LegalizeDAG.cpp revision e03262fcfc09356a0e3ec589041bc2e0248944e9
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SelectionDAG::Legalize method.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/CodeGen/MachineFunction.h"
16#include "llvm/CodeGen/MachineFrameInfo.h"
17#include "llvm/CodeGen/MachineJumpTableInfo.h"
18#include "llvm/CodeGen/MachineModuleInfo.h"
19#include "llvm/Analysis/DebugInfo.h"
20#include "llvm/CodeGen/PseudoSourceValue.h"
21#include "llvm/Target/TargetFrameInfo.h"
22#include "llvm/Target/TargetLowering.h"
23#include "llvm/Target/TargetData.h"
24#include "llvm/Target/TargetMachine.h"
25#include "llvm/Target/TargetOptions.h"
26#include "llvm/CallingConv.h"
27#include "llvm/Constants.h"
28#include "llvm/DerivedTypes.h"
29#include "llvm/Function.h"
30#include "llvm/GlobalVariable.h"
31#include "llvm/LLVMContext.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/ErrorHandling.h"
35#include "llvm/Support/MathExtras.h"
36#include "llvm/Support/raw_ostream.h"
37#include "llvm/ADT/DenseMap.h"
38#include "llvm/ADT/SmallVector.h"
39#include "llvm/ADT/SmallPtrSet.h"
40using namespace llvm;
41
42//===----------------------------------------------------------------------===//
43/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
44/// hacks on it until the target machine can handle it.  This involves
45/// eliminating value sizes the machine cannot handle (promoting small sizes to
46/// large sizes or splitting up large values into small values) as well as
47/// eliminating operations the machine cannot handle.
48///
49/// This code also does a small amount of optimization and recognition of idioms
50/// as part of its processing.  For example, if a target does not support a
51/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
52/// will attempt merge setcc and brc instructions into brcc's.
53///
54namespace {
55class SelectionDAGLegalize {
56  const TargetMachine &TM;
57  const TargetLowering &TLI;
58  SelectionDAG &DAG;
59  CodeGenOpt::Level OptLevel;
60
61  // Libcall insertion helpers.
62
63  /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been
64  /// legalized.  We use this to ensure that calls are properly serialized
65  /// against each other, including inserted libcalls.
66  SDValue LastCALLSEQ_END;
67
68  /// IsLegalizingCall - This member is used *only* for purposes of providing
69  /// helpful assertions that a libcall isn't created while another call is
70  /// being legalized (which could lead to non-serialized call sequences).
71  bool IsLegalizingCall;
72
73  enum LegalizeAction {
74    Legal,      // The target natively supports this operation.
75    Promote,    // This operation should be executed in a larger type.
76    Expand      // Try to expand this to other ops, otherwise use a libcall.
77  };
78
79  /// ValueTypeActions - This is a bitvector that contains two bits for each
80  /// value type, where the two bits correspond to the LegalizeAction enum.
81  /// This can be queried with "getTypeAction(VT)".
82  TargetLowering::ValueTypeActionImpl ValueTypeActions;
83
84  /// LegalizedNodes - For nodes that are of legal width, and that have more
85  /// than one use, this map indicates what regularized operand to use.  This
86  /// allows us to avoid legalizing the same thing more than once.
87  DenseMap<SDValue, SDValue> LegalizedNodes;
88
89  void AddLegalizedOperand(SDValue From, SDValue To) {
90    LegalizedNodes.insert(std::make_pair(From, To));
91    // If someone requests legalization of the new node, return itself.
92    if (From != To)
93      LegalizedNodes.insert(std::make_pair(To, To));
94  }
95
96public:
97  SelectionDAGLegalize(SelectionDAG &DAG, CodeGenOpt::Level ol);
98
99  /// getTypeAction - Return how we should legalize values of this type, either
100  /// it is already legal or we need to expand it into multiple registers of
101  /// smaller integer type, or we need to promote it to a larger type.
102  LegalizeAction getTypeAction(EVT VT) const {
103    return
104        (LegalizeAction)ValueTypeActions.getTypeAction(*DAG.getContext(), VT);
105  }
106
107  /// isTypeLegal - Return true if this type is legal on this target.
108  ///
109  bool isTypeLegal(EVT VT) const {
110    return getTypeAction(VT) == Legal;
111  }
112
113  void LegalizeDAG();
114
115private:
116  /// LegalizeOp - We know that the specified value has a legal type.
117  /// Recursively ensure that the operands have legal types, then return the
118  /// result.
119  SDValue LegalizeOp(SDValue O);
120
121  SDValue OptimizeFloatStore(StoreSDNode *ST);
122
123  /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
124  /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
125  /// is necessary to spill the vector being inserted into to memory, perform
126  /// the insert there, and then read the result back.
127  SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
128                                         SDValue Idx, DebugLoc dl);
129  SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
130                                  SDValue Idx, DebugLoc dl);
131
132  /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
133  /// performs the same shuffe in terms of order or result bytes, but on a type
134  /// whose vector element type is narrower than the original shuffle type.
135  /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
136  SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl,
137                                     SDValue N1, SDValue N2,
138                                     SmallVectorImpl<int> &Mask) const;
139
140  bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
141                                    SmallPtrSet<SDNode*, 32> &NodesLeadingTo);
142
143  void LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
144                             DebugLoc dl);
145
146  SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
147  std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC,
148                                                 SDNode *Node, bool isSigned);
149  SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
150                          RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
151                          RTLIB::Libcall Call_PPCF128);
152  SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
153                           RTLIB::Libcall Call_I8,
154                           RTLIB::Libcall Call_I16,
155                           RTLIB::Libcall Call_I32,
156                           RTLIB::Libcall Call_I64,
157                           RTLIB::Libcall Call_I128);
158
159  SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, DebugLoc dl);
160  SDValue ExpandBUILD_VECTOR(SDNode *Node);
161  SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
162  void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
163                                SmallVectorImpl<SDValue> &Results);
164  SDValue ExpandFCOPYSIGN(SDNode *Node);
165  SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT,
166                               DebugLoc dl);
167  SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned,
168                                DebugLoc dl);
169  SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned,
170                                DebugLoc dl);
171
172  SDValue ExpandBSWAP(SDValue Op, DebugLoc dl);
173  SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl);
174
175  SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
176  SDValue ExpandVectorBuildThroughStack(SDNode* Node);
177
178  std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node);
179
180  void ExpandNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
181  void PromoteNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
182};
183}
184
185/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
186/// performs the same shuffe in terms of order or result bytes, but on a type
187/// whose vector element type is narrower than the original shuffle type.
188/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
189SDValue
190SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT,  DebugLoc dl,
191                                                 SDValue N1, SDValue N2,
192                                             SmallVectorImpl<int> &Mask) const {
193  unsigned NumMaskElts = VT.getVectorNumElements();
194  unsigned NumDestElts = NVT.getVectorNumElements();
195  unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
196
197  assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
198
199  if (NumEltsGrowth == 1)
200    return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
201
202  SmallVector<int, 8> NewMask;
203  for (unsigned i = 0; i != NumMaskElts; ++i) {
204    int Idx = Mask[i];
205    for (unsigned j = 0; j != NumEltsGrowth; ++j) {
206      if (Idx < 0)
207        NewMask.push_back(-1);
208      else
209        NewMask.push_back(Idx * NumEltsGrowth + j);
210    }
211  }
212  assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
213  assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
214  return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
215}
216
217SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag,
218                                           CodeGenOpt::Level ol)
219  : TM(dag.getTarget()), TLI(dag.getTargetLoweringInfo()),
220    DAG(dag), OptLevel(ol),
221    ValueTypeActions(TLI.getValueTypeActions()) {
222  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
223         "Too many value types for ValueTypeActions to hold!");
224}
225
226void SelectionDAGLegalize::LegalizeDAG() {
227  LastCALLSEQ_END = DAG.getEntryNode();
228  IsLegalizingCall = false;
229
230  // The legalize process is inherently a bottom-up recursive process (users
231  // legalize their uses before themselves).  Given infinite stack space, we
232  // could just start legalizing on the root and traverse the whole graph.  In
233  // practice however, this causes us to run out of stack space on large basic
234  // blocks.  To avoid this problem, compute an ordering of the nodes where each
235  // node is only legalized after all of its operands are legalized.
236  DAG.AssignTopologicalOrder();
237  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
238       E = prior(DAG.allnodes_end()); I != llvm::next(E); ++I)
239    LegalizeOp(SDValue(I, 0));
240
241  // Finally, it's possible the root changed.  Get the new root.
242  SDValue OldRoot = DAG.getRoot();
243  assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
244  DAG.setRoot(LegalizedNodes[OldRoot]);
245
246  LegalizedNodes.clear();
247
248  // Remove dead nodes now.
249  DAG.RemoveDeadNodes();
250}
251
252
253/// FindCallEndFromCallStart - Given a chained node that is part of a call
254/// sequence, find the CALLSEQ_END node that terminates the call sequence.
255static SDNode *FindCallEndFromCallStart(SDNode *Node) {
256  if (Node->getOpcode() == ISD::CALLSEQ_END)
257    return Node;
258  if (Node->use_empty())
259    return 0;   // No CallSeqEnd
260
261  // The chain is usually at the end.
262  SDValue TheChain(Node, Node->getNumValues()-1);
263  if (TheChain.getValueType() != MVT::Other) {
264    // Sometimes it's at the beginning.
265    TheChain = SDValue(Node, 0);
266    if (TheChain.getValueType() != MVT::Other) {
267      // Otherwise, hunt for it.
268      for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i)
269        if (Node->getValueType(i) == MVT::Other) {
270          TheChain = SDValue(Node, i);
271          break;
272        }
273
274      // Otherwise, we walked into a node without a chain.
275      if (TheChain.getValueType() != MVT::Other)
276        return 0;
277    }
278  }
279
280  for (SDNode::use_iterator UI = Node->use_begin(),
281       E = Node->use_end(); UI != E; ++UI) {
282
283    // Make sure to only follow users of our token chain.
284    SDNode *User = *UI;
285    for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
286      if (User->getOperand(i) == TheChain)
287        if (SDNode *Result = FindCallEndFromCallStart(User))
288          return Result;
289  }
290  return 0;
291}
292
293/// FindCallStartFromCallEnd - Given a chained node that is part of a call
294/// sequence, find the CALLSEQ_START node that initiates the call sequence.
295static SDNode *FindCallStartFromCallEnd(SDNode *Node) {
296  assert(Node && "Didn't find callseq_start for a call??");
297  if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
298
299  assert(Node->getOperand(0).getValueType() == MVT::Other &&
300         "Node doesn't have a token chain argument!");
301  return FindCallStartFromCallEnd(Node->getOperand(0).getNode());
302}
303
304/// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to
305/// see if any uses can reach Dest.  If no dest operands can get to dest,
306/// legalize them, legalize ourself, and return false, otherwise, return true.
307///
308/// Keep track of the nodes we fine that actually do lead to Dest in
309/// NodesLeadingTo.  This avoids retraversing them exponential number of times.
310///
311bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
312                                     SmallPtrSet<SDNode*, 32> &NodesLeadingTo) {
313  if (N == Dest) return true;  // N certainly leads to Dest :)
314
315  // If we've already processed this node and it does lead to Dest, there is no
316  // need to reprocess it.
317  if (NodesLeadingTo.count(N)) return true;
318
319  // If the first result of this node has been already legalized, then it cannot
320  // reach N.
321  if (LegalizedNodes.count(SDValue(N, 0))) return false;
322
323  // Okay, this node has not already been legalized.  Check and legalize all
324  // operands.  If none lead to Dest, then we can legalize this node.
325  bool OperandsLeadToDest = false;
326  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
327    OperandsLeadToDest |=     // If an operand leads to Dest, so do we.
328      LegalizeAllNodesNotLeadingTo(N->getOperand(i).getNode(), Dest, NodesLeadingTo);
329
330  if (OperandsLeadToDest) {
331    NodesLeadingTo.insert(N);
332    return true;
333  }
334
335  // Okay, this node looks safe, legalize it and return false.
336  LegalizeOp(SDValue(N, 0));
337  return false;
338}
339
340/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
341/// a load from the constant pool.
342static SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP,
343                                SelectionDAG &DAG, const TargetLowering &TLI) {
344  bool Extend = false;
345  DebugLoc dl = CFP->getDebugLoc();
346
347  // If a FP immediate is precise when represented as a float and if the
348  // target can do an extending load from float to double, we put it into
349  // the constant pool as a float, even if it's is statically typed as a
350  // double.  This shrinks FP constants and canonicalizes them for targets where
351  // an FP extending load is the same cost as a normal load (such as on the x87
352  // fp stack or PPC FP unit).
353  EVT VT = CFP->getValueType(0);
354  ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
355  if (!UseCP) {
356    assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
357    return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(),
358                           (VT == MVT::f64) ? MVT::i64 : MVT::i32);
359  }
360
361  EVT OrigVT = VT;
362  EVT SVT = VT;
363  while (SVT != MVT::f32) {
364    SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
365    if (ConstantFPSDNode::isValueValidForType(SVT, CFP->getValueAPF()) &&
366        // Only do this if the target has a native EXTLOAD instruction from
367        // smaller type.
368        TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
369        TLI.ShouldShrinkFPConstant(OrigVT)) {
370      const Type *SType = SVT.getTypeForEVT(*DAG.getContext());
371      LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
372      VT = SVT;
373      Extend = true;
374    }
375  }
376
377  SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
378  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
379  if (Extend)
380    return DAG.getExtLoad(ISD::EXTLOAD, dl,
381                          OrigVT, DAG.getEntryNode(),
382                          CPIdx, PseudoSourceValue::getConstantPool(),
383                          0, VT, false, false, Alignment);
384  return DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
385                     PseudoSourceValue::getConstantPool(), 0, false, false,
386                     Alignment);
387}
388
389/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
390static
391SDValue ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
392                             const TargetLowering &TLI) {
393  SDValue Chain = ST->getChain();
394  SDValue Ptr = ST->getBasePtr();
395  SDValue Val = ST->getValue();
396  EVT VT = Val.getValueType();
397  int Alignment = ST->getAlignment();
398  int SVOffset = ST->getSrcValueOffset();
399  DebugLoc dl = ST->getDebugLoc();
400  if (ST->getMemoryVT().isFloatingPoint() ||
401      ST->getMemoryVT().isVector()) {
402    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
403    if (TLI.isTypeLegal(intVT)) {
404      // Expand to a bitconvert of the value to the integer type of the
405      // same size, then a (misaligned) int store.
406      // FIXME: Does not handle truncating floating point stores!
407      SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, intVT, Val);
408      return DAG.getStore(Chain, dl, Result, Ptr, ST->getSrcValue(),
409                          SVOffset, ST->isVolatile(), ST->isNonTemporal(),
410                          Alignment);
411    } else {
412      // Do a (aligned) store to a stack slot, then copy from the stack slot
413      // to the final destination using (unaligned) integer loads and stores.
414      EVT StoredVT = ST->getMemoryVT();
415      EVT RegVT =
416        TLI.getRegisterType(*DAG.getContext(),
417                            EVT::getIntegerVT(*DAG.getContext(),
418                                              StoredVT.getSizeInBits()));
419      unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
420      unsigned RegBytes = RegVT.getSizeInBits() / 8;
421      unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
422
423      // Make sure the stack slot is also aligned for the register type.
424      SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
425
426      // Perform the original store, only redirected to the stack slot.
427      SDValue Store = DAG.getTruncStore(Chain, dl,
428                                        Val, StackPtr, NULL, 0, StoredVT,
429                                        false, false, 0);
430      SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
431      SmallVector<SDValue, 8> Stores;
432      unsigned Offset = 0;
433
434      // Do all but one copies using the full register width.
435      for (unsigned i = 1; i < NumRegs; i++) {
436        // Load one integer register's worth from the stack slot.
437        SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr, NULL, 0,
438                                   false, false, 0);
439        // Store it to the final location.  Remember the store.
440        Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
441                                      ST->getSrcValue(), SVOffset + Offset,
442                                      ST->isVolatile(), ST->isNonTemporal(),
443                                      MinAlign(ST->getAlignment(), Offset)));
444        // Increment the pointers.
445        Offset += RegBytes;
446        StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
447                               Increment);
448        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
449      }
450
451      // The last store may be partial.  Do a truncating store.  On big-endian
452      // machines this requires an extending load from the stack slot to ensure
453      // that the bits are in the right place.
454      EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
455                                    8 * (StoredBytes - Offset));
456
457      // Load from the stack slot.
458      SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
459                                    NULL, 0, MemVT, false, false, 0);
460
461      Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
462                                         ST->getSrcValue(), SVOffset + Offset,
463                                         MemVT, ST->isVolatile(),
464                                         ST->isNonTemporal(),
465                                         MinAlign(ST->getAlignment(), Offset)));
466      // The order of the stores doesn't matter - say it with a TokenFactor.
467      return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
468                         Stores.size());
469    }
470  }
471  assert(ST->getMemoryVT().isInteger() &&
472         !ST->getMemoryVT().isVector() &&
473         "Unaligned store of unknown type.");
474  // Get the half-size VT
475  EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
476  int NumBits = NewStoredVT.getSizeInBits();
477  int IncrementSize = NumBits / 8;
478
479  // Divide the stored value in two parts.
480  SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
481  SDValue Lo = Val;
482  SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
483
484  // Store the two parts
485  SDValue Store1, Store2;
486  Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
487                             ST->getSrcValue(), SVOffset, NewStoredVT,
488                             ST->isVolatile(), ST->isNonTemporal(), Alignment);
489  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
490                    DAG.getConstant(IncrementSize, TLI.getPointerTy()));
491  Alignment = MinAlign(Alignment, IncrementSize);
492  Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
493                             ST->getSrcValue(), SVOffset + IncrementSize,
494                             NewStoredVT, ST->isVolatile(), ST->isNonTemporal(),
495                             Alignment);
496
497  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
498}
499
500/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
501static
502SDValue ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
503                            const TargetLowering &TLI) {
504  int SVOffset = LD->getSrcValueOffset();
505  SDValue Chain = LD->getChain();
506  SDValue Ptr = LD->getBasePtr();
507  EVT VT = LD->getValueType(0);
508  EVT LoadedVT = LD->getMemoryVT();
509  DebugLoc dl = LD->getDebugLoc();
510  if (VT.isFloatingPoint() || VT.isVector()) {
511    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
512    if (TLI.isTypeLegal(intVT)) {
513      // Expand to a (misaligned) integer load of the same size,
514      // then bitconvert to floating point or vector.
515      SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getSrcValue(),
516                                    SVOffset, LD->isVolatile(),
517                                    LD->isNonTemporal(), LD->getAlignment());
518      SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, LoadedVT, newLoad);
519      if (VT.isFloatingPoint() && LoadedVT != VT)
520        Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result);
521
522      SDValue Ops[] = { Result, Chain };
523      return DAG.getMergeValues(Ops, 2, dl);
524    } else {
525      // Copy the value to a (aligned) stack slot using (unaligned) integer
526      // loads and stores, then do a (aligned) load from the stack slot.
527      EVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT);
528      unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
529      unsigned RegBytes = RegVT.getSizeInBits() / 8;
530      unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
531
532      // Make sure the stack slot is also aligned for the register type.
533      SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
534
535      SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
536      SmallVector<SDValue, 8> Stores;
537      SDValue StackPtr = StackBase;
538      unsigned Offset = 0;
539
540      // Do all but one copies using the full register width.
541      for (unsigned i = 1; i < NumRegs; i++) {
542        // Load one integer register's worth from the original location.
543        SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr, LD->getSrcValue(),
544                                   SVOffset + Offset, LD->isVolatile(),
545                                   LD->isNonTemporal(),
546                                   MinAlign(LD->getAlignment(), Offset));
547        // Follow the load with a store to the stack slot.  Remember the store.
548        Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
549                                      NULL, 0, false, false, 0));
550        // Increment the pointers.
551        Offset += RegBytes;
552        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
553        StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
554                               Increment);
555      }
556
557      // The last copy may be partial.  Do an extending load.
558      EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
559                                    8 * (LoadedBytes - Offset));
560      SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
561                                    LD->getSrcValue(), SVOffset + Offset,
562                                    MemVT, LD->isVolatile(),
563                                    LD->isNonTemporal(),
564                                    MinAlign(LD->getAlignment(), Offset));
565      // Follow the load with a store to the stack slot.  Remember the store.
566      // On big-endian machines this requires a truncating store to ensure
567      // that the bits end up in the right place.
568      Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
569                                         NULL, 0, MemVT, false, false, 0));
570
571      // The order of the stores doesn't matter - say it with a TokenFactor.
572      SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
573                               Stores.size());
574
575      // Finally, perform the original load only redirected to the stack slot.
576      Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
577                            NULL, 0, LoadedVT, false, false, 0);
578
579      // Callers expect a MERGE_VALUES node.
580      SDValue Ops[] = { Load, TF };
581      return DAG.getMergeValues(Ops, 2, dl);
582    }
583  }
584  assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
585         "Unaligned load of unsupported type.");
586
587  // Compute the new VT that is half the size of the old one.  This is an
588  // integer MVT.
589  unsigned NumBits = LoadedVT.getSizeInBits();
590  EVT NewLoadedVT;
591  NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
592  NumBits >>= 1;
593
594  unsigned Alignment = LD->getAlignment();
595  unsigned IncrementSize = NumBits / 8;
596  ISD::LoadExtType HiExtType = LD->getExtensionType();
597
598  // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
599  if (HiExtType == ISD::NON_EXTLOAD)
600    HiExtType = ISD::ZEXTLOAD;
601
602  // Load the value in two parts
603  SDValue Lo, Hi;
604  if (TLI.isLittleEndian()) {
605    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(),
606                        SVOffset, NewLoadedVT, LD->isVolatile(),
607                        LD->isNonTemporal(), Alignment);
608    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
609                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
610    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(),
611                        SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
612                        LD->isNonTemporal(), MinAlign(Alignment, IncrementSize));
613  } else {
614    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(),
615                        SVOffset, NewLoadedVT, LD->isVolatile(),
616                        LD->isNonTemporal(), Alignment);
617    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
618                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
619    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(),
620                        SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
621                        LD->isNonTemporal(), MinAlign(Alignment, IncrementSize));
622  }
623
624  // aggregate the two parts
625  SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
626  SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
627  Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
628
629  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
630                             Hi.getValue(1));
631
632  SDValue Ops[] = { Result, TF };
633  return DAG.getMergeValues(Ops, 2, dl);
634}
635
636/// PerformInsertVectorEltInMemory - Some target cannot handle a variable
637/// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
638/// is necessary to spill the vector being inserted into to memory, perform
639/// the insert there, and then read the result back.
640SDValue SelectionDAGLegalize::
641PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
642                               DebugLoc dl) {
643  SDValue Tmp1 = Vec;
644  SDValue Tmp2 = Val;
645  SDValue Tmp3 = Idx;
646
647  // If the target doesn't support this, we have to spill the input vector
648  // to a temporary stack slot, update the element, then reload it.  This is
649  // badness.  We could also load the value into a vector register (either
650  // with a "move to register" or "extload into register" instruction, then
651  // permute it into place, if the idx is a constant and if the idx is
652  // supported by the target.
653  EVT VT    = Tmp1.getValueType();
654  EVT EltVT = VT.getVectorElementType();
655  EVT IdxVT = Tmp3.getValueType();
656  EVT PtrVT = TLI.getPointerTy();
657  SDValue StackPtr = DAG.CreateStackTemporary(VT);
658
659  int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
660
661  // Store the vector.
662  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr,
663                            PseudoSourceValue::getFixedStack(SPFI), 0,
664                            false, false, 0);
665
666  // Truncate or zero extend offset to target pointer type.
667  unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
668  Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3);
669  // Add the offset to the index.
670  unsigned EltSize = EltVT.getSizeInBits()/8;
671  Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
672  SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
673  // Store the scalar value.
674  Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2,
675                         PseudoSourceValue::getFixedStack(SPFI), 0, EltVT,
676                         false, false, 0);
677  // Load the updated vector.
678  return DAG.getLoad(VT, dl, Ch, StackPtr,
679                     PseudoSourceValue::getFixedStack(SPFI), 0,
680                     false, false, 0);
681}
682
683
684SDValue SelectionDAGLegalize::
685ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) {
686  if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
687    // SCALAR_TO_VECTOR requires that the type of the value being inserted
688    // match the element type of the vector being created, except for
689    // integers in which case the inserted value can be over width.
690    EVT EltVT = Vec.getValueType().getVectorElementType();
691    if (Val.getValueType() == EltVT ||
692        (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
693      SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
694                                  Vec.getValueType(), Val);
695
696      unsigned NumElts = Vec.getValueType().getVectorNumElements();
697      // We generate a shuffle of InVec and ScVec, so the shuffle mask
698      // should be 0,1,2,3,4,5... with the appropriate element replaced with
699      // elt 0 of the RHS.
700      SmallVector<int, 8> ShufOps;
701      for (unsigned i = 0; i != NumElts; ++i)
702        ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
703
704      return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
705                                  &ShufOps[0]);
706    }
707  }
708  return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
709}
710
711SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
712  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
713  // FIXME: We shouldn't do this for TargetConstantFP's.
714  // FIXME: move this to the DAG Combiner!  Note that we can't regress due
715  // to phase ordering between legalized code and the dag combiner.  This
716  // probably means that we need to integrate dag combiner and legalizer
717  // together.
718  // We generally can't do this one for long doubles.
719  SDValue Tmp1 = ST->getChain();
720  SDValue Tmp2 = ST->getBasePtr();
721  SDValue Tmp3;
722  int SVOffset = ST->getSrcValueOffset();
723  unsigned Alignment = ST->getAlignment();
724  bool isVolatile = ST->isVolatile();
725  bool isNonTemporal = ST->isNonTemporal();
726  DebugLoc dl = ST->getDebugLoc();
727  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
728    if (CFP->getValueType(0) == MVT::f32 &&
729        getTypeAction(MVT::i32) == Legal) {
730      Tmp3 = DAG.getConstant(CFP->getValueAPF().
731                                      bitcastToAPInt().zextOrTrunc(32),
732                              MVT::i32);
733      return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
734                          SVOffset, isVolatile, isNonTemporal, Alignment);
735    } else if (CFP->getValueType(0) == MVT::f64) {
736      // If this target supports 64-bit registers, do a single 64-bit store.
737      if (getTypeAction(MVT::i64) == Legal) {
738        Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
739                                  zextOrTrunc(64), MVT::i64);
740        return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
741                            SVOffset, isVolatile, isNonTemporal, Alignment);
742      } else if (getTypeAction(MVT::i32) == Legal && !ST->isVolatile()) {
743        // Otherwise, if the target supports 32-bit registers, use 2 32-bit
744        // stores.  If the target supports neither 32- nor 64-bits, this
745        // xform is certainly not worth it.
746        const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt();
747        SDValue Lo = DAG.getConstant(APInt(IntVal).trunc(32), MVT::i32);
748        SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32);
749        if (TLI.isBigEndian()) std::swap(Lo, Hi);
750
751        Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getSrcValue(),
752                          SVOffset, isVolatile, isNonTemporal, Alignment);
753        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
754                            DAG.getIntPtrConstant(4));
755        Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(), SVOffset+4,
756                          isVolatile, isNonTemporal, MinAlign(Alignment, 4U));
757
758        return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
759      }
760    }
761  }
762  return SDValue();
763}
764
765/// LegalizeOp - We know that the specified value has a legal type, and
766/// that its operands are legal.  Now ensure that the operation itself
767/// is legal, recursively ensuring that the operands' operations remain
768/// legal.
769SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
770  if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
771    return Op;
772
773  SDNode *Node = Op.getNode();
774  DebugLoc dl = Node->getDebugLoc();
775
776  for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
777    assert(getTypeAction(Node->getValueType(i)) == Legal &&
778           "Unexpected illegal type!");
779
780  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
781    assert((isTypeLegal(Node->getOperand(i).getValueType()) ||
782            Node->getOperand(i).getOpcode() == ISD::TargetConstant) &&
783           "Unexpected illegal type!");
784
785  // Note that LegalizeOp may be reentered even from single-use nodes, which
786  // means that we always must cache transformed nodes.
787  DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
788  if (I != LegalizedNodes.end()) return I->second;
789
790  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
791  SDValue Result = Op;
792  bool isCustom = false;
793
794  // Figure out the correct action; the way to query this varies by opcode
795  TargetLowering::LegalizeAction Action;
796  bool SimpleFinishLegalizing = true;
797  switch (Node->getOpcode()) {
798  case ISD::INTRINSIC_W_CHAIN:
799  case ISD::INTRINSIC_WO_CHAIN:
800  case ISD::INTRINSIC_VOID:
801  case ISD::VAARG:
802  case ISD::STACKSAVE:
803    Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
804    break;
805  case ISD::SINT_TO_FP:
806  case ISD::UINT_TO_FP:
807  case ISD::EXTRACT_VECTOR_ELT:
808    Action = TLI.getOperationAction(Node->getOpcode(),
809                                    Node->getOperand(0).getValueType());
810    break;
811  case ISD::FP_ROUND_INREG:
812  case ISD::SIGN_EXTEND_INREG: {
813    EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
814    Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
815    break;
816  }
817  case ISD::SELECT_CC:
818  case ISD::SETCC:
819  case ISD::BR_CC: {
820    unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
821                         Node->getOpcode() == ISD::SETCC ? 2 : 1;
822    unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
823    EVT OpVT = Node->getOperand(CompareOperand).getValueType();
824    ISD::CondCode CCCode =
825        cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
826    Action = TLI.getCondCodeAction(CCCode, OpVT);
827    if (Action == TargetLowering::Legal) {
828      if (Node->getOpcode() == ISD::SELECT_CC)
829        Action = TLI.getOperationAction(Node->getOpcode(),
830                                        Node->getValueType(0));
831      else
832        Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
833    }
834    break;
835  }
836  case ISD::LOAD:
837  case ISD::STORE:
838    // FIXME: Model these properly.  LOAD and STORE are complicated, and
839    // STORE expects the unlegalized operand in some cases.
840    SimpleFinishLegalizing = false;
841    break;
842  case ISD::CALLSEQ_START:
843  case ISD::CALLSEQ_END:
844    // FIXME: This shouldn't be necessary.  These nodes have special properties
845    // dealing with the recursive nature of legalization.  Removing this
846    // special case should be done as part of making LegalizeDAG non-recursive.
847    SimpleFinishLegalizing = false;
848    break;
849  case ISD::EXTRACT_ELEMENT:
850  case ISD::FLT_ROUNDS_:
851  case ISD::SADDO:
852  case ISD::SSUBO:
853  case ISD::UADDO:
854  case ISD::USUBO:
855  case ISD::SMULO:
856  case ISD::UMULO:
857  case ISD::FPOWI:
858  case ISD::MERGE_VALUES:
859  case ISD::EH_RETURN:
860  case ISD::FRAME_TO_ARGS_OFFSET:
861    // These operations lie about being legal: when they claim to be legal,
862    // they should actually be expanded.
863    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
864    if (Action == TargetLowering::Legal)
865      Action = TargetLowering::Expand;
866    break;
867  case ISD::TRAMPOLINE:
868  case ISD::FRAMEADDR:
869  case ISD::RETURNADDR:
870  case ISD::EH_SJLJ_SETJMP:
871  case ISD::EH_SJLJ_LONGJMP:
872    // These operations lie about being legal: when they claim to be legal,
873    // they should actually be custom-lowered.
874    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
875    if (Action == TargetLowering::Legal)
876      Action = TargetLowering::Custom;
877    break;
878  case ISD::BUILD_VECTOR:
879    // A weird case: legalization for BUILD_VECTOR never legalizes the
880    // operands!
881    // FIXME: This really sucks... changing it isn't semantically incorrect,
882    // but it massively pessimizes the code for floating-point BUILD_VECTORs
883    // because ConstantFP operands get legalized into constant pool loads
884    // before the BUILD_VECTOR code can see them.  It doesn't usually bite,
885    // though, because BUILD_VECTORS usually get lowered into other nodes
886    // which get legalized properly.
887    SimpleFinishLegalizing = false;
888    break;
889  default:
890    if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
891      Action = TargetLowering::Legal;
892    } else {
893      Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
894    }
895    break;
896  }
897
898  if (SimpleFinishLegalizing) {
899    SmallVector<SDValue, 8> Ops, ResultVals;
900    for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
901      Ops.push_back(LegalizeOp(Node->getOperand(i)));
902    switch (Node->getOpcode()) {
903    default: break;
904    case ISD::BR:
905    case ISD::BRIND:
906    case ISD::BR_JT:
907    case ISD::BR_CC:
908    case ISD::BRCOND:
909      // Branches tweak the chain to include LastCALLSEQ_END
910      Ops[0] = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ops[0],
911                            LastCALLSEQ_END);
912      Ops[0] = LegalizeOp(Ops[0]);
913      LastCALLSEQ_END = DAG.getEntryNode();
914      break;
915    case ISD::SHL:
916    case ISD::SRL:
917    case ISD::SRA:
918    case ISD::ROTL:
919    case ISD::ROTR:
920      // Legalizing shifts/rotates requires adjusting the shift amount
921      // to the appropriate width.
922      if (!Ops[1].getValueType().isVector())
923        Ops[1] = LegalizeOp(DAG.getShiftAmountOperand(Ops[1]));
924      break;
925    case ISD::SRL_PARTS:
926    case ISD::SRA_PARTS:
927    case ISD::SHL_PARTS:
928      // Legalizing shifts/rotates requires adjusting the shift amount
929      // to the appropriate width.
930      if (!Ops[2].getValueType().isVector())
931        Ops[2] = LegalizeOp(DAG.getShiftAmountOperand(Ops[2]));
932      break;
933    }
934
935    Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), Ops.data(),
936                                            Ops.size()), 0);
937    switch (Action) {
938    case TargetLowering::Legal:
939      for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
940        ResultVals.push_back(Result.getValue(i));
941      break;
942    case TargetLowering::Custom:
943      // FIXME: The handling for custom lowering with multiple results is
944      // a complete mess.
945      Tmp1 = TLI.LowerOperation(Result, DAG);
946      if (Tmp1.getNode()) {
947        for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
948          if (e == 1)
949            ResultVals.push_back(Tmp1);
950          else
951            ResultVals.push_back(Tmp1.getValue(i));
952        }
953        break;
954      }
955
956      // FALL THROUGH
957    case TargetLowering::Expand:
958      ExpandNode(Result.getNode(), ResultVals);
959      break;
960    case TargetLowering::Promote:
961      PromoteNode(Result.getNode(), ResultVals);
962      break;
963    }
964    if (!ResultVals.empty()) {
965      for (unsigned i = 0, e = ResultVals.size(); i != e; ++i) {
966        if (ResultVals[i] != SDValue(Node, i))
967          ResultVals[i] = LegalizeOp(ResultVals[i]);
968        AddLegalizedOperand(SDValue(Node, i), ResultVals[i]);
969      }
970      return ResultVals[Op.getResNo()];
971    }
972  }
973
974  switch (Node->getOpcode()) {
975  default:
976#ifndef NDEBUG
977    dbgs() << "NODE: ";
978    Node->dump( &DAG);
979    dbgs() << "\n";
980#endif
981    assert(0 && "Do not know how to legalize this operator!");
982
983  case ISD::BUILD_VECTOR:
984    switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) {
985    default: assert(0 && "This action is not supported yet!");
986    case TargetLowering::Custom:
987      Tmp3 = TLI.LowerOperation(Result, DAG);
988      if (Tmp3.getNode()) {
989        Result = Tmp3;
990        break;
991      }
992      // FALLTHROUGH
993    case TargetLowering::Expand:
994      Result = ExpandBUILD_VECTOR(Result.getNode());
995      break;
996    }
997    break;
998  case ISD::CALLSEQ_START: {
999    SDNode *CallEnd = FindCallEndFromCallStart(Node);
1000
1001    // Recursively Legalize all of the inputs of the call end that do not lead
1002    // to this call start.  This ensures that any libcalls that need be inserted
1003    // are inserted *before* the CALLSEQ_START.
1004    {SmallPtrSet<SDNode*, 32> NodesLeadingTo;
1005    for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i)
1006      LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).getNode(), Node,
1007                                   NodesLeadingTo);
1008    }
1009
1010    // Now that we legalized all of the inputs (which may have inserted
1011    // libcalls) create the new CALLSEQ_START node.
1012    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1013
1014    // Merge in the last call, to ensure that this call start after the last
1015    // call ended.
1016    if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) {
1017      Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1018                         Tmp1, LastCALLSEQ_END);
1019      Tmp1 = LegalizeOp(Tmp1);
1020    }
1021
1022    // Do not try to legalize the target-specific arguments (#1+).
1023    if (Tmp1 != Node->getOperand(0)) {
1024      SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1025      Ops[0] = Tmp1;
1026      Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), &Ops[0], Ops.size()),
1027                       Result.getResNo());
1028    }
1029
1030    // Remember that the CALLSEQ_START is legalized.
1031    AddLegalizedOperand(Op.getValue(0), Result);
1032    if (Node->getNumValues() == 2)    // If this has a flag result, remember it.
1033      AddLegalizedOperand(Op.getValue(1), Result.getValue(1));
1034
1035    // Now that the callseq_start and all of the non-call nodes above this call
1036    // sequence have been legalized, legalize the call itself.  During this
1037    // process, no libcalls can/will be inserted, guaranteeing that no calls
1038    // can overlap.
1039    assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!");
1040    // Note that we are selecting this call!
1041    LastCALLSEQ_END = SDValue(CallEnd, 0);
1042    IsLegalizingCall = true;
1043
1044    // Legalize the call, starting from the CALLSEQ_END.
1045    LegalizeOp(LastCALLSEQ_END);
1046    assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!");
1047    return Result;
1048  }
1049  case ISD::CALLSEQ_END:
1050    // If the CALLSEQ_START node hasn't been legalized first, legalize it.  This
1051    // will cause this node to be legalized as well as handling libcalls right.
1052    if (LastCALLSEQ_END.getNode() != Node) {
1053      LegalizeOp(SDValue(FindCallStartFromCallEnd(Node), 0));
1054      DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
1055      assert(I != LegalizedNodes.end() &&
1056             "Legalizing the call start should have legalized this node!");
1057      return I->second;
1058    }
1059
1060    // Otherwise, the call start has been legalized and everything is going
1061    // according to plan.  Just legalize ourselves normally here.
1062    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1063    // Do not try to legalize the target-specific arguments (#1+), except for
1064    // an optional flag input.
1065    if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Flag){
1066      if (Tmp1 != Node->getOperand(0)) {
1067        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1068        Ops[0] = Tmp1;
1069        Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1070                                                &Ops[0], Ops.size()),
1071                         Result.getResNo());
1072      }
1073    } else {
1074      Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1));
1075      if (Tmp1 != Node->getOperand(0) ||
1076          Tmp2 != Node->getOperand(Node->getNumOperands()-1)) {
1077        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1078        Ops[0] = Tmp1;
1079        Ops.back() = Tmp2;
1080        Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1081                                                &Ops[0], Ops.size()),
1082                         Result.getResNo());
1083      }
1084    }
1085    assert(IsLegalizingCall && "Call sequence imbalance between start/end?");
1086    // This finishes up call legalization.
1087    IsLegalizingCall = false;
1088
1089    // If the CALLSEQ_END node has a flag, remember that we legalized it.
1090    AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0));
1091    if (Node->getNumValues() == 2)
1092      AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1));
1093    return Result.getValue(Op.getResNo());
1094  case ISD::LOAD: {
1095    LoadSDNode *LD = cast<LoadSDNode>(Node);
1096    Tmp1 = LegalizeOp(LD->getChain());   // Legalize the chain.
1097    Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer.
1098
1099    ISD::LoadExtType ExtType = LD->getExtensionType();
1100    if (ExtType == ISD::NON_EXTLOAD) {
1101      EVT VT = Node->getValueType(0);
1102      Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1103                                              Tmp1, Tmp2, LD->getOffset()),
1104                       Result.getResNo());
1105      Tmp3 = Result.getValue(0);
1106      Tmp4 = Result.getValue(1);
1107
1108      switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
1109      default: assert(0 && "This action is not supported yet!");
1110      case TargetLowering::Legal:
1111        // If this is an unaligned load and the target doesn't support it,
1112        // expand it.
1113        if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1114          const Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1115          unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1116          if (LD->getAlignment() < ABIAlignment){
1117            Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
1118                                         DAG, TLI);
1119            Tmp3 = Result.getOperand(0);
1120            Tmp4 = Result.getOperand(1);
1121            Tmp3 = LegalizeOp(Tmp3);
1122            Tmp4 = LegalizeOp(Tmp4);
1123          }
1124        }
1125        break;
1126      case TargetLowering::Custom:
1127        Tmp1 = TLI.LowerOperation(Tmp3, DAG);
1128        if (Tmp1.getNode()) {
1129          Tmp3 = LegalizeOp(Tmp1);
1130          Tmp4 = LegalizeOp(Tmp1.getValue(1));
1131        }
1132        break;
1133      case TargetLowering::Promote: {
1134        // Only promote a load of vector type to another.
1135        assert(VT.isVector() && "Cannot promote this load!");
1136        // Change base type to a different vector type.
1137        EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
1138
1139        Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
1140                           LD->getSrcValueOffset(),
1141                           LD->isVolatile(), LD->isNonTemporal(),
1142                           LD->getAlignment());
1143        Tmp3 = LegalizeOp(DAG.getNode(ISD::BIT_CONVERT, dl, VT, Tmp1));
1144        Tmp4 = LegalizeOp(Tmp1.getValue(1));
1145        break;
1146      }
1147      }
1148      // Since loads produce two values, make sure to remember that we
1149      // legalized both of them.
1150      AddLegalizedOperand(SDValue(Node, 0), Tmp3);
1151      AddLegalizedOperand(SDValue(Node, 1), Tmp4);
1152      return Op.getResNo() ? Tmp4 : Tmp3;
1153    } else {
1154      EVT SrcVT = LD->getMemoryVT();
1155      unsigned SrcWidth = SrcVT.getSizeInBits();
1156      int SVOffset = LD->getSrcValueOffset();
1157      unsigned Alignment = LD->getAlignment();
1158      bool isVolatile = LD->isVolatile();
1159      bool isNonTemporal = LD->isNonTemporal();
1160
1161      if (SrcWidth != SrcVT.getStoreSizeInBits() &&
1162          // Some targets pretend to have an i1 loading operation, and actually
1163          // load an i8.  This trick is correct for ZEXTLOAD because the top 7
1164          // bits are guaranteed to be zero; it helps the optimizers understand
1165          // that these bits are zero.  It is also useful for EXTLOAD, since it
1166          // tells the optimizers that those bits are undefined.  It would be
1167          // nice to have an effective generic way of getting these benefits...
1168          // Until such a way is found, don't insist on promoting i1 here.
1169          (SrcVT != MVT::i1 ||
1170           TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
1171        // Promote to a byte-sized load if not loading an integral number of
1172        // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
1173        unsigned NewWidth = SrcVT.getStoreSizeInBits();
1174        EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
1175        SDValue Ch;
1176
1177        // The extra bits are guaranteed to be zero, since we stored them that
1178        // way.  A zext load from NVT thus automatically gives zext from SrcVT.
1179
1180        ISD::LoadExtType NewExtType =
1181          ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
1182
1183        Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
1184                                Tmp1, Tmp2, LD->getSrcValue(), SVOffset,
1185                                NVT, isVolatile, isNonTemporal, Alignment);
1186
1187        Ch = Result.getValue(1); // The chain.
1188
1189        if (ExtType == ISD::SEXTLOAD)
1190          // Having the top bits zero doesn't help when sign extending.
1191          Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1192                               Result.getValueType(),
1193                               Result, DAG.getValueType(SrcVT));
1194        else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
1195          // All the top bits are guaranteed to be zero - inform the optimizers.
1196          Result = DAG.getNode(ISD::AssertZext, dl,
1197                               Result.getValueType(), Result,
1198                               DAG.getValueType(SrcVT));
1199
1200        Tmp1 = LegalizeOp(Result);
1201        Tmp2 = LegalizeOp(Ch);
1202      } else if (SrcWidth & (SrcWidth - 1)) {
1203        // If not loading a power-of-2 number of bits, expand as two loads.
1204        assert(!SrcVT.isVector() && "Unsupported extload!");
1205        unsigned RoundWidth = 1 << Log2_32(SrcWidth);
1206        assert(RoundWidth < SrcWidth);
1207        unsigned ExtraWidth = SrcWidth - RoundWidth;
1208        assert(ExtraWidth < RoundWidth);
1209        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1210               "Load size not an integral number of bytes!");
1211        EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1212        EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1213        SDValue Lo, Hi, Ch;
1214        unsigned IncrementSize;
1215
1216        if (TLI.isLittleEndian()) {
1217          // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
1218          // Load the bottom RoundWidth bits.
1219          Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl,
1220                              Node->getValueType(0), Tmp1, Tmp2,
1221                              LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
1222                              isNonTemporal, Alignment);
1223
1224          // Load the remaining ExtraWidth bits.
1225          IncrementSize = RoundWidth / 8;
1226          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1227                             DAG.getIntPtrConstant(IncrementSize));
1228          Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1229                              LD->getSrcValue(), SVOffset + IncrementSize,
1230                              ExtraVT, isVolatile, isNonTemporal,
1231                              MinAlign(Alignment, IncrementSize));
1232
1233          // Build a factor node to remember that this load is independent of the
1234          // other one.
1235          Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1236                           Hi.getValue(1));
1237
1238          // Move the top bits to the right place.
1239          Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1240                           DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1241
1242          // Join the hi and lo parts.
1243          Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1244        } else {
1245          // Big endian - avoid unaligned loads.
1246          // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
1247          // Load the top RoundWidth bits.
1248          Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1249                              LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
1250                              isNonTemporal, Alignment);
1251
1252          // Load the remaining ExtraWidth bits.
1253          IncrementSize = RoundWidth / 8;
1254          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1255                             DAG.getIntPtrConstant(IncrementSize));
1256          Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl,
1257                              Node->getValueType(0), Tmp1, Tmp2,
1258                              LD->getSrcValue(), SVOffset + IncrementSize,
1259                              ExtraVT, isVolatile, isNonTemporal,
1260                              MinAlign(Alignment, IncrementSize));
1261
1262          // Build a factor node to remember that this load is independent of the
1263          // other one.
1264          Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1265                           Hi.getValue(1));
1266
1267          // Move the top bits to the right place.
1268          Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1269                           DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1270
1271          // Join the hi and lo parts.
1272          Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1273        }
1274
1275        Tmp1 = LegalizeOp(Result);
1276        Tmp2 = LegalizeOp(Ch);
1277      } else {
1278        switch (TLI.getLoadExtAction(ExtType, SrcVT)) {
1279        default: assert(0 && "This action is not supported yet!");
1280        case TargetLowering::Custom:
1281          isCustom = true;
1282          // FALLTHROUGH
1283        case TargetLowering::Legal:
1284          Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1285                                                  Tmp1, Tmp2, LD->getOffset()),
1286                           Result.getResNo());
1287          Tmp1 = Result.getValue(0);
1288          Tmp2 = Result.getValue(1);
1289
1290          if (isCustom) {
1291            Tmp3 = TLI.LowerOperation(Result, DAG);
1292            if (Tmp3.getNode()) {
1293              Tmp1 = LegalizeOp(Tmp3);
1294              Tmp2 = LegalizeOp(Tmp3.getValue(1));
1295            }
1296          } else {
1297            // If this is an unaligned load and the target doesn't support it,
1298            // expand it.
1299            if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1300              const Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1301              unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1302              if (LD->getAlignment() < ABIAlignment){
1303                Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
1304                                             DAG, TLI);
1305                Tmp1 = Result.getOperand(0);
1306                Tmp2 = Result.getOperand(1);
1307                Tmp1 = LegalizeOp(Tmp1);
1308                Tmp2 = LegalizeOp(Tmp2);
1309              }
1310            }
1311          }
1312          break;
1313        case TargetLowering::Expand:
1314          // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND
1315          // f128 = EXTLOAD {f32,f64} too
1316          if ((SrcVT == MVT::f32 && (Node->getValueType(0) == MVT::f64 ||
1317                                     Node->getValueType(0) == MVT::f128)) ||
1318              (SrcVT == MVT::f64 && Node->getValueType(0) == MVT::f128)) {
1319            SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
1320                                       LD->getSrcValueOffset(),
1321                                       LD->isVolatile(), LD->isNonTemporal(),
1322                                       LD->getAlignment());
1323            Result = DAG.getNode(ISD::FP_EXTEND, dl,
1324                                 Node->getValueType(0), Load);
1325            Tmp1 = LegalizeOp(Result);  // Relegalize new nodes.
1326            Tmp2 = LegalizeOp(Load.getValue(1));
1327            break;
1328          }
1329          assert(ExtType != ISD::EXTLOAD &&"EXTLOAD should always be supported!");
1330          // Turn the unsupported load into an EXTLOAD followed by an explicit
1331          // zero/sign extend inreg.
1332          Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0),
1333                                  Tmp1, Tmp2, LD->getSrcValue(),
1334                                  LD->getSrcValueOffset(), SrcVT,
1335                                  LD->isVolatile(), LD->isNonTemporal(),
1336                                  LD->getAlignment());
1337          SDValue ValRes;
1338          if (ExtType == ISD::SEXTLOAD)
1339            ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1340                                 Result.getValueType(),
1341                                 Result, DAG.getValueType(SrcVT));
1342          else
1343            ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT);
1344          Tmp1 = LegalizeOp(ValRes);  // Relegalize new nodes.
1345          Tmp2 = LegalizeOp(Result.getValue(1));  // Relegalize new nodes.
1346          break;
1347        }
1348      }
1349
1350      // Since loads produce two values, make sure to remember that we legalized
1351      // both of them.
1352      AddLegalizedOperand(SDValue(Node, 0), Tmp1);
1353      AddLegalizedOperand(SDValue(Node, 1), Tmp2);
1354      return Op.getResNo() ? Tmp2 : Tmp1;
1355    }
1356  }
1357  case ISD::STORE: {
1358    StoreSDNode *ST = cast<StoreSDNode>(Node);
1359    Tmp1 = LegalizeOp(ST->getChain());    // Legalize the chain.
1360    Tmp2 = LegalizeOp(ST->getBasePtr());  // Legalize the pointer.
1361    int SVOffset = ST->getSrcValueOffset();
1362    unsigned Alignment = ST->getAlignment();
1363    bool isVolatile = ST->isVolatile();
1364    bool isNonTemporal = ST->isNonTemporal();
1365
1366    if (!ST->isTruncatingStore()) {
1367      if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
1368        Result = SDValue(OptStore, 0);
1369        break;
1370      }
1371
1372      {
1373        Tmp3 = LegalizeOp(ST->getValue());
1374        Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1375                                                Tmp1, Tmp3, Tmp2,
1376                                                ST->getOffset()),
1377                         Result.getResNo());
1378
1379        EVT VT = Tmp3.getValueType();
1380        switch (TLI.getOperationAction(ISD::STORE, VT)) {
1381        default: assert(0 && "This action is not supported yet!");
1382        case TargetLowering::Legal:
1383          // If this is an unaligned store and the target doesn't support it,
1384          // expand it.
1385          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1386            const Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1387            unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1388            if (ST->getAlignment() < ABIAlignment)
1389              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()),
1390                                            DAG, TLI);
1391          }
1392          break;
1393        case TargetLowering::Custom:
1394          Tmp1 = TLI.LowerOperation(Result, DAG);
1395          if (Tmp1.getNode()) Result = Tmp1;
1396          break;
1397        case TargetLowering::Promote:
1398          assert(VT.isVector() && "Unknown legal promote case!");
1399          Tmp3 = DAG.getNode(ISD::BIT_CONVERT, dl,
1400                             TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3);
1401          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2,
1402                                ST->getSrcValue(), SVOffset, isVolatile,
1403                                isNonTemporal, Alignment);
1404          break;
1405        }
1406        break;
1407      }
1408    } else {
1409      Tmp3 = LegalizeOp(ST->getValue());
1410
1411      EVT StVT = ST->getMemoryVT();
1412      unsigned StWidth = StVT.getSizeInBits();
1413
1414      if (StWidth != StVT.getStoreSizeInBits()) {
1415        // Promote to a byte-sized store with upper bits zero if not
1416        // storing an integral number of bytes.  For example, promote
1417        // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
1418        EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
1419                                    StVT.getStoreSizeInBits());
1420        Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT);
1421        Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1422                                   SVOffset, NVT, isVolatile, isNonTemporal,
1423                                   Alignment);
1424      } else if (StWidth & (StWidth - 1)) {
1425        // If not storing a power-of-2 number of bits, expand as two stores.
1426        assert(!StVT.isVector() && "Unsupported truncstore!");
1427        unsigned RoundWidth = 1 << Log2_32(StWidth);
1428        assert(RoundWidth < StWidth);
1429        unsigned ExtraWidth = StWidth - RoundWidth;
1430        assert(ExtraWidth < RoundWidth);
1431        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1432               "Store size not an integral number of bytes!");
1433        EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1434        EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1435        SDValue Lo, Hi;
1436        unsigned IncrementSize;
1437
1438        if (TLI.isLittleEndian()) {
1439          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
1440          // Store the bottom RoundWidth bits.
1441          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1442                                 SVOffset, RoundVT,
1443                                 isVolatile, isNonTemporal, Alignment);
1444
1445          // Store the remaining ExtraWidth bits.
1446          IncrementSize = RoundWidth / 8;
1447          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1448                             DAG.getIntPtrConstant(IncrementSize));
1449          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1450                           DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1451          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
1452                                 SVOffset + IncrementSize, ExtraVT, isVolatile,
1453                                 isNonTemporal,
1454                                 MinAlign(Alignment, IncrementSize));
1455        } else {
1456          // Big endian - avoid unaligned stores.
1457          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
1458          // Store the top RoundWidth bits.
1459          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1460                           DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1461          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
1462                                 SVOffset, RoundVT, isVolatile, isNonTemporal,
1463                                 Alignment);
1464
1465          // Store the remaining ExtraWidth bits.
1466          IncrementSize = RoundWidth / 8;
1467          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1468                             DAG.getIntPtrConstant(IncrementSize));
1469          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1470                                 SVOffset + IncrementSize, ExtraVT, isVolatile,
1471                                 isNonTemporal,
1472                                 MinAlign(Alignment, IncrementSize));
1473        }
1474
1475        // The order of the stores doesn't matter.
1476        Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
1477      } else {
1478        if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() ||
1479            Tmp2 != ST->getBasePtr())
1480          Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1481                                                  Tmp1, Tmp3, Tmp2,
1482                                                  ST->getOffset()),
1483                           Result.getResNo());
1484
1485        switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
1486        default: assert(0 && "This action is not supported yet!");
1487        case TargetLowering::Legal:
1488          // If this is an unaligned store and the target doesn't support it,
1489          // expand it.
1490          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1491            const Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1492            unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1493            if (ST->getAlignment() < ABIAlignment)
1494              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()),
1495                                            DAG, TLI);
1496          }
1497          break;
1498        case TargetLowering::Custom:
1499          Result = TLI.LowerOperation(Result, DAG);
1500          break;
1501        case Expand:
1502          // TRUNCSTORE:i16 i32 -> STORE i16
1503          assert(isTypeLegal(StVT) && "Do not know how to expand this store!");
1504          Tmp3 = DAG.getNode(ISD::TRUNCATE, dl, StVT, Tmp3);
1505          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1506                                SVOffset, isVolatile, isNonTemporal,
1507                                Alignment);
1508          break;
1509        }
1510      }
1511    }
1512    break;
1513  }
1514  }
1515  assert(Result.getValueType() == Op.getValueType() &&
1516         "Bad legalization!");
1517
1518  // Make sure that the generated code is itself legal.
1519  if (Result != Op)
1520    Result = LegalizeOp(Result);
1521
1522  // Note that LegalizeOp may be reentered even from single-use nodes, which
1523  // means that we always must cache transformed nodes.
1524  AddLegalizedOperand(Op, Result);
1525  return Result;
1526}
1527
1528SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1529  SDValue Vec = Op.getOperand(0);
1530  SDValue Idx = Op.getOperand(1);
1531  DebugLoc dl = Op.getDebugLoc();
1532  // Store the value to a temporary stack slot, then LOAD the returned part.
1533  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1534  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, NULL, 0,
1535                            false, false, 0);
1536
1537  // Add the offset to the index.
1538  unsigned EltSize =
1539      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1540  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1541                    DAG.getConstant(EltSize, Idx.getValueType()));
1542
1543  if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1544    Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1545  else
1546    Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1547
1548  StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
1549
1550  if (Op.getValueType().isVector())
1551    return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, NULL, 0,
1552                       false, false, 0);
1553  else
1554    return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
1555                          NULL, 0, Vec.getValueType().getVectorElementType(),
1556                          false, false, 0);
1557}
1558
1559SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1560  // We can't handle this case efficiently.  Allocate a sufficiently
1561  // aligned object on the stack, store each element into it, then load
1562  // the result as a vector.
1563  // Create the stack frame object.
1564  EVT VT = Node->getValueType(0);
1565  EVT EltVT = VT.getVectorElementType();
1566  DebugLoc dl = Node->getDebugLoc();
1567  SDValue FIPtr = DAG.CreateStackTemporary(VT);
1568  int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1569  const Value *SV = PseudoSourceValue::getFixedStack(FI);
1570
1571  // Emit a store of each element to the stack slot.
1572  SmallVector<SDValue, 8> Stores;
1573  unsigned TypeByteSize = EltVT.getSizeInBits() / 8;
1574  // Store (in the right endianness) the elements to memory.
1575  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1576    // Ignore undef elements.
1577    if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1578
1579    unsigned Offset = TypeByteSize*i;
1580
1581    SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType());
1582    Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
1583
1584    // If the destination vector element type is narrower than the source
1585    // element type, only store the bits necessary.
1586    if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) {
1587      Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
1588                                         Node->getOperand(i), Idx, SV, Offset,
1589                                         EltVT, false, false, 0));
1590    } else
1591      Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl,
1592                                    Node->getOperand(i), Idx, SV, Offset,
1593                                    false, false, 0));
1594  }
1595
1596  SDValue StoreChain;
1597  if (!Stores.empty())    // Not all undef elements?
1598    StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1599                             &Stores[0], Stores.size());
1600  else
1601    StoreChain = DAG.getEntryNode();
1602
1603  // Result is a load from the stack slot.
1604  return DAG.getLoad(VT, dl, StoreChain, FIPtr, SV, 0, false, false, 0);
1605}
1606
1607SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) {
1608  DebugLoc dl = Node->getDebugLoc();
1609  SDValue Tmp1 = Node->getOperand(0);
1610  SDValue Tmp2 = Node->getOperand(1);
1611
1612  // Get the sign bit of the RHS.  First obtain a value that has the same
1613  // sign as the sign bit, i.e. negative if and only if the sign bit is 1.
1614  SDValue SignBit;
1615  EVT FloatVT = Tmp2.getValueType();
1616  EVT IVT = EVT::getIntegerVT(*DAG.getContext(), FloatVT.getSizeInBits());
1617  if (isTypeLegal(IVT)) {
1618    // Convert to an integer with the same sign bit.
1619    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, IVT, Tmp2);
1620  } else {
1621    // Store the float to memory, then load the sign part out as an integer.
1622    MVT LoadTy = TLI.getPointerTy();
1623    // First create a temporary that is aligned for both the load and store.
1624    SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
1625    // Then store the float to it.
1626    SDValue Ch =
1627      DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StackPtr, NULL, 0,
1628                   false, false, 0);
1629    if (TLI.isBigEndian()) {
1630      assert(FloatVT.isByteSized() && "Unsupported floating point type!");
1631      // Load out a legal integer with the same sign bit as the float.
1632      SignBit = DAG.getLoad(LoadTy, dl, Ch, StackPtr, NULL, 0, false, false, 0);
1633    } else { // Little endian
1634      SDValue LoadPtr = StackPtr;
1635      // The float may be wider than the integer we are going to load.  Advance
1636      // the pointer so that the loaded integer will contain the sign bit.
1637      unsigned Strides = (FloatVT.getSizeInBits()-1)/LoadTy.getSizeInBits();
1638      unsigned ByteOffset = (Strides * LoadTy.getSizeInBits()) / 8;
1639      LoadPtr = DAG.getNode(ISD::ADD, dl, LoadPtr.getValueType(),
1640                            LoadPtr, DAG.getIntPtrConstant(ByteOffset));
1641      // Load a legal integer containing the sign bit.
1642      SignBit = DAG.getLoad(LoadTy, dl, Ch, LoadPtr, NULL, 0, false, false, 0);
1643      // Move the sign bit to the top bit of the loaded integer.
1644      unsigned BitShift = LoadTy.getSizeInBits() -
1645        (FloatVT.getSizeInBits() - 8 * ByteOffset);
1646      assert(BitShift < LoadTy.getSizeInBits() && "Pointer advanced wrong?");
1647      if (BitShift)
1648        SignBit = DAG.getNode(ISD::SHL, dl, LoadTy, SignBit,
1649                              DAG.getConstant(BitShift,TLI.getShiftAmountTy()));
1650    }
1651  }
1652  // Now get the sign bit proper, by seeing whether the value is negative.
1653  SignBit = DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()),
1654                         SignBit, DAG.getConstant(0, SignBit.getValueType()),
1655                         ISD::SETLT);
1656  // Get the absolute value of the result.
1657  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1);
1658  // Select between the nabs and abs value based on the sign bit of
1659  // the input.
1660  return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit,
1661                     DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal),
1662                     AbsVal);
1663}
1664
1665void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1666                                           SmallVectorImpl<SDValue> &Results) {
1667  unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1668  assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1669          " not tell us which reg is the stack pointer!");
1670  DebugLoc dl = Node->getDebugLoc();
1671  EVT VT = Node->getValueType(0);
1672  SDValue Tmp1 = SDValue(Node, 0);
1673  SDValue Tmp2 = SDValue(Node, 1);
1674  SDValue Tmp3 = Node->getOperand(2);
1675  SDValue Chain = Tmp1.getOperand(0);
1676
1677  // Chain the dynamic stack allocation so that it doesn't modify the stack
1678  // pointer when other instructions are using the stack.
1679  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
1680
1681  SDValue Size  = Tmp2.getOperand(1);
1682  SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1683  Chain = SP.getValue(1);
1684  unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1685  unsigned StackAlign = TM.getFrameInfo()->getStackAlignment();
1686  if (Align > StackAlign)
1687    SP = DAG.getNode(ISD::AND, dl, VT, SP,
1688                      DAG.getConstant(-(uint64_t)Align, VT));
1689  Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size);       // Value
1690  Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain
1691
1692  Tmp2 = DAG.getCALLSEQ_END(Chain,  DAG.getIntPtrConstant(0, true),
1693                            DAG.getIntPtrConstant(0, true), SDValue());
1694
1695  Results.push_back(Tmp1);
1696  Results.push_back(Tmp2);
1697}
1698
1699/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
1700/// condition code CC on the current target. This routine expands SETCC with
1701/// illegal condition code into AND / OR of multiple SETCC values.
1702void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT,
1703                                                 SDValue &LHS, SDValue &RHS,
1704                                                 SDValue &CC,
1705                                                 DebugLoc dl) {
1706  EVT OpVT = LHS.getValueType();
1707  ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1708  switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1709  default: assert(0 && "Unknown condition code action!");
1710  case TargetLowering::Legal:
1711    // Nothing to do.
1712    break;
1713  case TargetLowering::Expand: {
1714    ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1715    unsigned Opc = 0;
1716    switch (CCCode) {
1717    default: assert(0 && "Don't know how to expand this condition!");
1718    case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1719    case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1720    case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1721    case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1722    case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1723    case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1724    case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1725    case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1726    case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1727    case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1728    case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1729    case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1730    // FIXME: Implement more expansions.
1731    }
1732
1733    SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1734    SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
1735    LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1736    RHS = SDValue();
1737    CC  = SDValue();
1738    break;
1739  }
1740  }
1741}
1742
1743/// EmitStackConvert - Emit a store/load combination to the stack.  This stores
1744/// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
1745/// a load from the stack slot to DestVT, extending it if needed.
1746/// The resultant code need not be legal.
1747SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
1748                                               EVT SlotVT,
1749                                               EVT DestVT,
1750                                               DebugLoc dl) {
1751  // Create the stack frame object.
1752  unsigned SrcAlign =
1753    TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType().
1754                                              getTypeForEVT(*DAG.getContext()));
1755  SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1756
1757  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1758  int SPFI = StackPtrFI->getIndex();
1759  const Value *SV = PseudoSourceValue::getFixedStack(SPFI);
1760
1761  unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
1762  unsigned SlotSize = SlotVT.getSizeInBits();
1763  unsigned DestSize = DestVT.getSizeInBits();
1764  const Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
1765  unsigned DestAlign = TLI.getTargetData()->getPrefTypeAlignment(DestType);
1766
1767  // Emit a store to the stack slot.  Use a truncstore if the input value is
1768  // later than DestVT.
1769  SDValue Store;
1770
1771  if (SrcSize > SlotSize)
1772    Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1773                              SV, 0, SlotVT, false, false, SrcAlign);
1774  else {
1775    assert(SrcSize == SlotSize && "Invalid store");
1776    Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1777                         SV, 0, false, false, SrcAlign);
1778  }
1779
1780  // Result is a load from the stack slot.
1781  if (SlotSize == DestSize)
1782    return DAG.getLoad(DestVT, dl, Store, FIPtr, SV, 0, false, false,
1783                       DestAlign);
1784
1785  assert(SlotSize < DestSize && "Unknown extension!");
1786  return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, SV, 0, SlotVT,
1787                        false, false, DestAlign);
1788}
1789
1790SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1791  DebugLoc dl = Node->getDebugLoc();
1792  // Create a vector sized/aligned stack slot, store the value to element #0,
1793  // then load the whole vector back out.
1794  SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1795
1796  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1797  int SPFI = StackPtrFI->getIndex();
1798
1799  SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0),
1800                                 StackPtr,
1801                                 PseudoSourceValue::getFixedStack(SPFI), 0,
1802                                 Node->getValueType(0).getVectorElementType(),
1803                                 false, false, 0);
1804  return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr,
1805                     PseudoSourceValue::getFixedStack(SPFI), 0,
1806                     false, false, 0);
1807}
1808
1809
1810/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
1811/// support the operation, but do support the resultant vector type.
1812SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1813  unsigned NumElems = Node->getNumOperands();
1814  SDValue Value1, Value2;
1815  DebugLoc dl = Node->getDebugLoc();
1816  EVT VT = Node->getValueType(0);
1817  EVT OpVT = Node->getOperand(0).getValueType();
1818  EVT EltVT = VT.getVectorElementType();
1819
1820  // If the only non-undef value is the low element, turn this into a
1821  // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
1822  bool isOnlyLowElement = true;
1823  bool MoreThanTwoValues = false;
1824  bool isConstant = true;
1825  for (unsigned i = 0; i < NumElems; ++i) {
1826    SDValue V = Node->getOperand(i);
1827    if (V.getOpcode() == ISD::UNDEF)
1828      continue;
1829    if (i > 0)
1830      isOnlyLowElement = false;
1831    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1832      isConstant = false;
1833
1834    if (!Value1.getNode()) {
1835      Value1 = V;
1836    } else if (!Value2.getNode()) {
1837      if (V != Value1)
1838        Value2 = V;
1839    } else if (V != Value1 && V != Value2) {
1840      MoreThanTwoValues = true;
1841    }
1842  }
1843
1844  if (!Value1.getNode())
1845    return DAG.getUNDEF(VT);
1846
1847  if (isOnlyLowElement)
1848    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1849
1850  // If all elements are constants, create a load from the constant pool.
1851  if (isConstant) {
1852    std::vector<Constant*> CV;
1853    for (unsigned i = 0, e = NumElems; i != e; ++i) {
1854      if (ConstantFPSDNode *V =
1855          dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1856        CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1857      } else if (ConstantSDNode *V =
1858                 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1859        if (OpVT==EltVT)
1860          CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1861        else {
1862          // If OpVT and EltVT don't match, EltVT is not legal and the
1863          // element values have been promoted/truncated earlier.  Undo this;
1864          // we don't want a v16i8 to become a v16i32 for example.
1865          const ConstantInt *CI = V->getConstantIntValue();
1866          CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
1867                                        CI->getZExtValue()));
1868        }
1869      } else {
1870        assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
1871        const Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
1872        CV.push_back(UndefValue::get(OpNTy));
1873      }
1874    }
1875    Constant *CP = ConstantVector::get(CV);
1876    SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
1877    unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
1878    return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
1879                       PseudoSourceValue::getConstantPool(), 0,
1880                       false, false, Alignment);
1881  }
1882
1883  if (!MoreThanTwoValues) {
1884    SmallVector<int, 8> ShuffleVec(NumElems, -1);
1885    for (unsigned i = 0; i < NumElems; ++i) {
1886      SDValue V = Node->getOperand(i);
1887      if (V.getOpcode() == ISD::UNDEF)
1888        continue;
1889      ShuffleVec[i] = V == Value1 ? 0 : NumElems;
1890    }
1891    if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
1892      // Get the splatted value into the low element of a vector register.
1893      SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
1894      SDValue Vec2;
1895      if (Value2.getNode())
1896        Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
1897      else
1898        Vec2 = DAG.getUNDEF(VT);
1899
1900      // Return shuffle(LowValVec, undef, <0,0,0,0>)
1901      return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
1902    }
1903  }
1904
1905  // Otherwise, we can't handle this case efficiently.
1906  return ExpandVectorBuildThroughStack(Node);
1907}
1908
1909// ExpandLibCall - Expand a node into a call to a libcall.  If the result value
1910// does not fit into a register, return the lo part and set the hi part to the
1911// by-reg argument.  If it does fit into a single register, return the result
1912// and leave the Hi part unset.
1913SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
1914                                            bool isSigned) {
1915  assert(!IsLegalizingCall && "Cannot overlap legalization of calls!");
1916  // The input chain to this libcall is the entry node of the function.
1917  // Legalizing the call will automatically add the previous call to the
1918  // dependence.
1919  SDValue InChain = DAG.getEntryNode();
1920
1921  TargetLowering::ArgListTy Args;
1922  TargetLowering::ArgListEntry Entry;
1923  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1924    EVT ArgVT = Node->getOperand(i).getValueType();
1925    const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1926    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
1927    Entry.isSExt = isSigned;
1928    Entry.isZExt = !isSigned;
1929    Args.push_back(Entry);
1930  }
1931  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1932                                         TLI.getPointerTy());
1933
1934  // Splice the libcall in wherever FindInputOutputChains tells us to.
1935  const Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1936  std::pair<SDValue, SDValue> CallInfo =
1937    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
1938                    0, TLI.getLibcallCallingConv(LC), false,
1939                    /*isReturnValueUsed=*/true,
1940                    Callee, Args, DAG, Node->getDebugLoc());
1941
1942  // Legalize the call sequence, starting with the chain.  This will advance
1943  // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
1944  // was added by LowerCallTo (guaranteeing proper serialization of calls).
1945  LegalizeOp(CallInfo.second);
1946  return CallInfo.first;
1947}
1948
1949// ExpandChainLibCall - Expand a node into a call to a libcall. Similar to
1950// ExpandLibCall except that the first operand is the in-chain.
1951std::pair<SDValue, SDValue>
1952SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC,
1953                                         SDNode *Node,
1954                                         bool isSigned) {
1955  assert(!IsLegalizingCall && "Cannot overlap legalization of calls!");
1956  SDValue InChain = Node->getOperand(0);
1957
1958  TargetLowering::ArgListTy Args;
1959  TargetLowering::ArgListEntry Entry;
1960  for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) {
1961    EVT ArgVT = Node->getOperand(i).getValueType();
1962    const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1963    Entry.Node = Node->getOperand(i);
1964    Entry.Ty = ArgTy;
1965    Entry.isSExt = isSigned;
1966    Entry.isZExt = !isSigned;
1967    Args.push_back(Entry);
1968  }
1969  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1970                                         TLI.getPointerTy());
1971
1972  // Splice the libcall in wherever FindInputOutputChains tells us to.
1973  const Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1974  std::pair<SDValue, SDValue> CallInfo =
1975    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
1976                    0, TLI.getLibcallCallingConv(LC), false,
1977                    /*isReturnValueUsed=*/true,
1978                    Callee, Args, DAG, Node->getDebugLoc());
1979
1980  // Legalize the call sequence, starting with the chain.  This will advance
1981  // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
1982  // was added by LowerCallTo (guaranteeing proper serialization of calls).
1983  LegalizeOp(CallInfo.second);
1984  return CallInfo;
1985}
1986
1987SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
1988                                              RTLIB::Libcall Call_F32,
1989                                              RTLIB::Libcall Call_F64,
1990                                              RTLIB::Libcall Call_F80,
1991                                              RTLIB::Libcall Call_PPCF128) {
1992  RTLIB::Libcall LC;
1993  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1994  default: assert(0 && "Unexpected request for libcall!");
1995  case MVT::f32: LC = Call_F32; break;
1996  case MVT::f64: LC = Call_F64; break;
1997  case MVT::f80: LC = Call_F80; break;
1998  case MVT::ppcf128: LC = Call_PPCF128; break;
1999  }
2000  return ExpandLibCall(LC, Node, false);
2001}
2002
2003SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
2004                                               RTLIB::Libcall Call_I8,
2005                                               RTLIB::Libcall Call_I16,
2006                                               RTLIB::Libcall Call_I32,
2007                                               RTLIB::Libcall Call_I64,
2008                                               RTLIB::Libcall Call_I128) {
2009  RTLIB::Libcall LC;
2010  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
2011  default: assert(0 && "Unexpected request for libcall!");
2012  case MVT::i8:   LC = Call_I8; break;
2013  case MVT::i16:  LC = Call_I16; break;
2014  case MVT::i32:  LC = Call_I32; break;
2015  case MVT::i64:  LC = Call_I64; break;
2016  case MVT::i128: LC = Call_I128; break;
2017  }
2018  return ExpandLibCall(LC, Node, isSigned);
2019}
2020
2021/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
2022/// INT_TO_FP operation of the specified operand when the target requests that
2023/// we expand it.  At this point, we know that the result and operand types are
2024/// legal for the target.
2025SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
2026                                                   SDValue Op0,
2027                                                   EVT DestVT,
2028                                                   DebugLoc dl) {
2029  if (Op0.getValueType() == MVT::i32) {
2030    // simple 32-bit [signed|unsigned] integer to float/double expansion
2031
2032    // Get the stack frame index of a 8 byte buffer.
2033    SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
2034
2035    // word offset constant for Hi/Lo address computation
2036    SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy());
2037    // set up Hi and Lo (into buffer) address based on endian
2038    SDValue Hi = StackSlot;
2039    SDValue Lo = DAG.getNode(ISD::ADD, dl,
2040                             TLI.getPointerTy(), StackSlot, WordOff);
2041    if (TLI.isLittleEndian())
2042      std::swap(Hi, Lo);
2043
2044    // if signed map to unsigned space
2045    SDValue Op0Mapped;
2046    if (isSigned) {
2047      // constant used to invert sign bit (signed to unsigned mapping)
2048      SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32);
2049      Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
2050    } else {
2051      Op0Mapped = Op0;
2052    }
2053    // store the lo of the constructed double - based on integer input
2054    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
2055                                  Op0Mapped, Lo, NULL, 0,
2056                                  false, false, 0);
2057    // initial hi portion of constructed double
2058    SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
2059    // store the hi of the constructed double - biased exponent
2060    SDValue Store2=DAG.getStore(Store1, dl, InitialHi, Hi, NULL, 0,
2061                                false, false, 0);
2062    // load the constructed double
2063    SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot, NULL, 0,
2064                               false, false, 0);
2065    // FP constant to bias correct the final result
2066    SDValue Bias = DAG.getConstantFP(isSigned ?
2067                                     BitsToDouble(0x4330000080000000ULL) :
2068                                     BitsToDouble(0x4330000000000000ULL),
2069                                     MVT::f64);
2070    // subtract the bias
2071    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2072    // final result
2073    SDValue Result;
2074    // handle final rounding
2075    if (DestVT == MVT::f64) {
2076      // do nothing
2077      Result = Sub;
2078    } else if (DestVT.bitsLT(MVT::f64)) {
2079      Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
2080                           DAG.getIntPtrConstant(0));
2081    } else if (DestVT.bitsGT(MVT::f64)) {
2082      Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
2083    }
2084    return Result;
2085  }
2086  assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2087  // Code below here assumes !isSigned without checking again.
2088
2089  // Implementation of unsigned i64 to f64 following the algorithm in
2090  // __floatundidf in compiler_rt. This implementation has the advantage
2091  // of performing rounding correctly, both in the default rounding mode
2092  // and in all alternate rounding modes.
2093  // TODO: Generalize this for use with other types.
2094  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) {
2095    SDValue TwoP52 =
2096      DAG.getConstant(UINT64_C(0x4330000000000000), MVT::i64);
2097    SDValue TwoP84PlusTwoP52 =
2098      DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), MVT::f64);
2099    SDValue TwoP84 =
2100      DAG.getConstant(UINT64_C(0x4530000000000000), MVT::i64);
2101
2102    SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32);
2103    SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0,
2104                             DAG.getConstant(32, MVT::i64));
2105    SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52);
2106    SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84);
2107    SDValue LoFlt = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, LoOr);
2108    SDValue HiFlt = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, HiOr);
2109    SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt, TwoP84PlusTwoP52);
2110    return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub);
2111  }
2112
2113  // Implementation of unsigned i64 to f32.  This implementation has the
2114  // advantage of performing rounding correctly.
2115  // TODO: Generalize this for use with other types.
2116  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) {
2117    EVT SHVT = TLI.getShiftAmountTy();
2118
2119    SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2120         DAG.getConstant(UINT64_C(0xfffffffffffff800), MVT::i64));
2121    SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And,
2122         DAG.getConstant(UINT64_C(0x800), MVT::i64));
2123    SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2124         DAG.getConstant(UINT64_C(0x7ff), MVT::i64));
2125    SDValue Ne = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2126                   And2, DAG.getConstant(UINT64_C(0), MVT::i64), ISD::SETNE);
2127    SDValue Sel = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ne, Or, Op0);
2128    SDValue Ge = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2129                   Op0, DAG.getConstant(UINT64_C(0x0020000000000000), MVT::i64),
2130                    ISD::SETUGE);
2131    SDValue Sel2 = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ge, Sel, Op0);
2132
2133    SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2,
2134                             DAG.getConstant(32, SHVT));
2135    SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh);
2136    SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc);
2137    SDValue TwoP32 =
2138      DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), MVT::f64);
2139    SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt);
2140    SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2);
2141    SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo);
2142    SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2);
2143    return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd,
2144                       DAG.getIntPtrConstant(0));
2145
2146  }
2147
2148  SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2149
2150  SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()),
2151                                 Op0, DAG.getConstant(0, Op0.getValueType()),
2152                                 ISD::SETLT);
2153  SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
2154  SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(),
2155                                    SignSet, Four, Zero);
2156
2157  // If the sign bit of the integer is set, the large number will be treated
2158  // as a negative number.  To counteract this, the dynamic code adds an
2159  // offset depending on the data type.
2160  uint64_t FF;
2161  switch (Op0.getValueType().getSimpleVT().SimpleTy) {
2162  default: assert(0 && "Unsupported integer type!");
2163  case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
2164  case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
2165  case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
2166  case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
2167  }
2168  if (TLI.isLittleEndian()) FF <<= 32;
2169  Constant *FudgeFactor = ConstantInt::get(
2170                                       Type::getInt64Ty(*DAG.getContext()), FF);
2171
2172  SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
2173  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2174  CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset);
2175  Alignment = std::min(Alignment, 4u);
2176  SDValue FudgeInReg;
2177  if (DestVT == MVT::f32)
2178    FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2179                             PseudoSourceValue::getConstantPool(), 0,
2180                             false, false, Alignment);
2181  else {
2182    FudgeInReg =
2183      LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT,
2184                                DAG.getEntryNode(), CPIdx,
2185                                PseudoSourceValue::getConstantPool(), 0,
2186                                MVT::f32, false, false, Alignment));
2187  }
2188
2189  return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2190}
2191
2192/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
2193/// *INT_TO_FP operation of the specified operand when the target requests that
2194/// we promote it.  At this point, we know that the result and operand types are
2195/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2196/// operation that takes a larger input.
2197SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
2198                                                    EVT DestVT,
2199                                                    bool isSigned,
2200                                                    DebugLoc dl) {
2201  // First step, figure out the appropriate *INT_TO_FP operation to use.
2202  EVT NewInTy = LegalOp.getValueType();
2203
2204  unsigned OpToUse = 0;
2205
2206  // Scan for the appropriate larger type to use.
2207  while (1) {
2208    NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2209    assert(NewInTy.isInteger() && "Ran out of possibilities!");
2210
2211    // If the target supports SINT_TO_FP of this type, use it.
2212    if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2213      OpToUse = ISD::SINT_TO_FP;
2214      break;
2215    }
2216    if (isSigned) continue;
2217
2218    // If the target supports UINT_TO_FP of this type, use it.
2219    if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2220      OpToUse = ISD::UINT_TO_FP;
2221      break;
2222    }
2223
2224    // Otherwise, try a larger type.
2225  }
2226
2227  // Okay, we found the operation and type to use.  Zero extend our input to the
2228  // desired type then run the operation on it.
2229  return DAG.getNode(OpToUse, dl, DestVT,
2230                     DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2231                                 dl, NewInTy, LegalOp));
2232}
2233
2234/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
2235/// FP_TO_*INT operation of the specified operand when the target requests that
2236/// we promote it.  At this point, we know that the result and operand types are
2237/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2238/// operation that returns a larger result.
2239SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
2240                                                    EVT DestVT,
2241                                                    bool isSigned,
2242                                                    DebugLoc dl) {
2243  // First step, figure out the appropriate FP_TO*INT operation to use.
2244  EVT NewOutTy = DestVT;
2245
2246  unsigned OpToUse = 0;
2247
2248  // Scan for the appropriate larger type to use.
2249  while (1) {
2250    NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2251    assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2252
2253    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2254      OpToUse = ISD::FP_TO_SINT;
2255      break;
2256    }
2257
2258    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
2259      OpToUse = ISD::FP_TO_UINT;
2260      break;
2261    }
2262
2263    // Otherwise, try a larger type.
2264  }
2265
2266
2267  // Okay, we found the operation and type to use.
2268  SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2269
2270  // Truncate the result of the extended FP_TO_*INT operation to the desired
2271  // size.
2272  return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2273}
2274
2275/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
2276///
2277SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) {
2278  EVT VT = Op.getValueType();
2279  EVT SHVT = TLI.getShiftAmountTy();
2280  SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2281  switch (VT.getSimpleVT().SimpleTy) {
2282  default: assert(0 && "Unhandled Expand type in BSWAP!");
2283  case MVT::i16:
2284    Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2285    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2286    return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2287  case MVT::i32:
2288    Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2289    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2290    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2291    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2292    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
2293    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT));
2294    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2295    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2296    return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2297  case MVT::i64:
2298    Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT));
2299    Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT));
2300    Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2301    Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2302    Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2303    Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2304    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT));
2305    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT));
2306    Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
2307    Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
2308    Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
2309    Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
2310    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
2311    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
2312    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2313    Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2314    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2315    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2316    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2317    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2318    return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2319  }
2320}
2321
2322/// ExpandBitCount - Expand the specified bitcount instruction into operations.
2323///
2324SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
2325                                             DebugLoc dl) {
2326  switch (Opc) {
2327  default: assert(0 && "Cannot expand this yet!");
2328  case ISD::CTPOP: {
2329    static const uint64_t mask[6] = {
2330      0x5555555555555555ULL, 0x3333333333333333ULL,
2331      0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL,
2332      0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL
2333    };
2334    EVT VT = Op.getValueType();
2335    EVT ShVT = TLI.getShiftAmountTy();
2336    unsigned len = VT.getSizeInBits();
2337    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2338      //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8])
2339      unsigned EltSize = VT.isVector() ?
2340        VT.getVectorElementType().getSizeInBits() : len;
2341      SDValue Tmp2 = DAG.getConstant(APInt(EltSize, mask[i]), VT);
2342      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2343      Op = DAG.getNode(ISD::ADD, dl, VT,
2344                       DAG.getNode(ISD::AND, dl, VT, Op, Tmp2),
2345                       DAG.getNode(ISD::AND, dl, VT,
2346                                   DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3),
2347                                   Tmp2));
2348    }
2349    return Op;
2350  }
2351  case ISD::CTLZ: {
2352    // for now, we do this:
2353    // x = x | (x >> 1);
2354    // x = x | (x >> 2);
2355    // ...
2356    // x = x | (x >>16);
2357    // x = x | (x >>32); // for 64-bit input
2358    // return popcount(~x);
2359    //
2360    // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
2361    EVT VT = Op.getValueType();
2362    EVT ShVT = TLI.getShiftAmountTy();
2363    unsigned len = VT.getSizeInBits();
2364    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2365      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2366      Op = DAG.getNode(ISD::OR, dl, VT, Op,
2367                       DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
2368    }
2369    Op = DAG.getNOT(dl, Op, VT);
2370    return DAG.getNode(ISD::CTPOP, dl, VT, Op);
2371  }
2372  case ISD::CTTZ: {
2373    // for now, we use: { return popcount(~x & (x - 1)); }
2374    // unless the target has ctlz but not ctpop, in which case we use:
2375    // { return 32 - nlz(~x & (x-1)); }
2376    // see also http://www.hackersdelight.org/HDcode/ntz.cc
2377    EVT VT = Op.getValueType();
2378    SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
2379                               DAG.getNOT(dl, Op, VT),
2380                               DAG.getNode(ISD::SUB, dl, VT, Op,
2381                                           DAG.getConstant(1, VT)));
2382    // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
2383    if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
2384        TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
2385      return DAG.getNode(ISD::SUB, dl, VT,
2386                         DAG.getConstant(VT.getSizeInBits(), VT),
2387                         DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
2388    return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
2389  }
2390  }
2391}
2392
2393std::pair <SDValue, SDValue> SelectionDAGLegalize::ExpandAtomic(SDNode *Node) {
2394  unsigned Opc = Node->getOpcode();
2395  MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
2396  RTLIB::Libcall LC;
2397
2398  switch (Opc) {
2399  default:
2400    llvm_unreachable("Unhandled atomic intrinsic Expand!");
2401    break;
2402  case ISD::ATOMIC_CMP_SWAP:
2403    switch (VT.SimpleTy) {
2404    default: llvm_unreachable("Unexpected value type for atomic!");
2405    case MVT::i8:  LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1; break;
2406    case MVT::i16: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2; break;
2407    case MVT::i32: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4; break;
2408    case MVT::i64: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8; break;
2409    }
2410    break;
2411  case ISD::ATOMIC_LOAD_ADD:
2412    switch (VT.SimpleTy) {
2413    default: llvm_unreachable("Unexpected value type for atomic!");
2414    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_ADD_1; break;
2415    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_ADD_2; break;
2416    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_ADD_4; break;
2417    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_ADD_8; break;
2418    }
2419    break;
2420  case ISD::ATOMIC_LOAD_SUB:
2421    switch (VT.SimpleTy) {
2422    default: llvm_unreachable("Unexpected value type for atomic!");
2423    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_SUB_1; break;
2424    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_SUB_2; break;
2425    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_SUB_4; break;
2426    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_SUB_8; break;
2427    }
2428    break;
2429  case ISD::ATOMIC_LOAD_AND:
2430    switch (VT.SimpleTy) {
2431    default: llvm_unreachable("Unexpected value type for atomic!");
2432    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_AND_1; break;
2433    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_AND_2; break;
2434    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_AND_4; break;
2435    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_AND_8; break;
2436    }
2437    break;
2438  case ISD::ATOMIC_LOAD_OR:
2439    switch (VT.SimpleTy) {
2440    default: llvm_unreachable("Unexpected value type for atomic!");
2441    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_OR_1; break;
2442    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_OR_2; break;
2443    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_OR_4; break;
2444    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_OR_8; break;
2445    }
2446    break;
2447  case ISD::ATOMIC_LOAD_XOR:
2448    switch (VT.SimpleTy) {
2449    default: llvm_unreachable("Unexpected value type for atomic!");
2450    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_XOR_1; break;
2451    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_XOR_2; break;
2452    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_XOR_4; break;
2453    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_XOR_8; break;
2454    }
2455    break;
2456  case ISD::ATOMIC_LOAD_NAND:
2457    switch (VT.SimpleTy) {
2458    default: llvm_unreachable("Unexpected value type for atomic!");
2459    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_NAND_1; break;
2460    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_NAND_2; break;
2461    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_NAND_4; break;
2462    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_NAND_8; break;
2463    }
2464    break;
2465  }
2466
2467  return ExpandChainLibCall(LC, Node, false);
2468}
2469
2470void SelectionDAGLegalize::ExpandNode(SDNode *Node,
2471                                      SmallVectorImpl<SDValue> &Results) {
2472  DebugLoc dl = Node->getDebugLoc();
2473  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2474  switch (Node->getOpcode()) {
2475  case ISD::CTPOP:
2476  case ISD::CTLZ:
2477  case ISD::CTTZ:
2478    Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
2479    Results.push_back(Tmp1);
2480    break;
2481  case ISD::BSWAP:
2482    Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2483    break;
2484  case ISD::FRAMEADDR:
2485  case ISD::RETURNADDR:
2486  case ISD::FRAME_TO_ARGS_OFFSET:
2487    Results.push_back(DAG.getConstant(0, Node->getValueType(0)));
2488    break;
2489  case ISD::FLT_ROUNDS_:
2490    Results.push_back(DAG.getConstant(1, Node->getValueType(0)));
2491    break;
2492  case ISD::EH_RETURN:
2493  case ISD::EH_LABEL:
2494  case ISD::PREFETCH:
2495  case ISD::VAEND:
2496    Results.push_back(Node->getOperand(0));
2497    break;
2498  case ISD::MEMBARRIER: {
2499    // If the target didn't lower this, lower it to '__sync_synchronize()' call
2500    TargetLowering::ArgListTy Args;
2501    std::pair<SDValue, SDValue> CallResult =
2502      TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()),
2503                      false, false, false, false, 0, CallingConv::C, false,
2504                      /*isReturnValueUsed=*/true,
2505                      DAG.getExternalSymbol("__sync_synchronize",
2506                                            TLI.getPointerTy()),
2507                      Args, DAG, dl);
2508    Results.push_back(CallResult.second);
2509    break;
2510  }
2511  // By default, atomic intrinsics are marked Legal and lowered. Targets
2512  // which don't support them directly, however, may want libcalls, in which
2513  // case they mark them Expand, and we get here.
2514  // FIXME: Unimplemented for now. Add libcalls.
2515  case ISD::ATOMIC_SWAP:
2516  case ISD::ATOMIC_LOAD_ADD:
2517  case ISD::ATOMIC_LOAD_SUB:
2518  case ISD::ATOMIC_LOAD_AND:
2519  case ISD::ATOMIC_LOAD_OR:
2520  case ISD::ATOMIC_LOAD_XOR:
2521  case ISD::ATOMIC_LOAD_NAND:
2522  case ISD::ATOMIC_LOAD_MIN:
2523  case ISD::ATOMIC_LOAD_MAX:
2524  case ISD::ATOMIC_LOAD_UMIN:
2525  case ISD::ATOMIC_LOAD_UMAX:
2526  case ISD::ATOMIC_CMP_SWAP:
2527    std::pair<SDValue, SDValue> Tmp = ExpandAtomic(Node);
2528    Results.push_back(Tmp.first);
2529    Results.push_back(Tmp.second);
2530    break;
2531  case ISD::DYNAMIC_STACKALLOC:
2532    ExpandDYNAMIC_STACKALLOC(Node, Results);
2533    break;
2534  case ISD::MERGE_VALUES:
2535    for (unsigned i = 0; i < Node->getNumValues(); i++)
2536      Results.push_back(Node->getOperand(i));
2537    break;
2538  case ISD::UNDEF: {
2539    EVT VT = Node->getValueType(0);
2540    if (VT.isInteger())
2541      Results.push_back(DAG.getConstant(0, VT));
2542    else {
2543      assert(VT.isFloatingPoint() && "Unknown value type!");
2544      Results.push_back(DAG.getConstantFP(0, VT));
2545    }
2546    break;
2547  }
2548  case ISD::TRAP: {
2549    // If this operation is not supported, lower it to 'abort()' call
2550    TargetLowering::ArgListTy Args;
2551    std::pair<SDValue, SDValue> CallResult =
2552      TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()),
2553                      false, false, false, false, 0, CallingConv::C, false,
2554                      /*isReturnValueUsed=*/true,
2555                      DAG.getExternalSymbol("abort", TLI.getPointerTy()),
2556                      Args, DAG, dl);
2557    Results.push_back(CallResult.second);
2558    break;
2559  }
2560  case ISD::FP_ROUND:
2561  case ISD::BIT_CONVERT:
2562    Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
2563                            Node->getValueType(0), dl);
2564    Results.push_back(Tmp1);
2565    break;
2566  case ISD::FP_EXTEND:
2567    Tmp1 = EmitStackConvert(Node->getOperand(0),
2568                            Node->getOperand(0).getValueType(),
2569                            Node->getValueType(0), dl);
2570    Results.push_back(Tmp1);
2571    break;
2572  case ISD::SIGN_EXTEND_INREG: {
2573    // NOTE: we could fall back on load/store here too for targets without
2574    // SAR.  However, it is doubtful that any exist.
2575    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2576    EVT VT = Node->getValueType(0);
2577    EVT ShiftAmountTy = TLI.getShiftAmountTy();
2578    if (VT.isVector())
2579      ShiftAmountTy = VT;
2580    unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
2581                        ExtraVT.getScalarType().getSizeInBits();
2582    SDValue ShiftCst = DAG.getConstant(BitsDiff, ShiftAmountTy);
2583    Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
2584                       Node->getOperand(0), ShiftCst);
2585    Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
2586    Results.push_back(Tmp1);
2587    break;
2588  }
2589  case ISD::FP_ROUND_INREG: {
2590    // The only way we can lower this is to turn it into a TRUNCSTORE,
2591    // EXTLOAD pair, targetting a temporary location (a stack slot).
2592
2593    // NOTE: there is a choice here between constantly creating new stack
2594    // slots and always reusing the same one.  We currently always create
2595    // new ones, as reuse may inhibit scheduling.
2596    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2597    Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
2598                            Node->getValueType(0), dl);
2599    Results.push_back(Tmp1);
2600    break;
2601  }
2602  case ISD::SINT_TO_FP:
2603  case ISD::UINT_TO_FP:
2604    Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
2605                                Node->getOperand(0), Node->getValueType(0), dl);
2606    Results.push_back(Tmp1);
2607    break;
2608  case ISD::FP_TO_UINT: {
2609    SDValue True, False;
2610    EVT VT =  Node->getOperand(0).getValueType();
2611    EVT NVT = Node->getValueType(0);
2612    const uint64_t zero[] = {0, 0};
2613    APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
2614    APInt x = APInt::getSignBit(NVT.getSizeInBits());
2615    (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
2616    Tmp1 = DAG.getConstantFP(apf, VT);
2617    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT),
2618                        Node->getOperand(0),
2619                        Tmp1, ISD::SETLT);
2620    True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
2621    False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
2622                        DAG.getNode(ISD::FSUB, dl, VT,
2623                                    Node->getOperand(0), Tmp1));
2624    False = DAG.getNode(ISD::XOR, dl, NVT, False,
2625                        DAG.getConstant(x, NVT));
2626    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False);
2627    Results.push_back(Tmp1);
2628    break;
2629  }
2630  case ISD::VAARG: {
2631    const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2632    EVT VT = Node->getValueType(0);
2633    Tmp1 = Node->getOperand(0);
2634    Tmp2 = Node->getOperand(1);
2635    SDValue VAList = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2, V, 0,
2636                                 false, false, 0);
2637    // Increment the pointer, VAList, to the next vaarg
2638    Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2639                       DAG.getConstant(TLI.getTargetData()->
2640                          getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())),
2641                                       TLI.getPointerTy()));
2642    // Store the incremented VAList to the legalized pointer
2643    Tmp3 = DAG.getStore(VAList.getValue(1), dl, Tmp3, Tmp2, V, 0,
2644                        false, false, 0);
2645    // Load the actual argument out of the pointer VAList
2646    Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, NULL, 0,
2647                                  false, false, 0));
2648    Results.push_back(Results[0].getValue(1));
2649    break;
2650  }
2651  case ISD::VACOPY: {
2652    // This defaults to loading a pointer from the input and storing it to the
2653    // output, returning the chain.
2654    const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2655    const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2656    Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0),
2657                       Node->getOperand(2), VS, 0, false, false, 0);
2658    Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), VD, 0,
2659                        false, false, 0);
2660    Results.push_back(Tmp1);
2661    break;
2662  }
2663  case ISD::EXTRACT_VECTOR_ELT:
2664    if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
2665      // This must be an access of the only element.  Return it.
2666      Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, Node->getValueType(0),
2667                         Node->getOperand(0));
2668    else
2669      Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
2670    Results.push_back(Tmp1);
2671    break;
2672  case ISD::EXTRACT_SUBVECTOR:
2673    Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
2674    break;
2675  case ISD::CONCAT_VECTORS: {
2676    Results.push_back(ExpandVectorBuildThroughStack(Node));
2677    break;
2678  }
2679  case ISD::SCALAR_TO_VECTOR:
2680    Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
2681    break;
2682  case ISD::INSERT_VECTOR_ELT:
2683    Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
2684                                              Node->getOperand(1),
2685                                              Node->getOperand(2), dl));
2686    break;
2687  case ISD::VECTOR_SHUFFLE: {
2688    SmallVector<int, 8> Mask;
2689    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
2690
2691    EVT VT = Node->getValueType(0);
2692    EVT EltVT = VT.getVectorElementType();
2693    if (getTypeAction(EltVT) == Promote)
2694      EltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT);
2695    unsigned NumElems = VT.getVectorNumElements();
2696    SmallVector<SDValue, 8> Ops;
2697    for (unsigned i = 0; i != NumElems; ++i) {
2698      if (Mask[i] < 0) {
2699        Ops.push_back(DAG.getUNDEF(EltVT));
2700        continue;
2701      }
2702      unsigned Idx = Mask[i];
2703      if (Idx < NumElems)
2704        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2705                                  Node->getOperand(0),
2706                                  DAG.getIntPtrConstant(Idx)));
2707      else
2708        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2709                                  Node->getOperand(1),
2710                                  DAG.getIntPtrConstant(Idx - NumElems)));
2711    }
2712    Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size());
2713    Results.push_back(Tmp1);
2714    break;
2715  }
2716  case ISD::EXTRACT_ELEMENT: {
2717    EVT OpTy = Node->getOperand(0).getValueType();
2718    if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
2719      // 1 -> Hi
2720      Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
2721                         DAG.getConstant(OpTy.getSizeInBits()/2,
2722                                         TLI.getShiftAmountTy()));
2723      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
2724    } else {
2725      // 0 -> Lo
2726      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
2727                         Node->getOperand(0));
2728    }
2729    Results.push_back(Tmp1);
2730    break;
2731  }
2732  case ISD::STACKSAVE:
2733    // Expand to CopyFromReg if the target set
2734    // StackPointerRegisterToSaveRestore.
2735    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2736      Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
2737                                           Node->getValueType(0)));
2738      Results.push_back(Results[0].getValue(1));
2739    } else {
2740      Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
2741      Results.push_back(Node->getOperand(0));
2742    }
2743    break;
2744  case ISD::STACKRESTORE:
2745    // Expand to CopyToReg if the target set
2746    // StackPointerRegisterToSaveRestore.
2747    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2748      Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
2749                                         Node->getOperand(1)));
2750    } else {
2751      Results.push_back(Node->getOperand(0));
2752    }
2753    break;
2754  case ISD::FCOPYSIGN:
2755    Results.push_back(ExpandFCOPYSIGN(Node));
2756    break;
2757  case ISD::FNEG:
2758    // Expand Y = FNEG(X) ->  Y = SUB -0.0, X
2759    Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0));
2760    Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
2761                       Node->getOperand(0));
2762    Results.push_back(Tmp1);
2763    break;
2764  case ISD::FABS: {
2765    // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
2766    EVT VT = Node->getValueType(0);
2767    Tmp1 = Node->getOperand(0);
2768    Tmp2 = DAG.getConstantFP(0.0, VT);
2769    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
2770                        Tmp1, Tmp2, ISD::SETUGT);
2771    Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1);
2772    Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3);
2773    Results.push_back(Tmp1);
2774    break;
2775  }
2776  case ISD::FSQRT:
2777    Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
2778                                      RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128));
2779    break;
2780  case ISD::FSIN:
2781    Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
2782                                      RTLIB::SIN_F80, RTLIB::SIN_PPCF128));
2783    break;
2784  case ISD::FCOS:
2785    Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
2786                                      RTLIB::COS_F80, RTLIB::COS_PPCF128));
2787    break;
2788  case ISD::FLOG:
2789    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
2790                                      RTLIB::LOG_F80, RTLIB::LOG_PPCF128));
2791    break;
2792  case ISD::FLOG2:
2793    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
2794                                      RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128));
2795    break;
2796  case ISD::FLOG10:
2797    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
2798                                      RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128));
2799    break;
2800  case ISD::FEXP:
2801    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
2802                                      RTLIB::EXP_F80, RTLIB::EXP_PPCF128));
2803    break;
2804  case ISD::FEXP2:
2805    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
2806                                      RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128));
2807    break;
2808  case ISD::FTRUNC:
2809    Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
2810                                      RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128));
2811    break;
2812  case ISD::FFLOOR:
2813    Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
2814                                      RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128));
2815    break;
2816  case ISD::FCEIL:
2817    Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
2818                                      RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128));
2819    break;
2820  case ISD::FRINT:
2821    Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
2822                                      RTLIB::RINT_F80, RTLIB::RINT_PPCF128));
2823    break;
2824  case ISD::FNEARBYINT:
2825    Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
2826                                      RTLIB::NEARBYINT_F64,
2827                                      RTLIB::NEARBYINT_F80,
2828                                      RTLIB::NEARBYINT_PPCF128));
2829    break;
2830  case ISD::FPOWI:
2831    Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
2832                                      RTLIB::POWI_F80, RTLIB::POWI_PPCF128));
2833    break;
2834  case ISD::FPOW:
2835    Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
2836                                      RTLIB::POW_F80, RTLIB::POW_PPCF128));
2837    break;
2838  case ISD::FDIV:
2839    Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
2840                                      RTLIB::DIV_F80, RTLIB::DIV_PPCF128));
2841    break;
2842  case ISD::FREM:
2843    Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
2844                                      RTLIB::REM_F80, RTLIB::REM_PPCF128));
2845    break;
2846  case ISD::FP16_TO_FP32:
2847    Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
2848    break;
2849  case ISD::FP32_TO_FP16:
2850    Results.push_back(ExpandLibCall(RTLIB::FPROUND_F32_F16, Node, false));
2851    break;
2852  case ISD::ConstantFP: {
2853    ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
2854    // Check to see if this FP immediate is already legal.
2855    // If this is a legal constant, turn it into a TargetConstantFP node.
2856    if (TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0)))
2857      Results.push_back(SDValue(Node, 0));
2858    else
2859      Results.push_back(ExpandConstantFP(CFP, true, DAG, TLI));
2860    break;
2861  }
2862  case ISD::EHSELECTION: {
2863    unsigned Reg = TLI.getExceptionSelectorRegister();
2864    assert(Reg && "Can't expand to unknown register!");
2865    Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg,
2866                                         Node->getValueType(0)));
2867    Results.push_back(Results[0].getValue(1));
2868    break;
2869  }
2870  case ISD::EXCEPTIONADDR: {
2871    unsigned Reg = TLI.getExceptionAddressRegister();
2872    assert(Reg && "Can't expand to unknown register!");
2873    Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg,
2874                                         Node->getValueType(0)));
2875    Results.push_back(Results[0].getValue(1));
2876    break;
2877  }
2878  case ISD::SUB: {
2879    EVT VT = Node->getValueType(0);
2880    assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
2881           TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
2882           "Don't know how to expand this subtraction!");
2883    Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
2884               DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT));
2885    Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp2, DAG.getConstant(1, VT));
2886    Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
2887    break;
2888  }
2889  case ISD::UREM:
2890  case ISD::SREM: {
2891    EVT VT = Node->getValueType(0);
2892    SDVTList VTs = DAG.getVTList(VT, VT);
2893    bool isSigned = Node->getOpcode() == ISD::SREM;
2894    unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
2895    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2896    Tmp2 = Node->getOperand(0);
2897    Tmp3 = Node->getOperand(1);
2898    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
2899      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
2900    } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
2901      // X % Y -> X-X/Y*Y
2902      Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
2903      Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
2904      Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
2905    } else if (isSigned) {
2906      Tmp1 = ExpandIntLibCall(Node, true,
2907                              RTLIB::SREM_I8,
2908                              RTLIB::SREM_I16, RTLIB::SREM_I32,
2909                              RTLIB::SREM_I64, RTLIB::SREM_I128);
2910    } else {
2911      Tmp1 = ExpandIntLibCall(Node, false,
2912                              RTLIB::UREM_I8,
2913                              RTLIB::UREM_I16, RTLIB::UREM_I32,
2914                              RTLIB::UREM_I64, RTLIB::UREM_I128);
2915    }
2916    Results.push_back(Tmp1);
2917    break;
2918  }
2919  case ISD::UDIV:
2920  case ISD::SDIV: {
2921    bool isSigned = Node->getOpcode() == ISD::SDIV;
2922    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2923    EVT VT = Node->getValueType(0);
2924    SDVTList VTs = DAG.getVTList(VT, VT);
2925    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT))
2926      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
2927                         Node->getOperand(1));
2928    else if (isSigned)
2929      Tmp1 = ExpandIntLibCall(Node, true,
2930                              RTLIB::SDIV_I8,
2931                              RTLIB::SDIV_I16, RTLIB::SDIV_I32,
2932                              RTLIB::SDIV_I64, RTLIB::SDIV_I128);
2933    else
2934      Tmp1 = ExpandIntLibCall(Node, false,
2935                              RTLIB::UDIV_I8,
2936                              RTLIB::UDIV_I16, RTLIB::UDIV_I32,
2937                              RTLIB::UDIV_I64, RTLIB::UDIV_I128);
2938    Results.push_back(Tmp1);
2939    break;
2940  }
2941  case ISD::MULHU:
2942  case ISD::MULHS: {
2943    unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
2944                                                              ISD::SMUL_LOHI;
2945    EVT VT = Node->getValueType(0);
2946    SDVTList VTs = DAG.getVTList(VT, VT);
2947    assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
2948           "If this wasn't legal, it shouldn't have been created!");
2949    Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
2950                       Node->getOperand(1));
2951    Results.push_back(Tmp1.getValue(1));
2952    break;
2953  }
2954  case ISD::MUL: {
2955    EVT VT = Node->getValueType(0);
2956    SDVTList VTs = DAG.getVTList(VT, VT);
2957    // See if multiply or divide can be lowered using two-result operations.
2958    // We just need the low half of the multiply; try both the signed
2959    // and unsigned forms. If the target supports both SMUL_LOHI and
2960    // UMUL_LOHI, form a preference by checking which forms of plain
2961    // MULH it supports.
2962    bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
2963    bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
2964    bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
2965    bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
2966    unsigned OpToUse = 0;
2967    if (HasSMUL_LOHI && !HasMULHS) {
2968      OpToUse = ISD::SMUL_LOHI;
2969    } else if (HasUMUL_LOHI && !HasMULHU) {
2970      OpToUse = ISD::UMUL_LOHI;
2971    } else if (HasSMUL_LOHI) {
2972      OpToUse = ISD::SMUL_LOHI;
2973    } else if (HasUMUL_LOHI) {
2974      OpToUse = ISD::UMUL_LOHI;
2975    }
2976    if (OpToUse) {
2977      Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
2978                                    Node->getOperand(1)));
2979      break;
2980    }
2981    Tmp1 = ExpandIntLibCall(Node, false,
2982                            RTLIB::MUL_I8,
2983                            RTLIB::MUL_I16, RTLIB::MUL_I32,
2984                            RTLIB::MUL_I64, RTLIB::MUL_I128);
2985    Results.push_back(Tmp1);
2986    break;
2987  }
2988  case ISD::SADDO:
2989  case ISD::SSUBO: {
2990    SDValue LHS = Node->getOperand(0);
2991    SDValue RHS = Node->getOperand(1);
2992    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
2993                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2994                              LHS, RHS);
2995    Results.push_back(Sum);
2996    EVT OType = Node->getValueType(1);
2997
2998    SDValue Zero = DAG.getConstant(0, LHS.getValueType());
2999
3000    //   LHSSign -> LHS >= 0
3001    //   RHSSign -> RHS >= 0
3002    //   SumSign -> Sum >= 0
3003    //
3004    //   Add:
3005    //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
3006    //   Sub:
3007    //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
3008    //
3009    SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
3010    SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
3011    SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
3012                                      Node->getOpcode() == ISD::SADDO ?
3013                                      ISD::SETEQ : ISD::SETNE);
3014
3015    SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
3016    SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
3017
3018    SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
3019    Results.push_back(Cmp);
3020    break;
3021  }
3022  case ISD::UADDO:
3023  case ISD::USUBO: {
3024    SDValue LHS = Node->getOperand(0);
3025    SDValue RHS = Node->getOperand(1);
3026    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
3027                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3028                              LHS, RHS);
3029    Results.push_back(Sum);
3030    Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS,
3031                                   Node->getOpcode () == ISD::UADDO ?
3032                                   ISD::SETULT : ISD::SETUGT));
3033    break;
3034  }
3035  case ISD::UMULO:
3036  case ISD::SMULO: {
3037    EVT VT = Node->getValueType(0);
3038    SDValue LHS = Node->getOperand(0);
3039    SDValue RHS = Node->getOperand(1);
3040    SDValue BottomHalf;
3041    SDValue TopHalf;
3042    static const unsigned Ops[2][3] =
3043        { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
3044          { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
3045    bool isSigned = Node->getOpcode() == ISD::SMULO;
3046    if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
3047      BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
3048      TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
3049    } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
3050      BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
3051                               RHS);
3052      TopHalf = BottomHalf.getValue(1);
3053    } else {
3054      // FIXME: We should be able to fall back to a libcall with an illegal
3055      // type in some cases.
3056      // Also, we can fall back to a division in some cases, but that's a big
3057      // performance hit in the general case.
3058      assert(TLI.isTypeLegal(EVT::getIntegerVT(*DAG.getContext(),
3059                                               VT.getSizeInBits() * 2)) &&
3060             "Don't know how to expand this operation yet!");
3061      EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
3062      LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
3063      RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
3064      Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
3065      BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3066                               DAG.getIntPtrConstant(0));
3067      TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3068                            DAG.getIntPtrConstant(1));
3069    }
3070    if (isSigned) {
3071      Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1, TLI.getShiftAmountTy());
3072      Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1);
3073      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1,
3074                             ISD::SETNE);
3075    } else {
3076      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf,
3077                             DAG.getConstant(0, VT), ISD::SETNE);
3078    }
3079    Results.push_back(BottomHalf);
3080    Results.push_back(TopHalf);
3081    break;
3082  }
3083  case ISD::BUILD_PAIR: {
3084    EVT PairTy = Node->getValueType(0);
3085    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
3086    Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
3087    Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
3088                       DAG.getConstant(PairTy.getSizeInBits()/2,
3089                                       TLI.getShiftAmountTy()));
3090    Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
3091    break;
3092  }
3093  case ISD::SELECT:
3094    Tmp1 = Node->getOperand(0);
3095    Tmp2 = Node->getOperand(1);
3096    Tmp3 = Node->getOperand(2);
3097    if (Tmp1.getOpcode() == ISD::SETCC) {
3098      Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
3099                             Tmp2, Tmp3,
3100                             cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
3101    } else {
3102      Tmp1 = DAG.getSelectCC(dl, Tmp1,
3103                             DAG.getConstant(0, Tmp1.getValueType()),
3104                             Tmp2, Tmp3, ISD::SETNE);
3105    }
3106    Results.push_back(Tmp1);
3107    break;
3108  case ISD::BR_JT: {
3109    SDValue Chain = Node->getOperand(0);
3110    SDValue Table = Node->getOperand(1);
3111    SDValue Index = Node->getOperand(2);
3112
3113    EVT PTy = TLI.getPointerTy();
3114
3115    const TargetData &TD = *TLI.getTargetData();
3116    unsigned EntrySize =
3117      DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
3118
3119    Index = DAG.getNode(ISD::MUL, dl, PTy,
3120                        Index, DAG.getConstant(EntrySize, PTy));
3121    SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
3122
3123    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
3124    SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr,
3125                                PseudoSourceValue::getJumpTable(), 0, MemVT,
3126                                false, false, 0);
3127    Addr = LD;
3128    if (TM.getRelocationModel() == Reloc::PIC_) {
3129      // For PIC, the sequence is:
3130      // BRIND(load(Jumptable + index) + RelocBase)
3131      // RelocBase can be JumpTable, GOT or some sort of global base.
3132      Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
3133                          TLI.getPICJumpTableRelocBase(Table, DAG));
3134    }
3135    Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
3136    Results.push_back(Tmp1);
3137    break;
3138  }
3139  case ISD::BRCOND:
3140    // Expand brcond's setcc into its constituent parts and create a BR_CC
3141    // Node.
3142    Tmp1 = Node->getOperand(0);
3143    Tmp2 = Node->getOperand(1);
3144    if (Tmp2.getOpcode() == ISD::SETCC) {
3145      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
3146                         Tmp1, Tmp2.getOperand(2),
3147                         Tmp2.getOperand(0), Tmp2.getOperand(1),
3148                         Node->getOperand(2));
3149    } else {
3150      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
3151                         DAG.getCondCode(ISD::SETNE), Tmp2,
3152                         DAG.getConstant(0, Tmp2.getValueType()),
3153                         Node->getOperand(2));
3154    }
3155    Results.push_back(Tmp1);
3156    break;
3157  case ISD::SETCC: {
3158    Tmp1 = Node->getOperand(0);
3159    Tmp2 = Node->getOperand(1);
3160    Tmp3 = Node->getOperand(2);
3161    LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl);
3162
3163    // If we expanded the SETCC into an AND/OR, return the new node
3164    if (Tmp2.getNode() == 0) {
3165      Results.push_back(Tmp1);
3166      break;
3167    }
3168
3169    // Otherwise, SETCC for the given comparison type must be completely
3170    // illegal; expand it into a SELECT_CC.
3171    EVT VT = Node->getValueType(0);
3172    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
3173                       DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3);
3174    Results.push_back(Tmp1);
3175    break;
3176  }
3177  case ISD::SELECT_CC: {
3178    Tmp1 = Node->getOperand(0);   // LHS
3179    Tmp2 = Node->getOperand(1);   // RHS
3180    Tmp3 = Node->getOperand(2);   // True
3181    Tmp4 = Node->getOperand(3);   // False
3182    SDValue CC = Node->getOperand(4);
3183
3184    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()),
3185                          Tmp1, Tmp2, CC, dl);
3186
3187    assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!");
3188    Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
3189    CC = DAG.getCondCode(ISD::SETNE);
3190    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2,
3191                       Tmp3, Tmp4, CC);
3192    Results.push_back(Tmp1);
3193    break;
3194  }
3195  case ISD::BR_CC: {
3196    Tmp1 = Node->getOperand(0);              // Chain
3197    Tmp2 = Node->getOperand(2);              // LHS
3198    Tmp3 = Node->getOperand(3);              // RHS
3199    Tmp4 = Node->getOperand(1);              // CC
3200
3201    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()),
3202                          Tmp2, Tmp3, Tmp4, dl);
3203    LastCALLSEQ_END = DAG.getEntryNode();
3204
3205    assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!");
3206    Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
3207    Tmp4 = DAG.getCondCode(ISD::SETNE);
3208    Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2,
3209                       Tmp3, Node->getOperand(4));
3210    Results.push_back(Tmp1);
3211    break;
3212  }
3213  case ISD::GLOBAL_OFFSET_TABLE:
3214  case ISD::GlobalAddress:
3215  case ISD::GlobalTLSAddress:
3216  case ISD::ExternalSymbol:
3217  case ISD::ConstantPool:
3218  case ISD::JumpTable:
3219  case ISD::INTRINSIC_W_CHAIN:
3220  case ISD::INTRINSIC_WO_CHAIN:
3221  case ISD::INTRINSIC_VOID:
3222    // FIXME: Custom lowering for these operations shouldn't return null!
3223    for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
3224      Results.push_back(SDValue(Node, i));
3225    break;
3226  }
3227}
3228void SelectionDAGLegalize::PromoteNode(SDNode *Node,
3229                                       SmallVectorImpl<SDValue> &Results) {
3230  EVT OVT = Node->getValueType(0);
3231  if (Node->getOpcode() == ISD::UINT_TO_FP ||
3232      Node->getOpcode() == ISD::SINT_TO_FP ||
3233      Node->getOpcode() == ISD::SETCC) {
3234    OVT = Node->getOperand(0).getValueType();
3235  }
3236  EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
3237  DebugLoc dl = Node->getDebugLoc();
3238  SDValue Tmp1, Tmp2, Tmp3;
3239  switch (Node->getOpcode()) {
3240  case ISD::CTTZ:
3241  case ISD::CTLZ:
3242  case ISD::CTPOP:
3243    // Zero extend the argument.
3244    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3245    // Perform the larger operation.
3246    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
3247    if (Node->getOpcode() == ISD::CTTZ) {
3248      //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT)
3249      Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT),
3250                          Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT),
3251                          ISD::SETEQ);
3252      Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2,
3253                          DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1);
3254    } else if (Node->getOpcode() == ISD::CTLZ) {
3255      // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
3256      Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
3257                          DAG.getConstant(NVT.getSizeInBits() -
3258                                          OVT.getSizeInBits(), NVT));
3259    }
3260    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
3261    break;
3262  case ISD::BSWAP: {
3263    unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
3264    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3265    Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
3266    Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
3267                          DAG.getConstant(DiffBits, TLI.getShiftAmountTy()));
3268    Results.push_back(Tmp1);
3269    break;
3270  }
3271  case ISD::FP_TO_UINT:
3272  case ISD::FP_TO_SINT:
3273    Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
3274                                 Node->getOpcode() == ISD::FP_TO_SINT, dl);
3275    Results.push_back(Tmp1);
3276    break;
3277  case ISD::UINT_TO_FP:
3278  case ISD::SINT_TO_FP:
3279    Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
3280                                 Node->getOpcode() == ISD::SINT_TO_FP, dl);
3281    Results.push_back(Tmp1);
3282    break;
3283  case ISD::AND:
3284  case ISD::OR:
3285  case ISD::XOR: {
3286    unsigned ExtOp, TruncOp;
3287    if (OVT.isVector()) {
3288      ExtOp   = ISD::BIT_CONVERT;
3289      TruncOp = ISD::BIT_CONVERT;
3290    } else {
3291      assert(OVT.isInteger() && "Cannot promote logic operation");
3292      ExtOp   = ISD::ANY_EXTEND;
3293      TruncOp = ISD::TRUNCATE;
3294    }
3295    // Promote each of the values to the new type.
3296    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3297    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3298    // Perform the larger operation, then convert back
3299    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3300    Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
3301    break;
3302  }
3303  case ISD::SELECT: {
3304    unsigned ExtOp, TruncOp;
3305    if (Node->getValueType(0).isVector()) {
3306      ExtOp   = ISD::BIT_CONVERT;
3307      TruncOp = ISD::BIT_CONVERT;
3308    } else if (Node->getValueType(0).isInteger()) {
3309      ExtOp   = ISD::ANY_EXTEND;
3310      TruncOp = ISD::TRUNCATE;
3311    } else {
3312      ExtOp   = ISD::FP_EXTEND;
3313      TruncOp = ISD::FP_ROUND;
3314    }
3315    Tmp1 = Node->getOperand(0);
3316    // Promote each of the values to the new type.
3317    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3318    Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
3319    // Perform the larger operation, then round down.
3320    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3);
3321    if (TruncOp != ISD::FP_ROUND)
3322      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
3323    else
3324      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
3325                         DAG.getIntPtrConstant(0));
3326    Results.push_back(Tmp1);
3327    break;
3328  }
3329  case ISD::VECTOR_SHUFFLE: {
3330    SmallVector<int, 8> Mask;
3331    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
3332
3333    // Cast the two input vectors.
3334    Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0));
3335    Tmp2 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(1));
3336
3337    // Convert the shuffle mask to the right # elements.
3338    Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
3339    Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, OVT, Tmp1);
3340    Results.push_back(Tmp1);
3341    break;
3342  }
3343  case ISD::SETCC: {
3344    unsigned ExtOp = ISD::FP_EXTEND;
3345    if (NVT.isInteger()) {
3346      ISD::CondCode CCCode =
3347        cast<CondCodeSDNode>(Node->getOperand(2))->get();
3348      ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3349    }
3350    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3351    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3352    Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3353                                  Tmp1, Tmp2, Node->getOperand(2)));
3354    break;
3355  }
3356  }
3357}
3358
3359// SelectionDAG::Legalize - This is the entry point for the file.
3360//
3361void SelectionDAG::Legalize(CodeGenOpt::Level OptLevel) {
3362  /// run - This is the main entry point to this class.
3363  ///
3364  SelectionDAGLegalize(*this, OptLevel).LegalizeDAG();
3365}
3366
3367