVT::ValueType OVT = Tmp1.getValueType(); 3129 MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 3130 3131 // Zero extend the argument. 3132 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Tmp1); 3133 // Perform the larger operation, then subtract if needed. 3134 Tmp1 = DAG.getNode(Node->getOpcode(), Node->getValueType(0), Tmp1); 3135 switch (Node->getOpcode()) { 3136 case ISD::CTPOP: 3137 Result = Tmp1; 3138 break; 3139 case ISD::CTTZ: 3140 //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT) 3141 Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), Tmp1, 3142 DAG.getConstant(MVT::getSizeInBits(NVT), NVT), 3143 ISD::SETEQ); 3144 Result = DAG.getNode(ISD::SELECT, NVT, Tmp2, 3145 DAG.getConstant(MVT::getSizeInBits(OVT),NVT), Tmp1); 3146 break; 3147 case ISD::CTLZ: 3148 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 3149 Result = DAG.getNode(ISD::SUB, NVT, Tmp1, 3150 DAG.getConstant(MVT::getSizeInBits(NVT) - 3151 MVT::getSizeInBits(OVT), NVT)); 3152 break; 3153 } 3154 break; 3155 } 3156 case TargetLowering::Expand: 3157 Result = ExpandBitCount(Node->getOpcode(), Tmp1); 3158 break; 3159 } 3160 break; 3161 3162 // Unary operators 3163 case ISD::FABS: 3164 case ISD::FNEG: 3165 case ISD::FSQRT: 3166 case ISD::FSIN: 3167 case ISD::FCOS: 3168 Tmp1 = LegalizeOp(Node->getOperand(0)); 3169 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3170 case TargetLowering::Promote: 3171 case TargetLowering::Custom: 3172 isCustom = true; 3173 // FALLTHROUGH 3174 case TargetLowering::Legal: 3175 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3176 if (isCustom) { 3177 Tmp1 = TLI.LowerOperation(Result, DAG); 3178 if (Tmp1.Val) Result = Tmp1; 3179 } 3180 break; 3181 case TargetLowering::Expand: 3182 switch (Node->getOpcode()) { 3183 default: assert(0 && "Unreachable!"); 3184 case ISD::FNEG: 3185 // Expand Y = FNEG(X) -> Y = SUB -0.0, X 3186 Tmp2 = DAG.getConstantFP(-0.0, Node->getValueType(0)); 3187 Result = DAG.getNode(ISD::FSUB, Node->getValueType(0), Tmp2, Tmp1); 3188 break; 3189 case ISD::FABS: { 3190 // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X). 3191 MVT::ValueType VT = Node->getValueType(0); 3192 Tmp2 = DAG.getConstantFP(0.0, VT); 3193 Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), Tmp1, Tmp2, ISD::SETUGT); 3194 Tmp3 = DAG.getNode(ISD::FNEG, VT, Tmp1); 3195 Result = DAG.getNode(ISD::SELECT, VT, Tmp2, Tmp1, Tmp3); 3196 break; 3197 } 3198 case ISD::FSQRT: 3199 case ISD::FSIN: 3200 case ISD::FCOS: { 3201 MVT::ValueType VT = Node->getValueType(0); 3202 3203 // Expand unsupported unary vector operators by unrolling them. 3204 if (MVT::isVector(VT)) { 3205 Result = LegalizeOp(UnrollVectorOp(Op)); 3206 break; 3207 } 3208 3209 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 3210 switch(Node->getOpcode()) { 3211 case ISD::FSQRT: 3212 LC = VT == MVT::f32 ? RTLIB::SQRT_F32 : 3213 VT == MVT::f64 ? RTLIB::SQRT_F64 : 3214 VT == MVT::f80 ? RTLIB::SQRT_F80 : 3215 VT == MVT::ppcf128 ? RTLIB::SQRT_PPCF128 : 3216 RTLIB::UNKNOWN_LIBCALL; 3217 break; 3218 case ISD::FSIN: 3219 LC = VT == MVT::f32 ? RTLIB::SIN_F32 : RTLIB::SIN_F64; 3220 break; 3221 case ISD::FCOS: 3222 LC = VT == MVT::f32 ? RTLIB::COS_F32 : RTLIB::COS_F64; 3223 break; 3224 default: assert(0 && "Unreachable!"); 3225 } 3226 SDOperand Dummy; 3227 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, 3228 false/*sign irrelevant*/, Dummy); 3229 break; 3230 } 3231 } 3232 break; 3233 } 3234 break; 3235 case ISD::FPOWI: { 3236 MVT::ValueType VT = Node->getValueType(0); 3237 3238 // Expand unsupported unary vector operators by unrolling them. 3239 if (MVT::isVector(VT)) { 3240 Result = LegalizeOp(UnrollVectorOp(Op)); 3241 break; 3242 } 3243 3244 // We always lower FPOWI into a libcall. No target support for it yet. 3245 RTLIB::Libcall LC = 3246 VT == MVT::f32 ? RTLIB::POWI_F32 : 3247 VT == MVT::f64 ? RTLIB::POWI_F64 : 3248 VT == MVT::f80 ? RTLIB::POWI_F80 : 3249 VT == MVT::ppcf128 ? RTLIB::POWI_PPCF128 : 3250 RTLIB::UNKNOWN_LIBCALL; 3251 SDOperand Dummy; 3252 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, 3253 false/*sign irrelevant*/, Dummy); 3254 break; 3255 } 3256 case ISD::BIT_CONVERT: 3257 if (!isTypeLegal(Node->getOperand(0).getValueType())) { 3258 Result = ExpandBIT_CONVERT(Node->getValueType(0), Node->getOperand(0)); 3259 } else if (MVT::isVector(Op.getOperand(0).getValueType())) { 3260 // The input has to be a vector type, we have to either scalarize it, pack 3261 // it, or convert it based on whether the input vector type is legal. 3262 SDNode *InVal = Node->getOperand(0).Val; 3263 unsigned NumElems = MVT::getVectorNumElements(InVal->getValueType(0)); 3264 MVT::ValueType EVT = MVT::getVectorElementType(InVal->getValueType(0)); 3265 3266 // Figure out if there is a simple type corresponding to this Vector 3267 // type. If so, convert to the vector type. 3268 MVT::ValueType TVT = MVT::getVectorType(EVT, NumElems); 3269 if (TLI.isTypeLegal(TVT)) { 3270 // Turn this into a bit convert of the vector input. 3271 Result = DAG.getNode(ISD::BIT_CONVERT, Node->getValueType(0), 3272 LegalizeOp(Node->getOperand(0))); 3273 break; 3274 } else if (NumElems == 1) { 3275 // Turn this into a bit convert of the scalar input. 3276 Result = DAG.getNode(ISD::BIT_CONVERT, Node->getValueType(0), 3277 ScalarizeVectorOp(Node->getOperand(0))); 3278 break; 3279 } else { 3280 // FIXME: UNIMP! Store then reload 3281 assert(0 && "Cast from unsupported vector type not implemented yet!"); 3282 } 3283 } else { 3284 switch (TLI.getOperationAction(ISD::BIT_CONVERT, 3285 Node->getOperand(0).getValueType())) { 3286 default: assert(0 && "Unknown operation action!"); 3287 case TargetLowering::Expand: 3288 Result = ExpandBIT_CONVERT(Node->getValueType(0), Node->getOperand(0)); 3289 break; 3290 case TargetLowering::Legal: 3291 Tmp1 = LegalizeOp(Node->getOperand(0)); 3292 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3293 break; 3294 } 3295 } 3296 break; 3297 3298 // Conversion operators. The source and destination have different types. 3299 case ISD::SINT_TO_FP: 3300 case ISD::UINT_TO_FP: { 3301 bool isSigned = Node->getOpcode() == ISD::SINT_TO_FP; 3302 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3303 case Legal: 3304 switch (TLI.getOperationAction(Node->getOpcode(), 3305 Node->getOperand(0).getValueType())) { 3306 default: assert(0 && "Unknown operation action!"); 3307 case TargetLowering::Custom: 3308 isCustom = true; 3309 // FALLTHROUGH 3310 case TargetLowering::Legal: 3311 Tmp1 = LegalizeOp(Node->getOperand(0)); 3312 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3313 if (isCustom) { 3314 Tmp1 = TLI.LowerOperation(Result, DAG); 3315 if (Tmp1.Val) Result = Tmp1; 3316 } 3317 break; 3318 case TargetLowering::Expand: 3319 Result = ExpandLegalINT_TO_FP(isSigned, 3320 LegalizeOp(Node->getOperand(0)), 3321 Node->getValueType(0)); 3322 break; 3323 case TargetLowering::Promote: 3324 Result = PromoteLegalINT_TO_FP(LegalizeOp(Node->getOperand(0)), 3325 Node->getValueType(0), 3326 isSigned); 3327 break; 3328 } 3329 break; 3330 case Expand: 3331 Result = ExpandIntToFP(Node->getOpcode() == ISD::SINT_TO_FP, 3332 Node->getValueType(0), Node->getOperand(0)); 3333 break; 3334 case Promote: 3335 Tmp1 = PromoteOp(Node->getOperand(0)); 3336 if (isSigned) { 3337 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, Tmp1.getValueType(), 3338 Tmp1, DAG.getValueType(Node->getOperand(0).getValueType())); 3339 } else { 3340 Tmp1 = DAG.getZeroExtendInReg(Tmp1, 3341 Node->getOperand(0).getValueType()); 3342 } 3343 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3344 Result = LegalizeOp(Result); // The 'op' is not necessarily legal! 3345 break; 3346 } 3347 break; 3348 } 3349 case ISD::TRUNCATE: 3350 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3351 case Legal: 3352 Tmp1 = LegalizeOp(Node->getOperand(0)); 3353 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3354 break; 3355 case Expand: 3356 ExpandOp(Node->getOperand(0), Tmp1, Tmp2); 3357 3358 // Since the result is legal, we should just be able to truncate the low 3359 // part of the source. 3360 Result = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), Tmp1); 3361 break; 3362 case Promote: 3363 Result = PromoteOp(Node->getOperand(0)); 3364 Result = DAG.getNode(ISD::TRUNCATE, Op.getValueType(), Result); 3365 break; 3366 } 3367 break; 3368 3369 case ISD::FP_TO_SINT: 3370 case ISD::FP_TO_UINT: 3371 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3372 case Legal: 3373 Tmp1 = LegalizeOp(Node->getOperand(0)); 3374 3375 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))){ 3376 default: assert(0 && "Unknown operation action!"); 3377 case TargetLowering::Custom: 3378 isCustom = true; 3379 // FALLTHROUGH 3380 case TargetLowering::Legal: 3381 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3382 if (isCustom) { 3383 Tmp1 = TLI.LowerOperation(Result, DAG); 3384 if (Tmp1.Val) Result = Tmp1; 3385 } 3386 break; 3387 case TargetLowering::Promote: 3388 Result = PromoteLegalFP_TO_INT(Tmp1, Node->getValueType(0), 3389 Node->getOpcode() == ISD::FP_TO_SINT); 3390 break; 3391 case TargetLowering::Expand: 3392 if (Node->getOpcode() == ISD::FP_TO_UINT) { 3393 SDOperand True, False; 3394 MVT::ValueType VT = Node->getOperand(0).getValueType(); 3395 MVT::ValueType NVT = Node->getValueType(0); 3396 unsigned ShiftAmt = MVT::getSizeInBits(NVT)-1; 3397 const uint64_t zero[] = {0, 0}; 3398 APFloat apf = APFloat(APInt(MVT::getSizeInBits(VT), 2, zero)); 3399 uint64_t x = 1ULL << ShiftAmt; 3400 (void)apf.convertFromZeroExtendedInteger 3401 (&x, MVT::getSizeInBits(NVT), false, APFloat::rmNearestTiesToEven); 3402 Tmp2 = DAG.getConstantFP(apf, VT); 3403 Tmp3 = DAG.getSetCC(TLI.getSetCCResultTy(), 3404 Node->getOperand(0), Tmp2, ISD::SETLT); 3405 True = DAG.getNode(ISD::FP_TO_SINT, NVT, Node->getOperand(0)); 3406 False = DAG.getNode(ISD::FP_TO_SINT, NVT, 3407 DAG.getNode(ISD::FSUB, VT, Node->getOperand(0), 3408 Tmp2)); 3409 False = DAG.getNode(ISD::XOR, NVT, False, 3410 DAG.getConstant(1ULL << ShiftAmt, NVT)); 3411 Result = DAG.getNode(ISD::SELECT, NVT, Tmp3, True, False); 3412 break; 3413 } else { 3414 assert(0 && "Do not know how to expand FP_TO_SINT yet!"); 3415 } 3416 break; 3417 } 3418 break; 3419 case Expand: { 3420 MVT::ValueType VT = Op.getValueType(); 3421 MVT::ValueType OVT = Node->getOperand(0).getValueType(); 3422 // Convert ppcf128 to i32 3423 if (OVT == MVT::ppcf128 && VT == MVT::i32) { 3424 if (Node->getOpcode()==ISD::FP_TO_SINT) 3425 Result = DAG.getNode(ISD::FP_TO_SINT, VT, 3426 DAG.getNode(ISD::FP_ROUND, MVT::f64, 3427 (DAG.getNode(ISD::FP_ROUND_INREG, 3428 MVT::ppcf128, Node->getOperand(0), 3429 DAG.getValueType(MVT::f64))))); 3430 else { 3431 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 3432 APFloat apf = APFloat(APInt(128, 2, TwoE31)); 3433 Tmp2 = DAG.getConstantFP(apf, OVT); 3434 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 3435 // FIXME: generated code sucks. 3436 Result = DAG.getNode(ISD::SELECT_CC, VT, Node->getOperand(0), Tmp2, 3437 DAG.getNode(ISD::ADD, MVT::i32, 3438 DAG.getNode(ISD::FP_TO_SINT, VT, 3439 DAG.getNode(ISD::FSUB, OVT, 3440 Node->getOperand(0), Tmp2)), 3441 DAG.getConstant(0x80000000, MVT::i32)), 3442 DAG.getNode(ISD::FP_TO_SINT, VT, 3443 Node->getOperand(0)), 3444 DAG.getCondCode(ISD::SETGE)); 3445 } 3446 break; 3447 } 3448 // Convert f32 / f64 to i32 / i64. 3449 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 3450 switch (Node->getOpcode()) { 3451 case ISD::FP_TO_SINT: { 3452 if (OVT == MVT::f32) 3453 LC = (VT == MVT::i32) 3454 ? RTLIB::FPTOSINT_F32_I32 : RTLIB::FPTOSINT_F32_I64; 3455 else if (OVT == MVT::f64) 3456 LC = (VT == MVT::i32) 3457 ? RTLIB::FPTOSINT_F64_I32 : RTLIB::FPTOSINT_F64_I64; 3458 else if (OVT == MVT::f80) { 3459 assert(VT == MVT::i64); 3460 LC = RTLIB::FPTOSINT_F80_I64; 3461 } 3462 else if (OVT == MVT::ppcf128) { 3463 assert(VT == MVT::i64); 3464 LC = RTLIB::FPTOSINT_PPCF128_I64; 3465 } 3466 break; 3467 } 3468 case ISD::FP_TO_UINT: { 3469 if (OVT == MVT::f32) 3470 LC = (VT == MVT::i32) 3471 ? RTLIB::FPTOUINT_F32_I32 : RTLIB::FPTOSINT_F32_I64; 3472 else if (OVT == MVT::f64) 3473 LC = (VT == MVT::i32) 3474 ? RTLIB::FPTOUINT_F64_I32 : RTLIB::FPTOSINT_F64_I64; 3475 else if (OVT == MVT::f80) { 3476 LC = (VT == MVT::i32) 3477 ? RTLIB::FPTOUINT_F80_I32 : RTLIB::FPTOUINT_F80_I64; 3478 } 3479 else if (OVT == MVT::ppcf128) { 3480 assert(VT == MVT::i64); 3481 LC = RTLIB::FPTOUINT_PPCF128_I64; 3482 } 3483 break; 3484 } 3485 default: assert(0 && "Unreachable!"); 3486 } 3487 SDOperand Dummy; 3488 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, 3489 false/*sign irrelevant*/, Dummy); 3490 break; 3491 } 3492 case Promote: 3493 Tmp1 = PromoteOp(Node->getOperand(0)); 3494 Result = DAG.UpdateNodeOperands(Result, LegalizeOp(Tmp1)); 3495 Result = LegalizeOp(Result); 3496 break; 3497 } 3498 break; 3499 3500 case ISD::FP_EXTEND: 3501 case ISD::FP_ROUND: { 3502 MVT::ValueType newVT = Op.getValueType(); 3503 MVT::ValueType oldVT = Op.getOperand(0).getValueType(); 3504 if (TLI.getConvertAction(oldVT, newVT) == TargetLowering::Expand) { 3505 if (Node->getOpcode() == ISD::FP_ROUND && oldVT == MVT::ppcf128) { 3506 SDOperand Lo, Hi; 3507 ExpandOp(Node->getOperand(0), Lo, Hi); 3508 if (newVT == MVT::f64) 3509 Result = Hi; 3510 else 3511 Result = DAG.getNode(ISD::FP_ROUND, newVT, Hi); 3512 break; 3513 } else { 3514 // The only other way we can lower this is to turn it into a STORE, 3515 // LOAD pair, targetting a temporary location (a stack slot). 3516 3517 // NOTE: there is a choice here between constantly creating new stack 3518 // slots and always reusing the same one. We currently always create 3519 // new ones, as reuse may inhibit scheduling. 3520 MVT::ValueType slotVT = 3521 (Node->getOpcode() == ISD::FP_EXTEND) ? oldVT : newVT; 3522 const Type *Ty = MVT::getTypeForValueType(slotVT); 3523 uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty); 3524 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty); 3525 MachineFunction &MF = DAG.getMachineFunction(); 3526 int SSFI = 3527 MF.getFrameInfo()->CreateStackObject(TySize, Align); 3528 SDOperand StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 3529 if (Node->getOpcode() == ISD::FP_EXTEND) { 3530 Result = DAG.getStore(DAG.getEntryNode(), Node->getOperand(0), 3531 StackSlot, NULL, 0); 3532 Result = DAG.getExtLoad(ISD::EXTLOAD, newVT, 3533 Result, StackSlot, NULL, 0, oldVT); 3534 } else { 3535 Result = DAG.getTruncStore(DAG.getEntryNode(), Node->getOperand(0), 3536 StackSlot, NULL, 0, newVT); 3537 Result = DAG.getLoad(newVT, Result, StackSlot, NULL, 0); 3538 } 3539 break; 3540 } 3541 } 3542 } 3543 // FALL THROUGH 3544 case ISD::ANY_EXTEND: 3545 case ISD::ZERO_EXTEND: 3546 case ISD::SIGN_EXTEND: 3547 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3548 case Expand: assert(0 && "Shouldn't need to expand other operators here!"); 3549 case Legal: 3550 Tmp1 = LegalizeOp(Node->getOperand(0)); 3551 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3552 break; 3553 case Promote: 3554 switch (Node->getOpcode()) { 3555 case ISD::ANY_EXTEND: 3556 Tmp1 = PromoteOp(Node->getOperand(0)); 3557 Result = DAG.getNode(ISD::ANY_EXTEND, Op.getValueType(), Tmp1); 3558 break; 3559 case ISD::ZERO_EXTEND: 3560 Result = PromoteOp(Node->getOperand(0)); 3561 Result = DAG.getNode(ISD::ANY_EXTEND, Op.getValueType(), Result); 3562 Result = DAG.getZeroExtendInReg(Result, 3563 Node->getOperand(0).getValueType()); 3564 break; 3565 case ISD::SIGN_EXTEND: 3566 Result = PromoteOp(Node->getOperand(0)); 3567 Result = DAG.getNode(ISD::ANY_EXTEND, Op.getValueType(), Result); 3568 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(), 3569 Result, 3570 DAG.getValueType(Node->getOperand(0).getValueType())); 3571 break; 3572 case ISD::FP_EXTEND: 3573 Result = PromoteOp(Node->getOperand(0)); 3574 if (Result.getValueType() != Op.getValueType()) 3575 // Dynamically dead while we have only 2 FP types. 3576 Result = DAG.getNode(ISD::FP_EXTEND, Op.getValueType(), Result); 3577 break; 3578 case ISD::FP_ROUND: 3579 Result = PromoteOp(Node->getOperand(0)); 3580 Result = DAG.getNode(Node->getOpcode(), Op.getValueType(), Result); 3581 break; 3582 } 3583 } 3584 break; 3585 case ISD::FP_ROUND_INREG: 3586 case ISD::SIGN_EXTEND_INREG: { 3587 Tmp1 = LegalizeOp(Node->getOperand(0)); 3588 MVT::ValueType ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 3589 3590 // If this operation is not supported, convert it to a shl/shr or load/store 3591 // pair. 3592 switch (TLI.getOperationAction(Node->getOpcode(), ExtraVT)) { 3593 default: assert(0 && "This action not supported for this op yet!"); 3594 case TargetLowering::Legal: 3595 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 3596 break; 3597 case TargetLowering::Expand: 3598 // If this is an integer extend and shifts are supported, do that. 3599 if (Node->getOpcode() == ISD::SIGN_EXTEND_INREG) { 3600 // NOTE: we could fall back on load/store here too for targets without 3601 // SAR. However, it is doubtful that any exist. 3602 unsigned BitsDiff = MVT::getSizeInBits(Node->getValueType(0)) - 3603 MVT::getSizeInBits(ExtraVT); 3604 SDOperand ShiftCst = DAG.getConstant(BitsDiff, TLI.getShiftAmountTy()); 3605 Result = DAG.getNode(ISD::SHL, Node->getValueType(0), 3606 Node->getOperand(0), ShiftCst); 3607 Result = DAG.getNode(ISD::SRA, Node->getValueType(0), 3608 Result, ShiftCst); 3609 } else if (Node->getOpcode() == ISD::FP_ROUND_INREG) { 3610 // The only way we can lower this is to turn it into a TRUNCSTORE, 3611 // EXTLOAD pair, targetting a temporary location (a stack slot). 3612 3613 // NOTE: there is a choice here between constantly creating new stack 3614 // slots and always reusing the same one. We currently always create 3615 // new ones, as reuse may inhibit scheduling. 3616 const Type *Ty = MVT::getTypeForValueType(ExtraVT); 3617 uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty); 3618 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty); 3619 MachineFunction &MF = DAG.getMachineFunction(); 3620 int SSFI = 3621 MF.getFrameInfo()->CreateStackObject(TySize, Align); 3622 SDOperand StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 3623 Result = DAG.getTruncStore(DAG.getEntryNode(), Node->getOperand(0), 3624 StackSlot, NULL, 0, ExtraVT); 3625 Result = DAG.getExtLoad(ISD::EXTLOAD, Node->getValueType(0), 3626 Result, StackSlot, NULL, 0, ExtraVT); 3627 } else { 3628 assert(0 && "Unknown op"); 3629 } 3630 break; 3631 } 3632 break; 3633 } 3634 case ISD::TRAMPOLINE: { 3635 SDOperand Ops[6]; 3636 for (unsigned i = 0; i != 6; ++i) 3637 Ops[i] = LegalizeOp(Node->getOperand(i)); 3638 Result = DAG.UpdateNodeOperands(Result, Ops, 6); 3639 // The only option for this node is to custom lower it. 3640 Result = TLI.LowerOperation(Result, DAG); 3641 assert(Result.Val && "Should always custom lower!"); 3642 3643 // Since trampoline produces two values, make sure to remember that we 3644 // legalized both of them. 3645 Tmp1 = LegalizeOp(Result.getValue(1)); 3646 Result = LegalizeOp(Result); 3647 AddLegalizedOperand(SDOperand(Node, 0), Result); 3648 AddLegalizedOperand(SDOperand(Node, 1), Tmp1); 3649 return Op.ResNo ? Tmp1 : Result; 3650 } 3651 } 3652 3653 assert(Result.getValueType() == Op.getValueType() && 3654 "Bad legalization!"); 3655 3656 // Make sure that the generated code is itself legal. 3657 if (Result != Op) 3658 Result = LegalizeOp(Result); 3659 3660 // Note that LegalizeOp may be reentered even from single-use nodes, which 3661 // means that we always must cache transformed nodes. 3662 AddLegalizedOperand(Op, Result); 3663 return Result; 3664} 3665 3666/// PromoteOp - Given an operation that produces a value in an invalid type, 3667/// promote it to compute the value into a larger type. The produced value will 3668/// have the correct bits for the low portion of the register, but no guarantee 3669/// is made about the top bits: it may be zero, sign-extended, or garbage. 3670SDOperand SelectionDAGLegalize::PromoteOp(SDOperand Op) { 3671 MVT::ValueType VT = Op.getValueType(); 3672 MVT::ValueType NVT = TLI.getTypeToTransformTo(VT); 3673 assert(getTypeAction(VT) == Promote && 3674 "Caller should expand or legalize operands that are not promotable!"); 3675 assert(NVT > VT && MVT::isInteger(NVT) == MVT::isInteger(VT) && 3676 "Cannot promote to smaller type!"); 3677 3678 SDOperand Tmp1, Tmp2, Tmp3; 3679 SDOperand Result; 3680 SDNode *Node = Op.Val; 3681 3682 DenseMap<SDOperand, SDOperand>::iterator I = PromotedNodes.find(Op); 3683 if (I != PromotedNodes.end()) return I->second; 3684 3685 switch (Node->getOpcode()) { 3686 case ISD::CopyFromReg: 3687 assert(0 && "CopyFromReg must be legal!"); 3688 default: 3689#ifndef NDEBUG 3690 cerr << "NODE: "; Node->dump(&DAG); cerr << "\n"; 3691#endif 3692 assert(0 && "Do not know how to promote this operator!"); 3693 abort(); 3694 case ISD::UNDEF: 3695 Result = DAG.getNode(ISD::UNDEF, NVT); 3696 break; 3697 case ISD::Constant: 3698 if (VT != MVT::i1) 3699 Result = DAG.getNode(ISD::SIGN_EXTEND, NVT, Op); 3700 else 3701 Result = DAG.getNode(ISD::ZERO_EXTEND, NVT, Op); 3702 assert(isa<ConstantSDNode>(Result) && "Didn't constant fold zext?"); 3703 break; 3704 case ISD::ConstantFP: 3705 Result = DAG.getNode(ISD::FP_EXTEND, NVT, Op); 3706 assert(isa<ConstantFPSDNode>(Result) && "Didn't constant fold fp_extend?"); 3707 break; 3708 3709 case ISD::SETCC: 3710 assert(isTypeLegal(TLI.getSetCCResultTy()) && "SetCC type is not legal??"); 3711 Result = DAG.getNode(ISD::SETCC, TLI.getSetCCResultTy(),Node->getOperand(0), 3712 Node->getOperand(1), Node->getOperand(2)); 3713 break; 3714 3715 case ISD::TRUNCATE: 3716 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3717 case Legal: 3718 Result = LegalizeOp(Node->getOperand(0)); 3719 assert(Result.getValueType() >= NVT && 3720 "This truncation doesn't make sense!"); 3721 if (Result.getValueType() > NVT) // Truncate to NVT instead of VT 3722 Result = DAG.getNode(ISD::TRUNCATE, NVT, Result); 3723 break; 3724 case Promote: 3725 // The truncation is not required, because we don't guarantee anything 3726 // about high bits anyway. 3727 Result = PromoteOp(Node->getOperand(0)); 3728 break; 3729 case Expand: 3730 ExpandOp(Node->getOperand(0), Tmp1, Tmp2); 3731 // Truncate the low part of the expanded value to the result type 3732 Result = DAG.getNode(ISD::TRUNCATE, NVT, Tmp1); 3733 } 3734 break; 3735 case ISD::SIGN_EXTEND: 3736 case ISD::ZERO_EXTEND: 3737 case ISD::ANY_EXTEND: 3738 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3739 case Expand: assert(0 && "BUG: Smaller reg should have been promoted!"); 3740 case Legal: 3741 // Input is legal? Just do extend all the way to the larger type. 3742 Result = DAG.getNode(Node->getOpcode(), NVT, Node->getOperand(0)); 3743 break; 3744 case Promote: 3745 // Promote the reg if it's smaller. 3746 Result = PromoteOp(Node->getOperand(0)); 3747 // The high bits are not guaranteed to be anything. Insert an extend. 3748 if (Node->getOpcode() == ISD::SIGN_EXTEND) 3749 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Result, 3750 DAG.getValueType(Node->getOperand(0).getValueType())); 3751 else if (Node->getOpcode() == ISD::ZERO_EXTEND) 3752 Result = DAG.getZeroExtendInReg(Result, 3753 Node->getOperand(0).getValueType()); 3754 break; 3755 } 3756 break; 3757 case ISD::BIT_CONVERT: 3758 Result = ExpandBIT_CONVERT(Node->getValueType(0), Node->getOperand(0)); 3759 Result = PromoteOp(Result); 3760 break; 3761 3762 case ISD::FP_EXTEND: 3763 assert(0 && "Case not implemented. Dynamically dead with 2 FP types!"); 3764 case ISD::FP_ROUND: 3765 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3766 case Expand: assert(0 && "BUG: Cannot expand FP regs!"); 3767 case Promote: assert(0 && "Unreachable with 2 FP types!"); 3768 case Legal: 3769 // Input is legal? Do an FP_ROUND_INREG. 3770 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Node->getOperand(0), 3771 DAG.getValueType(VT)); 3772 break; 3773 } 3774 break; 3775 3776 case ISD::SINT_TO_FP: 3777 case ISD::UINT_TO_FP: 3778 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3779 case Legal: 3780 // No extra round required here. 3781 Result = DAG.getNode(Node->getOpcode(), NVT, Node->getOperand(0)); 3782 break; 3783 3784 case Promote: 3785 Result = PromoteOp(Node->getOperand(0)); 3786 if (Node->getOpcode() == ISD::SINT_TO_FP) 3787 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(), 3788 Result, 3789 DAG.getValueType(Node->getOperand(0).getValueType())); 3790 else 3791 Result = DAG.getZeroExtendInReg(Result, 3792 Node->getOperand(0).getValueType()); 3793 // No extra round required here. 3794 Result = DAG.getNode(Node->getOpcode(), NVT, Result); 3795 break; 3796 case Expand: 3797 Result = ExpandIntToFP(Node->getOpcode() == ISD::SINT_TO_FP, NVT, 3798 Node->getOperand(0)); 3799 // Round if we cannot tolerate excess precision. 3800 if (NoExcessFPPrecision) 3801 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 3802 DAG.getValueType(VT)); 3803 break; 3804 } 3805 break; 3806 3807 case ISD::SIGN_EXTEND_INREG: 3808 Result = PromoteOp(Node->getOperand(0)); 3809 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Result, 3810 Node->getOperand(1)); 3811 break; 3812 case ISD::FP_TO_SINT: 3813 case ISD::FP_TO_UINT: 3814 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3815 case Legal: 3816 case Expand: 3817 Tmp1 = Node->getOperand(0); 3818 break; 3819 case Promote: 3820 // The input result is prerounded, so we don't have to do anything 3821 // special. 3822 Tmp1 = PromoteOp(Node->getOperand(0)); 3823 break; 3824 } 3825 // If we're promoting a UINT to a larger size, check to see if the new node 3826 // will be legal. If it isn't, check to see if FP_TO_SINT is legal, since 3827 // we can use that instead. This allows us to generate better code for 3828 // FP_TO_UINT for small destination sizes on targets where FP_TO_UINT is not 3829 // legal, such as PowerPC. 3830 if (Node->getOpcode() == ISD::FP_TO_UINT && 3831 !TLI.isOperationLegal(ISD::FP_TO_UINT, NVT) && 3832 (TLI.isOperationLegal(ISD::FP_TO_SINT, NVT) || 3833 TLI.getOperationAction(ISD::FP_TO_SINT, NVT)==TargetLowering::Custom)){ 3834 Result = DAG.getNode(ISD::FP_TO_SINT, NVT, Tmp1); 3835 } else { 3836 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1); 3837 } 3838 break; 3839 3840 case ISD::FABS: 3841 case ISD::FNEG: 3842 Tmp1 = PromoteOp(Node->getOperand(0)); 3843 assert(Tmp1.getValueType() == NVT); 3844 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1); 3845 // NOTE: we do not have to do any extra rounding here for 3846 // NoExcessFPPrecision, because we know the input will have the appropriate 3847 // precision, and these operations don't modify precision at all. 3848 break; 3849 3850 case ISD::FSQRT: 3851 case ISD::FSIN: 3852 case ISD::FCOS: 3853 Tmp1 = PromoteOp(Node->getOperand(0)); 3854 assert(Tmp1.getValueType() == NVT); 3855 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1); 3856 if (NoExcessFPPrecision) 3857 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 3858 DAG.getValueType(VT)); 3859 break; 3860 3861 case ISD::FPOWI: { 3862 // Promote f32 powi to f64 powi. Note that this could insert a libcall 3863 // directly as well, which may be better. 3864 Tmp1 = PromoteOp(Node->getOperand(0)); 3865 assert(Tmp1.getValueType() == NVT); 3866 Result = DAG.getNode(ISD::FPOWI, NVT, Tmp1, Node->getOperand(1)); 3867 if (NoExcessFPPrecision) 3868 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 3869 DAG.getValueType(VT)); 3870 break; 3871 } 3872 3873 case ISD::AND: 3874 case ISD::OR: 3875 case ISD::XOR: 3876 case ISD::ADD: 3877 case ISD::SUB: 3878 case ISD::MUL: 3879 // The input may have strange things in the top bits of the registers, but 3880 // these operations don't care. They may have weird bits going out, but 3881 // that too is okay if they are integer operations. 3882 Tmp1 = PromoteOp(Node->getOperand(0)); 3883 Tmp2 = PromoteOp(Node->getOperand(1)); 3884 assert(Tmp1.getValueType() == NVT && Tmp2.getValueType() == NVT); 3885 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 3886 break; 3887 case ISD::FADD: 3888 case ISD::FSUB: 3889 case ISD::FMUL: 3890 Tmp1 = PromoteOp(Node->getOperand(0)); 3891 Tmp2 = PromoteOp(Node->getOperand(1)); 3892 assert(Tmp1.getValueType() == NVT && Tmp2.getValueType() == NVT); 3893 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 3894 3895 // Floating point operations will give excess precision that we may not be 3896 // able to tolerate. If we DO allow excess precision, just leave it, 3897 // otherwise excise it. 3898 // FIXME: Why would we need to round FP ops more than integer ones? 3899 // Is Round(Add(Add(A,B),C)) != Round(Add(Round(Add(A,B)), C)) 3900 if (NoExcessFPPrecision) 3901 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 3902 DAG.getValueType(VT)); 3903 break; 3904 3905 case ISD::SDIV: 3906 case ISD::SREM: 3907 // These operators require that their input be sign extended. 3908 Tmp1 = PromoteOp(Node->getOperand(0)); 3909 Tmp2 = PromoteOp(Node->getOperand(1)); 3910 if (MVT::isInteger(NVT)) { 3911 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp1, 3912 DAG.getValueType(VT)); 3913 Tmp2 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp2, 3914 DAG.getValueType(VT)); 3915 } 3916 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 3917 3918 // Perform FP_ROUND: this is probably overly pessimistic. 3919 if (MVT::isFloatingPoint(NVT) && NoExcessFPPrecision) 3920 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 3921 DAG.getValueType(VT)); 3922 break; 3923 case ISD::FDIV: 3924 case ISD::FREM: 3925 case ISD::FCOPYSIGN: 3926 // These operators require that their input be fp extended. 3927 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3928 case Legal: 3929 Tmp1 = LegalizeOp(Node->getOperand(0)); 3930 break; 3931 case Promote: 3932 Tmp1 = PromoteOp(Node->getOperand(0)); 3933 break; 3934 case Expand: 3935 assert(0 && "not implemented"); 3936 } 3937 switch (getTypeAction(Node->getOperand(1).getValueType())) { 3938 case Legal: 3939 Tmp2 = LegalizeOp(Node->getOperand(1)); 3940 break; 3941 case Promote: 3942 Tmp2 = PromoteOp(Node->getOperand(1)); 3943 break; 3944 case Expand: 3945 assert(0 && "not implemented"); 3946 } 3947 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 3948 3949 // Perform FP_ROUND: this is probably overly pessimistic. 3950 if (NoExcessFPPrecision && Node->getOpcode() != ISD::FCOPYSIGN) 3951 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 3952 DAG.getValueType(VT)); 3953 break; 3954 3955 case ISD::UDIV: 3956 case ISD::UREM: 3957 // These operators require that their input be zero extended. 3958 Tmp1 = PromoteOp(Node->getOperand(0)); 3959 Tmp2 = PromoteOp(Node->getOperand(1)); 3960 assert(MVT::isInteger(NVT) && "Operators don't apply to FP!"); 3961 Tmp1 = DAG.getZeroExtendInReg(Tmp1, VT); 3962 Tmp2 = DAG.getZeroExtendInReg(Tmp2, VT); 3963 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 3964 break; 3965 3966 case ISD::SHL: 3967 Tmp1 = PromoteOp(Node->getOperand(0)); 3968 Result = DAG.getNode(ISD::SHL, NVT, Tmp1, Node->getOperand(1)); 3969 break; 3970 case ISD::SRA: 3971 // The input value must be properly sign extended. 3972 Tmp1 = PromoteOp(Node->getOperand(0)); 3973 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp1, 3974 DAG.getValueType(VT)); 3975 Result = DAG.getNode(ISD::SRA, NVT, Tmp1, Node->getOperand(1)); 3976 break; 3977 case ISD::SRL: 3978 // The input value must be properly zero extended. 3979 Tmp1 = PromoteOp(Node->getOperand(0)); 3980 Tmp1 = DAG.getZeroExtendInReg(Tmp1, VT); 3981 Result = DAG.getNode(ISD::SRL, NVT, Tmp1, Node->getOperand(1)); 3982 break; 3983 3984 case ISD::VAARG: 3985 Tmp1 = Node->getOperand(0); // Get the chain. 3986 Tmp2 = Node->getOperand(1); // Get the pointer. 3987 if (TLI.getOperationAction(ISD::VAARG, VT) == TargetLowering::Custom) { 3988 Tmp3 = DAG.getVAArg(VT, Tmp1, Tmp2, Node->getOperand(2)); 3989 Result = TLI.CustomPromoteOperation(Tmp3, DAG); 3990 } else { 3991 SrcValueSDNode *SV = cast<SrcValueSDNode>(Node->getOperand(2)); 3992 SDOperand VAList = DAG.getLoad(TLI.getPointerTy(), Tmp1, Tmp2, 3993 SV->getValue(), SV->getOffset()); 3994 // Increment the pointer, VAList, to the next vaarg 3995 Tmp3 = DAG.getNode(ISD::ADD, TLI.getPointerTy(), VAList, 3996 DAG.getConstant(MVT::getSizeInBits(VT)/8, 3997 TLI.getPointerTy())); 3998 // Store the incremented VAList to the legalized pointer 3999 Tmp3 = DAG.getStore(VAList.getValue(1), Tmp3, Tmp2, SV->getValue(), 4000 SV->getOffset()); 4001 // Load the actual argument out of the pointer VAList 4002 Result = DAG.getExtLoad(ISD::EXTLOAD, NVT, Tmp3, VAList, NULL, 0, VT); 4003 } 4004 // Remember that we legalized the chain. 4005 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); 4006 break; 4007 4008 case ISD::LOAD: { 4009 LoadSDNode *LD = cast<LoadSDNode>(Node); 4010 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(Node) 4011 ? ISD::EXTLOAD : LD->getExtensionType(); 4012 Result = DAG.getExtLoad(ExtType, NVT, 4013 LD->getChain(), LD->getBasePtr(), 4014 LD->getSrcValue(), LD->getSrcValueOffset(), 4015 LD->getLoadedVT(), 4016 LD->isVolatile(), 4017 LD->getAlignment()); 4018 // Remember that we legalized the chain. 4019 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); 4020 break; 4021 } 4022 case ISD::SELECT: 4023 Tmp2 = PromoteOp(Node->getOperand(1)); // Legalize the op0 4024 Tmp3 = PromoteOp(Node->getOperand(2)); // Legalize the op1 4025 Result = DAG.getNode(ISD::SELECT, NVT, Node->getOperand(0), Tmp2, Tmp3); 4026 break; 4027 case ISD::SELECT_CC: 4028 Tmp2 = PromoteOp(Node->getOperand(2)); // True 4029 Tmp3 = PromoteOp(Node->getOperand(3)); // False 4030 Result = DAG.getNode(ISD::SELECT_CC, NVT, Node->getOperand(0), 4031 Node->getOperand(1), Tmp2, Tmp3, Node->getOperand(4)); 4032 break; 4033 case ISD::BSWAP: 4034 Tmp1 = Node->getOperand(0); 4035 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Tmp1); 4036 Tmp1 = DAG.getNode(ISD::BSWAP, NVT, Tmp1); 4037 Result = DAG.getNode(ISD::SRL, NVT, Tmp1, 4038 DAG.getConstant(MVT::getSizeInBits(NVT) - 4039 MVT::getSizeInBits(VT), 4040 TLI.getShiftAmountTy())); 4041 break; 4042 case ISD::CTPOP: 4043 case ISD::CTTZ: 4044 case ISD::CTLZ: 4045 // Zero extend the argument 4046 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Node->getOperand(0)); 4047 // Perform the larger operation, then subtract if needed. 4048 Tmp1 = DAG.getNode(Node->getOpcode(), NVT, Tmp1); 4049 switch(Node->getOpcode()) { 4050 case ISD::CTPOP: 4051 Result = Tmp1; 4052 break; 4053 case ISD::CTTZ: 4054 // if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT) 4055 Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), Tmp1, 4056 DAG.getConstant(MVT::getSizeInBits(NVT), NVT), 4057 ISD::SETEQ); 4058 Result = DAG.getNode(ISD::SELECT, NVT, Tmp2, 4059 DAG.getConstant(MVT::getSizeInBits(VT), NVT), Tmp1); 4060 break; 4061 case ISD::CTLZ: 4062 //Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 4063 Result = DAG.getNode(ISD::SUB, NVT, Tmp1, 4064 DAG.getConstant(MVT::getSizeInBits(NVT) - 4065 MVT::getSizeInBits(VT), NVT)); 4066 break; 4067 } 4068 break; 4069 case ISD::EXTRACT_SUBVECTOR: 4070 Result = PromoteOp(ExpandEXTRACT_SUBVECTOR(Op)); 4071 break; 4072 case ISD::EXTRACT_VECTOR_ELT: 4073 Result = PromoteOp(ExpandEXTRACT_VECTOR_ELT(Op)); 4074 break; 4075 } 4076 4077 assert(Result.Val && "Didn't set a result!"); 4078 4079 // Make sure the result is itself legal. 4080 Result = LegalizeOp(Result); 4081 4082 // Remember that we promoted this! 4083 AddPromotedOperand(Op, Result); 4084 return Result; 4085} 4086 4087/// ExpandEXTRACT_VECTOR_ELT - Expand an EXTRACT_VECTOR_ELT operation into 4088/// a legal EXTRACT_VECTOR_ELT operation, scalar code, or memory traffic, 4089/// based on the vector type. The return type of this matches the element type 4090/// of the vector, which may not be legal for the target. 4091SDOperand SelectionDAGLegalize::ExpandEXTRACT_VECTOR_ELT(SDOperand Op) { 4092 // We know that operand #0 is the Vec vector. If the index is a constant 4093 // or if the invec is a supported hardware type, we can use it. Otherwise, 4094 // lower to a store then an indexed load. 4095 SDOperand Vec = Op.getOperand(0); 4096 SDOperand Idx = Op.getOperand(1); 4097 4098 MVT::ValueType TVT = Vec.getValueType(); 4099 unsigned NumElems = MVT::getVectorNumElements(TVT); 4100 4101 switch (TLI.getOperationAction(ISD::EXTRACT_VECTOR_ELT, TVT)) { 4102 default: assert(0 && "This action is not supported yet!"); 4103 case TargetLowering::Custom: { 4104 Vec = LegalizeOp(Vec); 4105 Op = DAG.UpdateNodeOperands(Op, Vec, Idx); 4106 SDOperand Tmp3 = TLI.LowerOperation(Op, DAG); 4107 if (Tmp3.Val) 4108 return Tmp3; 4109 break; 4110 } 4111 case TargetLowering::Legal: 4112 if (isTypeLegal(TVT)) { 4113 Vec = LegalizeOp(Vec); 4114 Op = DAG.UpdateNodeOperands(Op, Vec, Idx); 4115 return Op; 4116 } 4117 break; 4118 case TargetLowering::Expand: 4119 break; 4120 } 4121 4122 if (NumElems == 1) { 4123 // This must be an access of the only element. Return it. 4124 Op = ScalarizeVectorOp(Vec); 4125 } else if (!TLI.isTypeLegal(TVT) && isa<ConstantSDNode>(Idx)) { 4126 ConstantSDNode *CIdx = cast<ConstantSDNode>(Idx); 4127 SDOperand Lo, Hi; 4128 SplitVectorOp(Vec, Lo, Hi); 4129 if (CIdx->getValue() < NumElems/2) { 4130 Vec = Lo; 4131 } else { 4132 Vec = Hi; 4133 Idx = DAG.getConstant(CIdx->getValue() - NumElems/2, 4134 Idx.getValueType()); 4135 } 4136 4137 // It's now an extract from the appropriate high or low part. Recurse. 4138 Op = DAG.UpdateNodeOperands(Op, Vec, Idx); 4139 Op = ExpandEXTRACT_VECTOR_ELT(Op); 4140 } else { 4141 // Store the value to a temporary stack slot, then LOAD the scalar 4142 // element back out. 4143 SDOperand StackPtr = DAG.CreateStackTemporary(Vec.getValueType()); 4144 SDOperand Ch = DAG.getStore(DAG.getEntryNode(), Vec, StackPtr, NULL, 0); 4145 4146 // Add the offset to the index. 4147 unsigned EltSize = MVT::getSizeInBits(Op.getValueType())/8; 4148 Idx = DAG.getNode(ISD::MUL, Idx.getValueType(), Idx, 4149 DAG.getConstant(EltSize, Idx.getValueType())); 4150 4151 if (MVT::getSizeInBits(Idx.getValueType()) > 4152 MVT::getSizeInBits(TLI.getPointerTy())) 4153 Idx = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), Idx); 4154 else 4155 Idx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), Idx); 4156 4157 StackPtr = DAG.getNode(ISD::ADD, Idx.getValueType(), Idx, StackPtr); 4158 4159 Op = DAG.getLoad(Op.getValueType(), Ch, StackPtr, NULL, 0); 4160 } 4161 return Op; 4162} 4163 4164/// ExpandEXTRACT_SUBVECTOR - Expand a EXTRACT_SUBVECTOR operation. For now 4165/// we assume the operation can be split if it is not already legal. 4166SDOperand SelectionDAGLegalize::ExpandEXTRACT_SUBVECTOR(SDOperand Op) { 4167 // We know that operand #0 is the Vec vector. For now we assume the index 4168 // is a constant and that the extracted result is a supported hardware type. 4169 SDOperand Vec = Op.getOperand(0); 4170 SDOperand Idx = LegalizeOp(Op.getOperand(1)); 4171 4172 unsigned NumElems = MVT::getVectorNumElements(Vec.getValueType()); 4173 4174 if (NumElems == MVT::getVectorNumElements(Op.getValueType())) { 4175 // This must be an access of the desired vector length. Return it. 4176 return Vec; 4177 } 4178 4179 ConstantSDNode *CIdx = cast<ConstantSDNode>(Idx); 4180 SDOperand Lo, Hi; 4181 SplitVectorOp(Vec, Lo, Hi); 4182 if (CIdx->getValue() < NumElems/2) { 4183 Vec = Lo; 4184 } else { 4185 Vec = Hi; 4186 Idx = DAG.getConstant(CIdx->getValue() - NumElems/2, Idx.getValueType()); 4187 } 4188 4189 // It's now an extract from the appropriate high or low part. Recurse. 4190 Op = DAG.UpdateNodeOperands(Op, Vec, Idx); 4191 return ExpandEXTRACT_SUBVECTOR(Op); 4192} 4193 4194/// LegalizeSetCCOperands - Attempts to create a legal LHS and RHS for a SETCC 4195/// with condition CC on the current target. This usually involves legalizing 4196/// or promoting the arguments. In the case where LHS and RHS must be expanded, 4197/// there may be no choice but to create a new SetCC node to represent the 4198/// legalized value of setcc lhs, rhs. In this case, the value is returned in 4199/// LHS, and the SDOperand returned in RHS has a nil SDNode value. 4200void SelectionDAGLegalize::LegalizeSetCCOperands(SDOperand &LHS, 4201 SDOperand &RHS, 4202 SDOperand &CC) { 4203 SDOperand Tmp1, Tmp2, Tmp3, Result; 4204 4205 switch (getTypeAction(LHS.getValueType())) { 4206 case Legal: 4207 Tmp1 = LegalizeOp(LHS); // LHS 4208 Tmp2 = LegalizeOp(RHS); // RHS 4209 break; 4210 case Promote: 4211 Tmp1 = PromoteOp(LHS); // LHS 4212 Tmp2 = PromoteOp(RHS); // RHS 4213 4214 // If this is an FP compare, the operands have already been extended. 4215 if (MVT::isInteger(LHS.getValueType())) { 4216 MVT::ValueType VT = LHS.getValueType(); 4217 MVT::ValueType NVT = TLI.getTypeToTransformTo(VT); 4218 4219 // Otherwise, we have to insert explicit sign or zero extends. Note 4220 // that we could insert sign extends for ALL conditions, but zero extend 4221 // is cheaper on many machines (an AND instead of two shifts), so prefer 4222 // it. 4223 switch (cast<CondCodeSDNode>(CC)->get()) { 4224 default: assert(0 && "Unknown integer comparison!"); 4225 case ISD::SETEQ: 4226 case ISD::SETNE: 4227 case ISD::SETUGE: 4228 case ISD::SETUGT: 4229 case ISD::SETULE: 4230 case ISD::SETULT: 4231 // ALL of these operations will work if we either sign or zero extend 4232 // the operands (including the unsigned comparisons!). Zero extend is 4233 // usually a simpler/cheaper operation, so prefer it. 4234 Tmp1 = DAG.getZeroExtendInReg(Tmp1, VT); 4235 Tmp2 = DAG.getZeroExtendInReg(Tmp2, VT); 4236 break; 4237 case ISD::SETGE: 4238 case ISD::SETGT: 4239 case ISD::SETLT: 4240 case ISD::SETLE: 4241 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp1, 4242 DAG.getValueType(VT)); 4243 Tmp2 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp2, 4244 DAG.getValueType(VT)); 4245 break; 4246 } 4247 } 4248 break; 4249 case Expand: { 4250 MVT::ValueType VT = LHS.getValueType(); 4251 if (VT == MVT::f32 || VT == MVT::f64) { 4252 // Expand into one or more soft-fp libcall(s). 4253 RTLIB::Libcall LC1, LC2 = RTLIB::UNKNOWN_LIBCALL; 4254 switch (cast<CondCodeSDNode>(CC)->get()) { 4255 case ISD::SETEQ: 4256 case ISD::SETOEQ: 4257 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : RTLIB::OEQ_F64; 4258 break; 4259 case ISD::SETNE: 4260 case ISD::SETUNE: 4261 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : RTLIB::UNE_F64; 4262 break; 4263 case ISD::SETGE: 4264 case ISD::SETOGE: 4265 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : RTLIB::OGE_F64; 4266 break; 4267 case ISD::SETLT: 4268 case ISD::SETOLT: 4269 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64; 4270 break; 4271 case ISD::SETLE: 4272 case ISD::SETOLE: 4273 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : RTLIB::OLE_F64; 4274 break; 4275 case ISD::SETGT: 4276 case ISD::SETOGT: 4277 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : RTLIB::OGT_F64; 4278 break; 4279 case ISD::SETUO: 4280 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : RTLIB::UO_F64; 4281 break; 4282 case ISD::SETO: 4283 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : RTLIB::O_F64; 4284 break; 4285 default: 4286 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : RTLIB::UO_F64; 4287 switch (cast<CondCodeSDNode>(CC)->get()) { 4288 case ISD::SETONE: 4289 // SETONE = SETOLT | SETOGT 4290 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64; 4291 // Fallthrough 4292 case ISD::SETUGT: 4293 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : RTLIB::OGT_F64; 4294 break; 4295 case ISD::SETUGE: 4296 LC2 = (VT == MVT::f32) ? RTLIB::OGE_F32 : RTLIB::OGE_F64; 4297 break; 4298 case ISD::SETULT: 4299 LC2 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64; 4300 break; 4301 case ISD::SETULE: 4302 LC2 = (VT == MVT::f32) ? RTLIB::OLE_F32 : RTLIB::OLE_F64; 4303 break; 4304 case ISD::SETUEQ: 4305 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : RTLIB::OEQ_F64; 4306 break; 4307 default: assert(0 && "Unsupported FP setcc!"); 4308 } 4309 } 4310 4311 SDOperand Dummy; 4312 Tmp1 = ExpandLibCall(TLI.getLibcallName(LC1), 4313 DAG.getNode(ISD::MERGE_VALUES, VT, LHS, RHS).Val, 4314 false /*sign irrelevant*/, Dummy); 4315 Tmp2 = DAG.getConstant(0, MVT::i32); 4316 CC = DAG.getCondCode(TLI.getCmpLibcallCC(LC1)); 4317 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 4318 Tmp1 = DAG.getNode(ISD::SETCC, TLI.getSetCCResultTy(), Tmp1, Tmp2, CC); 4319 LHS = ExpandLibCall(TLI.getLibcallName(LC2), 4320 DAG.getNode(ISD::MERGE_VALUES, VT, LHS, RHS).Val, 4321 false /*sign irrelevant*/, Dummy); 4322 Tmp2 = DAG.getNode(ISD::SETCC, TLI.getSetCCResultTy(), LHS, Tmp2, 4323 DAG.getCondCode(TLI.getCmpLibcallCC(LC2))); 4324 Tmp1 = DAG.getNode(ISD::OR, Tmp1.getValueType(), Tmp1, Tmp2); 4325 Tmp2 = SDOperand(); 4326 } 4327 LHS = Tmp1; 4328 RHS = Tmp2; 4329 return; 4330 } 4331 4332 SDOperand LHSLo, LHSHi, RHSLo, RHSHi; 4333 ExpandOp(LHS, LHSLo, LHSHi); 4334 ExpandOp(RHS, RHSLo, RHSHi); 4335 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 4336 4337 if (VT==MVT::ppcf128) { 4338 // FIXME: This generated code sucks. We want to generate 4339 // FCMP crN, hi1, hi2 4340 // BNE crN, L: 4341 // FCMP crN, lo1, lo2 4342 // The following can be improved, but not that much. 4343 Tmp1 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, ISD::SETEQ); 4344 Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSLo, RHSLo, CCCode); 4345 Tmp3 = DAG.getNode(ISD::AND, Tmp1.getValueType(), Tmp1, Tmp2); 4346 Tmp1 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, ISD::SETNE); 4347 Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, CCCode); 4348 Tmp1 = DAG.getNode(ISD::AND, Tmp1.getValueType(), Tmp1, Tmp2); 4349 Tmp1 = DAG.getNode(ISD::OR, Tmp1.getValueType(), Tmp1, Tmp3); 4350 Tmp2 = SDOperand(); 4351 break; 4352 } 4353 4354 switch (CCCode) { 4355 case ISD::SETEQ: 4356 case ISD::SETNE: 4357 if (RHSLo == RHSHi) 4358 if (ConstantSDNode *RHSCST = dyn_cast<ConstantSDNode>(RHSLo)) 4359 if (RHSCST->isAllOnesValue()) { 4360 // Comparison to -1. 4361 Tmp1 = DAG.getNode(ISD::AND, LHSLo.getValueType(), LHSLo, LHSHi); 4362 Tmp2 = RHSLo; 4363 break; 4364 } 4365 4366 Tmp1 = DAG.getNode(ISD::XOR, LHSLo.getValueType(), LHSLo, RHSLo); 4367 Tmp2 = DAG.getNode(ISD::XOR, LHSLo.getValueType(), LHSHi, RHSHi); 4368 Tmp1 = DAG.getNode(ISD::OR, Tmp1.getValueType(), Tmp1, Tmp2); 4369 Tmp2 = DAG.getConstant(0, Tmp1.getValueType()); 4370 break; 4371 default: 4372 // If this is a comparison of the sign bit, just look at the top part. 4373 // X > -1, x < 0 4374 if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(RHS)) 4375 if ((cast<CondCodeSDNode>(CC)->get() == ISD::SETLT && 4376 CST->getValue() == 0) || // X < 0 4377 (cast<CondCodeSDNode>(CC)->get() == ISD::SETGT && 4378 CST->isAllOnesValue())) { // X > -1 4379 Tmp1 = LHSHi; 4380 Tmp2 = RHSHi; 4381 break; 4382 } 4383 4384 // FIXME: This generated code sucks. 4385 ISD::CondCode LowCC; 4386 switch (CCCode) { 4387 default: assert(0 && "Unknown integer setcc!"); 4388 case ISD::SETLT: 4389 case ISD::SETULT: LowCC = ISD::SETULT; break; 4390 case ISD::SETGT: 4391 case ISD::SETUGT: LowCC = ISD::SETUGT; break; 4392 case ISD::SETLE: 4393 case ISD::SETULE: LowCC = ISD::SETULE; break; 4394 case ISD::SETGE: 4395 case ISD::SETUGE: LowCC = ISD::SETUGE; break; 4396 } 4397 4398 // Tmp1 = lo(op1) < lo(op2) // Always unsigned comparison 4399 // Tmp2 = hi(op1) < hi(op2) // Signedness depends on operands 4400 // dest = hi(op1) == hi(op2) ? Tmp1 : Tmp2; 4401 4402 // NOTE: on targets without efficient SELECT of bools, we can always use 4403 // this identity: (B1 ? B2 : B3) --> (B1 & B2)|(!B1&B3) 4404 TargetLowering::DAGCombinerInfo DagCombineInfo(DAG, false, true, NULL); 4405 Tmp1 = TLI.SimplifySetCC(TLI.getSetCCResultTy(), LHSLo, RHSLo, LowCC, 4406 false, DagCombineInfo); 4407 if (!Tmp1.Val) 4408 Tmp1 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSLo, RHSLo, LowCC); 4409 Tmp2 = TLI.SimplifySetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, 4410 CCCode, false, DagCombineInfo); 4411 if (!Tmp2.Val) 4412 Tmp2 = DAG.getNode(ISD::SETCC, TLI.getSetCCResultTy(), LHSHi, RHSHi,CC); 4413 4414 ConstantSDNode *Tmp1C = dyn_cast<ConstantSDNode>(Tmp1.Val); 4415 ConstantSDNode *Tmp2C = dyn_cast<ConstantSDNode>(Tmp2.Val); 4416 if ((Tmp1C && Tmp1C->getValue() == 0) || 4417 (Tmp2C && Tmp2C->getValue() == 0 && 4418 (CCCode == ISD::SETLE || CCCode == ISD::SETGE || 4419 CCCode == ISD::SETUGE || CCCode == ISD::SETULE)) || 4420 (Tmp2C && Tmp2C->getValue() == 1 && 4421 (CCCode == ISD::SETLT || CCCode == ISD::SETGT || 4422 CCCode == ISD::SETUGT || CCCode == ISD::SETULT))) { 4423 // low part is known false, returns high part. 4424 // For LE / GE, if high part is known false, ignore the low part. 4425 // For LT / GT, if high part is known true, ignore the low part. 4426 Tmp1 = Tmp2; 4427 Tmp2 = SDOperand(); 4428 } else { 4429 Result = TLI.SimplifySetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, 4430 ISD::SETEQ, false, DagCombineInfo); 4431 if (!Result.Val) 4432 Result=DAG.getSetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, ISD::SETEQ); 4433 Result = LegalizeOp(DAG.getNode(ISD::SELECT, Tmp1.getValueType(), 4434 Result, Tmp1, Tmp2)); 4435 Tmp1 = Result; 4436 Tmp2 = SDOperand(); 4437 } 4438 } 4439 } 4440 } 4441 LHS = Tmp1; 4442 RHS = Tmp2; 4443} 4444 4445/// ExpandBIT_CONVERT - Expand a BIT_CONVERT node into a store/load combination. 4446/// The resultant code need not be legal. Note that SrcOp is the input operand 4447/// to the BIT_CONVERT, not the BIT_CONVERT node itself. 4448SDOperand SelectionDAGLegalize::ExpandBIT_CONVERT(MVT::ValueType DestVT, 4449 SDOperand SrcOp) { 4450 // Create the stack frame object. 4451 SDOperand FIPtr = DAG.CreateStackTemporary(DestVT); 4452 4453 // Emit a store to the stack slot. 4454 SDOperand Store = DAG.getStore(DAG.getEntryNode(), SrcOp, FIPtr, NULL, 0); 4455 // Result is a load from the stack slot. 4456 return DAG.getLoad(DestVT, Store, FIPtr, NULL, 0); 4457} 4458 4459SDOperand SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { 4460 // Create a vector sized/aligned stack slot, store the value to element #0, 4461 // then load the whole vector back out. 4462 SDOperand StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); 4463 SDOperand Ch = DAG.getStore(DAG.getEntryNode(), Node->getOperand(0), StackPtr, 4464 NULL, 0); 4465 return DAG.getLoad(Node->getValueType(0), Ch, StackPtr, NULL, 0); 4466} 4467 4468 4469/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't 4470/// support the operation, but do support the resultant vector type. 4471SDOperand SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { 4472 4473 // If the only non-undef value is the low element, turn this into a 4474 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. 4475 unsigned NumElems = Node->getNumOperands(); 4476 bool isOnlyLowElement = true; 4477 SDOperand SplatValue = Node->getOperand(0); 4478 std::map<SDOperand, std::vector<unsigned> > Values; 4479 Values[SplatValue].push_back(0); 4480 bool isConstant = true; 4481 if (!isa<ConstantFPSDNode>(SplatValue) && !isa<ConstantSDNode>(SplatValue) && 4482 SplatValue.getOpcode() != ISD::UNDEF) 4483 isConstant = false; 4484 4485 for (unsigned i = 1; i < NumElems; ++i) { 4486 SDOperand V = Node->getOperand(i); 4487 Values[V].push_back(i); 4488 if (V.getOpcode() != ISD::UNDEF) 4489 isOnlyLowElement = false; 4490 if (SplatValue != V) 4491 SplatValue = SDOperand(0,0); 4492 4493 // If this isn't a constant element or an undef, we can't use a constant 4494 // pool load. 4495 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V) && 4496 V.getOpcode() != ISD::UNDEF) 4497 isConstant = false; 4498 } 4499 4500 if (isOnlyLowElement) { 4501 // If the low element is an undef too, then this whole things is an undef. 4502 if (Node->getOperand(0).getOpcode() == ISD::UNDEF) 4503 return DAG.getNode(ISD::UNDEF, Node->getValueType(0)); 4504 // Otherwise, turn this into a scalar_to_vector node. 4505 return DAG.getNode(ISD::SCALAR_TO_VECTOR, Node->getValueType(0), 4506 Node->getOperand(0)); 4507 } 4508 4509 // If all elements are constants, create a load from the constant pool. 4510 if (isConstant) { 4511 MVT::ValueType VT = Node->getValueType(0); 4512 const Type *OpNTy = 4513 MVT::getTypeForValueType(Node->getOperand(0).getValueType()); 4514 std::vector<Constant*> CV; 4515 for (unsigned i = 0, e = NumElems; i != e; ++i) { 4516 if (ConstantFPSDNode *V = 4517 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { 4518 CV.push_back(ConstantFP::get(OpNTy, V->getValueAPF())); 4519 } else if (ConstantSDNode *V = 4520 dyn_cast<ConstantSDNode>(Node->getOperand(i))) { 4521 CV.push_back(ConstantInt::get(OpNTy, V->getValue())); 4522 } else { 4523 assert(Node->getOperand(i).getOpcode() == ISD::UNDEF); 4524 CV.push_back(UndefValue::get(OpNTy)); 4525 } 4526 } 4527 Constant *CP = ConstantVector::get(CV); 4528 SDOperand CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy()); 4529 return DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0); 4530 } 4531 4532 if (SplatValue.Val) { // Splat of one value? 4533 // Build the shuffle constant vector: <0, 0, 0, 0> 4534 MVT::ValueType MaskVT = 4535 MVT::getIntVectorWithNumElements(NumElems); 4536 SDOperand Zero = DAG.getConstant(0, MVT::getVectorElementType(MaskVT)); 4537 std::vector<SDOperand> ZeroVec(NumElems, Zero); 4538 SDOperand SplatMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 4539 &ZeroVec[0], ZeroVec.size()); 4540 4541 // If the target supports VECTOR_SHUFFLE and this shuffle mask, use it. 4542 if (isShuffleLegal(Node->getValueType(0), SplatMask)) { 4543 // Get the splatted value into the low element of a vector register. 4544 SDOperand LowValVec = 4545 DAG.getNode(ISD::SCALAR_TO_VECTOR, Node->getValueType(0), SplatValue); 4546 4547 // Return shuffle(LowValVec, undef, <0,0,0,0>) 4548 return DAG.getNode(ISD::VECTOR_SHUFFLE, Node->getValueType(0), LowValVec, 4549 DAG.getNode(ISD::UNDEF, Node->getValueType(0)), 4550 SplatMask); 4551 } 4552 } 4553 4554 // If there are only two unique elements, we may be able to turn this into a 4555 // vector shuffle. 4556 if (Values.size() == 2) { 4557 // Build the shuffle constant vector: e.g. <0, 4, 0, 4> 4558 MVT::ValueType MaskVT = 4559 MVT::getIntVectorWithNumElements(NumElems); 4560 std::vector<SDOperand> MaskVec(NumElems); 4561 unsigned i = 0; 4562 for (std::map<SDOperand,std::vector<unsigned> >::iterator I=Values.begin(), 4563 E = Values.end(); I != E; ++I) { 4564 for (std::vector<unsigned>::iterator II = I->second.begin(), 4565 EE = I->second.end(); II != EE; ++II) 4566 MaskVec[*II] = DAG.getConstant(i, MVT::getVectorElementType(MaskVT)); 4567 i += NumElems; 4568 } 4569 SDOperand ShuffleMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 4570 &MaskVec[0], MaskVec.size()); 4571 4572 // If the target supports VECTOR_SHUFFLE and this shuffle mask, use it. 4573 if (TLI.isOperationLegal(ISD::SCALAR_TO_VECTOR, Node->getValueType(0)) && 4574 isShuffleLegal(Node->getValueType(0), ShuffleMask)) { 4575 SmallVector<SDOperand, 8> Ops; 4576 for(std::map<SDOperand,std::vector<unsigned> >::iterator I=Values.begin(), 4577 E = Values.end(); I != E; ++I) { 4578 SDOperand Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, Node->getValueType(0), 4579 I->first); 4580 Ops.push_back(Op); 4581 } 4582 Ops.push_back(ShuffleMask); 4583 4584 // Return shuffle(LoValVec, HiValVec, <0,1,0,1>) 4585 return DAG.getNode(ISD::VECTOR_SHUFFLE, Node->getValueType(0), 4586 &Ops[0], Ops.size()); 4587 } 4588 } 4589 4590 // Otherwise, we can't handle this case efficiently. Allocate a sufficiently 4591 // aligned object on the stack, store each element into it, then load 4592 // the result as a vector. 4593 MVT::ValueType VT = Node->getValueType(0); 4594 // Create the stack frame object. 4595 SDOperand FIPtr = DAG.CreateStackTemporary(VT); 4596 4597 // Emit a store of each element to the stack slot. 4598 SmallVector<SDOperand, 8> Stores; 4599 unsigned TypeByteSize = 4600 MVT::getSizeInBits(Node->getOperand(0).getValueType())/8; 4601 // Store (in the right endianness) the elements to memory. 4602 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 4603 // Ignore undef elements. 4604 if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue; 4605 4606 unsigned Offset = TypeByteSize*i; 4607 4608 SDOperand Idx = DAG.getConstant(Offset, FIPtr.getValueType()); 4609 Idx = DAG.getNode(ISD::ADD, FIPtr.getValueType(), FIPtr, Idx); 4610 4611 Stores.push_back(DAG.getStore(DAG.getEntryNode(), Node->getOperand(i), Idx, 4612 NULL, 0)); 4613 } 4614 4615 SDOperand StoreChain; 4616 if (!Stores.empty()) // Not all undef elements? 4617 StoreChain = DAG.getNode(ISD::TokenFactor, MVT::Other, 4618 &Stores[0], Stores.size()); 4619 else 4620 StoreChain = DAG.getEntryNode(); 4621 4622 // Result is a load from the stack slot. 4623 return DAG.getLoad(VT, StoreChain, FIPtr, NULL, 0); 4624} 4625 4626void SelectionDAGLegalize::ExpandShiftParts(unsigned NodeOp, 4627 SDOperand Op, SDOperand Amt, 4628 SDOperand &Lo, SDOperand &Hi) { 4629 // Expand the subcomponents. 4630 SDOperand LHSL, LHSH; 4631 ExpandOp(Op, LHSL, LHSH); 4632 4633 SDOperand Ops[] = { LHSL, LHSH, Amt }; 4634 MVT::ValueType VT = LHSL.getValueType(); 4635 Lo = DAG.getNode(NodeOp, DAG.getNodeValueTypes(VT, VT), 2, Ops, 3); 4636 Hi = Lo.getValue(1); 4637} 4638 4639 4640/// ExpandShift - Try to find a clever way to expand this shift operation out to 4641/// smaller elements. If we can't find a way that is more efficient than a 4642/// libcall on this target, return false. Otherwise, return true with the 4643/// low-parts expanded into Lo and Hi. 4644bool SelectionDAGLegalize::ExpandShift(unsigned Opc, SDOperand Op,SDOperand Amt, 4645 SDOperand &Lo, SDOperand &Hi) { 4646 assert((Opc == ISD::SHL || Opc == ISD::SRA || Opc == ISD::SRL) && 4647 "This is not a shift!"); 4648 4649 MVT::ValueType NVT = TLI.getTypeToTransformTo(Op.getValueType()); 4650 SDOperand ShAmt = LegalizeOp(Amt); 4651 MVT::ValueType ShTy = ShAmt.getValueType(); 4652 unsigned VTBits = MVT::getSizeInBits(Op.getValueType()); 4653 unsigned NVTBits = MVT::getSizeInBits(NVT); 4654 4655 // Handle the case when Amt is an immediate. 4656 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Amt.Val)) { 4657 unsigned Cst = CN->getValue(); 4658 // Expand the incoming operand to be shifted, so that we have its parts 4659 SDOperand InL, InH; 4660 ExpandOp(Op, InL, InH); 4661 switch(Opc) { 4662 case ISD::SHL: 4663 if (Cst > VTBits) { 4664 Lo = DAG.getConstant(0, NVT); 4665 Hi = DAG.getConstant(0, NVT); 4666 } else if (Cst > NVTBits) { 4667 Lo = DAG.getConstant(0, NVT); 4668 Hi = DAG.getNode(ISD::SHL, NVT, InL, DAG.getConstant(Cst-NVTBits,ShTy)); 4669 } else if (Cst == NVTBits) { 4670 Lo = DAG.getConstant(0, NVT); 4671 Hi = InL; 4672 } else { 4673 Lo = DAG.getNode(ISD::SHL, NVT, InL, DAG.getConstant(Cst, ShTy)); 4674 Hi = DAG.getNode(ISD::OR, NVT, 4675 DAG.getNode(ISD::SHL, NVT, InH, DAG.getConstant(Cst, ShTy)), 4676 DAG.getNode(ISD::SRL, NVT, InL, DAG.getConstant(NVTBits-Cst, ShTy))); 4677 } 4678 return true; 4679 case ISD::SRL: 4680 if (Cst > VTBits) { 4681 Lo = DAG.getConstant(0, NVT); 4682 Hi = DAG.getConstant(0, NVT); 4683 } else if (Cst > NVTBits) { 4684 Lo = DAG.getNode(ISD::SRL, NVT, InH, DAG.getConstant(Cst-NVTBits,ShTy)); 4685 Hi = DAG.getConstant(0, NVT); 4686 } else if (Cst == NVTBits) { 4687 Lo = InH; 4688 Hi = DAG.getConstant(0, NVT); 4689 } else { 4690 Lo = DAG.getNode(ISD::OR, NVT, 4691 DAG.getNode(ISD::SRL, NVT, InL, DAG.getConstant(Cst, ShTy)), 4692 DAG.getNode(ISD::SHL, NVT, InH, DAG.getConstant(NVTBits-Cst, ShTy))); 4693 Hi = DAG.getNode(ISD::SRL, NVT, InH, DAG.getConstant(Cst, ShTy)); 4694 } 4695 return true; 4696 case ISD::SRA: 4697 if (Cst > VTBits) { 4698 Hi = Lo = DAG.getNode(ISD::SRA, NVT, InH, 4699 DAG.getConstant(NVTBits-1, ShTy)); 4700 } else if (Cst > NVTBits) { 4701 Lo = DAG.getNode(ISD::SRA, NVT, InH, 4702 DAG.getConstant(Cst-NVTBits, ShTy)); 4703 Hi = DAG.getNode(ISD::SRA, NVT, InH, 4704 DAG.getConstant(NVTBits-1, ShTy)); 4705 } else if (Cst == NVTBits) { 4706 Lo = InH; 4707 Hi = DAG.getNode(ISD::SRA, NVT, InH, 4708 DAG.getConstant(NVTBits-1, ShTy)); 4709 } else { 4710 Lo = DAG.getNode(ISD::OR, NVT, 4711 DAG.getNode(ISD::SRL, NVT, InL, DAG.getConstant(Cst, ShTy)), 4712 DAG.getNode(ISD::SHL, NVT, InH, DAG.getConstant(NVTBits-Cst, ShTy))); 4713 Hi = DAG.getNode(ISD::SRA, NVT, InH, DAG.getConstant(Cst, ShTy)); 4714 } 4715 return true; 4716 } 4717 } 4718 4719 // Okay, the shift amount isn't constant. However, if we can tell that it is 4720 // >= 32 or < 32, we can still simplify it, without knowing the actual value. 4721 uint64_t Mask = NVTBits, KnownZero, KnownOne; 4722 DAG.ComputeMaskedBits(Amt, Mask, KnownZero, KnownOne); 4723 4724 // If we know that the high bit of the shift amount is one, then we can do 4725 // this as a couple of simple shifts. 4726 if (KnownOne & Mask) { 4727 // Mask out the high bit, which we know is set. 4728 Amt = DAG.getNode(ISD::AND, Amt.getValueType(), Amt, 4729 DAG.getConstant(NVTBits-1, Amt.getValueType())); 4730 4731 // Expand the incoming operand to be shifted, so that we have its parts 4732 SDOperand InL, InH; 4733 ExpandOp(Op, InL, InH); 4734 switch(Opc) { 4735 case ISD::SHL: 4736 Lo = DAG.getConstant(0, NVT); // Low part is zero. 4737 Hi = DAG.getNode(ISD::SHL, NVT, InL, Amt); // High part from Lo part. 4738 return true; 4739 case ISD::SRL: 4740 Hi = DAG.getConstant(0, NVT); // Hi part is zero. 4741 Lo = DAG.getNode(ISD::SRL, NVT, InH, Amt); // Lo part from Hi part. 4742 return true; 4743 case ISD::SRA: 4744 Hi = DAG.getNode(ISD::SRA, NVT, InH, // Sign extend high part. 4745 DAG.getConstant(NVTBits-1, Amt.getValueType())); 4746 Lo = DAG.getNode(ISD::SRA, NVT, InH, Amt); // Lo part from Hi part. 4747 return true; 4748 } 4749 } 4750 4751 // If we know that the high bit of the shift amount is zero, then we can do 4752 // this as a couple of simple shifts. 4753 if (KnownZero & Mask) { 4754 // Compute 32-amt. 4755 SDOperand Amt2 = DAG.getNode(ISD::SUB, Amt.getValueType(), 4756 DAG.getConstant(NVTBits, Amt.getValueType()), 4757 Amt); 4758 4759 // Expand the incoming operand to be shifted, so that we have its parts 4760 SDOperand InL, InH; 4761 ExpandOp(Op, InL, InH); 4762 switch(Opc) { 4763 case ISD::SHL: 4764 Lo = DAG.getNode(ISD::SHL, NVT, InL, Amt); 4765 Hi = DAG.getNode(ISD::OR, NVT, 4766 DAG.getNode(ISD::SHL, NVT, InH, Amt), 4767 DAG.getNode(ISD::SRL, NVT, InL, Amt2)); 4768 return true; 4769 case ISD::SRL: 4770 Hi = DAG.getNode(ISD::SRL, NVT, InH, Amt); 4771 Lo = DAG.getNode(ISD::OR, NVT, 4772 DAG.getNode(ISD::SRL, NVT, InL, Amt), 4773 DAG.getNode(ISD::SHL, NVT, InH, Amt2)); 4774 return true; 4775 case ISD::SRA: 4776 Hi = DAG.getNode(ISD::SRA, NVT, InH, Amt); 4777 Lo = DAG.getNode(ISD::OR, NVT, 4778 DAG.getNode(ISD::SRL, NVT, InL, Amt), 4779 DAG.getNode(ISD::SHL, NVT, InH, Amt2)); 4780 return true; 4781 } 4782 } 4783 4784 return false; 4785} 4786 4787 4788// ExpandLibCall - Expand a node into a call to a libcall. If the result value 4789// does not fit into a register, return the lo part and set the hi part to the 4790// by-reg argument. If it does fit into a single register, return the result 4791// and leave the Hi part unset. 4792SDOperand SelectionDAGLegalize::ExpandLibCall(const char *Name, SDNode *Node, 4793 bool isSigned, SDOperand &Hi) { 4794 assert(!IsLegalizingCall && "Cannot overlap legalization of calls!"); 4795 // The input chain to this libcall is the entry node of the function. 4796 // Legalizing the call will automatically add the previous call to the 4797 // dependence. 4798 SDOperand InChain = DAG.getEntryNode(); 4799 4800 TargetLowering::ArgListTy Args; 4801 TargetLowering::ArgListEntry Entry; 4802 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 4803 MVT::ValueType ArgVT = Node->getOperand(i).getValueType(); 4804 const Type *ArgTy = MVT::getTypeForValueType(ArgVT); 4805 Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy; 4806 Entry.isSExt = isSigned; 4807 Args.push_back(Entry); 4808 } 4809 SDOperand Callee = DAG.getExternalSymbol(Name, TLI.getPointerTy()); 4810 4811 // Splice the libcall in wherever FindInputOutputChains tells us to. 4812 const Type *RetTy = MVT::getTypeForValueType(Node->getValueType(0)); 4813 std::pair<SDOperand,SDOperand> CallInfo = 4814 TLI.LowerCallTo(InChain, RetTy, isSigned, false, CallingConv::C, false, 4815 Callee, Args, DAG); 4816 4817 // Legalize the call sequence, starting with the chain. This will advance 4818 // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that 4819 // was added by LowerCallTo (guaranteeing proper serialization of calls). 4820 LegalizeOp(CallInfo.second); 4821 SDOperand Result; 4822 switch (getTypeAction(CallInfo.first.getValueType())) { 4823 default: assert(0 && "Unknown thing"); 4824 case Legal: 4825 Result = CallInfo.first; 4826 break; 4827 case Expand: 4828 ExpandOp(CallInfo.first, Result, Hi); 4829 break; 4830 } 4831 return Result; 4832} 4833 4834 4835/// ExpandIntToFP - Expand a [US]INT_TO_FP operation. 4836/// 4837SDOperand SelectionDAGLegalize:: 4838ExpandIntToFP(bool isSigned, MVT::ValueType DestTy, SDOperand Source) { 4839 assert(getTypeAction(Source.getValueType()) == Expand && 4840 "This is not an expansion!"); 4841 assert(Source.getValueType() == MVT::i64 && "Only handle expand from i64!"); 4842 4843 if (!isSigned) { 4844 assert(Source.getValueType() == MVT::i64 && 4845 "This only works for 64-bit -> FP"); 4846 // The 64-bit value loaded will be incorrectly if the 'sign bit' of the 4847 // incoming integer is set. To handle this, we dynamically test to see if 4848 // it is set, and, if so, add a fudge factor. 4849 SDOperand Lo, Hi; 4850 ExpandOp(Source, Lo, Hi); 4851 4852 // If this is unsigned, and not supported, first perform the conversion to 4853 // signed, then adjust the result if the sign bit is set. 4854 SDOperand SignedConv = ExpandIntToFP(true, DestTy, 4855 DAG.getNode(ISD::BUILD_PAIR, Source.getValueType(), Lo, Hi)); 4856 4857 SDOperand SignSet = DAG.getSetCC(TLI.getSetCCResultTy(), Hi, 4858 DAG.getConstant(0, Hi.getValueType()), 4859 ISD::SETLT); 4860 SDOperand Zero = getIntPtrConstant(0), Four = getIntPtrConstant(4); 4861 SDOperand CstOffset = DAG.getNode(ISD::SELECT, Zero.getValueType(), 4862 SignSet, Four, Zero); 4863 uint64_t FF = 0x5f800000ULL; 4864 if (TLI.isLittleEndian()) FF <<= 32; 4865 static Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF); 4866 4867 SDOperand CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy()); 4868 CPIdx = DAG.getNode(ISD::ADD, TLI.getPointerTy(), CPIdx, CstOffset); 4869 SDOperand FudgeInReg; 4870 if (DestTy == MVT::f32) 4871 FudgeInReg = DAG.getLoad(MVT::f32, DAG.getEntryNode(), CPIdx, NULL, 0); 4872 else if (MVT::getSizeInBits(DestTy) > MVT::getSizeInBits(MVT::f32)) 4873 // FIXME: Avoid the extend by construction the right constantpool? 4874 FudgeInReg = DAG.getExtLoad(ISD::EXTLOAD, DestTy, DAG.getEntryNode(), 4875 CPIdx, NULL, 0, MVT::f32); 4876 else 4877 assert(0 && "Unexpected conversion"); 4878 4879 MVT::ValueType SCVT = SignedConv.getValueType(); 4880 if (SCVT != DestTy) { 4881 // Destination type needs to be expanded as well. The FADD now we are 4882 // constructing will be expanded into a libcall. 4883 if (MVT::getSizeInBits(SCVT) != MVT::getSizeInBits(DestTy)) { 4884 assert(SCVT == MVT::i32 && DestTy == MVT::f64); 4885 SignedConv = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, 4886 SignedConv, SignedConv.getValue(1)); 4887 } 4888 SignedConv = DAG.getNode(ISD::BIT_CONVERT, DestTy, SignedConv); 4889 } 4890 return DAG.getNode(ISD::FADD, DestTy, SignedConv, FudgeInReg); 4891 } 4892 4893 // Check to see if the target has a custom way to lower this. If so, use it. 4894 switch (TLI.getOperationAction(ISD::SINT_TO_FP, Source.getValueType())) { 4895 default: assert(0 && "This action not implemented for this operation!"); 4896 case TargetLowering::Legal: 4897 case TargetLowering::Expand: 4898 break; // This case is handled below. 4899 case TargetLowering::Custom: { 4900 SDOperand NV = TLI.LowerOperation(DAG.getNode(ISD::SINT_TO_FP, DestTy, 4901 Source), DAG); 4902 if (NV.Val) 4903 return LegalizeOp(NV); 4904 break; // The target decided this was legal after all 4905 } 4906 } 4907 4908 // Expand the source, then glue it back together for the call. We must expand 4909 // the source in case it is shared (this pass of legalize must traverse it). 4910 SDOperand SrcLo, SrcHi; 4911 ExpandOp(Source, SrcLo, SrcHi); 4912 Source = DAG.getNode(ISD::BUILD_PAIR, Source.getValueType(), SrcLo, SrcHi); 4913 4914 RTLIB::Libcall LC; 4915 if (DestTy == MVT::f32) 4916 LC = RTLIB::SINTTOFP_I64_F32; 4917 else { 4918 assert(DestTy == MVT::f64 && "Unknown fp value type!"); 4919 LC = RTLIB::SINTTOFP_I64_F64; 4920 } 4921 4922 assert(TLI.getLibcallName(LC) && "Don't know how to expand this SINT_TO_FP!"); 4923 Source = DAG.getNode(ISD::SINT_TO_FP, DestTy, Source); 4924 SDOperand UnusedHiPart; 4925 return ExpandLibCall(TLI.getLibcallName(LC), Source.Val, isSigned, 4926 UnusedHiPart); 4927} 4928 4929/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a 4930/// INT_TO_FP operation of the specified operand when the target requests that 4931/// we expand it. At this point, we know that the result and operand types are 4932/// legal for the target. 4933SDOperand SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned, 4934 SDOperand Op0, 4935 MVT::ValueType DestVT) { 4936 if (Op0.getValueType() == MVT::i32) { 4937 // simple 32-bit [signed|unsigned] integer to float/double expansion 4938 4939 // get the stack frame index of a 8 byte buffer, pessimistically aligned 4940 MachineFunction &MF = DAG.getMachineFunction(); 4941 const Type *F64Type = MVT::getTypeForValueType(MVT::f64); 4942 unsigned StackAlign = 4943 (unsigned)TLI.getTargetData()->getPrefTypeAlignment(F64Type); 4944 int SSFI = MF.getFrameInfo()->CreateStackObject(8, StackAlign); 4945 // get address of 8 byte buffer 4946 SDOperand StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 4947 // word offset constant for Hi/Lo address computation 4948 SDOperand WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy()); 4949 // set up Hi and Lo (into buffer) address based on endian 4950 SDOperand Hi = StackSlot; 4951 SDOperand Lo = DAG.getNode(ISD::ADD, TLI.getPointerTy(), StackSlot,WordOff); 4952 if (TLI.isLittleEndian()) 4953 std::swap(Hi, Lo); 4954 4955 // if signed map to unsigned space 4956 SDOperand Op0Mapped; 4957 if (isSigned) { 4958 // constant used to invert sign bit (signed to unsigned mapping) 4959 SDOperand SignBit = DAG.getConstant(0x80000000u, MVT::i32); 4960 Op0Mapped = DAG.getNode(ISD::XOR, MVT::i32, Op0, SignBit); 4961 } else { 4962 Op0Mapped = Op0; 4963 } 4964 // store the lo of the constructed double - based on integer input 4965 SDOperand Store1 = DAG.getStore(DAG.getEntryNode(), 4966 Op0Mapped, Lo, NULL, 0); 4967 // initial hi portion of constructed double 4968 SDOperand InitialHi = DAG.getConstant(0x43300000u, MVT::i32); 4969 // store the hi of the constructed double - biased exponent 4970 SDOperand Store2=DAG.getStore(Store1, InitialHi, Hi, NULL, 0); 4971 // load the constructed double 4972 SDOperand Load = DAG.getLoad(MVT::f64, Store2, StackSlot, NULL, 0); 4973 // FP constant to bias correct the final result 4974 SDOperand Bias = DAG.getConstantFP(isSigned ? 4975 BitsToDouble(0x4330000080000000ULL) 4976 : BitsToDouble(0x4330000000000000ULL), 4977 MVT::f64); 4978 // subtract the bias 4979 SDOperand Sub = DAG.getNode(ISD::FSUB, MVT::f64, Load, Bias); 4980 // final result 4981 SDOperand Result; 4982 // handle final rounding 4983 if (DestVT == MVT::f64) { 4984 // do nothing 4985 Result = Sub; 4986 } else if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(MVT::f64)) { 4987 Result = DAG.getNode(ISD::FP_ROUND, DestVT, Sub); 4988 } else if (MVT::getSizeInBits(DestVT) > MVT::getSizeInBits(MVT::f64)) { 4989 Result = DAG.getNode(ISD::FP_EXTEND, DestVT, Sub); 4990 } 4991 return Result; 4992 } 4993 assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet"); 4994 SDOperand Tmp1 = DAG.getNode(ISD::SINT_TO_FP, DestVT, Op0); 4995 4996 SDOperand SignSet = DAG.getSetCC(TLI.getSetCCResultTy(), Op0, 4997 DAG.getConstant(0, Op0.getValueType()), 4998 ISD::SETLT); 4999 SDOperand Zero = getIntPtrConstant(0), Four = getIntPtrConstant(4); 5000 SDOperand CstOffset = DAG.getNode(ISD::SELECT, Zero.getValueType(), 5001 SignSet, Four, Zero); 5002 5003 // If the sign bit of the integer is set, the large number will be treated 5004 // as a negative number. To counteract this, the dynamic code adds an 5005 // offset depending on the data type. 5006 uint64_t FF; 5007 switch (Op0.getValueType()) { 5008 default: assert(0 && "Unsupported integer type!"); 5009 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) 5010 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) 5011 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) 5012 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) 5013 } 5014 if (TLI.isLittleEndian()) FF <<= 32; 5015 static Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF); 5016 5017 SDOperand CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy()); 5018 CPIdx = DAG.getNode(ISD::ADD, TLI.getPointerTy(), CPIdx, CstOffset); 5019 SDOperand FudgeInReg; 5020 if (DestVT == MVT::f32) 5021 FudgeInReg = DAG.getLoad(MVT::f32, DAG.getEntryNode(), CPIdx, NULL, 0); 5022 else { 5023 FudgeInReg = LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, DestVT, 5024 DAG.getEntryNode(), CPIdx, 5025 NULL, 0, MVT::f32)); 5026 } 5027 5028 return DAG.getNode(ISD::FADD, DestVT, Tmp1, FudgeInReg); 5029} 5030 5031/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a 5032/// *INT_TO_FP operation of the specified operand when the target requests that 5033/// we promote it. At this point, we know that the result and operand types are 5034/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP 5035/// operation that takes a larger input. 5036SDOperand SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDOperand LegalOp, 5037 MVT::ValueType DestVT, 5038 bool isSigned) { 5039 // First step, figure out the appropriate *INT_TO_FP operation to use. 5040 MVT::ValueType NewInTy = LegalOp.getValueType(); 5041 5042 unsigned OpToUse = 0; 5043 5044 // Scan for the appropriate larger type to use. 5045 while (1) { 5046 NewInTy = (MVT::ValueType)(NewInTy+1); 5047 assert(MVT::isInteger(NewInTy) && "Ran out of possibilities!"); 5048 5049 // If the target supports SINT_TO_FP of this type, use it. 5050 switch (TLI.getOperationAction(ISD::SINT_TO_FP, NewInTy)) { 5051 default: break; 5052 case TargetLowering::Legal: 5053 if (!TLI.isTypeLegal(NewInTy)) 5054 break; // Can't use this datatype. 5055 // FALL THROUGH. 5056 case TargetLowering::Custom: 5057 OpToUse = ISD::SINT_TO_FP; 5058 break; 5059 } 5060 if (OpToUse) break; 5061 if (isSigned) continue; 5062 5063 // If the target supports UINT_TO_FP of this type, use it. 5064 switch (TLI.getOperationAction(ISD::UINT_TO_FP, NewInTy)) { 5065 default: break; 5066 case TargetLowering::Legal: 5067 if (!TLI.isTypeLegal(NewInTy)) 5068 break; // Can't use this datatype. 5069 // FALL THROUGH. 5070 case TargetLowering::Custom: 5071 OpToUse = ISD::UINT_TO_FP; 5072 break; 5073 } 5074 if (OpToUse) break; 5075 5076 // Otherwise, try a larger type. 5077 } 5078 5079 // Okay, we found the operation and type to use. Zero extend our input to the 5080 // desired type then run the operation on it. 5081 return DAG.getNode(OpToUse, DestVT, 5082 DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 5083 NewInTy, LegalOp)); 5084} 5085 5086/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a 5087/// FP_TO_*INT operation of the specified operand when the target requests that 5088/// we promote it. At this point, we know that the result and operand types are 5089/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT 5090/// operation that returns a larger result. 5091SDOperand SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDOperand LegalOp, 5092 MVT::ValueType DestVT, 5093 bool isSigned) { 5094 // First step, figure out the appropriate FP_TO*INT operation to use. 5095 MVT::ValueType NewOutTy = DestVT; 5096 5097 unsigned OpToUse = 0; 5098 5099 // Scan for the appropriate larger type to use. 5100 while (1) { 5101 NewOutTy = (MVT::ValueType)(NewOutTy+1); 5102 assert(MVT::isInteger(NewOutTy) && "Ran out of possibilities!"); 5103 5104 // If the target supports FP_TO_SINT returning this type, use it. 5105 switch (TLI.getOperationAction(ISD::FP_TO_SINT, NewOutTy)) { 5106 default: break; 5107 case TargetLowering::Legal: 5108 if (!TLI.isTypeLegal(NewOutTy)) 5109 break; // Can't use this datatype. 5110 // FALL THROUGH. 5111 case TargetLowering::Custom: 5112 OpToUse = ISD::FP_TO_SINT; 5113 break; 5114 } 5115 if (OpToUse) break; 5116 5117 // If the target supports FP_TO_UINT of this type, use it. 5118 switch (TLI.getOperationAction(ISD::FP_TO_UINT, NewOutTy)) { 5119 default: break; 5120 case TargetLowering::Legal: 5121 if (!TLI.isTypeLegal(NewOutTy)) 5122 break; // Can't use this datatype. 5123 // FALL THROUGH. 5124 case TargetLowering::Custom: 5125 OpToUse = ISD::FP_TO_UINT; 5126 break; 5127 } 5128 if (OpToUse) break; 5129 5130 // Otherwise, try a larger type. 5131 } 5132 5133 // Okay, we found the operation and type to use. Truncate the result of the 5134 // extended FP_TO_*INT operation to the desired size. 5135 return DAG.getNode(ISD::TRUNCATE, DestVT, 5136 DAG.getNode(OpToUse, NewOutTy, LegalOp)); 5137} 5138 5139/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation. 5140/// 5141SDOperand SelectionDAGLegalize::ExpandBSWAP(SDOperand Op) { 5142 MVT::ValueType VT = Op.getValueType(); 5143 MVT::ValueType SHVT = TLI.getShiftAmountTy(); 5144 SDOperand Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 5145 switch (VT) { 5146 default: assert(0 && "Unhandled Expand type in BSWAP!"); abort(); 5147 case MVT::i16: 5148 Tmp2 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(8, SHVT)); 5149 Tmp1 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(8, SHVT)); 5150 return DAG.getNode(ISD::OR, VT, Tmp1, Tmp2); 5151 case MVT::i32: 5152 Tmp4 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(24, SHVT)); 5153 Tmp3 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(8, SHVT)); 5154 Tmp2 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(8, SHVT)); 5155 Tmp1 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(24, SHVT)); 5156 Tmp3 = DAG.getNode(ISD::AND, VT, Tmp3, DAG.getConstant(0xFF0000, VT)); 5157 Tmp2 = DAG.getNode(ISD::AND, VT, Tmp2, DAG.getConstant(0xFF00, VT)); 5158 Tmp4 = DAG.getNode(ISD::OR, VT, Tmp4, Tmp3); 5159 Tmp2 = DAG.getNode(ISD::OR, VT, Tmp2, Tmp1); 5160 return DAG.getNode(ISD::OR, VT, Tmp4, Tmp2); 5161 case MVT::i64: 5162 Tmp8 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(56, SHVT)); 5163 Tmp7 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(40, SHVT)); 5164 Tmp6 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(24, SHVT)); 5165 Tmp5 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(8, SHVT)); 5166 Tmp4 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(8, SHVT)); 5167 Tmp3 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(24, SHVT)); 5168 Tmp2 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(40, SHVT)); 5169 Tmp1 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(56, SHVT)); 5170 Tmp7 = DAG.getNode(ISD::AND, VT, Tmp7, DAG.getConstant(255ULL<<48, VT)); 5171 Tmp6 = DAG.getNode(ISD::AND, VT, Tmp6, DAG.getConstant(255ULL<<40, VT)); 5172 Tmp5 = DAG.getNode(ISD::AND, VT, Tmp5, DAG.getConstant(255ULL<<32, VT)); 5173 Tmp4 = DAG.getNode(ISD::AND, VT, Tmp4, DAG.getConstant(255ULL<<24, VT)); 5174 Tmp3 = DAG.getNode(ISD::AND, VT, Tmp3, DAG.getConstant(255ULL<<16, VT)); 5175 Tmp2 = DAG.getNode(ISD::AND, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT)); 5176 Tmp8 = DAG.getNode(ISD::OR, VT, Tmp8, Tmp7); 5177 Tmp6 = DAG.getNode(ISD::OR, VT, Tmp6, Tmp5); 5178 Tmp4 = DAG.getNode(ISD::OR, VT, Tmp4, Tmp3); 5179 Tmp2 = DAG.getNode(ISD::OR, VT, Tmp2, Tmp1); 5180 Tmp8 = DAG.getNode(ISD::OR, VT, Tmp8, Tmp6); 5181 Tmp4 = DAG.getNode(ISD::OR, VT, Tmp4, Tmp2); 5182 return DAG.getNode(ISD::OR, VT, Tmp8, Tmp4); 5183 } 5184} 5185 5186/// ExpandBitCount - Expand the specified bitcount instruction into operations. 5187/// 5188SDOperand SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDOperand Op) { 5189 switch (Opc) { 5190 default: assert(0 && "Cannot expand this yet!"); 5191 case ISD::CTPOP: { 5192 static const uint64_t mask[6] = { 5193 0x5555555555555555ULL, 0x3333333333333333ULL, 5194 0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL, 5195 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL 5196 }; 5197 MVT::ValueType VT = Op.getValueType(); 5198 MVT::ValueType ShVT = TLI.getShiftAmountTy(); 5199 unsigned len = MVT::getSizeInBits(VT); 5200 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) { 5201 //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8]) 5202 SDOperand Tmp2 = DAG.getConstant(mask[i], VT); 5203 SDOperand Tmp3 = DAG.getConstant(1ULL << i, ShVT); 5204 Op = DAG.getNode(ISD::ADD, VT, DAG.getNode(ISD::AND, VT, Op, Tmp2), 5205 DAG.getNode(ISD::AND, VT, 5206 DAG.getNode(ISD::SRL, VT, Op, Tmp3),Tmp2)); 5207 } 5208 return Op; 5209 } 5210 case ISD::CTLZ: { 5211 // for now, we do this: 5212 // x = x | (x >> 1); 5213 // x = x | (x >> 2); 5214 // ... 5215 // x = x | (x >>16); 5216 // x = x | (x >>32); // for 64-bit input 5217 // return popcount(~x); 5218 // 5219 // but see also: http://www.hackersdelight.org/HDcode/nlz.cc 5220 MVT::ValueType VT = Op.getValueType(); 5221 MVT::ValueType ShVT = TLI.getShiftAmountTy(); 5222 unsigned len = MVT::getSizeInBits(VT); 5223 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) { 5224 SDOperand Tmp3 = DAG.getConstant(1ULL << i, ShVT); 5225 Op = DAG.getNode(ISD::OR, VT, Op, DAG.getNode(ISD::SRL, VT, Op, Tmp3)); 5226 } 5227 Op = DAG.getNode(ISD::XOR, VT, Op, DAG.getConstant(~0ULL, VT)); 5228 return DAG.getNode(ISD::CTPOP, VT, Op); 5229 } 5230 case ISD::CTTZ: { 5231 // for now, we use: { return popcount(~x & (x - 1)); } 5232 // unless the target has ctlz but not ctpop, in which case we use: 5233 // { return 32 - nlz(~x & (x-1)); } 5234 // see also http://www.hackersdelight.org/HDcode/ntz.cc 5235 MVT::ValueType VT = Op.getValueType(); 5236 SDOperand Tmp2 = DAG.getConstant(~0ULL, VT); 5237 SDOperand Tmp3 = DAG.getNode(ISD::AND, VT, 5238 DAG.getNode(ISD::XOR, VT, Op, Tmp2), 5239 DAG.getNode(ISD::SUB, VT, Op, DAG.getConstant(1, VT))); 5240 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 5241 if (!TLI.isOperationLegal(ISD::CTPOP, VT) && 5242 TLI.isOperationLegal(ISD::CTLZ, VT)) 5243 return DAG.getNode(ISD::SUB, VT, 5244 DAG.getConstant(MVT::getSizeInBits(VT), VT), 5245 DAG.getNode(ISD::CTLZ, VT, Tmp3)); 5246 return DAG.getNode(ISD::CTPOP, VT, Tmp3); 5247 } 5248 } 5249} 5250 5251/// ExpandOp - Expand the specified SDOperand into its two component pieces 5252/// Lo&Hi. Note that the Op MUST be an expanded type. As a result of this, the 5253/// LegalizeNodes map is filled in for any results that are not expanded, the 5254/// ExpandedNodes map is filled in for any results that are expanded, and the 5255/// Lo/Hi values are returned. 5256void SelectionDAGLegalize::ExpandOp(SDOperand Op, SDOperand &Lo, SDOperand &Hi){ 5257 MVT::ValueType VT = Op.getValueType(); 5258 MVT::ValueType NVT = TLI.getTypeToTransformTo(VT); 5259 SDNode *Node = Op.Val; 5260 assert(getTypeAction(VT) == Expand && "Not an expanded type!"); 5261 assert(((MVT::isInteger(NVT) && NVT < VT) || MVT::isFloatingPoint(VT) || 5262 MVT::isVector(VT)) && 5263 "Cannot expand to FP value or to larger int value!"); 5264 5265 // See if we already expanded it. 5266 DenseMap<SDOperand, std::pair<SDOperand, SDOperand> >::iterator I 5267 = ExpandedNodes.find(Op); 5268 if (I != ExpandedNodes.end()) { 5269 Lo = I->second.first; 5270 Hi = I->second.second; 5271 return; 5272 } 5273 5274 switch (Node->getOpcode()) { 5275 case ISD::CopyFromReg: 5276 assert(0 && "CopyFromReg must be legal!"); 5277 case ISD::FP_ROUND_INREG: 5278 if (VT == MVT::ppcf128 && 5279 TLI.getOperationAction(ISD::FP_ROUND_INREG, VT) == 5280 TargetLowering::Custom) { 5281 SDOperand SrcLo, SrcHi, Src; 5282 ExpandOp(Op.getOperand(0), SrcLo, SrcHi); 5283 Src = DAG.getNode(ISD::BUILD_PAIR, VT, SrcLo, SrcHi); 5284 SDOperand Result = TLI.LowerOperation( 5285 DAG.getNode(ISD::FP_ROUND_INREG, VT, Src, Op.getOperand(1)), DAG); 5286 assert(Result.Val->getOpcode() == ISD::BUILD_PAIR); 5287 Lo = Result.Val->getOperand(0); 5288 Hi = Result.Val->getOperand(1); 5289 break; 5290 } 5291 // fall through 5292 default: 5293#ifndef NDEBUG 5294 cerr << "NODE: "; Node->dump(&DAG); cerr << "\n"; 5295#endif 5296 assert(0 && "Do not know how to expand this operator!"); 5297 abort(); 5298 case ISD::UNDEF: 5299 NVT = TLI.getTypeToExpandTo(VT); 5300 Lo = DAG.getNode(ISD::UNDEF, NVT); 5301 Hi = DAG.getNode(ISD::UNDEF, NVT); 5302 break; 5303 case ISD::Constant: { 5304 uint64_t Cst = cast<ConstantSDNode>(Node)->getValue(); 5305 Lo = DAG.getConstant(Cst, NVT); 5306 Hi = DAG.getConstant(Cst >> MVT::getSizeInBits(NVT), NVT); 5307 break; 5308 } 5309 case ISD::ConstantFP: { 5310 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 5311 if (CFP->getValueType(0) == MVT::ppcf128) { 5312 APInt api = CFP->getValueAPF().convertToAPInt(); 5313 Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &api.getRawData()[1])), 5314 MVT::f64); 5315 Hi = DAG.getConstantFP(APFloat(APInt(64, 1, &api.getRawData()[0])), 5316 MVT::f64); 5317 break; 5318 } 5319 Lo = ExpandConstantFP(CFP, false, DAG, TLI); 5320 if (getTypeAction(Lo.getValueType()) == Expand) 5321 ExpandOp(Lo, Lo, Hi); 5322 break; 5323 } 5324 case ISD::BUILD_PAIR: 5325 // Return the operands. 5326 Lo = Node->getOperand(0); 5327 Hi = Node->getOperand(1); 5328 break; 5329 5330 case ISD::SIGN_EXTEND_INREG: 5331 ExpandOp(Node->getOperand(0), Lo, Hi); 5332 // sext_inreg the low part if needed. 5333 Lo = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Lo, Node->getOperand(1)); 5334 5335 // The high part gets the sign extension from the lo-part. This handles 5336 // things like sextinreg V:i64 from i8. 5337 Hi = DAG.getNode(ISD::SRA, NVT, Lo, 5338 DAG.getConstant(MVT::getSizeInBits(NVT)-1, 5339 TLI.getShiftAmountTy())); 5340 break; 5341 5342 case ISD::BSWAP: { 5343 ExpandOp(Node->getOperand(0), Lo, Hi); 5344 SDOperand TempLo = DAG.getNode(ISD::BSWAP, NVT, Hi); 5345 Hi = DAG.getNode(ISD::BSWAP, NVT, Lo); 5346 Lo = TempLo; 5347 break; 5348 } 5349 5350 case ISD::CTPOP: 5351 ExpandOp(Node->getOperand(0), Lo, Hi); 5352 Lo = DAG.getNode(ISD::ADD, NVT, // ctpop(HL) -> ctpop(H)+ctpop(L) 5353 DAG.getNode(ISD::CTPOP, NVT, Lo), 5354 DAG.getNode(ISD::CTPOP, NVT, Hi)); 5355 Hi = DAG.getConstant(0, NVT); 5356 break; 5357 5358 case ISD::CTLZ: { 5359 // ctlz (HL) -> ctlz(H) != 32 ? ctlz(H) : (ctlz(L)+32) 5360 ExpandOp(Node->getOperand(0), Lo, Hi); 5361 SDOperand BitsC = DAG.getConstant(MVT::getSizeInBits(NVT), NVT); 5362 SDOperand HLZ = DAG.getNode(ISD::CTLZ, NVT, Hi); 5363 SDOperand TopNotZero = DAG.getSetCC(TLI.getSetCCResultTy(), HLZ, BitsC, 5364 ISD::SETNE); 5365 SDOperand LowPart = DAG.getNode(ISD::CTLZ, NVT, Lo); 5366 LowPart = DAG.getNode(ISD::ADD, NVT, LowPart, BitsC); 5367 5368 Lo = DAG.getNode(ISD::SELECT, NVT, TopNotZero, HLZ, LowPart); 5369 Hi = DAG.getConstant(0, NVT); 5370 break; 5371 } 5372 5373 case ISD::CTTZ: { 5374 // cttz (HL) -> cttz(L) != 32 ? cttz(L) : (cttz(H)+32) 5375 ExpandOp(Node->getOperand(0), Lo, Hi); 5376 SDOperand BitsC = DAG.getConstant(MVT::getSizeInBits(NVT), NVT); 5377 SDOperand LTZ = DAG.getNode(ISD::CTTZ, NVT, Lo); 5378 SDOperand BotNotZero = DAG.getSetCC(TLI.getSetCCResultTy(), LTZ, BitsC, 5379 ISD::SETNE); 5380 SDOperand HiPart = DAG.getNode(ISD::CTTZ, NVT, Hi); 5381 HiPart = DAG.getNode(ISD::ADD, NVT, HiPart, BitsC); 5382 5383 Lo = DAG.getNode(ISD::SELECT, NVT, BotNotZero, LTZ, HiPart); 5384 Hi = DAG.getConstant(0, NVT); 5385 break; 5386 } 5387 5388 case ISD::VAARG: { 5389 SDOperand Ch = Node->getOperand(0); // Legalize the chain. 5390 SDOperand Ptr = Node->getOperand(1); // Legalize the pointer. 5391 Lo = DAG.getVAArg(NVT, Ch, Ptr, Node->getOperand(2)); 5392 Hi = DAG.getVAArg(NVT, Lo.getValue(1), Ptr, Node->getOperand(2)); 5393 5394 // Remember that we legalized the chain. 5395 Hi = LegalizeOp(Hi); 5396 AddLegalizedOperand(Op.getValue(1), Hi.getValue(1)); 5397 if (!TLI.isLittleEndian()) 5398 std::swap(Lo, Hi); 5399 break; 5400 } 5401 5402 case ISD::LOAD: { 5403 LoadSDNode *LD = cast<LoadSDNode>(Node); 5404 SDOperand Ch = LD->getChain(); // Legalize the chain. 5405 SDOperand Ptr = LD->getBasePtr(); // Legalize the pointer. 5406 ISD::LoadExtType ExtType = LD->getExtensionType(); 5407 int SVOffset = LD->getSrcValueOffset(); 5408 unsigned Alignment = LD->getAlignment(); 5409 bool isVolatile = LD->isVolatile(); 5410 5411 if (ExtType == ISD::NON_EXTLOAD) { 5412 Lo = DAG.getLoad(NVT, Ch, Ptr, LD->getSrcValue(), SVOffset, 5413 isVolatile, Alignment); 5414 if (VT == MVT::f32 || VT == MVT::f64) { 5415 // f32->i32 or f64->i64 one to one expansion. 5416 // Remember that we legalized the chain. 5417 AddLegalizedOperand(SDOperand(Node, 1), LegalizeOp(Lo.getValue(1))); 5418 // Recursively expand the new load. 5419 if (getTypeAction(NVT) == Expand) 5420 ExpandOp(Lo, Lo, Hi); 5421 break; 5422 } 5423 5424 // Increment the pointer to the other half. 5425 unsigned IncrementSize = MVT::getSizeInBits(Lo.getValueType())/8; 5426 Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, 5427 getIntPtrConstant(IncrementSize)); 5428 SVOffset += IncrementSize; 5429 if (Alignment > IncrementSize) 5430 Alignment = IncrementSize; 5431 Hi = DAG.getLoad(NVT, Ch, Ptr, LD->getSrcValue(), SVOffset, 5432 isVolatile, Alignment); 5433 5434 // Build a factor node to remember that this load is independent of the 5435 // other one. 5436 SDOperand TF = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), 5437 Hi.getValue(1)); 5438 5439 // Remember that we legalized the chain. 5440 AddLegalizedOperand(Op.getValue(1), LegalizeOp(TF)); 5441 if (!TLI.isLittleEndian()) 5442 std::swap(Lo, Hi); 5443 } else { 5444 MVT::ValueType EVT = LD->getLoadedVT(); 5445 5446 if ((VT == MVT::f64 && EVT == MVT::f32) || 5447 (VT == MVT::ppcf128 && (EVT==MVT::f64 || EVT==MVT::f32))) { 5448 // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND 5449 SDOperand Load = DAG.getLoad(EVT, Ch, Ptr, LD->getSrcValue(), 5450 SVOffset, isVolatile, Alignment); 5451 // Remember that we legalized the chain. 5452 AddLegalizedOperand(SDOperand(Node, 1), LegalizeOp(Load.getValue(1))); 5453 ExpandOp(DAG.getNode(ISD::FP_EXTEND, VT, Load), Lo, Hi); 5454 break; 5455 } 5456 5457 if (EVT == NVT) 5458 Lo = DAG.getLoad(NVT, Ch, Ptr, LD->getSrcValue(), 5459 SVOffset, isVolatile, Alignment); 5460 else 5461 Lo = DAG.getExtLoad(ExtType, NVT, Ch, Ptr, LD->getSrcValue(), 5462 SVOffset, EVT, isVolatile, 5463 Alignment); 5464 5465 // Remember that we legalized the chain. 5466 AddLegalizedOperand(SDOperand(Node, 1), LegalizeOp(Lo.getValue(1))); 5467 5468 if (ExtType == ISD::SEXTLOAD) { 5469 // The high part is obtained by SRA'ing all but one of the bits of the 5470 // lo part. 5471 unsigned LoSize = MVT::getSizeInBits(Lo.getValueType()); 5472 Hi = DAG.getNode(ISD::SRA, NVT, Lo, 5473 DAG.getConstant(LoSize-1, TLI.getShiftAmountTy())); 5474 } else if (ExtType == ISD::ZEXTLOAD) { 5475 // The high part is just a zero. 5476 Hi = DAG.getConstant(0, NVT); 5477 } else /* if (ExtType == ISD::EXTLOAD) */ { 5478 // The high part is undefined. 5479 Hi = DAG.getNode(ISD::UNDEF, NVT); 5480 } 5481 } 5482 break; 5483 } 5484 case ISD::AND: 5485 case ISD::OR: 5486 case ISD::XOR: { // Simple logical operators -> two trivial pieces. 5487 SDOperand LL, LH, RL, RH; 5488 ExpandOp(Node->getOperand(0), LL, LH); 5489 ExpandOp(Node->getOperand(1), RL, RH); 5490 Lo = DAG.getNode(Node->getOpcode(), NVT, LL, RL); 5491 Hi = DAG.getNode(Node->getOpcode(), NVT, LH, RH); 5492 break; 5493 } 5494 case ISD::SELECT: { 5495 SDOperand LL, LH, RL, RH; 5496 ExpandOp(Node->getOperand(1), LL, LH); 5497 ExpandOp(Node->getOperand(2), RL, RH); 5498 if (getTypeAction(NVT) == Expand) 5499 NVT = TLI.getTypeToExpandTo(NVT); 5500 Lo = DAG.getNode(ISD::SELECT, NVT, Node->getOperand(0), LL, RL); 5501 if (VT != MVT::f32) 5502 Hi = DAG.getNode(ISD::SELECT, NVT, Node->getOperand(0), LH, RH); 5503 break; 5504 } 5505 case ISD::SELECT_CC: { 5506 SDOperand TL, TH, FL, FH; 5507 ExpandOp(Node->getOperand(2), TL, TH); 5508 ExpandOp(Node->getOperand(3), FL, FH); 5509 if (getTypeAction(NVT) == Expand) 5510 NVT = TLI.getTypeToExpandTo(NVT); 5511 Lo = DAG.getNode(ISD::SELECT_CC, NVT, Node->getOperand(0), 5512 Node->getOperand(1), TL, FL, Node->getOperand(4)); 5513 if (VT != MVT::f32) 5514 Hi = DAG.getNode(ISD::SELECT_CC, NVT, Node->getOperand(0), 5515 Node->getOperand(1), TH, FH, Node->getOperand(4)); 5516 break; 5517 } 5518 case ISD::ANY_EXTEND: 5519 // The low part is any extension of the input (which degenerates to a copy). 5520 Lo = DAG.getNode(ISD::ANY_EXTEND, NVT, Node->getOperand(0)); 5521 // The high part is undefined. 5522 Hi = DAG.getNode(ISD::UNDEF, NVT); 5523 break; 5524 case ISD::SIGN_EXTEND: { 5525 // The low part is just a sign extension of the input (which degenerates to 5526 // a copy). 5527 Lo = DAG.getNode(ISD::SIGN_EXTEND, NVT, Node->getOperand(0)); 5528 5529 // The high part is obtained by SRA'ing all but one of the bits of the lo 5530 // part. 5531 unsigned LoSize = MVT::getSizeInBits(Lo.getValueType()); 5532 Hi = DAG.getNode(ISD::SRA, NVT, Lo, 5533 DAG.getConstant(LoSize-1, TLI.getShiftAmountTy())); 5534 break; 5535 } 5536 case ISD::ZERO_EXTEND: 5537 // The low part is just a zero extension of the input (which degenerates to 5538 // a copy). 5539 Lo = DAG.getNode(ISD::ZERO_EXTEND, NVT, Node->getOperand(0)); 5540 5541 // The high part is just a zero. 5542 Hi = DAG.getConstant(0, NVT); 5543 break; 5544 5545 case ISD::TRUNCATE: { 5546 // The input value must be larger than this value. Expand *it*. 5547 SDOperand NewLo; 5548 ExpandOp(Node->getOperand(0), NewLo, Hi); 5549 5550 // The low part is now either the right size, or it is closer. If not the 5551 // right size, make an illegal truncate so we recursively expand it. 5552 if (NewLo.getValueType() != Node->getValueType(0)) 5553 NewLo = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), NewLo); 5554 ExpandOp(NewLo, Lo, Hi); 5555 break; 5556 } 5557 5558 case ISD::BIT_CONVERT: { 5559 SDOperand Tmp; 5560 if (TLI.getOperationAction(ISD::BIT_CONVERT, VT) == TargetLowering::Custom){ 5561 // If the target wants to, allow it to lower this itself. 5562 switch (getTypeAction(Node->getOperand(0).getValueType())) { 5563 case Expand: assert(0 && "cannot expand FP!"); 5564 case Legal: Tmp = LegalizeOp(Node->getOperand(0)); break; 5565 case Promote: Tmp = PromoteOp (Node->getOperand(0)); break; 5566 } 5567 Tmp = TLI.LowerOperation(DAG.getNode(ISD::BIT_CONVERT, VT, Tmp), DAG); 5568 } 5569 5570 // f32 / f64 must be expanded to i32 / i64. 5571 if (VT == MVT::f32 || VT == MVT::f64) { 5572 Lo = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0)); 5573 if (getTypeAction(NVT) == Expand) 5574 ExpandOp(Lo, Lo, Hi); 5575 break; 5576 } 5577 5578 // If source operand will be expanded to the same type as VT, i.e. 5579 // i64 <- f64, i32 <- f32, expand the source operand instead. 5580 MVT::ValueType VT0 = Node->getOperand(0).getValueType(); 5581 if (getTypeAction(VT0) == Expand && TLI.getTypeToTransformTo(VT0) == VT) { 5582 ExpandOp(Node->getOperand(0), Lo, Hi); 5583 break; 5584 } 5585 5586 // Turn this into a load/store pair by default. 5587 if (Tmp.Val == 0) 5588 Tmp = ExpandBIT_CONVERT(VT, Node->getOperand(0)); 5589 5590 ExpandOp(Tmp, Lo, Hi); 5591 break; 5592 } 5593 5594 case ISD::READCYCLECOUNTER: 5595 assert(TLI.getOperationAction(ISD::READCYCLECOUNTER, VT) == 5596 TargetLowering::Custom && 5597 "Must custom expand ReadCycleCounter"); 5598 Lo = TLI.LowerOperation(Op, DAG); 5599 assert(Lo.Val && "Node must be custom expanded!"); 5600 Hi = Lo.getValue(1); 5601 AddLegalizedOperand(SDOperand(Node, 1), // Remember we legalized the chain. 5602 LegalizeOp(Lo.getValue(2))); 5603 break; 5604 5605 // These operators cannot be expanded directly, emit them as calls to 5606 // library functions. 5607 case ISD::FP_TO_SINT: { 5608 if (TLI.getOperationAction(ISD::FP_TO_SINT, VT) == TargetLowering::Custom) { 5609 SDOperand Op; 5610 switch (getTypeAction(Node->getOperand(0).getValueType())) { 5611 case Expand: assert(0 && "cannot expand FP!"); 5612 case Legal: Op = LegalizeOp(Node->getOperand(0)); break; 5613 case Promote: Op = PromoteOp (Node->getOperand(0)); break; 5614 } 5615 5616 Op = TLI.LowerOperation(DAG.getNode(ISD::FP_TO_SINT, VT, Op), DAG); 5617 5618 // Now that the custom expander is done, expand the result, which is still 5619 // VT. 5620 if (Op.Val) { 5621 ExpandOp(Op, Lo, Hi); 5622 break; 5623 } 5624 } 5625 5626 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 5627 if (Node->getOperand(0).getValueType() == MVT::f32) 5628 LC = RTLIB::FPTOSINT_F32_I64; 5629 else if (Node->getOperand(0).getValueType() == MVT::f64) 5630 LC = RTLIB::FPTOSINT_F64_I64; 5631 else if (Node->getOperand(0).getValueType() == MVT::f80) 5632 LC = RTLIB::FPTOSINT_F80_I64; 5633 else if (Node->getOperand(0).getValueType() == MVT::ppcf128) 5634 LC = RTLIB::FPTOSINT_PPCF128_I64; 5635 Lo = ExpandLibCall(TLI.getLibcallName(LC), Node, 5636 false/*sign irrelevant*/, Hi); 5637 break; 5638 } 5639 5640 case ISD::FP_TO_UINT: { 5641 if (TLI.getOperationAction(ISD::FP_TO_UINT, VT) == TargetLowering::Custom) { 5642 SDOperand Op; 5643 switch (getTypeAction(Node->getOperand(0).getValueType())) { 5644 case Expand: assert(0 && "cannot expand FP!"); 5645 case Legal: Op = LegalizeOp(Node->getOperand(0)); break; 5646 case Promote: Op = PromoteOp (Node->getOperand(0)); break; 5647 } 5648 5649 Op = TLI.LowerOperation(DAG.getNode(ISD::FP_TO_UINT, VT, Op), DAG); 5650 5651 // Now that the custom expander is done, expand the result. 5652 if (Op.Val) { 5653 ExpandOp(Op, Lo, Hi); 5654 break; 5655 } 5656 } 5657 5658 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 5659 if (Node->getOperand(0).getValueType() == MVT::f32) 5660 LC = RTLIB::FPTOUINT_F32_I64; 5661 else if (Node->getOperand(0).getValueType() == MVT::f64) 5662 LC = RTLIB::FPTOUINT_F64_I64; 5663 else if (Node->getOperand(0).getValueType() == MVT::f80) 5664 LC = RTLIB::FPTOUINT_F80_I64; 5665 else if (Node->getOperand(0).getValueType() == MVT::ppcf128) 5666 LC = RTLIB::FPTOUINT_PPCF128_I64; 5667 Lo = ExpandLibCall(TLI.getLibcallName(LC), Node, 5668 false/*sign irrelevant*/, Hi); 5669 break; 5670 } 5671 5672 case ISD::SHL: { 5673 // If the target wants custom lowering, do so. 5674 SDOperand ShiftAmt = LegalizeOp(Node->getOperand(1)); 5675 if (TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Custom) { 5676 SDOperand Op = DAG.getNode(ISD::SHL, VT, Node->getOperand(0), ShiftAmt); 5677 Op = TLI.LowerOperation(Op, DAG); 5678 if (Op.Val) { 5679 // Now that the custom expander is done, expand the result, which is 5680 // still VT. 5681 ExpandOp(Op, Lo, Hi); 5682 break; 5683 } 5684 } 5685 5686 // If ADDC/ADDE are supported and if the shift amount is a constant 1, emit 5687 // this X << 1 as X+X. 5688 if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(ShiftAmt)) { 5689 if (ShAmt->getValue() == 1 && TLI.isOperationLegal(ISD::ADDC, NVT) && 5690 TLI.isOperationLegal(ISD::ADDE, NVT)) { 5691 SDOperand LoOps[2], HiOps[3]; 5692 ExpandOp(Node->getOperand(0), LoOps[0], HiOps[0]); 5693 SDVTList VTList = DAG.getVTList(LoOps[0].getValueType(), MVT::Flag); 5694 LoOps[1] = LoOps[0]; 5695 Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2); 5696 5697 HiOps[1] = HiOps[0]; 5698 HiOps[2] = Lo.getValue(1); 5699 Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3); 5700 break; 5701 } 5702 } 5703 5704 // If we can emit an efficient shift operation, do so now. 5705 if (ExpandShift(ISD::SHL, Node->getOperand(0), ShiftAmt, Lo, Hi)) 5706 break; 5707 5708 // If this target supports SHL_PARTS, use it. 5709 TargetLowering::LegalizeAction Action = 5710 TLI.getOperationAction(ISD::SHL_PARTS, NVT); 5711 if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) || 5712 Action == TargetLowering::Custom) { 5713 ExpandShiftParts(ISD::SHL_PARTS, Node->getOperand(0), ShiftAmt, Lo, Hi); 5714 break; 5715 } 5716 5717 // Otherwise, emit a libcall. 5718 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SHL_I64), Node, 5719 false/*left shift=unsigned*/, Hi); 5720 break; 5721 } 5722 5723 case ISD::SRA: { 5724 // If the target wants custom lowering, do so. 5725 SDOperand ShiftAmt = LegalizeOp(Node->getOperand(1)); 5726 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Custom) { 5727 SDOperand Op = DAG.getNode(ISD::SRA, VT, Node->getOperand(0), ShiftAmt); 5728 Op = TLI.LowerOperation(Op, DAG); 5729 if (Op.Val) { 5730 // Now that the custom expander is done, expand the result, which is 5731 // still VT. 5732 ExpandOp(Op, Lo, Hi); 5733 break; 5734 } 5735 } 5736 5737 // If we can emit an efficient shift operation, do so now. 5738 if (ExpandShift(ISD::SRA, Node->getOperand(0), ShiftAmt, Lo, Hi)) 5739 break; 5740 5741 // If this target supports SRA_PARTS, use it. 5742 TargetLowering::LegalizeAction Action = 5743 TLI.getOperationAction(ISD::SRA_PARTS, NVT); 5744 if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) || 5745 Action == TargetLowering::Custom) { 5746 ExpandShiftParts(ISD::SRA_PARTS, Node->getOperand(0), ShiftAmt, Lo, Hi); 5747 break; 5748 } 5749 5750 // Otherwise, emit a libcall. 5751 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SRA_I64), Node, 5752 true/*ashr is signed*/, Hi); 5753 break; 5754 } 5755 5756 case ISD::SRL: { 5757 // If the target wants custom lowering, do so. 5758 SDOperand ShiftAmt = LegalizeOp(Node->getOperand(1)); 5759 if (TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Custom) { 5760 SDOperand Op = DAG.getNode(ISD::SRL, VT, Node->getOperand(0), ShiftAmt); 5761 Op = TLI.LowerOperation(Op, DAG); 5762 if (Op.Val) { 5763 // Now that the custom expander is done, expand the result, which is 5764 // still VT. 5765 ExpandOp(Op, Lo, Hi); 5766 break; 5767 } 5768 } 5769 5770 // If we can emit an efficient shift operation, do so now. 5771 if (ExpandShift(ISD::SRL, Node->getOperand(0), ShiftAmt, Lo, Hi)) 5772 break; 5773 5774 // If this target supports SRL_PARTS, use it. 5775 TargetLowering::LegalizeAction Action = 5776 TLI.getOperationAction(ISD::SRL_PARTS, NVT); 5777 if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) || 5778 Action == TargetLowering::Custom) { 5779 ExpandShiftParts(ISD::SRL_PARTS, Node->getOperand(0), ShiftAmt, Lo, Hi); 5780 break; 5781 } 5782 5783 // Otherwise, emit a libcall. 5784 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SRL_I64), Node, 5785 false/*lshr is unsigned*/, Hi); 5786 break; 5787 } 5788 5789 case ISD::ADD: 5790 case ISD::SUB: { 5791 // If the target wants to custom expand this, let them. 5792 if (TLI.getOperationAction(Node->getOpcode(), VT) == 5793 TargetLowering::Custom) { 5794 Op = TLI.LowerOperation(Op, DAG); 5795 if (Op.Val) { 5796 ExpandOp(Op, Lo, Hi); 5797 break; 5798 } 5799 } 5800 5801 // Expand the subcomponents. 5802 SDOperand LHSL, LHSH, RHSL, RHSH; 5803 ExpandOp(Node->getOperand(0), LHSL, LHSH); 5804 ExpandOp(Node->getOperand(1), RHSL, RHSH); 5805 SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); 5806 SDOperand LoOps[2], HiOps[3]; 5807 LoOps[0] = LHSL; 5808 LoOps[1] = RHSL; 5809 HiOps[0] = LHSH; 5810 HiOps[1] = RHSH; 5811 if (Node->getOpcode() == ISD::ADD) { 5812 Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2); 5813 HiOps[2] = Lo.getValue(1); 5814 Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3); 5815 } else { 5816 Lo = DAG.getNode(ISD::SUBC, VTList, LoOps, 2); 5817 HiOps[2] = Lo.getValue(1); 5818 Hi = DAG.getNode(ISD::SUBE, VTList, HiOps, 3); 5819 } 5820 break; 5821 } 5822 5823 case ISD::ADDC: 5824 case ISD::SUBC: { 5825 // Expand the subcomponents. 5826 SDOperand LHSL, LHSH, RHSL, RHSH; 5827 ExpandOp(Node->getOperand(0), LHSL, LHSH); 5828 ExpandOp(Node->getOperand(1), RHSL, RHSH); 5829 SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); 5830 SDOperand LoOps[2] = { LHSL, RHSL }; 5831 SDOperand HiOps[3] = { LHSH, RHSH }; 5832 5833 if (Node->getOpcode() == ISD::ADDC) { 5834 Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2); 5835 HiOps[2] = Lo.getValue(1); 5836 Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3); 5837 } else { 5838 Lo = DAG.getNode(ISD::SUBC, VTList, LoOps, 2); 5839 HiOps[2] = Lo.getValue(1); 5840 Hi = DAG.getNode(ISD::SUBE, VTList, HiOps, 3); 5841 } 5842 // Remember that we legalized the flag. 5843 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Hi.getValue(1))); 5844 break; 5845 } 5846 case ISD::ADDE: 5847 case ISD::SUBE: { 5848 // Expand the subcomponents. 5849 SDOperand LHSL, LHSH, RHSL, RHSH; 5850 ExpandOp(Node->getOperand(0), LHSL, LHSH); 5851 ExpandOp(Node->getOperand(1), RHSL, RHSH); 5852 SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); 5853 SDOperand LoOps[3] = { LHSL, RHSL, Node->getOperand(2) }; 5854 SDOperand HiOps[3] = { LHSH, RHSH }; 5855 5856 Lo = DAG.getNode(Node->getOpcode(), VTList, LoOps, 3); 5857 HiOps[2] = Lo.getValue(1); 5858 Hi = DAG.getNode(Node->getOpcode(), VTList, HiOps, 3); 5859 5860 // Remember that we legalized the flag. 5861 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Hi.getValue(1))); 5862 break; 5863 } 5864 case ISD::MUL: { 5865 // If the target wants to custom expand this, let them. 5866 if (TLI.getOperationAction(ISD::MUL, VT) == TargetLowering::Custom) { 5867 SDOperand New = TLI.LowerOperation(Op, DAG); 5868 if (New.Val) { 5869 ExpandOp(New, Lo, Hi); 5870 break; 5871 } 5872 } 5873 5874 bool HasMULHS = TLI.isOperationLegal(ISD::MULHS, NVT); 5875 bool HasMULHU = TLI.isOperationLegal(ISD::MULHU, NVT); 5876 bool HasSMUL_LOHI = TLI.isOperationLegal(ISD::SMUL_LOHI, NVT); 5877 bool HasUMUL_LOHI = TLI.isOperationLegal(ISD::UMUL_LOHI, NVT); 5878 if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) { 5879 SDOperand LL, LH, RL, RH; 5880 ExpandOp(Node->getOperand(0), LL, LH); 5881 ExpandOp(Node->getOperand(1), RL, RH); 5882 unsigned BitSize = MVT::getSizeInBits(RH.getValueType()); 5883 unsigned LHSSB = DAG.ComputeNumSignBits(Op.getOperand(0)); 5884 unsigned RHSSB = DAG.ComputeNumSignBits(Op.getOperand(1)); 5885 // FIXME: generalize this to handle other bit sizes 5886 if (LHSSB == 32 && RHSSB == 32 && 5887 DAG.MaskedValueIsZero(Op.getOperand(0), 0xFFFFFFFF00000000ULL) && 5888 DAG.MaskedValueIsZero(Op.getOperand(1), 0xFFFFFFFF00000000ULL)) { 5889 // The inputs are both zero-extended. 5890 if (HasUMUL_LOHI) { 5891 // We can emit a umul_lohi. 5892 Lo = DAG.getNode(ISD::UMUL_LOHI, DAG.getVTList(NVT, NVT), LL, RL); 5893 Hi = SDOperand(Lo.Val, 1); 5894 break; 5895 } 5896 if (HasMULHU) { 5897 // We can emit a mulhu+mul. 5898 Lo = DAG.getNode(ISD::MUL, NVT, LL, RL); 5899 Hi = DAG.getNode(ISD::MULHU, NVT, LL, RL); 5900 break; 5901 } 5902 } 5903 if (LHSSB > BitSize && RHSSB > BitSize) { 5904 // The input values are both sign-extended. 5905 if (HasSMUL_LOHI) { 5906 // We can emit a smul_lohi. 5907 Lo = DAG.getNode(ISD::SMUL_LOHI, DAG.getVTList(NVT, NVT), LL, RL); 5908 Hi = SDOperand(Lo.Val, 1); 5909 break; 5910 } 5911 if (HasMULHS) { 5912 // We can emit a mulhs+mul. 5913 Lo = DAG.getNode(ISD::MUL, NVT, LL, RL); 5914 Hi = DAG.getNode(ISD::MULHS, NVT, LL, RL); 5915 break; 5916 } 5917 } 5918 if (HasUMUL_LOHI) { 5919 // Lo,Hi = umul LHS, RHS. 5920 SDOperand UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, 5921 DAG.getVTList(NVT, NVT), LL, RL); 5922 Lo = UMulLOHI; 5923 Hi = UMulLOHI.getValue(1); 5924 RH = DAG.getNode(ISD::MUL, NVT, LL, RH); 5925 LH = DAG.getNode(ISD::MUL, NVT, LH, RL); 5926 Hi = DAG.getNode(ISD::ADD, NVT, Hi, RH); 5927 Hi = DAG.getNode(ISD::ADD, NVT, Hi, LH); 5928 break; 5929 } 5930 } 5931 5932 // If nothing else, we can make a libcall. 5933 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::MUL_I64), Node, 5934 false/*sign irrelevant*/, Hi); 5935 break; 5936 } 5937 case ISD::SDIV: 5938 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SDIV_I64), Node, true, Hi); 5939 break; 5940 case ISD::UDIV: 5941 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::UDIV_I64), Node, true, Hi); 5942 break; 5943 case ISD::SREM: 5944 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SREM_I64), Node, true, Hi); 5945 break; 5946 case ISD::UREM: 5947 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::UREM_I64), Node, true, Hi); 5948 break; 5949 5950 case ISD::FADD: 5951 Lo = ExpandLibCall(TLI.getLibcallName(VT == MVT::f32 ? RTLIB::ADD_F32 : 5952 VT == MVT::f64 ? RTLIB::ADD_F64 : 5953 VT == MVT::ppcf128 ? 5954 RTLIB::ADD_PPCF128 : 5955 RTLIB::UNKNOWN_LIBCALL), 5956 Node, false, Hi); 5957 break; 5958 case ISD::FSUB: 5959 Lo = ExpandLibCall(TLI.getLibcallName(VT == MVT::f32 ? RTLIB::SUB_F32 : 5960 VT == MVT::f64 ? RTLIB::SUB_F64 : 5961 VT == MVT::ppcf128 ? 5962 RTLIB::SUB_PPCF128 : 5963 RTLIB::UNKNOWN_LIBCALL), 5964 Node, false, Hi); 5965 break; 5966 case ISD::FMUL: 5967 Lo = ExpandLibCall(TLI.getLibcallName(VT == MVT::f32 ? RTLIB::MUL_F32 : 5968 VT == MVT::f64 ? RTLIB::MUL_F64 : 5969 VT == MVT::ppcf128 ? 5970 RTLIB::MUL_PPCF128 : 5971 RTLIB::UNKNOWN_LIBCALL), 5972 Node, false, Hi); 5973 break; 5974 case ISD::FDIV: 5975 Lo = ExpandLibCall(TLI.getLibcallName(VT == MVT::f32 ? RTLIB::DIV_F32 : 5976 VT == MVT::f64 ? RTLIB::DIV_F64 : 5977 VT == MVT::ppcf128 ? 5978 RTLIB::DIV_PPCF128 : 5979 RTLIB::UNKNOWN_LIBCALL), 5980 Node, false, Hi); 5981 break; 5982 case ISD::FP_EXTEND: 5983 if (VT == MVT::ppcf128) { 5984 assert(Node->getOperand(0).getValueType()==MVT::f32 || 5985 Node->getOperand(0).getValueType()==MVT::f64); 5986 const uint64_t zero = 0; 5987 if (Node->getOperand(0).getValueType()==MVT::f32) 5988 Hi = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Node->getOperand(0)); 5989 else 5990 Hi = Node->getOperand(0); 5991 Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &zero)), MVT::f64); 5992 break; 5993 } 5994 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::FPEXT_F32_F64), Node, true,Hi); 5995 break; 5996 case ISD::FP_ROUND: 5997 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::FPROUND_F64_F32),Node,true,Hi); 5998 break; 5999 case ISD::FPOWI: 6000 Lo = ExpandLibCall(TLI.getLibcallName((VT == MVT::f32) ? RTLIB::POWI_F32 : 6001 (VT == MVT::f64) ? RTLIB::POWI_F64 : 6002 (VT == MVT::f80) ? RTLIB::POWI_F80 : 6003 (VT == MVT::ppcf128) ? 6004 RTLIB::POWI_PPCF128 : 6005 RTLIB::UNKNOWN_LIBCALL), 6006 Node, false, Hi); 6007 break; 6008 case ISD::FSQRT: 6009 case ISD::FSIN: 6010 case ISD::FCOS: { 6011 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 6012 switch(Node->getOpcode()) { 6013 case ISD::FSQRT: 6014 LC = (VT == MVT::f32) ? RTLIB::SQRT_F32 : 6015 (VT == MVT::f64) ? RTLIB::SQRT_F64 : 6016 (VT == MVT::f80) ? RTLIB::SQRT_F80 : 6017 (VT == MVT::ppcf128) ? RTLIB::SQRT_PPCF128 : 6018 RTLIB::UNKNOWN_LIBCALL; 6019 break; 6020 case ISD::FSIN: 6021 LC = (VT == MVT::f32) ? RTLIB::SIN_F32 : RTLIB::SIN_F64; 6022 break; 6023 case ISD::FCOS: 6024 LC = (VT == MVT::f32) ? RTLIB::COS_F32 : RTLIB::COS_F64; 6025 break; 6026 default: assert(0 && "Unreachable!"); 6027 } 6028 Lo = ExpandLibCall(TLI.getLibcallName(LC), Node, false, Hi); 6029 break; 6030 } 6031 case ISD::FABS: { 6032 if (VT == MVT::ppcf128) { 6033 SDOperand Tmp; 6034 ExpandOp(Node->getOperand(0), Lo, Tmp); 6035 Hi = DAG.getNode(ISD::FABS, NVT, Tmp); 6036 // lo = hi==fabs(hi) ? lo : -lo; 6037 Lo = DAG.getNode(ISD::SELECT_CC, NVT, Hi, Tmp, 6038 Lo, DAG.getNode(ISD::FNEG, NVT, Lo), 6039 DAG.getCondCode(ISD::SETEQ)); 6040 break; 6041 } 6042 SDOperand Mask = (VT == MVT::f64) 6043 ? DAG.getConstantFP(BitsToDouble(~(1ULL << 63)), VT) 6044 : DAG.getConstantFP(BitsToFloat(~(1U << 31)), VT); 6045 Mask = DAG.getNode(ISD::BIT_CONVERT, NVT, Mask); 6046 Lo = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0)); 6047 Lo = DAG.getNode(ISD::AND, NVT, Lo, Mask); 6048 if (getTypeAction(NVT) == Expand) 6049 ExpandOp(Lo, Lo, Hi); 6050 break; 6051 } 6052 case ISD::FNEG: { 6053 if (VT == MVT::ppcf128) { 6054 ExpandOp(Node->getOperand(0), Lo, Hi); 6055 Lo = DAG.getNode(ISD::FNEG, MVT::f64, Lo); 6056 Hi = DAG.getNode(ISD::FNEG, MVT::f64, Hi); 6057 break; 6058 } 6059 SDOperand Mask = (VT == MVT::f64) 6060 ? DAG.getConstantFP(BitsToDouble(1ULL << 63), VT) 6061 : DAG.getConstantFP(BitsToFloat(1U << 31), VT); 6062 Mask = DAG.getNode(ISD::BIT_CONVERT, NVT, Mask); 6063 Lo = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0)); 6064 Lo = DAG.getNode(ISD::XOR, NVT, Lo, Mask); 6065 if (getTypeAction(NVT) == Expand) 6066 ExpandOp(Lo, Lo, Hi); 6067 break; 6068 } 6069 case ISD::FCOPYSIGN: { 6070 Lo = ExpandFCOPYSIGNToBitwiseOps(Node, NVT, DAG, TLI); 6071 if (getTypeAction(NVT) == Expand) 6072 ExpandOp(Lo, Lo, Hi); 6073 break; 6074 } 6075 case ISD::SINT_TO_FP: 6076 case ISD::UINT_TO_FP: { 6077 bool isSigned = Node->getOpcode() == ISD::SINT_TO_FP; 6078 MVT::ValueType SrcVT = Node->getOperand(0).getValueType(); 6079 if (VT == MVT::ppcf128 && SrcVT != MVT::i64) { 6080 static uint64_t zero = 0; 6081 if (isSigned) { 6082 Hi = LegalizeOp(DAG.getNode(ISD::SINT_TO_FP, MVT::f64, 6083 Node->getOperand(0))); 6084 Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &zero)), MVT::f64); 6085 } else { 6086 static uint64_t TwoE32[] = { 0x41f0000000000000LL, 0 }; 6087 Hi = LegalizeOp(DAG.getNode(ISD::SINT_TO_FP, MVT::f64, 6088 Node->getOperand(0))); 6089 Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &zero)), MVT::f64); 6090 Hi = DAG.getNode(ISD::BUILD_PAIR, VT, Lo, Hi); 6091 // X>=0 ? {(f64)x, 0} : {(f64)x, 0} + 2^32 6092 ExpandOp(DAG.getNode(ISD::SELECT_CC, MVT::ppcf128, Node->getOperand(0), 6093 DAG.getConstant(0, MVT::i32), 6094 DAG.getNode(ISD::FADD, MVT::ppcf128, Hi, 6095 DAG.getConstantFP( 6096 APFloat(APInt(128, 2, TwoE32)), 6097 MVT::ppcf128)), 6098 Hi, 6099 DAG.getCondCode(ISD::SETLT)), 6100 Lo, Hi); 6101 } 6102 break; 6103 } 6104 if (VT == MVT::ppcf128 && SrcVT == MVT::i64 && !isSigned) { 6105 // si64->ppcf128 done by libcall, below 6106 static uint64_t TwoE64[] = { 0x43f0000000000000LL, 0 }; 6107 ExpandOp(DAG.getNode(ISD::SINT_TO_FP, MVT::ppcf128, Node->getOperand(0)), 6108 Lo, Hi); 6109 Hi = DAG.getNode(ISD::BUILD_PAIR, VT, Lo, Hi); 6110 // x>=0 ? (ppcf128)(i64)x : (ppcf128)(i64)x + 2^64 6111 ExpandOp(DAG.getNode(ISD::SELECT_CC, MVT::ppcf128, Node->getOperand(0), 6112 DAG.getConstant(0, MVT::i64), 6113 DAG.getNode(ISD::FADD, MVT::ppcf128, Hi, 6114 DAG.getConstantFP( 6115 APFloat(APInt(128, 2, TwoE64)), 6116 MVT::ppcf128)), 6117 Hi, 6118 DAG.getCondCode(ISD::SETLT)), 6119 Lo, Hi); 6120 break; 6121 } 6122 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 6123 if (Node->getOperand(0).getValueType() == MVT::i64) { 6124 if (VT == MVT::f32) 6125 LC = isSigned ? RTLIB::SINTTOFP_I64_F32 : RTLIB::UINTTOFP_I64_F32; 6126 else if (VT == MVT::f64) 6127 LC = isSigned ? RTLIB::SINTTOFP_I64_F64 : RTLIB::UINTTOFP_I64_F64; 6128 else if (VT == MVT::f80) { 6129 assert(isSigned); 6130 LC = RTLIB::SINTTOFP_I64_F80; 6131 } 6132 else if (VT == MVT::ppcf128) { 6133 assert(isSigned); 6134 LC = RTLIB::SINTTOFP_I64_PPCF128; 6135 } 6136 } else { 6137 if (VT == MVT::f32) 6138 LC = isSigned ? RTLIB::SINTTOFP_I32_F32 : RTLIB::UINTTOFP_I32_F32; 6139 else 6140 LC = isSigned ? RTLIB::SINTTOFP_I32_F64 : RTLIB::UINTTOFP_I32_F64; 6141 } 6142 6143 // Promote the operand if needed. 6144 if (getTypeAction(SrcVT) == Promote) { 6145 SDOperand Tmp = PromoteOp(Node->getOperand(0)); 6146 Tmp = isSigned 6147 ? DAG.getNode(ISD::SIGN_EXTEND_INREG, Tmp.getValueType(), Tmp, 6148 DAG.getValueType(SrcVT)) 6149 : DAG.getZeroExtendInReg(Tmp, SrcVT); 6150 Node = DAG.UpdateNodeOperands(Op, Tmp).Val; 6151 } 6152 6153 const char *LibCall = TLI.getLibcallName(LC); 6154 if (LibCall) 6155 Lo = ExpandLibCall(TLI.getLibcallName(LC), Node, isSigned, Hi); 6156 else { 6157 Lo = ExpandIntToFP(Node->getOpcode() == ISD::SINT_TO_FP, VT, 6158 Node->getOperand(0)); 6159 if (getTypeAction(Lo.getValueType()) == Expand) 6160 ExpandOp(Lo, Lo, Hi); 6161 } 6162 break; 6163 } 6164 } 6165 6166 // Make sure the resultant values have been legalized themselves, unless this 6167 // is a type that requires multi-step expansion. 6168 if (getTypeAction(NVT) != Expand && NVT != MVT::isVoid) { 6169 Lo = LegalizeOp(Lo); 6170 if (Hi.Val) 6171 // Don't legalize the high part if it is expanded to a single node. 6172 Hi = LegalizeOp(Hi); 6173 } 6174 6175 // Remember in a map if the values will be reused later. 6176 bool isNew = ExpandedNodes.insert(std::make_pair(Op, std::make_pair(Lo, Hi))); 6177 assert(isNew && "Value already expanded?!?"); 6178} 6179 6180/// SplitVectorOp - Given an operand of vector type, break it down into 6181/// two smaller values, still of vector type. 6182void SelectionDAGLegalize::SplitVectorOp(SDOperand Op, SDOperand &Lo, 6183 SDOperand &Hi) { 6184 assert(MVT::isVector(Op.getValueType()) && "Cannot split non-vector type!"); 6185 SDNode *Node = Op.Val; 6186 unsigned NumElements = MVT::getVectorNumElements(Op.getValueType()); 6187 assert(NumElements > 1 && "Cannot split a single element vector!"); 6188 unsigned NewNumElts = NumElements/2; 6189 MVT::ValueType NewEltVT = MVT::getVectorElementType(Op.getValueType()); 6190 MVT::ValueType NewVT = MVT::getVectorType(NewEltVT, NewNumElts); 6191 6192 // See if we already split it. 6193 std::map<SDOperand, std::pair<SDOperand, SDOperand> >::iterator I 6194 = SplitNodes.find(Op); 6195 if (I != SplitNodes.end()) { 6196 Lo = I->second.first; 6197 Hi = I->second.second; 6198 return; 6199 } 6200 6201 switch (Node->getOpcode()) { 6202 default: 6203#ifndef NDEBUG 6204 Node->dump(&DAG); 6205#endif 6206 assert(0 && "Unhandled operation in SplitVectorOp!"); 6207 case ISD::BUILD_PAIR: 6208 Lo = Node->getOperand(0); 6209 Hi = Node->getOperand(1); 6210 break; 6211 case ISD::INSERT_VECTOR_ELT: { 6212 SplitVectorOp(Node->getOperand(0), Lo, Hi); 6213 unsigned Index = cast<ConstantSDNode>(Node->getOperand(2))->getValue(); 6214 SDOperand ScalarOp = Node->getOperand(1); 6215 if (Index < NewNumElts) 6216 Lo = DAG.getNode(ISD::INSERT_VECTOR_ELT, NewVT, Lo, ScalarOp, 6217 DAG.getConstant(Index, TLI.getPointerTy())); 6218 else 6219 Hi = DAG.getNode(ISD::INSERT_VECTOR_ELT, NewVT, Hi, ScalarOp, 6220 DAG.getConstant(Index - NewNumElts, TLI.getPointerTy())); 6221 break; 6222 } 6223 case ISD::BUILD_VECTOR: { 6224 SmallVector<SDOperand, 8> LoOps(Node->op_begin(), 6225 Node->op_begin()+NewNumElts); 6226 Lo = DAG.getNode(ISD::BUILD_VECTOR, NewVT, &LoOps[0], LoOps.size()); 6227 6228 SmallVector<SDOperand, 8> HiOps(Node->op_begin()+NewNumElts, 6229 Node->op_end()); 6230 Hi = DAG.getNode(ISD::BUILD_VECTOR, NewVT, &HiOps[0], HiOps.size()); 6231 break; 6232 } 6233 case ISD::CONCAT_VECTORS: { 6234 unsigned NewNumSubvectors = Node->getNumOperands() / 2; 6235 if (NewNumSubvectors == 1) { 6236 Lo = Node->getOperand(0); 6237 Hi = Node->getOperand(1); 6238 } else { 6239 SmallVector<SDOperand, 8> LoOps(Node->op_begin(), 6240 Node->op_begin()+NewNumSubvectors); 6241 Lo = DAG.getNode(ISD::CONCAT_VECTORS, NewVT, &LoOps[0], LoOps.size()); 6242 6243 SmallVector<SDOperand, 8> HiOps(Node->op_begin()+NewNumSubvectors, 6244 Node->op_end()); 6245 Hi = DAG.getNode(ISD::CONCAT_VECTORS, NewVT, &HiOps[0], HiOps.size()); 6246 } 6247 break; 6248 } 6249 case ISD::SELECT: { 6250 SDOperand Cond = Node->getOperand(0); 6251 6252 SDOperand LL, LH, RL, RH; 6253 SplitVectorOp(Node->getOperand(1), LL, LH); 6254 SplitVectorOp(Node->getOperand(2), RL, RH); 6255 6256 if (MVT::isVector(Cond.getValueType())) { 6257 // Handle a vector merge. 6258 SDOperand CL, CH; 6259 SplitVectorOp(Cond, CL, CH); 6260 Lo = DAG.getNode(Node->getOpcode(), NewVT, CL, LL, RL); 6261 Hi = DAG.getNode(Node->getOpcode(), NewVT, CH, LH, RH); 6262 } else { 6263 // Handle a simple select with vector operands. 6264 Lo = DAG.getNode(Node->getOpcode(), NewVT, Cond, LL, RL); 6265 Hi = DAG.getNode(Node->getOpcode(), NewVT, Cond, LH, RH); 6266 } 6267 break; 6268 } 6269 case ISD::ADD: 6270 case ISD::SUB: 6271 case ISD::MUL: 6272 case ISD::FADD: 6273 case ISD::FSUB: 6274 case ISD::FMUL: 6275 case ISD::SDIV: 6276 case ISD::UDIV: 6277 case ISD::FDIV: 6278 case ISD::FPOW: 6279 case ISD::AND: 6280 case ISD::OR: 6281 case ISD::XOR: { 6282 SDOperand LL, LH, RL, RH; 6283 SplitVectorOp(Node->getOperand(0), LL, LH); 6284 SplitVectorOp(Node->getOperand(1), RL, RH); 6285 6286 Lo = DAG.getNode(Node->getOpcode(), NewVT, LL, RL); 6287 Hi = DAG.getNode(Node->getOpcode(), NewVT, LH, RH); 6288 break; 6289 } 6290 case ISD::FPOWI: { 6291 SDOperand L, H; 6292 SplitVectorOp(Node->getOperand(0), L, H); 6293 6294 Lo = DAG.getNode(Node->getOpcode(), NewVT, L, Node->getOperand(1)); 6295 Hi = DAG.getNode(Node->getOpcode(), NewVT, H, Node->getOperand(1)); 6296 break; 6297 } 6298 case ISD::CTTZ: 6299 case ISD::CTLZ: 6300 case ISD::CTPOP: 6301 case ISD::FNEG: 6302 case ISD::FABS: 6303 case ISD::FSQRT: 6304 case ISD::FSIN: 6305 case ISD::FCOS: { 6306 SDOperand L, H; 6307 SplitVectorOp(Node->getOperand(0), L, H); 6308 6309 Lo = DAG.getNode(Node->getOpcode(), NewVT, L); 6310 Hi = DAG.getNode(Node->getOpcode(), NewVT, H); 6311 break; 6312 } 6313 case ISD::LOAD: { 6314 LoadSDNode *LD = cast<LoadSDNode>(Node); 6315 SDOperand Ch = LD->getChain(); 6316 SDOperand Ptr = LD->getBasePtr(); 6317 const Value *SV = LD->getSrcValue(); 6318 int SVOffset = LD->getSrcValueOffset(); 6319 unsigned Alignment = LD->getAlignment(); 6320 bool isVolatile = LD->isVolatile(); 6321 6322 Lo = DAG.getLoad(NewVT, Ch, Ptr, SV, SVOffset, isVolatile, Alignment); 6323 unsigned IncrementSize = NewNumElts * MVT::getSizeInBits(NewEltVT)/8; 6324 Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, 6325 getIntPtrConstant(IncrementSize)); 6326 SVOffset += IncrementSize; 6327 if (Alignment > IncrementSize) 6328 Alignment = IncrementSize; 6329 Hi = DAG.getLoad(NewVT, Ch, Ptr, SV, SVOffset, isVolatile, Alignment); 6330 6331 // Build a factor node to remember that this load is independent of the 6332 // other one. 6333 SDOperand TF = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), 6334 Hi.getValue(1)); 6335 6336 // Remember that we legalized the chain. 6337 AddLegalizedOperand(Op.getValue(1), LegalizeOp(TF)); 6338 break; 6339 } 6340 case ISD::BIT_CONVERT: { 6341 // We know the result is a vector. The input may be either a vector or a 6342 // scalar value. 6343 SDOperand InOp = Node->getOperand(0); 6344 if (!MVT::isVector(InOp.getValueType()) || 6345 MVT::getVectorNumElements(InOp.getValueType()) == 1) { 6346 // The input is a scalar or single-element vector. 6347 // Lower to a store/load so that it can be split. 6348 // FIXME: this could be improved probably. 6349 SDOperand Ptr = DAG.CreateStackTemporary(InOp.getValueType()); 6350 6351 SDOperand St = DAG.getStore(DAG.getEntryNode(), 6352 InOp, Ptr, NULL, 0); 6353 InOp = DAG.getLoad(Op.getValueType(), St, Ptr, NULL, 0); 6354 } 6355 // Split the vector and convert each of the pieces now. 6356 SplitVectorOp(InOp, Lo, Hi); 6357 Lo = DAG.getNode(ISD::BIT_CONVERT, NewVT, Lo); 6358 Hi = DAG.getNode(ISD::BIT_CONVERT, NewVT, Hi); 6359 break; 6360 } 6361 } 6362 6363 // Remember in a map if the values will be reused later. 6364 bool isNew = 6365 SplitNodes.insert(std::make_pair(Op, std::make_pair(Lo, Hi))).second; 6366 assert(isNew && "Value already split?!?"); 6367} 6368 6369 6370/// ScalarizeVectorOp - Given an operand of single-element vector type 6371/// (e.g. v1f32), convert it into the equivalent operation that returns a 6372/// scalar (e.g. f32) value. 6373SDOperand SelectionDAGLegalize::ScalarizeVectorOp(SDOperand Op) { 6374 assert(MVT::isVector(Op.getValueType()) && 6375 "Bad ScalarizeVectorOp invocation!"); 6376 SDNode *Node = Op.Val; 6377 MVT::ValueType NewVT = MVT::getVectorElementType(Op.getValueType()); 6378 assert(MVT::getVectorNumElements(Op.getValueType()) == 1); 6379 6380 // See if we already scalarized it. 6381 std::map<SDOperand, SDOperand>::iterator I = ScalarizedNodes.find(Op); 6382 if (I != ScalarizedNodes.end()) return I->second; 6383 6384 SDOperand Result; 6385 switch (Node->getOpcode()) { 6386 default: 6387#ifndef NDEBUG 6388 Node->dump(&DAG); cerr << "\n"; 6389#endif 6390 assert(0 && "Unknown vector operation in ScalarizeVectorOp!"); 6391 case ISD::ADD: 6392 case ISD::FADD: 6393 case ISD::SUB: 6394 case ISD::FSUB: 6395 case ISD::MUL: 6396 case ISD::FMUL: 6397 case ISD::SDIV: 6398 case ISD::UDIV: 6399 case ISD::FDIV: 6400 case ISD::SREM: 6401 case ISD::UREM: 6402 case ISD::FREM: 6403 case ISD::FPOW: 6404 case ISD::AND: 6405 case ISD::OR: 6406 case ISD::XOR: 6407 Result = DAG.getNode(Node->getOpcode(), 6408 NewVT, 6409 ScalarizeVectorOp(Node->getOperand(0)), 6410 ScalarizeVectorOp(Node->getOperand(1))); 6411 break; 6412 case ISD::FNEG: 6413 case ISD::FABS: 6414 case ISD::FSQRT: 6415 case ISD::FSIN: 6416 case ISD::FCOS: 6417 Result = DAG.getNode(Node->getOpcode(), 6418 NewVT, 6419 ScalarizeVectorOp(Node->getOperand(0))); 6420 break; 6421 case ISD::FPOWI: 6422 Result = DAG.getNode(Node->getOpcode(), 6423 NewVT, 6424 ScalarizeVectorOp(Node->getOperand(0)), 6425 Node->getOperand(1)); 6426 break; 6427 case ISD::LOAD: { 6428 LoadSDNode *LD = cast<LoadSDNode>(Node); 6429 SDOperand Ch = LegalizeOp(LD->getChain()); // Legalize the chain. 6430 SDOperand Ptr = LegalizeOp(LD->getBasePtr()); // Legalize the pointer. 6431 6432 const Value *SV = LD->getSrcValue(); 6433 int SVOffset = LD->getSrcValueOffset(); 6434 Result = DAG.getLoad(NewVT, Ch, Ptr, SV, SVOffset, 6435 LD->isVolatile(), LD->getAlignment()); 6436 6437 // Remember that we legalized the chain. 6438 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); 6439 break; 6440 } 6441 case ISD::BUILD_VECTOR: 6442 Result = Node->getOperand(0); 6443 break; 6444 case ISD::INSERT_VECTOR_ELT: 6445 // Returning the inserted scalar element. 6446 Result = Node->getOperand(1); 6447 break; 6448 case ISD::CONCAT_VECTORS: 6449 assert(Node->getOperand(0).getValueType() == NewVT && 6450 "Concat of non-legal vectors not yet supported!"); 6451 Result = Node->getOperand(0); 6452 break; 6453 case ISD::VECTOR_SHUFFLE: { 6454 // Figure out if the scalar is the LHS or RHS and return it. 6455 SDOperand EltNum = Node->getOperand(2).getOperand(0); 6456 if (cast<ConstantSDNode>(EltNum)->getValue()) 6457 Result = ScalarizeVectorOp(Node->getOperand(1)); 6458 else 6459 Result = ScalarizeVectorOp(Node->getOperand(0)); 6460 break; 6461 } 6462 case ISD::EXTRACT_SUBVECTOR: 6463 Result = Node->getOperand(0); 6464 assert(Result.getValueType() == NewVT); 6465 break; 6466 case ISD::BIT_CONVERT: 6467 Result = DAG.getNode(ISD::BIT_CONVERT, NewVT, Op.getOperand(0)); 6468 break; 6469 case ISD::SELECT: 6470 Result = DAG.getNode(ISD::SELECT, NewVT, Op.getOperand(0), 6471 ScalarizeVectorOp(Op.getOperand(1)), 6472 ScalarizeVectorOp(Op.getOperand(2))); 6473 break; 6474 } 6475 6476 if (TLI.isTypeLegal(NewVT)) 6477 Result = LegalizeOp(Result); 6478 bool isNew = ScalarizedNodes.insert(std::make_pair(Op, Result)).second; 6479 assert(isNew && "Value already scalarized?"); 6480 return Result; 6481} 6482 6483 6484// SelectionDAG::Legalize - This is the entry point for the file. 6485// 6486void SelectionDAG::Legalize() { 6487 if (ViewLegalizeDAGs) viewGraph(); 6488 6489 /// run - This is the main entry point to this class. 6490 /// 6491 SelectionDAGLegalize(*this).LegalizeDAG(); 6492} 6493 6494