LegalizeDAG.cpp revision d1474d09cbe5fdeec8ba0d6c6b52f316f3422532
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SelectionDAG::Legalize method.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/CodeGen/MachineFunction.h"
16#include "llvm/CodeGen/MachineFrameInfo.h"
17#include "llvm/CodeGen/MachineJumpTableInfo.h"
18#include "llvm/CodeGen/MachineModuleInfo.h"
19#include "llvm/CodeGen/DwarfWriter.h"
20#include "llvm/Analysis/DebugInfo.h"
21#include "llvm/CodeGen/PseudoSourceValue.h"
22#include "llvm/Target/TargetFrameInfo.h"
23#include "llvm/Target/TargetLowering.h"
24#include "llvm/Target/TargetData.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/Target/TargetOptions.h"
27#include "llvm/Target/TargetSubtarget.h"
28#include "llvm/CallingConv.h"
29#include "llvm/Constants.h"
30#include "llvm/DerivedTypes.h"
31#include "llvm/Function.h"
32#include "llvm/GlobalVariable.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/Compiler.h"
35#include "llvm/Support/MathExtras.h"
36#include "llvm/ADT/DenseMap.h"
37#include "llvm/ADT/SmallVector.h"
38#include "llvm/ADT/SmallPtrSet.h"
39#include <map>
40using namespace llvm;
41
42//===----------------------------------------------------------------------===//
43/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
44/// hacks on it until the target machine can handle it.  This involves
45/// eliminating value sizes the machine cannot handle (promoting small sizes to
46/// large sizes or splitting up large values into small values) as well as
47/// eliminating operations the machine cannot handle.
48///
49/// This code also does a small amount of optimization and recognition of idioms
50/// as part of its processing.  For example, if a target does not support a
51/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
52/// will attempt merge setcc and brc instructions into brcc's.
53///
54namespace {
55class VISIBILITY_HIDDEN SelectionDAGLegalize {
56  TargetLowering &TLI;
57  SelectionDAG &DAG;
58  CodeGenOpt::Level OptLevel;
59
60  // Libcall insertion helpers.
61
62  /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been
63  /// legalized.  We use this to ensure that calls are properly serialized
64  /// against each other, including inserted libcalls.
65  SDValue LastCALLSEQ_END;
66
67  /// IsLegalizingCall - This member is used *only* for purposes of providing
68  /// helpful assertions that a libcall isn't created while another call is
69  /// being legalized (which could lead to non-serialized call sequences).
70  bool IsLegalizingCall;
71
72  enum LegalizeAction {
73    Legal,      // The target natively supports this operation.
74    Promote,    // This operation should be executed in a larger type.
75    Expand      // Try to expand this to other ops, otherwise use a libcall.
76  };
77
78  /// ValueTypeActions - This is a bitvector that contains two bits for each
79  /// value type, where the two bits correspond to the LegalizeAction enum.
80  /// This can be queried with "getTypeAction(VT)".
81  TargetLowering::ValueTypeActionImpl ValueTypeActions;
82
83  /// LegalizedNodes - For nodes that are of legal width, and that have more
84  /// than one use, this map indicates what regularized operand to use.  This
85  /// allows us to avoid legalizing the same thing more than once.
86  DenseMap<SDValue, SDValue> LegalizedNodes;
87
88  void AddLegalizedOperand(SDValue From, SDValue To) {
89    LegalizedNodes.insert(std::make_pair(From, To));
90    // If someone requests legalization of the new node, return itself.
91    if (From != To)
92      LegalizedNodes.insert(std::make_pair(To, To));
93  }
94
95public:
96  SelectionDAGLegalize(SelectionDAG &DAG, CodeGenOpt::Level ol);
97
98  /// getTypeAction - Return how we should legalize values of this type, either
99  /// it is already legal or we need to expand it into multiple registers of
100  /// smaller integer type, or we need to promote it to a larger type.
101  LegalizeAction getTypeAction(MVT VT) const {
102    return (LegalizeAction)ValueTypeActions.getTypeAction(VT);
103  }
104
105  /// isTypeLegal - Return true if this type is legal on this target.
106  ///
107  bool isTypeLegal(MVT VT) const {
108    return getTypeAction(VT) == Legal;
109  }
110
111  void LegalizeDAG();
112
113private:
114  /// LegalizeOp - We know that the specified value has a legal type.
115  /// Recursively ensure that the operands have legal types, then return the
116  /// result.
117  SDValue LegalizeOp(SDValue O);
118
119  SDValue OptimizeFloatStore(StoreSDNode *ST);
120
121  /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
122  /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
123  /// is necessary to spill the vector being inserted into to memory, perform
124  /// the insert there, and then read the result back.
125  SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
126                                         SDValue Idx, DebugLoc dl);
127  SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
128                                  SDValue Idx, DebugLoc dl);
129
130  /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
131  /// performs the same shuffe in terms of order or result bytes, but on a type
132  /// whose vector element type is narrower than the original shuffle type.
133  /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
134  SDValue ShuffleWithNarrowerEltType(MVT NVT, MVT VT, DebugLoc dl,
135                                     SDValue N1, SDValue N2,
136                                     SmallVectorImpl<int> &Mask) const;
137
138  bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
139                                    SmallPtrSet<SDNode*, 32> &NodesLeadingTo);
140
141  void LegalizeSetCCCondCode(MVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
142                             DebugLoc dl);
143
144  SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
145  SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
146                          RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
147                          RTLIB::Libcall Call_PPCF128);
148  SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, RTLIB::Libcall Call_I16,
149                           RTLIB::Libcall Call_I32, RTLIB::Libcall Call_I64,
150                           RTLIB::Libcall Call_I128);
151
152  SDValue EmitStackConvert(SDValue SrcOp, MVT SlotVT, MVT DestVT, DebugLoc dl);
153  SDValue ExpandBUILD_VECTOR(SDNode *Node);
154  SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
155  SDValue ExpandDBG_STOPPOINT(SDNode *Node);
156  void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
157                                SmallVectorImpl<SDValue> &Results);
158  SDValue ExpandFCOPYSIGN(SDNode *Node);
159  SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, MVT DestVT,
160                               DebugLoc dl);
161  SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, MVT DestVT, bool isSigned,
162                                DebugLoc dl);
163  SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, MVT DestVT, bool isSigned,
164                                DebugLoc dl);
165
166  SDValue ExpandBSWAP(SDValue Op, DebugLoc dl);
167  SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl);
168
169  SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
170  SDValue ExpandVectorBuildThroughStack(SDNode* Node);
171
172  void ExpandNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
173  void PromoteNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
174};
175}
176
177/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
178/// performs the same shuffe in terms of order or result bytes, but on a type
179/// whose vector element type is narrower than the original shuffle type.
180/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
181SDValue
182SelectionDAGLegalize::ShuffleWithNarrowerEltType(MVT NVT, MVT VT,  DebugLoc dl,
183                                                 SDValue N1, SDValue N2,
184                                             SmallVectorImpl<int> &Mask) const {
185  MVT EltVT = NVT.getVectorElementType();
186  unsigned NumMaskElts = VT.getVectorNumElements();
187  unsigned NumDestElts = NVT.getVectorNumElements();
188  unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
189
190  assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
191
192  if (NumEltsGrowth == 1)
193    return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
194
195  SmallVector<int, 8> NewMask;
196  for (unsigned i = 0; i != NumMaskElts; ++i) {
197    int Idx = Mask[i];
198    for (unsigned j = 0; j != NumEltsGrowth; ++j) {
199      if (Idx < 0)
200        NewMask.push_back(-1);
201      else
202        NewMask.push_back(Idx * NumEltsGrowth + j);
203    }
204  }
205  assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
206  assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
207  return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
208}
209
210SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag,
211                                           CodeGenOpt::Level ol)
212  : TLI(dag.getTargetLoweringInfo()), DAG(dag), OptLevel(ol),
213    ValueTypeActions(TLI.getValueTypeActions()) {
214  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
215         "Too many value types for ValueTypeActions to hold!");
216}
217
218void SelectionDAGLegalize::LegalizeDAG() {
219  LastCALLSEQ_END = DAG.getEntryNode();
220  IsLegalizingCall = false;
221
222  // The legalize process is inherently a bottom-up recursive process (users
223  // legalize their uses before themselves).  Given infinite stack space, we
224  // could just start legalizing on the root and traverse the whole graph.  In
225  // practice however, this causes us to run out of stack space on large basic
226  // blocks.  To avoid this problem, compute an ordering of the nodes where each
227  // node is only legalized after all of its operands are legalized.
228  DAG.AssignTopologicalOrder();
229  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
230       E = prior(DAG.allnodes_end()); I != next(E); ++I)
231    LegalizeOp(SDValue(I, 0));
232
233  // Finally, it's possible the root changed.  Get the new root.
234  SDValue OldRoot = DAG.getRoot();
235  assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
236  DAG.setRoot(LegalizedNodes[OldRoot]);
237
238  LegalizedNodes.clear();
239
240  // Remove dead nodes now.
241  DAG.RemoveDeadNodes();
242}
243
244
245/// FindCallEndFromCallStart - Given a chained node that is part of a call
246/// sequence, find the CALLSEQ_END node that terminates the call sequence.
247static SDNode *FindCallEndFromCallStart(SDNode *Node) {
248  if (Node->getOpcode() == ISD::CALLSEQ_END)
249    return Node;
250  if (Node->use_empty())
251    return 0;   // No CallSeqEnd
252
253  // The chain is usually at the end.
254  SDValue TheChain(Node, Node->getNumValues()-1);
255  if (TheChain.getValueType() != MVT::Other) {
256    // Sometimes it's at the beginning.
257    TheChain = SDValue(Node, 0);
258    if (TheChain.getValueType() != MVT::Other) {
259      // Otherwise, hunt for it.
260      for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i)
261        if (Node->getValueType(i) == MVT::Other) {
262          TheChain = SDValue(Node, i);
263          break;
264        }
265
266      // Otherwise, we walked into a node without a chain.
267      if (TheChain.getValueType() != MVT::Other)
268        return 0;
269    }
270  }
271
272  for (SDNode::use_iterator UI = Node->use_begin(),
273       E = Node->use_end(); UI != E; ++UI) {
274
275    // Make sure to only follow users of our token chain.
276    SDNode *User = *UI;
277    for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
278      if (User->getOperand(i) == TheChain)
279        if (SDNode *Result = FindCallEndFromCallStart(User))
280          return Result;
281  }
282  return 0;
283}
284
285/// FindCallStartFromCallEnd - Given a chained node that is part of a call
286/// sequence, find the CALLSEQ_START node that initiates the call sequence.
287static SDNode *FindCallStartFromCallEnd(SDNode *Node) {
288  assert(Node && "Didn't find callseq_start for a call??");
289  if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
290
291  assert(Node->getOperand(0).getValueType() == MVT::Other &&
292         "Node doesn't have a token chain argument!");
293  return FindCallStartFromCallEnd(Node->getOperand(0).getNode());
294}
295
296/// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to
297/// see if any uses can reach Dest.  If no dest operands can get to dest,
298/// legalize them, legalize ourself, and return false, otherwise, return true.
299///
300/// Keep track of the nodes we fine that actually do lead to Dest in
301/// NodesLeadingTo.  This avoids retraversing them exponential number of times.
302///
303bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
304                                     SmallPtrSet<SDNode*, 32> &NodesLeadingTo) {
305  if (N == Dest) return true;  // N certainly leads to Dest :)
306
307  // If we've already processed this node and it does lead to Dest, there is no
308  // need to reprocess it.
309  if (NodesLeadingTo.count(N)) return true;
310
311  // If the first result of this node has been already legalized, then it cannot
312  // reach N.
313  if (LegalizedNodes.count(SDValue(N, 0))) return false;
314
315  // Okay, this node has not already been legalized.  Check and legalize all
316  // operands.  If none lead to Dest, then we can legalize this node.
317  bool OperandsLeadToDest = false;
318  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
319    OperandsLeadToDest |=     // If an operand leads to Dest, so do we.
320      LegalizeAllNodesNotLeadingTo(N->getOperand(i).getNode(), Dest, NodesLeadingTo);
321
322  if (OperandsLeadToDest) {
323    NodesLeadingTo.insert(N);
324    return true;
325  }
326
327  // Okay, this node looks safe, legalize it and return false.
328  LegalizeOp(SDValue(N, 0));
329  return false;
330}
331
332/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
333/// a load from the constant pool.
334static SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP,
335                                SelectionDAG &DAG, const TargetLowering &TLI) {
336  bool Extend = false;
337  DebugLoc dl = CFP->getDebugLoc();
338
339  // If a FP immediate is precise when represented as a float and if the
340  // target can do an extending load from float to double, we put it into
341  // the constant pool as a float, even if it's is statically typed as a
342  // double.  This shrinks FP constants and canonicalizes them for targets where
343  // an FP extending load is the same cost as a normal load (such as on the x87
344  // fp stack or PPC FP unit).
345  MVT VT = CFP->getValueType(0);
346  ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
347  if (!UseCP) {
348    assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
349    return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(),
350                           (VT == MVT::f64) ? MVT::i64 : MVT::i32);
351  }
352
353  MVT OrigVT = VT;
354  MVT SVT = VT;
355  while (SVT != MVT::f32) {
356    SVT = (MVT::SimpleValueType)(SVT.getSimpleVT() - 1);
357    if (CFP->isValueValidForType(SVT, CFP->getValueAPF()) &&
358        // Only do this if the target has a native EXTLOAD instruction from
359        // smaller type.
360        TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
361        TLI.ShouldShrinkFPConstant(OrigVT)) {
362      const Type *SType = SVT.getTypeForMVT(*DAG.getContext());
363      LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
364      VT = SVT;
365      Extend = true;
366    }
367  }
368
369  SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
370  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
371  if (Extend)
372    return DAG.getExtLoad(ISD::EXTLOAD, dl,
373                          OrigVT, DAG.getEntryNode(),
374                          CPIdx, PseudoSourceValue::getConstantPool(),
375                          0, VT, false, Alignment);
376  return DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
377                     PseudoSourceValue::getConstantPool(), 0, false, Alignment);
378}
379
380/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
381static
382SDValue ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
383                             const TargetLowering &TLI) {
384  SDValue Chain = ST->getChain();
385  SDValue Ptr = ST->getBasePtr();
386  SDValue Val = ST->getValue();
387  MVT VT = Val.getValueType();
388  int Alignment = ST->getAlignment();
389  int SVOffset = ST->getSrcValueOffset();
390  DebugLoc dl = ST->getDebugLoc();
391  if (ST->getMemoryVT().isFloatingPoint() ||
392      ST->getMemoryVT().isVector()) {
393    MVT intVT = MVT::getIntegerVT(VT.getSizeInBits());
394    if (TLI.isTypeLegal(intVT)) {
395      // Expand to a bitconvert of the value to the integer type of the
396      // same size, then a (misaligned) int store.
397      // FIXME: Does not handle truncating floating point stores!
398      SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, intVT, Val);
399      return DAG.getStore(Chain, dl, Result, Ptr, ST->getSrcValue(),
400                          SVOffset, ST->isVolatile(), Alignment);
401    } else {
402      // Do a (aligned) store to a stack slot, then copy from the stack slot
403      // to the final destination using (unaligned) integer loads and stores.
404      MVT StoredVT = ST->getMemoryVT();
405      MVT RegVT =
406        TLI.getRegisterType(MVT::getIntegerVT(StoredVT.getSizeInBits()));
407      unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
408      unsigned RegBytes = RegVT.getSizeInBits() / 8;
409      unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
410
411      // Make sure the stack slot is also aligned for the register type.
412      SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
413
414      // Perform the original store, only redirected to the stack slot.
415      SDValue Store = DAG.getTruncStore(Chain, dl,
416                                        Val, StackPtr, NULL, 0, StoredVT);
417      SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
418      SmallVector<SDValue, 8> Stores;
419      unsigned Offset = 0;
420
421      // Do all but one copies using the full register width.
422      for (unsigned i = 1; i < NumRegs; i++) {
423        // Load one integer register's worth from the stack slot.
424        SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr, NULL, 0);
425        // Store it to the final location.  Remember the store.
426        Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
427                                      ST->getSrcValue(), SVOffset + Offset,
428                                      ST->isVolatile(),
429                                      MinAlign(ST->getAlignment(), Offset)));
430        // Increment the pointers.
431        Offset += RegBytes;
432        StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
433                               Increment);
434        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
435      }
436
437      // The last store may be partial.  Do a truncating store.  On big-endian
438      // machines this requires an extending load from the stack slot to ensure
439      // that the bits are in the right place.
440      MVT MemVT = MVT::getIntegerVT(8 * (StoredBytes - Offset));
441
442      // Load from the stack slot.
443      SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
444                                    NULL, 0, MemVT);
445
446      Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
447                                         ST->getSrcValue(), SVOffset + Offset,
448                                         MemVT, ST->isVolatile(),
449                                         MinAlign(ST->getAlignment(), Offset)));
450      // The order of the stores doesn't matter - say it with a TokenFactor.
451      return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
452                         Stores.size());
453    }
454  }
455  assert(ST->getMemoryVT().isInteger() &&
456         !ST->getMemoryVT().isVector() &&
457         "Unaligned store of unknown type.");
458  // Get the half-size VT
459  MVT NewStoredVT =
460    (MVT::SimpleValueType)(ST->getMemoryVT().getSimpleVT() - 1);
461  int NumBits = NewStoredVT.getSizeInBits();
462  int IncrementSize = NumBits / 8;
463
464  // Divide the stored value in two parts.
465  SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
466  SDValue Lo = Val;
467  SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
468
469  // Store the two parts
470  SDValue Store1, Store2;
471  Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
472                             ST->getSrcValue(), SVOffset, NewStoredVT,
473                             ST->isVolatile(), Alignment);
474  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
475                    DAG.getConstant(IncrementSize, TLI.getPointerTy()));
476  Alignment = MinAlign(Alignment, IncrementSize);
477  Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
478                             ST->getSrcValue(), SVOffset + IncrementSize,
479                             NewStoredVT, ST->isVolatile(), Alignment);
480
481  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
482}
483
484/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
485static
486SDValue ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
487                            const TargetLowering &TLI) {
488  int SVOffset = LD->getSrcValueOffset();
489  SDValue Chain = LD->getChain();
490  SDValue Ptr = LD->getBasePtr();
491  MVT VT = LD->getValueType(0);
492  MVT LoadedVT = LD->getMemoryVT();
493  DebugLoc dl = LD->getDebugLoc();
494  if (VT.isFloatingPoint() || VT.isVector()) {
495    MVT intVT = MVT::getIntegerVT(LoadedVT.getSizeInBits());
496    if (TLI.isTypeLegal(intVT)) {
497      // Expand to a (misaligned) integer load of the same size,
498      // then bitconvert to floating point or vector.
499      SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getSrcValue(),
500                                    SVOffset, LD->isVolatile(),
501                                    LD->getAlignment());
502      SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, LoadedVT, newLoad);
503      if (VT.isFloatingPoint() && LoadedVT != VT)
504        Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result);
505
506      SDValue Ops[] = { Result, Chain };
507      return DAG.getMergeValues(Ops, 2, dl);
508    } else {
509      // Copy the value to a (aligned) stack slot using (unaligned) integer
510      // loads and stores, then do a (aligned) load from the stack slot.
511      MVT RegVT = TLI.getRegisterType(intVT);
512      unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
513      unsigned RegBytes = RegVT.getSizeInBits() / 8;
514      unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
515
516      // Make sure the stack slot is also aligned for the register type.
517      SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
518
519      SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
520      SmallVector<SDValue, 8> Stores;
521      SDValue StackPtr = StackBase;
522      unsigned Offset = 0;
523
524      // Do all but one copies using the full register width.
525      for (unsigned i = 1; i < NumRegs; i++) {
526        // Load one integer register's worth from the original location.
527        SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr, LD->getSrcValue(),
528                                   SVOffset + Offset, LD->isVolatile(),
529                                   MinAlign(LD->getAlignment(), Offset));
530        // Follow the load with a store to the stack slot.  Remember the store.
531        Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
532                                      NULL, 0));
533        // Increment the pointers.
534        Offset += RegBytes;
535        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
536        StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
537                               Increment);
538      }
539
540      // The last copy may be partial.  Do an extending load.
541      MVT MemVT = MVT::getIntegerVT(8 * (LoadedBytes - Offset));
542      SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
543                                    LD->getSrcValue(), SVOffset + Offset,
544                                    MemVT, LD->isVolatile(),
545                                    MinAlign(LD->getAlignment(), Offset));
546      // Follow the load with a store to the stack slot.  Remember the store.
547      // On big-endian machines this requires a truncating store to ensure
548      // that the bits end up in the right place.
549      Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
550                                         NULL, 0, MemVT));
551
552      // The order of the stores doesn't matter - say it with a TokenFactor.
553      SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
554                               Stores.size());
555
556      // Finally, perform the original load only redirected to the stack slot.
557      Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
558                            NULL, 0, LoadedVT);
559
560      // Callers expect a MERGE_VALUES node.
561      SDValue Ops[] = { Load, TF };
562      return DAG.getMergeValues(Ops, 2, dl);
563    }
564  }
565  assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
566         "Unaligned load of unsupported type.");
567
568  // Compute the new VT that is half the size of the old one.  This is an
569  // integer MVT.
570  unsigned NumBits = LoadedVT.getSizeInBits();
571  MVT NewLoadedVT;
572  NewLoadedVT = MVT::getIntegerVT(NumBits/2);
573  NumBits >>= 1;
574
575  unsigned Alignment = LD->getAlignment();
576  unsigned IncrementSize = NumBits / 8;
577  ISD::LoadExtType HiExtType = LD->getExtensionType();
578
579  // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
580  if (HiExtType == ISD::NON_EXTLOAD)
581    HiExtType = ISD::ZEXTLOAD;
582
583  // Load the value in two parts
584  SDValue Lo, Hi;
585  if (TLI.isLittleEndian()) {
586    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(),
587                        SVOffset, NewLoadedVT, LD->isVolatile(), Alignment);
588    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
589                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
590    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(),
591                        SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
592                        MinAlign(Alignment, IncrementSize));
593  } else {
594    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(),
595                        SVOffset, NewLoadedVT, LD->isVolatile(), Alignment);
596    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
597                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
598    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(),
599                        SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
600                        MinAlign(Alignment, IncrementSize));
601  }
602
603  // aggregate the two parts
604  SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
605  SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
606  Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
607
608  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
609                             Hi.getValue(1));
610
611  SDValue Ops[] = { Result, TF };
612  return DAG.getMergeValues(Ops, 2, dl);
613}
614
615/// PerformInsertVectorEltInMemory - Some target cannot handle a variable
616/// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
617/// is necessary to spill the vector being inserted into to memory, perform
618/// the insert there, and then read the result back.
619SDValue SelectionDAGLegalize::
620PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
621                               DebugLoc dl) {
622  SDValue Tmp1 = Vec;
623  SDValue Tmp2 = Val;
624  SDValue Tmp3 = Idx;
625
626  // If the target doesn't support this, we have to spill the input vector
627  // to a temporary stack slot, update the element, then reload it.  This is
628  // badness.  We could also load the value into a vector register (either
629  // with a "move to register" or "extload into register" instruction, then
630  // permute it into place, if the idx is a constant and if the idx is
631  // supported by the target.
632  MVT VT    = Tmp1.getValueType();
633  MVT EltVT = VT.getVectorElementType();
634  MVT IdxVT = Tmp3.getValueType();
635  MVT PtrVT = TLI.getPointerTy();
636  SDValue StackPtr = DAG.CreateStackTemporary(VT);
637
638  int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
639
640  // Store the vector.
641  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr,
642                            PseudoSourceValue::getFixedStack(SPFI), 0);
643
644  // Truncate or zero extend offset to target pointer type.
645  unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
646  Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3);
647  // Add the offset to the index.
648  unsigned EltSize = EltVT.getSizeInBits()/8;
649  Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
650  SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
651  // Store the scalar value.
652  Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2,
653                         PseudoSourceValue::getFixedStack(SPFI), 0, EltVT);
654  // Load the updated vector.
655  return DAG.getLoad(VT, dl, Ch, StackPtr,
656                     PseudoSourceValue::getFixedStack(SPFI), 0);
657}
658
659
660SDValue SelectionDAGLegalize::
661ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) {
662  if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
663    // SCALAR_TO_VECTOR requires that the type of the value being inserted
664    // match the element type of the vector being created, except for
665    // integers in which case the inserted value can be over width.
666    MVT EltVT = Vec.getValueType().getVectorElementType();
667    if (Val.getValueType() == EltVT ||
668        (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
669      SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
670                                  Vec.getValueType(), Val);
671
672      unsigned NumElts = Vec.getValueType().getVectorNumElements();
673      // We generate a shuffle of InVec and ScVec, so the shuffle mask
674      // should be 0,1,2,3,4,5... with the appropriate element replaced with
675      // elt 0 of the RHS.
676      SmallVector<int, 8> ShufOps;
677      for (unsigned i = 0; i != NumElts; ++i)
678        ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
679
680      return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
681                                  &ShufOps[0]);
682    }
683  }
684  return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
685}
686
687SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
688  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
689  // FIXME: We shouldn't do this for TargetConstantFP's.
690  // FIXME: move this to the DAG Combiner!  Note that we can't regress due
691  // to phase ordering between legalized code and the dag combiner.  This
692  // probably means that we need to integrate dag combiner and legalizer
693  // together.
694  // We generally can't do this one for long doubles.
695  SDValue Tmp1 = ST->getChain();
696  SDValue Tmp2 = ST->getBasePtr();
697  SDValue Tmp3;
698  int SVOffset = ST->getSrcValueOffset();
699  unsigned Alignment = ST->getAlignment();
700  bool isVolatile = ST->isVolatile();
701  DebugLoc dl = ST->getDebugLoc();
702  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
703    if (CFP->getValueType(0) == MVT::f32 &&
704        getTypeAction(MVT::i32) == Legal) {
705      Tmp3 = DAG.getConstant(CFP->getValueAPF().
706                                      bitcastToAPInt().zextOrTrunc(32),
707                              MVT::i32);
708      return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
709                          SVOffset, isVolatile, Alignment);
710    } else if (CFP->getValueType(0) == MVT::f64) {
711      // If this target supports 64-bit registers, do a single 64-bit store.
712      if (getTypeAction(MVT::i64) == Legal) {
713        Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
714                                  zextOrTrunc(64), MVT::i64);
715        return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
716                            SVOffset, isVolatile, Alignment);
717      } else if (getTypeAction(MVT::i32) == Legal && !ST->isVolatile()) {
718        // Otherwise, if the target supports 32-bit registers, use 2 32-bit
719        // stores.  If the target supports neither 32- nor 64-bits, this
720        // xform is certainly not worth it.
721        const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt();
722        SDValue Lo = DAG.getConstant(APInt(IntVal).trunc(32), MVT::i32);
723        SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32);
724        if (TLI.isBigEndian()) std::swap(Lo, Hi);
725
726        Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getSrcValue(),
727                          SVOffset, isVolatile, Alignment);
728        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
729                            DAG.getIntPtrConstant(4));
730        Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(), SVOffset+4,
731                          isVolatile, MinAlign(Alignment, 4U));
732
733        return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
734      }
735    }
736  }
737  return SDValue();
738}
739
740/// LegalizeOp - We know that the specified value has a legal type, and
741/// that its operands are legal.  Now ensure that the operation itself
742/// is legal, recursively ensuring that the operands' operations remain
743/// legal.
744SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
745  if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
746    return Op;
747
748  SDNode *Node = Op.getNode();
749  DebugLoc dl = Node->getDebugLoc();
750
751  for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
752    assert(getTypeAction(Node->getValueType(i)) == Legal &&
753           "Unexpected illegal type!");
754
755  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
756    assert((isTypeLegal(Node->getOperand(i).getValueType()) ||
757            Node->getOperand(i).getOpcode() == ISD::TargetConstant) &&
758           "Unexpected illegal type!");
759
760  // Note that LegalizeOp may be reentered even from single-use nodes, which
761  // means that we always must cache transformed nodes.
762  DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
763  if (I != LegalizedNodes.end()) return I->second;
764
765  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
766  SDValue Result = Op;
767  bool isCustom = false;
768
769  // Figure out the correct action; the way to query this varies by opcode
770  TargetLowering::LegalizeAction Action;
771  bool SimpleFinishLegalizing = true;
772  switch (Node->getOpcode()) {
773  case ISD::INTRINSIC_W_CHAIN:
774  case ISD::INTRINSIC_WO_CHAIN:
775  case ISD::INTRINSIC_VOID:
776  case ISD::VAARG:
777  case ISD::STACKSAVE:
778    Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
779    break;
780  case ISD::SINT_TO_FP:
781  case ISD::UINT_TO_FP:
782  case ISD::EXTRACT_VECTOR_ELT:
783    Action = TLI.getOperationAction(Node->getOpcode(),
784                                    Node->getOperand(0).getValueType());
785    break;
786  case ISD::FP_ROUND_INREG:
787  case ISD::SIGN_EXTEND_INREG: {
788    MVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
789    Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
790    break;
791  }
792  case ISD::SELECT_CC:
793  case ISD::SETCC:
794  case ISD::BR_CC: {
795    unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
796                         Node->getOpcode() == ISD::SETCC ? 2 : 1;
797    unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
798    MVT OpVT = Node->getOperand(CompareOperand).getValueType();
799    ISD::CondCode CCCode =
800        cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
801    Action = TLI.getCondCodeAction(CCCode, OpVT);
802    if (Action == TargetLowering::Legal) {
803      if (Node->getOpcode() == ISD::SELECT_CC)
804        Action = TLI.getOperationAction(Node->getOpcode(),
805                                        Node->getValueType(0));
806      else
807        Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
808    }
809    break;
810  }
811  case ISD::LOAD:
812  case ISD::STORE:
813    // FIXME: Model these properly.  LOAD and STORE are complicated, and
814    // STORE expects the unlegalized operand in some cases.
815    SimpleFinishLegalizing = false;
816    break;
817  case ISD::CALLSEQ_START:
818  case ISD::CALLSEQ_END:
819    // FIXME: This shouldn't be necessary.  These nodes have special properties
820    // dealing with the recursive nature of legalization.  Removing this
821    // special case should be done as part of making LegalizeDAG non-recursive.
822    SimpleFinishLegalizing = false;
823    break;
824  case ISD::CALL:
825    // FIXME: Legalization for calls requires custom-lowering the call before
826    // legalizing the operands!  (I haven't looked into precisely why.)
827    SimpleFinishLegalizing = false;
828    break;
829  case ISD::EXTRACT_ELEMENT:
830  case ISD::FLT_ROUNDS_:
831  case ISD::SADDO:
832  case ISD::SSUBO:
833  case ISD::UADDO:
834  case ISD::USUBO:
835  case ISD::SMULO:
836  case ISD::UMULO:
837  case ISD::FPOWI:
838  case ISD::MERGE_VALUES:
839  case ISD::EH_RETURN:
840  case ISD::FRAME_TO_ARGS_OFFSET:
841    // These operations lie about being legal: when they claim to be legal,
842    // they should actually be expanded.
843    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
844    if (Action == TargetLowering::Legal)
845      Action = TargetLowering::Expand;
846    break;
847  case ISD::TRAMPOLINE:
848  case ISD::FRAMEADDR:
849  case ISD::RETURNADDR:
850  case ISD::FORMAL_ARGUMENTS:
851    // These operations lie about being legal: when they claim to be legal,
852    // they should actually be custom-lowered.
853    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
854    if (Action == TargetLowering::Legal)
855      Action = TargetLowering::Custom;
856    break;
857  case ISD::BUILD_VECTOR:
858    // A weird case: legalization for BUILD_VECTOR never legalizes the
859    // operands!
860    // FIXME: This really sucks... changing it isn't semantically incorrect,
861    // but it massively pessimizes the code for floating-point BUILD_VECTORs
862    // because ConstantFP operands get legalized into constant pool loads
863    // before the BUILD_VECTOR code can see them.  It doesn't usually bite,
864    // though, because BUILD_VECTORS usually get lowered into other nodes
865    // which get legalized properly.
866    SimpleFinishLegalizing = false;
867    break;
868  default:
869    if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
870      Action = TargetLowering::Legal;
871    } else {
872      Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
873    }
874    break;
875  }
876
877  if (SimpleFinishLegalizing) {
878    SmallVector<SDValue, 8> Ops, ResultVals;
879    for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
880      Ops.push_back(LegalizeOp(Node->getOperand(i)));
881    switch (Node->getOpcode()) {
882    default: break;
883    case ISD::BR:
884    case ISD::BRIND:
885    case ISD::BR_JT:
886    case ISD::BR_CC:
887    case ISD::BRCOND:
888    case ISD::RET:
889      // Branches tweak the chain to include LastCALLSEQ_END
890      Ops[0] = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ops[0],
891                            LastCALLSEQ_END);
892      Ops[0] = LegalizeOp(Ops[0]);
893      LastCALLSEQ_END = DAG.getEntryNode();
894      break;
895    case ISD::SHL:
896    case ISD::SRL:
897    case ISD::SRA:
898    case ISD::ROTL:
899    case ISD::ROTR:
900      // Legalizing shifts/rotates requires adjusting the shift amount
901      // to the appropriate width.
902      if (!Ops[1].getValueType().isVector())
903        Ops[1] = LegalizeOp(DAG.getShiftAmountOperand(Ops[1]));
904      break;
905    }
906
907    Result = DAG.UpdateNodeOperands(Result.getValue(0), Ops.data(),
908                                    Ops.size());
909    switch (Action) {
910    case TargetLowering::Legal:
911      for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
912        ResultVals.push_back(Result.getValue(i));
913      break;
914    case TargetLowering::Custom:
915      // FIXME: The handling for custom lowering with multiple results is
916      // a complete mess.
917      Tmp1 = TLI.LowerOperation(Result, DAG);
918      if (Tmp1.getNode()) {
919        for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
920          if (e == 1)
921            ResultVals.push_back(Tmp1);
922          else
923            ResultVals.push_back(Tmp1.getValue(i));
924        }
925        break;
926      }
927
928      // FALL THROUGH
929    case TargetLowering::Expand:
930      ExpandNode(Result.getNode(), ResultVals);
931      break;
932    case TargetLowering::Promote:
933      PromoteNode(Result.getNode(), ResultVals);
934      break;
935    }
936    if (!ResultVals.empty()) {
937      for (unsigned i = 0, e = ResultVals.size(); i != e; ++i) {
938        if (ResultVals[i] != SDValue(Node, i))
939          ResultVals[i] = LegalizeOp(ResultVals[i]);
940        AddLegalizedOperand(SDValue(Node, i), ResultVals[i]);
941      }
942      return ResultVals[Op.getResNo()];
943    }
944  }
945
946  switch (Node->getOpcode()) {
947  default:
948#ifndef NDEBUG
949    cerr << "NODE: "; Node->dump(&DAG); cerr << "\n";
950#endif
951    assert(0 && "Do not know how to legalize this operator!");
952    abort();
953  case ISD::CALL:
954    // The only option for this is to custom lower it.
955    Tmp3 = TLI.LowerOperation(Result.getValue(0), DAG);
956    assert(Tmp3.getNode() && "Target didn't custom lower this node!");
957    // A call within a calling sequence must be legalized to something
958    // other than the normal CALLSEQ_END.  Violating this gets Legalize
959    // into an infinite loop.
960    assert ((!IsLegalizingCall ||
961             Node->getOpcode() != ISD::CALL ||
962             Tmp3.getNode()->getOpcode() != ISD::CALLSEQ_END) &&
963            "Nested CALLSEQ_START..CALLSEQ_END not supported.");
964
965    // The number of incoming and outgoing values should match; unless the final
966    // outgoing value is a flag.
967    assert((Tmp3.getNode()->getNumValues() == Result.getNode()->getNumValues() ||
968            (Tmp3.getNode()->getNumValues() == Result.getNode()->getNumValues() + 1 &&
969             Tmp3.getNode()->getValueType(Tmp3.getNode()->getNumValues() - 1) ==
970               MVT::Flag)) &&
971           "Lowering call/formal_arguments produced unexpected # results!");
972
973    // Since CALL/FORMAL_ARGUMENTS nodes produce multiple values, make sure to
974    // remember that we legalized all of them, so it doesn't get relegalized.
975    for (unsigned i = 0, e = Tmp3.getNode()->getNumValues(); i != e; ++i) {
976      if (Tmp3.getNode()->getValueType(i) == MVT::Flag)
977        continue;
978      Tmp1 = LegalizeOp(Tmp3.getValue(i));
979      if (Op.getResNo() == i)
980        Tmp2 = Tmp1;
981      AddLegalizedOperand(SDValue(Node, i), Tmp1);
982    }
983    return Tmp2;
984  case ISD::BUILD_VECTOR:
985    switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) {
986    default: assert(0 && "This action is not supported yet!");
987    case TargetLowering::Custom:
988      Tmp3 = TLI.LowerOperation(Result, DAG);
989      if (Tmp3.getNode()) {
990        Result = Tmp3;
991        break;
992      }
993      // FALLTHROUGH
994    case TargetLowering::Expand:
995      Result = ExpandBUILD_VECTOR(Result.getNode());
996      break;
997    }
998    break;
999  case ISD::CALLSEQ_START: {
1000    SDNode *CallEnd = FindCallEndFromCallStart(Node);
1001
1002    // Recursively Legalize all of the inputs of the call end that do not lead
1003    // to this call start.  This ensures that any libcalls that need be inserted
1004    // are inserted *before* the CALLSEQ_START.
1005    {SmallPtrSet<SDNode*, 32> NodesLeadingTo;
1006    for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i)
1007      LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).getNode(), Node,
1008                                   NodesLeadingTo);
1009    }
1010
1011    // Now that we legalized all of the inputs (which may have inserted
1012    // libcalls) create the new CALLSEQ_START node.
1013    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1014
1015    // Merge in the last call, to ensure that this call start after the last
1016    // call ended.
1017    if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) {
1018      Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1019                         Tmp1, LastCALLSEQ_END);
1020      Tmp1 = LegalizeOp(Tmp1);
1021    }
1022
1023    // Do not try to legalize the target-specific arguments (#1+).
1024    if (Tmp1 != Node->getOperand(0)) {
1025      SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1026      Ops[0] = Tmp1;
1027      Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1028    }
1029
1030    // Remember that the CALLSEQ_START is legalized.
1031    AddLegalizedOperand(Op.getValue(0), Result);
1032    if (Node->getNumValues() == 2)    // If this has a flag result, remember it.
1033      AddLegalizedOperand(Op.getValue(1), Result.getValue(1));
1034
1035    // Now that the callseq_start and all of the non-call nodes above this call
1036    // sequence have been legalized, legalize the call itself.  During this
1037    // process, no libcalls can/will be inserted, guaranteeing that no calls
1038    // can overlap.
1039    assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!");
1040    // Note that we are selecting this call!
1041    LastCALLSEQ_END = SDValue(CallEnd, 0);
1042    IsLegalizingCall = true;
1043
1044    // Legalize the call, starting from the CALLSEQ_END.
1045    LegalizeOp(LastCALLSEQ_END);
1046    assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!");
1047    return Result;
1048  }
1049  case ISD::CALLSEQ_END:
1050    // If the CALLSEQ_START node hasn't been legalized first, legalize it.  This
1051    // will cause this node to be legalized as well as handling libcalls right.
1052    if (LastCALLSEQ_END.getNode() != Node) {
1053      LegalizeOp(SDValue(FindCallStartFromCallEnd(Node), 0));
1054      DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
1055      assert(I != LegalizedNodes.end() &&
1056             "Legalizing the call start should have legalized this node!");
1057      return I->second;
1058    }
1059
1060    // Otherwise, the call start has been legalized and everything is going
1061    // according to plan.  Just legalize ourselves normally here.
1062    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1063    // Do not try to legalize the target-specific arguments (#1+), except for
1064    // an optional flag input.
1065    if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Flag){
1066      if (Tmp1 != Node->getOperand(0)) {
1067        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1068        Ops[0] = Tmp1;
1069        Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1070      }
1071    } else {
1072      Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1));
1073      if (Tmp1 != Node->getOperand(0) ||
1074          Tmp2 != Node->getOperand(Node->getNumOperands()-1)) {
1075        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1076        Ops[0] = Tmp1;
1077        Ops.back() = Tmp2;
1078        Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1079      }
1080    }
1081    assert(IsLegalizingCall && "Call sequence imbalance between start/end?");
1082    // This finishes up call legalization.
1083    IsLegalizingCall = false;
1084
1085    // If the CALLSEQ_END node has a flag, remember that we legalized it.
1086    AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0));
1087    if (Node->getNumValues() == 2)
1088      AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1));
1089    return Result.getValue(Op.getResNo());
1090  case ISD::LOAD: {
1091    LoadSDNode *LD = cast<LoadSDNode>(Node);
1092    Tmp1 = LegalizeOp(LD->getChain());   // Legalize the chain.
1093    Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer.
1094
1095    ISD::LoadExtType ExtType = LD->getExtensionType();
1096    if (ExtType == ISD::NON_EXTLOAD) {
1097      MVT VT = Node->getValueType(0);
1098      Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset());
1099      Tmp3 = Result.getValue(0);
1100      Tmp4 = Result.getValue(1);
1101
1102      switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
1103      default: assert(0 && "This action is not supported yet!");
1104      case TargetLowering::Legal:
1105        // If this is an unaligned load and the target doesn't support it,
1106        // expand it.
1107        if (!TLI.allowsUnalignedMemoryAccesses()) {
1108          unsigned ABIAlignment = TLI.getTargetData()->
1109            getABITypeAlignment(LD->getMemoryVT().getTypeForMVT(
1110                                                            *DAG.getContext()));
1111          if (LD->getAlignment() < ABIAlignment){
1112            Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()), DAG,
1113                                         TLI);
1114            Tmp3 = Result.getOperand(0);
1115            Tmp4 = Result.getOperand(1);
1116            Tmp3 = LegalizeOp(Tmp3);
1117            Tmp4 = LegalizeOp(Tmp4);
1118          }
1119        }
1120        break;
1121      case TargetLowering::Custom:
1122        Tmp1 = TLI.LowerOperation(Tmp3, DAG);
1123        if (Tmp1.getNode()) {
1124          Tmp3 = LegalizeOp(Tmp1);
1125          Tmp4 = LegalizeOp(Tmp1.getValue(1));
1126        }
1127        break;
1128      case TargetLowering::Promote: {
1129        // Only promote a load of vector type to another.
1130        assert(VT.isVector() && "Cannot promote this load!");
1131        // Change base type to a different vector type.
1132        MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
1133
1134        Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
1135                           LD->getSrcValueOffset(),
1136                           LD->isVolatile(), LD->getAlignment());
1137        Tmp3 = LegalizeOp(DAG.getNode(ISD::BIT_CONVERT, dl, VT, Tmp1));
1138        Tmp4 = LegalizeOp(Tmp1.getValue(1));
1139        break;
1140      }
1141      }
1142      // Since loads produce two values, make sure to remember that we
1143      // legalized both of them.
1144      AddLegalizedOperand(SDValue(Node, 0), Tmp3);
1145      AddLegalizedOperand(SDValue(Node, 1), Tmp4);
1146      return Op.getResNo() ? Tmp4 : Tmp3;
1147    } else {
1148      MVT SrcVT = LD->getMemoryVT();
1149      unsigned SrcWidth = SrcVT.getSizeInBits();
1150      int SVOffset = LD->getSrcValueOffset();
1151      unsigned Alignment = LD->getAlignment();
1152      bool isVolatile = LD->isVolatile();
1153
1154      if (SrcWidth != SrcVT.getStoreSizeInBits() &&
1155          // Some targets pretend to have an i1 loading operation, and actually
1156          // load an i8.  This trick is correct for ZEXTLOAD because the top 7
1157          // bits are guaranteed to be zero; it helps the optimizers understand
1158          // that these bits are zero.  It is also useful for EXTLOAD, since it
1159          // tells the optimizers that those bits are undefined.  It would be
1160          // nice to have an effective generic way of getting these benefits...
1161          // Until such a way is found, don't insist on promoting i1 here.
1162          (SrcVT != MVT::i1 ||
1163           TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
1164        // Promote to a byte-sized load if not loading an integral number of
1165        // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
1166        unsigned NewWidth = SrcVT.getStoreSizeInBits();
1167        MVT NVT = MVT::getIntegerVT(NewWidth);
1168        SDValue Ch;
1169
1170        // The extra bits are guaranteed to be zero, since we stored them that
1171        // way.  A zext load from NVT thus automatically gives zext from SrcVT.
1172
1173        ISD::LoadExtType NewExtType =
1174          ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
1175
1176        Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
1177                                Tmp1, Tmp2, LD->getSrcValue(), SVOffset,
1178                                NVT, isVolatile, Alignment);
1179
1180        Ch = Result.getValue(1); // The chain.
1181
1182        if (ExtType == ISD::SEXTLOAD)
1183          // Having the top bits zero doesn't help when sign extending.
1184          Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1185                               Result.getValueType(),
1186                               Result, DAG.getValueType(SrcVT));
1187        else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
1188          // All the top bits are guaranteed to be zero - inform the optimizers.
1189          Result = DAG.getNode(ISD::AssertZext, dl,
1190                               Result.getValueType(), Result,
1191                               DAG.getValueType(SrcVT));
1192
1193        Tmp1 = LegalizeOp(Result);
1194        Tmp2 = LegalizeOp(Ch);
1195      } else if (SrcWidth & (SrcWidth - 1)) {
1196        // If not loading a power-of-2 number of bits, expand as two loads.
1197        assert(SrcVT.isExtended() && !SrcVT.isVector() &&
1198               "Unsupported extload!");
1199        unsigned RoundWidth = 1 << Log2_32(SrcWidth);
1200        assert(RoundWidth < SrcWidth);
1201        unsigned ExtraWidth = SrcWidth - RoundWidth;
1202        assert(ExtraWidth < RoundWidth);
1203        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1204               "Load size not an integral number of bytes!");
1205        MVT RoundVT = MVT::getIntegerVT(RoundWidth);
1206        MVT ExtraVT = MVT::getIntegerVT(ExtraWidth);
1207        SDValue Lo, Hi, Ch;
1208        unsigned IncrementSize;
1209
1210        if (TLI.isLittleEndian()) {
1211          // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
1212          // Load the bottom RoundWidth bits.
1213          Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl,
1214                              Node->getValueType(0), Tmp1, Tmp2,
1215                              LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
1216                              Alignment);
1217
1218          // Load the remaining ExtraWidth bits.
1219          IncrementSize = RoundWidth / 8;
1220          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1221                             DAG.getIntPtrConstant(IncrementSize));
1222          Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1223                              LD->getSrcValue(), SVOffset + IncrementSize,
1224                              ExtraVT, isVolatile,
1225                              MinAlign(Alignment, IncrementSize));
1226
1227          // Build a factor node to remember that this load is independent of the
1228          // other one.
1229          Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1230                           Hi.getValue(1));
1231
1232          // Move the top bits to the right place.
1233          Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1234                           DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1235
1236          // Join the hi and lo parts.
1237          Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1238        } else {
1239          // Big endian - avoid unaligned loads.
1240          // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
1241          // Load the top RoundWidth bits.
1242          Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1243                              LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
1244                              Alignment);
1245
1246          // Load the remaining ExtraWidth bits.
1247          IncrementSize = RoundWidth / 8;
1248          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1249                             DAG.getIntPtrConstant(IncrementSize));
1250          Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl,
1251                              Node->getValueType(0), Tmp1, Tmp2,
1252                              LD->getSrcValue(), SVOffset + IncrementSize,
1253                              ExtraVT, isVolatile,
1254                              MinAlign(Alignment, IncrementSize));
1255
1256          // Build a factor node to remember that this load is independent of the
1257          // other one.
1258          Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1259                           Hi.getValue(1));
1260
1261          // Move the top bits to the right place.
1262          Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1263                           DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1264
1265          // Join the hi and lo parts.
1266          Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1267        }
1268
1269        Tmp1 = LegalizeOp(Result);
1270        Tmp2 = LegalizeOp(Ch);
1271      } else {
1272        switch (TLI.getLoadExtAction(ExtType, SrcVT)) {
1273        default: assert(0 && "This action is not supported yet!");
1274        case TargetLowering::Custom:
1275          isCustom = true;
1276          // FALLTHROUGH
1277        case TargetLowering::Legal:
1278          Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset());
1279          Tmp1 = Result.getValue(0);
1280          Tmp2 = Result.getValue(1);
1281
1282          if (isCustom) {
1283            Tmp3 = TLI.LowerOperation(Result, DAG);
1284            if (Tmp3.getNode()) {
1285              Tmp1 = LegalizeOp(Tmp3);
1286              Tmp2 = LegalizeOp(Tmp3.getValue(1));
1287            }
1288          } else {
1289            // If this is an unaligned load and the target doesn't support it,
1290            // expand it.
1291            if (!TLI.allowsUnalignedMemoryAccesses()) {
1292              unsigned ABIAlignment = TLI.getTargetData()->
1293                getABITypeAlignment(LD->getMemoryVT().getTypeForMVT(
1294                                                            *DAG.getContext()));
1295              if (LD->getAlignment() < ABIAlignment){
1296                Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()), DAG,
1297                                             TLI);
1298                Tmp1 = Result.getOperand(0);
1299                Tmp2 = Result.getOperand(1);
1300                Tmp1 = LegalizeOp(Tmp1);
1301                Tmp2 = LegalizeOp(Tmp2);
1302              }
1303            }
1304          }
1305          break;
1306        case TargetLowering::Expand:
1307          // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND
1308          if (SrcVT == MVT::f32 && Node->getValueType(0) == MVT::f64) {
1309            SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
1310                                         LD->getSrcValueOffset(),
1311                                         LD->isVolatile(), LD->getAlignment());
1312            Result = DAG.getNode(ISD::FP_EXTEND, dl,
1313                                 Node->getValueType(0), Load);
1314            Tmp1 = LegalizeOp(Result);  // Relegalize new nodes.
1315            Tmp2 = LegalizeOp(Load.getValue(1));
1316            break;
1317          }
1318          assert(ExtType != ISD::EXTLOAD &&"EXTLOAD should always be supported!");
1319          // Turn the unsupported load into an EXTLOAD followed by an explicit
1320          // zero/sign extend inreg.
1321          Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0),
1322                                  Tmp1, Tmp2, LD->getSrcValue(),
1323                                  LD->getSrcValueOffset(), SrcVT,
1324                                  LD->isVolatile(), LD->getAlignment());
1325          SDValue ValRes;
1326          if (ExtType == ISD::SEXTLOAD)
1327            ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1328                                 Result.getValueType(),
1329                                 Result, DAG.getValueType(SrcVT));
1330          else
1331            ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT);
1332          Tmp1 = LegalizeOp(ValRes);  // Relegalize new nodes.
1333          Tmp2 = LegalizeOp(Result.getValue(1));  // Relegalize new nodes.
1334          break;
1335        }
1336      }
1337
1338      // Since loads produce two values, make sure to remember that we legalized
1339      // both of them.
1340      AddLegalizedOperand(SDValue(Node, 0), Tmp1);
1341      AddLegalizedOperand(SDValue(Node, 1), Tmp2);
1342      return Op.getResNo() ? Tmp2 : Tmp1;
1343    }
1344  }
1345  case ISD::STORE: {
1346    StoreSDNode *ST = cast<StoreSDNode>(Node);
1347    Tmp1 = LegalizeOp(ST->getChain());    // Legalize the chain.
1348    Tmp2 = LegalizeOp(ST->getBasePtr());  // Legalize the pointer.
1349    int SVOffset = ST->getSrcValueOffset();
1350    unsigned Alignment = ST->getAlignment();
1351    bool isVolatile = ST->isVolatile();
1352
1353    if (!ST->isTruncatingStore()) {
1354      if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
1355        Result = SDValue(OptStore, 0);
1356        break;
1357      }
1358
1359      {
1360        Tmp3 = LegalizeOp(ST->getValue());
1361        Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2,
1362                                        ST->getOffset());
1363
1364        MVT VT = Tmp3.getValueType();
1365        switch (TLI.getOperationAction(ISD::STORE, VT)) {
1366        default: assert(0 && "This action is not supported yet!");
1367        case TargetLowering::Legal:
1368          // If this is an unaligned store and the target doesn't support it,
1369          // expand it.
1370          if (!TLI.allowsUnalignedMemoryAccesses()) {
1371            unsigned ABIAlignment = TLI.getTargetData()->
1372              getABITypeAlignment(ST->getMemoryVT().getTypeForMVT(
1373                                                            *DAG.getContext()));
1374            if (ST->getAlignment() < ABIAlignment)
1375              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()), DAG,
1376                                            TLI);
1377          }
1378          break;
1379        case TargetLowering::Custom:
1380          Tmp1 = TLI.LowerOperation(Result, DAG);
1381          if (Tmp1.getNode()) Result = Tmp1;
1382          break;
1383        case TargetLowering::Promote:
1384          assert(VT.isVector() && "Unknown legal promote case!");
1385          Tmp3 = DAG.getNode(ISD::BIT_CONVERT, dl,
1386                             TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3);
1387          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2,
1388                                ST->getSrcValue(), SVOffset, isVolatile,
1389                                Alignment);
1390          break;
1391        }
1392        break;
1393      }
1394    } else {
1395      Tmp3 = LegalizeOp(ST->getValue());
1396
1397      MVT StVT = ST->getMemoryVT();
1398      unsigned StWidth = StVT.getSizeInBits();
1399
1400      if (StWidth != StVT.getStoreSizeInBits()) {
1401        // Promote to a byte-sized store with upper bits zero if not
1402        // storing an integral number of bytes.  For example, promote
1403        // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
1404        MVT NVT = MVT::getIntegerVT(StVT.getStoreSizeInBits());
1405        Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT);
1406        Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1407                                   SVOffset, NVT, isVolatile, Alignment);
1408      } else if (StWidth & (StWidth - 1)) {
1409        // If not storing a power-of-2 number of bits, expand as two stores.
1410        assert(StVT.isExtended() && !StVT.isVector() &&
1411               "Unsupported truncstore!");
1412        unsigned RoundWidth = 1 << Log2_32(StWidth);
1413        assert(RoundWidth < StWidth);
1414        unsigned ExtraWidth = StWidth - RoundWidth;
1415        assert(ExtraWidth < RoundWidth);
1416        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1417               "Store size not an integral number of bytes!");
1418        MVT RoundVT = MVT::getIntegerVT(RoundWidth);
1419        MVT ExtraVT = MVT::getIntegerVT(ExtraWidth);
1420        SDValue Lo, Hi;
1421        unsigned IncrementSize;
1422
1423        if (TLI.isLittleEndian()) {
1424          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
1425          // Store the bottom RoundWidth bits.
1426          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1427                                 SVOffset, RoundVT,
1428                                 isVolatile, Alignment);
1429
1430          // Store the remaining ExtraWidth bits.
1431          IncrementSize = RoundWidth / 8;
1432          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1433                             DAG.getIntPtrConstant(IncrementSize));
1434          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1435                           DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1436          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
1437                                 SVOffset + IncrementSize, ExtraVT, isVolatile,
1438                                 MinAlign(Alignment, IncrementSize));
1439        } else {
1440          // Big endian - avoid unaligned stores.
1441          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
1442          // Store the top RoundWidth bits.
1443          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1444                           DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1445          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
1446                                 SVOffset, RoundVT, isVolatile, Alignment);
1447
1448          // Store the remaining ExtraWidth bits.
1449          IncrementSize = RoundWidth / 8;
1450          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1451                             DAG.getIntPtrConstant(IncrementSize));
1452          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1453                                 SVOffset + IncrementSize, ExtraVT, isVolatile,
1454                                 MinAlign(Alignment, IncrementSize));
1455        }
1456
1457        // The order of the stores doesn't matter.
1458        Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
1459      } else {
1460        if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() ||
1461            Tmp2 != ST->getBasePtr())
1462          Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2,
1463                                          ST->getOffset());
1464
1465        switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
1466        default: assert(0 && "This action is not supported yet!");
1467        case TargetLowering::Legal:
1468          // If this is an unaligned store and the target doesn't support it,
1469          // expand it.
1470          if (!TLI.allowsUnalignedMemoryAccesses()) {
1471            unsigned ABIAlignment = TLI.getTargetData()->
1472              getABITypeAlignment(ST->getMemoryVT().getTypeForMVT(
1473                                                            *DAG.getContext()));
1474            if (ST->getAlignment() < ABIAlignment)
1475              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()), DAG,
1476                                            TLI);
1477          }
1478          break;
1479        case TargetLowering::Custom:
1480          Result = TLI.LowerOperation(Result, DAG);
1481          break;
1482        case Expand:
1483          // TRUNCSTORE:i16 i32 -> STORE i16
1484          assert(isTypeLegal(StVT) && "Do not know how to expand this store!");
1485          Tmp3 = DAG.getNode(ISD::TRUNCATE, dl, StVT, Tmp3);
1486          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1487                                SVOffset, isVolatile, Alignment);
1488          break;
1489        }
1490      }
1491    }
1492    break;
1493  }
1494  }
1495  assert(Result.getValueType() == Op.getValueType() &&
1496         "Bad legalization!");
1497
1498  // Make sure that the generated code is itself legal.
1499  if (Result != Op)
1500    Result = LegalizeOp(Result);
1501
1502  // Note that LegalizeOp may be reentered even from single-use nodes, which
1503  // means that we always must cache transformed nodes.
1504  AddLegalizedOperand(Op, Result);
1505  return Result;
1506}
1507
1508SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1509  SDValue Vec = Op.getOperand(0);
1510  SDValue Idx = Op.getOperand(1);
1511  DebugLoc dl = Op.getDebugLoc();
1512  // Store the value to a temporary stack slot, then LOAD the returned part.
1513  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1514  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, NULL, 0);
1515
1516  // Add the offset to the index.
1517  unsigned EltSize =
1518      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1519  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1520                    DAG.getConstant(EltSize, Idx.getValueType()));
1521
1522  if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1523    Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1524  else
1525    Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1526
1527  StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
1528
1529  return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, NULL, 0);
1530}
1531
1532SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1533  // We can't handle this case efficiently.  Allocate a sufficiently
1534  // aligned object on the stack, store each element into it, then load
1535  // the result as a vector.
1536  // Create the stack frame object.
1537  MVT VT = Node->getValueType(0);
1538  MVT OpVT = Node->getOperand(0).getValueType();
1539  DebugLoc dl = Node->getDebugLoc();
1540  SDValue FIPtr = DAG.CreateStackTemporary(VT);
1541  int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1542  const Value *SV = PseudoSourceValue::getFixedStack(FI);
1543
1544  // Emit a store of each element to the stack slot.
1545  SmallVector<SDValue, 8> Stores;
1546  unsigned TypeByteSize = OpVT.getSizeInBits() / 8;
1547  // Store (in the right endianness) the elements to memory.
1548  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1549    // Ignore undef elements.
1550    if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1551
1552    unsigned Offset = TypeByteSize*i;
1553
1554    SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType());
1555    Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
1556
1557    Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i),
1558                                  Idx, SV, Offset));
1559  }
1560
1561  SDValue StoreChain;
1562  if (!Stores.empty())    // Not all undef elements?
1563    StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1564                             &Stores[0], Stores.size());
1565  else
1566    StoreChain = DAG.getEntryNode();
1567
1568  // Result is a load from the stack slot.
1569  return DAG.getLoad(VT, dl, StoreChain, FIPtr, SV, 0);
1570}
1571
1572SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) {
1573  DebugLoc dl = Node->getDebugLoc();
1574  SDValue Tmp1 = Node->getOperand(0);
1575  SDValue Tmp2 = Node->getOperand(1);
1576  assert((Tmp2.getValueType() == MVT::f32 ||
1577          Tmp2.getValueType() == MVT::f64) &&
1578          "Ugly special-cased code!");
1579  // Get the sign bit of the RHS.
1580  SDValue SignBit;
1581  MVT IVT = Tmp2.getValueType() == MVT::f64 ? MVT::i64 : MVT::i32;
1582  if (isTypeLegal(IVT)) {
1583    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, IVT, Tmp2);
1584  } else {
1585    assert(isTypeLegal(TLI.getPointerTy()) &&
1586            (TLI.getPointerTy() == MVT::i32 ||
1587            TLI.getPointerTy() == MVT::i64) &&
1588            "Legal type for load?!");
1589    SDValue StackPtr = DAG.CreateStackTemporary(Tmp2.getValueType());
1590    SDValue StorePtr = StackPtr, LoadPtr = StackPtr;
1591    SDValue Ch =
1592        DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StorePtr, NULL, 0);
1593    if (Tmp2.getValueType() == MVT::f64 && TLI.isLittleEndian())
1594      LoadPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(),
1595                            LoadPtr, DAG.getIntPtrConstant(4));
1596    SignBit = DAG.getExtLoad(ISD::SEXTLOAD, dl, TLI.getPointerTy(),
1597                              Ch, LoadPtr, NULL, 0, MVT::i32);
1598  }
1599  SignBit =
1600      DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()),
1601                    SignBit, DAG.getConstant(0, SignBit.getValueType()),
1602                    ISD::SETLT);
1603  // Get the absolute value of the result.
1604  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1);
1605  // Select between the nabs and abs value based on the sign bit of
1606  // the input.
1607  return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit,
1608                     DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal),
1609                     AbsVal);
1610}
1611
1612SDValue SelectionDAGLegalize::ExpandDBG_STOPPOINT(SDNode* Node) {
1613  DebugLoc dl = Node->getDebugLoc();
1614  DwarfWriter *DW = DAG.getDwarfWriter();
1615  bool useDEBUG_LOC = TLI.isOperationLegalOrCustom(ISD::DEBUG_LOC,
1616                                                    MVT::Other);
1617  bool useLABEL = TLI.isOperationLegalOrCustom(ISD::DBG_LABEL, MVT::Other);
1618
1619  const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(Node);
1620  GlobalVariable *CU_GV = cast<GlobalVariable>(DSP->getCompileUnit());
1621  if (DW && (useDEBUG_LOC || useLABEL) && !CU_GV->isDeclaration()) {
1622    DICompileUnit CU(cast<GlobalVariable>(DSP->getCompileUnit()));
1623
1624    unsigned Line = DSP->getLine();
1625    unsigned Col = DSP->getColumn();
1626
1627    if (OptLevel == CodeGenOpt::None) {
1628      // A bit self-referential to have DebugLoc on Debug_Loc nodes, but it
1629      // won't hurt anything.
1630      if (useDEBUG_LOC) {
1631        return DAG.getNode(ISD::DEBUG_LOC, dl, MVT::Other, Node->getOperand(0),
1632                           DAG.getConstant(Line, MVT::i32),
1633                           DAG.getConstant(Col, MVT::i32),
1634                           DAG.getSrcValue(CU.getGV()));
1635      } else {
1636        unsigned ID = DW->RecordSourceLine(Line, Col, CU);
1637        return DAG.getLabel(ISD::DBG_LABEL, dl, Node->getOperand(0), ID);
1638      }
1639    }
1640  }
1641  return Node->getOperand(0);
1642}
1643
1644void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1645                                           SmallVectorImpl<SDValue> &Results) {
1646  unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1647  assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1648          " not tell us which reg is the stack pointer!");
1649  DebugLoc dl = Node->getDebugLoc();
1650  MVT VT = Node->getValueType(0);
1651  SDValue Tmp1 = SDValue(Node, 0);
1652  SDValue Tmp2 = SDValue(Node, 1);
1653  SDValue Tmp3 = Node->getOperand(2);
1654  SDValue Chain = Tmp1.getOperand(0);
1655
1656  // Chain the dynamic stack allocation so that it doesn't modify the stack
1657  // pointer when other instructions are using the stack.
1658  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
1659
1660  SDValue Size  = Tmp2.getOperand(1);
1661  SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1662  Chain = SP.getValue(1);
1663  unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1664  unsigned StackAlign =
1665    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
1666  if (Align > StackAlign)
1667    SP = DAG.getNode(ISD::AND, dl, VT, SP,
1668                      DAG.getConstant(-(uint64_t)Align, VT));
1669  Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size);       // Value
1670  Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain
1671
1672  Tmp2 = DAG.getCALLSEQ_END(Chain,  DAG.getIntPtrConstant(0, true),
1673                            DAG.getIntPtrConstant(0, true), SDValue());
1674
1675  Results.push_back(Tmp1);
1676  Results.push_back(Tmp2);
1677}
1678
1679/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
1680/// condition code CC on the current target. This routine assumes LHS and rHS
1681/// have already been legalized by LegalizeSetCCOperands. It expands SETCC with
1682/// illegal condition code into AND / OR of multiple SETCC values.
1683void SelectionDAGLegalize::LegalizeSetCCCondCode(MVT VT,
1684                                                 SDValue &LHS, SDValue &RHS,
1685                                                 SDValue &CC,
1686                                                 DebugLoc dl) {
1687  MVT OpVT = LHS.getValueType();
1688  ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1689  switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1690  default: assert(0 && "Unknown condition code action!");
1691  case TargetLowering::Legal:
1692    // Nothing to do.
1693    break;
1694  case TargetLowering::Expand: {
1695    ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1696    unsigned Opc = 0;
1697    switch (CCCode) {
1698    default: assert(0 && "Don't know how to expand this condition!"); abort();
1699    case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1700    case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1701    case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1702    case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1703    case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1704    case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1705    case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1706    case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1707    case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1708    case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1709    case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1710    case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1711    // FIXME: Implement more expansions.
1712    }
1713
1714    SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1715    SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
1716    LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1717    RHS = SDValue();
1718    CC  = SDValue();
1719    break;
1720  }
1721  }
1722}
1723
1724/// EmitStackConvert - Emit a store/load combination to the stack.  This stores
1725/// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
1726/// a load from the stack slot to DestVT, extending it if needed.
1727/// The resultant code need not be legal.
1728SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
1729                                               MVT SlotVT,
1730                                               MVT DestVT,
1731                                               DebugLoc dl) {
1732  // Create the stack frame object.
1733  unsigned SrcAlign =
1734    TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType().
1735                                              getTypeForMVT(*DAG.getContext()));
1736  SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1737
1738  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1739  int SPFI = StackPtrFI->getIndex();
1740  const Value *SV = PseudoSourceValue::getFixedStack(SPFI);
1741
1742  unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
1743  unsigned SlotSize = SlotVT.getSizeInBits();
1744  unsigned DestSize = DestVT.getSizeInBits();
1745  unsigned DestAlign =
1746    TLI.getTargetData()->getPrefTypeAlignment(DestVT.getTypeForMVT(
1747                                                            *DAG.getContext()));
1748
1749  // Emit a store to the stack slot.  Use a truncstore if the input value is
1750  // later than DestVT.
1751  SDValue Store;
1752
1753  if (SrcSize > SlotSize)
1754    Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1755                              SV, 0, SlotVT, false, SrcAlign);
1756  else {
1757    assert(SrcSize == SlotSize && "Invalid store");
1758    Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1759                         SV, 0, false, SrcAlign);
1760  }
1761
1762  // Result is a load from the stack slot.
1763  if (SlotSize == DestSize)
1764    return DAG.getLoad(DestVT, dl, Store, FIPtr, SV, 0, false, DestAlign);
1765
1766  assert(SlotSize < DestSize && "Unknown extension!");
1767  return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, SV, 0, SlotVT,
1768                        false, DestAlign);
1769}
1770
1771SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1772  DebugLoc dl = Node->getDebugLoc();
1773  // Create a vector sized/aligned stack slot, store the value to element #0,
1774  // then load the whole vector back out.
1775  SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1776
1777  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1778  int SPFI = StackPtrFI->getIndex();
1779
1780  SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0),
1781                                 StackPtr,
1782                                 PseudoSourceValue::getFixedStack(SPFI), 0,
1783                                 Node->getValueType(0).getVectorElementType());
1784  return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr,
1785                     PseudoSourceValue::getFixedStack(SPFI), 0);
1786}
1787
1788
1789/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
1790/// support the operation, but do support the resultant vector type.
1791SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1792  unsigned NumElems = Node->getNumOperands();
1793  SDValue Value1, Value2;
1794  DebugLoc dl = Node->getDebugLoc();
1795  MVT VT = Node->getValueType(0);
1796  MVT OpVT = Node->getOperand(0).getValueType();
1797  MVT EltVT = VT.getVectorElementType();
1798
1799  // If the only non-undef value is the low element, turn this into a
1800  // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
1801  bool isOnlyLowElement = true;
1802  bool MoreThanTwoValues = false;
1803  bool isConstant = true;
1804  for (unsigned i = 0; i < NumElems; ++i) {
1805    SDValue V = Node->getOperand(i);
1806    if (V.getOpcode() == ISD::UNDEF)
1807      continue;
1808    if (i > 0)
1809      isOnlyLowElement = false;
1810    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1811      isConstant = false;
1812
1813    if (!Value1.getNode()) {
1814      Value1 = V;
1815    } else if (!Value2.getNode()) {
1816      if (V != Value1)
1817        Value2 = V;
1818    } else if (V != Value1 && V != Value2) {
1819      MoreThanTwoValues = true;
1820    }
1821  }
1822
1823  if (!Value1.getNode())
1824    return DAG.getUNDEF(VT);
1825
1826  if (isOnlyLowElement)
1827    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1828
1829  // If all elements are constants, create a load from the constant pool.
1830  if (isConstant) {
1831    std::vector<Constant*> CV;
1832    for (unsigned i = 0, e = NumElems; i != e; ++i) {
1833      if (ConstantFPSDNode *V =
1834          dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1835        CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1836      } else if (ConstantSDNode *V =
1837                 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1838        CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1839      } else {
1840        assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
1841        const Type *OpNTy = OpVT.getTypeForMVT(*DAG.getContext());
1842        CV.push_back(UndefValue::get(OpNTy));
1843      }
1844    }
1845    Constant *CP = ConstantVector::get(CV);
1846    SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
1847    unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
1848    return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
1849                       PseudoSourceValue::getConstantPool(), 0,
1850                       false, Alignment);
1851  }
1852
1853  if (!MoreThanTwoValues) {
1854    SmallVector<int, 8> ShuffleVec(NumElems, -1);
1855    for (unsigned i = 0; i < NumElems; ++i) {
1856      SDValue V = Node->getOperand(i);
1857      if (V.getOpcode() == ISD::UNDEF)
1858        continue;
1859      ShuffleVec[i] = V == Value1 ? 0 : NumElems;
1860    }
1861    if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
1862      // Get the splatted value into the low element of a vector register.
1863      SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
1864      SDValue Vec2;
1865      if (Value2.getNode())
1866        Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
1867      else
1868        Vec2 = DAG.getUNDEF(VT);
1869
1870      // Return shuffle(LowValVec, undef, <0,0,0,0>)
1871      return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
1872    }
1873  }
1874
1875  // Otherwise, we can't handle this case efficiently.
1876  return ExpandVectorBuildThroughStack(Node);
1877}
1878
1879// ExpandLibCall - Expand a node into a call to a libcall.  If the result value
1880// does not fit into a register, return the lo part and set the hi part to the
1881// by-reg argument.  If it does fit into a single register, return the result
1882// and leave the Hi part unset.
1883SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
1884                                            bool isSigned) {
1885  assert(!IsLegalizingCall && "Cannot overlap legalization of calls!");
1886  // The input chain to this libcall is the entry node of the function.
1887  // Legalizing the call will automatically add the previous call to the
1888  // dependence.
1889  SDValue InChain = DAG.getEntryNode();
1890
1891  TargetLowering::ArgListTy Args;
1892  TargetLowering::ArgListEntry Entry;
1893  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1894    MVT ArgVT = Node->getOperand(i).getValueType();
1895    const Type *ArgTy = ArgVT.getTypeForMVT(*DAG.getContext());
1896    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
1897    Entry.isSExt = isSigned;
1898    Entry.isZExt = !isSigned;
1899    Args.push_back(Entry);
1900  }
1901  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1902                                         TLI.getPointerTy());
1903
1904  // Splice the libcall in wherever FindInputOutputChains tells us to.
1905  const Type *RetTy = Node->getValueType(0).getTypeForMVT(*DAG.getContext());
1906  std::pair<SDValue, SDValue> CallInfo =
1907    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
1908                    0, CallingConv::C, false, Callee, Args, DAG,
1909                    Node->getDebugLoc());
1910
1911  // Legalize the call sequence, starting with the chain.  This will advance
1912  // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
1913  // was added by LowerCallTo (guaranteeing proper serialization of calls).
1914  LegalizeOp(CallInfo.second);
1915  return CallInfo.first;
1916}
1917
1918SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
1919                                              RTLIB::Libcall Call_F32,
1920                                              RTLIB::Libcall Call_F64,
1921                                              RTLIB::Libcall Call_F80,
1922                                              RTLIB::Libcall Call_PPCF128) {
1923  RTLIB::Libcall LC;
1924  switch (Node->getValueType(0).getSimpleVT()) {
1925  default: assert(0 && "Unexpected request for libcall!");
1926  case MVT::f32: LC = Call_F32; break;
1927  case MVT::f64: LC = Call_F64; break;
1928  case MVT::f80: LC = Call_F80; break;
1929  case MVT::ppcf128: LC = Call_PPCF128; break;
1930  }
1931  return ExpandLibCall(LC, Node, false);
1932}
1933
1934SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
1935                                               RTLIB::Libcall Call_I16,
1936                                               RTLIB::Libcall Call_I32,
1937                                               RTLIB::Libcall Call_I64,
1938                                               RTLIB::Libcall Call_I128) {
1939  RTLIB::Libcall LC;
1940  switch (Node->getValueType(0).getSimpleVT()) {
1941  default: assert(0 && "Unexpected request for libcall!");
1942  case MVT::i16: LC = Call_I16; break;
1943  case MVT::i32: LC = Call_I32; break;
1944  case MVT::i64: LC = Call_I64; break;
1945  case MVT::i128: LC = Call_I128; break;
1946  }
1947  return ExpandLibCall(LC, Node, isSigned);
1948}
1949
1950/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
1951/// INT_TO_FP operation of the specified operand when the target requests that
1952/// we expand it.  At this point, we know that the result and operand types are
1953/// legal for the target.
1954SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
1955                                                   SDValue Op0,
1956                                                   MVT DestVT,
1957                                                   DebugLoc dl) {
1958  if (Op0.getValueType() == MVT::i32) {
1959    // simple 32-bit [signed|unsigned] integer to float/double expansion
1960
1961    // Get the stack frame index of a 8 byte buffer.
1962    SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
1963
1964    // word offset constant for Hi/Lo address computation
1965    SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy());
1966    // set up Hi and Lo (into buffer) address based on endian
1967    SDValue Hi = StackSlot;
1968    SDValue Lo = DAG.getNode(ISD::ADD, dl,
1969                             TLI.getPointerTy(), StackSlot, WordOff);
1970    if (TLI.isLittleEndian())
1971      std::swap(Hi, Lo);
1972
1973    // if signed map to unsigned space
1974    SDValue Op0Mapped;
1975    if (isSigned) {
1976      // constant used to invert sign bit (signed to unsigned mapping)
1977      SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32);
1978      Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
1979    } else {
1980      Op0Mapped = Op0;
1981    }
1982    // store the lo of the constructed double - based on integer input
1983    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
1984                                  Op0Mapped, Lo, NULL, 0);
1985    // initial hi portion of constructed double
1986    SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
1987    // store the hi of the constructed double - biased exponent
1988    SDValue Store2=DAG.getStore(Store1, dl, InitialHi, Hi, NULL, 0);
1989    // load the constructed double
1990    SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot, NULL, 0);
1991    // FP constant to bias correct the final result
1992    SDValue Bias = DAG.getConstantFP(isSigned ?
1993                                     BitsToDouble(0x4330000080000000ULL) :
1994                                     BitsToDouble(0x4330000000000000ULL),
1995                                     MVT::f64);
1996    // subtract the bias
1997    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
1998    // final result
1999    SDValue Result;
2000    // handle final rounding
2001    if (DestVT == MVT::f64) {
2002      // do nothing
2003      Result = Sub;
2004    } else if (DestVT.bitsLT(MVT::f64)) {
2005      Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
2006                           DAG.getIntPtrConstant(0));
2007    } else if (DestVT.bitsGT(MVT::f64)) {
2008      Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
2009    }
2010    return Result;
2011  }
2012  assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2013  SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2014
2015  SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()),
2016                                 Op0, DAG.getConstant(0, Op0.getValueType()),
2017                                 ISD::SETLT);
2018  SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
2019  SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(),
2020                                    SignSet, Four, Zero);
2021
2022  // If the sign bit of the integer is set, the large number will be treated
2023  // as a negative number.  To counteract this, the dynamic code adds an
2024  // offset depending on the data type.
2025  uint64_t FF;
2026  switch (Op0.getValueType().getSimpleVT()) {
2027  default: assert(0 && "Unsupported integer type!");
2028  case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
2029  case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
2030  case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
2031  case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
2032  }
2033  if (TLI.isLittleEndian()) FF <<= 32;
2034  Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF);
2035
2036  SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
2037  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2038  CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset);
2039  Alignment = std::min(Alignment, 4u);
2040  SDValue FudgeInReg;
2041  if (DestVT == MVT::f32)
2042    FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2043                             PseudoSourceValue::getConstantPool(), 0,
2044                             false, Alignment);
2045  else {
2046    FudgeInReg =
2047      LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT,
2048                                DAG.getEntryNode(), CPIdx,
2049                                PseudoSourceValue::getConstantPool(), 0,
2050                                MVT::f32, false, Alignment));
2051  }
2052
2053  return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2054}
2055
2056/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
2057/// *INT_TO_FP operation of the specified operand when the target requests that
2058/// we promote it.  At this point, we know that the result and operand types are
2059/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2060/// operation that takes a larger input.
2061SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
2062                                                    MVT DestVT,
2063                                                    bool isSigned,
2064                                                    DebugLoc dl) {
2065  // First step, figure out the appropriate *INT_TO_FP operation to use.
2066  MVT NewInTy = LegalOp.getValueType();
2067
2068  unsigned OpToUse = 0;
2069
2070  // Scan for the appropriate larger type to use.
2071  while (1) {
2072    NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT()+1);
2073    assert(NewInTy.isInteger() && "Ran out of possibilities!");
2074
2075    // If the target supports SINT_TO_FP of this type, use it.
2076    if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2077      OpToUse = ISD::SINT_TO_FP;
2078      break;
2079    }
2080    if (isSigned) continue;
2081
2082    // If the target supports UINT_TO_FP of this type, use it.
2083    if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2084      OpToUse = ISD::UINT_TO_FP;
2085      break;
2086    }
2087
2088    // Otherwise, try a larger type.
2089  }
2090
2091  // Okay, we found the operation and type to use.  Zero extend our input to the
2092  // desired type then run the operation on it.
2093  return DAG.getNode(OpToUse, dl, DestVT,
2094                     DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2095                                 dl, NewInTy, LegalOp));
2096}
2097
2098/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
2099/// FP_TO_*INT operation of the specified operand when the target requests that
2100/// we promote it.  At this point, we know that the result and operand types are
2101/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2102/// operation that returns a larger result.
2103SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
2104                                                    MVT DestVT,
2105                                                    bool isSigned,
2106                                                    DebugLoc dl) {
2107  // First step, figure out the appropriate FP_TO*INT operation to use.
2108  MVT NewOutTy = DestVT;
2109
2110  unsigned OpToUse = 0;
2111
2112  // Scan for the appropriate larger type to use.
2113  while (1) {
2114    NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT()+1);
2115    assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2116
2117    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2118      OpToUse = ISD::FP_TO_SINT;
2119      break;
2120    }
2121
2122    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
2123      OpToUse = ISD::FP_TO_UINT;
2124      break;
2125    }
2126
2127    // Otherwise, try a larger type.
2128  }
2129
2130
2131  // Okay, we found the operation and type to use.
2132  SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2133
2134  // Truncate the result of the extended FP_TO_*INT operation to the desired
2135  // size.
2136  return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2137}
2138
2139/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
2140///
2141SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) {
2142  MVT VT = Op.getValueType();
2143  MVT SHVT = TLI.getShiftAmountTy();
2144  SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2145  switch (VT.getSimpleVT()) {
2146  default: assert(0 && "Unhandled Expand type in BSWAP!"); abort();
2147  case MVT::i16:
2148    Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2149    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2150    return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2151  case MVT::i32:
2152    Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2153    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2154    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2155    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2156    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
2157    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT));
2158    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2159    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2160    return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2161  case MVT::i64:
2162    Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT));
2163    Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT));
2164    Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2165    Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2166    Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2167    Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2168    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT));
2169    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT));
2170    Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
2171    Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
2172    Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
2173    Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
2174    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
2175    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
2176    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2177    Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2178    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2179    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2180    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2181    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2182    return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2183  }
2184}
2185
2186/// ExpandBitCount - Expand the specified bitcount instruction into operations.
2187///
2188SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
2189                                             DebugLoc dl) {
2190  switch (Opc) {
2191  default: assert(0 && "Cannot expand this yet!");
2192  case ISD::CTPOP: {
2193    static const uint64_t mask[6] = {
2194      0x5555555555555555ULL, 0x3333333333333333ULL,
2195      0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL,
2196      0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL
2197    };
2198    MVT VT = Op.getValueType();
2199    MVT ShVT = TLI.getShiftAmountTy();
2200    unsigned len = VT.getSizeInBits();
2201    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2202      //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8])
2203      unsigned EltSize = VT.isVector() ?
2204        VT.getVectorElementType().getSizeInBits() : len;
2205      SDValue Tmp2 = DAG.getConstant(APInt(EltSize, mask[i]), VT);
2206      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2207      Op = DAG.getNode(ISD::ADD, dl, VT,
2208                       DAG.getNode(ISD::AND, dl, VT, Op, Tmp2),
2209                       DAG.getNode(ISD::AND, dl, VT,
2210                                   DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3),
2211                                   Tmp2));
2212    }
2213    return Op;
2214  }
2215  case ISD::CTLZ: {
2216    // for now, we do this:
2217    // x = x | (x >> 1);
2218    // x = x | (x >> 2);
2219    // ...
2220    // x = x | (x >>16);
2221    // x = x | (x >>32); // for 64-bit input
2222    // return popcount(~x);
2223    //
2224    // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
2225    MVT VT = Op.getValueType();
2226    MVT ShVT = TLI.getShiftAmountTy();
2227    unsigned len = VT.getSizeInBits();
2228    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2229      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2230      Op = DAG.getNode(ISD::OR, dl, VT, Op,
2231                       DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
2232    }
2233    Op = DAG.getNOT(dl, Op, VT);
2234    return DAG.getNode(ISD::CTPOP, dl, VT, Op);
2235  }
2236  case ISD::CTTZ: {
2237    // for now, we use: { return popcount(~x & (x - 1)); }
2238    // unless the target has ctlz but not ctpop, in which case we use:
2239    // { return 32 - nlz(~x & (x-1)); }
2240    // see also http://www.hackersdelight.org/HDcode/ntz.cc
2241    MVT VT = Op.getValueType();
2242    SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
2243                               DAG.getNOT(dl, Op, VT),
2244                               DAG.getNode(ISD::SUB, dl, VT, Op,
2245                                           DAG.getConstant(1, VT)));
2246    // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
2247    if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
2248        TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
2249      return DAG.getNode(ISD::SUB, dl, VT,
2250                         DAG.getConstant(VT.getSizeInBits(), VT),
2251                         DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
2252    return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
2253  }
2254  }
2255}
2256
2257void SelectionDAGLegalize::ExpandNode(SDNode *Node,
2258                                      SmallVectorImpl<SDValue> &Results) {
2259  DebugLoc dl = Node->getDebugLoc();
2260  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2261  switch (Node->getOpcode()) {
2262  case ISD::CTPOP:
2263  case ISD::CTLZ:
2264  case ISD::CTTZ:
2265    Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
2266    Results.push_back(Tmp1);
2267    break;
2268  case ISD::BSWAP:
2269    Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2270    break;
2271  case ISD::FRAMEADDR:
2272  case ISD::RETURNADDR:
2273  case ISD::FRAME_TO_ARGS_OFFSET:
2274    Results.push_back(DAG.getConstant(0, Node->getValueType(0)));
2275    break;
2276  case ISD::FLT_ROUNDS_:
2277    Results.push_back(DAG.getConstant(1, Node->getValueType(0)));
2278    break;
2279  case ISD::EH_RETURN:
2280  case ISD::DECLARE:
2281  case ISD::DBG_LABEL:
2282  case ISD::EH_LABEL:
2283  case ISD::PREFETCH:
2284  case ISD::MEMBARRIER:
2285  case ISD::VAEND:
2286    Results.push_back(Node->getOperand(0));
2287    break;
2288  case ISD::DBG_STOPPOINT:
2289    Results.push_back(ExpandDBG_STOPPOINT(Node));
2290    break;
2291  case ISD::DYNAMIC_STACKALLOC:
2292    ExpandDYNAMIC_STACKALLOC(Node, Results);
2293    break;
2294  case ISD::MERGE_VALUES:
2295    for (unsigned i = 0; i < Node->getNumValues(); i++)
2296      Results.push_back(Node->getOperand(i));
2297    break;
2298  case ISD::UNDEF: {
2299    MVT VT = Node->getValueType(0);
2300    if (VT.isInteger())
2301      Results.push_back(DAG.getConstant(0, VT));
2302    else if (VT.isFloatingPoint())
2303      Results.push_back(DAG.getConstantFP(0, VT));
2304    else
2305      assert(0 && "Unknown value type!");
2306    break;
2307  }
2308  case ISD::TRAP: {
2309    // If this operation is not supported, lower it to 'abort()' call
2310    TargetLowering::ArgListTy Args;
2311    std::pair<SDValue, SDValue> CallResult =
2312      TLI.LowerCallTo(Node->getOperand(0), Type::VoidTy,
2313                      false, false, false, false, 0, CallingConv::C, false,
2314                      DAG.getExternalSymbol("abort", TLI.getPointerTy()),
2315                      Args, DAG, dl);
2316    Results.push_back(CallResult.second);
2317    break;
2318  }
2319  case ISD::FP_ROUND:
2320  case ISD::BIT_CONVERT:
2321    Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
2322                            Node->getValueType(0), dl);
2323    Results.push_back(Tmp1);
2324    break;
2325  case ISD::FP_EXTEND:
2326    Tmp1 = EmitStackConvert(Node->getOperand(0),
2327                            Node->getOperand(0).getValueType(),
2328                            Node->getValueType(0), dl);
2329    Results.push_back(Tmp1);
2330    break;
2331  case ISD::SIGN_EXTEND_INREG: {
2332    // NOTE: we could fall back on load/store here too for targets without
2333    // SAR.  However, it is doubtful that any exist.
2334    MVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2335    unsigned BitsDiff = Node->getValueType(0).getSizeInBits() -
2336                        ExtraVT.getSizeInBits();
2337    SDValue ShiftCst = DAG.getConstant(BitsDiff, TLI.getShiftAmountTy());
2338    Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
2339                       Node->getOperand(0), ShiftCst);
2340    Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
2341    Results.push_back(Tmp1);
2342    break;
2343  }
2344  case ISD::FP_ROUND_INREG: {
2345    // The only way we can lower this is to turn it into a TRUNCSTORE,
2346    // EXTLOAD pair, targetting a temporary location (a stack slot).
2347
2348    // NOTE: there is a choice here between constantly creating new stack
2349    // slots and always reusing the same one.  We currently always create
2350    // new ones, as reuse may inhibit scheduling.
2351    MVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2352    Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
2353                            Node->getValueType(0), dl);
2354    Results.push_back(Tmp1);
2355    break;
2356  }
2357  case ISD::SINT_TO_FP:
2358  case ISD::UINT_TO_FP:
2359    Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
2360                                Node->getOperand(0), Node->getValueType(0), dl);
2361    Results.push_back(Tmp1);
2362    break;
2363  case ISD::FP_TO_UINT: {
2364    SDValue True, False;
2365    MVT VT =  Node->getOperand(0).getValueType();
2366    MVT NVT = Node->getValueType(0);
2367    const uint64_t zero[] = {0, 0};
2368    APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
2369    APInt x = APInt::getSignBit(NVT.getSizeInBits());
2370    (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
2371    Tmp1 = DAG.getConstantFP(apf, VT);
2372    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT),
2373                        Node->getOperand(0),
2374                        Tmp1, ISD::SETLT);
2375    True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
2376    False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
2377                        DAG.getNode(ISD::FSUB, dl, VT,
2378                                    Node->getOperand(0), Tmp1));
2379    False = DAG.getNode(ISD::XOR, dl, NVT, False,
2380                        DAG.getConstant(x, NVT));
2381    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False);
2382    Results.push_back(Tmp1);
2383    break;
2384  }
2385  case ISD::VAARG: {
2386    const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2387    MVT VT = Node->getValueType(0);
2388    Tmp1 = Node->getOperand(0);
2389    Tmp2 = Node->getOperand(1);
2390    SDValue VAList = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2, V, 0);
2391    // Increment the pointer, VAList, to the next vaarg
2392    Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2393                       DAG.getConstant(TLI.getTargetData()->
2394                                       getTypeAllocSize(VT.getTypeForMVT(
2395                                                            *DAG.getContext())),
2396                                       TLI.getPointerTy()));
2397    // Store the incremented VAList to the legalized pointer
2398    Tmp3 = DAG.getStore(VAList.getValue(1), dl, Tmp3, Tmp2, V, 0);
2399    // Load the actual argument out of the pointer VAList
2400    Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, NULL, 0));
2401    Results.push_back(Results[0].getValue(1));
2402    break;
2403  }
2404  case ISD::VACOPY: {
2405    // This defaults to loading a pointer from the input and storing it to the
2406    // output, returning the chain.
2407    const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2408    const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2409    Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0),
2410                       Node->getOperand(2), VS, 0);
2411    Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), VD, 0);
2412    Results.push_back(Tmp1);
2413    break;
2414  }
2415  case ISD::EXTRACT_VECTOR_ELT:
2416    if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
2417      // This must be an access of the only element.  Return it.
2418      Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, Node->getValueType(0),
2419                         Node->getOperand(0));
2420    else
2421      Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
2422    Results.push_back(Tmp1);
2423    break;
2424  case ISD::EXTRACT_SUBVECTOR:
2425    Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
2426    break;
2427  case ISD::CONCAT_VECTORS: {
2428    Results.push_back(ExpandVectorBuildThroughStack(Node));
2429    break;
2430  }
2431  case ISD::SCALAR_TO_VECTOR:
2432    Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
2433    break;
2434  case ISD::INSERT_VECTOR_ELT:
2435    Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
2436                                              Node->getOperand(1),
2437                                              Node->getOperand(2), dl));
2438    break;
2439  case ISD::VECTOR_SHUFFLE: {
2440    SmallVector<int, 8> Mask;
2441    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
2442
2443    MVT VT = Node->getValueType(0);
2444    MVT EltVT = VT.getVectorElementType();
2445    unsigned NumElems = VT.getVectorNumElements();
2446    SmallVector<SDValue, 8> Ops;
2447    for (unsigned i = 0; i != NumElems; ++i) {
2448      if (Mask[i] < 0) {
2449        Ops.push_back(DAG.getUNDEF(EltVT));
2450        continue;
2451      }
2452      unsigned Idx = Mask[i];
2453      if (Idx < NumElems)
2454        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2455                                  Node->getOperand(0),
2456                                  DAG.getIntPtrConstant(Idx)));
2457      else
2458        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2459                                  Node->getOperand(1),
2460                                  DAG.getIntPtrConstant(Idx - NumElems)));
2461    }
2462    Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size());
2463    Results.push_back(Tmp1);
2464    break;
2465  }
2466  case ISD::EXTRACT_ELEMENT: {
2467    MVT OpTy = Node->getOperand(0).getValueType();
2468    if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
2469      // 1 -> Hi
2470      Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
2471                         DAG.getConstant(OpTy.getSizeInBits()/2,
2472                                         TLI.getShiftAmountTy()));
2473      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
2474    } else {
2475      // 0 -> Lo
2476      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
2477                         Node->getOperand(0));
2478    }
2479    Results.push_back(Tmp1);
2480    break;
2481  }
2482  case ISD::STACKSAVE:
2483    // Expand to CopyFromReg if the target set
2484    // StackPointerRegisterToSaveRestore.
2485    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2486      Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
2487                                           Node->getValueType(0)));
2488      Results.push_back(Results[0].getValue(1));
2489    } else {
2490      Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
2491      Results.push_back(Node->getOperand(0));
2492    }
2493    break;
2494  case ISD::STACKRESTORE:
2495    // Expand to CopyToReg if the target set
2496    // StackPointerRegisterToSaveRestore.
2497    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2498      Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
2499                                         Node->getOperand(1)));
2500    } else {
2501      Results.push_back(Node->getOperand(0));
2502    }
2503    break;
2504  case ISD::FCOPYSIGN:
2505    Results.push_back(ExpandFCOPYSIGN(Node));
2506    break;
2507  case ISD::FNEG:
2508    // Expand Y = FNEG(X) ->  Y = SUB -0.0, X
2509    Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0));
2510    Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
2511                       Node->getOperand(0));
2512    Results.push_back(Tmp1);
2513    break;
2514  case ISD::FABS: {
2515    // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
2516    MVT VT = Node->getValueType(0);
2517    Tmp1 = Node->getOperand(0);
2518    Tmp2 = DAG.getConstantFP(0.0, VT);
2519    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
2520                        Tmp1, Tmp2, ISD::SETUGT);
2521    Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1);
2522    Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3);
2523    Results.push_back(Tmp1);
2524    break;
2525  }
2526  case ISD::FSQRT:
2527    Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
2528                                      RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128));
2529    break;
2530  case ISD::FSIN:
2531    Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
2532                                      RTLIB::SIN_F80, RTLIB::SIN_PPCF128));
2533    break;
2534  case ISD::FCOS:
2535    Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
2536                                      RTLIB::COS_F80, RTLIB::COS_PPCF128));
2537    break;
2538  case ISD::FLOG:
2539    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
2540                                      RTLIB::LOG_F80, RTLIB::LOG_PPCF128));
2541    break;
2542  case ISD::FLOG2:
2543    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
2544                                      RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128));
2545    break;
2546  case ISD::FLOG10:
2547    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
2548                                      RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128));
2549    break;
2550  case ISD::FEXP:
2551    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
2552                                      RTLIB::EXP_F80, RTLIB::EXP_PPCF128));
2553    break;
2554  case ISD::FEXP2:
2555    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
2556                                      RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128));
2557    break;
2558  case ISD::FTRUNC:
2559    Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
2560                                      RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128));
2561    break;
2562  case ISD::FFLOOR:
2563    Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
2564                                      RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128));
2565    break;
2566  case ISD::FCEIL:
2567    Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
2568                                      RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128));
2569    break;
2570  case ISD::FRINT:
2571    Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
2572                                      RTLIB::RINT_F80, RTLIB::RINT_PPCF128));
2573    break;
2574  case ISD::FNEARBYINT:
2575    Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
2576                                      RTLIB::NEARBYINT_F64,
2577                                      RTLIB::NEARBYINT_F80,
2578                                      RTLIB::NEARBYINT_PPCF128));
2579    break;
2580  case ISD::FPOWI:
2581    Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
2582                                      RTLIB::POWI_F80, RTLIB::POWI_PPCF128));
2583    break;
2584  case ISD::FPOW:
2585    Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
2586                                      RTLIB::POW_F80, RTLIB::POW_PPCF128));
2587    break;
2588  case ISD::FDIV:
2589    Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
2590                                      RTLIB::DIV_F80, RTLIB::DIV_PPCF128));
2591    break;
2592  case ISD::FREM:
2593    Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
2594                                      RTLIB::REM_F80, RTLIB::REM_PPCF128));
2595    break;
2596  case ISD::ConstantFP: {
2597    ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
2598    // Check to see if this FP immediate is already legal.
2599    bool isLegal = false;
2600    for (TargetLowering::legal_fpimm_iterator I = TLI.legal_fpimm_begin(),
2601            E = TLI.legal_fpimm_end(); I != E; ++I) {
2602      if (CFP->isExactlyValue(*I)) {
2603        isLegal = true;
2604        break;
2605      }
2606    }
2607    // If this is a legal constant, turn it into a TargetConstantFP node.
2608    if (isLegal)
2609      Results.push_back(SDValue(Node, 0));
2610    else
2611      Results.push_back(ExpandConstantFP(CFP, true, DAG, TLI));
2612    break;
2613  }
2614  case ISD::EHSELECTION: {
2615    unsigned Reg = TLI.getExceptionSelectorRegister();
2616    assert(Reg && "Can't expand to unknown register!");
2617    Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg,
2618                                         Node->getValueType(0)));
2619    Results.push_back(Results[0].getValue(1));
2620    break;
2621  }
2622  case ISD::EXCEPTIONADDR: {
2623    unsigned Reg = TLI.getExceptionAddressRegister();
2624    assert(Reg && "Can't expand to unknown register!");
2625    Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg,
2626                                         Node->getValueType(0)));
2627    Results.push_back(Results[0].getValue(1));
2628    break;
2629  }
2630  case ISD::SUB: {
2631    MVT VT = Node->getValueType(0);
2632    assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
2633           TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
2634           "Don't know how to expand this subtraction!");
2635    Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
2636               DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT));
2637    Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp2, DAG.getConstant(1, VT));
2638    Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
2639    break;
2640  }
2641  case ISD::UREM:
2642  case ISD::SREM: {
2643    MVT VT = Node->getValueType(0);
2644    SDVTList VTs = DAG.getVTList(VT, VT);
2645    bool isSigned = Node->getOpcode() == ISD::SREM;
2646    unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
2647    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2648    Tmp2 = Node->getOperand(0);
2649    Tmp3 = Node->getOperand(1);
2650    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
2651      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
2652    } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
2653      // X % Y -> X-X/Y*Y
2654      Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
2655      Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
2656      Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
2657    } else if (isSigned) {
2658      Tmp1 = ExpandIntLibCall(Node, true, RTLIB::SREM_I16, RTLIB::SREM_I32,
2659                              RTLIB::SREM_I64, RTLIB::SREM_I128);
2660    } else {
2661      Tmp1 = ExpandIntLibCall(Node, false, RTLIB::UREM_I16, RTLIB::UREM_I32,
2662                              RTLIB::UREM_I64, RTLIB::UREM_I128);
2663    }
2664    Results.push_back(Tmp1);
2665    break;
2666  }
2667  case ISD::UDIV:
2668  case ISD::SDIV: {
2669    bool isSigned = Node->getOpcode() == ISD::SDIV;
2670    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2671    MVT VT = Node->getValueType(0);
2672    SDVTList VTs = DAG.getVTList(VT, VT);
2673    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT))
2674      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
2675                         Node->getOperand(1));
2676    else if (isSigned)
2677      Tmp1 = ExpandIntLibCall(Node, true, RTLIB::SDIV_I16, RTLIB::SDIV_I32,
2678                              RTLIB::SDIV_I64, RTLIB::SDIV_I128);
2679    else
2680      Tmp1 = ExpandIntLibCall(Node, false, RTLIB::UDIV_I16, RTLIB::UDIV_I32,
2681                              RTLIB::UDIV_I64, RTLIB::UDIV_I128);
2682    Results.push_back(Tmp1);
2683    break;
2684  }
2685  case ISD::MULHU:
2686  case ISD::MULHS: {
2687    unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
2688                                                              ISD::SMUL_LOHI;
2689    MVT VT = Node->getValueType(0);
2690    SDVTList VTs = DAG.getVTList(VT, VT);
2691    assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
2692           "If this wasn't legal, it shouldn't have been created!");
2693    Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
2694                       Node->getOperand(1));
2695    Results.push_back(Tmp1.getValue(1));
2696    break;
2697  }
2698  case ISD::MUL: {
2699    MVT VT = Node->getValueType(0);
2700    SDVTList VTs = DAG.getVTList(VT, VT);
2701    // See if multiply or divide can be lowered using two-result operations.
2702    // We just need the low half of the multiply; try both the signed
2703    // and unsigned forms. If the target supports both SMUL_LOHI and
2704    // UMUL_LOHI, form a preference by checking which forms of plain
2705    // MULH it supports.
2706    bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
2707    bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
2708    bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
2709    bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
2710    unsigned OpToUse = 0;
2711    if (HasSMUL_LOHI && !HasMULHS) {
2712      OpToUse = ISD::SMUL_LOHI;
2713    } else if (HasUMUL_LOHI && !HasMULHU) {
2714      OpToUse = ISD::UMUL_LOHI;
2715    } else if (HasSMUL_LOHI) {
2716      OpToUse = ISD::SMUL_LOHI;
2717    } else if (HasUMUL_LOHI) {
2718      OpToUse = ISD::UMUL_LOHI;
2719    }
2720    if (OpToUse) {
2721      Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
2722                                    Node->getOperand(1)));
2723      break;
2724    }
2725    Tmp1 = ExpandIntLibCall(Node, false, RTLIB::MUL_I16, RTLIB::MUL_I32,
2726                            RTLIB::MUL_I64, RTLIB::MUL_I128);
2727    Results.push_back(Tmp1);
2728    break;
2729  }
2730  case ISD::SADDO:
2731  case ISD::SSUBO: {
2732    SDValue LHS = Node->getOperand(0);
2733    SDValue RHS = Node->getOperand(1);
2734    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
2735                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2736                              LHS, RHS);
2737    Results.push_back(Sum);
2738    MVT OType = Node->getValueType(1);
2739
2740    SDValue Zero = DAG.getConstant(0, LHS.getValueType());
2741
2742    //   LHSSign -> LHS >= 0
2743    //   RHSSign -> RHS >= 0
2744    //   SumSign -> Sum >= 0
2745    //
2746    //   Add:
2747    //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
2748    //   Sub:
2749    //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
2750    //
2751    SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
2752    SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
2753    SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
2754                                      Node->getOpcode() == ISD::SADDO ?
2755                                      ISD::SETEQ : ISD::SETNE);
2756
2757    SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
2758    SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
2759
2760    SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
2761    Results.push_back(Cmp);
2762    break;
2763  }
2764  case ISD::UADDO:
2765  case ISD::USUBO: {
2766    SDValue LHS = Node->getOperand(0);
2767    SDValue RHS = Node->getOperand(1);
2768    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
2769                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2770                              LHS, RHS);
2771    Results.push_back(Sum);
2772    Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS,
2773                                   Node->getOpcode () == ISD::UADDO ?
2774                                   ISD::SETULT : ISD::SETUGT));
2775    break;
2776  }
2777  case ISD::UMULO:
2778  case ISD::SMULO: {
2779    MVT VT = Node->getValueType(0);
2780    SDValue LHS = Node->getOperand(0);
2781    SDValue RHS = Node->getOperand(1);
2782    SDValue BottomHalf;
2783    SDValue TopHalf;
2784    static unsigned Ops[2][3] =
2785        { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
2786          { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
2787    bool isSigned = Node->getOpcode() == ISD::SMULO;
2788    if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
2789      BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
2790      TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
2791    } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
2792      BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
2793                               RHS);
2794      TopHalf = BottomHalf.getValue(1);
2795    } else if (TLI.isTypeLegal(MVT::getIntegerVT(VT.getSizeInBits() * 2))) {
2796      MVT WideVT = MVT::getIntegerVT(VT.getSizeInBits() * 2);
2797      LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
2798      RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
2799      Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
2800      BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
2801                               DAG.getIntPtrConstant(0));
2802      TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
2803                            DAG.getIntPtrConstant(1));
2804    } else {
2805      // FIXME: We should be able to fall back to a libcall with an illegal
2806      // type in some cases cases.
2807      // Also, we can fall back to a division in some cases, but that's a big
2808      // performance hit in the general case.
2809      assert(0 && "Don't know how to expand this operation yet!");
2810    }
2811    if (isSigned) {
2812      Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1, TLI.getShiftAmountTy());
2813      Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1);
2814      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1,
2815                             ISD::SETNE);
2816    } else {
2817      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf,
2818                             DAG.getConstant(0, VT), ISD::SETNE);
2819    }
2820    Results.push_back(BottomHalf);
2821    Results.push_back(TopHalf);
2822    break;
2823  }
2824  case ISD::BUILD_PAIR: {
2825    MVT PairTy = Node->getValueType(0);
2826    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
2827    Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
2828    Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
2829                       DAG.getConstant(PairTy.getSizeInBits()/2,
2830                                       TLI.getShiftAmountTy()));
2831    Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
2832    break;
2833  }
2834  case ISD::SELECT:
2835    Tmp1 = Node->getOperand(0);
2836    Tmp2 = Node->getOperand(1);
2837    Tmp3 = Node->getOperand(2);
2838    if (Tmp1.getOpcode() == ISD::SETCC) {
2839      Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
2840                             Tmp2, Tmp3,
2841                             cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
2842    } else {
2843      Tmp1 = DAG.getSelectCC(dl, Tmp1,
2844                             DAG.getConstant(0, Tmp1.getValueType()),
2845                             Tmp2, Tmp3, ISD::SETNE);
2846    }
2847    Results.push_back(Tmp1);
2848    break;
2849  case ISD::BR_JT: {
2850    SDValue Chain = Node->getOperand(0);
2851    SDValue Table = Node->getOperand(1);
2852    SDValue Index = Node->getOperand(2);
2853
2854    MVT PTy = TLI.getPointerTy();
2855    MachineFunction &MF = DAG.getMachineFunction();
2856    unsigned EntrySize = MF.getJumpTableInfo()->getEntrySize();
2857    Index= DAG.getNode(ISD::MUL, dl, PTy,
2858                        Index, DAG.getConstant(EntrySize, PTy));
2859    SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
2860
2861    MVT MemVT = MVT::getIntegerVT(EntrySize * 8);
2862    SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr,
2863                                PseudoSourceValue::getJumpTable(), 0, MemVT);
2864    Addr = LD;
2865    if (TLI.getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2866      // For PIC, the sequence is:
2867      // BRIND(load(Jumptable + index) + RelocBase)
2868      // RelocBase can be JumpTable, GOT or some sort of global base.
2869      Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
2870                          TLI.getPICJumpTableRelocBase(Table, DAG));
2871    }
2872    Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
2873    Results.push_back(Tmp1);
2874    break;
2875  }
2876  case ISD::BRCOND:
2877    // Expand brcond's setcc into its constituent parts and create a BR_CC
2878    // Node.
2879    Tmp1 = Node->getOperand(0);
2880    Tmp2 = Node->getOperand(1);
2881    if (Tmp2.getOpcode() == ISD::SETCC) {
2882      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
2883                         Tmp1, Tmp2.getOperand(2),
2884                         Tmp2.getOperand(0), Tmp2.getOperand(1),
2885                         Node->getOperand(2));
2886    } else {
2887      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
2888                         DAG.getCondCode(ISD::SETNE), Tmp2,
2889                         DAG.getConstant(0, Tmp2.getValueType()),
2890                         Node->getOperand(2));
2891    }
2892    Results.push_back(Tmp1);
2893    break;
2894  case ISD::SETCC: {
2895    Tmp1 = Node->getOperand(0);
2896    Tmp2 = Node->getOperand(1);
2897    Tmp3 = Node->getOperand(2);
2898    LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl);
2899
2900    // If we expanded the SETCC into an AND/OR, return the new node
2901    if (Tmp2.getNode() == 0) {
2902      Results.push_back(Tmp1);
2903      break;
2904    }
2905
2906    // Otherwise, SETCC for the given comparison type must be completely
2907    // illegal; expand it into a SELECT_CC.
2908    MVT VT = Node->getValueType(0);
2909    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
2910                       DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3);
2911    Results.push_back(Tmp1);
2912    break;
2913  }
2914  case ISD::SELECT_CC: {
2915    Tmp1 = Node->getOperand(0);   // LHS
2916    Tmp2 = Node->getOperand(1);   // RHS
2917    Tmp3 = Node->getOperand(2);   // True
2918    Tmp4 = Node->getOperand(3);   // False
2919    SDValue CC = Node->getOperand(4);
2920
2921    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()),
2922                          Tmp1, Tmp2, CC, dl);
2923
2924    assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!");
2925    Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
2926    CC = DAG.getCondCode(ISD::SETNE);
2927    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2,
2928                       Tmp3, Tmp4, CC);
2929    Results.push_back(Tmp1);
2930    break;
2931  }
2932  case ISD::BR_CC: {
2933    Tmp1 = Node->getOperand(0);              // Chain
2934    Tmp2 = Node->getOperand(2);              // LHS
2935    Tmp3 = Node->getOperand(3);              // RHS
2936    Tmp4 = Node->getOperand(1);              // CC
2937
2938    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()),
2939                          Tmp2, Tmp3, Tmp4, dl);
2940    LastCALLSEQ_END = DAG.getEntryNode();
2941
2942    assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!");
2943    Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
2944    Tmp4 = DAG.getCondCode(ISD::SETNE);
2945    Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2,
2946                       Tmp3, Node->getOperand(4));
2947    Results.push_back(Tmp1);
2948    break;
2949  }
2950  case ISD::GLOBAL_OFFSET_TABLE:
2951  case ISD::GlobalAddress:
2952  case ISD::GlobalTLSAddress:
2953  case ISD::ExternalSymbol:
2954  case ISD::ConstantPool:
2955  case ISD::JumpTable:
2956  case ISD::INTRINSIC_W_CHAIN:
2957  case ISD::INTRINSIC_WO_CHAIN:
2958  case ISD::INTRINSIC_VOID:
2959    // FIXME: Custom lowering for these operations shouldn't return null!
2960    for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
2961      Results.push_back(SDValue(Node, i));
2962    break;
2963  }
2964}
2965void SelectionDAGLegalize::PromoteNode(SDNode *Node,
2966                                       SmallVectorImpl<SDValue> &Results) {
2967  MVT OVT = Node->getValueType(0);
2968  if (Node->getOpcode() == ISD::UINT_TO_FP ||
2969      Node->getOpcode() == ISD::SINT_TO_FP) {
2970    OVT = Node->getOperand(0).getValueType();
2971  }
2972  MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
2973  DebugLoc dl = Node->getDebugLoc();
2974  SDValue Tmp1, Tmp2, Tmp3;
2975  switch (Node->getOpcode()) {
2976  case ISD::CTTZ:
2977  case ISD::CTLZ:
2978  case ISD::CTPOP:
2979    // Zero extend the argument.
2980    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
2981    // Perform the larger operation.
2982    Tmp1 = DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Tmp1);
2983    if (Node->getOpcode() == ISD::CTTZ) {
2984      //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT)
2985      Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
2986                          Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT),
2987                          ISD::SETEQ);
2988      Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2,
2989                          DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1);
2990    } else if (Node->getOpcode() == ISD::CTLZ) {
2991      // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
2992      Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
2993                          DAG.getConstant(NVT.getSizeInBits() -
2994                                          OVT.getSizeInBits(), NVT));
2995    }
2996    Results.push_back(Tmp1);
2997    break;
2998  case ISD::BSWAP: {
2999    unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
3000    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Tmp1);
3001    Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
3002    Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
3003                          DAG.getConstant(DiffBits, TLI.getShiftAmountTy()));
3004    Results.push_back(Tmp1);
3005    break;
3006  }
3007  case ISD::FP_TO_UINT:
3008  case ISD::FP_TO_SINT:
3009    Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
3010                                 Node->getOpcode() == ISD::FP_TO_SINT, dl);
3011    Results.push_back(Tmp1);
3012    break;
3013  case ISD::UINT_TO_FP:
3014  case ISD::SINT_TO_FP:
3015    Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
3016                                 Node->getOpcode() == ISD::SINT_TO_FP, dl);
3017    Results.push_back(Tmp1);
3018    break;
3019  case ISD::AND:
3020  case ISD::OR:
3021  case ISD::XOR:
3022    assert(OVT.isVector() && "Don't know how to promote scalar logic ops");
3023    // Bit convert each of the values to the new type.
3024    Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0));
3025    Tmp2 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(1));
3026    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3027    // Bit convert the result back the original type.
3028    Results.push_back(DAG.getNode(ISD::BIT_CONVERT, dl, OVT, Tmp1));
3029    break;
3030  case ISD::SELECT:
3031    unsigned ExtOp, TruncOp;
3032    if (Node->getValueType(0).isVector()) {
3033      ExtOp   = ISD::BIT_CONVERT;
3034      TruncOp = ISD::BIT_CONVERT;
3035    } else if (Node->getValueType(0).isInteger()) {
3036      ExtOp   = ISD::ANY_EXTEND;
3037      TruncOp = ISD::TRUNCATE;
3038    } else {
3039      ExtOp   = ISD::FP_EXTEND;
3040      TruncOp = ISD::FP_ROUND;
3041    }
3042    Tmp1 = Node->getOperand(0);
3043    // Promote each of the values to the new type.
3044    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3045    Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
3046    // Perform the larger operation, then round down.
3047    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3);
3048    if (TruncOp != ISD::FP_ROUND)
3049      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
3050    else
3051      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
3052                         DAG.getIntPtrConstant(0));
3053    Results.push_back(Tmp1);
3054    break;
3055  case ISD::VECTOR_SHUFFLE: {
3056    SmallVector<int, 8> Mask;
3057    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
3058
3059    // Cast the two input vectors.
3060    Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0));
3061    Tmp2 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(1));
3062
3063    // Convert the shuffle mask to the right # elements.
3064    Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
3065    Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, OVT, Tmp1);
3066    Results.push_back(Tmp1);
3067    break;
3068  }
3069  case ISD::SETCC: {
3070    // First step, figure out the appropriate operation to use.
3071    // Allow SETCC to not be supported for all legal data types
3072    // Mostly this targets FP
3073    MVT NewInTy = Node->getOperand(0).getValueType();
3074    MVT OldVT = NewInTy; OldVT = OldVT;
3075
3076    // Scan for the appropriate larger type to use.
3077    while (1) {
3078      NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT()+1);
3079
3080      assert(NewInTy.isInteger() == OldVT.isInteger() &&
3081              "Fell off of the edge of the integer world");
3082      assert(NewInTy.isFloatingPoint() == OldVT.isFloatingPoint() &&
3083              "Fell off of the edge of the floating point world");
3084
3085      // If the target supports SETCC of this type, use it.
3086      if (TLI.isOperationLegalOrCustom(ISD::SETCC, NewInTy))
3087        break;
3088    }
3089    if (NewInTy.isInteger())
3090      assert(0 && "Cannot promote Legal Integer SETCC yet");
3091    else {
3092      Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NewInTy, Tmp1);
3093      Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NewInTy, Tmp2);
3094    }
3095    Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3096                                  Tmp1, Tmp2, Node->getOperand(2)));
3097    break;
3098  }
3099  }
3100}
3101
3102// SelectionDAG::Legalize - This is the entry point for the file.
3103//
3104void SelectionDAG::Legalize(bool TypesNeedLegalizing,
3105                            CodeGenOpt::Level OptLevel) {
3106  /// run - This is the main entry point to this class.
3107  ///
3108  SelectionDAGLegalize(*this, OptLevel).LegalizeDAG();
3109}
3110
3111