LegalizeDAG.cpp revision d752e0f7e64585839cb3a458ef52456eaebbea3c
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the SelectionDAG::Legalize method. 11// 12//===----------------------------------------------------------------------===// 13 14#include "llvm/Analysis/DebugInfo.h" 15#include "llvm/CodeGen/Analysis.h" 16#include "llvm/CodeGen/MachineFunction.h" 17#include "llvm/CodeGen/MachineJumpTableInfo.h" 18#include "llvm/CodeGen/SelectionDAG.h" 19#include "llvm/Target/TargetFrameLowering.h" 20#include "llvm/Target/TargetLowering.h" 21#include "llvm/Target/TargetData.h" 22#include "llvm/Target/TargetMachine.h" 23#include "llvm/CallingConv.h" 24#include "llvm/Constants.h" 25#include "llvm/DerivedTypes.h" 26#include "llvm/LLVMContext.h" 27#include "llvm/Support/Debug.h" 28#include "llvm/Support/ErrorHandling.h" 29#include "llvm/Support/MathExtras.h" 30#include "llvm/Support/raw_ostream.h" 31#include "llvm/ADT/DenseMap.h" 32#include "llvm/ADT/SmallVector.h" 33#include "llvm/ADT/SmallPtrSet.h" 34using namespace llvm; 35 36//===----------------------------------------------------------------------===// 37/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and 38/// hacks on it until the target machine can handle it. This involves 39/// eliminating value sizes the machine cannot handle (promoting small sizes to 40/// large sizes or splitting up large values into small values) as well as 41/// eliminating operations the machine cannot handle. 42/// 43/// This code also does a small amount of optimization and recognition of idioms 44/// as part of its processing. For example, if a target does not support a 45/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this 46/// will attempt merge setcc and brc instructions into brcc's. 47/// 48namespace { 49class SelectionDAGLegalize : public SelectionDAG::DAGUpdateListener { 50 const TargetMachine &TM; 51 const TargetLowering &TLI; 52 SelectionDAG &DAG; 53 54 /// LegalizePosition - The iterator for walking through the node list. 55 SelectionDAG::allnodes_iterator LegalizePosition; 56 57 /// LegalizedNodes - The set of nodes which have already been legalized. 58 SmallPtrSet<SDNode *, 16> LegalizedNodes; 59 60 // Libcall insertion helpers. 61 62public: 63 explicit SelectionDAGLegalize(SelectionDAG &DAG); 64 65 void LegalizeDAG(); 66 67private: 68 /// LegalizeOp - Legalizes the given operation. 69 void LegalizeOp(SDNode *Node); 70 71 SDValue OptimizeFloatStore(StoreSDNode *ST); 72 73 /// PerformInsertVectorEltInMemory - Some target cannot handle a variable 74 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 75 /// is necessary to spill the vector being inserted into to memory, perform 76 /// the insert there, and then read the result back. 77 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, 78 SDValue Idx, DebugLoc dl); 79 SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, 80 SDValue Idx, DebugLoc dl); 81 82 /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which 83 /// performs the same shuffe in terms of order or result bytes, but on a type 84 /// whose vector element type is narrower than the original shuffle type. 85 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 86 SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl, 87 SDValue N1, SDValue N2, 88 SmallVectorImpl<int> &Mask) const; 89 90 void LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, 91 DebugLoc dl); 92 93 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned); 94 SDValue ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, const SDValue *Ops, 95 unsigned NumOps, bool isSigned, DebugLoc dl); 96 97 std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC, 98 SDNode *Node, bool isSigned); 99 SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32, 100 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, 101 RTLIB::Libcall Call_PPCF128); 102 SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, 103 RTLIB::Libcall Call_I8, 104 RTLIB::Libcall Call_I16, 105 RTLIB::Libcall Call_I32, 106 RTLIB::Libcall Call_I64, 107 RTLIB::Libcall Call_I128); 108 void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 109 110 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, DebugLoc dl); 111 SDValue ExpandBUILD_VECTOR(SDNode *Node); 112 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); 113 void ExpandDYNAMIC_STACKALLOC(SDNode *Node, 114 SmallVectorImpl<SDValue> &Results); 115 SDValue ExpandFCOPYSIGN(SDNode *Node); 116 SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT, 117 DebugLoc dl); 118 SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned, 119 DebugLoc dl); 120 SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned, 121 DebugLoc dl); 122 123 SDValue ExpandBSWAP(SDValue Op, DebugLoc dl); 124 SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl); 125 126 SDValue ExpandExtractFromVectorThroughStack(SDValue Op); 127 SDValue ExpandInsertToVectorThroughStack(SDValue Op); 128 SDValue ExpandVectorBuildThroughStack(SDNode* Node); 129 130 SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP); 131 132 std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node); 133 134 void ExpandNode(SDNode *Node); 135 void PromoteNode(SDNode *Node); 136 137 // DAGUpdateListener implementation. 138 virtual void NodeDeleted(SDNode *N, SDNode *E) { 139 LegalizedNodes.erase(N); 140 if (LegalizePosition == SelectionDAG::allnodes_iterator(N)) 141 ++LegalizePosition; 142 } 143 144 virtual void NodeUpdated(SDNode *N) {} 145}; 146} 147 148/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which 149/// performs the same shuffe in terms of order or result bytes, but on a type 150/// whose vector element type is narrower than the original shuffle type. 151/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 152SDValue 153SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl, 154 SDValue N1, SDValue N2, 155 SmallVectorImpl<int> &Mask) const { 156 unsigned NumMaskElts = VT.getVectorNumElements(); 157 unsigned NumDestElts = NVT.getVectorNumElements(); 158 unsigned NumEltsGrowth = NumDestElts / NumMaskElts; 159 160 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); 161 162 if (NumEltsGrowth == 1) 163 return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]); 164 165 SmallVector<int, 8> NewMask; 166 for (unsigned i = 0; i != NumMaskElts; ++i) { 167 int Idx = Mask[i]; 168 for (unsigned j = 0; j != NumEltsGrowth; ++j) { 169 if (Idx < 0) 170 NewMask.push_back(-1); 171 else 172 NewMask.push_back(Idx * NumEltsGrowth + j); 173 } 174 } 175 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?"); 176 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?"); 177 return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]); 178} 179 180SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag) 181 : TM(dag.getTarget()), TLI(dag.getTargetLoweringInfo()), 182 DAG(dag) { 183} 184 185void SelectionDAGLegalize::LegalizeDAG() { 186 DAG.AssignTopologicalOrder(); 187 188 // Visit all the nodes. We start in topological order, so that we see 189 // nodes with their original operands intact. Legalization can produce 190 // new nodes which may themselves need to be legalized. Iterate until all 191 // nodes have been legalized. 192 for (;;) { 193 bool AnyLegalized = false; 194 for (LegalizePosition = DAG.allnodes_end(); 195 LegalizePosition != DAG.allnodes_begin(); ) { 196 --LegalizePosition; 197 198 SDNode *N = LegalizePosition; 199 if (LegalizedNodes.insert(N)) { 200 AnyLegalized = true; 201 LegalizeOp(N); 202 } 203 } 204 if (!AnyLegalized) 205 break; 206 207 } 208 209 // Remove dead nodes now. 210 DAG.RemoveDeadNodes(); 211} 212 213/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or 214/// a load from the constant pool. 215SDValue 216SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) { 217 bool Extend = false; 218 DebugLoc dl = CFP->getDebugLoc(); 219 220 // If a FP immediate is precise when represented as a float and if the 221 // target can do an extending load from float to double, we put it into 222 // the constant pool as a float, even if it's is statically typed as a 223 // double. This shrinks FP constants and canonicalizes them for targets where 224 // an FP extending load is the same cost as a normal load (such as on the x87 225 // fp stack or PPC FP unit). 226 EVT VT = CFP->getValueType(0); 227 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue()); 228 if (!UseCP) { 229 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion"); 230 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), 231 (VT == MVT::f64) ? MVT::i64 : MVT::i32); 232 } 233 234 EVT OrigVT = VT; 235 EVT SVT = VT; 236 while (SVT != MVT::f32) { 237 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1); 238 if (ConstantFPSDNode::isValueValidForType(SVT, CFP->getValueAPF()) && 239 // Only do this if the target has a native EXTLOAD instruction from 240 // smaller type. 241 TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) && 242 TLI.ShouldShrinkFPConstant(OrigVT)) { 243 Type *SType = SVT.getTypeForEVT(*DAG.getContext()); 244 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType)); 245 VT = SVT; 246 Extend = true; 247 } 248 } 249 250 SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy()); 251 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 252 if (Extend) { 253 SDValue Result = 254 DAG.getExtLoad(ISD::EXTLOAD, dl, OrigVT, 255 DAG.getEntryNode(), 256 CPIdx, MachinePointerInfo::getConstantPool(), 257 VT, false, false, Alignment); 258 return Result; 259 } 260 SDValue Result = 261 DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx, 262 MachinePointerInfo::getConstantPool(), false, false, false, 263 Alignment); 264 return Result; 265} 266 267/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores. 268static void ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG, 269 const TargetLowering &TLI, 270 SelectionDAG::DAGUpdateListener *DUL) { 271 SDValue Chain = ST->getChain(); 272 SDValue Ptr = ST->getBasePtr(); 273 SDValue Val = ST->getValue(); 274 EVT VT = Val.getValueType(); 275 int Alignment = ST->getAlignment(); 276 DebugLoc dl = ST->getDebugLoc(); 277 if (ST->getMemoryVT().isFloatingPoint() || 278 ST->getMemoryVT().isVector()) { 279 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 280 if (TLI.isTypeLegal(intVT)) { 281 // Expand to a bitconvert of the value to the integer type of the 282 // same size, then a (misaligned) int store. 283 // FIXME: Does not handle truncating floating point stores! 284 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 285 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 286 ST->isVolatile(), ST->isNonTemporal(), Alignment); 287 DAG.ReplaceAllUsesWith(SDValue(ST, 0), Result, DUL); 288 DAG.RemoveDeadNode(ST, DUL); 289 return; 290 } 291 // Do a (aligned) store to a stack slot, then copy from the stack slot 292 // to the final destination using (unaligned) integer loads and stores. 293 EVT StoredVT = ST->getMemoryVT(); 294 EVT RegVT = 295 TLI.getRegisterType(*DAG.getContext(), 296 EVT::getIntegerVT(*DAG.getContext(), 297 StoredVT.getSizeInBits())); 298 unsigned StoredBytes = StoredVT.getSizeInBits() / 8; 299 unsigned RegBytes = RegVT.getSizeInBits() / 8; 300 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 301 302 // Make sure the stack slot is also aligned for the register type. 303 SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT); 304 305 // Perform the original store, only redirected to the stack slot. 306 SDValue Store = DAG.getTruncStore(Chain, dl, 307 Val, StackPtr, MachinePointerInfo(), 308 StoredVT, false, false, 0); 309 SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy()); 310 SmallVector<SDValue, 8> Stores; 311 unsigned Offset = 0; 312 313 // Do all but one copies using the full register width. 314 for (unsigned i = 1; i < NumRegs; i++) { 315 // Load one integer register's worth from the stack slot. 316 SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr, 317 MachinePointerInfo(), 318 false, false, false, 0); 319 // Store it to the final location. Remember the store. 320 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 321 ST->getPointerInfo().getWithOffset(Offset), 322 ST->isVolatile(), ST->isNonTemporal(), 323 MinAlign(ST->getAlignment(), Offset))); 324 // Increment the pointers. 325 Offset += RegBytes; 326 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr, 327 Increment); 328 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 329 } 330 331 // The last store may be partial. Do a truncating store. On big-endian 332 // machines this requires an extending load from the stack slot to ensure 333 // that the bits are in the right place. 334 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 335 8 * (StoredBytes - Offset)); 336 337 // Load from the stack slot. 338 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 339 MachinePointerInfo(), 340 MemVT, false, false, 0); 341 342 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 343 ST->getPointerInfo() 344 .getWithOffset(Offset), 345 MemVT, ST->isVolatile(), 346 ST->isNonTemporal(), 347 MinAlign(ST->getAlignment(), Offset))); 348 // The order of the stores doesn't matter - say it with a TokenFactor. 349 SDValue Result = 350 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0], 351 Stores.size()); 352 DAG.ReplaceAllUsesWith(SDValue(ST, 0), Result, DUL); 353 DAG.RemoveDeadNode(ST, DUL); 354 return; 355 } 356 assert(ST->getMemoryVT().isInteger() && 357 !ST->getMemoryVT().isVector() && 358 "Unaligned store of unknown type."); 359 // Get the half-size VT 360 EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext()); 361 int NumBits = NewStoredVT.getSizeInBits(); 362 int IncrementSize = NumBits / 8; 363 364 // Divide the stored value in two parts. 365 SDValue ShiftAmount = DAG.getConstant(NumBits, 366 TLI.getShiftAmountTy(Val.getValueType())); 367 SDValue Lo = Val; 368 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 369 370 // Store the two parts 371 SDValue Store1, Store2; 372 Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr, 373 ST->getPointerInfo(), NewStoredVT, 374 ST->isVolatile(), ST->isNonTemporal(), Alignment); 375 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 376 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 377 Alignment = MinAlign(Alignment, IncrementSize); 378 Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr, 379 ST->getPointerInfo().getWithOffset(IncrementSize), 380 NewStoredVT, ST->isVolatile(), ST->isNonTemporal(), 381 Alignment); 382 383 SDValue Result = 384 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 385 DAG.ReplaceAllUsesWith(SDValue(ST, 0), Result, DUL); 386 DAG.RemoveDeadNode(ST, DUL); 387} 388 389/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads. 390static void 391ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG, 392 const TargetLowering &TLI, 393 SDValue &ValResult, SDValue &ChainResult) { 394 SDValue Chain = LD->getChain(); 395 SDValue Ptr = LD->getBasePtr(); 396 EVT VT = LD->getValueType(0); 397 EVT LoadedVT = LD->getMemoryVT(); 398 DebugLoc dl = LD->getDebugLoc(); 399 if (VT.isFloatingPoint() || VT.isVector()) { 400 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 401 if (TLI.isTypeLegal(intVT)) { 402 // Expand to a (misaligned) integer load of the same size, 403 // then bitconvert to floating point or vector. 404 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getPointerInfo(), 405 LD->isVolatile(), 406 LD->isNonTemporal(), 407 LD->isInvariant(), LD->getAlignment()); 408 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 409 if (VT.isFloatingPoint() && LoadedVT != VT) 410 Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result); 411 412 ValResult = Result; 413 ChainResult = Chain; 414 return; 415 } 416 417 // Copy the value to a (aligned) stack slot using (unaligned) integer 418 // loads and stores, then do a (aligned) load from the stack slot. 419 EVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT); 420 unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8; 421 unsigned RegBytes = RegVT.getSizeInBits() / 8; 422 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 423 424 // Make sure the stack slot is also aligned for the register type. 425 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 426 427 SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy()); 428 SmallVector<SDValue, 8> Stores; 429 SDValue StackPtr = StackBase; 430 unsigned Offset = 0; 431 432 // Do all but one copies using the full register width. 433 for (unsigned i = 1; i < NumRegs; i++) { 434 // Load one integer register's worth from the original location. 435 SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr, 436 LD->getPointerInfo().getWithOffset(Offset), 437 LD->isVolatile(), LD->isNonTemporal(), 438 LD->isInvariant(), 439 MinAlign(LD->getAlignment(), Offset)); 440 // Follow the load with a store to the stack slot. Remember the store. 441 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr, 442 MachinePointerInfo(), false, false, 0)); 443 // Increment the pointers. 444 Offset += RegBytes; 445 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 446 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr, 447 Increment); 448 } 449 450 // The last copy may be partial. Do an extending load. 451 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 452 8 * (LoadedBytes - Offset)); 453 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 454 LD->getPointerInfo().getWithOffset(Offset), 455 MemVT, LD->isVolatile(), 456 LD->isNonTemporal(), 457 MinAlign(LD->getAlignment(), Offset)); 458 // Follow the load with a store to the stack slot. Remember the store. 459 // On big-endian machines this requires a truncating store to ensure 460 // that the bits end up in the right place. 461 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr, 462 MachinePointerInfo(), MemVT, 463 false, false, 0)); 464 465 // The order of the stores doesn't matter - say it with a TokenFactor. 466 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0], 467 Stores.size()); 468 469 // Finally, perform the original load only redirected to the stack slot. 470 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 471 MachinePointerInfo(), LoadedVT, false, false, 0); 472 473 // Callers expect a MERGE_VALUES node. 474 ValResult = Load; 475 ChainResult = TF; 476 return; 477 } 478 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 479 "Unaligned load of unsupported type."); 480 481 // Compute the new VT that is half the size of the old one. This is an 482 // integer MVT. 483 unsigned NumBits = LoadedVT.getSizeInBits(); 484 EVT NewLoadedVT; 485 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 486 NumBits >>= 1; 487 488 unsigned Alignment = LD->getAlignment(); 489 unsigned IncrementSize = NumBits / 8; 490 ISD::LoadExtType HiExtType = LD->getExtensionType(); 491 492 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 493 if (HiExtType == ISD::NON_EXTLOAD) 494 HiExtType = ISD::ZEXTLOAD; 495 496 // Load the value in two parts 497 SDValue Lo, Hi; 498 if (TLI.isLittleEndian()) { 499 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 500 NewLoadedVT, LD->isVolatile(), 501 LD->isNonTemporal(), Alignment); 502 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 503 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 504 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 505 LD->getPointerInfo().getWithOffset(IncrementSize), 506 NewLoadedVT, LD->isVolatile(), 507 LD->isNonTemporal(), MinAlign(Alignment,IncrementSize)); 508 } else { 509 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 510 NewLoadedVT, LD->isVolatile(), 511 LD->isNonTemporal(), Alignment); 512 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 513 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 514 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 515 LD->getPointerInfo().getWithOffset(IncrementSize), 516 NewLoadedVT, LD->isVolatile(), 517 LD->isNonTemporal(), MinAlign(Alignment,IncrementSize)); 518 } 519 520 // aggregate the two parts 521 SDValue ShiftAmount = DAG.getConstant(NumBits, 522 TLI.getShiftAmountTy(Hi.getValueType())); 523 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 524 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 525 526 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 527 Hi.getValue(1)); 528 529 ValResult = Result; 530 ChainResult = TF; 531} 532 533/// PerformInsertVectorEltInMemory - Some target cannot handle a variable 534/// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 535/// is necessary to spill the vector being inserted into to memory, perform 536/// the insert there, and then read the result back. 537SDValue SelectionDAGLegalize:: 538PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx, 539 DebugLoc dl) { 540 SDValue Tmp1 = Vec; 541 SDValue Tmp2 = Val; 542 SDValue Tmp3 = Idx; 543 544 // If the target doesn't support this, we have to spill the input vector 545 // to a temporary stack slot, update the element, then reload it. This is 546 // badness. We could also load the value into a vector register (either 547 // with a "move to register" or "extload into register" instruction, then 548 // permute it into place, if the idx is a constant and if the idx is 549 // supported by the target. 550 EVT VT = Tmp1.getValueType(); 551 EVT EltVT = VT.getVectorElementType(); 552 EVT IdxVT = Tmp3.getValueType(); 553 EVT PtrVT = TLI.getPointerTy(); 554 SDValue StackPtr = DAG.CreateStackTemporary(VT); 555 556 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 557 558 // Store the vector. 559 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr, 560 MachinePointerInfo::getFixedStack(SPFI), 561 false, false, 0); 562 563 // Truncate or zero extend offset to target pointer type. 564 unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND; 565 Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3); 566 // Add the offset to the index. 567 unsigned EltSize = EltVT.getSizeInBits()/8; 568 Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT)); 569 SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr); 570 // Store the scalar value. 571 Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT, 572 false, false, 0); 573 // Load the updated vector. 574 return DAG.getLoad(VT, dl, Ch, StackPtr, 575 MachinePointerInfo::getFixedStack(SPFI), false, false, 576 false, 0); 577} 578 579 580SDValue SelectionDAGLegalize:: 581ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) { 582 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) { 583 // SCALAR_TO_VECTOR requires that the type of the value being inserted 584 // match the element type of the vector being created, except for 585 // integers in which case the inserted value can be over width. 586 EVT EltVT = Vec.getValueType().getVectorElementType(); 587 if (Val.getValueType() == EltVT || 588 (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) { 589 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, 590 Vec.getValueType(), Val); 591 592 unsigned NumElts = Vec.getValueType().getVectorNumElements(); 593 // We generate a shuffle of InVec and ScVec, so the shuffle mask 594 // should be 0,1,2,3,4,5... with the appropriate element replaced with 595 // elt 0 of the RHS. 596 SmallVector<int, 8> ShufOps; 597 for (unsigned i = 0; i != NumElts; ++i) 598 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts); 599 600 return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, 601 &ShufOps[0]); 602 } 603 } 604 return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl); 605} 606 607SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) { 608 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 609 // FIXME: We shouldn't do this for TargetConstantFP's. 610 // FIXME: move this to the DAG Combiner! Note that we can't regress due 611 // to phase ordering between legalized code and the dag combiner. This 612 // probably means that we need to integrate dag combiner and legalizer 613 // together. 614 // We generally can't do this one for long doubles. 615 SDValue Tmp1 = ST->getChain(); 616 SDValue Tmp2 = ST->getBasePtr(); 617 SDValue Tmp3; 618 unsigned Alignment = ST->getAlignment(); 619 bool isVolatile = ST->isVolatile(); 620 bool isNonTemporal = ST->isNonTemporal(); 621 DebugLoc dl = ST->getDebugLoc(); 622 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) { 623 if (CFP->getValueType(0) == MVT::f32 && 624 TLI.isTypeLegal(MVT::i32)) { 625 Tmp3 = DAG.getConstant(CFP->getValueAPF(). 626 bitcastToAPInt().zextOrTrunc(32), 627 MVT::i32); 628 return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(), 629 isVolatile, isNonTemporal, Alignment); 630 } 631 632 if (CFP->getValueType(0) == MVT::f64) { 633 // If this target supports 64-bit registers, do a single 64-bit store. 634 if (TLI.isTypeLegal(MVT::i64)) { 635 Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 636 zextOrTrunc(64), MVT::i64); 637 return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(), 638 isVolatile, isNonTemporal, Alignment); 639 } 640 641 if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) { 642 // Otherwise, if the target supports 32-bit registers, use 2 32-bit 643 // stores. If the target supports neither 32- nor 64-bits, this 644 // xform is certainly not worth it. 645 const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt(); 646 SDValue Lo = DAG.getConstant(IntVal.trunc(32), MVT::i32); 647 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32); 648 if (TLI.isBigEndian()) std::swap(Lo, Hi); 649 650 Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getPointerInfo(), isVolatile, 651 isNonTemporal, Alignment); 652 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, 653 DAG.getIntPtrConstant(4)); 654 Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2, 655 ST->getPointerInfo().getWithOffset(4), 656 isVolatile, isNonTemporal, MinAlign(Alignment, 4U)); 657 658 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 659 } 660 } 661 } 662 return SDValue(0, 0); 663} 664 665/// LegalizeOp - Return a legal replacement for the given operation, with 666/// all legal operands. 667void SelectionDAGLegalize::LegalizeOp(SDNode *Node) { 668 if (Node->getOpcode() == ISD::TargetConstant) // Allow illegal target nodes. 669 return; 670 671 DebugLoc dl = Node->getDebugLoc(); 672 673 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 674 assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) == 675 TargetLowering::TypeLegal && 676 "Unexpected illegal type!"); 677 678 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 679 assert((TLI.getTypeAction(*DAG.getContext(), 680 Node->getOperand(i).getValueType()) == 681 TargetLowering::TypeLegal || 682 Node->getOperand(i).getOpcode() == ISD::TargetConstant) && 683 "Unexpected illegal type!"); 684 685 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 686 bool isCustom = false; 687 688 // Figure out the correct action; the way to query this varies by opcode 689 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 690 bool SimpleFinishLegalizing = true; 691 switch (Node->getOpcode()) { 692 case ISD::INTRINSIC_W_CHAIN: 693 case ISD::INTRINSIC_WO_CHAIN: 694 case ISD::INTRINSIC_VOID: 695 case ISD::VAARG: 696 case ISD::STACKSAVE: 697 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 698 break; 699 case ISD::SINT_TO_FP: 700 case ISD::UINT_TO_FP: 701 case ISD::EXTRACT_VECTOR_ELT: 702 Action = TLI.getOperationAction(Node->getOpcode(), 703 Node->getOperand(0).getValueType()); 704 break; 705 case ISD::FP_ROUND_INREG: 706 case ISD::SIGN_EXTEND_INREG: { 707 EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 708 Action = TLI.getOperationAction(Node->getOpcode(), InnerType); 709 break; 710 } 711 case ISD::ATOMIC_STORE: { 712 Action = TLI.getOperationAction(Node->getOpcode(), 713 Node->getOperand(2).getValueType()); 714 break; 715 } 716 case ISD::SELECT_CC: 717 case ISD::SETCC: 718 case ISD::BR_CC: { 719 unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 : 720 Node->getOpcode() == ISD::SETCC ? 2 : 1; 721 unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0; 722 EVT OpVT = Node->getOperand(CompareOperand).getValueType(); 723 ISD::CondCode CCCode = 724 cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get(); 725 Action = TLI.getCondCodeAction(CCCode, OpVT); 726 if (Action == TargetLowering::Legal) { 727 if (Node->getOpcode() == ISD::SELECT_CC) 728 Action = TLI.getOperationAction(Node->getOpcode(), 729 Node->getValueType(0)); 730 else 731 Action = TLI.getOperationAction(Node->getOpcode(), OpVT); 732 } 733 break; 734 } 735 case ISD::LOAD: 736 case ISD::STORE: 737 // FIXME: Model these properly. LOAD and STORE are complicated, and 738 // STORE expects the unlegalized operand in some cases. 739 SimpleFinishLegalizing = false; 740 break; 741 case ISD::CALLSEQ_START: 742 case ISD::CALLSEQ_END: 743 // FIXME: This shouldn't be necessary. These nodes have special properties 744 // dealing with the recursive nature of legalization. Removing this 745 // special case should be done as part of making LegalizeDAG non-recursive. 746 SimpleFinishLegalizing = false; 747 break; 748 case ISD::EXTRACT_ELEMENT: 749 case ISD::FLT_ROUNDS_: 750 case ISD::SADDO: 751 case ISD::SSUBO: 752 case ISD::UADDO: 753 case ISD::USUBO: 754 case ISD::SMULO: 755 case ISD::UMULO: 756 case ISD::FPOWI: 757 case ISD::MERGE_VALUES: 758 case ISD::EH_RETURN: 759 case ISD::FRAME_TO_ARGS_OFFSET: 760 case ISD::EH_SJLJ_SETJMP: 761 case ISD::EH_SJLJ_LONGJMP: 762 case ISD::EH_SJLJ_DISPATCHSETUP: 763 // These operations lie about being legal: when they claim to be legal, 764 // they should actually be expanded. 765 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 766 if (Action == TargetLowering::Legal) 767 Action = TargetLowering::Expand; 768 break; 769 case ISD::INIT_TRAMPOLINE: 770 case ISD::ADJUST_TRAMPOLINE: 771 case ISD::FRAMEADDR: 772 case ISD::RETURNADDR: 773 // These operations lie about being legal: when they claim to be legal, 774 // they should actually be custom-lowered. 775 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 776 if (Action == TargetLowering::Legal) 777 Action = TargetLowering::Custom; 778 break; 779 default: 780 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { 781 Action = TargetLowering::Legal; 782 } else { 783 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 784 } 785 break; 786 } 787 788 if (SimpleFinishLegalizing) { 789 SmallVector<SDValue, 8> Ops; 790 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 791 Ops.push_back(Node->getOperand(i)); 792 switch (Node->getOpcode()) { 793 default: break; 794 case ISD::SHL: 795 case ISD::SRL: 796 case ISD::SRA: 797 case ISD::ROTL: 798 case ISD::ROTR: 799 // Legalizing shifts/rotates requires adjusting the shift amount 800 // to the appropriate width. 801 if (!Ops[1].getValueType().isVector()) { 802 SDValue SAO = DAG.getShiftAmountOperand(Ops[0].getValueType(), Ops[1]); 803 HandleSDNode Handle(SAO); 804 LegalizeOp(SAO.getNode()); 805 Ops[1] = Handle.getValue(); 806 } 807 break; 808 case ISD::SRL_PARTS: 809 case ISD::SRA_PARTS: 810 case ISD::SHL_PARTS: 811 // Legalizing shifts/rotates requires adjusting the shift amount 812 // to the appropriate width. 813 if (!Ops[2].getValueType().isVector()) { 814 SDValue SAO = DAG.getShiftAmountOperand(Ops[0].getValueType(), Ops[2]); 815 HandleSDNode Handle(SAO); 816 LegalizeOp(SAO.getNode()); 817 Ops[2] = Handle.getValue(); 818 } 819 break; 820 } 821 822 SDNode *NewNode = DAG.UpdateNodeOperands(Node, Ops.data(), Ops.size()); 823 if (NewNode != Node) { 824 DAG.ReplaceAllUsesWith(Node, NewNode, this); 825 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 826 DAG.TransferDbgValues(SDValue(Node, i), SDValue(NewNode, i)); 827 DAG.RemoveDeadNode(Node, this); 828 Node = NewNode; 829 } 830 switch (Action) { 831 case TargetLowering::Legal: 832 return; 833 case TargetLowering::Custom: 834 // FIXME: The handling for custom lowering with multiple results is 835 // a complete mess. 836 Tmp1 = TLI.LowerOperation(SDValue(Node, 0), DAG); 837 if (Tmp1.getNode()) { 838 SmallVector<SDValue, 8> ResultVals; 839 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) { 840 if (e == 1) 841 ResultVals.push_back(Tmp1); 842 else 843 ResultVals.push_back(Tmp1.getValue(i)); 844 } 845 if (Tmp1.getNode() != Node || Tmp1.getResNo() != 0) { 846 DAG.ReplaceAllUsesWith(Node, ResultVals.data(), this); 847 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 848 DAG.TransferDbgValues(SDValue(Node, i), ResultVals[i]); 849 DAG.RemoveDeadNode(Node, this); 850 } 851 return; 852 } 853 854 // FALL THROUGH 855 case TargetLowering::Expand: 856 ExpandNode(Node); 857 return; 858 case TargetLowering::Promote: 859 PromoteNode(Node); 860 return; 861 } 862 } 863 864 switch (Node->getOpcode()) { 865 default: 866#ifndef NDEBUG 867 dbgs() << "NODE: "; 868 Node->dump( &DAG); 869 dbgs() << "\n"; 870#endif 871 assert(0 && "Do not know how to legalize this operator!"); 872 873 case ISD::CALLSEQ_START: 874 case ISD::CALLSEQ_END: 875 break; 876 case ISD::LOAD: { 877 LoadSDNode *LD = cast<LoadSDNode>(Node); 878 Tmp1 = LD->getChain(); // Legalize the chain. 879 Tmp2 = LD->getBasePtr(); // Legalize the base pointer. 880 881 ISD::LoadExtType ExtType = LD->getExtensionType(); 882 if (ExtType == ISD::NON_EXTLOAD) { 883 EVT VT = Node->getValueType(0); 884 Node = DAG.UpdateNodeOperands(Node, Tmp1, Tmp2, LD->getOffset()); 885 Tmp3 = SDValue(Node, 0); 886 Tmp4 = SDValue(Node, 1); 887 888 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 889 default: assert(0 && "This action is not supported yet!"); 890 case TargetLowering::Legal: 891 // If this is an unaligned load and the target doesn't support it, 892 // expand it. 893 if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) { 894 Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext()); 895 unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty); 896 if (LD->getAlignment() < ABIAlignment){ 897 ExpandUnalignedLoad(cast<LoadSDNode>(Node), 898 DAG, TLI, Tmp3, Tmp4); 899 } 900 } 901 break; 902 case TargetLowering::Custom: 903 Tmp1 = TLI.LowerOperation(Tmp3, DAG); 904 if (Tmp1.getNode()) { 905 Tmp3 = Tmp1; 906 Tmp4 = Tmp1.getValue(1); 907 } 908 break; 909 case TargetLowering::Promote: { 910 // Only promote a load of vector type to another. 911 assert(VT.isVector() && "Cannot promote this load!"); 912 // Change base type to a different vector type. 913 EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 914 915 Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getPointerInfo(), 916 LD->isVolatile(), LD->isNonTemporal(), 917 LD->isInvariant(), LD->getAlignment()); 918 Tmp3 = DAG.getNode(ISD::BITCAST, dl, VT, Tmp1); 919 Tmp4 = Tmp1.getValue(1); 920 break; 921 } 922 } 923 // Since loads produce two values, make sure to remember that we 924 // legalized both of them. 925 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp3); 926 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Tmp4); 927 return; 928 } 929 930 EVT SrcVT = LD->getMemoryVT(); 931 unsigned SrcWidth = SrcVT.getSizeInBits(); 932 unsigned Alignment = LD->getAlignment(); 933 bool isVolatile = LD->isVolatile(); 934 bool isNonTemporal = LD->isNonTemporal(); 935 936 if (SrcWidth != SrcVT.getStoreSizeInBits() && 937 // Some targets pretend to have an i1 loading operation, and actually 938 // load an i8. This trick is correct for ZEXTLOAD because the top 7 939 // bits are guaranteed to be zero; it helps the optimizers understand 940 // that these bits are zero. It is also useful for EXTLOAD, since it 941 // tells the optimizers that those bits are undefined. It would be 942 // nice to have an effective generic way of getting these benefits... 943 // Until such a way is found, don't insist on promoting i1 here. 944 (SrcVT != MVT::i1 || 945 TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) { 946 // Promote to a byte-sized load if not loading an integral number of 947 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 948 unsigned NewWidth = SrcVT.getStoreSizeInBits(); 949 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth); 950 SDValue Ch; 951 952 // The extra bits are guaranteed to be zero, since we stored them that 953 // way. A zext load from NVT thus automatically gives zext from SrcVT. 954 955 ISD::LoadExtType NewExtType = 956 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; 957 958 SDValue Result = 959 DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), 960 Tmp1, Tmp2, LD->getPointerInfo(), 961 NVT, isVolatile, isNonTemporal, Alignment); 962 963 Ch = Result.getValue(1); // The chain. 964 965 if (ExtType == ISD::SEXTLOAD) 966 // Having the top bits zero doesn't help when sign extending. 967 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 968 Result.getValueType(), 969 Result, DAG.getValueType(SrcVT)); 970 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) 971 // All the top bits are guaranteed to be zero - inform the optimizers. 972 Result = DAG.getNode(ISD::AssertZext, dl, 973 Result.getValueType(), Result, 974 DAG.getValueType(SrcVT)); 975 976 Tmp1 = Result; 977 Tmp2 = Ch; 978 } else if (SrcWidth & (SrcWidth - 1)) { 979 // If not loading a power-of-2 number of bits, expand as two loads. 980 assert(!SrcVT.isVector() && "Unsupported extload!"); 981 unsigned RoundWidth = 1 << Log2_32(SrcWidth); 982 assert(RoundWidth < SrcWidth); 983 unsigned ExtraWidth = SrcWidth - RoundWidth; 984 assert(ExtraWidth < RoundWidth); 985 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 986 "Load size not an integral number of bytes!"); 987 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 988 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 989 SDValue Lo, Hi, Ch; 990 unsigned IncrementSize; 991 992 if (TLI.isLittleEndian()) { 993 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) 994 // Load the bottom RoundWidth bits. 995 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), 996 Tmp1, Tmp2, 997 LD->getPointerInfo(), RoundVT, isVolatile, 998 isNonTemporal, Alignment); 999 1000 // Load the remaining ExtraWidth bits. 1001 IncrementSize = RoundWidth / 8; 1002 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, 1003 DAG.getIntPtrConstant(IncrementSize)); 1004 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2, 1005 LD->getPointerInfo().getWithOffset(IncrementSize), 1006 ExtraVT, isVolatile, isNonTemporal, 1007 MinAlign(Alignment, IncrementSize)); 1008 1009 // Build a factor node to remember that this load is independent of 1010 // the other one. 1011 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 1012 Hi.getValue(1)); 1013 1014 // Move the top bits to the right place. 1015 Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi, 1016 DAG.getConstant(RoundWidth, 1017 TLI.getShiftAmountTy(Hi.getValueType()))); 1018 1019 // Join the hi and lo parts. 1020 Tmp1 = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 1021 } else { 1022 // Big endian - avoid unaligned loads. 1023 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 1024 // Load the top RoundWidth bits. 1025 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2, 1026 LD->getPointerInfo(), RoundVT, isVolatile, 1027 isNonTemporal, Alignment); 1028 1029 // Load the remaining ExtraWidth bits. 1030 IncrementSize = RoundWidth / 8; 1031 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, 1032 DAG.getIntPtrConstant(IncrementSize)); 1033 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, 1034 dl, Node->getValueType(0), Tmp1, Tmp2, 1035 LD->getPointerInfo().getWithOffset(IncrementSize), 1036 ExtraVT, isVolatile, isNonTemporal, 1037 MinAlign(Alignment, IncrementSize)); 1038 1039 // Build a factor node to remember that this load is independent of 1040 // the other one. 1041 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 1042 Hi.getValue(1)); 1043 1044 // Move the top bits to the right place. 1045 Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi, 1046 DAG.getConstant(ExtraWidth, 1047 TLI.getShiftAmountTy(Hi.getValueType()))); 1048 1049 // Join the hi and lo parts. 1050 Tmp1 = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 1051 } 1052 1053 Tmp2 = Ch; 1054 } else { 1055 switch (TLI.getLoadExtAction(ExtType, SrcVT)) { 1056 default: assert(0 && "This action is not supported yet!"); 1057 case TargetLowering::Custom: 1058 isCustom = true; 1059 // FALLTHROUGH 1060 case TargetLowering::Legal: 1061 Node = DAG.UpdateNodeOperands(Node, 1062 Tmp1, Tmp2, LD->getOffset()); 1063 Tmp1 = SDValue(Node, 0); 1064 Tmp2 = SDValue(Node, 1); 1065 1066 if (isCustom) { 1067 Tmp3 = TLI.LowerOperation(SDValue(Node, 0), DAG); 1068 if (Tmp3.getNode()) { 1069 Tmp1 = Tmp3; 1070 Tmp2 = Tmp3.getValue(1); 1071 } 1072 } else { 1073 // If this is an unaligned load and the target doesn't support it, 1074 // expand it. 1075 if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) { 1076 Type *Ty = 1077 LD->getMemoryVT().getTypeForEVT(*DAG.getContext()); 1078 unsigned ABIAlignment = 1079 TLI.getTargetData()->getABITypeAlignment(Ty); 1080 if (LD->getAlignment() < ABIAlignment){ 1081 ExpandUnalignedLoad(cast<LoadSDNode>(Node), 1082 DAG, TLI, Tmp1, Tmp2); 1083 } 1084 } 1085 } 1086 break; 1087 case TargetLowering::Expand: 1088 if (!TLI.isLoadExtLegal(ISD::EXTLOAD, SrcVT) && TLI.isTypeLegal(SrcVT)) { 1089 SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2, 1090 LD->getPointerInfo(), 1091 LD->isVolatile(), LD->isNonTemporal(), 1092 LD->isInvariant(), LD->getAlignment()); 1093 unsigned ExtendOp; 1094 switch (ExtType) { 1095 case ISD::EXTLOAD: 1096 ExtendOp = (SrcVT.isFloatingPoint() ? 1097 ISD::FP_EXTEND : ISD::ANY_EXTEND); 1098 break; 1099 case ISD::SEXTLOAD: ExtendOp = ISD::SIGN_EXTEND; break; 1100 case ISD::ZEXTLOAD: ExtendOp = ISD::ZERO_EXTEND; break; 1101 default: llvm_unreachable("Unexpected extend load type!"); 1102 } 1103 Tmp1 = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load); 1104 Tmp2 = Load.getValue(1); 1105 break; 1106 } 1107 1108 assert(!SrcVT.isVector() && 1109 "Vector Loads are handled in LegalizeVectorOps"); 1110 1111 // FIXME: This does not work for vectors on most targets. Sign- and 1112 // zero-extend operations are currently folded into extending loads, 1113 // whether they are legal or not, and then we end up here without any 1114 // support for legalizing them. 1115 assert(ExtType != ISD::EXTLOAD && 1116 "EXTLOAD should always be supported!"); 1117 // Turn the unsupported load into an EXTLOAD followed by an explicit 1118 // zero/sign extend inreg. 1119 SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0), 1120 Tmp1, Tmp2, LD->getPointerInfo(), SrcVT, 1121 LD->isVolatile(), LD->isNonTemporal(), 1122 LD->getAlignment()); 1123 SDValue ValRes; 1124 if (ExtType == ISD::SEXTLOAD) 1125 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 1126 Result.getValueType(), 1127 Result, DAG.getValueType(SrcVT)); 1128 else 1129 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType()); 1130 Tmp1 = ValRes; 1131 Tmp2 = Result.getValue(1); 1132 break; 1133 } 1134 } 1135 1136 // Since loads produce two values, make sure to remember that we legalized 1137 // both of them. 1138 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp1); 1139 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Tmp2); 1140 break; 1141 } 1142 case ISD::STORE: { 1143 StoreSDNode *ST = cast<StoreSDNode>(Node); 1144 Tmp1 = ST->getChain(); 1145 Tmp2 = ST->getBasePtr(); 1146 unsigned Alignment = ST->getAlignment(); 1147 bool isVolatile = ST->isVolatile(); 1148 bool isNonTemporal = ST->isNonTemporal(); 1149 1150 if (!ST->isTruncatingStore()) { 1151 if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) { 1152 DAG.ReplaceAllUsesWith(ST, OptStore, this); 1153 DAG.RemoveDeadNode(ST, this); 1154 break; 1155 } 1156 1157 { 1158 Tmp3 = ST->getValue(); 1159 Node = DAG.UpdateNodeOperands(Node, 1160 Tmp1, Tmp3, Tmp2, 1161 ST->getOffset()); 1162 1163 EVT VT = Tmp3.getValueType(); 1164 switch (TLI.getOperationAction(ISD::STORE, VT)) { 1165 default: assert(0 && "This action is not supported yet!"); 1166 case TargetLowering::Legal: 1167 // If this is an unaligned store and the target doesn't support it, 1168 // expand it. 1169 if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) { 1170 Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext()); 1171 unsigned ABIAlignment= TLI.getTargetData()->getABITypeAlignment(Ty); 1172 if (ST->getAlignment() < ABIAlignment) 1173 ExpandUnalignedStore(cast<StoreSDNode>(Node), 1174 DAG, TLI, this); 1175 } 1176 break; 1177 case TargetLowering::Custom: 1178 Tmp1 = TLI.LowerOperation(SDValue(Node, 0), DAG); 1179 if (Tmp1.getNode()) { 1180 DAG.ReplaceAllUsesWith(SDValue(Node, 0), Tmp1, this); 1181 DAG.RemoveDeadNode(Node, this); 1182 } 1183 break; 1184 case TargetLowering::Promote: { 1185 assert(VT.isVector() && "Unknown legal promote case!"); 1186 Tmp3 = DAG.getNode(ISD::BITCAST, dl, 1187 TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3); 1188 SDValue Result = 1189 DAG.getStore(Tmp1, dl, Tmp3, Tmp2, 1190 ST->getPointerInfo(), isVolatile, 1191 isNonTemporal, Alignment); 1192 DAG.ReplaceAllUsesWith(SDValue(Node, 0), Result, this); 1193 DAG.RemoveDeadNode(Node, this); 1194 break; 1195 } 1196 } 1197 break; 1198 } 1199 } else { 1200 Tmp3 = ST->getValue(); 1201 1202 EVT StVT = ST->getMemoryVT(); 1203 unsigned StWidth = StVT.getSizeInBits(); 1204 1205 if (StWidth != StVT.getStoreSizeInBits()) { 1206 // Promote to a byte-sized store with upper bits zero if not 1207 // storing an integral number of bytes. For example, promote 1208 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 1209 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), 1210 StVT.getStoreSizeInBits()); 1211 Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT); 1212 SDValue Result = 1213 DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(), 1214 NVT, isVolatile, isNonTemporal, Alignment); 1215 DAG.ReplaceAllUsesWith(SDValue(Node, 0), Result, this); 1216 DAG.RemoveDeadNode(Node, this); 1217 } else if (StWidth & (StWidth - 1)) { 1218 // If not storing a power-of-2 number of bits, expand as two stores. 1219 assert(!StVT.isVector() && "Unsupported truncstore!"); 1220 unsigned RoundWidth = 1 << Log2_32(StWidth); 1221 assert(RoundWidth < StWidth); 1222 unsigned ExtraWidth = StWidth - RoundWidth; 1223 assert(ExtraWidth < RoundWidth); 1224 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 1225 "Store size not an integral number of bytes!"); 1226 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 1227 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 1228 SDValue Lo, Hi; 1229 unsigned IncrementSize; 1230 1231 if (TLI.isLittleEndian()) { 1232 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) 1233 // Store the bottom RoundWidth bits. 1234 Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(), 1235 RoundVT, 1236 isVolatile, isNonTemporal, Alignment); 1237 1238 // Store the remaining ExtraWidth bits. 1239 IncrementSize = RoundWidth / 8; 1240 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, 1241 DAG.getIntPtrConstant(IncrementSize)); 1242 Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3, 1243 DAG.getConstant(RoundWidth, 1244 TLI.getShiftAmountTy(Tmp3.getValueType()))); 1245 Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, 1246 ST->getPointerInfo().getWithOffset(IncrementSize), 1247 ExtraVT, isVolatile, isNonTemporal, 1248 MinAlign(Alignment, IncrementSize)); 1249 } else { 1250 // Big endian - avoid unaligned stores. 1251 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X 1252 // Store the top RoundWidth bits. 1253 Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3, 1254 DAG.getConstant(ExtraWidth, 1255 TLI.getShiftAmountTy(Tmp3.getValueType()))); 1256 Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getPointerInfo(), 1257 RoundVT, isVolatile, isNonTemporal, Alignment); 1258 1259 // Store the remaining ExtraWidth bits. 1260 IncrementSize = RoundWidth / 8; 1261 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, 1262 DAG.getIntPtrConstant(IncrementSize)); 1263 Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, 1264 ST->getPointerInfo().getWithOffset(IncrementSize), 1265 ExtraVT, isVolatile, isNonTemporal, 1266 MinAlign(Alignment, IncrementSize)); 1267 } 1268 1269 // The order of the stores doesn't matter. 1270 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 1271 DAG.ReplaceAllUsesWith(SDValue(Node, 0), Result, this); 1272 DAG.RemoveDeadNode(Node, this); 1273 } else { 1274 if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() || 1275 Tmp2 != ST->getBasePtr()) 1276 Node = DAG.UpdateNodeOperands(Node, Tmp1, Tmp3, Tmp2, 1277 ST->getOffset()); 1278 1279 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { 1280 default: assert(0 && "This action is not supported yet!"); 1281 case TargetLowering::Legal: 1282 // If this is an unaligned store and the target doesn't support it, 1283 // expand it. 1284 if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) { 1285 Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext()); 1286 unsigned ABIAlignment= TLI.getTargetData()->getABITypeAlignment(Ty); 1287 if (ST->getAlignment() < ABIAlignment) 1288 ExpandUnalignedStore(cast<StoreSDNode>(Node), DAG, TLI, this); 1289 } 1290 break; 1291 case TargetLowering::Custom: 1292 DAG.ReplaceAllUsesWith(SDValue(Node, 0), 1293 TLI.LowerOperation(SDValue(Node, 0), DAG), 1294 this); 1295 DAG.RemoveDeadNode(Node, this); 1296 break; 1297 case TargetLowering::Expand: 1298 assert(!StVT.isVector() && 1299 "Vector Stores are handled in LegalizeVectorOps"); 1300 1301 // TRUNCSTORE:i16 i32 -> STORE i16 1302 assert(TLI.isTypeLegal(StVT) && "Do not know how to expand this store!"); 1303 Tmp3 = DAG.getNode(ISD::TRUNCATE, dl, StVT, Tmp3); 1304 SDValue Result = 1305 DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(), 1306 isVolatile, isNonTemporal, Alignment); 1307 DAG.ReplaceAllUsesWith(SDValue(Node, 0), Result, this); 1308 DAG.RemoveDeadNode(Node, this); 1309 break; 1310 } 1311 } 1312 } 1313 break; 1314 } 1315 } 1316} 1317 1318SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) { 1319 SDValue Vec = Op.getOperand(0); 1320 SDValue Idx = Op.getOperand(1); 1321 DebugLoc dl = Op.getDebugLoc(); 1322 // Store the value to a temporary stack slot, then LOAD the returned part. 1323 SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType()); 1324 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, 1325 MachinePointerInfo(), false, false, 0); 1326 1327 // Add the offset to the index. 1328 unsigned EltSize = 1329 Vec.getValueType().getVectorElementType().getSizeInBits()/8; 1330 Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx, 1331 DAG.getConstant(EltSize, Idx.getValueType())); 1332 1333 if (Idx.getValueType().bitsGT(TLI.getPointerTy())) 1334 Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx); 1335 else 1336 Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx); 1337 1338 StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr); 1339 1340 if (Op.getValueType().isVector()) 1341 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr,MachinePointerInfo(), 1342 false, false, false, 0); 1343 return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr, 1344 MachinePointerInfo(), 1345 Vec.getValueType().getVectorElementType(), 1346 false, false, 0); 1347} 1348 1349SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) { 1350 assert(Op.getValueType().isVector() && "Non-vector insert subvector!"); 1351 1352 SDValue Vec = Op.getOperand(0); 1353 SDValue Part = Op.getOperand(1); 1354 SDValue Idx = Op.getOperand(2); 1355 DebugLoc dl = Op.getDebugLoc(); 1356 1357 // Store the value to a temporary stack slot, then LOAD the returned part. 1358 1359 SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType()); 1360 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1361 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI); 1362 1363 // First store the whole vector. 1364 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo, 1365 false, false, 0); 1366 1367 // Then store the inserted part. 1368 1369 // Add the offset to the index. 1370 unsigned EltSize = 1371 Vec.getValueType().getVectorElementType().getSizeInBits()/8; 1372 1373 Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx, 1374 DAG.getConstant(EltSize, Idx.getValueType())); 1375 1376 if (Idx.getValueType().bitsGT(TLI.getPointerTy())) 1377 Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx); 1378 else 1379 Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx); 1380 1381 SDValue SubStackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, 1382 StackPtr); 1383 1384 // Store the subvector. 1385 Ch = DAG.getStore(DAG.getEntryNode(), dl, Part, SubStackPtr, 1386 MachinePointerInfo(), false, false, 0); 1387 1388 // Finally, load the updated vector. 1389 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo, 1390 false, false, false, 0); 1391} 1392 1393SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) { 1394 // We can't handle this case efficiently. Allocate a sufficiently 1395 // aligned object on the stack, store each element into it, then load 1396 // the result as a vector. 1397 // Create the stack frame object. 1398 EVT VT = Node->getValueType(0); 1399 EVT EltVT = VT.getVectorElementType(); 1400 DebugLoc dl = Node->getDebugLoc(); 1401 SDValue FIPtr = DAG.CreateStackTemporary(VT); 1402 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex(); 1403 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI); 1404 1405 // Emit a store of each element to the stack slot. 1406 SmallVector<SDValue, 8> Stores; 1407 unsigned TypeByteSize = EltVT.getSizeInBits() / 8; 1408 // Store (in the right endianness) the elements to memory. 1409 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 1410 // Ignore undef elements. 1411 if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue; 1412 1413 unsigned Offset = TypeByteSize*i; 1414 1415 SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType()); 1416 Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx); 1417 1418 // If the destination vector element type is narrower than the source 1419 // element type, only store the bits necessary. 1420 if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) { 1421 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, 1422 Node->getOperand(i), Idx, 1423 PtrInfo.getWithOffset(Offset), 1424 EltVT, false, false, 0)); 1425 } else 1426 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, 1427 Node->getOperand(i), Idx, 1428 PtrInfo.getWithOffset(Offset), 1429 false, false, 0)); 1430 } 1431 1432 SDValue StoreChain; 1433 if (!Stores.empty()) // Not all undef elements? 1434 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 1435 &Stores[0], Stores.size()); 1436 else 1437 StoreChain = DAG.getEntryNode(); 1438 1439 // Result is a load from the stack slot. 1440 return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo, 1441 false, false, false, 0); 1442} 1443 1444SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) { 1445 DebugLoc dl = Node->getDebugLoc(); 1446 SDValue Tmp1 = Node->getOperand(0); 1447 SDValue Tmp2 = Node->getOperand(1); 1448 1449 // Get the sign bit of the RHS. First obtain a value that has the same 1450 // sign as the sign bit, i.e. negative if and only if the sign bit is 1. 1451 SDValue SignBit; 1452 EVT FloatVT = Tmp2.getValueType(); 1453 EVT IVT = EVT::getIntegerVT(*DAG.getContext(), FloatVT.getSizeInBits()); 1454 if (TLI.isTypeLegal(IVT)) { 1455 // Convert to an integer with the same sign bit. 1456 SignBit = DAG.getNode(ISD::BITCAST, dl, IVT, Tmp2); 1457 } else { 1458 // Store the float to memory, then load the sign part out as an integer. 1459 MVT LoadTy = TLI.getPointerTy(); 1460 // First create a temporary that is aligned for both the load and store. 1461 SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy); 1462 // Then store the float to it. 1463 SDValue Ch = 1464 DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StackPtr, MachinePointerInfo(), 1465 false, false, 0); 1466 if (TLI.isBigEndian()) { 1467 assert(FloatVT.isByteSized() && "Unsupported floating point type!"); 1468 // Load out a legal integer with the same sign bit as the float. 1469 SignBit = DAG.getLoad(LoadTy, dl, Ch, StackPtr, MachinePointerInfo(), 1470 false, false, false, 0); 1471 } else { // Little endian 1472 SDValue LoadPtr = StackPtr; 1473 // The float may be wider than the integer we are going to load. Advance 1474 // the pointer so that the loaded integer will contain the sign bit. 1475 unsigned Strides = (FloatVT.getSizeInBits()-1)/LoadTy.getSizeInBits(); 1476 unsigned ByteOffset = (Strides * LoadTy.getSizeInBits()) / 8; 1477 LoadPtr = DAG.getNode(ISD::ADD, dl, LoadPtr.getValueType(), 1478 LoadPtr, DAG.getIntPtrConstant(ByteOffset)); 1479 // Load a legal integer containing the sign bit. 1480 SignBit = DAG.getLoad(LoadTy, dl, Ch, LoadPtr, MachinePointerInfo(), 1481 false, false, false, 0); 1482 // Move the sign bit to the top bit of the loaded integer. 1483 unsigned BitShift = LoadTy.getSizeInBits() - 1484 (FloatVT.getSizeInBits() - 8 * ByteOffset); 1485 assert(BitShift < LoadTy.getSizeInBits() && "Pointer advanced wrong?"); 1486 if (BitShift) 1487 SignBit = DAG.getNode(ISD::SHL, dl, LoadTy, SignBit, 1488 DAG.getConstant(BitShift, 1489 TLI.getShiftAmountTy(SignBit.getValueType()))); 1490 } 1491 } 1492 // Now get the sign bit proper, by seeing whether the value is negative. 1493 SignBit = DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()), 1494 SignBit, DAG.getConstant(0, SignBit.getValueType()), 1495 ISD::SETLT); 1496 // Get the absolute value of the result. 1497 SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1); 1498 // Select between the nabs and abs value based on the sign bit of 1499 // the input. 1500 return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit, 1501 DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal), 1502 AbsVal); 1503} 1504 1505void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node, 1506 SmallVectorImpl<SDValue> &Results) { 1507 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1508 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" 1509 " not tell us which reg is the stack pointer!"); 1510 DebugLoc dl = Node->getDebugLoc(); 1511 EVT VT = Node->getValueType(0); 1512 SDValue Tmp1 = SDValue(Node, 0); 1513 SDValue Tmp2 = SDValue(Node, 1); 1514 SDValue Tmp3 = Node->getOperand(2); 1515 SDValue Chain = Tmp1.getOperand(0); 1516 1517 // Chain the dynamic stack allocation so that it doesn't modify the stack 1518 // pointer when other instructions are using the stack. 1519 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true)); 1520 1521 SDValue Size = Tmp2.getOperand(1); 1522 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 1523 Chain = SP.getValue(1); 1524 unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue(); 1525 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); 1526 if (Align > StackAlign) 1527 SP = DAG.getNode(ISD::AND, dl, VT, SP, 1528 DAG.getConstant(-(uint64_t)Align, VT)); 1529 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value 1530 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain 1531 1532 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, true), 1533 DAG.getIntPtrConstant(0, true), SDValue()); 1534 1535 Results.push_back(Tmp1); 1536 Results.push_back(Tmp2); 1537} 1538 1539/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and 1540/// condition code CC on the current target. This routine expands SETCC with 1541/// illegal condition code into AND / OR of multiple SETCC values. 1542void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT, 1543 SDValue &LHS, SDValue &RHS, 1544 SDValue &CC, 1545 DebugLoc dl) { 1546 EVT OpVT = LHS.getValueType(); 1547 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 1548 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 1549 default: assert(0 && "Unknown condition code action!"); 1550 case TargetLowering::Legal: 1551 // Nothing to do. 1552 break; 1553 case TargetLowering::Expand: { 1554 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 1555 unsigned Opc = 0; 1556 switch (CCCode) { 1557 default: assert(0 && "Don't know how to expand this condition!"); 1558 case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO; Opc = ISD::AND; break; 1559 case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO; Opc = ISD::AND; break; 1560 case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO; Opc = ISD::AND; break; 1561 case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO; Opc = ISD::AND; break; 1562 case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO; Opc = ISD::AND; break; 1563 case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO; Opc = ISD::AND; break; 1564 case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR; break; 1565 case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR; break; 1566 case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR; break; 1567 case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR; break; 1568 case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR; break; 1569 case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR; break; 1570 // FIXME: Implement more expansions. 1571 } 1572 1573 SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1); 1574 SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2); 1575 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 1576 RHS = SDValue(); 1577 CC = SDValue(); 1578 break; 1579 } 1580 } 1581} 1582 1583/// EmitStackConvert - Emit a store/load combination to the stack. This stores 1584/// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does 1585/// a load from the stack slot to DestVT, extending it if needed. 1586/// The resultant code need not be legal. 1587SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, 1588 EVT SlotVT, 1589 EVT DestVT, 1590 DebugLoc dl) { 1591 // Create the stack frame object. 1592 unsigned SrcAlign = 1593 TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType(). 1594 getTypeForEVT(*DAG.getContext())); 1595 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign); 1596 1597 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); 1598 int SPFI = StackPtrFI->getIndex(); 1599 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(SPFI); 1600 1601 unsigned SrcSize = SrcOp.getValueType().getSizeInBits(); 1602 unsigned SlotSize = SlotVT.getSizeInBits(); 1603 unsigned DestSize = DestVT.getSizeInBits(); 1604 Type *DestType = DestVT.getTypeForEVT(*DAG.getContext()); 1605 unsigned DestAlign = TLI.getTargetData()->getPrefTypeAlignment(DestType); 1606 1607 // Emit a store to the stack slot. Use a truncstore if the input value is 1608 // later than DestVT. 1609 SDValue Store; 1610 1611 if (SrcSize > SlotSize) 1612 Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, 1613 PtrInfo, SlotVT, false, false, SrcAlign); 1614 else { 1615 assert(SrcSize == SlotSize && "Invalid store"); 1616 Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, 1617 PtrInfo, false, false, SrcAlign); 1618 } 1619 1620 // Result is a load from the stack slot. 1621 if (SlotSize == DestSize) 1622 return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, 1623 false, false, false, DestAlign); 1624 1625 assert(SlotSize < DestSize && "Unknown extension!"); 1626 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, 1627 PtrInfo, SlotVT, false, false, DestAlign); 1628} 1629 1630SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { 1631 DebugLoc dl = Node->getDebugLoc(); 1632 // Create a vector sized/aligned stack slot, store the value to element #0, 1633 // then load the whole vector back out. 1634 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); 1635 1636 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); 1637 int SPFI = StackPtrFI->getIndex(); 1638 1639 SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0), 1640 StackPtr, 1641 MachinePointerInfo::getFixedStack(SPFI), 1642 Node->getValueType(0).getVectorElementType(), 1643 false, false, 0); 1644 return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr, 1645 MachinePointerInfo::getFixedStack(SPFI), 1646 false, false, false, 0); 1647} 1648 1649 1650/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't 1651/// support the operation, but do support the resultant vector type. 1652SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { 1653 unsigned NumElems = Node->getNumOperands(); 1654 SDValue Value1, Value2; 1655 DebugLoc dl = Node->getDebugLoc(); 1656 EVT VT = Node->getValueType(0); 1657 EVT OpVT = Node->getOperand(0).getValueType(); 1658 EVT EltVT = VT.getVectorElementType(); 1659 1660 // If the only non-undef value is the low element, turn this into a 1661 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. 1662 bool isOnlyLowElement = true; 1663 bool MoreThanTwoValues = false; 1664 bool isConstant = true; 1665 for (unsigned i = 0; i < NumElems; ++i) { 1666 SDValue V = Node->getOperand(i); 1667 if (V.getOpcode() == ISD::UNDEF) 1668 continue; 1669 if (i > 0) 1670 isOnlyLowElement = false; 1671 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) 1672 isConstant = false; 1673 1674 if (!Value1.getNode()) { 1675 Value1 = V; 1676 } else if (!Value2.getNode()) { 1677 if (V != Value1) 1678 Value2 = V; 1679 } else if (V != Value1 && V != Value2) { 1680 MoreThanTwoValues = true; 1681 } 1682 } 1683 1684 if (!Value1.getNode()) 1685 return DAG.getUNDEF(VT); 1686 1687 if (isOnlyLowElement) 1688 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0)); 1689 1690 // If all elements are constants, create a load from the constant pool. 1691 if (isConstant) { 1692 std::vector<Constant*> CV; 1693 for (unsigned i = 0, e = NumElems; i != e; ++i) { 1694 if (ConstantFPSDNode *V = 1695 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { 1696 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue())); 1697 } else if (ConstantSDNode *V = 1698 dyn_cast<ConstantSDNode>(Node->getOperand(i))) { 1699 if (OpVT==EltVT) 1700 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue())); 1701 else { 1702 // If OpVT and EltVT don't match, EltVT is not legal and the 1703 // element values have been promoted/truncated earlier. Undo this; 1704 // we don't want a v16i8 to become a v16i32 for example. 1705 const ConstantInt *CI = V->getConstantIntValue(); 1706 CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()), 1707 CI->getZExtValue())); 1708 } 1709 } else { 1710 assert(Node->getOperand(i).getOpcode() == ISD::UNDEF); 1711 Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext()); 1712 CV.push_back(UndefValue::get(OpNTy)); 1713 } 1714 } 1715 Constant *CP = ConstantVector::get(CV); 1716 SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy()); 1717 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 1718 return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx, 1719 MachinePointerInfo::getConstantPool(), 1720 false, false, false, Alignment); 1721 } 1722 1723 if (!MoreThanTwoValues) { 1724 SmallVector<int, 8> ShuffleVec(NumElems, -1); 1725 for (unsigned i = 0; i < NumElems; ++i) { 1726 SDValue V = Node->getOperand(i); 1727 if (V.getOpcode() == ISD::UNDEF) 1728 continue; 1729 ShuffleVec[i] = V == Value1 ? 0 : NumElems; 1730 } 1731 if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) { 1732 // Get the splatted value into the low element of a vector register. 1733 SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1); 1734 SDValue Vec2; 1735 if (Value2.getNode()) 1736 Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2); 1737 else 1738 Vec2 = DAG.getUNDEF(VT); 1739 1740 // Return shuffle(LowValVec, undef, <0,0,0,0>) 1741 return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data()); 1742 } 1743 } 1744 1745 // Otherwise, we can't handle this case efficiently. 1746 return ExpandVectorBuildThroughStack(Node); 1747} 1748 1749// ExpandLibCall - Expand a node into a call to a libcall. If the result value 1750// does not fit into a register, return the lo part and set the hi part to the 1751// by-reg argument. If it does fit into a single register, return the result 1752// and leave the Hi part unset. 1753SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, 1754 bool isSigned) { 1755 // The input chain to this libcall is the entry node of the function. 1756 // Legalizing the call will automatically add the previous call to the 1757 // dependence. 1758 SDValue InChain = DAG.getEntryNode(); 1759 1760 TargetLowering::ArgListTy Args; 1761 TargetLowering::ArgListEntry Entry; 1762 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 1763 EVT ArgVT = Node->getOperand(i).getValueType(); 1764 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 1765 Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy; 1766 Entry.isSExt = isSigned; 1767 Entry.isZExt = !isSigned; 1768 Args.push_back(Entry); 1769 } 1770 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 1771 TLI.getPointerTy()); 1772 1773 Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext()); 1774 1775 // isTailCall may be true since the callee does not reference caller stack 1776 // frame. Check if it's in the right position. 1777 bool isTailCall = isInTailCallPosition(DAG, Node, TLI); 1778 std::pair<SDValue, SDValue> CallInfo = 1779 TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false, 1780 0, TLI.getLibcallCallingConv(LC), isTailCall, 1781 /*isReturnValueUsed=*/true, 1782 Callee, Args, DAG, Node->getDebugLoc()); 1783 1784 if (!CallInfo.second.getNode()) 1785 // It's a tailcall, return the chain (which is the DAG root). 1786 return DAG.getRoot(); 1787 1788 return CallInfo.first; 1789} 1790 1791/// ExpandLibCall - Generate a libcall taking the given operands as arguments 1792/// and returning a result of type RetVT. 1793SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, 1794 const SDValue *Ops, unsigned NumOps, 1795 bool isSigned, DebugLoc dl) { 1796 TargetLowering::ArgListTy Args; 1797 Args.reserve(NumOps); 1798 1799 TargetLowering::ArgListEntry Entry; 1800 for (unsigned i = 0; i != NumOps; ++i) { 1801 Entry.Node = Ops[i]; 1802 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 1803 Entry.isSExt = isSigned; 1804 Entry.isZExt = !isSigned; 1805 Args.push_back(Entry); 1806 } 1807 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 1808 TLI.getPointerTy()); 1809 1810 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 1811 std::pair<SDValue,SDValue> CallInfo = 1812 TLI.LowerCallTo(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false, 1813 false, 0, TLI.getLibcallCallingConv(LC), false, 1814 /*isReturnValueUsed=*/true, 1815 Callee, Args, DAG, dl); 1816 1817 return CallInfo.first; 1818} 1819 1820// ExpandChainLibCall - Expand a node into a call to a libcall. Similar to 1821// ExpandLibCall except that the first operand is the in-chain. 1822std::pair<SDValue, SDValue> 1823SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC, 1824 SDNode *Node, 1825 bool isSigned) { 1826 SDValue InChain = Node->getOperand(0); 1827 1828 TargetLowering::ArgListTy Args; 1829 TargetLowering::ArgListEntry Entry; 1830 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) { 1831 EVT ArgVT = Node->getOperand(i).getValueType(); 1832 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 1833 Entry.Node = Node->getOperand(i); 1834 Entry.Ty = ArgTy; 1835 Entry.isSExt = isSigned; 1836 Entry.isZExt = !isSigned; 1837 Args.push_back(Entry); 1838 } 1839 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 1840 TLI.getPointerTy()); 1841 1842 Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext()); 1843 std::pair<SDValue, SDValue> CallInfo = 1844 TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false, 1845 0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false, 1846 /*isReturnValueUsed=*/true, 1847 Callee, Args, DAG, Node->getDebugLoc()); 1848 1849 return CallInfo; 1850} 1851 1852SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, 1853 RTLIB::Libcall Call_F32, 1854 RTLIB::Libcall Call_F64, 1855 RTLIB::Libcall Call_F80, 1856 RTLIB::Libcall Call_PPCF128) { 1857 RTLIB::Libcall LC; 1858 switch (Node->getValueType(0).getSimpleVT().SimpleTy) { 1859 default: assert(0 && "Unexpected request for libcall!"); 1860 case MVT::f32: LC = Call_F32; break; 1861 case MVT::f64: LC = Call_F64; break; 1862 case MVT::f80: LC = Call_F80; break; 1863 case MVT::ppcf128: LC = Call_PPCF128; break; 1864 } 1865 return ExpandLibCall(LC, Node, false); 1866} 1867 1868SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned, 1869 RTLIB::Libcall Call_I8, 1870 RTLIB::Libcall Call_I16, 1871 RTLIB::Libcall Call_I32, 1872 RTLIB::Libcall Call_I64, 1873 RTLIB::Libcall Call_I128) { 1874 RTLIB::Libcall LC; 1875 switch (Node->getValueType(0).getSimpleVT().SimpleTy) { 1876 default: assert(0 && "Unexpected request for libcall!"); 1877 case MVT::i8: LC = Call_I8; break; 1878 case MVT::i16: LC = Call_I16; break; 1879 case MVT::i32: LC = Call_I32; break; 1880 case MVT::i64: LC = Call_I64; break; 1881 case MVT::i128: LC = Call_I128; break; 1882 } 1883 return ExpandLibCall(LC, Node, isSigned); 1884} 1885 1886/// isDivRemLibcallAvailable - Return true if divmod libcall is available. 1887static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned, 1888 const TargetLowering &TLI) { 1889 RTLIB::Libcall LC; 1890 switch (Node->getValueType(0).getSimpleVT().SimpleTy) { 1891 default: assert(0 && "Unexpected request for libcall!"); 1892 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 1893 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 1894 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 1895 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 1896 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 1897 } 1898 1899 return TLI.getLibcallName(LC) != 0; 1900} 1901 1902/// UseDivRem - Only issue divrem libcall if both quotient and remainder are 1903/// needed. 1904static bool UseDivRem(SDNode *Node, bool isSigned, bool isDIV) { 1905 unsigned OtherOpcode = 0; 1906 if (isSigned) 1907 OtherOpcode = isDIV ? ISD::SREM : ISD::SDIV; 1908 else 1909 OtherOpcode = isDIV ? ISD::UREM : ISD::UDIV; 1910 1911 SDValue Op0 = Node->getOperand(0); 1912 SDValue Op1 = Node->getOperand(1); 1913 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), 1914 UE = Op0.getNode()->use_end(); UI != UE; ++UI) { 1915 SDNode *User = *UI; 1916 if (User == Node) 1917 continue; 1918 if (User->getOpcode() == OtherOpcode && 1919 User->getOperand(0) == Op0 && 1920 User->getOperand(1) == Op1) 1921 return true; 1922 } 1923 return false; 1924} 1925 1926/// ExpandDivRemLibCall - Issue libcalls to __{u}divmod to compute div / rem 1927/// pairs. 1928void 1929SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node, 1930 SmallVectorImpl<SDValue> &Results) { 1931 unsigned Opcode = Node->getOpcode(); 1932 bool isSigned = Opcode == ISD::SDIVREM; 1933 1934 RTLIB::Libcall LC; 1935 switch (Node->getValueType(0).getSimpleVT().SimpleTy) { 1936 default: assert(0 && "Unexpected request for libcall!"); 1937 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 1938 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 1939 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 1940 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 1941 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 1942 } 1943 1944 // The input chain to this libcall is the entry node of the function. 1945 // Legalizing the call will automatically add the previous call to the 1946 // dependence. 1947 SDValue InChain = DAG.getEntryNode(); 1948 1949 EVT RetVT = Node->getValueType(0); 1950 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 1951 1952 TargetLowering::ArgListTy Args; 1953 TargetLowering::ArgListEntry Entry; 1954 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 1955 EVT ArgVT = Node->getOperand(i).getValueType(); 1956 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 1957 Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy; 1958 Entry.isSExt = isSigned; 1959 Entry.isZExt = !isSigned; 1960 Args.push_back(Entry); 1961 } 1962 1963 // Also pass the return address of the remainder. 1964 SDValue FIPtr = DAG.CreateStackTemporary(RetVT); 1965 Entry.Node = FIPtr; 1966 Entry.Ty = RetTy->getPointerTo(); 1967 Entry.isSExt = isSigned; 1968 Entry.isZExt = !isSigned; 1969 Args.push_back(Entry); 1970 1971 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 1972 TLI.getPointerTy()); 1973 1974 DebugLoc dl = Node->getDebugLoc(); 1975 std::pair<SDValue, SDValue> CallInfo = 1976 TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false, 1977 0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false, 1978 /*isReturnValueUsed=*/true, Callee, Args, DAG, dl); 1979 1980 // Remainder is loaded back from the stack frame. 1981 SDValue Rem = DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, 1982 MachinePointerInfo(), false, false, false, 0); 1983 Results.push_back(CallInfo.first); 1984 Results.push_back(Rem); 1985} 1986 1987/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a 1988/// INT_TO_FP operation of the specified operand when the target requests that 1989/// we expand it. At this point, we know that the result and operand types are 1990/// legal for the target. 1991SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned, 1992 SDValue Op0, 1993 EVT DestVT, 1994 DebugLoc dl) { 1995 if (Op0.getValueType() == MVT::i32) { 1996 // simple 32-bit [signed|unsigned] integer to float/double expansion 1997 1998 // Get the stack frame index of a 8 byte buffer. 1999 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); 2000 2001 // word offset constant for Hi/Lo address computation 2002 SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy()); 2003 // set up Hi and Lo (into buffer) address based on endian 2004 SDValue Hi = StackSlot; 2005 SDValue Lo = DAG.getNode(ISD::ADD, dl, 2006 TLI.getPointerTy(), StackSlot, WordOff); 2007 if (TLI.isLittleEndian()) 2008 std::swap(Hi, Lo); 2009 2010 // if signed map to unsigned space 2011 SDValue Op0Mapped; 2012 if (isSigned) { 2013 // constant used to invert sign bit (signed to unsigned mapping) 2014 SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32); 2015 Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit); 2016 } else { 2017 Op0Mapped = Op0; 2018 } 2019 // store the lo of the constructed double - based on integer input 2020 SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, 2021 Op0Mapped, Lo, MachinePointerInfo(), 2022 false, false, 0); 2023 // initial hi portion of constructed double 2024 SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32); 2025 // store the hi of the constructed double - biased exponent 2026 SDValue Store2 = DAG.getStore(Store1, dl, InitialHi, Hi, 2027 MachinePointerInfo(), 2028 false, false, 0); 2029 // load the constructed double 2030 SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot, 2031 MachinePointerInfo(), false, false, false, 0); 2032 // FP constant to bias correct the final result 2033 SDValue Bias = DAG.getConstantFP(isSigned ? 2034 BitsToDouble(0x4330000080000000ULL) : 2035 BitsToDouble(0x4330000000000000ULL), 2036 MVT::f64); 2037 // subtract the bias 2038 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias); 2039 // final result 2040 SDValue Result; 2041 // handle final rounding 2042 if (DestVT == MVT::f64) { 2043 // do nothing 2044 Result = Sub; 2045 } else if (DestVT.bitsLT(MVT::f64)) { 2046 Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub, 2047 DAG.getIntPtrConstant(0)); 2048 } else if (DestVT.bitsGT(MVT::f64)) { 2049 Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub); 2050 } 2051 return Result; 2052 } 2053 assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet"); 2054 // Code below here assumes !isSigned without checking again. 2055 2056 // Implementation of unsigned i64 to f64 following the algorithm in 2057 // __floatundidf in compiler_rt. This implementation has the advantage 2058 // of performing rounding correctly, both in the default rounding mode 2059 // and in all alternate rounding modes. 2060 // TODO: Generalize this for use with other types. 2061 if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) { 2062 SDValue TwoP52 = 2063 DAG.getConstant(UINT64_C(0x4330000000000000), MVT::i64); 2064 SDValue TwoP84PlusTwoP52 = 2065 DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), MVT::f64); 2066 SDValue TwoP84 = 2067 DAG.getConstant(UINT64_C(0x4530000000000000), MVT::i64); 2068 2069 SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32); 2070 SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, 2071 DAG.getConstant(32, MVT::i64)); 2072 SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52); 2073 SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84); 2074 SDValue LoFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, LoOr); 2075 SDValue HiFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, HiOr); 2076 SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt, 2077 TwoP84PlusTwoP52); 2078 return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub); 2079 } 2080 2081 // Implementation of unsigned i64 to f32. 2082 // TODO: Generalize this for use with other types. 2083 if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) { 2084 // For unsigned conversions, convert them to signed conversions using the 2085 // algorithm from the x86_64 __floatundidf in compiler_rt. 2086 if (!isSigned) { 2087 SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Op0); 2088 2089 SDValue ShiftConst = 2090 DAG.getConstant(1, TLI.getShiftAmountTy(Op0.getValueType())); 2091 SDValue Shr = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, ShiftConst); 2092 SDValue AndConst = DAG.getConstant(1, MVT::i64); 2093 SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, AndConst); 2094 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, Shr); 2095 2096 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Or); 2097 SDValue Slow = DAG.getNode(ISD::FADD, dl, MVT::f32, SignCvt, SignCvt); 2098 2099 // TODO: This really should be implemented using a branch rather than a 2100 // select. We happen to get lucky and machinesink does the right 2101 // thing most of the time. This would be a good candidate for a 2102 //pseudo-op, or, even better, for whole-function isel. 2103 SDValue SignBitTest = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64), 2104 Op0, DAG.getConstant(0, MVT::i64), ISD::SETLT); 2105 return DAG.getNode(ISD::SELECT, dl, MVT::f32, SignBitTest, Slow, Fast); 2106 } 2107 2108 // Otherwise, implement the fully general conversion. 2109 2110 SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, 2111 DAG.getConstant(UINT64_C(0xfffffffffffff800), MVT::i64)); 2112 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, 2113 DAG.getConstant(UINT64_C(0x800), MVT::i64)); 2114 SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, 2115 DAG.getConstant(UINT64_C(0x7ff), MVT::i64)); 2116 SDValue Ne = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64), 2117 And2, DAG.getConstant(UINT64_C(0), MVT::i64), ISD::SETNE); 2118 SDValue Sel = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ne, Or, Op0); 2119 SDValue Ge = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64), 2120 Op0, DAG.getConstant(UINT64_C(0x0020000000000000), MVT::i64), 2121 ISD::SETUGE); 2122 SDValue Sel2 = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ge, Sel, Op0); 2123 EVT SHVT = TLI.getShiftAmountTy(Sel2.getValueType()); 2124 2125 SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2, 2126 DAG.getConstant(32, SHVT)); 2127 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh); 2128 SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc); 2129 SDValue TwoP32 = 2130 DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), MVT::f64); 2131 SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt); 2132 SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2); 2133 SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo); 2134 SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2); 2135 return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd, 2136 DAG.getIntPtrConstant(0)); 2137 } 2138 2139 SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2140 2141 SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()), 2142 Op0, DAG.getConstant(0, Op0.getValueType()), 2143 ISD::SETLT); 2144 SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4); 2145 SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), 2146 SignSet, Four, Zero); 2147 2148 // If the sign bit of the integer is set, the large number will be treated 2149 // as a negative number. To counteract this, the dynamic code adds an 2150 // offset depending on the data type. 2151 uint64_t FF; 2152 switch (Op0.getValueType().getSimpleVT().SimpleTy) { 2153 default: assert(0 && "Unsupported integer type!"); 2154 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) 2155 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) 2156 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) 2157 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) 2158 } 2159 if (TLI.isLittleEndian()) FF <<= 32; 2160 Constant *FudgeFactor = ConstantInt::get( 2161 Type::getInt64Ty(*DAG.getContext()), FF); 2162 2163 SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy()); 2164 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 2165 CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset); 2166 Alignment = std::min(Alignment, 4u); 2167 SDValue FudgeInReg; 2168 if (DestVT == MVT::f32) 2169 FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx, 2170 MachinePointerInfo::getConstantPool(), 2171 false, false, false, Alignment); 2172 else { 2173 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, 2174 DAG.getEntryNode(), CPIdx, 2175 MachinePointerInfo::getConstantPool(), 2176 MVT::f32, false, false, Alignment); 2177 HandleSDNode Handle(Load); 2178 LegalizeOp(Load.getNode()); 2179 FudgeInReg = Handle.getValue(); 2180 } 2181 2182 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg); 2183} 2184 2185/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a 2186/// *INT_TO_FP operation of the specified operand when the target requests that 2187/// we promote it. At this point, we know that the result and operand types are 2188/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP 2189/// operation that takes a larger input. 2190SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp, 2191 EVT DestVT, 2192 bool isSigned, 2193 DebugLoc dl) { 2194 // First step, figure out the appropriate *INT_TO_FP operation to use. 2195 EVT NewInTy = LegalOp.getValueType(); 2196 2197 unsigned OpToUse = 0; 2198 2199 // Scan for the appropriate larger type to use. 2200 while (1) { 2201 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1); 2202 assert(NewInTy.isInteger() && "Ran out of possibilities!"); 2203 2204 // If the target supports SINT_TO_FP of this type, use it. 2205 if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) { 2206 OpToUse = ISD::SINT_TO_FP; 2207 break; 2208 } 2209 if (isSigned) continue; 2210 2211 // If the target supports UINT_TO_FP of this type, use it. 2212 if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) { 2213 OpToUse = ISD::UINT_TO_FP; 2214 break; 2215 } 2216 2217 // Otherwise, try a larger type. 2218 } 2219 2220 // Okay, we found the operation and type to use. Zero extend our input to the 2221 // desired type then run the operation on it. 2222 return DAG.getNode(OpToUse, dl, DestVT, 2223 DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2224 dl, NewInTy, LegalOp)); 2225} 2226 2227/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a 2228/// FP_TO_*INT operation of the specified operand when the target requests that 2229/// we promote it. At this point, we know that the result and operand types are 2230/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT 2231/// operation that returns a larger result. 2232SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp, 2233 EVT DestVT, 2234 bool isSigned, 2235 DebugLoc dl) { 2236 // First step, figure out the appropriate FP_TO*INT operation to use. 2237 EVT NewOutTy = DestVT; 2238 2239 unsigned OpToUse = 0; 2240 2241 // Scan for the appropriate larger type to use. 2242 while (1) { 2243 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1); 2244 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 2245 2246 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) { 2247 OpToUse = ISD::FP_TO_SINT; 2248 break; 2249 } 2250 2251 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) { 2252 OpToUse = ISD::FP_TO_UINT; 2253 break; 2254 } 2255 2256 // Otherwise, try a larger type. 2257 } 2258 2259 2260 // Okay, we found the operation and type to use. 2261 SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp); 2262 2263 // Truncate the result of the extended FP_TO_*INT operation to the desired 2264 // size. 2265 return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation); 2266} 2267 2268/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation. 2269/// 2270SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) { 2271 EVT VT = Op.getValueType(); 2272 EVT SHVT = TLI.getShiftAmountTy(VT); 2273 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 2274 switch (VT.getSimpleVT().SimpleTy) { 2275 default: assert(0 && "Unhandled Expand type in BSWAP!"); 2276 case MVT::i16: 2277 Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2278 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2279 return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); 2280 case MVT::i32: 2281 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT)); 2282 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2283 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2284 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT)); 2285 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT)); 2286 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT)); 2287 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2288 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2289 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2290 case MVT::i64: 2291 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT)); 2292 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT)); 2293 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT)); 2294 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2295 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT)); 2296 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT)); 2297 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT)); 2298 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT)); 2299 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT)); 2300 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT)); 2301 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT)); 2302 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT)); 2303 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT)); 2304 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT)); 2305 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 2306 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 2307 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2308 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2309 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 2310 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2311 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 2312 } 2313} 2314 2315/// SplatByte - Distribute ByteVal over NumBits bits. 2316// FIXME: Move this helper to a common place. 2317static APInt SplatByte(unsigned NumBits, uint8_t ByteVal) { 2318 APInt Val = APInt(NumBits, ByteVal); 2319 unsigned Shift = 8; 2320 for (unsigned i = NumBits; i > 8; i >>= 1) { 2321 Val = (Val << Shift) | Val; 2322 Shift <<= 1; 2323 } 2324 return Val; 2325} 2326 2327/// ExpandBitCount - Expand the specified bitcount instruction into operations. 2328/// 2329SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op, 2330 DebugLoc dl) { 2331 switch (Opc) { 2332 default: assert(0 && "Cannot expand this yet!"); 2333 case ISD::CTPOP: { 2334 EVT VT = Op.getValueType(); 2335 EVT ShVT = TLI.getShiftAmountTy(VT); 2336 unsigned Len = VT.getSizeInBits(); 2337 2338 assert(VT.isInteger() && Len <= 128 && Len % 8 == 0 && 2339 "CTPOP not implemented for this type."); 2340 2341 // This is the "best" algorithm from 2342 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 2343 2344 SDValue Mask55 = DAG.getConstant(SplatByte(Len, 0x55), VT); 2345 SDValue Mask33 = DAG.getConstant(SplatByte(Len, 0x33), VT); 2346 SDValue Mask0F = DAG.getConstant(SplatByte(Len, 0x0F), VT); 2347 SDValue Mask01 = DAG.getConstant(SplatByte(Len, 0x01), VT); 2348 2349 // v = v - ((v >> 1) & 0x55555555...) 2350 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 2351 DAG.getNode(ISD::AND, dl, VT, 2352 DAG.getNode(ISD::SRL, dl, VT, Op, 2353 DAG.getConstant(1, ShVT)), 2354 Mask55)); 2355 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 2356 Op = DAG.getNode(ISD::ADD, dl, VT, 2357 DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 2358 DAG.getNode(ISD::AND, dl, VT, 2359 DAG.getNode(ISD::SRL, dl, VT, Op, 2360 DAG.getConstant(2, ShVT)), 2361 Mask33)); 2362 // v = (v + (v >> 4)) & 0x0F0F0F0F... 2363 Op = DAG.getNode(ISD::AND, dl, VT, 2364 DAG.getNode(ISD::ADD, dl, VT, Op, 2365 DAG.getNode(ISD::SRL, dl, VT, Op, 2366 DAG.getConstant(4, ShVT))), 2367 Mask0F); 2368 // v = (v * 0x01010101...) >> (Len - 8) 2369 Op = DAG.getNode(ISD::SRL, dl, VT, 2370 DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 2371 DAG.getConstant(Len - 8, ShVT)); 2372 2373 return Op; 2374 } 2375 case ISD::CTLZ: { 2376 // for now, we do this: 2377 // x = x | (x >> 1); 2378 // x = x | (x >> 2); 2379 // ... 2380 // x = x | (x >>16); 2381 // x = x | (x >>32); // for 64-bit input 2382 // return popcount(~x); 2383 // 2384 // but see also: http://www.hackersdelight.org/HDcode/nlz.cc 2385 EVT VT = Op.getValueType(); 2386 EVT ShVT = TLI.getShiftAmountTy(VT); 2387 unsigned len = VT.getSizeInBits(); 2388 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) { 2389 SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT); 2390 Op = DAG.getNode(ISD::OR, dl, VT, Op, 2391 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3)); 2392 } 2393 Op = DAG.getNOT(dl, Op, VT); 2394 return DAG.getNode(ISD::CTPOP, dl, VT, Op); 2395 } 2396 case ISD::CTTZ: { 2397 // for now, we use: { return popcount(~x & (x - 1)); } 2398 // unless the target has ctlz but not ctpop, in which case we use: 2399 // { return 32 - nlz(~x & (x-1)); } 2400 // see also http://www.hackersdelight.org/HDcode/ntz.cc 2401 EVT VT = Op.getValueType(); 2402 SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT, 2403 DAG.getNOT(dl, Op, VT), 2404 DAG.getNode(ISD::SUB, dl, VT, Op, 2405 DAG.getConstant(1, VT))); 2406 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 2407 if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) && 2408 TLI.isOperationLegalOrCustom(ISD::CTLZ, VT)) 2409 return DAG.getNode(ISD::SUB, dl, VT, 2410 DAG.getConstant(VT.getSizeInBits(), VT), 2411 DAG.getNode(ISD::CTLZ, dl, VT, Tmp3)); 2412 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3); 2413 } 2414 } 2415} 2416 2417std::pair <SDValue, SDValue> SelectionDAGLegalize::ExpandAtomic(SDNode *Node) { 2418 unsigned Opc = Node->getOpcode(); 2419 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT(); 2420 RTLIB::Libcall LC; 2421 2422 switch (Opc) { 2423 default: 2424 llvm_unreachable("Unhandled atomic intrinsic Expand!"); 2425 break; 2426 case ISD::ATOMIC_SWAP: 2427 switch (VT.SimpleTy) { 2428 default: llvm_unreachable("Unexpected value type for atomic!"); 2429 case MVT::i8: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_1; break; 2430 case MVT::i16: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_2; break; 2431 case MVT::i32: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_4; break; 2432 case MVT::i64: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_8; break; 2433 } 2434 break; 2435 case ISD::ATOMIC_CMP_SWAP: 2436 switch (VT.SimpleTy) { 2437 default: llvm_unreachable("Unexpected value type for atomic!"); 2438 case MVT::i8: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1; break; 2439 case MVT::i16: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2; break; 2440 case MVT::i32: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4; break; 2441 case MVT::i64: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8; break; 2442 } 2443 break; 2444 case ISD::ATOMIC_LOAD_ADD: 2445 switch (VT.SimpleTy) { 2446 default: llvm_unreachable("Unexpected value type for atomic!"); 2447 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_ADD_1; break; 2448 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_ADD_2; break; 2449 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_ADD_4; break; 2450 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_ADD_8; break; 2451 } 2452 break; 2453 case ISD::ATOMIC_LOAD_SUB: 2454 switch (VT.SimpleTy) { 2455 default: llvm_unreachable("Unexpected value type for atomic!"); 2456 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_SUB_1; break; 2457 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_SUB_2; break; 2458 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_SUB_4; break; 2459 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_SUB_8; break; 2460 } 2461 break; 2462 case ISD::ATOMIC_LOAD_AND: 2463 switch (VT.SimpleTy) { 2464 default: llvm_unreachable("Unexpected value type for atomic!"); 2465 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_AND_1; break; 2466 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_AND_2; break; 2467 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_AND_4; break; 2468 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_AND_8; break; 2469 } 2470 break; 2471 case ISD::ATOMIC_LOAD_OR: 2472 switch (VT.SimpleTy) { 2473 default: llvm_unreachable("Unexpected value type for atomic!"); 2474 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_OR_1; break; 2475 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_OR_2; break; 2476 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_OR_4; break; 2477 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_OR_8; break; 2478 } 2479 break; 2480 case ISD::ATOMIC_LOAD_XOR: 2481 switch (VT.SimpleTy) { 2482 default: llvm_unreachable("Unexpected value type for atomic!"); 2483 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_XOR_1; break; 2484 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_XOR_2; break; 2485 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_XOR_4; break; 2486 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_XOR_8; break; 2487 } 2488 break; 2489 case ISD::ATOMIC_LOAD_NAND: 2490 switch (VT.SimpleTy) { 2491 default: llvm_unreachable("Unexpected value type for atomic!"); 2492 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_NAND_1; break; 2493 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_NAND_2; break; 2494 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_NAND_4; break; 2495 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_NAND_8; break; 2496 } 2497 break; 2498 } 2499 2500 return ExpandChainLibCall(LC, Node, false); 2501} 2502 2503void SelectionDAGLegalize::ExpandNode(SDNode *Node) { 2504 SmallVector<SDValue, 8> Results; 2505 DebugLoc dl = Node->getDebugLoc(); 2506 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 2507 switch (Node->getOpcode()) { 2508 case ISD::CTPOP: 2509 case ISD::CTLZ: 2510 case ISD::CTTZ: 2511 Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl); 2512 Results.push_back(Tmp1); 2513 break; 2514 case ISD::BSWAP: 2515 Results.push_back(ExpandBSWAP(Node->getOperand(0), dl)); 2516 break; 2517 case ISD::FRAMEADDR: 2518 case ISD::RETURNADDR: 2519 case ISD::FRAME_TO_ARGS_OFFSET: 2520 Results.push_back(DAG.getConstant(0, Node->getValueType(0))); 2521 break; 2522 case ISD::FLT_ROUNDS_: 2523 Results.push_back(DAG.getConstant(1, Node->getValueType(0))); 2524 break; 2525 case ISD::EH_RETURN: 2526 case ISD::EH_LABEL: 2527 case ISD::PREFETCH: 2528 case ISD::VAEND: 2529 case ISD::EH_SJLJ_LONGJMP: 2530 case ISD::EH_SJLJ_DISPATCHSETUP: 2531 // If the target didn't expand these, there's nothing to do, so just 2532 // preserve the chain and be done. 2533 Results.push_back(Node->getOperand(0)); 2534 break; 2535 case ISD::EH_SJLJ_SETJMP: 2536 // If the target didn't expand this, just return 'zero' and preserve the 2537 // chain. 2538 Results.push_back(DAG.getConstant(0, MVT::i32)); 2539 Results.push_back(Node->getOperand(0)); 2540 break; 2541 case ISD::ATOMIC_FENCE: 2542 case ISD::MEMBARRIER: { 2543 // If the target didn't lower this, lower it to '__sync_synchronize()' call 2544 // FIXME: handle "fence singlethread" more efficiently. 2545 TargetLowering::ArgListTy Args; 2546 std::pair<SDValue, SDValue> CallResult = 2547 TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()), 2548 false, false, false, false, 0, CallingConv::C, 2549 /*isTailCall=*/false, 2550 /*isReturnValueUsed=*/true, 2551 DAG.getExternalSymbol("__sync_synchronize", 2552 TLI.getPointerTy()), 2553 Args, DAG, dl); 2554 Results.push_back(CallResult.second); 2555 break; 2556 } 2557 case ISD::ATOMIC_LOAD: { 2558 // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP. 2559 SDValue Zero = DAG.getConstant(0, Node->getValueType(0)); 2560 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, 2561 cast<AtomicSDNode>(Node)->getMemoryVT(), 2562 Node->getOperand(0), 2563 Node->getOperand(1), Zero, Zero, 2564 cast<AtomicSDNode>(Node)->getMemOperand(), 2565 cast<AtomicSDNode>(Node)->getOrdering(), 2566 cast<AtomicSDNode>(Node)->getSynchScope()); 2567 Results.push_back(Swap.getValue(0)); 2568 Results.push_back(Swap.getValue(1)); 2569 break; 2570 } 2571 case ISD::ATOMIC_STORE: { 2572 // There is no libcall for atomic store; fake it with ATOMIC_SWAP. 2573 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl, 2574 cast<AtomicSDNode>(Node)->getMemoryVT(), 2575 Node->getOperand(0), 2576 Node->getOperand(1), Node->getOperand(2), 2577 cast<AtomicSDNode>(Node)->getMemOperand(), 2578 cast<AtomicSDNode>(Node)->getOrdering(), 2579 cast<AtomicSDNode>(Node)->getSynchScope()); 2580 Results.push_back(Swap.getValue(1)); 2581 break; 2582 } 2583 // By default, atomic intrinsics are marked Legal and lowered. Targets 2584 // which don't support them directly, however, may want libcalls, in which 2585 // case they mark them Expand, and we get here. 2586 case ISD::ATOMIC_SWAP: 2587 case ISD::ATOMIC_LOAD_ADD: 2588 case ISD::ATOMIC_LOAD_SUB: 2589 case ISD::ATOMIC_LOAD_AND: 2590 case ISD::ATOMIC_LOAD_OR: 2591 case ISD::ATOMIC_LOAD_XOR: 2592 case ISD::ATOMIC_LOAD_NAND: 2593 case ISD::ATOMIC_LOAD_MIN: 2594 case ISD::ATOMIC_LOAD_MAX: 2595 case ISD::ATOMIC_LOAD_UMIN: 2596 case ISD::ATOMIC_LOAD_UMAX: 2597 case ISD::ATOMIC_CMP_SWAP: { 2598 std::pair<SDValue, SDValue> Tmp = ExpandAtomic(Node); 2599 Results.push_back(Tmp.first); 2600 Results.push_back(Tmp.second); 2601 break; 2602 } 2603 case ISD::DYNAMIC_STACKALLOC: 2604 ExpandDYNAMIC_STACKALLOC(Node, Results); 2605 break; 2606 case ISD::MERGE_VALUES: 2607 for (unsigned i = 0; i < Node->getNumValues(); i++) 2608 Results.push_back(Node->getOperand(i)); 2609 break; 2610 case ISD::UNDEF: { 2611 EVT VT = Node->getValueType(0); 2612 if (VT.isInteger()) 2613 Results.push_back(DAG.getConstant(0, VT)); 2614 else { 2615 assert(VT.isFloatingPoint() && "Unknown value type!"); 2616 Results.push_back(DAG.getConstantFP(0, VT)); 2617 } 2618 break; 2619 } 2620 case ISD::TRAP: { 2621 // If this operation is not supported, lower it to 'abort()' call 2622 TargetLowering::ArgListTy Args; 2623 std::pair<SDValue, SDValue> CallResult = 2624 TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()), 2625 false, false, false, false, 0, CallingConv::C, 2626 /*isTailCall=*/false, 2627 /*isReturnValueUsed=*/true, 2628 DAG.getExternalSymbol("abort", TLI.getPointerTy()), 2629 Args, DAG, dl); 2630 Results.push_back(CallResult.second); 2631 break; 2632 } 2633 case ISD::FP_ROUND: 2634 case ISD::BITCAST: 2635 Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 2636 Node->getValueType(0), dl); 2637 Results.push_back(Tmp1); 2638 break; 2639 case ISD::FP_EXTEND: 2640 Tmp1 = EmitStackConvert(Node->getOperand(0), 2641 Node->getOperand(0).getValueType(), 2642 Node->getValueType(0), dl); 2643 Results.push_back(Tmp1); 2644 break; 2645 case ISD::SIGN_EXTEND_INREG: { 2646 // NOTE: we could fall back on load/store here too for targets without 2647 // SAR. However, it is doubtful that any exist. 2648 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 2649 EVT VT = Node->getValueType(0); 2650 EVT ShiftAmountTy = TLI.getShiftAmountTy(VT); 2651 if (VT.isVector()) 2652 ShiftAmountTy = VT; 2653 unsigned BitsDiff = VT.getScalarType().getSizeInBits() - 2654 ExtraVT.getScalarType().getSizeInBits(); 2655 SDValue ShiftCst = DAG.getConstant(BitsDiff, ShiftAmountTy); 2656 Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0), 2657 Node->getOperand(0), ShiftCst); 2658 Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst); 2659 Results.push_back(Tmp1); 2660 break; 2661 } 2662 case ISD::FP_ROUND_INREG: { 2663 // The only way we can lower this is to turn it into a TRUNCSTORE, 2664 // EXTLOAD pair, targeting a temporary location (a stack slot). 2665 2666 // NOTE: there is a choice here between constantly creating new stack 2667 // slots and always reusing the same one. We currently always create 2668 // new ones, as reuse may inhibit scheduling. 2669 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 2670 Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT, 2671 Node->getValueType(0), dl); 2672 Results.push_back(Tmp1); 2673 break; 2674 } 2675 case ISD::SINT_TO_FP: 2676 case ISD::UINT_TO_FP: 2677 Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP, 2678 Node->getOperand(0), Node->getValueType(0), dl); 2679 Results.push_back(Tmp1); 2680 break; 2681 case ISD::FP_TO_UINT: { 2682 SDValue True, False; 2683 EVT VT = Node->getOperand(0).getValueType(); 2684 EVT NVT = Node->getValueType(0); 2685 APFloat apf(APInt::getNullValue(VT.getSizeInBits())); 2686 APInt x = APInt::getSignBit(NVT.getSizeInBits()); 2687 (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven); 2688 Tmp1 = DAG.getConstantFP(apf, VT); 2689 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), 2690 Node->getOperand(0), 2691 Tmp1, ISD::SETLT); 2692 True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0)); 2693 False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, 2694 DAG.getNode(ISD::FSUB, dl, VT, 2695 Node->getOperand(0), Tmp1)); 2696 False = DAG.getNode(ISD::XOR, dl, NVT, False, 2697 DAG.getConstant(x, NVT)); 2698 Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False); 2699 Results.push_back(Tmp1); 2700 break; 2701 } 2702 case ISD::VAARG: { 2703 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2704 EVT VT = Node->getValueType(0); 2705 Tmp1 = Node->getOperand(0); 2706 Tmp2 = Node->getOperand(1); 2707 unsigned Align = Node->getConstantOperandVal(3); 2708 2709 SDValue VAListLoad = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2, 2710 MachinePointerInfo(V), 2711 false, false, false, 0); 2712 SDValue VAList = VAListLoad; 2713 2714 if (Align > TLI.getMinStackArgumentAlignment()) { 2715 assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2"); 2716 2717 VAList = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList, 2718 DAG.getConstant(Align - 1, 2719 TLI.getPointerTy())); 2720 2721 VAList = DAG.getNode(ISD::AND, dl, TLI.getPointerTy(), VAList, 2722 DAG.getConstant(-(int64_t)Align, 2723 TLI.getPointerTy())); 2724 } 2725 2726 // Increment the pointer, VAList, to the next vaarg 2727 Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList, 2728 DAG.getConstant(TLI.getTargetData()-> 2729 getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())), 2730 TLI.getPointerTy())); 2731 // Store the incremented VAList to the legalized pointer 2732 Tmp3 = DAG.getStore(VAListLoad.getValue(1), dl, Tmp3, Tmp2, 2733 MachinePointerInfo(V), false, false, 0); 2734 // Load the actual argument out of the pointer VAList 2735 Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, MachinePointerInfo(), 2736 false, false, false, 0)); 2737 Results.push_back(Results[0].getValue(1)); 2738 break; 2739 } 2740 case ISD::VACOPY: { 2741 // This defaults to loading a pointer from the input and storing it to the 2742 // output, returning the chain. 2743 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 2744 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 2745 Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0), 2746 Node->getOperand(2), MachinePointerInfo(VS), 2747 false, false, false, 0); 2748 Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 2749 MachinePointerInfo(VD), false, false, 0); 2750 Results.push_back(Tmp1); 2751 break; 2752 } 2753 case ISD::EXTRACT_VECTOR_ELT: 2754 if (Node->getOperand(0).getValueType().getVectorNumElements() == 1) 2755 // This must be an access of the only element. Return it. 2756 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), 2757 Node->getOperand(0)); 2758 else 2759 Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0)); 2760 Results.push_back(Tmp1); 2761 break; 2762 case ISD::EXTRACT_SUBVECTOR: 2763 Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0))); 2764 break; 2765 case ISD::INSERT_SUBVECTOR: 2766 Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0))); 2767 break; 2768 case ISD::CONCAT_VECTORS: { 2769 Results.push_back(ExpandVectorBuildThroughStack(Node)); 2770 break; 2771 } 2772 case ISD::SCALAR_TO_VECTOR: 2773 Results.push_back(ExpandSCALAR_TO_VECTOR(Node)); 2774 break; 2775 case ISD::INSERT_VECTOR_ELT: 2776 Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0), 2777 Node->getOperand(1), 2778 Node->getOperand(2), dl)); 2779 break; 2780 case ISD::VECTOR_SHUFFLE: { 2781 SmallVector<int, 8> Mask; 2782 cast<ShuffleVectorSDNode>(Node)->getMask(Mask); 2783 2784 EVT VT = Node->getValueType(0); 2785 EVT EltVT = VT.getVectorElementType(); 2786 if (!TLI.isTypeLegal(EltVT)) 2787 EltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT); 2788 unsigned NumElems = VT.getVectorNumElements(); 2789 SmallVector<SDValue, 8> Ops; 2790 for (unsigned i = 0; i != NumElems; ++i) { 2791 if (Mask[i] < 0) { 2792 Ops.push_back(DAG.getUNDEF(EltVT)); 2793 continue; 2794 } 2795 unsigned Idx = Mask[i]; 2796 if (Idx < NumElems) 2797 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, 2798 Node->getOperand(0), 2799 DAG.getIntPtrConstant(Idx))); 2800 else 2801 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, 2802 Node->getOperand(1), 2803 DAG.getIntPtrConstant(Idx - NumElems))); 2804 } 2805 Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size()); 2806 Results.push_back(Tmp1); 2807 break; 2808 } 2809 case ISD::EXTRACT_ELEMENT: { 2810 EVT OpTy = Node->getOperand(0).getValueType(); 2811 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { 2812 // 1 -> Hi 2813 Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0), 2814 DAG.getConstant(OpTy.getSizeInBits()/2, 2815 TLI.getShiftAmountTy(Node->getOperand(0).getValueType()))); 2816 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1); 2817 } else { 2818 // 0 -> Lo 2819 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), 2820 Node->getOperand(0)); 2821 } 2822 Results.push_back(Tmp1); 2823 break; 2824 } 2825 case ISD::STACKSAVE: 2826 // Expand to CopyFromReg if the target set 2827 // StackPointerRegisterToSaveRestore. 2828 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 2829 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP, 2830 Node->getValueType(0))); 2831 Results.push_back(Results[0].getValue(1)); 2832 } else { 2833 Results.push_back(DAG.getUNDEF(Node->getValueType(0))); 2834 Results.push_back(Node->getOperand(0)); 2835 } 2836 break; 2837 case ISD::STACKRESTORE: 2838 // Expand to CopyToReg if the target set 2839 // StackPointerRegisterToSaveRestore. 2840 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 2841 Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP, 2842 Node->getOperand(1))); 2843 } else { 2844 Results.push_back(Node->getOperand(0)); 2845 } 2846 break; 2847 case ISD::FCOPYSIGN: 2848 Results.push_back(ExpandFCOPYSIGN(Node)); 2849 break; 2850 case ISD::FNEG: 2851 // Expand Y = FNEG(X) -> Y = SUB -0.0, X 2852 Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0)); 2853 Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1, 2854 Node->getOperand(0)); 2855 Results.push_back(Tmp1); 2856 break; 2857 case ISD::FABS: { 2858 // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X). 2859 EVT VT = Node->getValueType(0); 2860 Tmp1 = Node->getOperand(0); 2861 Tmp2 = DAG.getConstantFP(0.0, VT); 2862 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()), 2863 Tmp1, Tmp2, ISD::SETUGT); 2864 Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1); 2865 Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3); 2866 Results.push_back(Tmp1); 2867 break; 2868 } 2869 case ISD::FSQRT: 2870 Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 2871 RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128)); 2872 break; 2873 case ISD::FSIN: 2874 Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64, 2875 RTLIB::SIN_F80, RTLIB::SIN_PPCF128)); 2876 break; 2877 case ISD::FCOS: 2878 Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64, 2879 RTLIB::COS_F80, RTLIB::COS_PPCF128)); 2880 break; 2881 case ISD::FLOG: 2882 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, 2883 RTLIB::LOG_F80, RTLIB::LOG_PPCF128)); 2884 break; 2885 case ISD::FLOG2: 2886 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, 2887 RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128)); 2888 break; 2889 case ISD::FLOG10: 2890 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, 2891 RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128)); 2892 break; 2893 case ISD::FEXP: 2894 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, 2895 RTLIB::EXP_F80, RTLIB::EXP_PPCF128)); 2896 break; 2897 case ISD::FEXP2: 2898 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, 2899 RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128)); 2900 break; 2901 case ISD::FTRUNC: 2902 Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, 2903 RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128)); 2904 break; 2905 case ISD::FFLOOR: 2906 Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, 2907 RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128)); 2908 break; 2909 case ISD::FCEIL: 2910 Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64, 2911 RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128)); 2912 break; 2913 case ISD::FRINT: 2914 Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64, 2915 RTLIB::RINT_F80, RTLIB::RINT_PPCF128)); 2916 break; 2917 case ISD::FNEARBYINT: 2918 Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32, 2919 RTLIB::NEARBYINT_F64, 2920 RTLIB::NEARBYINT_F80, 2921 RTLIB::NEARBYINT_PPCF128)); 2922 break; 2923 case ISD::FPOWI: 2924 Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64, 2925 RTLIB::POWI_F80, RTLIB::POWI_PPCF128)); 2926 break; 2927 case ISD::FPOW: 2928 Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, 2929 RTLIB::POW_F80, RTLIB::POW_PPCF128)); 2930 break; 2931 case ISD::FDIV: 2932 Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64, 2933 RTLIB::DIV_F80, RTLIB::DIV_PPCF128)); 2934 break; 2935 case ISD::FREM: 2936 Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64, 2937 RTLIB::REM_F80, RTLIB::REM_PPCF128)); 2938 break; 2939 case ISD::FMA: 2940 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64, 2941 RTLIB::FMA_F80, RTLIB::FMA_PPCF128)); 2942 break; 2943 case ISD::FP16_TO_FP32: 2944 Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false)); 2945 break; 2946 case ISD::FP32_TO_FP16: 2947 Results.push_back(ExpandLibCall(RTLIB::FPROUND_F32_F16, Node, false)); 2948 break; 2949 case ISD::ConstantFP: { 2950 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 2951 // Check to see if this FP immediate is already legal. 2952 // If this is a legal constant, turn it into a TargetConstantFP node. 2953 if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0))) 2954 Results.push_back(ExpandConstantFP(CFP, true)); 2955 break; 2956 } 2957 case ISD::EHSELECTION: { 2958 unsigned Reg = TLI.getExceptionSelectorRegister(); 2959 assert(Reg && "Can't expand to unknown register!"); 2960 Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg, 2961 Node->getValueType(0))); 2962 Results.push_back(Results[0].getValue(1)); 2963 break; 2964 } 2965 case ISD::EXCEPTIONADDR: { 2966 unsigned Reg = TLI.getExceptionAddressRegister(); 2967 assert(Reg && "Can't expand to unknown register!"); 2968 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg, 2969 Node->getValueType(0))); 2970 Results.push_back(Results[0].getValue(1)); 2971 break; 2972 } 2973 case ISD::SUB: { 2974 EVT VT = Node->getValueType(0); 2975 assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 2976 TLI.isOperationLegalOrCustom(ISD::XOR, VT) && 2977 "Don't know how to expand this subtraction!"); 2978 Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1), 2979 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT)); 2980 Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp2, DAG.getConstant(1, VT)); 2981 Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1)); 2982 break; 2983 } 2984 case ISD::UREM: 2985 case ISD::SREM: { 2986 EVT VT = Node->getValueType(0); 2987 SDVTList VTs = DAG.getVTList(VT, VT); 2988 bool isSigned = Node->getOpcode() == ISD::SREM; 2989 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 2990 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 2991 Tmp2 = Node->getOperand(0); 2992 Tmp3 = Node->getOperand(1); 2993 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) || 2994 (isDivRemLibcallAvailable(Node, isSigned, TLI) && 2995 UseDivRem(Node, isSigned, false))) { 2996 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1); 2997 } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) { 2998 // X % Y -> X-X/Y*Y 2999 Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3); 3000 Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3); 3001 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1); 3002 } else if (isSigned) 3003 Tmp1 = ExpandIntLibCall(Node, true, 3004 RTLIB::SREM_I8, 3005 RTLIB::SREM_I16, RTLIB::SREM_I32, 3006 RTLIB::SREM_I64, RTLIB::SREM_I128); 3007 else 3008 Tmp1 = ExpandIntLibCall(Node, false, 3009 RTLIB::UREM_I8, 3010 RTLIB::UREM_I16, RTLIB::UREM_I32, 3011 RTLIB::UREM_I64, RTLIB::UREM_I128); 3012 Results.push_back(Tmp1); 3013 break; 3014 } 3015 case ISD::UDIV: 3016 case ISD::SDIV: { 3017 bool isSigned = Node->getOpcode() == ISD::SDIV; 3018 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3019 EVT VT = Node->getValueType(0); 3020 SDVTList VTs = DAG.getVTList(VT, VT); 3021 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) || 3022 (isDivRemLibcallAvailable(Node, isSigned, TLI) && 3023 UseDivRem(Node, isSigned, true))) 3024 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0), 3025 Node->getOperand(1)); 3026 else if (isSigned) 3027 Tmp1 = ExpandIntLibCall(Node, true, 3028 RTLIB::SDIV_I8, 3029 RTLIB::SDIV_I16, RTLIB::SDIV_I32, 3030 RTLIB::SDIV_I64, RTLIB::SDIV_I128); 3031 else 3032 Tmp1 = ExpandIntLibCall(Node, false, 3033 RTLIB::UDIV_I8, 3034 RTLIB::UDIV_I16, RTLIB::UDIV_I32, 3035 RTLIB::UDIV_I64, RTLIB::UDIV_I128); 3036 Results.push_back(Tmp1); 3037 break; 3038 } 3039 case ISD::MULHU: 3040 case ISD::MULHS: { 3041 unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : 3042 ISD::SMUL_LOHI; 3043 EVT VT = Node->getValueType(0); 3044 SDVTList VTs = DAG.getVTList(VT, VT); 3045 assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) && 3046 "If this wasn't legal, it shouldn't have been created!"); 3047 Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0), 3048 Node->getOperand(1)); 3049 Results.push_back(Tmp1.getValue(1)); 3050 break; 3051 } 3052 case ISD::SDIVREM: 3053 case ISD::UDIVREM: 3054 // Expand into divrem libcall 3055 ExpandDivRemLibCall(Node, Results); 3056 break; 3057 case ISD::MUL: { 3058 EVT VT = Node->getValueType(0); 3059 SDVTList VTs = DAG.getVTList(VT, VT); 3060 // See if multiply or divide can be lowered using two-result operations. 3061 // We just need the low half of the multiply; try both the signed 3062 // and unsigned forms. If the target supports both SMUL_LOHI and 3063 // UMUL_LOHI, form a preference by checking which forms of plain 3064 // MULH it supports. 3065 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT); 3066 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT); 3067 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT); 3068 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT); 3069 unsigned OpToUse = 0; 3070 if (HasSMUL_LOHI && !HasMULHS) { 3071 OpToUse = ISD::SMUL_LOHI; 3072 } else if (HasUMUL_LOHI && !HasMULHU) { 3073 OpToUse = ISD::UMUL_LOHI; 3074 } else if (HasSMUL_LOHI) { 3075 OpToUse = ISD::SMUL_LOHI; 3076 } else if (HasUMUL_LOHI) { 3077 OpToUse = ISD::UMUL_LOHI; 3078 } 3079 if (OpToUse) { 3080 Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0), 3081 Node->getOperand(1))); 3082 break; 3083 } 3084 Tmp1 = ExpandIntLibCall(Node, false, 3085 RTLIB::MUL_I8, 3086 RTLIB::MUL_I16, RTLIB::MUL_I32, 3087 RTLIB::MUL_I64, RTLIB::MUL_I128); 3088 Results.push_back(Tmp1); 3089 break; 3090 } 3091 case ISD::SADDO: 3092 case ISD::SSUBO: { 3093 SDValue LHS = Node->getOperand(0); 3094 SDValue RHS = Node->getOperand(1); 3095 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ? 3096 ISD::ADD : ISD::SUB, dl, LHS.getValueType(), 3097 LHS, RHS); 3098 Results.push_back(Sum); 3099 EVT OType = Node->getValueType(1); 3100 3101 SDValue Zero = DAG.getConstant(0, LHS.getValueType()); 3102 3103 // LHSSign -> LHS >= 0 3104 // RHSSign -> RHS >= 0 3105 // SumSign -> Sum >= 0 3106 // 3107 // Add: 3108 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign) 3109 // Sub: 3110 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign) 3111 // 3112 SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE); 3113 SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE); 3114 SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign, 3115 Node->getOpcode() == ISD::SADDO ? 3116 ISD::SETEQ : ISD::SETNE); 3117 3118 SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE); 3119 SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE); 3120 3121 SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE); 3122 Results.push_back(Cmp); 3123 break; 3124 } 3125 case ISD::UADDO: 3126 case ISD::USUBO: { 3127 SDValue LHS = Node->getOperand(0); 3128 SDValue RHS = Node->getOperand(1); 3129 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ? 3130 ISD::ADD : ISD::SUB, dl, LHS.getValueType(), 3131 LHS, RHS); 3132 Results.push_back(Sum); 3133 Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS, 3134 Node->getOpcode () == ISD::UADDO ? 3135 ISD::SETULT : ISD::SETUGT)); 3136 break; 3137 } 3138 case ISD::UMULO: 3139 case ISD::SMULO: { 3140 EVT VT = Node->getValueType(0); 3141 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2); 3142 SDValue LHS = Node->getOperand(0); 3143 SDValue RHS = Node->getOperand(1); 3144 SDValue BottomHalf; 3145 SDValue TopHalf; 3146 static const unsigned Ops[2][3] = 3147 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 3148 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 3149 bool isSigned = Node->getOpcode() == ISD::SMULO; 3150 if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 3151 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 3152 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 3153 } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 3154 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 3155 RHS); 3156 TopHalf = BottomHalf.getValue(1); 3157 } else if (TLI.isTypeLegal(EVT::getIntegerVT(*DAG.getContext(), 3158 VT.getSizeInBits() * 2))) { 3159 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 3160 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 3161 Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 3162 BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1, 3163 DAG.getIntPtrConstant(0)); 3164 TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1, 3165 DAG.getIntPtrConstant(1)); 3166 } else { 3167 // We can fall back to a libcall with an illegal type for the MUL if we 3168 // have a libcall big enough. 3169 // Also, we can fall back to a division in some cases, but that's a big 3170 // performance hit in the general case. 3171 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 3172 if (WideVT == MVT::i16) 3173 LC = RTLIB::MUL_I16; 3174 else if (WideVT == MVT::i32) 3175 LC = RTLIB::MUL_I32; 3176 else if (WideVT == MVT::i64) 3177 LC = RTLIB::MUL_I64; 3178 else if (WideVT == MVT::i128) 3179 LC = RTLIB::MUL_I128; 3180 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 3181 3182 // The high part is obtained by SRA'ing all but one of the bits of low 3183 // part. 3184 unsigned LoSize = VT.getSizeInBits(); 3185 SDValue HiLHS = DAG.getNode(ISD::SRA, dl, VT, RHS, 3186 DAG.getConstant(LoSize-1, TLI.getPointerTy())); 3187 SDValue HiRHS = DAG.getNode(ISD::SRA, dl, VT, LHS, 3188 DAG.getConstant(LoSize-1, TLI.getPointerTy())); 3189 3190 // Here we're passing the 2 arguments explicitly as 4 arguments that are 3191 // pre-lowered to the correct types. This all depends upon WideVT not 3192 // being a legal type for the architecture and thus has to be split to 3193 // two arguments. 3194 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 3195 SDValue Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl); 3196 BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret, 3197 DAG.getIntPtrConstant(0)); 3198 TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret, 3199 DAG.getIntPtrConstant(1)); 3200 // Ret is a node with an illegal type. Because such things are not 3201 // generally permitted during this phase of legalization, delete the 3202 // node. The above EXTRACT_ELEMENT nodes should have been folded. 3203 DAG.DeleteNode(Ret.getNode()); 3204 } 3205 3206 if (isSigned) { 3207 Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1, 3208 TLI.getShiftAmountTy(BottomHalf.getValueType())); 3209 Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1); 3210 TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1, 3211 ISD::SETNE); 3212 } else { 3213 TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, 3214 DAG.getConstant(0, VT), ISD::SETNE); 3215 } 3216 Results.push_back(BottomHalf); 3217 Results.push_back(TopHalf); 3218 break; 3219 } 3220 case ISD::BUILD_PAIR: { 3221 EVT PairTy = Node->getValueType(0); 3222 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0)); 3223 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1)); 3224 Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2, 3225 DAG.getConstant(PairTy.getSizeInBits()/2, 3226 TLI.getShiftAmountTy(PairTy))); 3227 Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2)); 3228 break; 3229 } 3230 case ISD::SELECT: 3231 Tmp1 = Node->getOperand(0); 3232 Tmp2 = Node->getOperand(1); 3233 Tmp3 = Node->getOperand(2); 3234 if (Tmp1.getOpcode() == ISD::SETCC) { 3235 Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1), 3236 Tmp2, Tmp3, 3237 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); 3238 } else { 3239 Tmp1 = DAG.getSelectCC(dl, Tmp1, 3240 DAG.getConstant(0, Tmp1.getValueType()), 3241 Tmp2, Tmp3, ISD::SETNE); 3242 } 3243 Results.push_back(Tmp1); 3244 break; 3245 case ISD::BR_JT: { 3246 SDValue Chain = Node->getOperand(0); 3247 SDValue Table = Node->getOperand(1); 3248 SDValue Index = Node->getOperand(2); 3249 3250 EVT PTy = TLI.getPointerTy(); 3251 3252 const TargetData &TD = *TLI.getTargetData(); 3253 unsigned EntrySize = 3254 DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD); 3255 3256 Index = DAG.getNode(ISD::MUL, dl, PTy, 3257 Index, DAG.getConstant(EntrySize, PTy)); 3258 SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table); 3259 3260 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8); 3261 SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr, 3262 MachinePointerInfo::getJumpTable(), MemVT, 3263 false, false, 0); 3264 Addr = LD; 3265 if (TM.getRelocationModel() == Reloc::PIC_) { 3266 // For PIC, the sequence is: 3267 // BRIND(load(Jumptable + index) + RelocBase) 3268 // RelocBase can be JumpTable, GOT or some sort of global base. 3269 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, 3270 TLI.getPICJumpTableRelocBase(Table, DAG)); 3271 } 3272 Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr); 3273 Results.push_back(Tmp1); 3274 break; 3275 } 3276 case ISD::BRCOND: 3277 // Expand brcond's setcc into its constituent parts and create a BR_CC 3278 // Node. 3279 Tmp1 = Node->getOperand(0); 3280 Tmp2 = Node->getOperand(1); 3281 if (Tmp2.getOpcode() == ISD::SETCC) { 3282 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, 3283 Tmp1, Tmp2.getOperand(2), 3284 Tmp2.getOperand(0), Tmp2.getOperand(1), 3285 Node->getOperand(2)); 3286 } else { 3287 // We test only the i1 bit. Skip the AND if UNDEF. 3288 Tmp3 = (Tmp2.getOpcode() == ISD::UNDEF) ? Tmp2 : 3289 DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2, 3290 DAG.getConstant(1, Tmp2.getValueType())); 3291 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, 3292 DAG.getCondCode(ISD::SETNE), Tmp3, 3293 DAG.getConstant(0, Tmp3.getValueType()), 3294 Node->getOperand(2)); 3295 } 3296 Results.push_back(Tmp1); 3297 break; 3298 case ISD::SETCC: { 3299 Tmp1 = Node->getOperand(0); 3300 Tmp2 = Node->getOperand(1); 3301 Tmp3 = Node->getOperand(2); 3302 LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl); 3303 3304 // If we expanded the SETCC into an AND/OR, return the new node 3305 if (Tmp2.getNode() == 0) { 3306 Results.push_back(Tmp1); 3307 break; 3308 } 3309 3310 // Otherwise, SETCC for the given comparison type must be completely 3311 // illegal; expand it into a SELECT_CC. 3312 EVT VT = Node->getValueType(0); 3313 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2, 3314 DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3); 3315 Results.push_back(Tmp1); 3316 break; 3317 } 3318 case ISD::SELECT_CC: { 3319 Tmp1 = Node->getOperand(0); // LHS 3320 Tmp2 = Node->getOperand(1); // RHS 3321 Tmp3 = Node->getOperand(2); // True 3322 Tmp4 = Node->getOperand(3); // False 3323 SDValue CC = Node->getOperand(4); 3324 3325 LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()), 3326 Tmp1, Tmp2, CC, dl); 3327 3328 assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!"); 3329 Tmp2 = DAG.getConstant(0, Tmp1.getValueType()); 3330 CC = DAG.getCondCode(ISD::SETNE); 3331 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2, 3332 Tmp3, Tmp4, CC); 3333 Results.push_back(Tmp1); 3334 break; 3335 } 3336 case ISD::BR_CC: { 3337 Tmp1 = Node->getOperand(0); // Chain 3338 Tmp2 = Node->getOperand(2); // LHS 3339 Tmp3 = Node->getOperand(3); // RHS 3340 Tmp4 = Node->getOperand(1); // CC 3341 3342 LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()), 3343 Tmp2, Tmp3, Tmp4, dl); 3344 3345 assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!"); 3346 Tmp3 = DAG.getConstant(0, Tmp2.getValueType()); 3347 Tmp4 = DAG.getCondCode(ISD::SETNE); 3348 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2, 3349 Tmp3, Node->getOperand(4)); 3350 Results.push_back(Tmp1); 3351 break; 3352 } 3353 case ISD::BUILD_VECTOR: 3354 Results.push_back(ExpandBUILD_VECTOR(Node)); 3355 break; 3356 case ISD::SRA: 3357 case ISD::SRL: 3358 case ISD::SHL: { 3359 // Scalarize vector SRA/SRL/SHL. 3360 EVT VT = Node->getValueType(0); 3361 assert(VT.isVector() && "Unable to legalize non-vector shift"); 3362 assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal"); 3363 unsigned NumElem = VT.getVectorNumElements(); 3364 3365 SmallVector<SDValue, 8> Scalars; 3366 for (unsigned Idx = 0; Idx < NumElem; Idx++) { 3367 SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 3368 VT.getScalarType(), 3369 Node->getOperand(0), DAG.getIntPtrConstant(Idx)); 3370 SDValue Sh = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 3371 VT.getScalarType(), 3372 Node->getOperand(1), DAG.getIntPtrConstant(Idx)); 3373 Scalars.push_back(DAG.getNode(Node->getOpcode(), dl, 3374 VT.getScalarType(), Ex, Sh)); 3375 } 3376 SDValue Result = 3377 DAG.getNode(ISD::BUILD_VECTOR, dl, Node->getValueType(0), 3378 &Scalars[0], Scalars.size()); 3379 DAG.ReplaceAllUsesWith(SDValue(Node, 0), Result, this); 3380 DAG.RemoveDeadNode(Node, this); 3381 break; 3382 } 3383 case ISD::GLOBAL_OFFSET_TABLE: 3384 case ISD::GlobalAddress: 3385 case ISD::GlobalTLSAddress: 3386 case ISD::ExternalSymbol: 3387 case ISD::ConstantPool: 3388 case ISD::JumpTable: 3389 case ISD::INTRINSIC_W_CHAIN: 3390 case ISD::INTRINSIC_WO_CHAIN: 3391 case ISD::INTRINSIC_VOID: 3392 // FIXME: Custom lowering for these operations shouldn't return null! 3393 break; 3394 } 3395 3396 // Replace the original node with the legalized result. 3397 if (!Results.empty()) { 3398 DAG.ReplaceAllUsesWith(Node, Results.data(), this); 3399 DAG.RemoveDeadNode(Node, this); 3400 } 3401} 3402 3403void SelectionDAGLegalize::PromoteNode(SDNode *Node) { 3404 SmallVector<SDValue, 8> Results; 3405 EVT OVT = Node->getValueType(0); 3406 if (Node->getOpcode() == ISD::UINT_TO_FP || 3407 Node->getOpcode() == ISD::SINT_TO_FP || 3408 Node->getOpcode() == ISD::SETCC) { 3409 OVT = Node->getOperand(0).getValueType(); 3410 } 3411 EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 3412 DebugLoc dl = Node->getDebugLoc(); 3413 SDValue Tmp1, Tmp2, Tmp3; 3414 switch (Node->getOpcode()) { 3415 case ISD::CTTZ: 3416 case ISD::CTLZ: 3417 case ISD::CTPOP: 3418 // Zero extend the argument. 3419 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 3420 // Perform the larger operation. 3421 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 3422 if (Node->getOpcode() == ISD::CTTZ) { 3423 //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT) 3424 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT), 3425 Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT), 3426 ISD::SETEQ); 3427 Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, 3428 DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1); 3429 } else if (Node->getOpcode() == ISD::CTLZ) { 3430 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 3431 Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, 3432 DAG.getConstant(NVT.getSizeInBits() - 3433 OVT.getSizeInBits(), NVT)); 3434 } 3435 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 3436 break; 3437 case ISD::BSWAP: { 3438 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); 3439 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 3440 Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1); 3441 Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1, 3442 DAG.getConstant(DiffBits, TLI.getShiftAmountTy(NVT))); 3443 Results.push_back(Tmp1); 3444 break; 3445 } 3446 case ISD::FP_TO_UINT: 3447 case ISD::FP_TO_SINT: 3448 Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0), 3449 Node->getOpcode() == ISD::FP_TO_SINT, dl); 3450 Results.push_back(Tmp1); 3451 break; 3452 case ISD::UINT_TO_FP: 3453 case ISD::SINT_TO_FP: 3454 Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0), 3455 Node->getOpcode() == ISD::SINT_TO_FP, dl); 3456 Results.push_back(Tmp1); 3457 break; 3458 case ISD::AND: 3459 case ISD::OR: 3460 case ISD::XOR: { 3461 unsigned ExtOp, TruncOp; 3462 if (OVT.isVector()) { 3463 ExtOp = ISD::BITCAST; 3464 TruncOp = ISD::BITCAST; 3465 } else { 3466 assert(OVT.isInteger() && "Cannot promote logic operation"); 3467 ExtOp = ISD::ANY_EXTEND; 3468 TruncOp = ISD::TRUNCATE; 3469 } 3470 // Promote each of the values to the new type. 3471 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 3472 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 3473 // Perform the larger operation, then convert back 3474 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 3475 Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1)); 3476 break; 3477 } 3478 case ISD::SELECT: { 3479 unsigned ExtOp, TruncOp; 3480 if (Node->getValueType(0).isVector()) { 3481 ExtOp = ISD::BITCAST; 3482 TruncOp = ISD::BITCAST; 3483 } else if (Node->getValueType(0).isInteger()) { 3484 ExtOp = ISD::ANY_EXTEND; 3485 TruncOp = ISD::TRUNCATE; 3486 } else { 3487 ExtOp = ISD::FP_EXTEND; 3488 TruncOp = ISD::FP_ROUND; 3489 } 3490 Tmp1 = Node->getOperand(0); 3491 // Promote each of the values to the new type. 3492 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 3493 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 3494 // Perform the larger operation, then round down. 3495 Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3); 3496 if (TruncOp != ISD::FP_ROUND) 3497 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1); 3498 else 3499 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1, 3500 DAG.getIntPtrConstant(0)); 3501 Results.push_back(Tmp1); 3502 break; 3503 } 3504 case ISD::VECTOR_SHUFFLE: { 3505 SmallVector<int, 8> Mask; 3506 cast<ShuffleVectorSDNode>(Node)->getMask(Mask); 3507 3508 // Cast the two input vectors. 3509 Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0)); 3510 Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1)); 3511 3512 // Convert the shuffle mask to the right # elements. 3513 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask); 3514 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1); 3515 Results.push_back(Tmp1); 3516 break; 3517 } 3518 case ISD::SETCC: { 3519 unsigned ExtOp = ISD::FP_EXTEND; 3520 if (NVT.isInteger()) { 3521 ISD::CondCode CCCode = 3522 cast<CondCodeSDNode>(Node->getOperand(2))->get(); 3523 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 3524 } 3525 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 3526 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 3527 Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), 3528 Tmp1, Tmp2, Node->getOperand(2))); 3529 break; 3530 } 3531 } 3532 3533 // Replace the original node with the legalized result. 3534 if (!Results.empty()) { 3535 DAG.ReplaceAllUsesWith(Node, Results.data(), this); 3536 DAG.RemoveDeadNode(Node, this); 3537 } 3538} 3539 3540// SelectionDAG::Legalize - This is the entry point for the file. 3541// 3542void SelectionDAG::Legalize() { 3543 /// run - This is the main entry point to this class. 3544 /// 3545 SelectionDAGLegalize(*this).LegalizeDAG(); 3546} 3547