LegalizeDAG.cpp revision ccf596a53e16ea221a9bf8b3874a7d6afa71f1f4
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file was developed by the LLVM research group and is distributed under 6// the University of Illinois Open Source License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the SelectionDAG::Legalize method. 11// 12//===----------------------------------------------------------------------===// 13 14#include "llvm/CodeGen/SelectionDAG.h" 15#include "llvm/CodeGen/MachineFunction.h" 16#include "llvm/CodeGen/MachineFrameInfo.h" 17#include "llvm/CodeGen/MachineJumpTableInfo.h" 18#include "llvm/Target/TargetFrameInfo.h" 19#include "llvm/Target/TargetLowering.h" 20#include "llvm/Target/TargetData.h" 21#include "llvm/Target/TargetMachine.h" 22#include "llvm/Target/TargetOptions.h" 23#include "llvm/CallingConv.h" 24#include "llvm/Constants.h" 25#include "llvm/DerivedTypes.h" 26#include "llvm/Support/MathExtras.h" 27#include "llvm/Support/CommandLine.h" 28#include "llvm/Support/Compiler.h" 29#include "llvm/ADT/DenseMap.h" 30#include "llvm/ADT/SmallVector.h" 31#include "llvm/ADT/SmallPtrSet.h" 32#include <map> 33using namespace llvm; 34 35#ifndef NDEBUG 36static cl::opt<bool> 37ViewLegalizeDAGs("view-legalize-dags", cl::Hidden, 38 cl::desc("Pop up a window to show dags before legalize")); 39#else 40static const bool ViewLegalizeDAGs = 0; 41#endif 42 43//===----------------------------------------------------------------------===// 44/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and 45/// hacks on it until the target machine can handle it. This involves 46/// eliminating value sizes the machine cannot handle (promoting small sizes to 47/// large sizes or splitting up large values into small values) as well as 48/// eliminating operations the machine cannot handle. 49/// 50/// This code also does a small amount of optimization and recognition of idioms 51/// as part of its processing. For example, if a target does not support a 52/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this 53/// will attempt merge setcc and brc instructions into brcc's. 54/// 55namespace { 56class VISIBILITY_HIDDEN SelectionDAGLegalize { 57 TargetLowering &TLI; 58 SelectionDAG &DAG; 59 60 // Libcall insertion helpers. 61 62 /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been 63 /// legalized. We use this to ensure that calls are properly serialized 64 /// against each other, including inserted libcalls. 65 SDOperand LastCALLSEQ_END; 66 67 /// IsLegalizingCall - This member is used *only* for purposes of providing 68 /// helpful assertions that a libcall isn't created while another call is 69 /// being legalized (which could lead to non-serialized call sequences). 70 bool IsLegalizingCall; 71 72 enum LegalizeAction { 73 Legal, // The target natively supports this operation. 74 Promote, // This operation should be executed in a larger type. 75 Expand // Try to expand this to other ops, otherwise use a libcall. 76 }; 77 78 /// ValueTypeActions - This is a bitvector that contains two bits for each 79 /// value type, where the two bits correspond to the LegalizeAction enum. 80 /// This can be queried with "getTypeAction(VT)". 81 TargetLowering::ValueTypeActionImpl ValueTypeActions; 82 83 /// LegalizedNodes - For nodes that are of legal width, and that have more 84 /// than one use, this map indicates what regularized operand to use. This 85 /// allows us to avoid legalizing the same thing more than once. 86 DenseMap<SDOperand, SDOperand> LegalizedNodes; 87 88 /// PromotedNodes - For nodes that are below legal width, and that have more 89 /// than one use, this map indicates what promoted value to use. This allows 90 /// us to avoid promoting the same thing more than once. 91 DenseMap<SDOperand, SDOperand> PromotedNodes; 92 93 /// ExpandedNodes - For nodes that need to be expanded this map indicates 94 /// which which operands are the expanded version of the input. This allows 95 /// us to avoid expanding the same node more than once. 96 DenseMap<SDOperand, std::pair<SDOperand, SDOperand> > ExpandedNodes; 97 98 /// SplitNodes - For vector nodes that need to be split, this map indicates 99 /// which which operands are the split version of the input. This allows us 100 /// to avoid splitting the same node more than once. 101 std::map<SDOperand, std::pair<SDOperand, SDOperand> > SplitNodes; 102 103 /// ScalarizedNodes - For nodes that need to be converted from vector types to 104 /// scalar types, this contains the mapping of ones we have already 105 /// processed to the result. 106 std::map<SDOperand, SDOperand> ScalarizedNodes; 107 108 void AddLegalizedOperand(SDOperand From, SDOperand To) { 109 LegalizedNodes.insert(std::make_pair(From, To)); 110 // If someone requests legalization of the new node, return itself. 111 if (From != To) 112 LegalizedNodes.insert(std::make_pair(To, To)); 113 } 114 void AddPromotedOperand(SDOperand From, SDOperand To) { 115 bool isNew = PromotedNodes.insert(std::make_pair(From, To)); 116 assert(isNew && "Got into the map somehow?"); 117 // If someone requests legalization of the new node, return itself. 118 LegalizedNodes.insert(std::make_pair(To, To)); 119 } 120 121public: 122 123 SelectionDAGLegalize(SelectionDAG &DAG); 124 125 /// getTypeAction - Return how we should legalize values of this type, either 126 /// it is already legal or we need to expand it into multiple registers of 127 /// smaller integer type, or we need to promote it to a larger type. 128 LegalizeAction getTypeAction(MVT::ValueType VT) const { 129 return (LegalizeAction)ValueTypeActions.getTypeAction(VT); 130 } 131 132 /// isTypeLegal - Return true if this type is legal on this target. 133 /// 134 bool isTypeLegal(MVT::ValueType VT) const { 135 return getTypeAction(VT) == Legal; 136 } 137 138 void LegalizeDAG(); 139 140private: 141 /// HandleOp - Legalize, Promote, or Expand the specified operand as 142 /// appropriate for its type. 143 void HandleOp(SDOperand Op); 144 145 /// LegalizeOp - We know that the specified value has a legal type. 146 /// Recursively ensure that the operands have legal types, then return the 147 /// result. 148 SDOperand LegalizeOp(SDOperand O); 149 150 /// PromoteOp - Given an operation that produces a value in an invalid type, 151 /// promote it to compute the value into a larger type. The produced value 152 /// will have the correct bits for the low portion of the register, but no 153 /// guarantee is made about the top bits: it may be zero, sign-extended, or 154 /// garbage. 155 SDOperand PromoteOp(SDOperand O); 156 157 /// ExpandOp - Expand the specified SDOperand into its two component pieces 158 /// Lo&Hi. Note that the Op MUST be an expanded type. As a result of this, 159 /// the LegalizeNodes map is filled in for any results that are not expanded, 160 /// the ExpandedNodes map is filled in for any results that are expanded, and 161 /// the Lo/Hi values are returned. This applies to integer types and Vector 162 /// types. 163 void ExpandOp(SDOperand O, SDOperand &Lo, SDOperand &Hi); 164 165 /// SplitVectorOp - Given an operand of vector type, break it down into 166 /// two smaller values. 167 void SplitVectorOp(SDOperand O, SDOperand &Lo, SDOperand &Hi); 168 169 /// ScalarizeVectorOp - Given an operand of single-element vector type 170 /// (e.g. v1f32), convert it into the equivalent operation that returns a 171 /// scalar (e.g. f32) value. 172 SDOperand ScalarizeVectorOp(SDOperand O); 173 174 /// isShuffleLegal - Return true if a vector shuffle is legal with the 175 /// specified mask and type. Targets can specify exactly which masks they 176 /// support and the code generator is tasked with not creating illegal masks. 177 /// 178 /// Note that this will also return true for shuffles that are promoted to a 179 /// different type. 180 /// 181 /// If this is a legal shuffle, this method returns the (possibly promoted) 182 /// build_vector Mask. If it's not a legal shuffle, it returns null. 183 SDNode *isShuffleLegal(MVT::ValueType VT, SDOperand Mask) const; 184 185 bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest, 186 SmallPtrSet<SDNode*, 32> &NodesLeadingTo); 187 188 void LegalizeSetCCOperands(SDOperand &LHS, SDOperand &RHS, SDOperand &CC); 189 190 SDOperand CreateStackTemporary(MVT::ValueType VT); 191 192 SDOperand ExpandLibCall(const char *Name, SDNode *Node, bool isSigned, 193 SDOperand &Hi); 194 SDOperand ExpandIntToFP(bool isSigned, MVT::ValueType DestTy, 195 SDOperand Source); 196 197 SDOperand ExpandBIT_CONVERT(MVT::ValueType DestVT, SDOperand SrcOp); 198 SDOperand ExpandBUILD_VECTOR(SDNode *Node); 199 SDOperand ExpandSCALAR_TO_VECTOR(SDNode *Node); 200 SDOperand ExpandLegalINT_TO_FP(bool isSigned, 201 SDOperand LegalOp, 202 MVT::ValueType DestVT); 203 SDOperand PromoteLegalINT_TO_FP(SDOperand LegalOp, MVT::ValueType DestVT, 204 bool isSigned); 205 SDOperand PromoteLegalFP_TO_INT(SDOperand LegalOp, MVT::ValueType DestVT, 206 bool isSigned); 207 208 SDOperand ExpandBSWAP(SDOperand Op); 209 SDOperand ExpandBitCount(unsigned Opc, SDOperand Op); 210 bool ExpandShift(unsigned Opc, SDOperand Op, SDOperand Amt, 211 SDOperand &Lo, SDOperand &Hi); 212 void ExpandShiftParts(unsigned NodeOp, SDOperand Op, SDOperand Amt, 213 SDOperand &Lo, SDOperand &Hi); 214 215 SDOperand ExpandEXTRACT_SUBVECTOR(SDOperand Op); 216 SDOperand ExpandEXTRACT_VECTOR_ELT(SDOperand Op); 217 218 SDOperand getIntPtrConstant(uint64_t Val) { 219 return DAG.getConstant(Val, TLI.getPointerTy()); 220 } 221}; 222} 223 224/// isVectorShuffleLegal - Return true if a vector shuffle is legal with the 225/// specified mask and type. Targets can specify exactly which masks they 226/// support and the code generator is tasked with not creating illegal masks. 227/// 228/// Note that this will also return true for shuffles that are promoted to a 229/// different type. 230SDNode *SelectionDAGLegalize::isShuffleLegal(MVT::ValueType VT, 231 SDOperand Mask) const { 232 switch (TLI.getOperationAction(ISD::VECTOR_SHUFFLE, VT)) { 233 default: return 0; 234 case TargetLowering::Legal: 235 case TargetLowering::Custom: 236 break; 237 case TargetLowering::Promote: { 238 // If this is promoted to a different type, convert the shuffle mask and 239 // ask if it is legal in the promoted type! 240 MVT::ValueType NVT = TLI.getTypeToPromoteTo(ISD::VECTOR_SHUFFLE, VT); 241 242 // If we changed # elements, change the shuffle mask. 243 unsigned NumEltsGrowth = 244 MVT::getVectorNumElements(NVT) / MVT::getVectorNumElements(VT); 245 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); 246 if (NumEltsGrowth > 1) { 247 // Renumber the elements. 248 SmallVector<SDOperand, 8> Ops; 249 for (unsigned i = 0, e = Mask.getNumOperands(); i != e; ++i) { 250 SDOperand InOp = Mask.getOperand(i); 251 for (unsigned j = 0; j != NumEltsGrowth; ++j) { 252 if (InOp.getOpcode() == ISD::UNDEF) 253 Ops.push_back(DAG.getNode(ISD::UNDEF, MVT::i32)); 254 else { 255 unsigned InEltNo = cast<ConstantSDNode>(InOp)->getValue(); 256 Ops.push_back(DAG.getConstant(InEltNo*NumEltsGrowth+j, MVT::i32)); 257 } 258 } 259 } 260 Mask = DAG.getNode(ISD::BUILD_VECTOR, NVT, &Ops[0], Ops.size()); 261 } 262 VT = NVT; 263 break; 264 } 265 } 266 return TLI.isShuffleMaskLegal(Mask, VT) ? Mask.Val : 0; 267} 268 269SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag) 270 : TLI(dag.getTargetLoweringInfo()), DAG(dag), 271 ValueTypeActions(TLI.getValueTypeActions()) { 272 assert(MVT::LAST_VALUETYPE <= 32 && 273 "Too many value types for ValueTypeActions to hold!"); 274} 275 276/// ComputeTopDownOrdering - Compute a top-down ordering of the dag, where Order 277/// contains all of a nodes operands before it contains the node. 278static void ComputeTopDownOrdering(SelectionDAG &DAG, 279 SmallVector<SDNode*, 64> &Order) { 280 281 DenseMap<SDNode*, unsigned> Visited; 282 std::vector<SDNode*> Worklist; 283 Worklist.reserve(128); 284 285 // Compute ordering from all of the leaves in the graphs, those (like the 286 // entry node) that have no operands. 287 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 288 E = DAG.allnodes_end(); I != E; ++I) { 289 if (I->getNumOperands() == 0) { 290 Visited[I] = 0 - 1U; 291 Worklist.push_back(I); 292 } 293 } 294 295 while (!Worklist.empty()) { 296 SDNode *N = Worklist.back(); 297 Worklist.pop_back(); 298 299 if (++Visited[N] != N->getNumOperands()) 300 continue; // Haven't visited all operands yet 301 302 Order.push_back(N); 303 304 // Now that we have N in, add anything that uses it if all of their operands 305 // are now done. 306 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 307 UI != E; ++UI) 308 Worklist.push_back(*UI); 309 } 310 311 assert(Order.size() == Visited.size() && 312 Order.size() == 313 (unsigned)std::distance(DAG.allnodes_begin(), DAG.allnodes_end()) && 314 "Error: DAG is cyclic!"); 315} 316 317 318void SelectionDAGLegalize::LegalizeDAG() { 319 LastCALLSEQ_END = DAG.getEntryNode(); 320 IsLegalizingCall = false; 321 322 // The legalize process is inherently a bottom-up recursive process (users 323 // legalize their uses before themselves). Given infinite stack space, we 324 // could just start legalizing on the root and traverse the whole graph. In 325 // practice however, this causes us to run out of stack space on large basic 326 // blocks. To avoid this problem, compute an ordering of the nodes where each 327 // node is only legalized after all of its operands are legalized. 328 SmallVector<SDNode*, 64> Order; 329 ComputeTopDownOrdering(DAG, Order); 330 331 for (unsigned i = 0, e = Order.size(); i != e; ++i) 332 HandleOp(SDOperand(Order[i], 0)); 333 334 // Finally, it's possible the root changed. Get the new root. 335 SDOperand OldRoot = DAG.getRoot(); 336 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 337 DAG.setRoot(LegalizedNodes[OldRoot]); 338 339 ExpandedNodes.clear(); 340 LegalizedNodes.clear(); 341 PromotedNodes.clear(); 342 SplitNodes.clear(); 343 ScalarizedNodes.clear(); 344 345 // Remove dead nodes now. 346 DAG.RemoveDeadNodes(); 347} 348 349 350/// FindCallEndFromCallStart - Given a chained node that is part of a call 351/// sequence, find the CALLSEQ_END node that terminates the call sequence. 352static SDNode *FindCallEndFromCallStart(SDNode *Node) { 353 if (Node->getOpcode() == ISD::CALLSEQ_END) 354 return Node; 355 if (Node->use_empty()) 356 return 0; // No CallSeqEnd 357 358 // The chain is usually at the end. 359 SDOperand TheChain(Node, Node->getNumValues()-1); 360 if (TheChain.getValueType() != MVT::Other) { 361 // Sometimes it's at the beginning. 362 TheChain = SDOperand(Node, 0); 363 if (TheChain.getValueType() != MVT::Other) { 364 // Otherwise, hunt for it. 365 for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i) 366 if (Node->getValueType(i) == MVT::Other) { 367 TheChain = SDOperand(Node, i); 368 break; 369 } 370 371 // Otherwise, we walked into a node without a chain. 372 if (TheChain.getValueType() != MVT::Other) 373 return 0; 374 } 375 } 376 377 for (SDNode::use_iterator UI = Node->use_begin(), 378 E = Node->use_end(); UI != E; ++UI) { 379 380 // Make sure to only follow users of our token chain. 381 SDNode *User = *UI; 382 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) 383 if (User->getOperand(i) == TheChain) 384 if (SDNode *Result = FindCallEndFromCallStart(User)) 385 return Result; 386 } 387 return 0; 388} 389 390/// FindCallStartFromCallEnd - Given a chained node that is part of a call 391/// sequence, find the CALLSEQ_START node that initiates the call sequence. 392static SDNode *FindCallStartFromCallEnd(SDNode *Node) { 393 assert(Node && "Didn't find callseq_start for a call??"); 394 if (Node->getOpcode() == ISD::CALLSEQ_START) return Node; 395 396 assert(Node->getOperand(0).getValueType() == MVT::Other && 397 "Node doesn't have a token chain argument!"); 398 return FindCallStartFromCallEnd(Node->getOperand(0).Val); 399} 400 401/// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to 402/// see if any uses can reach Dest. If no dest operands can get to dest, 403/// legalize them, legalize ourself, and return false, otherwise, return true. 404/// 405/// Keep track of the nodes we fine that actually do lead to Dest in 406/// NodesLeadingTo. This avoids retraversing them exponential number of times. 407/// 408bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest, 409 SmallPtrSet<SDNode*, 32> &NodesLeadingTo) { 410 if (N == Dest) return true; // N certainly leads to Dest :) 411 412 // If we've already processed this node and it does lead to Dest, there is no 413 // need to reprocess it. 414 if (NodesLeadingTo.count(N)) return true; 415 416 // If the first result of this node has been already legalized, then it cannot 417 // reach N. 418 switch (getTypeAction(N->getValueType(0))) { 419 case Legal: 420 if (LegalizedNodes.count(SDOperand(N, 0))) return false; 421 break; 422 case Promote: 423 if (PromotedNodes.count(SDOperand(N, 0))) return false; 424 break; 425 case Expand: 426 if (ExpandedNodes.count(SDOperand(N, 0))) return false; 427 break; 428 } 429 430 // Okay, this node has not already been legalized. Check and legalize all 431 // operands. If none lead to Dest, then we can legalize this node. 432 bool OperandsLeadToDest = false; 433 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) 434 OperandsLeadToDest |= // If an operand leads to Dest, so do we. 435 LegalizeAllNodesNotLeadingTo(N->getOperand(i).Val, Dest, NodesLeadingTo); 436 437 if (OperandsLeadToDest) { 438 NodesLeadingTo.insert(N); 439 return true; 440 } 441 442 // Okay, this node looks safe, legalize it and return false. 443 HandleOp(SDOperand(N, 0)); 444 return false; 445} 446 447/// HandleOp - Legalize, Promote, or Expand the specified operand as 448/// appropriate for its type. 449void SelectionDAGLegalize::HandleOp(SDOperand Op) { 450 MVT::ValueType VT = Op.getValueType(); 451 switch (getTypeAction(VT)) { 452 default: assert(0 && "Bad type action!"); 453 case Legal: (void)LegalizeOp(Op); break; 454 case Promote: (void)PromoteOp(Op); break; 455 case Expand: 456 if (!MVT::isVector(VT)) { 457 // If this is an illegal scalar, expand it into its two component 458 // pieces. 459 SDOperand X, Y; 460 if (Op.getOpcode() == ISD::TargetConstant) 461 break; // Allow illegal target nodes. 462 ExpandOp(Op, X, Y); 463 } else if (MVT::getVectorNumElements(VT) == 1) { 464 // If this is an illegal single element vector, convert it to a 465 // scalar operation. 466 (void)ScalarizeVectorOp(Op); 467 } else { 468 // Otherwise, this is an illegal multiple element vector. 469 // Split it in half and legalize both parts. 470 SDOperand X, Y; 471 SplitVectorOp(Op, X, Y); 472 } 473 break; 474 } 475} 476 477/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or 478/// a load from the constant pool. 479static SDOperand ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP, 480 SelectionDAG &DAG, TargetLowering &TLI) { 481 bool Extend = false; 482 483 // If a FP immediate is precise when represented as a float and if the 484 // target can do an extending load from float to double, we put it into 485 // the constant pool as a float, even if it's is statically typed as a 486 // double. 487 MVT::ValueType VT = CFP->getValueType(0); 488 bool isDouble = VT == MVT::f64; 489 ConstantFP *LLVMC = ConstantFP::get(MVT::getTypeForValueType(VT), 490 CFP->getValueAPF()); 491 if (!UseCP) { 492 if (VT!=MVT::f64 && VT!=MVT::f32) 493 assert(0 && "Invalid type expansion"); 494 return DAG.getConstant(LLVMC->getValueAPF().convertToAPInt().getZExtValue(), 495 isDouble ? MVT::i64 : MVT::i32); 496 } 497 498 if (isDouble && CFP->isValueValidForType(MVT::f32, CFP->getValueAPF()) && 499 // Only do this if the target has a native EXTLOAD instruction from f32. 500 // Do not try to be clever about long doubles (so far) 501 TLI.isLoadXLegal(ISD::EXTLOAD, MVT::f32)) { 502 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC,Type::FloatTy)); 503 VT = MVT::f32; 504 Extend = true; 505 } 506 507 SDOperand CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy()); 508 if (Extend) { 509 return DAG.getExtLoad(ISD::EXTLOAD, MVT::f64, DAG.getEntryNode(), 510 CPIdx, NULL, 0, MVT::f32); 511 } else { 512 return DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0); 513 } 514} 515 516 517/// ExpandFCOPYSIGNToBitwiseOps - Expands fcopysign to a series of bitwise 518/// operations. 519static 520SDOperand ExpandFCOPYSIGNToBitwiseOps(SDNode *Node, MVT::ValueType NVT, 521 SelectionDAG &DAG, TargetLowering &TLI) { 522 MVT::ValueType VT = Node->getValueType(0); 523 MVT::ValueType SrcVT = Node->getOperand(1).getValueType(); 524 assert((SrcVT == MVT::f32 || SrcVT == MVT::f64) && 525 "fcopysign expansion only supported for f32 and f64"); 526 MVT::ValueType SrcNVT = (SrcVT == MVT::f64) ? MVT::i64 : MVT::i32; 527 528 // First get the sign bit of second operand. 529 SDOperand Mask1 = (SrcVT == MVT::f64) 530 ? DAG.getConstantFP(BitsToDouble(1ULL << 63), SrcVT) 531 : DAG.getConstantFP(BitsToFloat(1U << 31), SrcVT); 532 Mask1 = DAG.getNode(ISD::BIT_CONVERT, SrcNVT, Mask1); 533 SDOperand SignBit= DAG.getNode(ISD::BIT_CONVERT, SrcNVT, Node->getOperand(1)); 534 SignBit = DAG.getNode(ISD::AND, SrcNVT, SignBit, Mask1); 535 // Shift right or sign-extend it if the two operands have different types. 536 int SizeDiff = MVT::getSizeInBits(SrcNVT) - MVT::getSizeInBits(NVT); 537 if (SizeDiff > 0) { 538 SignBit = DAG.getNode(ISD::SRL, SrcNVT, SignBit, 539 DAG.getConstant(SizeDiff, TLI.getShiftAmountTy())); 540 SignBit = DAG.getNode(ISD::TRUNCATE, NVT, SignBit); 541 } else if (SizeDiff < 0) 542 SignBit = DAG.getNode(ISD::SIGN_EXTEND, NVT, SignBit); 543 544 // Clear the sign bit of first operand. 545 SDOperand Mask2 = (VT == MVT::f64) 546 ? DAG.getConstantFP(BitsToDouble(~(1ULL << 63)), VT) 547 : DAG.getConstantFP(BitsToFloat(~(1U << 31)), VT); 548 Mask2 = DAG.getNode(ISD::BIT_CONVERT, NVT, Mask2); 549 SDOperand Result = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0)); 550 Result = DAG.getNode(ISD::AND, NVT, Result, Mask2); 551 552 // Or the value with the sign bit. 553 Result = DAG.getNode(ISD::OR, NVT, Result, SignBit); 554 return Result; 555} 556 557/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores. 558static 559SDOperand ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG, 560 TargetLowering &TLI) { 561 SDOperand Chain = ST->getChain(); 562 SDOperand Ptr = ST->getBasePtr(); 563 SDOperand Val = ST->getValue(); 564 MVT::ValueType VT = Val.getValueType(); 565 int Alignment = ST->getAlignment(); 566 int SVOffset = ST->getSrcValueOffset(); 567 if (MVT::isFloatingPoint(ST->getStoredVT())) { 568 // Expand to a bitconvert of the value to the integer type of the 569 // same size, then a (misaligned) int store. 570 MVT::ValueType intVT; 571 if (VT==MVT::f64) 572 intVT = MVT::i64; 573 else if (VT==MVT::f32) 574 intVT = MVT::i32; 575 else 576 assert(0 && "Unaligned load of unsupported floating point type"); 577 578 SDOperand Result = DAG.getNode(ISD::BIT_CONVERT, intVT, Val); 579 return DAG.getStore(Chain, Result, Ptr, ST->getSrcValue(), 580 SVOffset, ST->isVolatile(), Alignment); 581 } 582 assert(MVT::isInteger(ST->getStoredVT()) && 583 "Unaligned store of unknown type."); 584 // Get the half-size VT 585 MVT::ValueType NewStoredVT = ST->getStoredVT() - 1; 586 int NumBits = MVT::getSizeInBits(NewStoredVT); 587 int IncrementSize = NumBits / 8; 588 589 // Divide the stored value in two parts. 590 SDOperand ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy()); 591 SDOperand Lo = Val; 592 SDOperand Hi = DAG.getNode(ISD::SRL, VT, Val, ShiftAmount); 593 594 // Store the two parts 595 SDOperand Store1, Store2; 596 Store1 = DAG.getTruncStore(Chain, TLI.isLittleEndian()?Lo:Hi, Ptr, 597 ST->getSrcValue(), SVOffset, NewStoredVT, 598 ST->isVolatile(), Alignment); 599 Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, 600 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 601 Store2 = DAG.getTruncStore(Chain, TLI.isLittleEndian()?Hi:Lo, Ptr, 602 ST->getSrcValue(), SVOffset + IncrementSize, 603 NewStoredVT, ST->isVolatile(), Alignment); 604 605 return DAG.getNode(ISD::TokenFactor, MVT::Other, Store1, Store2); 606} 607 608/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads. 609static 610SDOperand ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG, 611 TargetLowering &TLI) { 612 int SVOffset = LD->getSrcValueOffset(); 613 SDOperand Chain = LD->getChain(); 614 SDOperand Ptr = LD->getBasePtr(); 615 MVT::ValueType VT = LD->getValueType(0); 616 MVT::ValueType LoadedVT = LD->getLoadedVT(); 617 if (MVT::isFloatingPoint(VT)) { 618 // Expand to a (misaligned) integer load of the same size, 619 // then bitconvert to floating point. 620 MVT::ValueType intVT; 621 if (LoadedVT==MVT::f64) 622 intVT = MVT::i64; 623 else if (LoadedVT==MVT::f32) 624 intVT = MVT::i32; 625 else 626 assert(0 && "Unaligned load of unsupported floating point type"); 627 628 SDOperand newLoad = DAG.getLoad(intVT, Chain, Ptr, LD->getSrcValue(), 629 SVOffset, LD->isVolatile(), 630 LD->getAlignment()); 631 SDOperand Result = DAG.getNode(ISD::BIT_CONVERT, LoadedVT, newLoad); 632 if (LoadedVT != VT) 633 Result = DAG.getNode(ISD::FP_EXTEND, VT, Result); 634 635 SDOperand Ops[] = { Result, Chain }; 636 return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, MVT::Other), 637 Ops, 2); 638 } 639 assert(MVT::isInteger(LoadedVT) && "Unaligned load of unsupported type."); 640 MVT::ValueType NewLoadedVT = LoadedVT - 1; 641 int NumBits = MVT::getSizeInBits(NewLoadedVT); 642 int Alignment = LD->getAlignment(); 643 int IncrementSize = NumBits / 8; 644 ISD::LoadExtType HiExtType = LD->getExtensionType(); 645 646 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 647 if (HiExtType == ISD::NON_EXTLOAD) 648 HiExtType = ISD::ZEXTLOAD; 649 650 // Load the value in two parts 651 SDOperand Lo, Hi; 652 if (TLI.isLittleEndian()) { 653 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, VT, Chain, Ptr, LD->getSrcValue(), 654 SVOffset, NewLoadedVT, LD->isVolatile(), Alignment); 655 Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, 656 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 657 Hi = DAG.getExtLoad(HiExtType, VT, Chain, Ptr, LD->getSrcValue(), 658 SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(), 659 Alignment); 660 } else { 661 Hi = DAG.getExtLoad(HiExtType, VT, Chain, Ptr, LD->getSrcValue(), SVOffset, 662 NewLoadedVT,LD->isVolatile(), Alignment); 663 Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, 664 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 665 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, VT, Chain, Ptr, LD->getSrcValue(), 666 SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(), 667 Alignment); 668 } 669 670 // aggregate the two parts 671 SDOperand ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy()); 672 SDOperand Result = DAG.getNode(ISD::SHL, VT, Hi, ShiftAmount); 673 Result = DAG.getNode(ISD::OR, VT, Result, Lo); 674 675 SDOperand TF = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), 676 Hi.getValue(1)); 677 678 SDOperand Ops[] = { Result, TF }; 679 return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, MVT::Other), Ops, 2); 680} 681 682/// LegalizeOp - We know that the specified value has a legal type, and 683/// that its operands are legal. Now ensure that the operation itself 684/// is legal, recursively ensuring that the operands' operations remain 685/// legal. 686SDOperand SelectionDAGLegalize::LegalizeOp(SDOperand Op) { 687 if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes. 688 return Op; 689 690 assert(isTypeLegal(Op.getValueType()) && 691 "Caller should expand or promote operands that are not legal!"); 692 SDNode *Node = Op.Val; 693 694 // If this operation defines any values that cannot be represented in a 695 // register on this target, make sure to expand or promote them. 696 if (Node->getNumValues() > 1) { 697 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 698 if (getTypeAction(Node->getValueType(i)) != Legal) { 699 HandleOp(Op.getValue(i)); 700 assert(LegalizedNodes.count(Op) && 701 "Handling didn't add legal operands!"); 702 return LegalizedNodes[Op]; 703 } 704 } 705 706 // Note that LegalizeOp may be reentered even from single-use nodes, which 707 // means that we always must cache transformed nodes. 708 DenseMap<SDOperand, SDOperand>::iterator I = LegalizedNodes.find(Op); 709 if (I != LegalizedNodes.end()) return I->second; 710 711 SDOperand Tmp1, Tmp2, Tmp3, Tmp4; 712 SDOperand Result = Op; 713 bool isCustom = false; 714 715 switch (Node->getOpcode()) { 716 case ISD::FrameIndex: 717 case ISD::EntryToken: 718 case ISD::Register: 719 case ISD::BasicBlock: 720 case ISD::TargetFrameIndex: 721 case ISD::TargetJumpTable: 722 case ISD::TargetConstant: 723 case ISD::TargetConstantFP: 724 case ISD::TargetConstantPool: 725 case ISD::TargetGlobalAddress: 726 case ISD::TargetGlobalTLSAddress: 727 case ISD::TargetExternalSymbol: 728 case ISD::VALUETYPE: 729 case ISD::SRCVALUE: 730 case ISD::STRING: 731 case ISD::CONDCODE: 732 // Primitives must all be legal. 733 assert(TLI.isOperationLegal(Node->getValueType(0), Node->getValueType(0)) && 734 "This must be legal!"); 735 break; 736 default: 737 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { 738 // If this is a target node, legalize it by legalizing the operands then 739 // passing it through. 740 SmallVector<SDOperand, 8> Ops; 741 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 742 Ops.push_back(LegalizeOp(Node->getOperand(i))); 743 744 Result = DAG.UpdateNodeOperands(Result.getValue(0), &Ops[0], Ops.size()); 745 746 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 747 AddLegalizedOperand(Op.getValue(i), Result.getValue(i)); 748 return Result.getValue(Op.ResNo); 749 } 750 // Otherwise this is an unhandled builtin node. splat. 751#ifndef NDEBUG 752 cerr << "NODE: "; Node->dump(&DAG); cerr << "\n"; 753#endif 754 assert(0 && "Do not know how to legalize this operator!"); 755 abort(); 756 case ISD::GLOBAL_OFFSET_TABLE: 757 case ISD::GlobalAddress: 758 case ISD::GlobalTLSAddress: 759 case ISD::ExternalSymbol: 760 case ISD::ConstantPool: 761 case ISD::JumpTable: // Nothing to do. 762 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 763 default: assert(0 && "This action is not supported yet!"); 764 case TargetLowering::Custom: 765 Tmp1 = TLI.LowerOperation(Op, DAG); 766 if (Tmp1.Val) Result = Tmp1; 767 // FALLTHROUGH if the target doesn't want to lower this op after all. 768 case TargetLowering::Legal: 769 break; 770 } 771 break; 772 case ISD::FRAMEADDR: 773 case ISD::RETURNADDR: 774 // The only option for these nodes is to custom lower them. If the target 775 // does not custom lower them, then return zero. 776 Tmp1 = TLI.LowerOperation(Op, DAG); 777 if (Tmp1.Val) 778 Result = Tmp1; 779 else 780 Result = DAG.getConstant(0, TLI.getPointerTy()); 781 break; 782 case ISD::FRAME_TO_ARGS_OFFSET: { 783 MVT::ValueType VT = Node->getValueType(0); 784 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 785 default: assert(0 && "This action is not supported yet!"); 786 case TargetLowering::Custom: 787 Result = TLI.LowerOperation(Op, DAG); 788 if (Result.Val) break; 789 // Fall Thru 790 case TargetLowering::Legal: 791 Result = DAG.getConstant(0, VT); 792 break; 793 } 794 } 795 break; 796 case ISD::EXCEPTIONADDR: { 797 Tmp1 = LegalizeOp(Node->getOperand(0)); 798 MVT::ValueType VT = Node->getValueType(0); 799 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 800 default: assert(0 && "This action is not supported yet!"); 801 case TargetLowering::Expand: { 802 unsigned Reg = TLI.getExceptionAddressRegister(); 803 Result = DAG.getCopyFromReg(Tmp1, Reg, VT).getValue(Op.ResNo); 804 } 805 break; 806 case TargetLowering::Custom: 807 Result = TLI.LowerOperation(Op, DAG); 808 if (Result.Val) break; 809 // Fall Thru 810 case TargetLowering::Legal: { 811 SDOperand Ops[] = { DAG.getConstant(0, VT), Tmp1 }; 812 Result = DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, MVT::Other), 813 Ops, 2).getValue(Op.ResNo); 814 break; 815 } 816 } 817 } 818 break; 819 case ISD::EHSELECTION: { 820 Tmp1 = LegalizeOp(Node->getOperand(0)); 821 Tmp2 = LegalizeOp(Node->getOperand(1)); 822 MVT::ValueType VT = Node->getValueType(0); 823 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 824 default: assert(0 && "This action is not supported yet!"); 825 case TargetLowering::Expand: { 826 unsigned Reg = TLI.getExceptionSelectorRegister(); 827 Result = DAG.getCopyFromReg(Tmp2, Reg, VT).getValue(Op.ResNo); 828 } 829 break; 830 case TargetLowering::Custom: 831 Result = TLI.LowerOperation(Op, DAG); 832 if (Result.Val) break; 833 // Fall Thru 834 case TargetLowering::Legal: { 835 SDOperand Ops[] = { DAG.getConstant(0, VT), Tmp2 }; 836 Result = DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, MVT::Other), 837 Ops, 2).getValue(Op.ResNo); 838 break; 839 } 840 } 841 } 842 break; 843 case ISD::EH_RETURN: { 844 MVT::ValueType VT = Node->getValueType(0); 845 // The only "good" option for this node is to custom lower it. 846 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 847 default: assert(0 && "This action is not supported at all!"); 848 case TargetLowering::Custom: 849 Result = TLI.LowerOperation(Op, DAG); 850 if (Result.Val) break; 851 // Fall Thru 852 case TargetLowering::Legal: 853 // Target does not know, how to lower this, lower to noop 854 Result = LegalizeOp(Node->getOperand(0)); 855 break; 856 } 857 } 858 break; 859 case ISD::AssertSext: 860 case ISD::AssertZext: 861 Tmp1 = LegalizeOp(Node->getOperand(0)); 862 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 863 break; 864 case ISD::MERGE_VALUES: 865 // Legalize eliminates MERGE_VALUES nodes. 866 Result = Node->getOperand(Op.ResNo); 867 break; 868 case ISD::CopyFromReg: 869 Tmp1 = LegalizeOp(Node->getOperand(0)); 870 Result = Op.getValue(0); 871 if (Node->getNumValues() == 2) { 872 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 873 } else { 874 assert(Node->getNumValues() == 3 && "Invalid copyfromreg!"); 875 if (Node->getNumOperands() == 3) { 876 Tmp2 = LegalizeOp(Node->getOperand(2)); 877 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1),Tmp2); 878 } else { 879 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 880 } 881 AddLegalizedOperand(Op.getValue(2), Result.getValue(2)); 882 } 883 // Since CopyFromReg produces two values, make sure to remember that we 884 // legalized both of them. 885 AddLegalizedOperand(Op.getValue(0), Result); 886 AddLegalizedOperand(Op.getValue(1), Result.getValue(1)); 887 return Result.getValue(Op.ResNo); 888 case ISD::UNDEF: { 889 MVT::ValueType VT = Op.getValueType(); 890 switch (TLI.getOperationAction(ISD::UNDEF, VT)) { 891 default: assert(0 && "This action is not supported yet!"); 892 case TargetLowering::Expand: 893 if (MVT::isInteger(VT)) 894 Result = DAG.getConstant(0, VT); 895 else if (MVT::isFloatingPoint(VT)) 896 Result = DAG.getConstantFP(APFloat(APInt(MVT::getSizeInBits(VT), 0)), 897 VT); 898 else 899 assert(0 && "Unknown value type!"); 900 break; 901 case TargetLowering::Legal: 902 break; 903 } 904 break; 905 } 906 907 case ISD::INTRINSIC_W_CHAIN: 908 case ISD::INTRINSIC_WO_CHAIN: 909 case ISD::INTRINSIC_VOID: { 910 SmallVector<SDOperand, 8> Ops; 911 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 912 Ops.push_back(LegalizeOp(Node->getOperand(i))); 913 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 914 915 // Allow the target to custom lower its intrinsics if it wants to. 916 if (TLI.getOperationAction(Node->getOpcode(), MVT::Other) == 917 TargetLowering::Custom) { 918 Tmp3 = TLI.LowerOperation(Result, DAG); 919 if (Tmp3.Val) Result = Tmp3; 920 } 921 922 if (Result.Val->getNumValues() == 1) break; 923 924 // Must have return value and chain result. 925 assert(Result.Val->getNumValues() == 2 && 926 "Cannot return more than two values!"); 927 928 // Since loads produce two values, make sure to remember that we 929 // legalized both of them. 930 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 931 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 932 return Result.getValue(Op.ResNo); 933 } 934 935 case ISD::LOCATION: 936 assert(Node->getNumOperands() == 5 && "Invalid LOCATION node!"); 937 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the input chain. 938 939 switch (TLI.getOperationAction(ISD::LOCATION, MVT::Other)) { 940 case TargetLowering::Promote: 941 default: assert(0 && "This action is not supported yet!"); 942 case TargetLowering::Expand: { 943 MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); 944 bool useDEBUG_LOC = TLI.isOperationLegal(ISD::DEBUG_LOC, MVT::Other); 945 bool useLABEL = TLI.isOperationLegal(ISD::LABEL, MVT::Other); 946 947 if (MMI && (useDEBUG_LOC || useLABEL)) { 948 const std::string &FName = 949 cast<StringSDNode>(Node->getOperand(3))->getValue(); 950 const std::string &DirName = 951 cast<StringSDNode>(Node->getOperand(4))->getValue(); 952 unsigned SrcFile = MMI->RecordSource(DirName, FName); 953 954 SmallVector<SDOperand, 8> Ops; 955 Ops.push_back(Tmp1); // chain 956 SDOperand LineOp = Node->getOperand(1); 957 SDOperand ColOp = Node->getOperand(2); 958 959 if (useDEBUG_LOC) { 960 Ops.push_back(LineOp); // line # 961 Ops.push_back(ColOp); // col # 962 Ops.push_back(DAG.getConstant(SrcFile, MVT::i32)); // source file id 963 Result = DAG.getNode(ISD::DEBUG_LOC, MVT::Other, &Ops[0], Ops.size()); 964 } else { 965 unsigned Line = cast<ConstantSDNode>(LineOp)->getValue(); 966 unsigned Col = cast<ConstantSDNode>(ColOp)->getValue(); 967 unsigned ID = MMI->RecordLabel(Line, Col, SrcFile); 968 Ops.push_back(DAG.getConstant(ID, MVT::i32)); 969 Result = DAG.getNode(ISD::LABEL, MVT::Other,&Ops[0],Ops.size()); 970 } 971 } else { 972 Result = Tmp1; // chain 973 } 974 break; 975 } 976 case TargetLowering::Legal: 977 if (Tmp1 != Node->getOperand(0) || 978 getTypeAction(Node->getOperand(1).getValueType()) == Promote) { 979 SmallVector<SDOperand, 8> Ops; 980 Ops.push_back(Tmp1); 981 if (getTypeAction(Node->getOperand(1).getValueType()) == Legal) { 982 Ops.push_back(Node->getOperand(1)); // line # must be legal. 983 Ops.push_back(Node->getOperand(2)); // col # must be legal. 984 } else { 985 // Otherwise promote them. 986 Ops.push_back(PromoteOp(Node->getOperand(1))); 987 Ops.push_back(PromoteOp(Node->getOperand(2))); 988 } 989 Ops.push_back(Node->getOperand(3)); // filename must be legal. 990 Ops.push_back(Node->getOperand(4)); // working dir # must be legal. 991 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 992 } 993 break; 994 } 995 break; 996 997 case ISD::DEBUG_LOC: 998 assert(Node->getNumOperands() == 4 && "Invalid DEBUG_LOC node!"); 999 switch (TLI.getOperationAction(ISD::DEBUG_LOC, MVT::Other)) { 1000 default: assert(0 && "This action is not supported yet!"); 1001 case TargetLowering::Legal: 1002 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1003 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the line #. 1004 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the col #. 1005 Tmp4 = LegalizeOp(Node->getOperand(3)); // Legalize the source file id. 1006 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, Tmp4); 1007 break; 1008 } 1009 break; 1010 1011 case ISD::LABEL: 1012 assert(Node->getNumOperands() == 2 && "Invalid LABEL node!"); 1013 switch (TLI.getOperationAction(ISD::LABEL, MVT::Other)) { 1014 default: assert(0 && "This action is not supported yet!"); 1015 case TargetLowering::Legal: 1016 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1017 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the label id. 1018 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1019 break; 1020 case TargetLowering::Expand: 1021 Result = LegalizeOp(Node->getOperand(0)); 1022 break; 1023 } 1024 break; 1025 1026 case ISD::Constant: { 1027 ConstantSDNode *CN = cast<ConstantSDNode>(Node); 1028 unsigned opAction = 1029 TLI.getOperationAction(ISD::Constant, CN->getValueType(0)); 1030 1031 // We know we don't need to expand constants here, constants only have one 1032 // value and we check that it is fine above. 1033 1034 if (opAction == TargetLowering::Custom) { 1035 Tmp1 = TLI.LowerOperation(Result, DAG); 1036 if (Tmp1.Val) 1037 Result = Tmp1; 1038 } 1039 break; 1040 } 1041 case ISD::ConstantFP: { 1042 // Spill FP immediates to the constant pool if the target cannot directly 1043 // codegen them. Targets often have some immediate values that can be 1044 // efficiently generated into an FP register without a load. We explicitly 1045 // leave these constants as ConstantFP nodes for the target to deal with. 1046 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 1047 1048 // Check to see if this FP immediate is already legal. 1049 bool isLegal = false; 1050 for (TargetLowering::legal_fpimm_iterator I = TLI.legal_fpimm_begin(), 1051 E = TLI.legal_fpimm_end(); I != E; ++I) 1052 if (CFP->isExactlyValue(*I)) { 1053 isLegal = true; 1054 break; 1055 } 1056 1057 // If this is a legal constant, turn it into a TargetConstantFP node. 1058 if (isLegal) { 1059 Result = DAG.getTargetConstantFP(CFP->getValueAPF(), 1060 CFP->getValueType(0)); 1061 break; 1062 } 1063 1064 switch (TLI.getOperationAction(ISD::ConstantFP, CFP->getValueType(0))) { 1065 default: assert(0 && "This action is not supported yet!"); 1066 case TargetLowering::Custom: 1067 Tmp3 = TLI.LowerOperation(Result, DAG); 1068 if (Tmp3.Val) { 1069 Result = Tmp3; 1070 break; 1071 } 1072 // FALLTHROUGH 1073 case TargetLowering::Expand: 1074 Result = ExpandConstantFP(CFP, true, DAG, TLI); 1075 } 1076 break; 1077 } 1078 case ISD::TokenFactor: 1079 if (Node->getNumOperands() == 2) { 1080 Tmp1 = LegalizeOp(Node->getOperand(0)); 1081 Tmp2 = LegalizeOp(Node->getOperand(1)); 1082 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1083 } else if (Node->getNumOperands() == 3) { 1084 Tmp1 = LegalizeOp(Node->getOperand(0)); 1085 Tmp2 = LegalizeOp(Node->getOperand(1)); 1086 Tmp3 = LegalizeOp(Node->getOperand(2)); 1087 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1088 } else { 1089 SmallVector<SDOperand, 8> Ops; 1090 // Legalize the operands. 1091 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 1092 Ops.push_back(LegalizeOp(Node->getOperand(i))); 1093 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1094 } 1095 break; 1096 1097 case ISD::FORMAL_ARGUMENTS: 1098 case ISD::CALL: 1099 // The only option for this is to custom lower it. 1100 Tmp3 = TLI.LowerOperation(Result.getValue(0), DAG); 1101 assert(Tmp3.Val && "Target didn't custom lower this node!"); 1102 assert(Tmp3.Val->getNumValues() == Result.Val->getNumValues() && 1103 "Lowering call/formal_arguments produced unexpected # results!"); 1104 1105 // Since CALL/FORMAL_ARGUMENTS nodes produce multiple values, make sure to 1106 // remember that we legalized all of them, so it doesn't get relegalized. 1107 for (unsigned i = 0, e = Tmp3.Val->getNumValues(); i != e; ++i) { 1108 Tmp1 = LegalizeOp(Tmp3.getValue(i)); 1109 if (Op.ResNo == i) 1110 Tmp2 = Tmp1; 1111 AddLegalizedOperand(SDOperand(Node, i), Tmp1); 1112 } 1113 return Tmp2; 1114 case ISD::EXTRACT_SUBREG: { 1115 Tmp1 = LegalizeOp(Node->getOperand(0)); 1116 ConstantSDNode *idx = dyn_cast<ConstantSDNode>(Node->getOperand(1)); 1117 assert(idx && "Operand must be a constant"); 1118 Tmp2 = DAG.getTargetConstant(idx->getValue(), idx->getValueType(0)); 1119 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1120 } 1121 break; 1122 case ISD::INSERT_SUBREG: { 1123 Tmp1 = LegalizeOp(Node->getOperand(0)); 1124 Tmp2 = LegalizeOp(Node->getOperand(1)); 1125 ConstantSDNode *idx = dyn_cast<ConstantSDNode>(Node->getOperand(2)); 1126 assert(idx && "Operand must be a constant"); 1127 Tmp3 = DAG.getTargetConstant(idx->getValue(), idx->getValueType(0)); 1128 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1129 } 1130 break; 1131 case ISD::BUILD_VECTOR: 1132 switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) { 1133 default: assert(0 && "This action is not supported yet!"); 1134 case TargetLowering::Custom: 1135 Tmp3 = TLI.LowerOperation(Result, DAG); 1136 if (Tmp3.Val) { 1137 Result = Tmp3; 1138 break; 1139 } 1140 // FALLTHROUGH 1141 case TargetLowering::Expand: 1142 Result = ExpandBUILD_VECTOR(Result.Val); 1143 break; 1144 } 1145 break; 1146 case ISD::INSERT_VECTOR_ELT: 1147 Tmp1 = LegalizeOp(Node->getOperand(0)); // InVec 1148 Tmp2 = LegalizeOp(Node->getOperand(1)); // InVal 1149 Tmp3 = LegalizeOp(Node->getOperand(2)); // InEltNo 1150 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1151 1152 switch (TLI.getOperationAction(ISD::INSERT_VECTOR_ELT, 1153 Node->getValueType(0))) { 1154 default: assert(0 && "This action is not supported yet!"); 1155 case TargetLowering::Legal: 1156 break; 1157 case TargetLowering::Custom: 1158 Tmp3 = TLI.LowerOperation(Result, DAG); 1159 if (Tmp3.Val) { 1160 Result = Tmp3; 1161 break; 1162 } 1163 // FALLTHROUGH 1164 case TargetLowering::Expand: { 1165 // If the insert index is a constant, codegen this as a scalar_to_vector, 1166 // then a shuffle that inserts it into the right position in the vector. 1167 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Tmp3)) { 1168 SDOperand ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, 1169 Tmp1.getValueType(), Tmp2); 1170 1171 unsigned NumElts = MVT::getVectorNumElements(Tmp1.getValueType()); 1172 MVT::ValueType ShufMaskVT = MVT::getIntVectorWithNumElements(NumElts); 1173 MVT::ValueType ShufMaskEltVT = MVT::getVectorElementType(ShufMaskVT); 1174 1175 // We generate a shuffle of InVec and ScVec, so the shuffle mask should 1176 // be 0,1,2,3,4,5... with the appropriate element replaced with elt 0 of 1177 // the RHS. 1178 SmallVector<SDOperand, 8> ShufOps; 1179 for (unsigned i = 0; i != NumElts; ++i) { 1180 if (i != InsertPos->getValue()) 1181 ShufOps.push_back(DAG.getConstant(i, ShufMaskEltVT)); 1182 else 1183 ShufOps.push_back(DAG.getConstant(NumElts, ShufMaskEltVT)); 1184 } 1185 SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, ShufMaskVT, 1186 &ShufOps[0], ShufOps.size()); 1187 1188 Result = DAG.getNode(ISD::VECTOR_SHUFFLE, Tmp1.getValueType(), 1189 Tmp1, ScVec, ShufMask); 1190 Result = LegalizeOp(Result); 1191 break; 1192 } 1193 1194 // If the target doesn't support this, we have to spill the input vector 1195 // to a temporary stack slot, update the element, then reload it. This is 1196 // badness. We could also load the value into a vector register (either 1197 // with a "move to register" or "extload into register" instruction, then 1198 // permute it into place, if the idx is a constant and if the idx is 1199 // supported by the target. 1200 MVT::ValueType VT = Tmp1.getValueType(); 1201 MVT::ValueType EltVT = Tmp2.getValueType(); 1202 MVT::ValueType IdxVT = Tmp3.getValueType(); 1203 MVT::ValueType PtrVT = TLI.getPointerTy(); 1204 SDOperand StackPtr = CreateStackTemporary(VT); 1205 // Store the vector. 1206 SDOperand Ch = DAG.getStore(DAG.getEntryNode(), Tmp1, StackPtr, NULL, 0); 1207 1208 // Truncate or zero extend offset to target pointer type. 1209 unsigned CastOpc = (IdxVT > PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND; 1210 Tmp3 = DAG.getNode(CastOpc, PtrVT, Tmp3); 1211 // Add the offset to the index. 1212 unsigned EltSize = MVT::getSizeInBits(EltVT)/8; 1213 Tmp3 = DAG.getNode(ISD::MUL, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT)); 1214 SDOperand StackPtr2 = DAG.getNode(ISD::ADD, IdxVT, Tmp3, StackPtr); 1215 // Store the scalar value. 1216 Ch = DAG.getStore(Ch, Tmp2, StackPtr2, NULL, 0); 1217 // Load the updated vector. 1218 Result = DAG.getLoad(VT, Ch, StackPtr, NULL, 0); 1219 break; 1220 } 1221 } 1222 break; 1223 case ISD::SCALAR_TO_VECTOR: 1224 if (!TLI.isTypeLegal(Node->getOperand(0).getValueType())) { 1225 Result = LegalizeOp(ExpandSCALAR_TO_VECTOR(Node)); 1226 break; 1227 } 1228 1229 Tmp1 = LegalizeOp(Node->getOperand(0)); // InVal 1230 Result = DAG.UpdateNodeOperands(Result, Tmp1); 1231 switch (TLI.getOperationAction(ISD::SCALAR_TO_VECTOR, 1232 Node->getValueType(0))) { 1233 default: assert(0 && "This action is not supported yet!"); 1234 case TargetLowering::Legal: 1235 break; 1236 case TargetLowering::Custom: 1237 Tmp3 = TLI.LowerOperation(Result, DAG); 1238 if (Tmp3.Val) { 1239 Result = Tmp3; 1240 break; 1241 } 1242 // FALLTHROUGH 1243 case TargetLowering::Expand: 1244 Result = LegalizeOp(ExpandSCALAR_TO_VECTOR(Node)); 1245 break; 1246 } 1247 break; 1248 case ISD::VECTOR_SHUFFLE: 1249 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the input vectors, 1250 Tmp2 = LegalizeOp(Node->getOperand(1)); // but not the shuffle mask. 1251 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 1252 1253 // Allow targets to custom lower the SHUFFLEs they support. 1254 switch (TLI.getOperationAction(ISD::VECTOR_SHUFFLE,Result.getValueType())) { 1255 default: assert(0 && "Unknown operation action!"); 1256 case TargetLowering::Legal: 1257 assert(isShuffleLegal(Result.getValueType(), Node->getOperand(2)) && 1258 "vector shuffle should not be created if not legal!"); 1259 break; 1260 case TargetLowering::Custom: 1261 Tmp3 = TLI.LowerOperation(Result, DAG); 1262 if (Tmp3.Val) { 1263 Result = Tmp3; 1264 break; 1265 } 1266 // FALLTHROUGH 1267 case TargetLowering::Expand: { 1268 MVT::ValueType VT = Node->getValueType(0); 1269 MVT::ValueType EltVT = MVT::getVectorElementType(VT); 1270 MVT::ValueType PtrVT = TLI.getPointerTy(); 1271 SDOperand Mask = Node->getOperand(2); 1272 unsigned NumElems = Mask.getNumOperands(); 1273 SmallVector<SDOperand,8> Ops; 1274 for (unsigned i = 0; i != NumElems; ++i) { 1275 SDOperand Arg = Mask.getOperand(i); 1276 if (Arg.getOpcode() == ISD::UNDEF) { 1277 Ops.push_back(DAG.getNode(ISD::UNDEF, EltVT)); 1278 } else { 1279 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); 1280 unsigned Idx = cast<ConstantSDNode>(Arg)->getValue(); 1281 if (Idx < NumElems) 1282 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EltVT, Tmp1, 1283 DAG.getConstant(Idx, PtrVT))); 1284 else 1285 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EltVT, Tmp2, 1286 DAG.getConstant(Idx - NumElems, PtrVT))); 1287 } 1288 } 1289 Result = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size()); 1290 break; 1291 } 1292 case TargetLowering::Promote: { 1293 // Change base type to a different vector type. 1294 MVT::ValueType OVT = Node->getValueType(0); 1295 MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 1296 1297 // Cast the two input vectors. 1298 Tmp1 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp1); 1299 Tmp2 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp2); 1300 1301 // Convert the shuffle mask to the right # elements. 1302 Tmp3 = SDOperand(isShuffleLegal(OVT, Node->getOperand(2)), 0); 1303 assert(Tmp3.Val && "Shuffle not legal?"); 1304 Result = DAG.getNode(ISD::VECTOR_SHUFFLE, NVT, Tmp1, Tmp2, Tmp3); 1305 Result = DAG.getNode(ISD::BIT_CONVERT, OVT, Result); 1306 break; 1307 } 1308 } 1309 break; 1310 1311 case ISD::EXTRACT_VECTOR_ELT: 1312 Tmp1 = Node->getOperand(0); 1313 Tmp2 = LegalizeOp(Node->getOperand(1)); 1314 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1315 Result = ExpandEXTRACT_VECTOR_ELT(Result); 1316 break; 1317 1318 case ISD::EXTRACT_SUBVECTOR: 1319 Tmp1 = Node->getOperand(0); 1320 Tmp2 = LegalizeOp(Node->getOperand(1)); 1321 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1322 Result = ExpandEXTRACT_SUBVECTOR(Result); 1323 break; 1324 1325 case ISD::CALLSEQ_START: { 1326 SDNode *CallEnd = FindCallEndFromCallStart(Node); 1327 1328 // Recursively Legalize all of the inputs of the call end that do not lead 1329 // to this call start. This ensures that any libcalls that need be inserted 1330 // are inserted *before* the CALLSEQ_START. 1331 {SmallPtrSet<SDNode*, 32> NodesLeadingTo; 1332 for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i) 1333 LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).Val, Node, 1334 NodesLeadingTo); 1335 } 1336 1337 // Now that we legalized all of the inputs (which may have inserted 1338 // libcalls) create the new CALLSEQ_START node. 1339 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1340 1341 // Merge in the last call, to ensure that this call start after the last 1342 // call ended. 1343 if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) { 1344 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1345 Tmp1 = LegalizeOp(Tmp1); 1346 } 1347 1348 // Do not try to legalize the target-specific arguments (#1+). 1349 if (Tmp1 != Node->getOperand(0)) { 1350 SmallVector<SDOperand, 8> Ops(Node->op_begin(), Node->op_end()); 1351 Ops[0] = Tmp1; 1352 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1353 } 1354 1355 // Remember that the CALLSEQ_START is legalized. 1356 AddLegalizedOperand(Op.getValue(0), Result); 1357 if (Node->getNumValues() == 2) // If this has a flag result, remember it. 1358 AddLegalizedOperand(Op.getValue(1), Result.getValue(1)); 1359 1360 // Now that the callseq_start and all of the non-call nodes above this call 1361 // sequence have been legalized, legalize the call itself. During this 1362 // process, no libcalls can/will be inserted, guaranteeing that no calls 1363 // can overlap. 1364 assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!"); 1365 SDOperand InCallSEQ = LastCALLSEQ_END; 1366 // Note that we are selecting this call! 1367 LastCALLSEQ_END = SDOperand(CallEnd, 0); 1368 IsLegalizingCall = true; 1369 1370 // Legalize the call, starting from the CALLSEQ_END. 1371 LegalizeOp(LastCALLSEQ_END); 1372 assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!"); 1373 return Result; 1374 } 1375 case ISD::CALLSEQ_END: 1376 // If the CALLSEQ_START node hasn't been legalized first, legalize it. This 1377 // will cause this node to be legalized as well as handling libcalls right. 1378 if (LastCALLSEQ_END.Val != Node) { 1379 LegalizeOp(SDOperand(FindCallStartFromCallEnd(Node), 0)); 1380 DenseMap<SDOperand, SDOperand>::iterator I = LegalizedNodes.find(Op); 1381 assert(I != LegalizedNodes.end() && 1382 "Legalizing the call start should have legalized this node!"); 1383 return I->second; 1384 } 1385 1386 // Otherwise, the call start has been legalized and everything is going 1387 // according to plan. Just legalize ourselves normally here. 1388 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1389 // Do not try to legalize the target-specific arguments (#1+), except for 1390 // an optional flag input. 1391 if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Flag){ 1392 if (Tmp1 != Node->getOperand(0)) { 1393 SmallVector<SDOperand, 8> Ops(Node->op_begin(), Node->op_end()); 1394 Ops[0] = Tmp1; 1395 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1396 } 1397 } else { 1398 Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1)); 1399 if (Tmp1 != Node->getOperand(0) || 1400 Tmp2 != Node->getOperand(Node->getNumOperands()-1)) { 1401 SmallVector<SDOperand, 8> Ops(Node->op_begin(), Node->op_end()); 1402 Ops[0] = Tmp1; 1403 Ops.back() = Tmp2; 1404 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1405 } 1406 } 1407 assert(IsLegalizingCall && "Call sequence imbalance between start/end?"); 1408 // This finishes up call legalization. 1409 IsLegalizingCall = false; 1410 1411 // If the CALLSEQ_END node has a flag, remember that we legalized it. 1412 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 1413 if (Node->getNumValues() == 2) 1414 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 1415 return Result.getValue(Op.ResNo); 1416 case ISD::DYNAMIC_STACKALLOC: { 1417 MVT::ValueType VT = Node->getValueType(0); 1418 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1419 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the size. 1420 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the alignment. 1421 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1422 1423 Tmp1 = Result.getValue(0); 1424 Tmp2 = Result.getValue(1); 1425 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 1426 default: assert(0 && "This action is not supported yet!"); 1427 case TargetLowering::Expand: { 1428 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1429 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" 1430 " not tell us which reg is the stack pointer!"); 1431 SDOperand Chain = Tmp1.getOperand(0); 1432 SDOperand Size = Tmp2.getOperand(1); 1433 SDOperand SP = DAG.getCopyFromReg(Chain, SPReg, VT); 1434 Chain = SP.getValue(1); 1435 unsigned Align = cast<ConstantSDNode>(Tmp3)->getValue(); 1436 unsigned StackAlign = 1437 TLI.getTargetMachine().getFrameInfo()->getStackAlignment(); 1438 if (Align > StackAlign) 1439 SP = DAG.getNode(ISD::AND, VT, SP, 1440 DAG.getConstant(-(uint64_t)Align, VT)); 1441 Tmp1 = DAG.getNode(ISD::SUB, VT, SP, Size); // Value 1442 Tmp2 = DAG.getCopyToReg(Chain, SPReg, Tmp1); // Output chain 1443 Tmp1 = LegalizeOp(Tmp1); 1444 Tmp2 = LegalizeOp(Tmp2); 1445 break; 1446 } 1447 case TargetLowering::Custom: 1448 Tmp3 = TLI.LowerOperation(Tmp1, DAG); 1449 if (Tmp3.Val) { 1450 Tmp1 = LegalizeOp(Tmp3); 1451 Tmp2 = LegalizeOp(Tmp3.getValue(1)); 1452 } 1453 break; 1454 case TargetLowering::Legal: 1455 break; 1456 } 1457 // Since this op produce two values, make sure to remember that we 1458 // legalized both of them. 1459 AddLegalizedOperand(SDOperand(Node, 0), Tmp1); 1460 AddLegalizedOperand(SDOperand(Node, 1), Tmp2); 1461 return Op.ResNo ? Tmp2 : Tmp1; 1462 } 1463 case ISD::INLINEASM: { 1464 SmallVector<SDOperand, 8> Ops(Node->op_begin(), Node->op_end()); 1465 bool Changed = false; 1466 // Legalize all of the operands of the inline asm, in case they are nodes 1467 // that need to be expanded or something. Note we skip the asm string and 1468 // all of the TargetConstant flags. 1469 SDOperand Op = LegalizeOp(Ops[0]); 1470 Changed = Op != Ops[0]; 1471 Ops[0] = Op; 1472 1473 bool HasInFlag = Ops.back().getValueType() == MVT::Flag; 1474 for (unsigned i = 2, e = Ops.size()-HasInFlag; i < e; ) { 1475 unsigned NumVals = cast<ConstantSDNode>(Ops[i])->getValue() >> 3; 1476 for (++i; NumVals; ++i, --NumVals) { 1477 SDOperand Op = LegalizeOp(Ops[i]); 1478 if (Op != Ops[i]) { 1479 Changed = true; 1480 Ops[i] = Op; 1481 } 1482 } 1483 } 1484 1485 if (HasInFlag) { 1486 Op = LegalizeOp(Ops.back()); 1487 Changed |= Op != Ops.back(); 1488 Ops.back() = Op; 1489 } 1490 1491 if (Changed) 1492 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1493 1494 // INLINE asm returns a chain and flag, make sure to add both to the map. 1495 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 1496 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 1497 return Result.getValue(Op.ResNo); 1498 } 1499 case ISD::BR: 1500 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1501 // Ensure that libcalls are emitted before a branch. 1502 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1503 Tmp1 = LegalizeOp(Tmp1); 1504 LastCALLSEQ_END = DAG.getEntryNode(); 1505 1506 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 1507 break; 1508 case ISD::BRIND: 1509 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1510 // Ensure that libcalls are emitted before a branch. 1511 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1512 Tmp1 = LegalizeOp(Tmp1); 1513 LastCALLSEQ_END = DAG.getEntryNode(); 1514 1515 switch (getTypeAction(Node->getOperand(1).getValueType())) { 1516 default: assert(0 && "Indirect target must be legal type (pointer)!"); 1517 case Legal: 1518 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the condition. 1519 break; 1520 } 1521 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1522 break; 1523 case ISD::BR_JT: 1524 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1525 // Ensure that libcalls are emitted before a branch. 1526 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1527 Tmp1 = LegalizeOp(Tmp1); 1528 LastCALLSEQ_END = DAG.getEntryNode(); 1529 1530 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the jumptable node. 1531 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 1532 1533 switch (TLI.getOperationAction(ISD::BR_JT, MVT::Other)) { 1534 default: assert(0 && "This action is not supported yet!"); 1535 case TargetLowering::Legal: break; 1536 case TargetLowering::Custom: 1537 Tmp1 = TLI.LowerOperation(Result, DAG); 1538 if (Tmp1.Val) Result = Tmp1; 1539 break; 1540 case TargetLowering::Expand: { 1541 SDOperand Chain = Result.getOperand(0); 1542 SDOperand Table = Result.getOperand(1); 1543 SDOperand Index = Result.getOperand(2); 1544 1545 MVT::ValueType PTy = TLI.getPointerTy(); 1546 MachineFunction &MF = DAG.getMachineFunction(); 1547 unsigned EntrySize = MF.getJumpTableInfo()->getEntrySize(); 1548 Index= DAG.getNode(ISD::MUL, PTy, Index, DAG.getConstant(EntrySize, PTy)); 1549 SDOperand Addr = DAG.getNode(ISD::ADD, PTy, Index, Table); 1550 1551 SDOperand LD; 1552 switch (EntrySize) { 1553 default: assert(0 && "Size of jump table not supported yet."); break; 1554 case 4: LD = DAG.getLoad(MVT::i32, Chain, Addr, NULL, 0); break; 1555 case 8: LD = DAG.getLoad(MVT::i64, Chain, Addr, NULL, 0); break; 1556 } 1557 1558 if (TLI.getTargetMachine().getRelocationModel() == Reloc::PIC_) { 1559 // For PIC, the sequence is: 1560 // BRIND(load(Jumptable + index) + RelocBase) 1561 // RelocBase is the JumpTable on PPC and X86, GOT on Alpha 1562 SDOperand Reloc; 1563 if (TLI.usesGlobalOffsetTable()) 1564 Reloc = DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, PTy); 1565 else 1566 Reloc = Table; 1567 Addr = (PTy != MVT::i32) ? DAG.getNode(ISD::SIGN_EXTEND, PTy, LD) : LD; 1568 Addr = DAG.getNode(ISD::ADD, PTy, Addr, Reloc); 1569 Result = DAG.getNode(ISD::BRIND, MVT::Other, LD.getValue(1), Addr); 1570 } else { 1571 Result = DAG.getNode(ISD::BRIND, MVT::Other, LD.getValue(1), LD); 1572 } 1573 } 1574 } 1575 break; 1576 case ISD::BRCOND: 1577 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1578 // Ensure that libcalls are emitted before a return. 1579 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1580 Tmp1 = LegalizeOp(Tmp1); 1581 LastCALLSEQ_END = DAG.getEntryNode(); 1582 1583 switch (getTypeAction(Node->getOperand(1).getValueType())) { 1584 case Expand: assert(0 && "It's impossible to expand bools"); 1585 case Legal: 1586 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the condition. 1587 break; 1588 case Promote: 1589 Tmp2 = PromoteOp(Node->getOperand(1)); // Promote the condition. 1590 1591 // The top bits of the promoted condition are not necessarily zero, ensure 1592 // that the value is properly zero extended. 1593 if (!DAG.MaskedValueIsZero(Tmp2, 1594 MVT::getIntVTBitMask(Tmp2.getValueType())^1)) 1595 Tmp2 = DAG.getZeroExtendInReg(Tmp2, MVT::i1); 1596 break; 1597 } 1598 1599 // Basic block destination (Op#2) is always legal. 1600 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 1601 1602 switch (TLI.getOperationAction(ISD::BRCOND, MVT::Other)) { 1603 default: assert(0 && "This action is not supported yet!"); 1604 case TargetLowering::Legal: break; 1605 case TargetLowering::Custom: 1606 Tmp1 = TLI.LowerOperation(Result, DAG); 1607 if (Tmp1.Val) Result = Tmp1; 1608 break; 1609 case TargetLowering::Expand: 1610 // Expand brcond's setcc into its constituent parts and create a BR_CC 1611 // Node. 1612 if (Tmp2.getOpcode() == ISD::SETCC) { 1613 Result = DAG.getNode(ISD::BR_CC, MVT::Other, Tmp1, Tmp2.getOperand(2), 1614 Tmp2.getOperand(0), Tmp2.getOperand(1), 1615 Node->getOperand(2)); 1616 } else { 1617 Result = DAG.getNode(ISD::BR_CC, MVT::Other, Tmp1, 1618 DAG.getCondCode(ISD::SETNE), Tmp2, 1619 DAG.getConstant(0, Tmp2.getValueType()), 1620 Node->getOperand(2)); 1621 } 1622 break; 1623 } 1624 break; 1625 case ISD::BR_CC: 1626 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1627 // Ensure that libcalls are emitted before a branch. 1628 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1629 Tmp1 = LegalizeOp(Tmp1); 1630 Tmp2 = Node->getOperand(2); // LHS 1631 Tmp3 = Node->getOperand(3); // RHS 1632 Tmp4 = Node->getOperand(1); // CC 1633 1634 LegalizeSetCCOperands(Tmp2, Tmp3, Tmp4); 1635 LastCALLSEQ_END = DAG.getEntryNode(); 1636 1637 // If we didn't get both a LHS and RHS back from LegalizeSetCCOperands, 1638 // the LHS is a legal SETCC itself. In this case, we need to compare 1639 // the result against zero to select between true and false values. 1640 if (Tmp3.Val == 0) { 1641 Tmp3 = DAG.getConstant(0, Tmp2.getValueType()); 1642 Tmp4 = DAG.getCondCode(ISD::SETNE); 1643 } 1644 1645 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp4, Tmp2, Tmp3, 1646 Node->getOperand(4)); 1647 1648 switch (TLI.getOperationAction(ISD::BR_CC, Tmp3.getValueType())) { 1649 default: assert(0 && "Unexpected action for BR_CC!"); 1650 case TargetLowering::Legal: break; 1651 case TargetLowering::Custom: 1652 Tmp4 = TLI.LowerOperation(Result, DAG); 1653 if (Tmp4.Val) Result = Tmp4; 1654 break; 1655 } 1656 break; 1657 case ISD::LOAD: { 1658 LoadSDNode *LD = cast<LoadSDNode>(Node); 1659 Tmp1 = LegalizeOp(LD->getChain()); // Legalize the chain. 1660 Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer. 1661 1662 ISD::LoadExtType ExtType = LD->getExtensionType(); 1663 if (ExtType == ISD::NON_EXTLOAD) { 1664 MVT::ValueType VT = Node->getValueType(0); 1665 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset()); 1666 Tmp3 = Result.getValue(0); 1667 Tmp4 = Result.getValue(1); 1668 1669 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 1670 default: assert(0 && "This action is not supported yet!"); 1671 case TargetLowering::Legal: 1672 // If this is an unaligned load and the target doesn't support it, 1673 // expand it. 1674 if (!TLI.allowsUnalignedMemoryAccesses()) { 1675 unsigned ABIAlignment = TLI.getTargetData()-> 1676 getABITypeAlignment(MVT::getTypeForValueType(LD->getLoadedVT())); 1677 if (LD->getAlignment() < ABIAlignment){ 1678 Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.Val), DAG, 1679 TLI); 1680 Tmp3 = Result.getOperand(0); 1681 Tmp4 = Result.getOperand(1); 1682 Tmp3 = LegalizeOp(Tmp3); 1683 Tmp4 = LegalizeOp(Tmp4); 1684 } 1685 } 1686 break; 1687 case TargetLowering::Custom: 1688 Tmp1 = TLI.LowerOperation(Tmp3, DAG); 1689 if (Tmp1.Val) { 1690 Tmp3 = LegalizeOp(Tmp1); 1691 Tmp4 = LegalizeOp(Tmp1.getValue(1)); 1692 } 1693 break; 1694 case TargetLowering::Promote: { 1695 // Only promote a load of vector type to another. 1696 assert(MVT::isVector(VT) && "Cannot promote this load!"); 1697 // Change base type to a different vector type. 1698 MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 1699 1700 Tmp1 = DAG.getLoad(NVT, Tmp1, Tmp2, LD->getSrcValue(), 1701 LD->getSrcValueOffset(), 1702 LD->isVolatile(), LD->getAlignment()); 1703 Tmp3 = LegalizeOp(DAG.getNode(ISD::BIT_CONVERT, VT, Tmp1)); 1704 Tmp4 = LegalizeOp(Tmp1.getValue(1)); 1705 break; 1706 } 1707 } 1708 // Since loads produce two values, make sure to remember that we 1709 // legalized both of them. 1710 AddLegalizedOperand(SDOperand(Node, 0), Tmp3); 1711 AddLegalizedOperand(SDOperand(Node, 1), Tmp4); 1712 return Op.ResNo ? Tmp4 : Tmp3; 1713 } else { 1714 MVT::ValueType SrcVT = LD->getLoadedVT(); 1715 switch (TLI.getLoadXAction(ExtType, SrcVT)) { 1716 default: assert(0 && "This action is not supported yet!"); 1717 case TargetLowering::Promote: 1718 assert(SrcVT == MVT::i1 && 1719 "Can only promote extending LOAD from i1 -> i8!"); 1720 Result = DAG.getExtLoad(ExtType, Node->getValueType(0), Tmp1, Tmp2, 1721 LD->getSrcValue(), LD->getSrcValueOffset(), 1722 MVT::i8, LD->isVolatile(), LD->getAlignment()); 1723 Tmp1 = Result.getValue(0); 1724 Tmp2 = Result.getValue(1); 1725 break; 1726 case TargetLowering::Custom: 1727 isCustom = true; 1728 // FALLTHROUGH 1729 case TargetLowering::Legal: 1730 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset()); 1731 Tmp1 = Result.getValue(0); 1732 Tmp2 = Result.getValue(1); 1733 1734 if (isCustom) { 1735 Tmp3 = TLI.LowerOperation(Result, DAG); 1736 if (Tmp3.Val) { 1737 Tmp1 = LegalizeOp(Tmp3); 1738 Tmp2 = LegalizeOp(Tmp3.getValue(1)); 1739 } 1740 } else { 1741 // If this is an unaligned load and the target doesn't support it, 1742 // expand it. 1743 if (!TLI.allowsUnalignedMemoryAccesses()) { 1744 unsigned ABIAlignment = TLI.getTargetData()-> 1745 getABITypeAlignment(MVT::getTypeForValueType(LD->getLoadedVT())); 1746 if (LD->getAlignment() < ABIAlignment){ 1747 Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.Val), DAG, 1748 TLI); 1749 Tmp1 = Result.getOperand(0); 1750 Tmp2 = Result.getOperand(1); 1751 Tmp1 = LegalizeOp(Tmp1); 1752 Tmp2 = LegalizeOp(Tmp2); 1753 } 1754 } 1755 } 1756 break; 1757 case TargetLowering::Expand: 1758 // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND 1759 if (SrcVT == MVT::f32 && Node->getValueType(0) == MVT::f64) { 1760 SDOperand Load = DAG.getLoad(SrcVT, Tmp1, Tmp2, LD->getSrcValue(), 1761 LD->getSrcValueOffset(), 1762 LD->isVolatile(), LD->getAlignment()); 1763 Result = DAG.getNode(ISD::FP_EXTEND, Node->getValueType(0), Load); 1764 Tmp1 = LegalizeOp(Result); // Relegalize new nodes. 1765 Tmp2 = LegalizeOp(Load.getValue(1)); 1766 break; 1767 } 1768 assert(ExtType != ISD::EXTLOAD &&"EXTLOAD should always be supported!"); 1769 // Turn the unsupported load into an EXTLOAD followed by an explicit 1770 // zero/sign extend inreg. 1771 Result = DAG.getExtLoad(ISD::EXTLOAD, Node->getValueType(0), 1772 Tmp1, Tmp2, LD->getSrcValue(), 1773 LD->getSrcValueOffset(), SrcVT, 1774 LD->isVolatile(), LD->getAlignment()); 1775 SDOperand ValRes; 1776 if (ExtType == ISD::SEXTLOAD) 1777 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(), 1778 Result, DAG.getValueType(SrcVT)); 1779 else 1780 ValRes = DAG.getZeroExtendInReg(Result, SrcVT); 1781 Tmp1 = LegalizeOp(ValRes); // Relegalize new nodes. 1782 Tmp2 = LegalizeOp(Result.getValue(1)); // Relegalize new nodes. 1783 break; 1784 } 1785 // Since loads produce two values, make sure to remember that we legalized 1786 // both of them. 1787 AddLegalizedOperand(SDOperand(Node, 0), Tmp1); 1788 AddLegalizedOperand(SDOperand(Node, 1), Tmp2); 1789 return Op.ResNo ? Tmp2 : Tmp1; 1790 } 1791 } 1792 case ISD::EXTRACT_ELEMENT: { 1793 MVT::ValueType OpTy = Node->getOperand(0).getValueType(); 1794 switch (getTypeAction(OpTy)) { 1795 default: assert(0 && "EXTRACT_ELEMENT action for type unimplemented!"); 1796 case Legal: 1797 if (cast<ConstantSDNode>(Node->getOperand(1))->getValue()) { 1798 // 1 -> Hi 1799 Result = DAG.getNode(ISD::SRL, OpTy, Node->getOperand(0), 1800 DAG.getConstant(MVT::getSizeInBits(OpTy)/2, 1801 TLI.getShiftAmountTy())); 1802 Result = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), Result); 1803 } else { 1804 // 0 -> Lo 1805 Result = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), 1806 Node->getOperand(0)); 1807 } 1808 break; 1809 case Expand: 1810 // Get both the low and high parts. 1811 ExpandOp(Node->getOperand(0), Tmp1, Tmp2); 1812 if (cast<ConstantSDNode>(Node->getOperand(1))->getValue()) 1813 Result = Tmp2; // 1 -> Hi 1814 else 1815 Result = Tmp1; // 0 -> Lo 1816 break; 1817 } 1818 break; 1819 } 1820 1821 case ISD::CopyToReg: 1822 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1823 1824 assert(isTypeLegal(Node->getOperand(2).getValueType()) && 1825 "Register type must be legal!"); 1826 // Legalize the incoming value (must be a legal type). 1827 Tmp2 = LegalizeOp(Node->getOperand(2)); 1828 if (Node->getNumValues() == 1) { 1829 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1), Tmp2); 1830 } else { 1831 assert(Node->getNumValues() == 2 && "Unknown CopyToReg"); 1832 if (Node->getNumOperands() == 4) { 1833 Tmp3 = LegalizeOp(Node->getOperand(3)); 1834 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1), Tmp2, 1835 Tmp3); 1836 } else { 1837 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1),Tmp2); 1838 } 1839 1840 // Since this produces two values, make sure to remember that we legalized 1841 // both of them. 1842 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 1843 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 1844 return Result; 1845 } 1846 break; 1847 1848 case ISD::RET: 1849 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1850 1851 // Ensure that libcalls are emitted before a return. 1852 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1853 Tmp1 = LegalizeOp(Tmp1); 1854 LastCALLSEQ_END = DAG.getEntryNode(); 1855 1856 switch (Node->getNumOperands()) { 1857 case 3: // ret val 1858 Tmp2 = Node->getOperand(1); 1859 Tmp3 = Node->getOperand(2); // Signness 1860 switch (getTypeAction(Tmp2.getValueType())) { 1861 case Legal: 1862 Result = DAG.UpdateNodeOperands(Result, Tmp1, LegalizeOp(Tmp2), Tmp3); 1863 break; 1864 case Expand: 1865 if (!MVT::isVector(Tmp2.getValueType())) { 1866 SDOperand Lo, Hi; 1867 ExpandOp(Tmp2, Lo, Hi); 1868 1869 // Big endian systems want the hi reg first. 1870 if (!TLI.isLittleEndian()) 1871 std::swap(Lo, Hi); 1872 1873 if (Hi.Val) 1874 Result = DAG.getNode(ISD::RET, MVT::Other, Tmp1, Lo, Tmp3, Hi,Tmp3); 1875 else 1876 Result = DAG.getNode(ISD::RET, MVT::Other, Tmp1, Lo, Tmp3); 1877 Result = LegalizeOp(Result); 1878 } else { 1879 SDNode *InVal = Tmp2.Val; 1880 unsigned NumElems = MVT::getVectorNumElements(InVal->getValueType(0)); 1881 MVT::ValueType EVT = MVT::getVectorElementType(InVal->getValueType(0)); 1882 1883 // Figure out if there is a simple type corresponding to this Vector 1884 // type. If so, convert to the vector type. 1885 MVT::ValueType TVT = MVT::getVectorType(EVT, NumElems); 1886 if (TLI.isTypeLegal(TVT)) { 1887 // Turn this into a return of the vector type. 1888 Tmp2 = LegalizeOp(Tmp2); 1889 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1890 } else if (NumElems == 1) { 1891 // Turn this into a return of the scalar type. 1892 Tmp2 = ScalarizeVectorOp(Tmp2); 1893 Tmp2 = LegalizeOp(Tmp2); 1894 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1895 1896 // FIXME: Returns of gcc generic vectors smaller than a legal type 1897 // should be returned in integer registers! 1898 1899 // The scalarized value type may not be legal, e.g. it might require 1900 // promotion or expansion. Relegalize the return. 1901 Result = LegalizeOp(Result); 1902 } else { 1903 // FIXME: Returns of gcc generic vectors larger than a legal vector 1904 // type should be returned by reference! 1905 SDOperand Lo, Hi; 1906 SplitVectorOp(Tmp2, Lo, Hi); 1907 Result = DAG.getNode(ISD::RET, MVT::Other, Tmp1, Lo, Tmp3, Hi,Tmp3); 1908 Result = LegalizeOp(Result); 1909 } 1910 } 1911 break; 1912 case Promote: 1913 Tmp2 = PromoteOp(Node->getOperand(1)); 1914 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1915 Result = LegalizeOp(Result); 1916 break; 1917 } 1918 break; 1919 case 1: // ret void 1920 Result = DAG.UpdateNodeOperands(Result, Tmp1); 1921 break; 1922 default: { // ret <values> 1923 SmallVector<SDOperand, 8> NewValues; 1924 NewValues.push_back(Tmp1); 1925 for (unsigned i = 1, e = Node->getNumOperands(); i < e; i += 2) 1926 switch (getTypeAction(Node->getOperand(i).getValueType())) { 1927 case Legal: 1928 NewValues.push_back(LegalizeOp(Node->getOperand(i))); 1929 NewValues.push_back(Node->getOperand(i+1)); 1930 break; 1931 case Expand: { 1932 SDOperand Lo, Hi; 1933 assert(!MVT::isExtendedVT(Node->getOperand(i).getValueType()) && 1934 "FIXME: TODO: implement returning non-legal vector types!"); 1935 ExpandOp(Node->getOperand(i), Lo, Hi); 1936 NewValues.push_back(Lo); 1937 NewValues.push_back(Node->getOperand(i+1)); 1938 if (Hi.Val) { 1939 NewValues.push_back(Hi); 1940 NewValues.push_back(Node->getOperand(i+1)); 1941 } 1942 break; 1943 } 1944 case Promote: 1945 assert(0 && "Can't promote multiple return value yet!"); 1946 } 1947 1948 if (NewValues.size() == Node->getNumOperands()) 1949 Result = DAG.UpdateNodeOperands(Result, &NewValues[0],NewValues.size()); 1950 else 1951 Result = DAG.getNode(ISD::RET, MVT::Other, 1952 &NewValues[0], NewValues.size()); 1953 break; 1954 } 1955 } 1956 1957 if (Result.getOpcode() == ISD::RET) { 1958 switch (TLI.getOperationAction(Result.getOpcode(), MVT::Other)) { 1959 default: assert(0 && "This action is not supported yet!"); 1960 case TargetLowering::Legal: break; 1961 case TargetLowering::Custom: 1962 Tmp1 = TLI.LowerOperation(Result, DAG); 1963 if (Tmp1.Val) Result = Tmp1; 1964 break; 1965 } 1966 } 1967 break; 1968 case ISD::STORE: { 1969 StoreSDNode *ST = cast<StoreSDNode>(Node); 1970 Tmp1 = LegalizeOp(ST->getChain()); // Legalize the chain. 1971 Tmp2 = LegalizeOp(ST->getBasePtr()); // Legalize the pointer. 1972 int SVOffset = ST->getSrcValueOffset(); 1973 unsigned Alignment = ST->getAlignment(); 1974 bool isVolatile = ST->isVolatile(); 1975 1976 if (!ST->isTruncatingStore()) { 1977 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 1978 // FIXME: We shouldn't do this for TargetConstantFP's. 1979 // FIXME: move this to the DAG Combiner! Note that we can't regress due 1980 // to phase ordering between legalized code and the dag combiner. This 1981 // probably means that we need to integrate dag combiner and legalizer 1982 // together. 1983 // We generally can't do this one for long doubles. 1984 if (ConstantFPSDNode *CFP =dyn_cast<ConstantFPSDNode>(ST->getValue())) { 1985 if (CFP->getValueType(0) == MVT::f32) { 1986 Tmp3 = DAG.getConstant((uint32_t)CFP->getValueAPF(). 1987 convertToAPInt().getZExtValue(), 1988 MVT::i32); 1989 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 1990 SVOffset, isVolatile, Alignment); 1991 break; 1992 } else if (CFP->getValueType(0) == MVT::f64) { 1993 Tmp3 = DAG.getConstant(CFP->getValueAPF().convertToAPInt(). 1994 getZExtValue(), MVT::i64); 1995 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 1996 SVOffset, isVolatile, Alignment); 1997 break; 1998 } 1999 } 2000 2001 switch (getTypeAction(ST->getStoredVT())) { 2002 case Legal: { 2003 Tmp3 = LegalizeOp(ST->getValue()); 2004 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2, 2005 ST->getOffset()); 2006 2007 MVT::ValueType VT = Tmp3.getValueType(); 2008 switch (TLI.getOperationAction(ISD::STORE, VT)) { 2009 default: assert(0 && "This action is not supported yet!"); 2010 case TargetLowering::Legal: 2011 // If this is an unaligned store and the target doesn't support it, 2012 // expand it. 2013 if (!TLI.allowsUnalignedMemoryAccesses()) { 2014 unsigned ABIAlignment = TLI.getTargetData()-> 2015 getABITypeAlignment(MVT::getTypeForValueType(ST->getStoredVT())); 2016 if (ST->getAlignment() < ABIAlignment) 2017 Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.Val), DAG, 2018 TLI); 2019 } 2020 break; 2021 case TargetLowering::Custom: 2022 Tmp1 = TLI.LowerOperation(Result, DAG); 2023 if (Tmp1.Val) Result = Tmp1; 2024 break; 2025 case TargetLowering::Promote: 2026 assert(MVT::isVector(VT) && "Unknown legal promote case!"); 2027 Tmp3 = DAG.getNode(ISD::BIT_CONVERT, 2028 TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3); 2029 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, 2030 ST->getSrcValue(), SVOffset, isVolatile, 2031 Alignment); 2032 break; 2033 } 2034 break; 2035 } 2036 case Promote: 2037 // Truncate the value and store the result. 2038 Tmp3 = PromoteOp(ST->getValue()); 2039 Result = DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2040 SVOffset, ST->getStoredVT(), 2041 isVolatile, Alignment); 2042 break; 2043 2044 case Expand: 2045 unsigned IncrementSize = 0; 2046 SDOperand Lo, Hi; 2047 2048 // If this is a vector type, then we have to calculate the increment as 2049 // the product of the element size in bytes, and the number of elements 2050 // in the high half of the vector. 2051 if (MVT::isVector(ST->getValue().getValueType())) { 2052 SDNode *InVal = ST->getValue().Val; 2053 unsigned NumElems = MVT::getVectorNumElements(InVal->getValueType(0)); 2054 MVT::ValueType EVT = MVT::getVectorElementType(InVal->getValueType(0)); 2055 2056 // Figure out if there is a simple type corresponding to this Vector 2057 // type. If so, convert to the vector type. 2058 MVT::ValueType TVT = MVT::getVectorType(EVT, NumElems); 2059 if (TLI.isTypeLegal(TVT)) { 2060 // Turn this into a normal store of the vector type. 2061 Tmp3 = LegalizeOp(Node->getOperand(1)); 2062 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2063 SVOffset, isVolatile, Alignment); 2064 Result = LegalizeOp(Result); 2065 break; 2066 } else if (NumElems == 1) { 2067 // Turn this into a normal store of the scalar type. 2068 Tmp3 = ScalarizeVectorOp(Node->getOperand(1)); 2069 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2070 SVOffset, isVolatile, Alignment); 2071 // The scalarized value type may not be legal, e.g. it might require 2072 // promotion or expansion. Relegalize the scalar store. 2073 Result = LegalizeOp(Result); 2074 break; 2075 } else { 2076 SplitVectorOp(Node->getOperand(1), Lo, Hi); 2077 IncrementSize = NumElems/2 * MVT::getSizeInBits(EVT)/8; 2078 } 2079 } else { 2080 ExpandOp(Node->getOperand(1), Lo, Hi); 2081 IncrementSize = Hi.Val ? MVT::getSizeInBits(Hi.getValueType())/8 : 0; 2082 2083 if (!TLI.isLittleEndian()) 2084 std::swap(Lo, Hi); 2085 } 2086 2087 Lo = DAG.getStore(Tmp1, Lo, Tmp2, ST->getSrcValue(), 2088 SVOffset, isVolatile, Alignment); 2089 2090 if (Hi.Val == NULL) { 2091 // Must be int <-> float one-to-one expansion. 2092 Result = Lo; 2093 break; 2094 } 2095 2096 Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, 2097 getIntPtrConstant(IncrementSize)); 2098 assert(isTypeLegal(Tmp2.getValueType()) && 2099 "Pointers must be legal!"); 2100 SVOffset += IncrementSize; 2101 if (Alignment > IncrementSize) 2102 Alignment = IncrementSize; 2103 Hi = DAG.getStore(Tmp1, Hi, Tmp2, ST->getSrcValue(), 2104 SVOffset, isVolatile, Alignment); 2105 Result = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi); 2106 break; 2107 } 2108 } else { 2109 // Truncating store 2110 assert(isTypeLegal(ST->getValue().getValueType()) && 2111 "Cannot handle illegal TRUNCSTORE yet!"); 2112 Tmp3 = LegalizeOp(ST->getValue()); 2113 2114 // The only promote case we handle is TRUNCSTORE:i1 X into 2115 // -> TRUNCSTORE:i8 (and X, 1) 2116 if (ST->getStoredVT() == MVT::i1 && 2117 TLI.getStoreXAction(MVT::i1) == TargetLowering::Promote) { 2118 // Promote the bool to a mask then store. 2119 Tmp3 = DAG.getNode(ISD::AND, Tmp3.getValueType(), Tmp3, 2120 DAG.getConstant(1, Tmp3.getValueType())); 2121 Result = DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2122 SVOffset, MVT::i8, 2123 isVolatile, Alignment); 2124 } else if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() || 2125 Tmp2 != ST->getBasePtr()) { 2126 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2, 2127 ST->getOffset()); 2128 } 2129 2130 MVT::ValueType StVT = cast<StoreSDNode>(Result.Val)->getStoredVT(); 2131 switch (TLI.getStoreXAction(StVT)) { 2132 default: assert(0 && "This action is not supported yet!"); 2133 case TargetLowering::Legal: 2134 // If this is an unaligned store and the target doesn't support it, 2135 // expand it. 2136 if (!TLI.allowsUnalignedMemoryAccesses()) { 2137 unsigned ABIAlignment = TLI.getTargetData()-> 2138 getABITypeAlignment(MVT::getTypeForValueType(ST->getStoredVT())); 2139 if (ST->getAlignment() < ABIAlignment) 2140 Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.Val), DAG, 2141 TLI); 2142 } 2143 break; 2144 case TargetLowering::Custom: 2145 Tmp1 = TLI.LowerOperation(Result, DAG); 2146 if (Tmp1.Val) Result = Tmp1; 2147 break; 2148 } 2149 } 2150 break; 2151 } 2152 case ISD::PCMARKER: 2153 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2154 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 2155 break; 2156 case ISD::STACKSAVE: 2157 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2158 Result = DAG.UpdateNodeOperands(Result, Tmp1); 2159 Tmp1 = Result.getValue(0); 2160 Tmp2 = Result.getValue(1); 2161 2162 switch (TLI.getOperationAction(ISD::STACKSAVE, MVT::Other)) { 2163 default: assert(0 && "This action is not supported yet!"); 2164 case TargetLowering::Legal: break; 2165 case TargetLowering::Custom: 2166 Tmp3 = TLI.LowerOperation(Result, DAG); 2167 if (Tmp3.Val) { 2168 Tmp1 = LegalizeOp(Tmp3); 2169 Tmp2 = LegalizeOp(Tmp3.getValue(1)); 2170 } 2171 break; 2172 case TargetLowering::Expand: 2173 // Expand to CopyFromReg if the target set 2174 // StackPointerRegisterToSaveRestore. 2175 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 2176 Tmp1 = DAG.getCopyFromReg(Result.getOperand(0), SP, 2177 Node->getValueType(0)); 2178 Tmp2 = Tmp1.getValue(1); 2179 } else { 2180 Tmp1 = DAG.getNode(ISD::UNDEF, Node->getValueType(0)); 2181 Tmp2 = Node->getOperand(0); 2182 } 2183 break; 2184 } 2185 2186 // Since stacksave produce two values, make sure to remember that we 2187 // legalized both of them. 2188 AddLegalizedOperand(SDOperand(Node, 0), Tmp1); 2189 AddLegalizedOperand(SDOperand(Node, 1), Tmp2); 2190 return Op.ResNo ? Tmp2 : Tmp1; 2191 2192 case ISD::STACKRESTORE: 2193 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2194 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. 2195 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 2196 2197 switch (TLI.getOperationAction(ISD::STACKRESTORE, MVT::Other)) { 2198 default: assert(0 && "This action is not supported yet!"); 2199 case TargetLowering::Legal: break; 2200 case TargetLowering::Custom: 2201 Tmp1 = TLI.LowerOperation(Result, DAG); 2202 if (Tmp1.Val) Result = Tmp1; 2203 break; 2204 case TargetLowering::Expand: 2205 // Expand to CopyToReg if the target set 2206 // StackPointerRegisterToSaveRestore. 2207 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 2208 Result = DAG.getCopyToReg(Tmp1, SP, Tmp2); 2209 } else { 2210 Result = Tmp1; 2211 } 2212 break; 2213 } 2214 break; 2215 2216 case ISD::READCYCLECOUNTER: 2217 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain 2218 Result = DAG.UpdateNodeOperands(Result, Tmp1); 2219 switch (TLI.getOperationAction(ISD::READCYCLECOUNTER, 2220 Node->getValueType(0))) { 2221 default: assert(0 && "This action is not supported yet!"); 2222 case TargetLowering::Legal: 2223 Tmp1 = Result.getValue(0); 2224 Tmp2 = Result.getValue(1); 2225 break; 2226 case TargetLowering::Custom: 2227 Result = TLI.LowerOperation(Result, DAG); 2228 Tmp1 = LegalizeOp(Result.getValue(0)); 2229 Tmp2 = LegalizeOp(Result.getValue(1)); 2230 break; 2231 } 2232 2233 // Since rdcc produce two values, make sure to remember that we legalized 2234 // both of them. 2235 AddLegalizedOperand(SDOperand(Node, 0), Tmp1); 2236 AddLegalizedOperand(SDOperand(Node, 1), Tmp2); 2237 return Result; 2238 2239 case ISD::SELECT: 2240 switch (getTypeAction(Node->getOperand(0).getValueType())) { 2241 case Expand: assert(0 && "It's impossible to expand bools"); 2242 case Legal: 2243 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the condition. 2244 break; 2245 case Promote: 2246 Tmp1 = PromoteOp(Node->getOperand(0)); // Promote the condition. 2247 // Make sure the condition is either zero or one. 2248 if (!DAG.MaskedValueIsZero(Tmp1, 2249 MVT::getIntVTBitMask(Tmp1.getValueType())^1)) 2250 Tmp1 = DAG.getZeroExtendInReg(Tmp1, MVT::i1); 2251 break; 2252 } 2253 Tmp2 = LegalizeOp(Node->getOperand(1)); // TrueVal 2254 Tmp3 = LegalizeOp(Node->getOperand(2)); // FalseVal 2255 2256 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2257 2258 switch (TLI.getOperationAction(ISD::SELECT, Tmp2.getValueType())) { 2259 default: assert(0 && "This action is not supported yet!"); 2260 case TargetLowering::Legal: break; 2261 case TargetLowering::Custom: { 2262 Tmp1 = TLI.LowerOperation(Result, DAG); 2263 if (Tmp1.Val) Result = Tmp1; 2264 break; 2265 } 2266 case TargetLowering::Expand: 2267 if (Tmp1.getOpcode() == ISD::SETCC) { 2268 Result = DAG.getSelectCC(Tmp1.getOperand(0), Tmp1.getOperand(1), 2269 Tmp2, Tmp3, 2270 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); 2271 } else { 2272 Result = DAG.getSelectCC(Tmp1, 2273 DAG.getConstant(0, Tmp1.getValueType()), 2274 Tmp2, Tmp3, ISD::SETNE); 2275 } 2276 break; 2277 case TargetLowering::Promote: { 2278 MVT::ValueType NVT = 2279 TLI.getTypeToPromoteTo(ISD::SELECT, Tmp2.getValueType()); 2280 unsigned ExtOp, TruncOp; 2281 if (MVT::isVector(Tmp2.getValueType())) { 2282 ExtOp = ISD::BIT_CONVERT; 2283 TruncOp = ISD::BIT_CONVERT; 2284 } else if (MVT::isInteger(Tmp2.getValueType())) { 2285 ExtOp = ISD::ANY_EXTEND; 2286 TruncOp = ISD::TRUNCATE; 2287 } else { 2288 ExtOp = ISD::FP_EXTEND; 2289 TruncOp = ISD::FP_ROUND; 2290 } 2291 // Promote each of the values to the new type. 2292 Tmp2 = DAG.getNode(ExtOp, NVT, Tmp2); 2293 Tmp3 = DAG.getNode(ExtOp, NVT, Tmp3); 2294 // Perform the larger operation, then round down. 2295 Result = DAG.getNode(ISD::SELECT, NVT, Tmp1, Tmp2,Tmp3); 2296 Result = DAG.getNode(TruncOp, Node->getValueType(0), Result); 2297 break; 2298 } 2299 } 2300 break; 2301 case ISD::SELECT_CC: { 2302 Tmp1 = Node->getOperand(0); // LHS 2303 Tmp2 = Node->getOperand(1); // RHS 2304 Tmp3 = LegalizeOp(Node->getOperand(2)); // True 2305 Tmp4 = LegalizeOp(Node->getOperand(3)); // False 2306 SDOperand CC = Node->getOperand(4); 2307 2308 LegalizeSetCCOperands(Tmp1, Tmp2, CC); 2309 2310 // If we didn't get both a LHS and RHS back from LegalizeSetCCOperands, 2311 // the LHS is a legal SETCC itself. In this case, we need to compare 2312 // the result against zero to select between true and false values. 2313 if (Tmp2.Val == 0) { 2314 Tmp2 = DAG.getConstant(0, Tmp1.getValueType()); 2315 CC = DAG.getCondCode(ISD::SETNE); 2316 } 2317 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, Tmp4, CC); 2318 2319 // Everything is legal, see if we should expand this op or something. 2320 switch (TLI.getOperationAction(ISD::SELECT_CC, Tmp3.getValueType())) { 2321 default: assert(0 && "This action is not supported yet!"); 2322 case TargetLowering::Legal: break; 2323 case TargetLowering::Custom: 2324 Tmp1 = TLI.LowerOperation(Result, DAG); 2325 if (Tmp1.Val) Result = Tmp1; 2326 break; 2327 } 2328 break; 2329 } 2330 case ISD::SETCC: 2331 Tmp1 = Node->getOperand(0); 2332 Tmp2 = Node->getOperand(1); 2333 Tmp3 = Node->getOperand(2); 2334 LegalizeSetCCOperands(Tmp1, Tmp2, Tmp3); 2335 2336 // If we had to Expand the SetCC operands into a SELECT node, then it may 2337 // not always be possible to return a true LHS & RHS. In this case, just 2338 // return the value we legalized, returned in the LHS 2339 if (Tmp2.Val == 0) { 2340 Result = Tmp1; 2341 break; 2342 } 2343 2344 switch (TLI.getOperationAction(ISD::SETCC, Tmp1.getValueType())) { 2345 default: assert(0 && "Cannot handle this action for SETCC yet!"); 2346 case TargetLowering::Custom: 2347 isCustom = true; 2348 // FALLTHROUGH. 2349 case TargetLowering::Legal: 2350 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2351 if (isCustom) { 2352 Tmp4 = TLI.LowerOperation(Result, DAG); 2353 if (Tmp4.Val) Result = Tmp4; 2354 } 2355 break; 2356 case TargetLowering::Promote: { 2357 // First step, figure out the appropriate operation to use. 2358 // Allow SETCC to not be supported for all legal data types 2359 // Mostly this targets FP 2360 MVT::ValueType NewInTy = Node->getOperand(0).getValueType(); 2361 MVT::ValueType OldVT = NewInTy; OldVT = OldVT; 2362 2363 // Scan for the appropriate larger type to use. 2364 while (1) { 2365 NewInTy = (MVT::ValueType)(NewInTy+1); 2366 2367 assert(MVT::isInteger(NewInTy) == MVT::isInteger(OldVT) && 2368 "Fell off of the edge of the integer world"); 2369 assert(MVT::isFloatingPoint(NewInTy) == MVT::isFloatingPoint(OldVT) && 2370 "Fell off of the edge of the floating point world"); 2371 2372 // If the target supports SETCC of this type, use it. 2373 if (TLI.isOperationLegal(ISD::SETCC, NewInTy)) 2374 break; 2375 } 2376 if (MVT::isInteger(NewInTy)) 2377 assert(0 && "Cannot promote Legal Integer SETCC yet"); 2378 else { 2379 Tmp1 = DAG.getNode(ISD::FP_EXTEND, NewInTy, Tmp1); 2380 Tmp2 = DAG.getNode(ISD::FP_EXTEND, NewInTy, Tmp2); 2381 } 2382 Tmp1 = LegalizeOp(Tmp1); 2383 Tmp2 = LegalizeOp(Tmp2); 2384 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2385 Result = LegalizeOp(Result); 2386 break; 2387 } 2388 case TargetLowering::Expand: 2389 // Expand a setcc node into a select_cc of the same condition, lhs, and 2390 // rhs that selects between const 1 (true) and const 0 (false). 2391 MVT::ValueType VT = Node->getValueType(0); 2392 Result = DAG.getNode(ISD::SELECT_CC, VT, Tmp1, Tmp2, 2393 DAG.getConstant(1, VT), DAG.getConstant(0, VT), 2394 Tmp3); 2395 break; 2396 } 2397 break; 2398 case ISD::MEMSET: 2399 case ISD::MEMCPY: 2400 case ISD::MEMMOVE: { 2401 Tmp1 = LegalizeOp(Node->getOperand(0)); // Chain 2402 Tmp2 = LegalizeOp(Node->getOperand(1)); // Pointer 2403 2404 if (Node->getOpcode() == ISD::MEMSET) { // memset = ubyte 2405 switch (getTypeAction(Node->getOperand(2).getValueType())) { 2406 case Expand: assert(0 && "Cannot expand a byte!"); 2407 case Legal: 2408 Tmp3 = LegalizeOp(Node->getOperand(2)); 2409 break; 2410 case Promote: 2411 Tmp3 = PromoteOp(Node->getOperand(2)); 2412 break; 2413 } 2414 } else { 2415 Tmp3 = LegalizeOp(Node->getOperand(2)); // memcpy/move = pointer, 2416 } 2417 2418 SDOperand Tmp4; 2419 switch (getTypeAction(Node->getOperand(3).getValueType())) { 2420 case Expand: { 2421 // Length is too big, just take the lo-part of the length. 2422 SDOperand HiPart; 2423 ExpandOp(Node->getOperand(3), Tmp4, HiPart); 2424 break; 2425 } 2426 case Legal: 2427 Tmp4 = LegalizeOp(Node->getOperand(3)); 2428 break; 2429 case Promote: 2430 Tmp4 = PromoteOp(Node->getOperand(3)); 2431 break; 2432 } 2433 2434 SDOperand Tmp5; 2435 switch (getTypeAction(Node->getOperand(4).getValueType())) { // uint 2436 case Expand: assert(0 && "Cannot expand this yet!"); 2437 case Legal: 2438 Tmp5 = LegalizeOp(Node->getOperand(4)); 2439 break; 2440 case Promote: 2441 Tmp5 = PromoteOp(Node->getOperand(4)); 2442 break; 2443 } 2444 2445 switch (TLI.getOperationAction(Node->getOpcode(), MVT::Other)) { 2446 default: assert(0 && "This action not implemented for this operation!"); 2447 case TargetLowering::Custom: 2448 isCustom = true; 2449 // FALLTHROUGH 2450 case TargetLowering::Legal: 2451 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, Tmp4, Tmp5); 2452 if (isCustom) { 2453 Tmp1 = TLI.LowerOperation(Result, DAG); 2454 if (Tmp1.Val) Result = Tmp1; 2455 } 2456 break; 2457 case TargetLowering::Expand: { 2458 // Otherwise, the target does not support this operation. Lower the 2459 // operation to an explicit libcall as appropriate. 2460 MVT::ValueType IntPtr = TLI.getPointerTy(); 2461 const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(); 2462 TargetLowering::ArgListTy Args; 2463 TargetLowering::ArgListEntry Entry; 2464 2465 const char *FnName = 0; 2466 if (Node->getOpcode() == ISD::MEMSET) { 2467 Entry.Node = Tmp2; Entry.Ty = IntPtrTy; 2468 Args.push_back(Entry); 2469 // Extend the (previously legalized) ubyte argument to be an int value 2470 // for the call. 2471 if (Tmp3.getValueType() > MVT::i32) 2472 Tmp3 = DAG.getNode(ISD::TRUNCATE, MVT::i32, Tmp3); 2473 else 2474 Tmp3 = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Tmp3); 2475 Entry.Node = Tmp3; Entry.Ty = Type::Int32Ty; Entry.isSExt = true; 2476 Args.push_back(Entry); 2477 Entry.Node = Tmp4; Entry.Ty = IntPtrTy; Entry.isSExt = false; 2478 Args.push_back(Entry); 2479 2480 FnName = "memset"; 2481 } else if (Node->getOpcode() == ISD::MEMCPY || 2482 Node->getOpcode() == ISD::MEMMOVE) { 2483 Entry.Ty = IntPtrTy; 2484 Entry.Node = Tmp2; Args.push_back(Entry); 2485 Entry.Node = Tmp3; Args.push_back(Entry); 2486 Entry.Node = Tmp4; Args.push_back(Entry); 2487 FnName = Node->getOpcode() == ISD::MEMMOVE ? "memmove" : "memcpy"; 2488 } else { 2489 assert(0 && "Unknown op!"); 2490 } 2491 2492 std::pair<SDOperand,SDOperand> CallResult = 2493 TLI.LowerCallTo(Tmp1, Type::VoidTy, false, false, CallingConv::C, false, 2494 DAG.getExternalSymbol(FnName, IntPtr), Args, DAG); 2495 Result = CallResult.second; 2496 break; 2497 } 2498 } 2499 break; 2500 } 2501 2502 case ISD::SHL_PARTS: 2503 case ISD::SRA_PARTS: 2504 case ISD::SRL_PARTS: { 2505 SmallVector<SDOperand, 8> Ops; 2506 bool Changed = false; 2507 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 2508 Ops.push_back(LegalizeOp(Node->getOperand(i))); 2509 Changed |= Ops.back() != Node->getOperand(i); 2510 } 2511 if (Changed) 2512 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 2513 2514 switch (TLI.getOperationAction(Node->getOpcode(), 2515 Node->getValueType(0))) { 2516 default: assert(0 && "This action is not supported yet!"); 2517 case TargetLowering::Legal: break; 2518 case TargetLowering::Custom: 2519 Tmp1 = TLI.LowerOperation(Result, DAG); 2520 if (Tmp1.Val) { 2521 SDOperand Tmp2, RetVal(0, 0); 2522 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) { 2523 Tmp2 = LegalizeOp(Tmp1.getValue(i)); 2524 AddLegalizedOperand(SDOperand(Node, i), Tmp2); 2525 if (i == Op.ResNo) 2526 RetVal = Tmp2; 2527 } 2528 assert(RetVal.Val && "Illegal result number"); 2529 return RetVal; 2530 } 2531 break; 2532 } 2533 2534 // Since these produce multiple values, make sure to remember that we 2535 // legalized all of them. 2536 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 2537 AddLegalizedOperand(SDOperand(Node, i), Result.getValue(i)); 2538 return Result.getValue(Op.ResNo); 2539 } 2540 2541 // Binary operators 2542 case ISD::ADD: 2543 case ISD::SUB: 2544 case ISD::MUL: 2545 case ISD::MULHS: 2546 case ISD::MULHU: 2547 case ISD::UDIV: 2548 case ISD::SDIV: 2549 case ISD::AND: 2550 case ISD::OR: 2551 case ISD::XOR: 2552 case ISD::SHL: 2553 case ISD::SRL: 2554 case ISD::SRA: 2555 case ISD::FADD: 2556 case ISD::FSUB: 2557 case ISD::FMUL: 2558 case ISD::FDIV: 2559 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 2560 switch (getTypeAction(Node->getOperand(1).getValueType())) { 2561 case Expand: assert(0 && "Not possible"); 2562 case Legal: 2563 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the RHS. 2564 break; 2565 case Promote: 2566 Tmp2 = PromoteOp(Node->getOperand(1)); // Promote the RHS. 2567 break; 2568 } 2569 2570 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 2571 2572 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 2573 default: assert(0 && "BinOp legalize operation not supported"); 2574 case TargetLowering::Legal: break; 2575 case TargetLowering::Custom: 2576 Tmp1 = TLI.LowerOperation(Result, DAG); 2577 if (Tmp1.Val) Result = Tmp1; 2578 break; 2579 case TargetLowering::Expand: { 2580 if (Node->getValueType(0) == MVT::i32) { 2581 switch (Node->getOpcode()) { 2582 default: assert(0 && "Do not know how to expand this integer BinOp!"); 2583 case ISD::UDIV: 2584 case ISD::SDIV: 2585 RTLIB::Libcall LC = Node->getOpcode() == ISD::UDIV 2586 ? RTLIB::UDIV_I32 : RTLIB::SDIV_I32; 2587 SDOperand Dummy; 2588 bool isSigned = Node->getOpcode() == ISD::SDIV; 2589 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, isSigned, Dummy); 2590 }; 2591 break; 2592 } 2593 2594 assert(MVT::isVector(Node->getValueType(0)) && 2595 "Cannot expand this binary operator!"); 2596 // Expand the operation into a bunch of nasty scalar code. 2597 SmallVector<SDOperand, 8> Ops; 2598 MVT::ValueType EltVT = MVT::getVectorElementType(Node->getValueType(0)); 2599 MVT::ValueType PtrVT = TLI.getPointerTy(); 2600 for (unsigned i = 0, e = MVT::getVectorNumElements(Node->getValueType(0)); 2601 i != e; ++i) { 2602 SDOperand Idx = DAG.getConstant(i, PtrVT); 2603 SDOperand LHS = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EltVT, Tmp1, Idx); 2604 SDOperand RHS = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EltVT, Tmp2, Idx); 2605 Ops.push_back(DAG.getNode(Node->getOpcode(), EltVT, LHS, RHS)); 2606 } 2607 Result = DAG.getNode(ISD::BUILD_VECTOR, Node->getValueType(0), 2608 &Ops[0], Ops.size()); 2609 break; 2610 } 2611 case TargetLowering::Promote: { 2612 switch (Node->getOpcode()) { 2613 default: assert(0 && "Do not know how to promote this BinOp!"); 2614 case ISD::AND: 2615 case ISD::OR: 2616 case ISD::XOR: { 2617 MVT::ValueType OVT = Node->getValueType(0); 2618 MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 2619 assert(MVT::isVector(OVT) && "Cannot promote this BinOp!"); 2620 // Bit convert each of the values to the new type. 2621 Tmp1 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp1); 2622 Tmp2 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp2); 2623 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 2624 // Bit convert the result back the original type. 2625 Result = DAG.getNode(ISD::BIT_CONVERT, OVT, Result); 2626 break; 2627 } 2628 } 2629 } 2630 } 2631 break; 2632 2633 case ISD::SMUL_LOHI: 2634 case ISD::UMUL_LOHI: 2635 case ISD::SDIVREM: 2636 case ISD::UDIVREM: 2637 // These nodes will only be produced by target-specific lowering, so 2638 // they shouldn't be here if they aren't legal. 2639 assert(TLI.isOperationLegal(Node->getValueType(0), Node->getValueType(0)) && 2640 "This must be legal!"); 2641 break; 2642 2643 case ISD::FCOPYSIGN: // FCOPYSIGN does not require LHS/RHS to match type! 2644 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 2645 switch (getTypeAction(Node->getOperand(1).getValueType())) { 2646 case Expand: assert(0 && "Not possible"); 2647 case Legal: 2648 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the RHS. 2649 break; 2650 case Promote: 2651 Tmp2 = PromoteOp(Node->getOperand(1)); // Promote the RHS. 2652 break; 2653 } 2654 2655 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 2656 2657 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 2658 default: assert(0 && "Operation not supported"); 2659 case TargetLowering::Custom: 2660 Tmp1 = TLI.LowerOperation(Result, DAG); 2661 if (Tmp1.Val) Result = Tmp1; 2662 break; 2663 case TargetLowering::Legal: break; 2664 case TargetLowering::Expand: { 2665 // If this target supports fabs/fneg natively and select is cheap, 2666 // do this efficiently. 2667 if (!TLI.isSelectExpensive() && 2668 TLI.getOperationAction(ISD::FABS, Tmp1.getValueType()) == 2669 TargetLowering::Legal && 2670 TLI.getOperationAction(ISD::FNEG, Tmp1.getValueType()) == 2671 TargetLowering::Legal) { 2672 // Get the sign bit of the RHS. 2673 MVT::ValueType IVT = 2674 Tmp2.getValueType() == MVT::f32 ? MVT::i32 : MVT::i64; 2675 SDOperand SignBit = DAG.getNode(ISD::BIT_CONVERT, IVT, Tmp2); 2676 SignBit = DAG.getSetCC(TLI.getSetCCResultTy(), 2677 SignBit, DAG.getConstant(0, IVT), ISD::SETLT); 2678 // Get the absolute value of the result. 2679 SDOperand AbsVal = DAG.getNode(ISD::FABS, Tmp1.getValueType(), Tmp1); 2680 // Select between the nabs and abs value based on the sign bit of 2681 // the input. 2682 Result = DAG.getNode(ISD::SELECT, AbsVal.getValueType(), SignBit, 2683 DAG.getNode(ISD::FNEG, AbsVal.getValueType(), 2684 AbsVal), 2685 AbsVal); 2686 Result = LegalizeOp(Result); 2687 break; 2688 } 2689 2690 // Otherwise, do bitwise ops! 2691 MVT::ValueType NVT = 2692 Node->getValueType(0) == MVT::f32 ? MVT::i32 : MVT::i64; 2693 Result = ExpandFCOPYSIGNToBitwiseOps(Node, NVT, DAG, TLI); 2694 Result = DAG.getNode(ISD::BIT_CONVERT, Node->getValueType(0), Result); 2695 Result = LegalizeOp(Result); 2696 break; 2697 } 2698 } 2699 break; 2700 2701 case ISD::ADDC: 2702 case ISD::SUBC: 2703 Tmp1 = LegalizeOp(Node->getOperand(0)); 2704 Tmp2 = LegalizeOp(Node->getOperand(1)); 2705 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 2706 // Since this produces two values, make sure to remember that we legalized 2707 // both of them. 2708 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 2709 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 2710 return Result; 2711 2712 case ISD::ADDE: 2713 case ISD::SUBE: 2714 Tmp1 = LegalizeOp(Node->getOperand(0)); 2715 Tmp2 = LegalizeOp(Node->getOperand(1)); 2716 Tmp3 = LegalizeOp(Node->getOperand(2)); 2717 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2718 // Since this produces two values, make sure to remember that we legalized 2719 // both of them. 2720 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 2721 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 2722 return Result; 2723 2724 case ISD::BUILD_PAIR: { 2725 MVT::ValueType PairTy = Node->getValueType(0); 2726 // TODO: handle the case where the Lo and Hi operands are not of legal type 2727 Tmp1 = LegalizeOp(Node->getOperand(0)); // Lo 2728 Tmp2 = LegalizeOp(Node->getOperand(1)); // Hi 2729 switch (TLI.getOperationAction(ISD::BUILD_PAIR, PairTy)) { 2730 case TargetLowering::Promote: 2731 case TargetLowering::Custom: 2732 assert(0 && "Cannot promote/custom this yet!"); 2733 case TargetLowering::Legal: 2734 if (Tmp1 != Node->getOperand(0) || Tmp2 != Node->getOperand(1)) 2735 Result = DAG.getNode(ISD::BUILD_PAIR, PairTy, Tmp1, Tmp2); 2736 break; 2737 case TargetLowering::Expand: 2738 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, PairTy, Tmp1); 2739 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, PairTy, Tmp2); 2740 Tmp2 = DAG.getNode(ISD::SHL, PairTy, Tmp2, 2741 DAG.getConstant(MVT::getSizeInBits(PairTy)/2, 2742 TLI.getShiftAmountTy())); 2743 Result = DAG.getNode(ISD::OR, PairTy, Tmp1, Tmp2); 2744 break; 2745 } 2746 break; 2747 } 2748 2749 case ISD::UREM: 2750 case ISD::SREM: 2751 case ISD::FREM: 2752 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 2753 Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS 2754 2755 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 2756 case TargetLowering::Promote: assert(0 && "Cannot promote this yet!"); 2757 case TargetLowering::Custom: 2758 isCustom = true; 2759 // FALLTHROUGH 2760 case TargetLowering::Legal: 2761 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 2762 if (isCustom) { 2763 Tmp1 = TLI.LowerOperation(Result, DAG); 2764 if (Tmp1.Val) Result = Tmp1; 2765 } 2766 break; 2767 case TargetLowering::Expand: 2768 unsigned DivOpc= (Node->getOpcode() == ISD::UREM) ? ISD::UDIV : ISD::SDIV; 2769 bool isSigned = DivOpc == ISD::SDIV; 2770 if (MVT::isInteger(Node->getValueType(0))) { 2771 if (TLI.getOperationAction(DivOpc, Node->getValueType(0)) == 2772 TargetLowering::Legal) { 2773 // X % Y -> X-X/Y*Y 2774 MVT::ValueType VT = Node->getValueType(0); 2775 Result = DAG.getNode(DivOpc, VT, Tmp1, Tmp2); 2776 Result = DAG.getNode(ISD::MUL, VT, Result, Tmp2); 2777 Result = DAG.getNode(ISD::SUB, VT, Tmp1, Result); 2778 } else { 2779 assert(Node->getValueType(0) == MVT::i32 && 2780 "Cannot expand this binary operator!"); 2781 RTLIB::Libcall LC = Node->getOpcode() == ISD::UREM 2782 ? RTLIB::UREM_I32 : RTLIB::SREM_I32; 2783 SDOperand Dummy; 2784 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, isSigned, Dummy); 2785 } 2786 } else { 2787 // Floating point mod -> fmod libcall. 2788 RTLIB::Libcall LC = Node->getValueType(0) == MVT::f32 2789 ? RTLIB::REM_F32 : RTLIB::REM_F64; 2790 SDOperand Dummy; 2791 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, 2792 false/*sign irrelevant*/, Dummy); 2793 } 2794 break; 2795 } 2796 break; 2797 case ISD::VAARG: { 2798 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2799 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. 2800 2801 MVT::ValueType VT = Node->getValueType(0); 2802 switch (TLI.getOperationAction(Node->getOpcode(), MVT::Other)) { 2803 default: assert(0 && "This action is not supported yet!"); 2804 case TargetLowering::Custom: 2805 isCustom = true; 2806 // FALLTHROUGH 2807 case TargetLowering::Legal: 2808 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 2809 Result = Result.getValue(0); 2810 Tmp1 = Result.getValue(1); 2811 2812 if (isCustom) { 2813 Tmp2 = TLI.LowerOperation(Result, DAG); 2814 if (Tmp2.Val) { 2815 Result = LegalizeOp(Tmp2); 2816 Tmp1 = LegalizeOp(Tmp2.getValue(1)); 2817 } 2818 } 2819 break; 2820 case TargetLowering::Expand: { 2821 SrcValueSDNode *SV = cast<SrcValueSDNode>(Node->getOperand(2)); 2822 SDOperand VAList = DAG.getLoad(TLI.getPointerTy(), Tmp1, Tmp2, 2823 SV->getValue(), SV->getOffset()); 2824 // Increment the pointer, VAList, to the next vaarg 2825 Tmp3 = DAG.getNode(ISD::ADD, TLI.getPointerTy(), VAList, 2826 DAG.getConstant(MVT::getSizeInBits(VT)/8, 2827 TLI.getPointerTy())); 2828 // Store the incremented VAList to the legalized pointer 2829 Tmp3 = DAG.getStore(VAList.getValue(1), Tmp3, Tmp2, SV->getValue(), 2830 SV->getOffset()); 2831 // Load the actual argument out of the pointer VAList 2832 Result = DAG.getLoad(VT, Tmp3, VAList, NULL, 0); 2833 Tmp1 = LegalizeOp(Result.getValue(1)); 2834 Result = LegalizeOp(Result); 2835 break; 2836 } 2837 } 2838 // Since VAARG produces two values, make sure to remember that we 2839 // legalized both of them. 2840 AddLegalizedOperand(SDOperand(Node, 0), Result); 2841 AddLegalizedOperand(SDOperand(Node, 1), Tmp1); 2842 return Op.ResNo ? Tmp1 : Result; 2843 } 2844 2845 case ISD::VACOPY: 2846 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2847 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the dest pointer. 2848 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the source pointer. 2849 2850 switch (TLI.getOperationAction(ISD::VACOPY, MVT::Other)) { 2851 default: assert(0 && "This action is not supported yet!"); 2852 case TargetLowering::Custom: 2853 isCustom = true; 2854 // FALLTHROUGH 2855 case TargetLowering::Legal: 2856 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, 2857 Node->getOperand(3), Node->getOperand(4)); 2858 if (isCustom) { 2859 Tmp1 = TLI.LowerOperation(Result, DAG); 2860 if (Tmp1.Val) Result = Tmp1; 2861 } 2862 break; 2863 case TargetLowering::Expand: 2864 // This defaults to loading a pointer from the input and storing it to the 2865 // output, returning the chain. 2866 SrcValueSDNode *SVD = cast<SrcValueSDNode>(Node->getOperand(3)); 2867 SrcValueSDNode *SVS = cast<SrcValueSDNode>(Node->getOperand(4)); 2868 Tmp4 = DAG.getLoad(TLI.getPointerTy(), Tmp1, Tmp3, SVD->getValue(), 2869 SVD->getOffset()); 2870 Result = DAG.getStore(Tmp4.getValue(1), Tmp4, Tmp2, SVS->getValue(), 2871 SVS->getOffset()); 2872 break; 2873 } 2874 break; 2875 2876 case ISD::VAEND: 2877 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2878 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. 2879 2880 switch (TLI.getOperationAction(ISD::VAEND, MVT::Other)) { 2881 default: assert(0 && "This action is not supported yet!"); 2882 case TargetLowering::Custom: 2883 isCustom = true; 2884 // FALLTHROUGH 2885 case TargetLowering::Legal: 2886 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 2887 if (isCustom) { 2888 Tmp1 = TLI.LowerOperation(Tmp1, DAG); 2889 if (Tmp1.Val) Result = Tmp1; 2890 } 2891 break; 2892 case TargetLowering::Expand: 2893 Result = Tmp1; // Default to a no-op, return the chain 2894 break; 2895 } 2896 break; 2897 2898 case ISD::VASTART: 2899 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2900 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. 2901 2902 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 2903 2904 switch (TLI.getOperationAction(ISD::VASTART, MVT::Other)) { 2905 default: assert(0 && "This action is not supported yet!"); 2906 case TargetLowering::Legal: break; 2907 case TargetLowering::Custom: 2908 Tmp1 = TLI.LowerOperation(Result, DAG); 2909 if (Tmp1.Val) Result = Tmp1; 2910 break; 2911 } 2912 break; 2913 2914 case ISD::ROTL: 2915 case ISD::ROTR: 2916 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 2917 Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS 2918 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 2919 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 2920 default: 2921 assert(0 && "ROTL/ROTR legalize operation not supported"); 2922 break; 2923 case TargetLowering::Legal: 2924 break; 2925 case TargetLowering::Custom: 2926 Tmp1 = TLI.LowerOperation(Result, DAG); 2927 if (Tmp1.Val) Result = Tmp1; 2928 break; 2929 case TargetLowering::Promote: 2930 assert(0 && "Do not know how to promote ROTL/ROTR"); 2931 break; 2932 case TargetLowering::Expand: 2933 assert(0 && "Do not know how to expand ROTL/ROTR"); 2934 break; 2935 } 2936 break; 2937 2938 case ISD::BSWAP: 2939 Tmp1 = LegalizeOp(Node->getOperand(0)); // Op 2940 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 2941 case TargetLowering::Custom: 2942 assert(0 && "Cannot custom legalize this yet!"); 2943 case TargetLowering::Legal: 2944 Result = DAG.UpdateNodeOperands(Result, Tmp1); 2945 break; 2946 case TargetLowering::Promote: { 2947 MVT::ValueType OVT = Tmp1.getValueType(); 2948 MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 2949 unsigned DiffBits = MVT::getSizeInBits(NVT) - MVT::getSizeInBits(OVT); 2950 2951 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Tmp1); 2952 Tmp1 = DAG.getNode(ISD::BSWAP, NVT, Tmp1); 2953 Result = DAG.getNode(ISD::SRL, NVT, Tmp1, 2954 DAG.getConstant(DiffBits, TLI.getShiftAmountTy())); 2955 break; 2956 } 2957 case TargetLowering::Expand: 2958 Result = ExpandBSWAP(Tmp1); 2959 break; 2960 } 2961 break; 2962 2963 case ISD::CTPOP: 2964 case ISD::CTTZ: 2965 case ISD::CTLZ: 2966 Tmp1 = LegalizeOp(Node->getOperand(0)); // Op 2967 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 2968 case TargetLowering::Custom: 2969 case TargetLowering::Legal: 2970 Result = DAG.UpdateNodeOperands(Result, Tmp1); 2971 if (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)) == 2972 TargetLowering::Custom) { 2973 Tmp1 = TLI.LowerOperation(Result, DAG); 2974 if (Tmp1.Val) { 2975 Result = Tmp1; 2976 } 2977 } 2978 break; 2979 case TargetLowering::Promote: { 2980 MVT::ValueType OVT = Tmp1.getValueType(); 2981 MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 2982 2983 // Zero extend the argument. 2984 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Tmp1); 2985 // Perform the larger operation, then subtract if needed. 2986 Tmp1 = DAG.getNode(Node->getOpcode(), Node->getValueType(0), Tmp1); 2987 switch (Node->getOpcode()) { 2988 case ISD::CTPOP: 2989 Result = Tmp1; 2990 break; 2991 case ISD::CTTZ: 2992 //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT) 2993 Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), Tmp1, 2994 DAG.getConstant(MVT::getSizeInBits(NVT), NVT), 2995 ISD::SETEQ); 2996 Result = DAG.getNode(ISD::SELECT, NVT, Tmp2, 2997 DAG.getConstant(MVT::getSizeInBits(OVT),NVT), Tmp1); 2998 break; 2999 case ISD::CTLZ: 3000 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 3001 Result = DAG.getNode(ISD::SUB, NVT, Tmp1, 3002 DAG.getConstant(MVT::getSizeInBits(NVT) - 3003 MVT::getSizeInBits(OVT), NVT)); 3004 break; 3005 } 3006 break; 3007 } 3008 case TargetLowering::Expand: 3009 Result = ExpandBitCount(Node->getOpcode(), Tmp1); 3010 break; 3011 } 3012 break; 3013 3014 // Unary operators 3015 case ISD::FABS: 3016 case ISD::FNEG: 3017 case ISD::FSQRT: 3018 case ISD::FSIN: 3019 case ISD::FCOS: 3020 Tmp1 = LegalizeOp(Node->getOperand(0)); 3021 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3022 case TargetLowering::Promote: 3023 case TargetLowering::Custom: 3024 isCustom = true; 3025 // FALLTHROUGH 3026 case TargetLowering::Legal: 3027 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3028 if (isCustom) { 3029 Tmp1 = TLI.LowerOperation(Result, DAG); 3030 if (Tmp1.Val) Result = Tmp1; 3031 } 3032 break; 3033 case TargetLowering::Expand: 3034 switch (Node->getOpcode()) { 3035 default: assert(0 && "Unreachable!"); 3036 case ISD::FNEG: 3037 // Expand Y = FNEG(X) -> Y = SUB -0.0, X 3038 Tmp2 = DAG.getConstantFP(-0.0, Node->getValueType(0)); 3039 Result = DAG.getNode(ISD::FSUB, Node->getValueType(0), Tmp2, Tmp1); 3040 break; 3041 case ISD::FABS: { 3042 // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X). 3043 MVT::ValueType VT = Node->getValueType(0); 3044 Tmp2 = DAG.getConstantFP(0.0, VT); 3045 Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), Tmp1, Tmp2, ISD::SETUGT); 3046 Tmp3 = DAG.getNode(ISD::FNEG, VT, Tmp1); 3047 Result = DAG.getNode(ISD::SELECT, VT, Tmp2, Tmp1, Tmp3); 3048 break; 3049 } 3050 case ISD::FSQRT: 3051 case ISD::FSIN: 3052 case ISD::FCOS: { 3053 MVT::ValueType VT = Node->getValueType(0); 3054 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 3055 switch(Node->getOpcode()) { 3056 case ISD::FSQRT: 3057 LC = VT == MVT::f32 ? RTLIB::SQRT_F32 : 3058 VT == MVT::f64 ? RTLIB::SQRT_F64 : 3059 VT == MVT::f80 ? RTLIB::SQRT_F80 : 3060 VT == MVT::ppcf128 ? RTLIB::SQRT_PPCF128 : 3061 RTLIB::UNKNOWN_LIBCALL; 3062 break; 3063 case ISD::FSIN: 3064 LC = VT == MVT::f32 ? RTLIB::SIN_F32 : RTLIB::SIN_F64; 3065 break; 3066 case ISD::FCOS: 3067 LC = VT == MVT::f32 ? RTLIB::COS_F32 : RTLIB::COS_F64; 3068 break; 3069 default: assert(0 && "Unreachable!"); 3070 } 3071 SDOperand Dummy; 3072 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, 3073 false/*sign irrelevant*/, Dummy); 3074 break; 3075 } 3076 } 3077 break; 3078 } 3079 break; 3080 case ISD::FPOWI: { 3081 // We always lower FPOWI into a libcall. No target support it yet. 3082 RTLIB::Libcall LC = 3083 Node->getValueType(0) == MVT::f32 ? RTLIB::POWI_F32 : 3084 Node->getValueType(0) == MVT::f64 ? RTLIB::POWI_F64 : 3085 Node->getValueType(0) == MVT::f80 ? RTLIB::POWI_F80 : 3086 Node->getValueType(0) == MVT::ppcf128 ? RTLIB::POWI_PPCF128 : 3087 RTLIB::UNKNOWN_LIBCALL; 3088 SDOperand Dummy; 3089 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, 3090 false/*sign irrelevant*/, Dummy); 3091 break; 3092 } 3093 case ISD::BIT_CONVERT: 3094 if (!isTypeLegal(Node->getOperand(0).getValueType())) { 3095 Result = ExpandBIT_CONVERT(Node->getValueType(0), Node->getOperand(0)); 3096 } else if (MVT::isVector(Op.getOperand(0).getValueType())) { 3097 // The input has to be a vector type, we have to either scalarize it, pack 3098 // it, or convert it based on whether the input vector type is legal. 3099 SDNode *InVal = Node->getOperand(0).Val; 3100 unsigned NumElems = MVT::getVectorNumElements(InVal->getValueType(0)); 3101 MVT::ValueType EVT = MVT::getVectorElementType(InVal->getValueType(0)); 3102 3103 // Figure out if there is a simple type corresponding to this Vector 3104 // type. If so, convert to the vector type. 3105 MVT::ValueType TVT = MVT::getVectorType(EVT, NumElems); 3106 if (TLI.isTypeLegal(TVT)) { 3107 // Turn this into a bit convert of the vector input. 3108 Result = DAG.getNode(ISD::BIT_CONVERT, Node->getValueType(0), 3109 LegalizeOp(Node->getOperand(0))); 3110 break; 3111 } else if (NumElems == 1) { 3112 // Turn this into a bit convert of the scalar input. 3113 Result = DAG.getNode(ISD::BIT_CONVERT, Node->getValueType(0), 3114 ScalarizeVectorOp(Node->getOperand(0))); 3115 break; 3116 } else { 3117 // FIXME: UNIMP! Store then reload 3118 assert(0 && "Cast from unsupported vector type not implemented yet!"); 3119 } 3120 } else { 3121 switch (TLI.getOperationAction(ISD::BIT_CONVERT, 3122 Node->getOperand(0).getValueType())) { 3123 default: assert(0 && "Unknown operation action!"); 3124 case TargetLowering::Expand: 3125 Result = ExpandBIT_CONVERT(Node->getValueType(0), Node->getOperand(0)); 3126 break; 3127 case TargetLowering::Legal: 3128 Tmp1 = LegalizeOp(Node->getOperand(0)); 3129 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3130 break; 3131 } 3132 } 3133 break; 3134 3135 // Conversion operators. The source and destination have different types. 3136 case ISD::SINT_TO_FP: 3137 case ISD::UINT_TO_FP: { 3138 bool isSigned = Node->getOpcode() == ISD::SINT_TO_FP; 3139 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3140 case Legal: 3141 switch (TLI.getOperationAction(Node->getOpcode(), 3142 Node->getOperand(0).getValueType())) { 3143 default: assert(0 && "Unknown operation action!"); 3144 case TargetLowering::Custom: 3145 isCustom = true; 3146 // FALLTHROUGH 3147 case TargetLowering::Legal: 3148 Tmp1 = LegalizeOp(Node->getOperand(0)); 3149 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3150 if (isCustom) { 3151 Tmp1 = TLI.LowerOperation(Result, DAG); 3152 if (Tmp1.Val) Result = Tmp1; 3153 } 3154 break; 3155 case TargetLowering::Expand: 3156 Result = ExpandLegalINT_TO_FP(isSigned, 3157 LegalizeOp(Node->getOperand(0)), 3158 Node->getValueType(0)); 3159 break; 3160 case TargetLowering::Promote: 3161 Result = PromoteLegalINT_TO_FP(LegalizeOp(Node->getOperand(0)), 3162 Node->getValueType(0), 3163 isSigned); 3164 break; 3165 } 3166 break; 3167 case Expand: 3168 Result = ExpandIntToFP(Node->getOpcode() == ISD::SINT_TO_FP, 3169 Node->getValueType(0), Node->getOperand(0)); 3170 break; 3171 case Promote: 3172 Tmp1 = PromoteOp(Node->getOperand(0)); 3173 if (isSigned) { 3174 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, Tmp1.getValueType(), 3175 Tmp1, DAG.getValueType(Node->getOperand(0).getValueType())); 3176 } else { 3177 Tmp1 = DAG.getZeroExtendInReg(Tmp1, 3178 Node->getOperand(0).getValueType()); 3179 } 3180 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3181 Result = LegalizeOp(Result); // The 'op' is not necessarily legal! 3182 break; 3183 } 3184 break; 3185 } 3186 case ISD::TRUNCATE: 3187 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3188 case Legal: 3189 Tmp1 = LegalizeOp(Node->getOperand(0)); 3190 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3191 break; 3192 case Expand: 3193 ExpandOp(Node->getOperand(0), Tmp1, Tmp2); 3194 3195 // Since the result is legal, we should just be able to truncate the low 3196 // part of the source. 3197 Result = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), Tmp1); 3198 break; 3199 case Promote: 3200 Result = PromoteOp(Node->getOperand(0)); 3201 Result = DAG.getNode(ISD::TRUNCATE, Op.getValueType(), Result); 3202 break; 3203 } 3204 break; 3205 3206 case ISD::FP_TO_SINT: 3207 case ISD::FP_TO_UINT: 3208 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3209 case Legal: 3210 Tmp1 = LegalizeOp(Node->getOperand(0)); 3211 3212 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))){ 3213 default: assert(0 && "Unknown operation action!"); 3214 case TargetLowering::Custom: 3215 isCustom = true; 3216 // FALLTHROUGH 3217 case TargetLowering::Legal: 3218 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3219 if (isCustom) { 3220 Tmp1 = TLI.LowerOperation(Result, DAG); 3221 if (Tmp1.Val) Result = Tmp1; 3222 } 3223 break; 3224 case TargetLowering::Promote: 3225 Result = PromoteLegalFP_TO_INT(Tmp1, Node->getValueType(0), 3226 Node->getOpcode() == ISD::FP_TO_SINT); 3227 break; 3228 case TargetLowering::Expand: 3229 if (Node->getOpcode() == ISD::FP_TO_UINT) { 3230 SDOperand True, False; 3231 MVT::ValueType VT = Node->getOperand(0).getValueType(); 3232 MVT::ValueType NVT = Node->getValueType(0); 3233 unsigned ShiftAmt = MVT::getSizeInBits(NVT)-1; 3234 const uint64_t zero[] = {0, 0}; 3235 APFloat apf = APFloat(APInt(MVT::getSizeInBits(VT), 2, zero)); 3236 uint64_t x = 1ULL << ShiftAmt; 3237 (void)apf.convertFromZeroExtendedInteger 3238 (&x, MVT::getSizeInBits(NVT), false, APFloat::rmNearestTiesToEven); 3239 Tmp2 = DAG.getConstantFP(apf, VT); 3240 Tmp3 = DAG.getSetCC(TLI.getSetCCResultTy(), 3241 Node->getOperand(0), Tmp2, ISD::SETLT); 3242 True = DAG.getNode(ISD::FP_TO_SINT, NVT, Node->getOperand(0)); 3243 False = DAG.getNode(ISD::FP_TO_SINT, NVT, 3244 DAG.getNode(ISD::FSUB, VT, Node->getOperand(0), 3245 Tmp2)); 3246 False = DAG.getNode(ISD::XOR, NVT, False, 3247 DAG.getConstant(1ULL << ShiftAmt, NVT)); 3248 Result = DAG.getNode(ISD::SELECT, NVT, Tmp3, True, False); 3249 break; 3250 } else { 3251 assert(0 && "Do not know how to expand FP_TO_SINT yet!"); 3252 } 3253 break; 3254 } 3255 break; 3256 case Expand: { 3257 // Convert f32 / f64 to i32 / i64. 3258 MVT::ValueType VT = Op.getValueType(); 3259 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 3260 switch (Node->getOpcode()) { 3261 case ISD::FP_TO_SINT: { 3262 MVT::ValueType OVT = Node->getOperand(0).getValueType(); 3263 if (OVT == MVT::f32) 3264 LC = (VT == MVT::i32) 3265 ? RTLIB::FPTOSINT_F32_I32 : RTLIB::FPTOSINT_F32_I64; 3266 else if (OVT == MVT::f64) 3267 LC = (VT == MVT::i32) 3268 ? RTLIB::FPTOSINT_F64_I32 : RTLIB::FPTOSINT_F64_I64; 3269 else if (OVT == MVT::f80) { 3270 assert(VT == MVT::i64); 3271 LC = RTLIB::FPTOSINT_F80_I64; 3272 } 3273 else if (OVT == MVT::ppcf128) { 3274 assert(VT == MVT::i64); 3275 LC = RTLIB::FPTOSINT_PPCF128_I64; 3276 } 3277 break; 3278 } 3279 case ISD::FP_TO_UINT: { 3280 MVT::ValueType OVT = Node->getOperand(0).getValueType(); 3281 if (OVT == MVT::f32) 3282 LC = (VT == MVT::i32) 3283 ? RTLIB::FPTOUINT_F32_I32 : RTLIB::FPTOSINT_F32_I64; 3284 else if (OVT == MVT::f64) 3285 LC = (VT == MVT::i32) 3286 ? RTLIB::FPTOUINT_F64_I32 : RTLIB::FPTOSINT_F64_I64; 3287 else if (OVT == MVT::f80) { 3288 LC = (VT == MVT::i32) 3289 ? RTLIB::FPTOUINT_F80_I32 : RTLIB::FPTOUINT_F80_I64; 3290 } 3291 else if (OVT == MVT::ppcf128) { 3292 assert(VT == MVT::i64); 3293 LC = RTLIB::FPTOUINT_PPCF128_I64; 3294 } 3295 break; 3296 } 3297 default: assert(0 && "Unreachable!"); 3298 } 3299 SDOperand Dummy; 3300 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, 3301 false/*sign irrelevant*/, Dummy); 3302 break; 3303 } 3304 case Promote: 3305 Tmp1 = PromoteOp(Node->getOperand(0)); 3306 Result = DAG.UpdateNodeOperands(Result, LegalizeOp(Tmp1)); 3307 Result = LegalizeOp(Result); 3308 break; 3309 } 3310 break; 3311 3312 case ISD::FP_EXTEND: 3313 case ISD::FP_ROUND: { 3314 MVT::ValueType newVT = Op.getValueType(); 3315 MVT::ValueType oldVT = Op.getOperand(0).getValueType(); 3316 if (TLI.getConvertAction(oldVT, newVT) == TargetLowering::Expand) { 3317 if (Node->getOpcode() == ISD::FP_ROUND && oldVT == MVT::ppcf128) { 3318 SDOperand Lo, Hi; 3319 ExpandOp(Node->getOperand(0), Lo, Hi); 3320 if (newVT == MVT::f64) 3321 Result = Hi; 3322 else 3323 Result = DAG.getNode(ISD::FP_ROUND, newVT, Hi); 3324 break; 3325 } else { 3326 // The only other way we can lower this is to turn it into a STORE, 3327 // LOAD pair, targetting a temporary location (a stack slot). 3328 3329 // NOTE: there is a choice here between constantly creating new stack 3330 // slots and always reusing the same one. We currently always create 3331 // new ones, as reuse may inhibit scheduling. 3332 MVT::ValueType slotVT = 3333 (Node->getOpcode() == ISD::FP_EXTEND) ? oldVT : newVT; 3334 const Type *Ty = MVT::getTypeForValueType(slotVT); 3335 uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty); 3336 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty); 3337 MachineFunction &MF = DAG.getMachineFunction(); 3338 int SSFI = 3339 MF.getFrameInfo()->CreateStackObject(TySize, Align); 3340 SDOperand StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 3341 if (Node->getOpcode() == ISD::FP_EXTEND) { 3342 Result = DAG.getStore(DAG.getEntryNode(), Node->getOperand(0), 3343 StackSlot, NULL, 0); 3344 Result = DAG.getExtLoad(ISD::EXTLOAD, newVT, 3345 Result, StackSlot, NULL, 0, oldVT); 3346 } else { 3347 Result = DAG.getTruncStore(DAG.getEntryNode(), Node->getOperand(0), 3348 StackSlot, NULL, 0, newVT); 3349 Result = DAG.getLoad(newVT, Result, StackSlot, NULL, 0, newVT); 3350 } 3351 break; 3352 } 3353 } 3354 } 3355 // FALL THROUGH 3356 case ISD::ANY_EXTEND: 3357 case ISD::ZERO_EXTEND: 3358 case ISD::SIGN_EXTEND: 3359 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3360 case Expand: assert(0 && "Shouldn't need to expand other operators here!"); 3361 case Legal: 3362 Tmp1 = LegalizeOp(Node->getOperand(0)); 3363 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3364 break; 3365 case Promote: 3366 switch (Node->getOpcode()) { 3367 case ISD::ANY_EXTEND: 3368 Tmp1 = PromoteOp(Node->getOperand(0)); 3369 Result = DAG.getNode(ISD::ANY_EXTEND, Op.getValueType(), Tmp1); 3370 break; 3371 case ISD::ZERO_EXTEND: 3372 Result = PromoteOp(Node->getOperand(0)); 3373 Result = DAG.getNode(ISD::ANY_EXTEND, Op.getValueType(), Result); 3374 Result = DAG.getZeroExtendInReg(Result, 3375 Node->getOperand(0).getValueType()); 3376 break; 3377 case ISD::SIGN_EXTEND: 3378 Result = PromoteOp(Node->getOperand(0)); 3379 Result = DAG.getNode(ISD::ANY_EXTEND, Op.getValueType(), Result); 3380 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(), 3381 Result, 3382 DAG.getValueType(Node->getOperand(0).getValueType())); 3383 break; 3384 case ISD::FP_EXTEND: 3385 Result = PromoteOp(Node->getOperand(0)); 3386 if (Result.getValueType() != Op.getValueType()) 3387 // Dynamically dead while we have only 2 FP types. 3388 Result = DAG.getNode(ISD::FP_EXTEND, Op.getValueType(), Result); 3389 break; 3390 case ISD::FP_ROUND: 3391 Result = PromoteOp(Node->getOperand(0)); 3392 Result = DAG.getNode(Node->getOpcode(), Op.getValueType(), Result); 3393 break; 3394 } 3395 } 3396 break; 3397 case ISD::FP_ROUND_INREG: 3398 case ISD::SIGN_EXTEND_INREG: { 3399 Tmp1 = LegalizeOp(Node->getOperand(0)); 3400 MVT::ValueType ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 3401 3402 // If this operation is not supported, convert it to a shl/shr or load/store 3403 // pair. 3404 switch (TLI.getOperationAction(Node->getOpcode(), ExtraVT)) { 3405 default: assert(0 && "This action not supported for this op yet!"); 3406 case TargetLowering::Legal: 3407 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 3408 break; 3409 case TargetLowering::Expand: 3410 // If this is an integer extend and shifts are supported, do that. 3411 if (Node->getOpcode() == ISD::SIGN_EXTEND_INREG) { 3412 // NOTE: we could fall back on load/store here too for targets without 3413 // SAR. However, it is doubtful that any exist. 3414 unsigned BitsDiff = MVT::getSizeInBits(Node->getValueType(0)) - 3415 MVT::getSizeInBits(ExtraVT); 3416 SDOperand ShiftCst = DAG.getConstant(BitsDiff, TLI.getShiftAmountTy()); 3417 Result = DAG.getNode(ISD::SHL, Node->getValueType(0), 3418 Node->getOperand(0), ShiftCst); 3419 Result = DAG.getNode(ISD::SRA, Node->getValueType(0), 3420 Result, ShiftCst); 3421 } else if (Node->getOpcode() == ISD::FP_ROUND_INREG) { 3422 // The only way we can lower this is to turn it into a TRUNCSTORE, 3423 // EXTLOAD pair, targetting a temporary location (a stack slot). 3424 3425 // NOTE: there is a choice here between constantly creating new stack 3426 // slots and always reusing the same one. We currently always create 3427 // new ones, as reuse may inhibit scheduling. 3428 const Type *Ty = MVT::getTypeForValueType(ExtraVT); 3429 uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty); 3430 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty); 3431 MachineFunction &MF = DAG.getMachineFunction(); 3432 int SSFI = 3433 MF.getFrameInfo()->CreateStackObject(TySize, Align); 3434 SDOperand StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 3435 Result = DAG.getTruncStore(DAG.getEntryNode(), Node->getOperand(0), 3436 StackSlot, NULL, 0, ExtraVT); 3437 Result = DAG.getExtLoad(ISD::EXTLOAD, Node->getValueType(0), 3438 Result, StackSlot, NULL, 0, ExtraVT); 3439 } else { 3440 assert(0 && "Unknown op"); 3441 } 3442 break; 3443 } 3444 break; 3445 } 3446 case ISD::TRAMPOLINE: { 3447 SDOperand Ops[6]; 3448 for (unsigned i = 0; i != 6; ++i) 3449 Ops[i] = LegalizeOp(Node->getOperand(i)); 3450 Result = DAG.UpdateNodeOperands(Result, Ops, 6); 3451 // The only option for this node is to custom lower it. 3452 Result = TLI.LowerOperation(Result, DAG); 3453 assert(Result.Val && "Should always custom lower!"); 3454 3455 // Since trampoline produces two values, make sure to remember that we 3456 // legalized both of them. 3457 Tmp1 = LegalizeOp(Result.getValue(1)); 3458 Result = LegalizeOp(Result); 3459 AddLegalizedOperand(SDOperand(Node, 0), Result); 3460 AddLegalizedOperand(SDOperand(Node, 1), Tmp1); 3461 return Op.ResNo ? Tmp1 : Result; 3462 } 3463 } 3464 3465 assert(Result.getValueType() == Op.getValueType() && 3466 "Bad legalization!"); 3467 3468 // Make sure that the generated code is itself legal. 3469 if (Result != Op) 3470 Result = LegalizeOp(Result); 3471 3472 // Note that LegalizeOp may be reentered even from single-use nodes, which 3473 // means that we always must cache transformed nodes. 3474 AddLegalizedOperand(Op, Result); 3475 return Result; 3476} 3477 3478/// PromoteOp - Given an operation that produces a value in an invalid type, 3479/// promote it to compute the value into a larger type. The produced value will 3480/// have the correct bits for the low portion of the register, but no guarantee 3481/// is made about the top bits: it may be zero, sign-extended, or garbage. 3482SDOperand SelectionDAGLegalize::PromoteOp(SDOperand Op) { 3483 MVT::ValueType VT = Op.getValueType(); 3484 MVT::ValueType NVT = TLI.getTypeToTransformTo(VT); 3485 assert(getTypeAction(VT) == Promote && 3486 "Caller should expand or legalize operands that are not promotable!"); 3487 assert(NVT > VT && MVT::isInteger(NVT) == MVT::isInteger(VT) && 3488 "Cannot promote to smaller type!"); 3489 3490 SDOperand Tmp1, Tmp2, Tmp3; 3491 SDOperand Result; 3492 SDNode *Node = Op.Val; 3493 3494 DenseMap<SDOperand, SDOperand>::iterator I = PromotedNodes.find(Op); 3495 if (I != PromotedNodes.end()) return I->second; 3496 3497 switch (Node->getOpcode()) { 3498 case ISD::CopyFromReg: 3499 assert(0 && "CopyFromReg must be legal!"); 3500 default: 3501#ifndef NDEBUG 3502 cerr << "NODE: "; Node->dump(&DAG); cerr << "\n"; 3503#endif 3504 assert(0 && "Do not know how to promote this operator!"); 3505 abort(); 3506 case ISD::UNDEF: 3507 Result = DAG.getNode(ISD::UNDEF, NVT); 3508 break; 3509 case ISD::Constant: 3510 if (VT != MVT::i1) 3511 Result = DAG.getNode(ISD::SIGN_EXTEND, NVT, Op); 3512 else 3513 Result = DAG.getNode(ISD::ZERO_EXTEND, NVT, Op); 3514 assert(isa<ConstantSDNode>(Result) && "Didn't constant fold zext?"); 3515 break; 3516 case ISD::ConstantFP: 3517 Result = DAG.getNode(ISD::FP_EXTEND, NVT, Op); 3518 assert(isa<ConstantFPSDNode>(Result) && "Didn't constant fold fp_extend?"); 3519 break; 3520 3521 case ISD::SETCC: 3522 assert(isTypeLegal(TLI.getSetCCResultTy()) && "SetCC type is not legal??"); 3523 Result = DAG.getNode(ISD::SETCC, TLI.getSetCCResultTy(),Node->getOperand(0), 3524 Node->getOperand(1), Node->getOperand(2)); 3525 break; 3526 3527 case ISD::TRUNCATE: 3528 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3529 case Legal: 3530 Result = LegalizeOp(Node->getOperand(0)); 3531 assert(Result.getValueType() >= NVT && 3532 "This truncation doesn't make sense!"); 3533 if (Result.getValueType() > NVT) // Truncate to NVT instead of VT 3534 Result = DAG.getNode(ISD::TRUNCATE, NVT, Result); 3535 break; 3536 case Promote: 3537 // The truncation is not required, because we don't guarantee anything 3538 // about high bits anyway. 3539 Result = PromoteOp(Node->getOperand(0)); 3540 break; 3541 case Expand: 3542 ExpandOp(Node->getOperand(0), Tmp1, Tmp2); 3543 // Truncate the low part of the expanded value to the result type 3544 Result = DAG.getNode(ISD::TRUNCATE, NVT, Tmp1); 3545 } 3546 break; 3547 case ISD::SIGN_EXTEND: 3548 case ISD::ZERO_EXTEND: 3549 case ISD::ANY_EXTEND: 3550 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3551 case Expand: assert(0 && "BUG: Smaller reg should have been promoted!"); 3552 case Legal: 3553 // Input is legal? Just do extend all the way to the larger type. 3554 Result = DAG.getNode(Node->getOpcode(), NVT, Node->getOperand(0)); 3555 break; 3556 case Promote: 3557 // Promote the reg if it's smaller. 3558 Result = PromoteOp(Node->getOperand(0)); 3559 // The high bits are not guaranteed to be anything. Insert an extend. 3560 if (Node->getOpcode() == ISD::SIGN_EXTEND) 3561 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Result, 3562 DAG.getValueType(Node->getOperand(0).getValueType())); 3563 else if (Node->getOpcode() == ISD::ZERO_EXTEND) 3564 Result = DAG.getZeroExtendInReg(Result, 3565 Node->getOperand(0).getValueType()); 3566 break; 3567 } 3568 break; 3569 case ISD::BIT_CONVERT: 3570 Result = ExpandBIT_CONVERT(Node->getValueType(0), Node->getOperand(0)); 3571 Result = PromoteOp(Result); 3572 break; 3573 3574 case ISD::FP_EXTEND: 3575 assert(0 && "Case not implemented. Dynamically dead with 2 FP types!"); 3576 case ISD::FP_ROUND: 3577 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3578 case Expand: assert(0 && "BUG: Cannot expand FP regs!"); 3579 case Promote: assert(0 && "Unreachable with 2 FP types!"); 3580 case Legal: 3581 // Input is legal? Do an FP_ROUND_INREG. 3582 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Node->getOperand(0), 3583 DAG.getValueType(VT)); 3584 break; 3585 } 3586 break; 3587 3588 case ISD::SINT_TO_FP: 3589 case ISD::UINT_TO_FP: 3590 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3591 case Legal: 3592 // No extra round required here. 3593 Result = DAG.getNode(Node->getOpcode(), NVT, Node->getOperand(0)); 3594 break; 3595 3596 case Promote: 3597 Result = PromoteOp(Node->getOperand(0)); 3598 if (Node->getOpcode() == ISD::SINT_TO_FP) 3599 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(), 3600 Result, 3601 DAG.getValueType(Node->getOperand(0).getValueType())); 3602 else 3603 Result = DAG.getZeroExtendInReg(Result, 3604 Node->getOperand(0).getValueType()); 3605 // No extra round required here. 3606 Result = DAG.getNode(Node->getOpcode(), NVT, Result); 3607 break; 3608 case Expand: 3609 Result = ExpandIntToFP(Node->getOpcode() == ISD::SINT_TO_FP, NVT, 3610 Node->getOperand(0)); 3611 // Round if we cannot tolerate excess precision. 3612 if (NoExcessFPPrecision) 3613 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 3614 DAG.getValueType(VT)); 3615 break; 3616 } 3617 break; 3618 3619 case ISD::SIGN_EXTEND_INREG: 3620 Result = PromoteOp(Node->getOperand(0)); 3621 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Result, 3622 Node->getOperand(1)); 3623 break; 3624 case ISD::FP_TO_SINT: 3625 case ISD::FP_TO_UINT: 3626 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3627 case Legal: 3628 case Expand: 3629 Tmp1 = Node->getOperand(0); 3630 break; 3631 case Promote: 3632 // The input result is prerounded, so we don't have to do anything 3633 // special. 3634 Tmp1 = PromoteOp(Node->getOperand(0)); 3635 break; 3636 } 3637 // If we're promoting a UINT to a larger size, check to see if the new node 3638 // will be legal. If it isn't, check to see if FP_TO_SINT is legal, since 3639 // we can use that instead. This allows us to generate better code for 3640 // FP_TO_UINT for small destination sizes on targets where FP_TO_UINT is not 3641 // legal, such as PowerPC. 3642 if (Node->getOpcode() == ISD::FP_TO_UINT && 3643 !TLI.isOperationLegal(ISD::FP_TO_UINT, NVT) && 3644 (TLI.isOperationLegal(ISD::FP_TO_SINT, NVT) || 3645 TLI.getOperationAction(ISD::FP_TO_SINT, NVT)==TargetLowering::Custom)){ 3646 Result = DAG.getNode(ISD::FP_TO_SINT, NVT, Tmp1); 3647 } else { 3648 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1); 3649 } 3650 break; 3651 3652 case ISD::FABS: 3653 case ISD::FNEG: 3654 Tmp1 = PromoteOp(Node->getOperand(0)); 3655 assert(Tmp1.getValueType() == NVT); 3656 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1); 3657 // NOTE: we do not have to do any extra rounding here for 3658 // NoExcessFPPrecision, because we know the input will have the appropriate 3659 // precision, and these operations don't modify precision at all. 3660 break; 3661 3662 case ISD::FSQRT: 3663 case ISD::FSIN: 3664 case ISD::FCOS: 3665 Tmp1 = PromoteOp(Node->getOperand(0)); 3666 assert(Tmp1.getValueType() == NVT); 3667 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1); 3668 if (NoExcessFPPrecision) 3669 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 3670 DAG.getValueType(VT)); 3671 break; 3672 3673 case ISD::FPOWI: { 3674 // Promote f32 powi to f64 powi. Note that this could insert a libcall 3675 // directly as well, which may be better. 3676 Tmp1 = PromoteOp(Node->getOperand(0)); 3677 assert(Tmp1.getValueType() == NVT); 3678 Result = DAG.getNode(ISD::FPOWI, NVT, Tmp1, Node->getOperand(1)); 3679 if (NoExcessFPPrecision) 3680 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 3681 DAG.getValueType(VT)); 3682 break; 3683 } 3684 3685 case ISD::AND: 3686 case ISD::OR: 3687 case ISD::XOR: 3688 case ISD::ADD: 3689 case ISD::SUB: 3690 case ISD::MUL: 3691 // The input may have strange things in the top bits of the registers, but 3692 // these operations don't care. They may have weird bits going out, but 3693 // that too is okay if they are integer operations. 3694 Tmp1 = PromoteOp(Node->getOperand(0)); 3695 Tmp2 = PromoteOp(Node->getOperand(1)); 3696 assert(Tmp1.getValueType() == NVT && Tmp2.getValueType() == NVT); 3697 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 3698 break; 3699 case ISD::FADD: 3700 case ISD::FSUB: 3701 case ISD::FMUL: 3702 Tmp1 = PromoteOp(Node->getOperand(0)); 3703 Tmp2 = PromoteOp(Node->getOperand(1)); 3704 assert(Tmp1.getValueType() == NVT && Tmp2.getValueType() == NVT); 3705 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 3706 3707 // Floating point operations will give excess precision that we may not be 3708 // able to tolerate. If we DO allow excess precision, just leave it, 3709 // otherwise excise it. 3710 // FIXME: Why would we need to round FP ops more than integer ones? 3711 // Is Round(Add(Add(A,B),C)) != Round(Add(Round(Add(A,B)), C)) 3712 if (NoExcessFPPrecision) 3713 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 3714 DAG.getValueType(VT)); 3715 break; 3716 3717 case ISD::SDIV: 3718 case ISD::SREM: 3719 // These operators require that their input be sign extended. 3720 Tmp1 = PromoteOp(Node->getOperand(0)); 3721 Tmp2 = PromoteOp(Node->getOperand(1)); 3722 if (MVT::isInteger(NVT)) { 3723 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp1, 3724 DAG.getValueType(VT)); 3725 Tmp2 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp2, 3726 DAG.getValueType(VT)); 3727 } 3728 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 3729 3730 // Perform FP_ROUND: this is probably overly pessimistic. 3731 if (MVT::isFloatingPoint(NVT) && NoExcessFPPrecision) 3732 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 3733 DAG.getValueType(VT)); 3734 break; 3735 case ISD::FDIV: 3736 case ISD::FREM: 3737 case ISD::FCOPYSIGN: 3738 // These operators require that their input be fp extended. 3739 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3740 case Legal: 3741 Tmp1 = LegalizeOp(Node->getOperand(0)); 3742 break; 3743 case Promote: 3744 Tmp1 = PromoteOp(Node->getOperand(0)); 3745 break; 3746 case Expand: 3747 assert(0 && "not implemented"); 3748 } 3749 switch (getTypeAction(Node->getOperand(1).getValueType())) { 3750 case Legal: 3751 Tmp2 = LegalizeOp(Node->getOperand(1)); 3752 break; 3753 case Promote: 3754 Tmp2 = PromoteOp(Node->getOperand(1)); 3755 break; 3756 case Expand: 3757 assert(0 && "not implemented"); 3758 } 3759 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 3760 3761 // Perform FP_ROUND: this is probably overly pessimistic. 3762 if (NoExcessFPPrecision && Node->getOpcode() != ISD::FCOPYSIGN) 3763 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 3764 DAG.getValueType(VT)); 3765 break; 3766 3767 case ISD::UDIV: 3768 case ISD::UREM: 3769 // These operators require that their input be zero extended. 3770 Tmp1 = PromoteOp(Node->getOperand(0)); 3771 Tmp2 = PromoteOp(Node->getOperand(1)); 3772 assert(MVT::isInteger(NVT) && "Operators don't apply to FP!"); 3773 Tmp1 = DAG.getZeroExtendInReg(Tmp1, VT); 3774 Tmp2 = DAG.getZeroExtendInReg(Tmp2, VT); 3775 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 3776 break; 3777 3778 case ISD::SHL: 3779 Tmp1 = PromoteOp(Node->getOperand(0)); 3780 Result = DAG.getNode(ISD::SHL, NVT, Tmp1, Node->getOperand(1)); 3781 break; 3782 case ISD::SRA: 3783 // The input value must be properly sign extended. 3784 Tmp1 = PromoteOp(Node->getOperand(0)); 3785 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp1, 3786 DAG.getValueType(VT)); 3787 Result = DAG.getNode(ISD::SRA, NVT, Tmp1, Node->getOperand(1)); 3788 break; 3789 case ISD::SRL: 3790 // The input value must be properly zero extended. 3791 Tmp1 = PromoteOp(Node->getOperand(0)); 3792 Tmp1 = DAG.getZeroExtendInReg(Tmp1, VT); 3793 Result = DAG.getNode(ISD::SRL, NVT, Tmp1, Node->getOperand(1)); 3794 break; 3795 3796 case ISD::VAARG: 3797 Tmp1 = Node->getOperand(0); // Get the chain. 3798 Tmp2 = Node->getOperand(1); // Get the pointer. 3799 if (TLI.getOperationAction(ISD::VAARG, VT) == TargetLowering::Custom) { 3800 Tmp3 = DAG.getVAArg(VT, Tmp1, Tmp2, Node->getOperand(2)); 3801 Result = TLI.CustomPromoteOperation(Tmp3, DAG); 3802 } else { 3803 SrcValueSDNode *SV = cast<SrcValueSDNode>(Node->getOperand(2)); 3804 SDOperand VAList = DAG.getLoad(TLI.getPointerTy(), Tmp1, Tmp2, 3805 SV->getValue(), SV->getOffset()); 3806 // Increment the pointer, VAList, to the next vaarg 3807 Tmp3 = DAG.getNode(ISD::ADD, TLI.getPointerTy(), VAList, 3808 DAG.getConstant(MVT::getSizeInBits(VT)/8, 3809 TLI.getPointerTy())); 3810 // Store the incremented VAList to the legalized pointer 3811 Tmp3 = DAG.getStore(VAList.getValue(1), Tmp3, Tmp2, SV->getValue(), 3812 SV->getOffset()); 3813 // Load the actual argument out of the pointer VAList 3814 Result = DAG.getExtLoad(ISD::EXTLOAD, NVT, Tmp3, VAList, NULL, 0, VT); 3815 } 3816 // Remember that we legalized the chain. 3817 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); 3818 break; 3819 3820 case ISD::LOAD: { 3821 LoadSDNode *LD = cast<LoadSDNode>(Node); 3822 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(Node) 3823 ? ISD::EXTLOAD : LD->getExtensionType(); 3824 Result = DAG.getExtLoad(ExtType, NVT, 3825 LD->getChain(), LD->getBasePtr(), 3826 LD->getSrcValue(), LD->getSrcValueOffset(), 3827 LD->getLoadedVT(), 3828 LD->isVolatile(), 3829 LD->getAlignment()); 3830 // Remember that we legalized the chain. 3831 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); 3832 break; 3833 } 3834 case ISD::SELECT: 3835 Tmp2 = PromoteOp(Node->getOperand(1)); // Legalize the op0 3836 Tmp3 = PromoteOp(Node->getOperand(2)); // Legalize the op1 3837 Result = DAG.getNode(ISD::SELECT, NVT, Node->getOperand(0), Tmp2, Tmp3); 3838 break; 3839 case ISD::SELECT_CC: 3840 Tmp2 = PromoteOp(Node->getOperand(2)); // True 3841 Tmp3 = PromoteOp(Node->getOperand(3)); // False 3842 Result = DAG.getNode(ISD::SELECT_CC, NVT, Node->getOperand(0), 3843 Node->getOperand(1), Tmp2, Tmp3, Node->getOperand(4)); 3844 break; 3845 case ISD::BSWAP: 3846 Tmp1 = Node->getOperand(0); 3847 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Tmp1); 3848 Tmp1 = DAG.getNode(ISD::BSWAP, NVT, Tmp1); 3849 Result = DAG.getNode(ISD::SRL, NVT, Tmp1, 3850 DAG.getConstant(MVT::getSizeInBits(NVT) - 3851 MVT::getSizeInBits(VT), 3852 TLI.getShiftAmountTy())); 3853 break; 3854 case ISD::CTPOP: 3855 case ISD::CTTZ: 3856 case ISD::CTLZ: 3857 // Zero extend the argument 3858 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Node->getOperand(0)); 3859 // Perform the larger operation, then subtract if needed. 3860 Tmp1 = DAG.getNode(Node->getOpcode(), NVT, Tmp1); 3861 switch(Node->getOpcode()) { 3862 case ISD::CTPOP: 3863 Result = Tmp1; 3864 break; 3865 case ISD::CTTZ: 3866 // if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT) 3867 Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), Tmp1, 3868 DAG.getConstant(MVT::getSizeInBits(NVT), NVT), 3869 ISD::SETEQ); 3870 Result = DAG.getNode(ISD::SELECT, NVT, Tmp2, 3871 DAG.getConstant(MVT::getSizeInBits(VT), NVT), Tmp1); 3872 break; 3873 case ISD::CTLZ: 3874 //Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 3875 Result = DAG.getNode(ISD::SUB, NVT, Tmp1, 3876 DAG.getConstant(MVT::getSizeInBits(NVT) - 3877 MVT::getSizeInBits(VT), NVT)); 3878 break; 3879 } 3880 break; 3881 case ISD::EXTRACT_SUBVECTOR: 3882 Result = PromoteOp(ExpandEXTRACT_SUBVECTOR(Op)); 3883 break; 3884 case ISD::EXTRACT_VECTOR_ELT: 3885 Result = PromoteOp(ExpandEXTRACT_VECTOR_ELT(Op)); 3886 break; 3887 } 3888 3889 assert(Result.Val && "Didn't set a result!"); 3890 3891 // Make sure the result is itself legal. 3892 Result = LegalizeOp(Result); 3893 3894 // Remember that we promoted this! 3895 AddPromotedOperand(Op, Result); 3896 return Result; 3897} 3898 3899/// ExpandEXTRACT_VECTOR_ELT - Expand an EXTRACT_VECTOR_ELT operation into 3900/// a legal EXTRACT_VECTOR_ELT operation, scalar code, or memory traffic, 3901/// based on the vector type. The return type of this matches the element type 3902/// of the vector, which may not be legal for the target. 3903SDOperand SelectionDAGLegalize::ExpandEXTRACT_VECTOR_ELT(SDOperand Op) { 3904 // We know that operand #0 is the Vec vector. If the index is a constant 3905 // or if the invec is a supported hardware type, we can use it. Otherwise, 3906 // lower to a store then an indexed load. 3907 SDOperand Vec = Op.getOperand(0); 3908 SDOperand Idx = Op.getOperand(1); 3909 3910 MVT::ValueType TVT = Vec.getValueType(); 3911 unsigned NumElems = MVT::getVectorNumElements(TVT); 3912 3913 switch (TLI.getOperationAction(ISD::EXTRACT_VECTOR_ELT, TVT)) { 3914 default: assert(0 && "This action is not supported yet!"); 3915 case TargetLowering::Custom: { 3916 Vec = LegalizeOp(Vec); 3917 Op = DAG.UpdateNodeOperands(Op, Vec, Idx); 3918 SDOperand Tmp3 = TLI.LowerOperation(Op, DAG); 3919 if (Tmp3.Val) 3920 return Tmp3; 3921 break; 3922 } 3923 case TargetLowering::Legal: 3924 if (isTypeLegal(TVT)) { 3925 Vec = LegalizeOp(Vec); 3926 Op = DAG.UpdateNodeOperands(Op, Vec, Idx); 3927 return Op; 3928 } 3929 break; 3930 case TargetLowering::Expand: 3931 break; 3932 } 3933 3934 if (NumElems == 1) { 3935 // This must be an access of the only element. Return it. 3936 Op = ScalarizeVectorOp(Vec); 3937 } else if (!TLI.isTypeLegal(TVT) && isa<ConstantSDNode>(Idx)) { 3938 ConstantSDNode *CIdx = cast<ConstantSDNode>(Idx); 3939 SDOperand Lo, Hi; 3940 SplitVectorOp(Vec, Lo, Hi); 3941 if (CIdx->getValue() < NumElems/2) { 3942 Vec = Lo; 3943 } else { 3944 Vec = Hi; 3945 Idx = DAG.getConstant(CIdx->getValue() - NumElems/2, 3946 Idx.getValueType()); 3947 } 3948 3949 // It's now an extract from the appropriate high or low part. Recurse. 3950 Op = DAG.UpdateNodeOperands(Op, Vec, Idx); 3951 Op = ExpandEXTRACT_VECTOR_ELT(Op); 3952 } else { 3953 // Store the value to a temporary stack slot, then LOAD the scalar 3954 // element back out. 3955 SDOperand StackPtr = CreateStackTemporary(Vec.getValueType()); 3956 SDOperand Ch = DAG.getStore(DAG.getEntryNode(), Vec, StackPtr, NULL, 0); 3957 3958 // Add the offset to the index. 3959 unsigned EltSize = MVT::getSizeInBits(Op.getValueType())/8; 3960 Idx = DAG.getNode(ISD::MUL, Idx.getValueType(), Idx, 3961 DAG.getConstant(EltSize, Idx.getValueType())); 3962 StackPtr = DAG.getNode(ISD::ADD, Idx.getValueType(), Idx, StackPtr); 3963 3964 Op = DAG.getLoad(Op.getValueType(), Ch, StackPtr, NULL, 0); 3965 } 3966 return Op; 3967} 3968 3969/// ExpandEXTRACT_SUBVECTOR - Expand a EXTRACT_SUBVECTOR operation. For now 3970/// we assume the operation can be split if it is not already legal. 3971SDOperand SelectionDAGLegalize::ExpandEXTRACT_SUBVECTOR(SDOperand Op) { 3972 // We know that operand #0 is the Vec vector. For now we assume the index 3973 // is a constant and that the extracted result is a supported hardware type. 3974 SDOperand Vec = Op.getOperand(0); 3975 SDOperand Idx = LegalizeOp(Op.getOperand(1)); 3976 3977 unsigned NumElems = MVT::getVectorNumElements(Vec.getValueType()); 3978 3979 if (NumElems == MVT::getVectorNumElements(Op.getValueType())) { 3980 // This must be an access of the desired vector length. Return it. 3981 return Vec; 3982 } 3983 3984 ConstantSDNode *CIdx = cast<ConstantSDNode>(Idx); 3985 SDOperand Lo, Hi; 3986 SplitVectorOp(Vec, Lo, Hi); 3987 if (CIdx->getValue() < NumElems/2) { 3988 Vec = Lo; 3989 } else { 3990 Vec = Hi; 3991 Idx = DAG.getConstant(CIdx->getValue() - NumElems/2, Idx.getValueType()); 3992 } 3993 3994 // It's now an extract from the appropriate high or low part. Recurse. 3995 Op = DAG.UpdateNodeOperands(Op, Vec, Idx); 3996 return ExpandEXTRACT_SUBVECTOR(Op); 3997} 3998 3999/// LegalizeSetCCOperands - Attempts to create a legal LHS and RHS for a SETCC 4000/// with condition CC on the current target. This usually involves legalizing 4001/// or promoting the arguments. In the case where LHS and RHS must be expanded, 4002/// there may be no choice but to create a new SetCC node to represent the 4003/// legalized value of setcc lhs, rhs. In this case, the value is returned in 4004/// LHS, and the SDOperand returned in RHS has a nil SDNode value. 4005void SelectionDAGLegalize::LegalizeSetCCOperands(SDOperand &LHS, 4006 SDOperand &RHS, 4007 SDOperand &CC) { 4008 SDOperand Tmp1, Tmp2, Tmp3, Result; 4009 4010 switch (getTypeAction(LHS.getValueType())) { 4011 case Legal: 4012 Tmp1 = LegalizeOp(LHS); // LHS 4013 Tmp2 = LegalizeOp(RHS); // RHS 4014 break; 4015 case Promote: 4016 Tmp1 = PromoteOp(LHS); // LHS 4017 Tmp2 = PromoteOp(RHS); // RHS 4018 4019 // If this is an FP compare, the operands have already been extended. 4020 if (MVT::isInteger(LHS.getValueType())) { 4021 MVT::ValueType VT = LHS.getValueType(); 4022 MVT::ValueType NVT = TLI.getTypeToTransformTo(VT); 4023 4024 // Otherwise, we have to insert explicit sign or zero extends. Note 4025 // that we could insert sign extends for ALL conditions, but zero extend 4026 // is cheaper on many machines (an AND instead of two shifts), so prefer 4027 // it. 4028 switch (cast<CondCodeSDNode>(CC)->get()) { 4029 default: assert(0 && "Unknown integer comparison!"); 4030 case ISD::SETEQ: 4031 case ISD::SETNE: 4032 case ISD::SETUGE: 4033 case ISD::SETUGT: 4034 case ISD::SETULE: 4035 case ISD::SETULT: 4036 // ALL of these operations will work if we either sign or zero extend 4037 // the operands (including the unsigned comparisons!). Zero extend is 4038 // usually a simpler/cheaper operation, so prefer it. 4039 Tmp1 = DAG.getZeroExtendInReg(Tmp1, VT); 4040 Tmp2 = DAG.getZeroExtendInReg(Tmp2, VT); 4041 break; 4042 case ISD::SETGE: 4043 case ISD::SETGT: 4044 case ISD::SETLT: 4045 case ISD::SETLE: 4046 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp1, 4047 DAG.getValueType(VT)); 4048 Tmp2 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp2, 4049 DAG.getValueType(VT)); 4050 break; 4051 } 4052 } 4053 break; 4054 case Expand: { 4055 MVT::ValueType VT = LHS.getValueType(); 4056 if (VT == MVT::f32 || VT == MVT::f64) { 4057 // Expand into one or more soft-fp libcall(s). 4058 RTLIB::Libcall LC1, LC2 = RTLIB::UNKNOWN_LIBCALL; 4059 switch (cast<CondCodeSDNode>(CC)->get()) { 4060 case ISD::SETEQ: 4061 case ISD::SETOEQ: 4062 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : RTLIB::OEQ_F64; 4063 break; 4064 case ISD::SETNE: 4065 case ISD::SETUNE: 4066 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : RTLIB::UNE_F64; 4067 break; 4068 case ISD::SETGE: 4069 case ISD::SETOGE: 4070 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : RTLIB::OGE_F64; 4071 break; 4072 case ISD::SETLT: 4073 case ISD::SETOLT: 4074 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64; 4075 break; 4076 case ISD::SETLE: 4077 case ISD::SETOLE: 4078 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : RTLIB::OLE_F64; 4079 break; 4080 case ISD::SETGT: 4081 case ISD::SETOGT: 4082 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : RTLIB::OGT_F64; 4083 break; 4084 case ISD::SETUO: 4085 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : RTLIB::UO_F64; 4086 break; 4087 case ISD::SETO: 4088 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : RTLIB::O_F64; 4089 break; 4090 default: 4091 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : RTLIB::UO_F64; 4092 switch (cast<CondCodeSDNode>(CC)->get()) { 4093 case ISD::SETONE: 4094 // SETONE = SETOLT | SETOGT 4095 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64; 4096 // Fallthrough 4097 case ISD::SETUGT: 4098 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : RTLIB::OGT_F64; 4099 break; 4100 case ISD::SETUGE: 4101 LC2 = (VT == MVT::f32) ? RTLIB::OGE_F32 : RTLIB::OGE_F64; 4102 break; 4103 case ISD::SETULT: 4104 LC2 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64; 4105 break; 4106 case ISD::SETULE: 4107 LC2 = (VT == MVT::f32) ? RTLIB::OLE_F32 : RTLIB::OLE_F64; 4108 break; 4109 case ISD::SETUEQ: 4110 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : RTLIB::OEQ_F64; 4111 break; 4112 default: assert(0 && "Unsupported FP setcc!"); 4113 } 4114 } 4115 4116 SDOperand Dummy; 4117 Tmp1 = ExpandLibCall(TLI.getLibcallName(LC1), 4118 DAG.getNode(ISD::MERGE_VALUES, VT, LHS, RHS).Val, 4119 false /*sign irrelevant*/, Dummy); 4120 Tmp2 = DAG.getConstant(0, MVT::i32); 4121 CC = DAG.getCondCode(TLI.getCmpLibcallCC(LC1)); 4122 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 4123 Tmp1 = DAG.getNode(ISD::SETCC, TLI.getSetCCResultTy(), Tmp1, Tmp2, CC); 4124 LHS = ExpandLibCall(TLI.getLibcallName(LC2), 4125 DAG.getNode(ISD::MERGE_VALUES, VT, LHS, RHS).Val, 4126 false /*sign irrelevant*/, Dummy); 4127 Tmp2 = DAG.getNode(ISD::SETCC, TLI.getSetCCResultTy(), LHS, Tmp2, 4128 DAG.getCondCode(TLI.getCmpLibcallCC(LC2))); 4129 Tmp1 = DAG.getNode(ISD::OR, Tmp1.getValueType(), Tmp1, Tmp2); 4130 Tmp2 = SDOperand(); 4131 } 4132 LHS = Tmp1; 4133 RHS = Tmp2; 4134 return; 4135 } 4136 4137 SDOperand LHSLo, LHSHi, RHSLo, RHSHi; 4138 ExpandOp(LHS, LHSLo, LHSHi); 4139 ExpandOp(RHS, RHSLo, RHSHi); 4140 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 4141 4142 if (VT==MVT::ppcf128) { 4143 // FIXME: This generated code sucks. We want to generate 4144 // FCMP crN, hi1, hi2 4145 // BNE crN, L: 4146 // FCMP crN, lo1, lo2 4147 // The following can be improved, but not that much. 4148 Tmp1 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, ISD::SETEQ); 4149 Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSLo, RHSLo, CCCode); 4150 Tmp3 = DAG.getNode(ISD::AND, Tmp1.getValueType(), Tmp1, Tmp2); 4151 Tmp1 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, ISD::SETNE); 4152 Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, CCCode); 4153 Tmp1 = DAG.getNode(ISD::AND, Tmp1.getValueType(), Tmp1, Tmp2); 4154 Tmp1 = DAG.getNode(ISD::OR, Tmp1.getValueType(), Tmp1, Tmp3); 4155 Tmp2 = SDOperand(); 4156 break; 4157 } 4158 4159 switch (CCCode) { 4160 case ISD::SETEQ: 4161 case ISD::SETNE: 4162 if (RHSLo == RHSHi) 4163 if (ConstantSDNode *RHSCST = dyn_cast<ConstantSDNode>(RHSLo)) 4164 if (RHSCST->isAllOnesValue()) { 4165 // Comparison to -1. 4166 Tmp1 = DAG.getNode(ISD::AND, LHSLo.getValueType(), LHSLo, LHSHi); 4167 Tmp2 = RHSLo; 4168 break; 4169 } 4170 4171 Tmp1 = DAG.getNode(ISD::XOR, LHSLo.getValueType(), LHSLo, RHSLo); 4172 Tmp2 = DAG.getNode(ISD::XOR, LHSLo.getValueType(), LHSHi, RHSHi); 4173 Tmp1 = DAG.getNode(ISD::OR, Tmp1.getValueType(), Tmp1, Tmp2); 4174 Tmp2 = DAG.getConstant(0, Tmp1.getValueType()); 4175 break; 4176 default: 4177 // If this is a comparison of the sign bit, just look at the top part. 4178 // X > -1, x < 0 4179 if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(RHS)) 4180 if ((cast<CondCodeSDNode>(CC)->get() == ISD::SETLT && 4181 CST->getValue() == 0) || // X < 0 4182 (cast<CondCodeSDNode>(CC)->get() == ISD::SETGT && 4183 CST->isAllOnesValue())) { // X > -1 4184 Tmp1 = LHSHi; 4185 Tmp2 = RHSHi; 4186 break; 4187 } 4188 4189 // FIXME: This generated code sucks. 4190 ISD::CondCode LowCC; 4191 switch (CCCode) { 4192 default: assert(0 && "Unknown integer setcc!"); 4193 case ISD::SETLT: 4194 case ISD::SETULT: LowCC = ISD::SETULT; break; 4195 case ISD::SETGT: 4196 case ISD::SETUGT: LowCC = ISD::SETUGT; break; 4197 case ISD::SETLE: 4198 case ISD::SETULE: LowCC = ISD::SETULE; break; 4199 case ISD::SETGE: 4200 case ISD::SETUGE: LowCC = ISD::SETUGE; break; 4201 } 4202 4203 // Tmp1 = lo(op1) < lo(op2) // Always unsigned comparison 4204 // Tmp2 = hi(op1) < hi(op2) // Signedness depends on operands 4205 // dest = hi(op1) == hi(op2) ? Tmp1 : Tmp2; 4206 4207 // NOTE: on targets without efficient SELECT of bools, we can always use 4208 // this identity: (B1 ? B2 : B3) --> (B1 & B2)|(!B1&B3) 4209 TargetLowering::DAGCombinerInfo DagCombineInfo(DAG, false, true, NULL); 4210 Tmp1 = TLI.SimplifySetCC(TLI.getSetCCResultTy(), LHSLo, RHSLo, LowCC, 4211 false, DagCombineInfo); 4212 if (!Tmp1.Val) 4213 Tmp1 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSLo, RHSLo, LowCC); 4214 Tmp2 = TLI.SimplifySetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, 4215 CCCode, false, DagCombineInfo); 4216 if (!Tmp2.Val) 4217 Tmp2 = DAG.getNode(ISD::SETCC, TLI.getSetCCResultTy(), LHSHi, RHSHi, CC); 4218 4219 ConstantSDNode *Tmp1C = dyn_cast<ConstantSDNode>(Tmp1.Val); 4220 ConstantSDNode *Tmp2C = dyn_cast<ConstantSDNode>(Tmp2.Val); 4221 if ((Tmp1C && Tmp1C->getValue() == 0) || 4222 (Tmp2C && Tmp2C->getValue() == 0 && 4223 (CCCode == ISD::SETLE || CCCode == ISD::SETGE || 4224 CCCode == ISD::SETUGE || CCCode == ISD::SETULE)) || 4225 (Tmp2C && Tmp2C->getValue() == 1 && 4226 (CCCode == ISD::SETLT || CCCode == ISD::SETGT || 4227 CCCode == ISD::SETUGT || CCCode == ISD::SETULT))) { 4228 // low part is known false, returns high part. 4229 // For LE / GE, if high part is known false, ignore the low part. 4230 // For LT / GT, if high part is known true, ignore the low part. 4231 Tmp1 = Tmp2; 4232 Tmp2 = SDOperand(); 4233 } else { 4234 Result = TLI.SimplifySetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, 4235 ISD::SETEQ, false, DagCombineInfo); 4236 if (!Result.Val) 4237 Result=DAG.getSetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, ISD::SETEQ); 4238 Result = LegalizeOp(DAG.getNode(ISD::SELECT, Tmp1.getValueType(), 4239 Result, Tmp1, Tmp2)); 4240 Tmp1 = Result; 4241 Tmp2 = SDOperand(); 4242 } 4243 } 4244 } 4245 } 4246 LHS = Tmp1; 4247 RHS = Tmp2; 4248} 4249 4250/// ExpandBIT_CONVERT - Expand a BIT_CONVERT node into a store/load combination. 4251/// The resultant code need not be legal. Note that SrcOp is the input operand 4252/// to the BIT_CONVERT, not the BIT_CONVERT node itself. 4253SDOperand SelectionDAGLegalize::ExpandBIT_CONVERT(MVT::ValueType DestVT, 4254 SDOperand SrcOp) { 4255 // Create the stack frame object. 4256 SDOperand FIPtr = CreateStackTemporary(DestVT); 4257 4258 // Emit a store to the stack slot. 4259 SDOperand Store = DAG.getStore(DAG.getEntryNode(), SrcOp, FIPtr, NULL, 0); 4260 // Result is a load from the stack slot. 4261 return DAG.getLoad(DestVT, Store, FIPtr, NULL, 0); 4262} 4263 4264SDOperand SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { 4265 // Create a vector sized/aligned stack slot, store the value to element #0, 4266 // then load the whole vector back out. 4267 SDOperand StackPtr = CreateStackTemporary(Node->getValueType(0)); 4268 SDOperand Ch = DAG.getStore(DAG.getEntryNode(), Node->getOperand(0), StackPtr, 4269 NULL, 0); 4270 return DAG.getLoad(Node->getValueType(0), Ch, StackPtr, NULL, 0); 4271} 4272 4273 4274/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't 4275/// support the operation, but do support the resultant vector type. 4276SDOperand SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { 4277 4278 // If the only non-undef value is the low element, turn this into a 4279 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. 4280 unsigned NumElems = Node->getNumOperands(); 4281 bool isOnlyLowElement = true; 4282 SDOperand SplatValue = Node->getOperand(0); 4283 std::map<SDOperand, std::vector<unsigned> > Values; 4284 Values[SplatValue].push_back(0); 4285 bool isConstant = true; 4286 if (!isa<ConstantFPSDNode>(SplatValue) && !isa<ConstantSDNode>(SplatValue) && 4287 SplatValue.getOpcode() != ISD::UNDEF) 4288 isConstant = false; 4289 4290 for (unsigned i = 1; i < NumElems; ++i) { 4291 SDOperand V = Node->getOperand(i); 4292 Values[V].push_back(i); 4293 if (V.getOpcode() != ISD::UNDEF) 4294 isOnlyLowElement = false; 4295 if (SplatValue != V) 4296 SplatValue = SDOperand(0,0); 4297 4298 // If this isn't a constant element or an undef, we can't use a constant 4299 // pool load. 4300 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V) && 4301 V.getOpcode() != ISD::UNDEF) 4302 isConstant = false; 4303 } 4304 4305 if (isOnlyLowElement) { 4306 // If the low element is an undef too, then this whole things is an undef. 4307 if (Node->getOperand(0).getOpcode() == ISD::UNDEF) 4308 return DAG.getNode(ISD::UNDEF, Node->getValueType(0)); 4309 // Otherwise, turn this into a scalar_to_vector node. 4310 return DAG.getNode(ISD::SCALAR_TO_VECTOR, Node->getValueType(0), 4311 Node->getOperand(0)); 4312 } 4313 4314 // If all elements are constants, create a load from the constant pool. 4315 if (isConstant) { 4316 MVT::ValueType VT = Node->getValueType(0); 4317 const Type *OpNTy = 4318 MVT::getTypeForValueType(Node->getOperand(0).getValueType()); 4319 std::vector<Constant*> CV; 4320 for (unsigned i = 0, e = NumElems; i != e; ++i) { 4321 if (ConstantFPSDNode *V = 4322 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { 4323 CV.push_back(ConstantFP::get(OpNTy, V->getValueAPF())); 4324 } else if (ConstantSDNode *V = 4325 dyn_cast<ConstantSDNode>(Node->getOperand(i))) { 4326 CV.push_back(ConstantInt::get(OpNTy, V->getValue())); 4327 } else { 4328 assert(Node->getOperand(i).getOpcode() == ISD::UNDEF); 4329 CV.push_back(UndefValue::get(OpNTy)); 4330 } 4331 } 4332 Constant *CP = ConstantVector::get(CV); 4333 SDOperand CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy()); 4334 return DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0); 4335 } 4336 4337 if (SplatValue.Val) { // Splat of one value? 4338 // Build the shuffle constant vector: <0, 0, 0, 0> 4339 MVT::ValueType MaskVT = 4340 MVT::getIntVectorWithNumElements(NumElems); 4341 SDOperand Zero = DAG.getConstant(0, MVT::getVectorElementType(MaskVT)); 4342 std::vector<SDOperand> ZeroVec(NumElems, Zero); 4343 SDOperand SplatMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 4344 &ZeroVec[0], ZeroVec.size()); 4345 4346 // If the target supports VECTOR_SHUFFLE and this shuffle mask, use it. 4347 if (isShuffleLegal(Node->getValueType(0), SplatMask)) { 4348 // Get the splatted value into the low element of a vector register. 4349 SDOperand LowValVec = 4350 DAG.getNode(ISD::SCALAR_TO_VECTOR, Node->getValueType(0), SplatValue); 4351 4352 // Return shuffle(LowValVec, undef, <0,0,0,0>) 4353 return DAG.getNode(ISD::VECTOR_SHUFFLE, Node->getValueType(0), LowValVec, 4354 DAG.getNode(ISD::UNDEF, Node->getValueType(0)), 4355 SplatMask); 4356 } 4357 } 4358 4359 // If there are only two unique elements, we may be able to turn this into a 4360 // vector shuffle. 4361 if (Values.size() == 2) { 4362 // Build the shuffle constant vector: e.g. <0, 4, 0, 4> 4363 MVT::ValueType MaskVT = 4364 MVT::getIntVectorWithNumElements(NumElems); 4365 std::vector<SDOperand> MaskVec(NumElems); 4366 unsigned i = 0; 4367 for (std::map<SDOperand,std::vector<unsigned> >::iterator I=Values.begin(), 4368 E = Values.end(); I != E; ++I) { 4369 for (std::vector<unsigned>::iterator II = I->second.begin(), 4370 EE = I->second.end(); II != EE; ++II) 4371 MaskVec[*II] = DAG.getConstant(i, MVT::getVectorElementType(MaskVT)); 4372 i += NumElems; 4373 } 4374 SDOperand ShuffleMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 4375 &MaskVec[0], MaskVec.size()); 4376 4377 // If the target supports VECTOR_SHUFFLE and this shuffle mask, use it. 4378 if (TLI.isOperationLegal(ISD::SCALAR_TO_VECTOR, Node->getValueType(0)) && 4379 isShuffleLegal(Node->getValueType(0), ShuffleMask)) { 4380 SmallVector<SDOperand, 8> Ops; 4381 for(std::map<SDOperand,std::vector<unsigned> >::iterator I=Values.begin(), 4382 E = Values.end(); I != E; ++I) { 4383 SDOperand Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, Node->getValueType(0), 4384 I->first); 4385 Ops.push_back(Op); 4386 } 4387 Ops.push_back(ShuffleMask); 4388 4389 // Return shuffle(LoValVec, HiValVec, <0,1,0,1>) 4390 return DAG.getNode(ISD::VECTOR_SHUFFLE, Node->getValueType(0), 4391 &Ops[0], Ops.size()); 4392 } 4393 } 4394 4395 // Otherwise, we can't handle this case efficiently. Allocate a sufficiently 4396 // aligned object on the stack, store each element into it, then load 4397 // the result as a vector. 4398 MVT::ValueType VT = Node->getValueType(0); 4399 // Create the stack frame object. 4400 SDOperand FIPtr = CreateStackTemporary(VT); 4401 4402 // Emit a store of each element to the stack slot. 4403 SmallVector<SDOperand, 8> Stores; 4404 unsigned TypeByteSize = 4405 MVT::getSizeInBits(Node->getOperand(0).getValueType())/8; 4406 // Store (in the right endianness) the elements to memory. 4407 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 4408 // Ignore undef elements. 4409 if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue; 4410 4411 unsigned Offset = TypeByteSize*i; 4412 4413 SDOperand Idx = DAG.getConstant(Offset, FIPtr.getValueType()); 4414 Idx = DAG.getNode(ISD::ADD, FIPtr.getValueType(), FIPtr, Idx); 4415 4416 Stores.push_back(DAG.getStore(DAG.getEntryNode(), Node->getOperand(i), Idx, 4417 NULL, 0)); 4418 } 4419 4420 SDOperand StoreChain; 4421 if (!Stores.empty()) // Not all undef elements? 4422 StoreChain = DAG.getNode(ISD::TokenFactor, MVT::Other, 4423 &Stores[0], Stores.size()); 4424 else 4425 StoreChain = DAG.getEntryNode(); 4426 4427 // Result is a load from the stack slot. 4428 return DAG.getLoad(VT, StoreChain, FIPtr, NULL, 0); 4429} 4430 4431/// CreateStackTemporary - Create a stack temporary, suitable for holding the 4432/// specified value type. 4433SDOperand SelectionDAGLegalize::CreateStackTemporary(MVT::ValueType VT) { 4434 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 4435 unsigned ByteSize = MVT::getSizeInBits(VT)/8; 4436 const Type *Ty = MVT::getTypeForValueType(VT); 4437 unsigned StackAlign = (unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty); 4438 int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign); 4439 return DAG.getFrameIndex(FrameIdx, TLI.getPointerTy()); 4440} 4441 4442void SelectionDAGLegalize::ExpandShiftParts(unsigned NodeOp, 4443 SDOperand Op, SDOperand Amt, 4444 SDOperand &Lo, SDOperand &Hi) { 4445 // Expand the subcomponents. 4446 SDOperand LHSL, LHSH; 4447 ExpandOp(Op, LHSL, LHSH); 4448 4449 SDOperand Ops[] = { LHSL, LHSH, Amt }; 4450 MVT::ValueType VT = LHSL.getValueType(); 4451 Lo = DAG.getNode(NodeOp, DAG.getNodeValueTypes(VT, VT), 2, Ops, 3); 4452 Hi = Lo.getValue(1); 4453} 4454 4455 4456/// ExpandShift - Try to find a clever way to expand this shift operation out to 4457/// smaller elements. If we can't find a way that is more efficient than a 4458/// libcall on this target, return false. Otherwise, return true with the 4459/// low-parts expanded into Lo and Hi. 4460bool SelectionDAGLegalize::ExpandShift(unsigned Opc, SDOperand Op,SDOperand Amt, 4461 SDOperand &Lo, SDOperand &Hi) { 4462 assert((Opc == ISD::SHL || Opc == ISD::SRA || Opc == ISD::SRL) && 4463 "This is not a shift!"); 4464 4465 MVT::ValueType NVT = TLI.getTypeToTransformTo(Op.getValueType()); 4466 SDOperand ShAmt = LegalizeOp(Amt); 4467 MVT::ValueType ShTy = ShAmt.getValueType(); 4468 unsigned VTBits = MVT::getSizeInBits(Op.getValueType()); 4469 unsigned NVTBits = MVT::getSizeInBits(NVT); 4470 4471 // Handle the case when Amt is an immediate. Other cases are currently broken 4472 // and are disabled. 4473 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Amt.Val)) { 4474 unsigned Cst = CN->getValue(); 4475 // Expand the incoming operand to be shifted, so that we have its parts 4476 SDOperand InL, InH; 4477 ExpandOp(Op, InL, InH); 4478 switch(Opc) { 4479 case ISD::SHL: 4480 if (Cst > VTBits) { 4481 Lo = DAG.getConstant(0, NVT); 4482 Hi = DAG.getConstant(0, NVT); 4483 } else if (Cst > NVTBits) { 4484 Lo = DAG.getConstant(0, NVT); 4485 Hi = DAG.getNode(ISD::SHL, NVT, InL, DAG.getConstant(Cst-NVTBits,ShTy)); 4486 } else if (Cst == NVTBits) { 4487 Lo = DAG.getConstant(0, NVT); 4488 Hi = InL; 4489 } else { 4490 Lo = DAG.getNode(ISD::SHL, NVT, InL, DAG.getConstant(Cst, ShTy)); 4491 Hi = DAG.getNode(ISD::OR, NVT, 4492 DAG.getNode(ISD::SHL, NVT, InH, DAG.getConstant(Cst, ShTy)), 4493 DAG.getNode(ISD::SRL, NVT, InL, DAG.getConstant(NVTBits-Cst, ShTy))); 4494 } 4495 return true; 4496 case ISD::SRL: 4497 if (Cst > VTBits) { 4498 Lo = DAG.getConstant(0, NVT); 4499 Hi = DAG.getConstant(0, NVT); 4500 } else if (Cst > NVTBits) { 4501 Lo = DAG.getNode(ISD::SRL, NVT, InH, DAG.getConstant(Cst-NVTBits,ShTy)); 4502 Hi = DAG.getConstant(0, NVT); 4503 } else if (Cst == NVTBits) { 4504 Lo = InH; 4505 Hi = DAG.getConstant(0, NVT); 4506 } else { 4507 Lo = DAG.getNode(ISD::OR, NVT, 4508 DAG.getNode(ISD::SRL, NVT, InL, DAG.getConstant(Cst, ShTy)), 4509 DAG.getNode(ISD::SHL, NVT, InH, DAG.getConstant(NVTBits-Cst, ShTy))); 4510 Hi = DAG.getNode(ISD::SRL, NVT, InH, DAG.getConstant(Cst, ShTy)); 4511 } 4512 return true; 4513 case ISD::SRA: 4514 if (Cst > VTBits) { 4515 Hi = Lo = DAG.getNode(ISD::SRA, NVT, InH, 4516 DAG.getConstant(NVTBits-1, ShTy)); 4517 } else if (Cst > NVTBits) { 4518 Lo = DAG.getNode(ISD::SRA, NVT, InH, 4519 DAG.getConstant(Cst-NVTBits, ShTy)); 4520 Hi = DAG.getNode(ISD::SRA, NVT, InH, 4521 DAG.getConstant(NVTBits-1, ShTy)); 4522 } else if (Cst == NVTBits) { 4523 Lo = InH; 4524 Hi = DAG.getNode(ISD::SRA, NVT, InH, 4525 DAG.getConstant(NVTBits-1, ShTy)); 4526 } else { 4527 Lo = DAG.getNode(ISD::OR, NVT, 4528 DAG.getNode(ISD::SRL, NVT, InL, DAG.getConstant(Cst, ShTy)), 4529 DAG.getNode(ISD::SHL, NVT, InH, DAG.getConstant(NVTBits-Cst, ShTy))); 4530 Hi = DAG.getNode(ISD::SRA, NVT, InH, DAG.getConstant(Cst, ShTy)); 4531 } 4532 return true; 4533 } 4534 } 4535 4536 // Okay, the shift amount isn't constant. However, if we can tell that it is 4537 // >= 32 or < 32, we can still simplify it, without knowing the actual value. 4538 uint64_t Mask = NVTBits, KnownZero, KnownOne; 4539 DAG.ComputeMaskedBits(Amt, Mask, KnownZero, KnownOne); 4540 4541 // If we know that the high bit of the shift amount is one, then we can do 4542 // this as a couple of simple shifts. 4543 if (KnownOne & Mask) { 4544 // Mask out the high bit, which we know is set. 4545 Amt = DAG.getNode(ISD::AND, Amt.getValueType(), Amt, 4546 DAG.getConstant(NVTBits-1, Amt.getValueType())); 4547 4548 // Expand the incoming operand to be shifted, so that we have its parts 4549 SDOperand InL, InH; 4550 ExpandOp(Op, InL, InH); 4551 switch(Opc) { 4552 case ISD::SHL: 4553 Lo = DAG.getConstant(0, NVT); // Low part is zero. 4554 Hi = DAG.getNode(ISD::SHL, NVT, InL, Amt); // High part from Lo part. 4555 return true; 4556 case ISD::SRL: 4557 Hi = DAG.getConstant(0, NVT); // Hi part is zero. 4558 Lo = DAG.getNode(ISD::SRL, NVT, InH, Amt); // Lo part from Hi part. 4559 return true; 4560 case ISD::SRA: 4561 Hi = DAG.getNode(ISD::SRA, NVT, InH, // Sign extend high part. 4562 DAG.getConstant(NVTBits-1, Amt.getValueType())); 4563 Lo = DAG.getNode(ISD::SRA, NVT, InH, Amt); // Lo part from Hi part. 4564 return true; 4565 } 4566 } 4567 4568 // If we know that the high bit of the shift amount is zero, then we can do 4569 // this as a couple of simple shifts. 4570 if (KnownZero & Mask) { 4571 // Compute 32-amt. 4572 SDOperand Amt2 = DAG.getNode(ISD::SUB, Amt.getValueType(), 4573 DAG.getConstant(NVTBits, Amt.getValueType()), 4574 Amt); 4575 4576 // Expand the incoming operand to be shifted, so that we have its parts 4577 SDOperand InL, InH; 4578 ExpandOp(Op, InL, InH); 4579 switch(Opc) { 4580 case ISD::SHL: 4581 Lo = DAG.getNode(ISD::SHL, NVT, InL, Amt); 4582 Hi = DAG.getNode(ISD::OR, NVT, 4583 DAG.getNode(ISD::SHL, NVT, InH, Amt), 4584 DAG.getNode(ISD::SRL, NVT, InL, Amt2)); 4585 return true; 4586 case ISD::SRL: 4587 Hi = DAG.getNode(ISD::SRL, NVT, InH, Amt); 4588 Lo = DAG.getNode(ISD::OR, NVT, 4589 DAG.getNode(ISD::SRL, NVT, InL, Amt), 4590 DAG.getNode(ISD::SHL, NVT, InH, Amt2)); 4591 return true; 4592 case ISD::SRA: 4593 Hi = DAG.getNode(ISD::SRA, NVT, InH, Amt); 4594 Lo = DAG.getNode(ISD::OR, NVT, 4595 DAG.getNode(ISD::SRL, NVT, InL, Amt), 4596 DAG.getNode(ISD::SHL, NVT, InH, Amt2)); 4597 return true; 4598 } 4599 } 4600 4601 return false; 4602} 4603 4604 4605// ExpandLibCall - Expand a node into a call to a libcall. If the result value 4606// does not fit into a register, return the lo part and set the hi part to the 4607// by-reg argument. If it does fit into a single register, return the result 4608// and leave the Hi part unset. 4609SDOperand SelectionDAGLegalize::ExpandLibCall(const char *Name, SDNode *Node, 4610 bool isSigned, SDOperand &Hi) { 4611 assert(!IsLegalizingCall && "Cannot overlap legalization of calls!"); 4612 // The input chain to this libcall is the entry node of the function. 4613 // Legalizing the call will automatically add the previous call to the 4614 // dependence. 4615 SDOperand InChain = DAG.getEntryNode(); 4616 4617 TargetLowering::ArgListTy Args; 4618 TargetLowering::ArgListEntry Entry; 4619 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 4620 MVT::ValueType ArgVT = Node->getOperand(i).getValueType(); 4621 const Type *ArgTy = MVT::getTypeForValueType(ArgVT); 4622 Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy; 4623 Entry.isSExt = isSigned; 4624 Args.push_back(Entry); 4625 } 4626 SDOperand Callee = DAG.getExternalSymbol(Name, TLI.getPointerTy()); 4627 4628 // Splice the libcall in wherever FindInputOutputChains tells us to. 4629 const Type *RetTy = MVT::getTypeForValueType(Node->getValueType(0)); 4630 std::pair<SDOperand,SDOperand> CallInfo = 4631 TLI.LowerCallTo(InChain, RetTy, isSigned, false, CallingConv::C, false, 4632 Callee, Args, DAG); 4633 4634 // Legalize the call sequence, starting with the chain. This will advance 4635 // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that 4636 // was added by LowerCallTo (guaranteeing proper serialization of calls). 4637 LegalizeOp(CallInfo.second); 4638 SDOperand Result; 4639 switch (getTypeAction(CallInfo.first.getValueType())) { 4640 default: assert(0 && "Unknown thing"); 4641 case Legal: 4642 Result = CallInfo.first; 4643 break; 4644 case Expand: 4645 ExpandOp(CallInfo.first, Result, Hi); 4646 break; 4647 } 4648 return Result; 4649} 4650 4651 4652/// ExpandIntToFP - Expand a [US]INT_TO_FP operation. 4653/// 4654SDOperand SelectionDAGLegalize:: 4655ExpandIntToFP(bool isSigned, MVT::ValueType DestTy, SDOperand Source) { 4656 assert(getTypeAction(Source.getValueType()) == Expand && 4657 "This is not an expansion!"); 4658 assert(Source.getValueType() == MVT::i64 && "Only handle expand from i64!"); 4659 4660 if (!isSigned) { 4661 assert(Source.getValueType() == MVT::i64 && 4662 "This only works for 64-bit -> FP"); 4663 // The 64-bit value loaded will be incorrectly if the 'sign bit' of the 4664 // incoming integer is set. To handle this, we dynamically test to see if 4665 // it is set, and, if so, add a fudge factor. 4666 SDOperand Lo, Hi; 4667 ExpandOp(Source, Lo, Hi); 4668 4669 // If this is unsigned, and not supported, first perform the conversion to 4670 // signed, then adjust the result if the sign bit is set. 4671 SDOperand SignedConv = ExpandIntToFP(true, DestTy, 4672 DAG.getNode(ISD::BUILD_PAIR, Source.getValueType(), Lo, Hi)); 4673 4674 SDOperand SignSet = DAG.getSetCC(TLI.getSetCCResultTy(), Hi, 4675 DAG.getConstant(0, Hi.getValueType()), 4676 ISD::SETLT); 4677 SDOperand Zero = getIntPtrConstant(0), Four = getIntPtrConstant(4); 4678 SDOperand CstOffset = DAG.getNode(ISD::SELECT, Zero.getValueType(), 4679 SignSet, Four, Zero); 4680 uint64_t FF = 0x5f800000ULL; 4681 if (TLI.isLittleEndian()) FF <<= 32; 4682 static Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF); 4683 4684 SDOperand CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy()); 4685 CPIdx = DAG.getNode(ISD::ADD, TLI.getPointerTy(), CPIdx, CstOffset); 4686 SDOperand FudgeInReg; 4687 if (DestTy == MVT::f32) 4688 FudgeInReg = DAG.getLoad(MVT::f32, DAG.getEntryNode(), CPIdx, NULL, 0); 4689 else if (MVT::getSizeInBits(DestTy) > MVT::getSizeInBits(MVT::f32)) 4690 // FIXME: Avoid the extend by construction the right constantpool? 4691 FudgeInReg = DAG.getExtLoad(ISD::EXTLOAD, DestTy, DAG.getEntryNode(), 4692 CPIdx, NULL, 0, MVT::f32); 4693 else 4694 assert(0 && "Unexpected conversion"); 4695 4696 MVT::ValueType SCVT = SignedConv.getValueType(); 4697 if (SCVT != DestTy) { 4698 // Destination type needs to be expanded as well. The FADD now we are 4699 // constructing will be expanded into a libcall. 4700 if (MVT::getSizeInBits(SCVT) != MVT::getSizeInBits(DestTy)) { 4701 assert(SCVT == MVT::i32 && DestTy == MVT::f64); 4702 SignedConv = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, 4703 SignedConv, SignedConv.getValue(1)); 4704 } 4705 SignedConv = DAG.getNode(ISD::BIT_CONVERT, DestTy, SignedConv); 4706 } 4707 return DAG.getNode(ISD::FADD, DestTy, SignedConv, FudgeInReg); 4708 } 4709 4710 // Check to see if the target has a custom way to lower this. If so, use it. 4711 switch (TLI.getOperationAction(ISD::SINT_TO_FP, Source.getValueType())) { 4712 default: assert(0 && "This action not implemented for this operation!"); 4713 case TargetLowering::Legal: 4714 case TargetLowering::Expand: 4715 break; // This case is handled below. 4716 case TargetLowering::Custom: { 4717 SDOperand NV = TLI.LowerOperation(DAG.getNode(ISD::SINT_TO_FP, DestTy, 4718 Source), DAG); 4719 if (NV.Val) 4720 return LegalizeOp(NV); 4721 break; // The target decided this was legal after all 4722 } 4723 } 4724 4725 // Expand the source, then glue it back together for the call. We must expand 4726 // the source in case it is shared (this pass of legalize must traverse it). 4727 SDOperand SrcLo, SrcHi; 4728 ExpandOp(Source, SrcLo, SrcHi); 4729 Source = DAG.getNode(ISD::BUILD_PAIR, Source.getValueType(), SrcLo, SrcHi); 4730 4731 RTLIB::Libcall LC; 4732 if (DestTy == MVT::f32) 4733 LC = RTLIB::SINTTOFP_I64_F32; 4734 else { 4735 assert(DestTy == MVT::f64 && "Unknown fp value type!"); 4736 LC = RTLIB::SINTTOFP_I64_F64; 4737 } 4738 4739 assert(TLI.getLibcallName(LC) && "Don't know how to expand this SINT_TO_FP!"); 4740 Source = DAG.getNode(ISD::SINT_TO_FP, DestTy, Source); 4741 SDOperand UnusedHiPart; 4742 return ExpandLibCall(TLI.getLibcallName(LC), Source.Val, isSigned, 4743 UnusedHiPart); 4744} 4745 4746/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a 4747/// INT_TO_FP operation of the specified operand when the target requests that 4748/// we expand it. At this point, we know that the result and operand types are 4749/// legal for the target. 4750SDOperand SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned, 4751 SDOperand Op0, 4752 MVT::ValueType DestVT) { 4753 if (Op0.getValueType() == MVT::i32) { 4754 // simple 32-bit [signed|unsigned] integer to float/double expansion 4755 4756 // get the stack frame index of a 8 byte buffer, pessimistically aligned 4757 MachineFunction &MF = DAG.getMachineFunction(); 4758 const Type *F64Type = MVT::getTypeForValueType(MVT::f64); 4759 unsigned StackAlign = 4760 (unsigned)TLI.getTargetData()->getPrefTypeAlignment(F64Type); 4761 int SSFI = MF.getFrameInfo()->CreateStackObject(8, StackAlign); 4762 // get address of 8 byte buffer 4763 SDOperand StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 4764 // word offset constant for Hi/Lo address computation 4765 SDOperand WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy()); 4766 // set up Hi and Lo (into buffer) address based on endian 4767 SDOperand Hi = StackSlot; 4768 SDOperand Lo = DAG.getNode(ISD::ADD, TLI.getPointerTy(), StackSlot,WordOff); 4769 if (TLI.isLittleEndian()) 4770 std::swap(Hi, Lo); 4771 4772 // if signed map to unsigned space 4773 SDOperand Op0Mapped; 4774 if (isSigned) { 4775 // constant used to invert sign bit (signed to unsigned mapping) 4776 SDOperand SignBit = DAG.getConstant(0x80000000u, MVT::i32); 4777 Op0Mapped = DAG.getNode(ISD::XOR, MVT::i32, Op0, SignBit); 4778 } else { 4779 Op0Mapped = Op0; 4780 } 4781 // store the lo of the constructed double - based on integer input 4782 SDOperand Store1 = DAG.getStore(DAG.getEntryNode(), 4783 Op0Mapped, Lo, NULL, 0); 4784 // initial hi portion of constructed double 4785 SDOperand InitialHi = DAG.getConstant(0x43300000u, MVT::i32); 4786 // store the hi of the constructed double - biased exponent 4787 SDOperand Store2=DAG.getStore(Store1, InitialHi, Hi, NULL, 0); 4788 // load the constructed double 4789 SDOperand Load = DAG.getLoad(MVT::f64, Store2, StackSlot, NULL, 0); 4790 // FP constant to bias correct the final result 4791 SDOperand Bias = DAG.getConstantFP(isSigned ? 4792 BitsToDouble(0x4330000080000000ULL) 4793 : BitsToDouble(0x4330000000000000ULL), 4794 MVT::f64); 4795 // subtract the bias 4796 SDOperand Sub = DAG.getNode(ISD::FSUB, MVT::f64, Load, Bias); 4797 // final result 4798 SDOperand Result; 4799 // handle final rounding 4800 if (DestVT == MVT::f64) { 4801 // do nothing 4802 Result = Sub; 4803 } else if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(MVT::f64)) { 4804 Result = DAG.getNode(ISD::FP_ROUND, DestVT, Sub); 4805 } else if (MVT::getSizeInBits(DestVT) > MVT::getSizeInBits(MVT::f64)) { 4806 Result = DAG.getNode(ISD::FP_EXTEND, DestVT, Sub); 4807 } 4808 return Result; 4809 } 4810 assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet"); 4811 SDOperand Tmp1 = DAG.getNode(ISD::SINT_TO_FP, DestVT, Op0); 4812 4813 SDOperand SignSet = DAG.getSetCC(TLI.getSetCCResultTy(), Op0, 4814 DAG.getConstant(0, Op0.getValueType()), 4815 ISD::SETLT); 4816 SDOperand Zero = getIntPtrConstant(0), Four = getIntPtrConstant(4); 4817 SDOperand CstOffset = DAG.getNode(ISD::SELECT, Zero.getValueType(), 4818 SignSet, Four, Zero); 4819 4820 // If the sign bit of the integer is set, the large number will be treated 4821 // as a negative number. To counteract this, the dynamic code adds an 4822 // offset depending on the data type. 4823 uint64_t FF; 4824 switch (Op0.getValueType()) { 4825 default: assert(0 && "Unsupported integer type!"); 4826 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) 4827 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) 4828 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) 4829 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) 4830 } 4831 if (TLI.isLittleEndian()) FF <<= 32; 4832 static Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF); 4833 4834 SDOperand CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy()); 4835 CPIdx = DAG.getNode(ISD::ADD, TLI.getPointerTy(), CPIdx, CstOffset); 4836 SDOperand FudgeInReg; 4837 if (DestVT == MVT::f32) 4838 FudgeInReg = DAG.getLoad(MVT::f32, DAG.getEntryNode(), CPIdx, NULL, 0); 4839 else { 4840 FudgeInReg = LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, DestVT, 4841 DAG.getEntryNode(), CPIdx, 4842 NULL, 0, MVT::f32)); 4843 } 4844 4845 return DAG.getNode(ISD::FADD, DestVT, Tmp1, FudgeInReg); 4846} 4847 4848/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a 4849/// *INT_TO_FP operation of the specified operand when the target requests that 4850/// we promote it. At this point, we know that the result and operand types are 4851/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP 4852/// operation that takes a larger input. 4853SDOperand SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDOperand LegalOp, 4854 MVT::ValueType DestVT, 4855 bool isSigned) { 4856 // First step, figure out the appropriate *INT_TO_FP operation to use. 4857 MVT::ValueType NewInTy = LegalOp.getValueType(); 4858 4859 unsigned OpToUse = 0; 4860 4861 // Scan for the appropriate larger type to use. 4862 while (1) { 4863 NewInTy = (MVT::ValueType)(NewInTy+1); 4864 assert(MVT::isInteger(NewInTy) && "Ran out of possibilities!"); 4865 4866 // If the target supports SINT_TO_FP of this type, use it. 4867 switch (TLI.getOperationAction(ISD::SINT_TO_FP, NewInTy)) { 4868 default: break; 4869 case TargetLowering::Legal: 4870 if (!TLI.isTypeLegal(NewInTy)) 4871 break; // Can't use this datatype. 4872 // FALL THROUGH. 4873 case TargetLowering::Custom: 4874 OpToUse = ISD::SINT_TO_FP; 4875 break; 4876 } 4877 if (OpToUse) break; 4878 if (isSigned) continue; 4879 4880 // If the target supports UINT_TO_FP of this type, use it. 4881 switch (TLI.getOperationAction(ISD::UINT_TO_FP, NewInTy)) { 4882 default: break; 4883 case TargetLowering::Legal: 4884 if (!TLI.isTypeLegal(NewInTy)) 4885 break; // Can't use this datatype. 4886 // FALL THROUGH. 4887 case TargetLowering::Custom: 4888 OpToUse = ISD::UINT_TO_FP; 4889 break; 4890 } 4891 if (OpToUse) break; 4892 4893 // Otherwise, try a larger type. 4894 } 4895 4896 // Okay, we found the operation and type to use. Zero extend our input to the 4897 // desired type then run the operation on it. 4898 return DAG.getNode(OpToUse, DestVT, 4899 DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 4900 NewInTy, LegalOp)); 4901} 4902 4903/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a 4904/// FP_TO_*INT operation of the specified operand when the target requests that 4905/// we promote it. At this point, we know that the result and operand types are 4906/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT 4907/// operation that returns a larger result. 4908SDOperand SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDOperand LegalOp, 4909 MVT::ValueType DestVT, 4910 bool isSigned) { 4911 // First step, figure out the appropriate FP_TO*INT operation to use. 4912 MVT::ValueType NewOutTy = DestVT; 4913 4914 unsigned OpToUse = 0; 4915 4916 // Scan for the appropriate larger type to use. 4917 while (1) { 4918 NewOutTy = (MVT::ValueType)(NewOutTy+1); 4919 assert(MVT::isInteger(NewOutTy) && "Ran out of possibilities!"); 4920 4921 // If the target supports FP_TO_SINT returning this type, use it. 4922 switch (TLI.getOperationAction(ISD::FP_TO_SINT, NewOutTy)) { 4923 default: break; 4924 case TargetLowering::Legal: 4925 if (!TLI.isTypeLegal(NewOutTy)) 4926 break; // Can't use this datatype. 4927 // FALL THROUGH. 4928 case TargetLowering::Custom: 4929 OpToUse = ISD::FP_TO_SINT; 4930 break; 4931 } 4932 if (OpToUse) break; 4933 4934 // If the target supports FP_TO_UINT of this type, use it. 4935 switch (TLI.getOperationAction(ISD::FP_TO_UINT, NewOutTy)) { 4936 default: break; 4937 case TargetLowering::Legal: 4938 if (!TLI.isTypeLegal(NewOutTy)) 4939 break; // Can't use this datatype. 4940 // FALL THROUGH. 4941 case TargetLowering::Custom: 4942 OpToUse = ISD::FP_TO_UINT; 4943 break; 4944 } 4945 if (OpToUse) break; 4946 4947 // Otherwise, try a larger type. 4948 } 4949 4950 // Okay, we found the operation and type to use. Truncate the result of the 4951 // extended FP_TO_*INT operation to the desired size. 4952 return DAG.getNode(ISD::TRUNCATE, DestVT, 4953 DAG.getNode(OpToUse, NewOutTy, LegalOp)); 4954} 4955 4956/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation. 4957/// 4958SDOperand SelectionDAGLegalize::ExpandBSWAP(SDOperand Op) { 4959 MVT::ValueType VT = Op.getValueType(); 4960 MVT::ValueType SHVT = TLI.getShiftAmountTy(); 4961 SDOperand Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 4962 switch (VT) { 4963 default: assert(0 && "Unhandled Expand type in BSWAP!"); abort(); 4964 case MVT::i16: 4965 Tmp2 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(8, SHVT)); 4966 Tmp1 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(8, SHVT)); 4967 return DAG.getNode(ISD::OR, VT, Tmp1, Tmp2); 4968 case MVT::i32: 4969 Tmp4 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(24, SHVT)); 4970 Tmp3 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(8, SHVT)); 4971 Tmp2 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(8, SHVT)); 4972 Tmp1 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(24, SHVT)); 4973 Tmp3 = DAG.getNode(ISD::AND, VT, Tmp3, DAG.getConstant(0xFF0000, VT)); 4974 Tmp2 = DAG.getNode(ISD::AND, VT, Tmp2, DAG.getConstant(0xFF00, VT)); 4975 Tmp4 = DAG.getNode(ISD::OR, VT, Tmp4, Tmp3); 4976 Tmp2 = DAG.getNode(ISD::OR, VT, Tmp2, Tmp1); 4977 return DAG.getNode(ISD::OR, VT, Tmp4, Tmp2); 4978 case MVT::i64: 4979 Tmp8 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(56, SHVT)); 4980 Tmp7 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(40, SHVT)); 4981 Tmp6 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(24, SHVT)); 4982 Tmp5 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(8, SHVT)); 4983 Tmp4 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(8, SHVT)); 4984 Tmp3 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(24, SHVT)); 4985 Tmp2 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(40, SHVT)); 4986 Tmp1 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(56, SHVT)); 4987 Tmp7 = DAG.getNode(ISD::AND, VT, Tmp7, DAG.getConstant(255ULL<<48, VT)); 4988 Tmp6 = DAG.getNode(ISD::AND, VT, Tmp6, DAG.getConstant(255ULL<<40, VT)); 4989 Tmp5 = DAG.getNode(ISD::AND, VT, Tmp5, DAG.getConstant(255ULL<<32, VT)); 4990 Tmp4 = DAG.getNode(ISD::AND, VT, Tmp4, DAG.getConstant(255ULL<<24, VT)); 4991 Tmp3 = DAG.getNode(ISD::AND, VT, Tmp3, DAG.getConstant(255ULL<<16, VT)); 4992 Tmp2 = DAG.getNode(ISD::AND, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT)); 4993 Tmp8 = DAG.getNode(ISD::OR, VT, Tmp8, Tmp7); 4994 Tmp6 = DAG.getNode(ISD::OR, VT, Tmp6, Tmp5); 4995 Tmp4 = DAG.getNode(ISD::OR, VT, Tmp4, Tmp3); 4996 Tmp2 = DAG.getNode(ISD::OR, VT, Tmp2, Tmp1); 4997 Tmp8 = DAG.getNode(ISD::OR, VT, Tmp8, Tmp6); 4998 Tmp4 = DAG.getNode(ISD::OR, VT, Tmp4, Tmp2); 4999 return DAG.getNode(ISD::OR, VT, Tmp8, Tmp4); 5000 } 5001} 5002 5003/// ExpandBitCount - Expand the specified bitcount instruction into operations. 5004/// 5005SDOperand SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDOperand Op) { 5006 switch (Opc) { 5007 default: assert(0 && "Cannot expand this yet!"); 5008 case ISD::CTPOP: { 5009 static const uint64_t mask[6] = { 5010 0x5555555555555555ULL, 0x3333333333333333ULL, 5011 0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL, 5012 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL 5013 }; 5014 MVT::ValueType VT = Op.getValueType(); 5015 MVT::ValueType ShVT = TLI.getShiftAmountTy(); 5016 unsigned len = MVT::getSizeInBits(VT); 5017 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) { 5018 //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8]) 5019 SDOperand Tmp2 = DAG.getConstant(mask[i], VT); 5020 SDOperand Tmp3 = DAG.getConstant(1ULL << i, ShVT); 5021 Op = DAG.getNode(ISD::ADD, VT, DAG.getNode(ISD::AND, VT, Op, Tmp2), 5022 DAG.getNode(ISD::AND, VT, 5023 DAG.getNode(ISD::SRL, VT, Op, Tmp3),Tmp2)); 5024 } 5025 return Op; 5026 } 5027 case ISD::CTLZ: { 5028 // for now, we do this: 5029 // x = x | (x >> 1); 5030 // x = x | (x >> 2); 5031 // ... 5032 // x = x | (x >>16); 5033 // x = x | (x >>32); // for 64-bit input 5034 // return popcount(~x); 5035 // 5036 // but see also: http://www.hackersdelight.org/HDcode/nlz.cc 5037 MVT::ValueType VT = Op.getValueType(); 5038 MVT::ValueType ShVT = TLI.getShiftAmountTy(); 5039 unsigned len = MVT::getSizeInBits(VT); 5040 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) { 5041 SDOperand Tmp3 = DAG.getConstant(1ULL << i, ShVT); 5042 Op = DAG.getNode(ISD::OR, VT, Op, DAG.getNode(ISD::SRL, VT, Op, Tmp3)); 5043 } 5044 Op = DAG.getNode(ISD::XOR, VT, Op, DAG.getConstant(~0ULL, VT)); 5045 return DAG.getNode(ISD::CTPOP, VT, Op); 5046 } 5047 case ISD::CTTZ: { 5048 // for now, we use: { return popcount(~x & (x - 1)); } 5049 // unless the target has ctlz but not ctpop, in which case we use: 5050 // { return 32 - nlz(~x & (x-1)); } 5051 // see also http://www.hackersdelight.org/HDcode/ntz.cc 5052 MVT::ValueType VT = Op.getValueType(); 5053 SDOperand Tmp2 = DAG.getConstant(~0ULL, VT); 5054 SDOperand Tmp3 = DAG.getNode(ISD::AND, VT, 5055 DAG.getNode(ISD::XOR, VT, Op, Tmp2), 5056 DAG.getNode(ISD::SUB, VT, Op, DAG.getConstant(1, VT))); 5057 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 5058 if (!TLI.isOperationLegal(ISD::CTPOP, VT) && 5059 TLI.isOperationLegal(ISD::CTLZ, VT)) 5060 return DAG.getNode(ISD::SUB, VT, 5061 DAG.getConstant(MVT::getSizeInBits(VT), VT), 5062 DAG.getNode(ISD::CTLZ, VT, Tmp3)); 5063 return DAG.getNode(ISD::CTPOP, VT, Tmp3); 5064 } 5065 } 5066} 5067 5068/// ExpandOp - Expand the specified SDOperand into its two component pieces 5069/// Lo&Hi. Note that the Op MUST be an expanded type. As a result of this, the 5070/// LegalizeNodes map is filled in for any results that are not expanded, the 5071/// ExpandedNodes map is filled in for any results that are expanded, and the 5072/// Lo/Hi values are returned. 5073void SelectionDAGLegalize::ExpandOp(SDOperand Op, SDOperand &Lo, SDOperand &Hi){ 5074 MVT::ValueType VT = Op.getValueType(); 5075 MVT::ValueType NVT = TLI.getTypeToTransformTo(VT); 5076 SDNode *Node = Op.Val; 5077 assert(getTypeAction(VT) == Expand && "Not an expanded type!"); 5078 assert(((MVT::isInteger(NVT) && NVT < VT) || MVT::isFloatingPoint(VT) || 5079 MVT::isVector(VT)) && 5080 "Cannot expand to FP value or to larger int value!"); 5081 5082 // See if we already expanded it. 5083 DenseMap<SDOperand, std::pair<SDOperand, SDOperand> >::iterator I 5084 = ExpandedNodes.find(Op); 5085 if (I != ExpandedNodes.end()) { 5086 Lo = I->second.first; 5087 Hi = I->second.second; 5088 return; 5089 } 5090 5091 switch (Node->getOpcode()) { 5092 case ISD::CopyFromReg: 5093 assert(0 && "CopyFromReg must be legal!"); 5094 default: 5095#ifndef NDEBUG 5096 cerr << "NODE: "; Node->dump(&DAG); cerr << "\n"; 5097#endif 5098 assert(0 && "Do not know how to expand this operator!"); 5099 abort(); 5100 case ISD::UNDEF: 5101 NVT = TLI.getTypeToExpandTo(VT); 5102 Lo = DAG.getNode(ISD::UNDEF, NVT); 5103 Hi = DAG.getNode(ISD::UNDEF, NVT); 5104 break; 5105 case ISD::Constant: { 5106 uint64_t Cst = cast<ConstantSDNode>(Node)->getValue(); 5107 Lo = DAG.getConstant(Cst, NVT); 5108 Hi = DAG.getConstant(Cst >> MVT::getSizeInBits(NVT), NVT); 5109 break; 5110 } 5111 case ISD::ConstantFP: { 5112 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 5113 Lo = ExpandConstantFP(CFP, false, DAG, TLI); 5114 if (getTypeAction(Lo.getValueType()) == Expand) 5115 ExpandOp(Lo, Lo, Hi); 5116 break; 5117 } 5118 case ISD::BUILD_PAIR: 5119 // Return the operands. 5120 Lo = Node->getOperand(0); 5121 Hi = Node->getOperand(1); 5122 break; 5123 5124 case ISD::SIGN_EXTEND_INREG: 5125 ExpandOp(Node->getOperand(0), Lo, Hi); 5126 // sext_inreg the low part if needed. 5127 Lo = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Lo, Node->getOperand(1)); 5128 5129 // The high part gets the sign extension from the lo-part. This handles 5130 // things like sextinreg V:i64 from i8. 5131 Hi = DAG.getNode(ISD::SRA, NVT, Lo, 5132 DAG.getConstant(MVT::getSizeInBits(NVT)-1, 5133 TLI.getShiftAmountTy())); 5134 break; 5135 5136 case ISD::BSWAP: { 5137 ExpandOp(Node->getOperand(0), Lo, Hi); 5138 SDOperand TempLo = DAG.getNode(ISD::BSWAP, NVT, Hi); 5139 Hi = DAG.getNode(ISD::BSWAP, NVT, Lo); 5140 Lo = TempLo; 5141 break; 5142 } 5143 5144 case ISD::CTPOP: 5145 ExpandOp(Node->getOperand(0), Lo, Hi); 5146 Lo = DAG.getNode(ISD::ADD, NVT, // ctpop(HL) -> ctpop(H)+ctpop(L) 5147 DAG.getNode(ISD::CTPOP, NVT, Lo), 5148 DAG.getNode(ISD::CTPOP, NVT, Hi)); 5149 Hi = DAG.getConstant(0, NVT); 5150 break; 5151 5152 case ISD::CTLZ: { 5153 // ctlz (HL) -> ctlz(H) != 32 ? ctlz(H) : (ctlz(L)+32) 5154 ExpandOp(Node->getOperand(0), Lo, Hi); 5155 SDOperand BitsC = DAG.getConstant(MVT::getSizeInBits(NVT), NVT); 5156 SDOperand HLZ = DAG.getNode(ISD::CTLZ, NVT, Hi); 5157 SDOperand TopNotZero = DAG.getSetCC(TLI.getSetCCResultTy(), HLZ, BitsC, 5158 ISD::SETNE); 5159 SDOperand LowPart = DAG.getNode(ISD::CTLZ, NVT, Lo); 5160 LowPart = DAG.getNode(ISD::ADD, NVT, LowPart, BitsC); 5161 5162 Lo = DAG.getNode(ISD::SELECT, NVT, TopNotZero, HLZ, LowPart); 5163 Hi = DAG.getConstant(0, NVT); 5164 break; 5165 } 5166 5167 case ISD::CTTZ: { 5168 // cttz (HL) -> cttz(L) != 32 ? cttz(L) : (cttz(H)+32) 5169 ExpandOp(Node->getOperand(0), Lo, Hi); 5170 SDOperand BitsC = DAG.getConstant(MVT::getSizeInBits(NVT), NVT); 5171 SDOperand LTZ = DAG.getNode(ISD::CTTZ, NVT, Lo); 5172 SDOperand BotNotZero = DAG.getSetCC(TLI.getSetCCResultTy(), LTZ, BitsC, 5173 ISD::SETNE); 5174 SDOperand HiPart = DAG.getNode(ISD::CTTZ, NVT, Hi); 5175 HiPart = DAG.getNode(ISD::ADD, NVT, HiPart, BitsC); 5176 5177 Lo = DAG.getNode(ISD::SELECT, NVT, BotNotZero, LTZ, HiPart); 5178 Hi = DAG.getConstant(0, NVT); 5179 break; 5180 } 5181 5182 case ISD::VAARG: { 5183 SDOperand Ch = Node->getOperand(0); // Legalize the chain. 5184 SDOperand Ptr = Node->getOperand(1); // Legalize the pointer. 5185 Lo = DAG.getVAArg(NVT, Ch, Ptr, Node->getOperand(2)); 5186 Hi = DAG.getVAArg(NVT, Lo.getValue(1), Ptr, Node->getOperand(2)); 5187 5188 // Remember that we legalized the chain. 5189 Hi = LegalizeOp(Hi); 5190 AddLegalizedOperand(Op.getValue(1), Hi.getValue(1)); 5191 if (!TLI.isLittleEndian()) 5192 std::swap(Lo, Hi); 5193 break; 5194 } 5195 5196 case ISD::LOAD: { 5197 LoadSDNode *LD = cast<LoadSDNode>(Node); 5198 SDOperand Ch = LD->getChain(); // Legalize the chain. 5199 SDOperand Ptr = LD->getBasePtr(); // Legalize the pointer. 5200 ISD::LoadExtType ExtType = LD->getExtensionType(); 5201 int SVOffset = LD->getSrcValueOffset(); 5202 unsigned Alignment = LD->getAlignment(); 5203 bool isVolatile = LD->isVolatile(); 5204 5205 if (ExtType == ISD::NON_EXTLOAD) { 5206 Lo = DAG.getLoad(NVT, Ch, Ptr, LD->getSrcValue(), SVOffset, 5207 isVolatile, Alignment); 5208 if (VT == MVT::f32 || VT == MVT::f64) { 5209 // f32->i32 or f64->i64 one to one expansion. 5210 // Remember that we legalized the chain. 5211 AddLegalizedOperand(SDOperand(Node, 1), LegalizeOp(Lo.getValue(1))); 5212 // Recursively expand the new load. 5213 if (getTypeAction(NVT) == Expand) 5214 ExpandOp(Lo, Lo, Hi); 5215 break; 5216 } 5217 5218 // Increment the pointer to the other half. 5219 unsigned IncrementSize = MVT::getSizeInBits(Lo.getValueType())/8; 5220 Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, 5221 getIntPtrConstant(IncrementSize)); 5222 SVOffset += IncrementSize; 5223 if (Alignment > IncrementSize) 5224 Alignment = IncrementSize; 5225 Hi = DAG.getLoad(NVT, Ch, Ptr, LD->getSrcValue(), SVOffset, 5226 isVolatile, Alignment); 5227 5228 // Build a factor node to remember that this load is independent of the 5229 // other one. 5230 SDOperand TF = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), 5231 Hi.getValue(1)); 5232 5233 // Remember that we legalized the chain. 5234 AddLegalizedOperand(Op.getValue(1), LegalizeOp(TF)); 5235 if (!TLI.isLittleEndian()) 5236 std::swap(Lo, Hi); 5237 } else { 5238 MVT::ValueType EVT = LD->getLoadedVT(); 5239 5240 if (VT == MVT::f64 && EVT == MVT::f32) { 5241 // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND 5242 SDOperand Load = DAG.getLoad(EVT, Ch, Ptr, LD->getSrcValue(), 5243 SVOffset, isVolatile, Alignment); 5244 // Remember that we legalized the chain. 5245 AddLegalizedOperand(SDOperand(Node, 1), LegalizeOp(Load.getValue(1))); 5246 ExpandOp(DAG.getNode(ISD::FP_EXTEND, VT, Load), Lo, Hi); 5247 break; 5248 } 5249 5250 if (EVT == NVT) 5251 Lo = DAG.getLoad(NVT, Ch, Ptr, LD->getSrcValue(), 5252 SVOffset, isVolatile, Alignment); 5253 else 5254 Lo = DAG.getExtLoad(ExtType, NVT, Ch, Ptr, LD->getSrcValue(), 5255 SVOffset, EVT, isVolatile, 5256 Alignment); 5257 5258 // Remember that we legalized the chain. 5259 AddLegalizedOperand(SDOperand(Node, 1), LegalizeOp(Lo.getValue(1))); 5260 5261 if (ExtType == ISD::SEXTLOAD) { 5262 // The high part is obtained by SRA'ing all but one of the bits of the 5263 // lo part. 5264 unsigned LoSize = MVT::getSizeInBits(Lo.getValueType()); 5265 Hi = DAG.getNode(ISD::SRA, NVT, Lo, 5266 DAG.getConstant(LoSize-1, TLI.getShiftAmountTy())); 5267 } else if (ExtType == ISD::ZEXTLOAD) { 5268 // The high part is just a zero. 5269 Hi = DAG.getConstant(0, NVT); 5270 } else /* if (ExtType == ISD::EXTLOAD) */ { 5271 // The high part is undefined. 5272 Hi = DAG.getNode(ISD::UNDEF, NVT); 5273 } 5274 } 5275 break; 5276 } 5277 case ISD::AND: 5278 case ISD::OR: 5279 case ISD::XOR: { // Simple logical operators -> two trivial pieces. 5280 SDOperand LL, LH, RL, RH; 5281 ExpandOp(Node->getOperand(0), LL, LH); 5282 ExpandOp(Node->getOperand(1), RL, RH); 5283 Lo = DAG.getNode(Node->getOpcode(), NVT, LL, RL); 5284 Hi = DAG.getNode(Node->getOpcode(), NVT, LH, RH); 5285 break; 5286 } 5287 case ISD::SELECT: { 5288 SDOperand LL, LH, RL, RH; 5289 ExpandOp(Node->getOperand(1), LL, LH); 5290 ExpandOp(Node->getOperand(2), RL, RH); 5291 if (getTypeAction(NVT) == Expand) 5292 NVT = TLI.getTypeToExpandTo(NVT); 5293 Lo = DAG.getNode(ISD::SELECT, NVT, Node->getOperand(0), LL, RL); 5294 if (VT != MVT::f32) 5295 Hi = DAG.getNode(ISD::SELECT, NVT, Node->getOperand(0), LH, RH); 5296 break; 5297 } 5298 case ISD::SELECT_CC: { 5299 SDOperand TL, TH, FL, FH; 5300 ExpandOp(Node->getOperand(2), TL, TH); 5301 ExpandOp(Node->getOperand(3), FL, FH); 5302 if (getTypeAction(NVT) == Expand) 5303 NVT = TLI.getTypeToExpandTo(NVT); 5304 Lo = DAG.getNode(ISD::SELECT_CC, NVT, Node->getOperand(0), 5305 Node->getOperand(1), TL, FL, Node->getOperand(4)); 5306 if (VT != MVT::f32) 5307 Hi = DAG.getNode(ISD::SELECT_CC, NVT, Node->getOperand(0), 5308 Node->getOperand(1), TH, FH, Node->getOperand(4)); 5309 break; 5310 } 5311 case ISD::ANY_EXTEND: 5312 // The low part is any extension of the input (which degenerates to a copy). 5313 Lo = DAG.getNode(ISD::ANY_EXTEND, NVT, Node->getOperand(0)); 5314 // The high part is undefined. 5315 Hi = DAG.getNode(ISD::UNDEF, NVT); 5316 break; 5317 case ISD::SIGN_EXTEND: { 5318 // The low part is just a sign extension of the input (which degenerates to 5319 // a copy). 5320 Lo = DAG.getNode(ISD::SIGN_EXTEND, NVT, Node->getOperand(0)); 5321 5322 // The high part is obtained by SRA'ing all but one of the bits of the lo 5323 // part. 5324 unsigned LoSize = MVT::getSizeInBits(Lo.getValueType()); 5325 Hi = DAG.getNode(ISD::SRA, NVT, Lo, 5326 DAG.getConstant(LoSize-1, TLI.getShiftAmountTy())); 5327 break; 5328 } 5329 case ISD::ZERO_EXTEND: 5330 // The low part is just a zero extension of the input (which degenerates to 5331 // a copy). 5332 Lo = DAG.getNode(ISD::ZERO_EXTEND, NVT, Node->getOperand(0)); 5333 5334 // The high part is just a zero. 5335 Hi = DAG.getConstant(0, NVT); 5336 break; 5337 5338 case ISD::TRUNCATE: { 5339 // The input value must be larger than this value. Expand *it*. 5340 SDOperand NewLo; 5341 ExpandOp(Node->getOperand(0), NewLo, Hi); 5342 5343 // The low part is now either the right size, or it is closer. If not the 5344 // right size, make an illegal truncate so we recursively expand it. 5345 if (NewLo.getValueType() != Node->getValueType(0)) 5346 NewLo = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), NewLo); 5347 ExpandOp(NewLo, Lo, Hi); 5348 break; 5349 } 5350 5351 case ISD::BIT_CONVERT: { 5352 SDOperand Tmp; 5353 if (TLI.getOperationAction(ISD::BIT_CONVERT, VT) == TargetLowering::Custom){ 5354 // If the target wants to, allow it to lower this itself. 5355 switch (getTypeAction(Node->getOperand(0).getValueType())) { 5356 case Expand: assert(0 && "cannot expand FP!"); 5357 case Legal: Tmp = LegalizeOp(Node->getOperand(0)); break; 5358 case Promote: Tmp = PromoteOp (Node->getOperand(0)); break; 5359 } 5360 Tmp = TLI.LowerOperation(DAG.getNode(ISD::BIT_CONVERT, VT, Tmp), DAG); 5361 } 5362 5363 // f32 / f64 must be expanded to i32 / i64. 5364 if (VT == MVT::f32 || VT == MVT::f64) { 5365 Lo = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0)); 5366 if (getTypeAction(NVT) == Expand) 5367 ExpandOp(Lo, Lo, Hi); 5368 break; 5369 } 5370 5371 // If source operand will be expanded to the same type as VT, i.e. 5372 // i64 <- f64, i32 <- f32, expand the source operand instead. 5373 MVT::ValueType VT0 = Node->getOperand(0).getValueType(); 5374 if (getTypeAction(VT0) == Expand && TLI.getTypeToTransformTo(VT0) == VT) { 5375 ExpandOp(Node->getOperand(0), Lo, Hi); 5376 break; 5377 } 5378 5379 // Turn this into a load/store pair by default. 5380 if (Tmp.Val == 0) 5381 Tmp = ExpandBIT_CONVERT(VT, Node->getOperand(0)); 5382 5383 ExpandOp(Tmp, Lo, Hi); 5384 break; 5385 } 5386 5387 case ISD::READCYCLECOUNTER: 5388 assert(TLI.getOperationAction(ISD::READCYCLECOUNTER, VT) == 5389 TargetLowering::Custom && 5390 "Must custom expand ReadCycleCounter"); 5391 Lo = TLI.LowerOperation(Op, DAG); 5392 assert(Lo.Val && "Node must be custom expanded!"); 5393 Hi = Lo.getValue(1); 5394 AddLegalizedOperand(SDOperand(Node, 1), // Remember we legalized the chain. 5395 LegalizeOp(Lo.getValue(2))); 5396 break; 5397 5398 // These operators cannot be expanded directly, emit them as calls to 5399 // library functions. 5400 case ISD::FP_TO_SINT: { 5401 if (TLI.getOperationAction(ISD::FP_TO_SINT, VT) == TargetLowering::Custom) { 5402 SDOperand Op; 5403 switch (getTypeAction(Node->getOperand(0).getValueType())) { 5404 case Expand: assert(0 && "cannot expand FP!"); 5405 case Legal: Op = LegalizeOp(Node->getOperand(0)); break; 5406 case Promote: Op = PromoteOp (Node->getOperand(0)); break; 5407 } 5408 5409 Op = TLI.LowerOperation(DAG.getNode(ISD::FP_TO_SINT, VT, Op), DAG); 5410 5411 // Now that the custom expander is done, expand the result, which is still 5412 // VT. 5413 if (Op.Val) { 5414 ExpandOp(Op, Lo, Hi); 5415 break; 5416 } 5417 } 5418 5419 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 5420 if (Node->getOperand(0).getValueType() == MVT::f32) 5421 LC = RTLIB::FPTOSINT_F32_I64; 5422 else if (Node->getOperand(0).getValueType() == MVT::f64) 5423 LC = RTLIB::FPTOSINT_F64_I64; 5424 else if (Node->getOperand(0).getValueType() == MVT::f80) 5425 LC = RTLIB::FPTOSINT_F80_I64; 5426 else if (Node->getOperand(0).getValueType() == MVT::ppcf128) 5427 LC = RTLIB::FPTOSINT_PPCF128_I64; 5428 Lo = ExpandLibCall(TLI.getLibcallName(LC), Node, 5429 false/*sign irrelevant*/, Hi); 5430 break; 5431 } 5432 5433 case ISD::FP_TO_UINT: { 5434 if (TLI.getOperationAction(ISD::FP_TO_UINT, VT) == TargetLowering::Custom) { 5435 SDOperand Op; 5436 switch (getTypeAction(Node->getOperand(0).getValueType())) { 5437 case Expand: assert(0 && "cannot expand FP!"); 5438 case Legal: Op = LegalizeOp(Node->getOperand(0)); break; 5439 case Promote: Op = PromoteOp (Node->getOperand(0)); break; 5440 } 5441 5442 Op = TLI.LowerOperation(DAG.getNode(ISD::FP_TO_UINT, VT, Op), DAG); 5443 5444 // Now that the custom expander is done, expand the result. 5445 if (Op.Val) { 5446 ExpandOp(Op, Lo, Hi); 5447 break; 5448 } 5449 } 5450 5451 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 5452 if (Node->getOperand(0).getValueType() == MVT::f32) 5453 LC = RTLIB::FPTOUINT_F32_I64; 5454 else if (Node->getOperand(0).getValueType() == MVT::f64) 5455 LC = RTLIB::FPTOUINT_F64_I64; 5456 else if (Node->getOperand(0).getValueType() == MVT::f80) 5457 LC = RTLIB::FPTOUINT_F80_I64; 5458 else if (Node->getOperand(0).getValueType() == MVT::ppcf128) 5459 LC = RTLIB::FPTOUINT_PPCF128_I64; 5460 Lo = ExpandLibCall(TLI.getLibcallName(LC), Node, 5461 false/*sign irrelevant*/, Hi); 5462 break; 5463 } 5464 5465 case ISD::SHL: { 5466 // If the target wants custom lowering, do so. 5467 SDOperand ShiftAmt = LegalizeOp(Node->getOperand(1)); 5468 if (TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Custom) { 5469 SDOperand Op = DAG.getNode(ISD::SHL, VT, Node->getOperand(0), ShiftAmt); 5470 Op = TLI.LowerOperation(Op, DAG); 5471 if (Op.Val) { 5472 // Now that the custom expander is done, expand the result, which is 5473 // still VT. 5474 ExpandOp(Op, Lo, Hi); 5475 break; 5476 } 5477 } 5478 5479 // If ADDC/ADDE are supported and if the shift amount is a constant 1, emit 5480 // this X << 1 as X+X. 5481 if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(ShiftAmt)) { 5482 if (ShAmt->getValue() == 1 && TLI.isOperationLegal(ISD::ADDC, NVT) && 5483 TLI.isOperationLegal(ISD::ADDE, NVT)) { 5484 SDOperand LoOps[2], HiOps[3]; 5485 ExpandOp(Node->getOperand(0), LoOps[0], HiOps[0]); 5486 SDVTList VTList = DAG.getVTList(LoOps[0].getValueType(), MVT::Flag); 5487 LoOps[1] = LoOps[0]; 5488 Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2); 5489 5490 HiOps[1] = HiOps[0]; 5491 HiOps[2] = Lo.getValue(1); 5492 Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3); 5493 break; 5494 } 5495 } 5496 5497 // If we can emit an efficient shift operation, do so now. 5498 if (ExpandShift(ISD::SHL, Node->getOperand(0), ShiftAmt, Lo, Hi)) 5499 break; 5500 5501 // If this target supports SHL_PARTS, use it. 5502 TargetLowering::LegalizeAction Action = 5503 TLI.getOperationAction(ISD::SHL_PARTS, NVT); 5504 if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) || 5505 Action == TargetLowering::Custom) { 5506 ExpandShiftParts(ISD::SHL_PARTS, Node->getOperand(0), ShiftAmt, Lo, Hi); 5507 break; 5508 } 5509 5510 // Otherwise, emit a libcall. 5511 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SHL_I64), Node, 5512 false/*left shift=unsigned*/, Hi); 5513 break; 5514 } 5515 5516 case ISD::SRA: { 5517 // If the target wants custom lowering, do so. 5518 SDOperand ShiftAmt = LegalizeOp(Node->getOperand(1)); 5519 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Custom) { 5520 SDOperand Op = DAG.getNode(ISD::SRA, VT, Node->getOperand(0), ShiftAmt); 5521 Op = TLI.LowerOperation(Op, DAG); 5522 if (Op.Val) { 5523 // Now that the custom expander is done, expand the result, which is 5524 // still VT. 5525 ExpandOp(Op, Lo, Hi); 5526 break; 5527 } 5528 } 5529 5530 // If we can emit an efficient shift operation, do so now. 5531 if (ExpandShift(ISD::SRA, Node->getOperand(0), ShiftAmt, Lo, Hi)) 5532 break; 5533 5534 // If this target supports SRA_PARTS, use it. 5535 TargetLowering::LegalizeAction Action = 5536 TLI.getOperationAction(ISD::SRA_PARTS, NVT); 5537 if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) || 5538 Action == TargetLowering::Custom) { 5539 ExpandShiftParts(ISD::SRA_PARTS, Node->getOperand(0), ShiftAmt, Lo, Hi); 5540 break; 5541 } 5542 5543 // Otherwise, emit a libcall. 5544 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SRA_I64), Node, 5545 true/*ashr is signed*/, Hi); 5546 break; 5547 } 5548 5549 case ISD::SRL: { 5550 // If the target wants custom lowering, do so. 5551 SDOperand ShiftAmt = LegalizeOp(Node->getOperand(1)); 5552 if (TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Custom) { 5553 SDOperand Op = DAG.getNode(ISD::SRL, VT, Node->getOperand(0), ShiftAmt); 5554 Op = TLI.LowerOperation(Op, DAG); 5555 if (Op.Val) { 5556 // Now that the custom expander is done, expand the result, which is 5557 // still VT. 5558 ExpandOp(Op, Lo, Hi); 5559 break; 5560 } 5561 } 5562 5563 // If we can emit an efficient shift operation, do so now. 5564 if (ExpandShift(ISD::SRL, Node->getOperand(0), ShiftAmt, Lo, Hi)) 5565 break; 5566 5567 // If this target supports SRL_PARTS, use it. 5568 TargetLowering::LegalizeAction Action = 5569 TLI.getOperationAction(ISD::SRL_PARTS, NVT); 5570 if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) || 5571 Action == TargetLowering::Custom) { 5572 ExpandShiftParts(ISD::SRL_PARTS, Node->getOperand(0), ShiftAmt, Lo, Hi); 5573 break; 5574 } 5575 5576 // Otherwise, emit a libcall. 5577 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SRL_I64), Node, 5578 false/*lshr is unsigned*/, Hi); 5579 break; 5580 } 5581 5582 case ISD::ADD: 5583 case ISD::SUB: { 5584 // If the target wants to custom expand this, let them. 5585 if (TLI.getOperationAction(Node->getOpcode(), VT) == 5586 TargetLowering::Custom) { 5587 Op = TLI.LowerOperation(Op, DAG); 5588 if (Op.Val) { 5589 ExpandOp(Op, Lo, Hi); 5590 break; 5591 } 5592 } 5593 5594 // Expand the subcomponents. 5595 SDOperand LHSL, LHSH, RHSL, RHSH; 5596 ExpandOp(Node->getOperand(0), LHSL, LHSH); 5597 ExpandOp(Node->getOperand(1), RHSL, RHSH); 5598 SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); 5599 SDOperand LoOps[2], HiOps[3]; 5600 LoOps[0] = LHSL; 5601 LoOps[1] = RHSL; 5602 HiOps[0] = LHSH; 5603 HiOps[1] = RHSH; 5604 if (Node->getOpcode() == ISD::ADD) { 5605 Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2); 5606 HiOps[2] = Lo.getValue(1); 5607 Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3); 5608 } else { 5609 Lo = DAG.getNode(ISD::SUBC, VTList, LoOps, 2); 5610 HiOps[2] = Lo.getValue(1); 5611 Hi = DAG.getNode(ISD::SUBE, VTList, HiOps, 3); 5612 } 5613 break; 5614 } 5615 5616 case ISD::ADDC: 5617 case ISD::SUBC: { 5618 // Expand the subcomponents. 5619 SDOperand LHSL, LHSH, RHSL, RHSH; 5620 ExpandOp(Node->getOperand(0), LHSL, LHSH); 5621 ExpandOp(Node->getOperand(1), RHSL, RHSH); 5622 SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); 5623 SDOperand LoOps[2] = { LHSL, RHSL }; 5624 SDOperand HiOps[3] = { LHSH, RHSH }; 5625 5626 if (Node->getOpcode() == ISD::ADDC) { 5627 Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2); 5628 HiOps[2] = Lo.getValue(1); 5629 Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3); 5630 } else { 5631 Lo = DAG.getNode(ISD::SUBC, VTList, LoOps, 2); 5632 HiOps[2] = Lo.getValue(1); 5633 Hi = DAG.getNode(ISD::SUBE, VTList, HiOps, 3); 5634 } 5635 // Remember that we legalized the flag. 5636 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Hi.getValue(1))); 5637 break; 5638 } 5639 case ISD::ADDE: 5640 case ISD::SUBE: { 5641 // Expand the subcomponents. 5642 SDOperand LHSL, LHSH, RHSL, RHSH; 5643 ExpandOp(Node->getOperand(0), LHSL, LHSH); 5644 ExpandOp(Node->getOperand(1), RHSL, RHSH); 5645 SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); 5646 SDOperand LoOps[3] = { LHSL, RHSL, Node->getOperand(2) }; 5647 SDOperand HiOps[3] = { LHSH, RHSH }; 5648 5649 Lo = DAG.getNode(Node->getOpcode(), VTList, LoOps, 3); 5650 HiOps[2] = Lo.getValue(1); 5651 Hi = DAG.getNode(Node->getOpcode(), VTList, HiOps, 3); 5652 5653 // Remember that we legalized the flag. 5654 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Hi.getValue(1))); 5655 break; 5656 } 5657 case ISD::MUL: { 5658 // If the target wants to custom expand this, let them. 5659 if (TLI.getOperationAction(ISD::MUL, VT) == TargetLowering::Custom) { 5660 SDOperand New = TLI.LowerOperation(Op, DAG); 5661 if (New.Val) { 5662 ExpandOp(New, Lo, Hi); 5663 break; 5664 } 5665 } 5666 5667 bool HasMULHS = TLI.isOperationLegal(ISD::MULHS, NVT); 5668 bool HasMULHU = TLI.isOperationLegal(ISD::MULHU, NVT); 5669 if (HasMULHS || HasMULHU) { 5670 SDOperand LL, LH, RL, RH; 5671 ExpandOp(Node->getOperand(0), LL, LH); 5672 ExpandOp(Node->getOperand(1), RL, RH); 5673 unsigned SH = MVT::getSizeInBits(RH.getValueType())-1; 5674 // FIXME: Move this to the dag combiner. 5675 // MULHS implicitly sign extends its inputs. Check to see if ExpandOp 5676 // extended the sign bit of the low half through the upper half, and if so 5677 // emit a MULHS instead of the alternate sequence that is valid for any 5678 // i64 x i64 multiply. 5679 if (HasMULHS && 5680 // is RH an extension of the sign bit of RL? 5681 RH.getOpcode() == ISD::SRA && RH.getOperand(0) == RL && 5682 RH.getOperand(1).getOpcode() == ISD::Constant && 5683 cast<ConstantSDNode>(RH.getOperand(1))->getValue() == SH && 5684 // is LH an extension of the sign bit of LL? 5685 LH.getOpcode() == ISD::SRA && LH.getOperand(0) == LL && 5686 LH.getOperand(1).getOpcode() == ISD::Constant && 5687 cast<ConstantSDNode>(LH.getOperand(1))->getValue() == SH) { 5688 // Low part: 5689 Lo = DAG.getNode(ISD::MUL, NVT, LL, RL); 5690 // High part: 5691 Hi = DAG.getNode(ISD::MULHS, NVT, LL, RL); 5692 break; 5693 } else if (HasMULHU) { 5694 // Low part: 5695 Lo = DAG.getNode(ISD::MUL, NVT, LL, RL); 5696 5697 // High part: 5698 Hi = DAG.getNode(ISD::MULHU, NVT, LL, RL); 5699 RH = DAG.getNode(ISD::MUL, NVT, LL, RH); 5700 LH = DAG.getNode(ISD::MUL, NVT, LH, RL); 5701 Hi = DAG.getNode(ISD::ADD, NVT, Hi, RH); 5702 Hi = DAG.getNode(ISD::ADD, NVT, Hi, LH); 5703 break; 5704 } 5705 } 5706 5707 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::MUL_I64), Node, 5708 false/*sign irrelevant*/, Hi); 5709 break; 5710 } 5711 case ISD::SDIV: 5712 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SDIV_I64), Node, true, Hi); 5713 break; 5714 case ISD::UDIV: 5715 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::UDIV_I64), Node, true, Hi); 5716 break; 5717 case ISD::SREM: 5718 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SREM_I64), Node, true, Hi); 5719 break; 5720 case ISD::UREM: 5721 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::UREM_I64), Node, true, Hi); 5722 break; 5723 5724 case ISD::FADD: 5725 Lo = ExpandLibCall(TLI.getLibcallName(VT == MVT::f32 ? RTLIB::ADD_F32 : 5726 VT == MVT::f64 ? RTLIB::ADD_F64 : 5727 VT == MVT::ppcf128 ? 5728 RTLIB::ADD_PPCF128 : 5729 RTLIB::UNKNOWN_LIBCALL), 5730 Node, false, Hi); 5731 break; 5732 case ISD::FSUB: 5733 Lo = ExpandLibCall(TLI.getLibcallName(VT == MVT::f32 ? RTLIB::SUB_F32 : 5734 VT == MVT::f64 ? RTLIB::SUB_F64 : 5735 VT == MVT::ppcf128 ? 5736 RTLIB::SUB_PPCF128 : 5737 RTLIB::UNKNOWN_LIBCALL), 5738 Node, false, Hi); 5739 break; 5740 case ISD::FMUL: 5741 Lo = ExpandLibCall(TLI.getLibcallName(VT == MVT::f32 ? RTLIB::MUL_F32 : 5742 VT == MVT::f64 ? RTLIB::MUL_F64 : 5743 VT == MVT::ppcf128 ? 5744 RTLIB::MUL_PPCF128 : 5745 RTLIB::UNKNOWN_LIBCALL), 5746 Node, false, Hi); 5747 break; 5748 case ISD::FDIV: 5749 Lo = ExpandLibCall(TLI.getLibcallName(VT == MVT::f32 ? RTLIB::DIV_F32 : 5750 VT == MVT::f64 ? RTLIB::DIV_F64 : 5751 VT == MVT::ppcf128 ? 5752 RTLIB::DIV_PPCF128 : 5753 RTLIB::UNKNOWN_LIBCALL), 5754 Node, false, Hi); 5755 break; 5756 case ISD::FP_EXTEND: 5757 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::FPEXT_F32_F64), Node, true,Hi); 5758 break; 5759 case ISD::FP_ROUND: 5760 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::FPROUND_F64_F32),Node,true,Hi); 5761 break; 5762 case ISD::FPOWI: 5763 Lo = ExpandLibCall(TLI.getLibcallName((VT == MVT::f32) ? RTLIB::POWI_F32 : 5764 (VT == MVT::f64) ? RTLIB::POWI_F64 : 5765 (VT == MVT::f80) ? RTLIB::POWI_F80 : 5766 (VT == MVT::ppcf128) ? 5767 RTLIB::POWI_PPCF128 : 5768 RTLIB::UNKNOWN_LIBCALL), 5769 Node, false, Hi); 5770 break; 5771 case ISD::FSQRT: 5772 case ISD::FSIN: 5773 case ISD::FCOS: { 5774 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 5775 switch(Node->getOpcode()) { 5776 case ISD::FSQRT: 5777 LC = (VT == MVT::f32) ? RTLIB::SQRT_F32 : 5778 (VT == MVT::f64) ? RTLIB::SQRT_F64 : 5779 (VT == MVT::f80) ? RTLIB::SQRT_F80 : 5780 (VT == MVT::ppcf128) ? RTLIB::SQRT_PPCF128 : 5781 RTLIB::UNKNOWN_LIBCALL; 5782 break; 5783 case ISD::FSIN: 5784 LC = (VT == MVT::f32) ? RTLIB::SIN_F32 : RTLIB::SIN_F64; 5785 break; 5786 case ISD::FCOS: 5787 LC = (VT == MVT::f32) ? RTLIB::COS_F32 : RTLIB::COS_F64; 5788 break; 5789 default: assert(0 && "Unreachable!"); 5790 } 5791 Lo = ExpandLibCall(TLI.getLibcallName(LC), Node, false, Hi); 5792 break; 5793 } 5794 case ISD::FABS: { 5795 SDOperand Mask = (VT == MVT::f64) 5796 ? DAG.getConstantFP(BitsToDouble(~(1ULL << 63)), VT) 5797 : DAG.getConstantFP(BitsToFloat(~(1U << 31)), VT); 5798 Mask = DAG.getNode(ISD::BIT_CONVERT, NVT, Mask); 5799 Lo = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0)); 5800 Lo = DAG.getNode(ISD::AND, NVT, Lo, Mask); 5801 if (getTypeAction(NVT) == Expand) 5802 ExpandOp(Lo, Lo, Hi); 5803 break; 5804 } 5805 case ISD::FNEG: { 5806 SDOperand Mask = (VT == MVT::f64) 5807 ? DAG.getConstantFP(BitsToDouble(1ULL << 63), VT) 5808 : DAG.getConstantFP(BitsToFloat(1U << 31), VT); 5809 Mask = DAG.getNode(ISD::BIT_CONVERT, NVT, Mask); 5810 Lo = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0)); 5811 Lo = DAG.getNode(ISD::XOR, NVT, Lo, Mask); 5812 if (getTypeAction(NVT) == Expand) 5813 ExpandOp(Lo, Lo, Hi); 5814 break; 5815 } 5816 case ISD::FCOPYSIGN: { 5817 Lo = ExpandFCOPYSIGNToBitwiseOps(Node, NVT, DAG, TLI); 5818 if (getTypeAction(NVT) == Expand) 5819 ExpandOp(Lo, Lo, Hi); 5820 break; 5821 } 5822 case ISD::SINT_TO_FP: 5823 case ISD::UINT_TO_FP: { 5824 bool isSigned = Node->getOpcode() == ISD::SINT_TO_FP; 5825 MVT::ValueType SrcVT = Node->getOperand(0).getValueType(); 5826 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 5827 if (Node->getOperand(0).getValueType() == MVT::i64) { 5828 if (VT == MVT::f32) 5829 LC = isSigned ? RTLIB::SINTTOFP_I64_F32 : RTLIB::UINTTOFP_I64_F32; 5830 else if (VT == MVT::f64) 5831 LC = isSigned ? RTLIB::SINTTOFP_I64_F64 : RTLIB::UINTTOFP_I64_F64; 5832 else if (VT == MVT::f80) { 5833 assert(isSigned); 5834 LC = RTLIB::SINTTOFP_I64_F80; 5835 } 5836 else if (VT == MVT::ppcf128) { 5837 assert(isSigned); 5838 LC = RTLIB::SINTTOFP_I64_PPCF128; 5839 } 5840 } else { 5841 if (VT == MVT::f32) 5842 LC = isSigned ? RTLIB::SINTTOFP_I32_F32 : RTLIB::UINTTOFP_I32_F32; 5843 else 5844 LC = isSigned ? RTLIB::SINTTOFP_I32_F64 : RTLIB::UINTTOFP_I32_F64; 5845 } 5846 5847 // Promote the operand if needed. 5848 if (getTypeAction(SrcVT) == Promote) { 5849 SDOperand Tmp = PromoteOp(Node->getOperand(0)); 5850 Tmp = isSigned 5851 ? DAG.getNode(ISD::SIGN_EXTEND_INREG, Tmp.getValueType(), Tmp, 5852 DAG.getValueType(SrcVT)) 5853 : DAG.getZeroExtendInReg(Tmp, SrcVT); 5854 Node = DAG.UpdateNodeOperands(Op, Tmp).Val; 5855 } 5856 5857 const char *LibCall = TLI.getLibcallName(LC); 5858 if (LibCall) 5859 Lo = ExpandLibCall(TLI.getLibcallName(LC), Node, isSigned, Hi); 5860 else { 5861 Lo = ExpandIntToFP(Node->getOpcode() == ISD::SINT_TO_FP, VT, 5862 Node->getOperand(0)); 5863 if (getTypeAction(Lo.getValueType()) == Expand) 5864 ExpandOp(Lo, Lo, Hi); 5865 } 5866 break; 5867 } 5868 } 5869 5870 // Make sure the resultant values have been legalized themselves, unless this 5871 // is a type that requires multi-step expansion. 5872 if (getTypeAction(NVT) != Expand && NVT != MVT::isVoid) { 5873 Lo = LegalizeOp(Lo); 5874 if (Hi.Val) 5875 // Don't legalize the high part if it is expanded to a single node. 5876 Hi = LegalizeOp(Hi); 5877 } 5878 5879 // Remember in a map if the values will be reused later. 5880 bool isNew = ExpandedNodes.insert(std::make_pair(Op, std::make_pair(Lo, Hi))); 5881 assert(isNew && "Value already expanded?!?"); 5882} 5883 5884/// SplitVectorOp - Given an operand of vector type, break it down into 5885/// two smaller values, still of vector type. 5886void SelectionDAGLegalize::SplitVectorOp(SDOperand Op, SDOperand &Lo, 5887 SDOperand &Hi) { 5888 assert(MVT::isVector(Op.getValueType()) && "Cannot split non-vector type!"); 5889 SDNode *Node = Op.Val; 5890 unsigned NumElements = MVT::getVectorNumElements(Op.getValueType()); 5891 assert(NumElements > 1 && "Cannot split a single element vector!"); 5892 unsigned NewNumElts = NumElements/2; 5893 MVT::ValueType NewEltVT = MVT::getVectorElementType(Op.getValueType()); 5894 MVT::ValueType NewVT = MVT::getVectorType(NewEltVT, NewNumElts); 5895 5896 // See if we already split it. 5897 std::map<SDOperand, std::pair<SDOperand, SDOperand> >::iterator I 5898 = SplitNodes.find(Op); 5899 if (I != SplitNodes.end()) { 5900 Lo = I->second.first; 5901 Hi = I->second.second; 5902 return; 5903 } 5904 5905 switch (Node->getOpcode()) { 5906 default: 5907#ifndef NDEBUG 5908 Node->dump(&DAG); 5909#endif 5910 assert(0 && "Unhandled operation in SplitVectorOp!"); 5911 case ISD::BUILD_PAIR: 5912 Lo = Node->getOperand(0); 5913 Hi = Node->getOperand(1); 5914 break; 5915 case ISD::INSERT_VECTOR_ELT: { 5916 SplitVectorOp(Node->getOperand(0), Lo, Hi); 5917 unsigned Index = cast<ConstantSDNode>(Node->getOperand(2))->getValue(); 5918 SDOperand ScalarOp = Node->getOperand(1); 5919 if (Index < NewNumElts) 5920 Lo = DAG.getNode(ISD::INSERT_VECTOR_ELT, NewVT, Lo, ScalarOp, 5921 DAG.getConstant(Index, TLI.getPointerTy())); 5922 else 5923 Hi = DAG.getNode(ISD::INSERT_VECTOR_ELT, NewVT, Hi, ScalarOp, 5924 DAG.getConstant(Index - NewNumElts, TLI.getPointerTy())); 5925 break; 5926 } 5927 case ISD::BUILD_VECTOR: { 5928 SmallVector<SDOperand, 8> LoOps(Node->op_begin(), 5929 Node->op_begin()+NewNumElts); 5930 Lo = DAG.getNode(ISD::BUILD_VECTOR, NewVT, &LoOps[0], LoOps.size()); 5931 5932 SmallVector<SDOperand, 8> HiOps(Node->op_begin()+NewNumElts, 5933 Node->op_end()); 5934 Hi = DAG.getNode(ISD::BUILD_VECTOR, NewVT, &HiOps[0], HiOps.size()); 5935 break; 5936 } 5937 case ISD::CONCAT_VECTORS: { 5938 unsigned NewNumSubvectors = Node->getNumOperands() / 2; 5939 if (NewNumSubvectors == 1) { 5940 Lo = Node->getOperand(0); 5941 Hi = Node->getOperand(1); 5942 } else { 5943 SmallVector<SDOperand, 8> LoOps(Node->op_begin(), 5944 Node->op_begin()+NewNumSubvectors); 5945 Lo = DAG.getNode(ISD::CONCAT_VECTORS, NewVT, &LoOps[0], LoOps.size()); 5946 5947 SmallVector<SDOperand, 8> HiOps(Node->op_begin()+NewNumSubvectors, 5948 Node->op_end()); 5949 Hi = DAG.getNode(ISD::CONCAT_VECTORS, NewVT, &HiOps[0], HiOps.size()); 5950 } 5951 break; 5952 } 5953 case ISD::ADD: 5954 case ISD::SUB: 5955 case ISD::MUL: 5956 case ISD::FADD: 5957 case ISD::FSUB: 5958 case ISD::FMUL: 5959 case ISD::SDIV: 5960 case ISD::UDIV: 5961 case ISD::FDIV: 5962 case ISD::AND: 5963 case ISD::OR: 5964 case ISD::XOR: { 5965 SDOperand LL, LH, RL, RH; 5966 SplitVectorOp(Node->getOperand(0), LL, LH); 5967 SplitVectorOp(Node->getOperand(1), RL, RH); 5968 5969 Lo = DAG.getNode(Node->getOpcode(), NewVT, LL, RL); 5970 Hi = DAG.getNode(Node->getOpcode(), NewVT, LH, RH); 5971 break; 5972 } 5973 case ISD::LOAD: { 5974 LoadSDNode *LD = cast<LoadSDNode>(Node); 5975 SDOperand Ch = LD->getChain(); 5976 SDOperand Ptr = LD->getBasePtr(); 5977 const Value *SV = LD->getSrcValue(); 5978 int SVOffset = LD->getSrcValueOffset(); 5979 unsigned Alignment = LD->getAlignment(); 5980 bool isVolatile = LD->isVolatile(); 5981 5982 Lo = DAG.getLoad(NewVT, Ch, Ptr, SV, SVOffset, isVolatile, Alignment); 5983 unsigned IncrementSize = NewNumElts * MVT::getSizeInBits(NewEltVT)/8; 5984 Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, 5985 getIntPtrConstant(IncrementSize)); 5986 SVOffset += IncrementSize; 5987 if (Alignment > IncrementSize) 5988 Alignment = IncrementSize; 5989 Hi = DAG.getLoad(NewVT, Ch, Ptr, SV, SVOffset, isVolatile, Alignment); 5990 5991 // Build a factor node to remember that this load is independent of the 5992 // other one. 5993 SDOperand TF = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), 5994 Hi.getValue(1)); 5995 5996 // Remember that we legalized the chain. 5997 AddLegalizedOperand(Op.getValue(1), LegalizeOp(TF)); 5998 break; 5999 } 6000 case ISD::BIT_CONVERT: { 6001 // We know the result is a vector. The input may be either a vector or a 6002 // scalar value. 6003 SDOperand InOp = Node->getOperand(0); 6004 if (!MVT::isVector(InOp.getValueType()) || 6005 MVT::getVectorNumElements(InOp.getValueType()) == 1) { 6006 // The input is a scalar or single-element vector. 6007 // Lower to a store/load so that it can be split. 6008 // FIXME: this could be improved probably. 6009 SDOperand Ptr = CreateStackTemporary(InOp.getValueType()); 6010 6011 SDOperand St = DAG.getStore(DAG.getEntryNode(), 6012 InOp, Ptr, NULL, 0); 6013 InOp = DAG.getLoad(Op.getValueType(), St, Ptr, NULL, 0); 6014 } 6015 // Split the vector and convert each of the pieces now. 6016 SplitVectorOp(InOp, Lo, Hi); 6017 Lo = DAG.getNode(ISD::BIT_CONVERT, NewVT, Lo); 6018 Hi = DAG.getNode(ISD::BIT_CONVERT, NewVT, Hi); 6019 break; 6020 } 6021 } 6022 6023 // Remember in a map if the values will be reused later. 6024 bool isNew = 6025 SplitNodes.insert(std::make_pair(Op, std::make_pair(Lo, Hi))).second; 6026 assert(isNew && "Value already split?!?"); 6027} 6028 6029 6030/// ScalarizeVectorOp - Given an operand of single-element vector type 6031/// (e.g. v1f32), convert it into the equivalent operation that returns a 6032/// scalar (e.g. f32) value. 6033SDOperand SelectionDAGLegalize::ScalarizeVectorOp(SDOperand Op) { 6034 assert(MVT::isVector(Op.getValueType()) && 6035 "Bad ScalarizeVectorOp invocation!"); 6036 SDNode *Node = Op.Val; 6037 MVT::ValueType NewVT = MVT::getVectorElementType(Op.getValueType()); 6038 assert(MVT::getVectorNumElements(Op.getValueType()) == 1); 6039 6040 // See if we already scalarized it. 6041 std::map<SDOperand, SDOperand>::iterator I = ScalarizedNodes.find(Op); 6042 if (I != ScalarizedNodes.end()) return I->second; 6043 6044 SDOperand Result; 6045 switch (Node->getOpcode()) { 6046 default: 6047#ifndef NDEBUG 6048 Node->dump(&DAG); cerr << "\n"; 6049#endif 6050 assert(0 && "Unknown vector operation in ScalarizeVectorOp!"); 6051 case ISD::ADD: 6052 case ISD::FADD: 6053 case ISD::SUB: 6054 case ISD::FSUB: 6055 case ISD::MUL: 6056 case ISD::FMUL: 6057 case ISD::SDIV: 6058 case ISD::UDIV: 6059 case ISD::FDIV: 6060 case ISD::SREM: 6061 case ISD::UREM: 6062 case ISD::FREM: 6063 case ISD::AND: 6064 case ISD::OR: 6065 case ISD::XOR: 6066 Result = DAG.getNode(Node->getOpcode(), 6067 NewVT, 6068 ScalarizeVectorOp(Node->getOperand(0)), 6069 ScalarizeVectorOp(Node->getOperand(1))); 6070 break; 6071 case ISD::FNEG: 6072 case ISD::FABS: 6073 case ISD::FSQRT: 6074 case ISD::FSIN: 6075 case ISD::FCOS: 6076 Result = DAG.getNode(Node->getOpcode(), 6077 NewVT, 6078 ScalarizeVectorOp(Node->getOperand(0))); 6079 break; 6080 case ISD::LOAD: { 6081 LoadSDNode *LD = cast<LoadSDNode>(Node); 6082 SDOperand Ch = LegalizeOp(LD->getChain()); // Legalize the chain. 6083 SDOperand Ptr = LegalizeOp(LD->getBasePtr()); // Legalize the pointer. 6084 6085 const Value *SV = LD->getSrcValue(); 6086 int SVOffset = LD->getSrcValueOffset(); 6087 Result = DAG.getLoad(NewVT, Ch, Ptr, SV, SVOffset, 6088 LD->isVolatile(), LD->getAlignment()); 6089 6090 // Remember that we legalized the chain. 6091 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); 6092 break; 6093 } 6094 case ISD::BUILD_VECTOR: 6095 Result = Node->getOperand(0); 6096 break; 6097 case ISD::INSERT_VECTOR_ELT: 6098 // Returning the inserted scalar element. 6099 Result = Node->getOperand(1); 6100 break; 6101 case ISD::CONCAT_VECTORS: 6102 assert(Node->getOperand(0).getValueType() == NewVT && 6103 "Concat of non-legal vectors not yet supported!"); 6104 Result = Node->getOperand(0); 6105 break; 6106 case ISD::VECTOR_SHUFFLE: { 6107 // Figure out if the scalar is the LHS or RHS and return it. 6108 SDOperand EltNum = Node->getOperand(2).getOperand(0); 6109 if (cast<ConstantSDNode>(EltNum)->getValue()) 6110 Result = ScalarizeVectorOp(Node->getOperand(1)); 6111 else 6112 Result = ScalarizeVectorOp(Node->getOperand(0)); 6113 break; 6114 } 6115 case ISD::EXTRACT_SUBVECTOR: 6116 Result = Node->getOperand(0); 6117 assert(Result.getValueType() == NewVT); 6118 break; 6119 case ISD::BIT_CONVERT: 6120 Result = DAG.getNode(ISD::BIT_CONVERT, NewVT, Op.getOperand(0)); 6121 break; 6122 case ISD::SELECT: 6123 Result = DAG.getNode(ISD::SELECT, NewVT, Op.getOperand(0), 6124 ScalarizeVectorOp(Op.getOperand(1)), 6125 ScalarizeVectorOp(Op.getOperand(2))); 6126 break; 6127 } 6128 6129 if (TLI.isTypeLegal(NewVT)) 6130 Result = LegalizeOp(Result); 6131 bool isNew = ScalarizedNodes.insert(std::make_pair(Op, Result)).second; 6132 assert(isNew && "Value already scalarized?"); 6133 return Result; 6134} 6135 6136 6137// SelectionDAG::Legalize - This is the entry point for the file. 6138// 6139void SelectionDAG::Legalize() { 6140 if (ViewLegalizeDAGs) viewGraph(); 6141 6142 /// run - This is the main entry point to this class. 6143 /// 6144 SelectionDAGLegalize(*this).LegalizeDAG(); 6145} 6146 6147