LegalizeDAG.cpp revision e179584f9b740cf3a36bde70f8cab40de59b8081
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the SelectionDAG::Legalize method. 11// 12//===----------------------------------------------------------------------===// 13 14#include "llvm/CodeGen/SelectionDAG.h" 15#include "llvm/CodeGen/MachineFunction.h" 16#include "llvm/CodeGen/MachineFrameInfo.h" 17#include "llvm/CodeGen/MachineJumpTableInfo.h" 18#include "llvm/CodeGen/MachineModuleInfo.h" 19#include "llvm/CodeGen/PseudoSourceValue.h" 20#include "llvm/Target/TargetFrameInfo.h" 21#include "llvm/Target/TargetLowering.h" 22#include "llvm/Target/TargetData.h" 23#include "llvm/Target/TargetMachine.h" 24#include "llvm/Target/TargetOptions.h" 25#include "llvm/CallingConv.h" 26#include "llvm/Constants.h" 27#include "llvm/DerivedTypes.h" 28#include "llvm/Support/CommandLine.h" 29#include "llvm/Support/Compiler.h" 30#include "llvm/Support/MathExtras.h" 31#include "llvm/ADT/DenseMap.h" 32#include "llvm/ADT/SmallVector.h" 33#include "llvm/ADT/SmallPtrSet.h" 34#include <map> 35using namespace llvm; 36 37#ifndef NDEBUG 38static cl::opt<bool> 39ViewLegalizeDAGs("view-legalize-dags", cl::Hidden, 40 cl::desc("Pop up a window to show dags before legalize")); 41#else 42static const bool ViewLegalizeDAGs = 0; 43#endif 44 45//===----------------------------------------------------------------------===// 46/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and 47/// hacks on it until the target machine can handle it. This involves 48/// eliminating value sizes the machine cannot handle (promoting small sizes to 49/// large sizes or splitting up large values into small values) as well as 50/// eliminating operations the machine cannot handle. 51/// 52/// This code also does a small amount of optimization and recognition of idioms 53/// as part of its processing. For example, if a target does not support a 54/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this 55/// will attempt merge setcc and brc instructions into brcc's. 56/// 57namespace { 58class VISIBILITY_HIDDEN SelectionDAGLegalize { 59 TargetLowering &TLI; 60 SelectionDAG &DAG; 61 62 // Libcall insertion helpers. 63 64 /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been 65 /// legalized. We use this to ensure that calls are properly serialized 66 /// against each other, including inserted libcalls. 67 SDOperand LastCALLSEQ_END; 68 69 /// IsLegalizingCall - This member is used *only* for purposes of providing 70 /// helpful assertions that a libcall isn't created while another call is 71 /// being legalized (which could lead to non-serialized call sequences). 72 bool IsLegalizingCall; 73 74 enum LegalizeAction { 75 Legal, // The target natively supports this operation. 76 Promote, // This operation should be executed in a larger type. 77 Expand // Try to expand this to other ops, otherwise use a libcall. 78 }; 79 80 /// ValueTypeActions - This is a bitvector that contains two bits for each 81 /// value type, where the two bits correspond to the LegalizeAction enum. 82 /// This can be queried with "getTypeAction(VT)". 83 TargetLowering::ValueTypeActionImpl ValueTypeActions; 84 85 /// LegalizedNodes - For nodes that are of legal width, and that have more 86 /// than one use, this map indicates what regularized operand to use. This 87 /// allows us to avoid legalizing the same thing more than once. 88 DenseMap<SDOperand, SDOperand> LegalizedNodes; 89 90 /// PromotedNodes - For nodes that are below legal width, and that have more 91 /// than one use, this map indicates what promoted value to use. This allows 92 /// us to avoid promoting the same thing more than once. 93 DenseMap<SDOperand, SDOperand> PromotedNodes; 94 95 /// ExpandedNodes - For nodes that need to be expanded this map indicates 96 /// which which operands are the expanded version of the input. This allows 97 /// us to avoid expanding the same node more than once. 98 DenseMap<SDOperand, std::pair<SDOperand, SDOperand> > ExpandedNodes; 99 100 /// SplitNodes - For vector nodes that need to be split, this map indicates 101 /// which which operands are the split version of the input. This allows us 102 /// to avoid splitting the same node more than once. 103 std::map<SDOperand, std::pair<SDOperand, SDOperand> > SplitNodes; 104 105 /// ScalarizedNodes - For nodes that need to be converted from vector types to 106 /// scalar types, this contains the mapping of ones we have already 107 /// processed to the result. 108 std::map<SDOperand, SDOperand> ScalarizedNodes; 109 110 void AddLegalizedOperand(SDOperand From, SDOperand To) { 111 LegalizedNodes.insert(std::make_pair(From, To)); 112 // If someone requests legalization of the new node, return itself. 113 if (From != To) 114 LegalizedNodes.insert(std::make_pair(To, To)); 115 } 116 void AddPromotedOperand(SDOperand From, SDOperand To) { 117 bool isNew = PromotedNodes.insert(std::make_pair(From, To)); 118 assert(isNew && "Got into the map somehow?"); 119 // If someone requests legalization of the new node, return itself. 120 LegalizedNodes.insert(std::make_pair(To, To)); 121 } 122 123public: 124 125 SelectionDAGLegalize(SelectionDAG &DAG); 126 127 /// getTypeAction - Return how we should legalize values of this type, either 128 /// it is already legal or we need to expand it into multiple registers of 129 /// smaller integer type, or we need to promote it to a larger type. 130 LegalizeAction getTypeAction(MVT::ValueType VT) const { 131 return (LegalizeAction)ValueTypeActions.getTypeAction(VT); 132 } 133 134 /// isTypeLegal - Return true if this type is legal on this target. 135 /// 136 bool isTypeLegal(MVT::ValueType VT) const { 137 return getTypeAction(VT) == Legal; 138 } 139 140 void LegalizeDAG(); 141 142private: 143 /// HandleOp - Legalize, Promote, or Expand the specified operand as 144 /// appropriate for its type. 145 void HandleOp(SDOperand Op); 146 147 /// LegalizeOp - We know that the specified value has a legal type. 148 /// Recursively ensure that the operands have legal types, then return the 149 /// result. 150 SDOperand LegalizeOp(SDOperand O); 151 152 /// UnrollVectorOp - We know that the given vector has a legal type, however 153 /// the operation it performs is not legal and is an operation that we have 154 /// no way of lowering. "Unroll" the vector, splitting out the scalars and 155 /// operating on each element individually. 156 SDOperand UnrollVectorOp(SDOperand O); 157 158 /// PromoteOp - Given an operation that produces a value in an invalid type, 159 /// promote it to compute the value into a larger type. The produced value 160 /// will have the correct bits for the low portion of the register, but no 161 /// guarantee is made about the top bits: it may be zero, sign-extended, or 162 /// garbage. 163 SDOperand PromoteOp(SDOperand O); 164 165 /// ExpandOp - Expand the specified SDOperand into its two component pieces 166 /// Lo&Hi. Note that the Op MUST be an expanded type. As a result of this, 167 /// the LegalizeNodes map is filled in for any results that are not expanded, 168 /// the ExpandedNodes map is filled in for any results that are expanded, and 169 /// the Lo/Hi values are returned. This applies to integer types and Vector 170 /// types. 171 void ExpandOp(SDOperand O, SDOperand &Lo, SDOperand &Hi); 172 173 /// SplitVectorOp - Given an operand of vector type, break it down into 174 /// two smaller values. 175 void SplitVectorOp(SDOperand O, SDOperand &Lo, SDOperand &Hi); 176 177 /// ScalarizeVectorOp - Given an operand of single-element vector type 178 /// (e.g. v1f32), convert it into the equivalent operation that returns a 179 /// scalar (e.g. f32) value. 180 SDOperand ScalarizeVectorOp(SDOperand O); 181 182 /// isShuffleLegal - Return true if a vector shuffle is legal with the 183 /// specified mask and type. Targets can specify exactly which masks they 184 /// support and the code generator is tasked with not creating illegal masks. 185 /// 186 /// Note that this will also return true for shuffles that are promoted to a 187 /// different type. 188 /// 189 /// If this is a legal shuffle, this method returns the (possibly promoted) 190 /// build_vector Mask. If it's not a legal shuffle, it returns null. 191 SDNode *isShuffleLegal(MVT::ValueType VT, SDOperand Mask) const; 192 193 bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest, 194 SmallPtrSet<SDNode*, 32> &NodesLeadingTo); 195 196 void LegalizeSetCCOperands(SDOperand &LHS, SDOperand &RHS, SDOperand &CC); 197 198 SDOperand ExpandLibCall(const char *Name, SDNode *Node, bool isSigned, 199 SDOperand &Hi); 200 SDOperand ExpandIntToFP(bool isSigned, MVT::ValueType DestTy, 201 SDOperand Source); 202 203 SDOperand EmitStackConvert(SDOperand SrcOp, MVT::ValueType SlotVT, 204 MVT::ValueType DestVT); 205 SDOperand ExpandBUILD_VECTOR(SDNode *Node); 206 SDOperand ExpandSCALAR_TO_VECTOR(SDNode *Node); 207 SDOperand ExpandLegalINT_TO_FP(bool isSigned, 208 SDOperand LegalOp, 209 MVT::ValueType DestVT); 210 SDOperand PromoteLegalINT_TO_FP(SDOperand LegalOp, MVT::ValueType DestVT, 211 bool isSigned); 212 SDOperand PromoteLegalFP_TO_INT(SDOperand LegalOp, MVT::ValueType DestVT, 213 bool isSigned); 214 215 SDOperand ExpandBSWAP(SDOperand Op); 216 SDOperand ExpandBitCount(unsigned Opc, SDOperand Op); 217 bool ExpandShift(unsigned Opc, SDOperand Op, SDOperand Amt, 218 SDOperand &Lo, SDOperand &Hi); 219 void ExpandShiftParts(unsigned NodeOp, SDOperand Op, SDOperand Amt, 220 SDOperand &Lo, SDOperand &Hi); 221 222 SDOperand ExpandEXTRACT_SUBVECTOR(SDOperand Op); 223 SDOperand ExpandEXTRACT_VECTOR_ELT(SDOperand Op); 224}; 225} 226 227/// isVectorShuffleLegal - Return true if a vector shuffle is legal with the 228/// specified mask and type. Targets can specify exactly which masks they 229/// support and the code generator is tasked with not creating illegal masks. 230/// 231/// Note that this will also return true for shuffles that are promoted to a 232/// different type. 233SDNode *SelectionDAGLegalize::isShuffleLegal(MVT::ValueType VT, 234 SDOperand Mask) const { 235 switch (TLI.getOperationAction(ISD::VECTOR_SHUFFLE, VT)) { 236 default: return 0; 237 case TargetLowering::Legal: 238 case TargetLowering::Custom: 239 break; 240 case TargetLowering::Promote: { 241 // If this is promoted to a different type, convert the shuffle mask and 242 // ask if it is legal in the promoted type! 243 MVT::ValueType NVT = TLI.getTypeToPromoteTo(ISD::VECTOR_SHUFFLE, VT); 244 245 // If we changed # elements, change the shuffle mask. 246 unsigned NumEltsGrowth = 247 MVT::getVectorNumElements(NVT) / MVT::getVectorNumElements(VT); 248 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); 249 if (NumEltsGrowth > 1) { 250 // Renumber the elements. 251 SmallVector<SDOperand, 8> Ops; 252 for (unsigned i = 0, e = Mask.getNumOperands(); i != e; ++i) { 253 SDOperand InOp = Mask.getOperand(i); 254 for (unsigned j = 0; j != NumEltsGrowth; ++j) { 255 if (InOp.getOpcode() == ISD::UNDEF) 256 Ops.push_back(DAG.getNode(ISD::UNDEF, MVT::i32)); 257 else { 258 unsigned InEltNo = cast<ConstantSDNode>(InOp)->getValue(); 259 Ops.push_back(DAG.getConstant(InEltNo*NumEltsGrowth+j, MVT::i32)); 260 } 261 } 262 } 263 Mask = DAG.getNode(ISD::BUILD_VECTOR, NVT, &Ops[0], Ops.size()); 264 } 265 VT = NVT; 266 break; 267 } 268 } 269 return TLI.isShuffleMaskLegal(Mask, VT) ? Mask.Val : 0; 270} 271 272SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag) 273 : TLI(dag.getTargetLoweringInfo()), DAG(dag), 274 ValueTypeActions(TLI.getValueTypeActions()) { 275 assert(MVT::LAST_VALUETYPE <= 32 && 276 "Too many value types for ValueTypeActions to hold!"); 277} 278 279/// ComputeTopDownOrdering - Compute a top-down ordering of the dag, where Order 280/// contains all of a nodes operands before it contains the node. 281static void ComputeTopDownOrdering(SelectionDAG &DAG, 282 SmallVector<SDNode*, 64> &Order) { 283 284 DenseMap<SDNode*, unsigned> Visited; 285 std::vector<SDNode*> Worklist; 286 Worklist.reserve(128); 287 288 // Compute ordering from all of the leaves in the graphs, those (like the 289 // entry node) that have no operands. 290 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 291 E = DAG.allnodes_end(); I != E; ++I) { 292 if (I->getNumOperands() == 0) { 293 Visited[I] = 0 - 1U; 294 Worklist.push_back(I); 295 } 296 } 297 298 while (!Worklist.empty()) { 299 SDNode *N = Worklist.back(); 300 Worklist.pop_back(); 301 302 if (++Visited[N] != N->getNumOperands()) 303 continue; // Haven't visited all operands yet 304 305 Order.push_back(N); 306 307 // Now that we have N in, add anything that uses it if all of their operands 308 // are now done. 309 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 310 UI != E; ++UI) 311 Worklist.push_back(*UI); 312 } 313 314 assert(Order.size() == Visited.size() && 315 Order.size() == 316 (unsigned)std::distance(DAG.allnodes_begin(), DAG.allnodes_end()) && 317 "Error: DAG is cyclic!"); 318} 319 320 321void SelectionDAGLegalize::LegalizeDAG() { 322 LastCALLSEQ_END = DAG.getEntryNode(); 323 IsLegalizingCall = false; 324 325 // The legalize process is inherently a bottom-up recursive process (users 326 // legalize their uses before themselves). Given infinite stack space, we 327 // could just start legalizing on the root and traverse the whole graph. In 328 // practice however, this causes us to run out of stack space on large basic 329 // blocks. To avoid this problem, compute an ordering of the nodes where each 330 // node is only legalized after all of its operands are legalized. 331 SmallVector<SDNode*, 64> Order; 332 ComputeTopDownOrdering(DAG, Order); 333 334 for (unsigned i = 0, e = Order.size(); i != e; ++i) 335 HandleOp(SDOperand(Order[i], 0)); 336 337 // Finally, it's possible the root changed. Get the new root. 338 SDOperand OldRoot = DAG.getRoot(); 339 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 340 DAG.setRoot(LegalizedNodes[OldRoot]); 341 342 ExpandedNodes.clear(); 343 LegalizedNodes.clear(); 344 PromotedNodes.clear(); 345 SplitNodes.clear(); 346 ScalarizedNodes.clear(); 347 348 // Remove dead nodes now. 349 DAG.RemoveDeadNodes(); 350} 351 352 353/// FindCallEndFromCallStart - Given a chained node that is part of a call 354/// sequence, find the CALLSEQ_END node that terminates the call sequence. 355static SDNode *FindCallEndFromCallStart(SDNode *Node) { 356 if (Node->getOpcode() == ISD::CALLSEQ_END) 357 return Node; 358 if (Node->use_empty()) 359 return 0; // No CallSeqEnd 360 361 // The chain is usually at the end. 362 SDOperand TheChain(Node, Node->getNumValues()-1); 363 if (TheChain.getValueType() != MVT::Other) { 364 // Sometimes it's at the beginning. 365 TheChain = SDOperand(Node, 0); 366 if (TheChain.getValueType() != MVT::Other) { 367 // Otherwise, hunt for it. 368 for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i) 369 if (Node->getValueType(i) == MVT::Other) { 370 TheChain = SDOperand(Node, i); 371 break; 372 } 373 374 // Otherwise, we walked into a node without a chain. 375 if (TheChain.getValueType() != MVT::Other) 376 return 0; 377 } 378 } 379 380 for (SDNode::use_iterator UI = Node->use_begin(), 381 E = Node->use_end(); UI != E; ++UI) { 382 383 // Make sure to only follow users of our token chain. 384 SDNode *User = *UI; 385 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) 386 if (User->getOperand(i) == TheChain) 387 if (SDNode *Result = FindCallEndFromCallStart(User)) 388 return Result; 389 } 390 return 0; 391} 392 393/// FindCallStartFromCallEnd - Given a chained node that is part of a call 394/// sequence, find the CALLSEQ_START node that initiates the call sequence. 395static SDNode *FindCallStartFromCallEnd(SDNode *Node) { 396 assert(Node && "Didn't find callseq_start for a call??"); 397 if (Node->getOpcode() == ISD::CALLSEQ_START) return Node; 398 399 assert(Node->getOperand(0).getValueType() == MVT::Other && 400 "Node doesn't have a token chain argument!"); 401 return FindCallStartFromCallEnd(Node->getOperand(0).Val); 402} 403 404/// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to 405/// see if any uses can reach Dest. If no dest operands can get to dest, 406/// legalize them, legalize ourself, and return false, otherwise, return true. 407/// 408/// Keep track of the nodes we fine that actually do lead to Dest in 409/// NodesLeadingTo. This avoids retraversing them exponential number of times. 410/// 411bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest, 412 SmallPtrSet<SDNode*, 32> &NodesLeadingTo) { 413 if (N == Dest) return true; // N certainly leads to Dest :) 414 415 // If we've already processed this node and it does lead to Dest, there is no 416 // need to reprocess it. 417 if (NodesLeadingTo.count(N)) return true; 418 419 // If the first result of this node has been already legalized, then it cannot 420 // reach N. 421 switch (getTypeAction(N->getValueType(0))) { 422 case Legal: 423 if (LegalizedNodes.count(SDOperand(N, 0))) return false; 424 break; 425 case Promote: 426 if (PromotedNodes.count(SDOperand(N, 0))) return false; 427 break; 428 case Expand: 429 if (ExpandedNodes.count(SDOperand(N, 0))) return false; 430 break; 431 } 432 433 // Okay, this node has not already been legalized. Check and legalize all 434 // operands. If none lead to Dest, then we can legalize this node. 435 bool OperandsLeadToDest = false; 436 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) 437 OperandsLeadToDest |= // If an operand leads to Dest, so do we. 438 LegalizeAllNodesNotLeadingTo(N->getOperand(i).Val, Dest, NodesLeadingTo); 439 440 if (OperandsLeadToDest) { 441 NodesLeadingTo.insert(N); 442 return true; 443 } 444 445 // Okay, this node looks safe, legalize it and return false. 446 HandleOp(SDOperand(N, 0)); 447 return false; 448} 449 450/// HandleOp - Legalize, Promote, or Expand the specified operand as 451/// appropriate for its type. 452void SelectionDAGLegalize::HandleOp(SDOperand Op) { 453 MVT::ValueType VT = Op.getValueType(); 454 switch (getTypeAction(VT)) { 455 default: assert(0 && "Bad type action!"); 456 case Legal: (void)LegalizeOp(Op); break; 457 case Promote: (void)PromoteOp(Op); break; 458 case Expand: 459 if (!MVT::isVector(VT)) { 460 // If this is an illegal scalar, expand it into its two component 461 // pieces. 462 SDOperand X, Y; 463 if (Op.getOpcode() == ISD::TargetConstant) 464 break; // Allow illegal target nodes. 465 ExpandOp(Op, X, Y); 466 } else if (MVT::getVectorNumElements(VT) == 1) { 467 // If this is an illegal single element vector, convert it to a 468 // scalar operation. 469 (void)ScalarizeVectorOp(Op); 470 } else { 471 // Otherwise, this is an illegal multiple element vector. 472 // Split it in half and legalize both parts. 473 SDOperand X, Y; 474 SplitVectorOp(Op, X, Y); 475 } 476 break; 477 } 478} 479 480/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or 481/// a load from the constant pool. 482static SDOperand ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP, 483 SelectionDAG &DAG, TargetLowering &TLI) { 484 bool Extend = false; 485 486 // If a FP immediate is precise when represented as a float and if the 487 // target can do an extending load from float to double, we put it into 488 // the constant pool as a float, even if it's is statically typed as a 489 // double. 490 MVT::ValueType VT = CFP->getValueType(0); 491 bool isDouble = VT == MVT::f64; 492 ConstantFP *LLVMC = ConstantFP::get(MVT::getTypeForValueType(VT), 493 CFP->getValueAPF()); 494 if (!UseCP) { 495 if (VT!=MVT::f64 && VT!=MVT::f32) 496 assert(0 && "Invalid type expansion"); 497 return DAG.getConstant(LLVMC->getValueAPF().convertToAPInt().getZExtValue(), 498 isDouble ? MVT::i64 : MVT::i32); 499 } 500 501 if (isDouble && CFP->isValueValidForType(MVT::f32, CFP->getValueAPF()) && 502 // Only do this if the target has a native EXTLOAD instruction from f32. 503 // Do not try to be clever about long doubles (so far) 504 TLI.isLoadXLegal(ISD::EXTLOAD, MVT::f32)) { 505 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC,Type::FloatTy)); 506 VT = MVT::f32; 507 Extend = true; 508 } 509 510 SDOperand CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy()); 511 if (Extend) { 512 return DAG.getExtLoad(ISD::EXTLOAD, MVT::f64, DAG.getEntryNode(), 513 CPIdx, PseudoSourceValue::getConstantPool(), 514 0, MVT::f32); 515 } else { 516 return DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, 517 PseudoSourceValue::getConstantPool(), 0); 518 } 519} 520 521 522/// ExpandFCOPYSIGNToBitwiseOps - Expands fcopysign to a series of bitwise 523/// operations. 524static 525SDOperand ExpandFCOPYSIGNToBitwiseOps(SDNode *Node, MVT::ValueType NVT, 526 SelectionDAG &DAG, TargetLowering &TLI) { 527 MVT::ValueType VT = Node->getValueType(0); 528 MVT::ValueType SrcVT = Node->getOperand(1).getValueType(); 529 assert((SrcVT == MVT::f32 || SrcVT == MVT::f64) && 530 "fcopysign expansion only supported for f32 and f64"); 531 MVT::ValueType SrcNVT = (SrcVT == MVT::f64) ? MVT::i64 : MVT::i32; 532 533 // First get the sign bit of second operand. 534 SDOperand Mask1 = (SrcVT == MVT::f64) 535 ? DAG.getConstantFP(BitsToDouble(1ULL << 63), SrcVT) 536 : DAG.getConstantFP(BitsToFloat(1U << 31), SrcVT); 537 Mask1 = DAG.getNode(ISD::BIT_CONVERT, SrcNVT, Mask1); 538 SDOperand SignBit= DAG.getNode(ISD::BIT_CONVERT, SrcNVT, Node->getOperand(1)); 539 SignBit = DAG.getNode(ISD::AND, SrcNVT, SignBit, Mask1); 540 // Shift right or sign-extend it if the two operands have different types. 541 int SizeDiff = MVT::getSizeInBits(SrcNVT) - MVT::getSizeInBits(NVT); 542 if (SizeDiff > 0) { 543 SignBit = DAG.getNode(ISD::SRL, SrcNVT, SignBit, 544 DAG.getConstant(SizeDiff, TLI.getShiftAmountTy())); 545 SignBit = DAG.getNode(ISD::TRUNCATE, NVT, SignBit); 546 } else if (SizeDiff < 0) 547 SignBit = DAG.getNode(ISD::SIGN_EXTEND, NVT, SignBit); 548 549 // Clear the sign bit of first operand. 550 SDOperand Mask2 = (VT == MVT::f64) 551 ? DAG.getConstantFP(BitsToDouble(~(1ULL << 63)), VT) 552 : DAG.getConstantFP(BitsToFloat(~(1U << 31)), VT); 553 Mask2 = DAG.getNode(ISD::BIT_CONVERT, NVT, Mask2); 554 SDOperand Result = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0)); 555 Result = DAG.getNode(ISD::AND, NVT, Result, Mask2); 556 557 // Or the value with the sign bit. 558 Result = DAG.getNode(ISD::OR, NVT, Result, SignBit); 559 return Result; 560} 561 562/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores. 563static 564SDOperand ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG, 565 TargetLowering &TLI) { 566 SDOperand Chain = ST->getChain(); 567 SDOperand Ptr = ST->getBasePtr(); 568 SDOperand Val = ST->getValue(); 569 MVT::ValueType VT = Val.getValueType(); 570 int Alignment = ST->getAlignment(); 571 int SVOffset = ST->getSrcValueOffset(); 572 if (MVT::isFloatingPoint(ST->getMemoryVT())) { 573 // Expand to a bitconvert of the value to the integer type of the 574 // same size, then a (misaligned) int store. 575 MVT::ValueType intVT; 576 if (VT==MVT::f64) 577 intVT = MVT::i64; 578 else if (VT==MVT::f32) 579 intVT = MVT::i32; 580 else 581 assert(0 && "Unaligned load of unsupported floating point type"); 582 583 SDOperand Result = DAG.getNode(ISD::BIT_CONVERT, intVT, Val); 584 return DAG.getStore(Chain, Result, Ptr, ST->getSrcValue(), 585 SVOffset, ST->isVolatile(), Alignment); 586 } 587 assert(MVT::isInteger(ST->getMemoryVT()) && 588 "Unaligned store of unknown type."); 589 // Get the half-size VT 590 MVT::ValueType NewStoredVT = ST->getMemoryVT() - 1; 591 int NumBits = MVT::getSizeInBits(NewStoredVT); 592 int IncrementSize = NumBits / 8; 593 594 // Divide the stored value in two parts. 595 SDOperand ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy()); 596 SDOperand Lo = Val; 597 SDOperand Hi = DAG.getNode(ISD::SRL, VT, Val, ShiftAmount); 598 599 // Store the two parts 600 SDOperand Store1, Store2; 601 Store1 = DAG.getTruncStore(Chain, TLI.isLittleEndian()?Lo:Hi, Ptr, 602 ST->getSrcValue(), SVOffset, NewStoredVT, 603 ST->isVolatile(), Alignment); 604 Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, 605 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 606 Alignment = MinAlign(Alignment, IncrementSize); 607 Store2 = DAG.getTruncStore(Chain, TLI.isLittleEndian()?Hi:Lo, Ptr, 608 ST->getSrcValue(), SVOffset + IncrementSize, 609 NewStoredVT, ST->isVolatile(), Alignment); 610 611 return DAG.getNode(ISD::TokenFactor, MVT::Other, Store1, Store2); 612} 613 614/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads. 615static 616SDOperand ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG, 617 TargetLowering &TLI) { 618 int SVOffset = LD->getSrcValueOffset(); 619 SDOperand Chain = LD->getChain(); 620 SDOperand Ptr = LD->getBasePtr(); 621 MVT::ValueType VT = LD->getValueType(0); 622 MVT::ValueType LoadedVT = LD->getMemoryVT(); 623 if (MVT::isFloatingPoint(VT) && !MVT::isVector(VT)) { 624 // Expand to a (misaligned) integer load of the same size, 625 // then bitconvert to floating point. 626 MVT::ValueType intVT; 627 if (LoadedVT == MVT::f64) 628 intVT = MVT::i64; 629 else if (LoadedVT == MVT::f32) 630 intVT = MVT::i32; 631 else 632 assert(0 && "Unaligned load of unsupported floating point type"); 633 634 SDOperand newLoad = DAG.getLoad(intVT, Chain, Ptr, LD->getSrcValue(), 635 SVOffset, LD->isVolatile(), 636 LD->getAlignment()); 637 SDOperand Result = DAG.getNode(ISD::BIT_CONVERT, LoadedVT, newLoad); 638 if (LoadedVT != VT) 639 Result = DAG.getNode(ISD::FP_EXTEND, VT, Result); 640 641 SDOperand Ops[] = { Result, Chain }; 642 return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, MVT::Other), 643 Ops, 2); 644 } 645 assert((MVT::isInteger(LoadedVT) || MVT::isVector(LoadedVT)) && 646 "Unaligned load of unsupported type."); 647 648 // Compute the new VT that is half the size of the old one. We either have an 649 // integer MVT or we have a vector MVT. 650 unsigned NumBits = MVT::getSizeInBits(LoadedVT); 651 MVT::ValueType NewLoadedVT; 652 if (!MVT::isVector(LoadedVT)) { 653 NewLoadedVT = MVT::getIntegerType(NumBits/2); 654 } else { 655 // FIXME: This is not right for <1 x anything> it is also not right for 656 // non-power-of-two vectors. 657 NewLoadedVT = MVT::getVectorType(MVT::getVectorElementType(LoadedVT), 658 MVT::getVectorNumElements(LoadedVT)/2); 659 } 660 NumBits >>= 1; 661 662 unsigned Alignment = LD->getAlignment(); 663 unsigned IncrementSize = NumBits / 8; 664 ISD::LoadExtType HiExtType = LD->getExtensionType(); 665 666 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 667 if (HiExtType == ISD::NON_EXTLOAD) 668 HiExtType = ISD::ZEXTLOAD; 669 670 // Load the value in two parts 671 SDOperand Lo, Hi; 672 if (TLI.isLittleEndian()) { 673 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, VT, Chain, Ptr, LD->getSrcValue(), 674 SVOffset, NewLoadedVT, LD->isVolatile(), Alignment); 675 Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, 676 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 677 Hi = DAG.getExtLoad(HiExtType, VT, Chain, Ptr, LD->getSrcValue(), 678 SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(), 679 MinAlign(Alignment, IncrementSize)); 680 } else { 681 Hi = DAG.getExtLoad(HiExtType, VT, Chain, Ptr, LD->getSrcValue(), SVOffset, 682 NewLoadedVT,LD->isVolatile(), Alignment); 683 Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, 684 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 685 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, VT, Chain, Ptr, LD->getSrcValue(), 686 SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(), 687 MinAlign(Alignment, IncrementSize)); 688 } 689 690 // aggregate the two parts 691 SDOperand ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy()); 692 SDOperand Result = DAG.getNode(ISD::SHL, VT, Hi, ShiftAmount); 693 Result = DAG.getNode(ISD::OR, VT, Result, Lo); 694 695 SDOperand TF = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), 696 Hi.getValue(1)); 697 698 SDOperand Ops[] = { Result, TF }; 699 return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, MVT::Other), Ops, 2); 700} 701 702/// UnrollVectorOp - We know that the given vector has a legal type, however 703/// the operation it performs is not legal and is an operation that we have 704/// no way of lowering. "Unroll" the vector, splitting out the scalars and 705/// operating on each element individually. 706SDOperand SelectionDAGLegalize::UnrollVectorOp(SDOperand Op) { 707 MVT::ValueType VT = Op.getValueType(); 708 assert(isTypeLegal(VT) && 709 "Caller should expand or promote operands that are not legal!"); 710 assert(Op.Val->getNumValues() == 1 && 711 "Can't unroll a vector with multiple results!"); 712 unsigned NE = MVT::getVectorNumElements(VT); 713 MVT::ValueType EltVT = MVT::getVectorElementType(VT); 714 715 SmallVector<SDOperand, 8> Scalars; 716 SmallVector<SDOperand, 4> Operands(Op.getNumOperands()); 717 for (unsigned i = 0; i != NE; ++i) { 718 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 719 SDOperand Operand = Op.getOperand(j); 720 MVT::ValueType OperandVT = Operand.getValueType(); 721 if (MVT::isVector(OperandVT)) { 722 // A vector operand; extract a single element. 723 MVT::ValueType OperandEltVT = MVT::getVectorElementType(OperandVT); 724 Operands[j] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, 725 OperandEltVT, 726 Operand, 727 DAG.getConstant(i, MVT::i32)); 728 } else { 729 // A scalar operand; just use it as is. 730 Operands[j] = Operand; 731 } 732 } 733 Scalars.push_back(DAG.getNode(Op.getOpcode(), EltVT, 734 &Operands[0], Operands.size())); 735 } 736 737 return DAG.getNode(ISD::BUILD_VECTOR, VT, &Scalars[0], Scalars.size()); 738} 739 740/// GetFPLibCall - Return the right libcall for the given floating point type. 741static RTLIB::Libcall GetFPLibCall(MVT::ValueType VT, 742 RTLIB::Libcall Call_F32, 743 RTLIB::Libcall Call_F64, 744 RTLIB::Libcall Call_F80, 745 RTLIB::Libcall Call_PPCF128) { 746 return 747 VT == MVT::f32 ? Call_F32 : 748 VT == MVT::f64 ? Call_F64 : 749 VT == MVT::f80 ? Call_F80 : 750 VT == MVT::ppcf128 ? Call_PPCF128 : 751 RTLIB::UNKNOWN_LIBCALL; 752} 753 754/// LegalizeOp - We know that the specified value has a legal type, and 755/// that its operands are legal. Now ensure that the operation itself 756/// is legal, recursively ensuring that the operands' operations remain 757/// legal. 758SDOperand SelectionDAGLegalize::LegalizeOp(SDOperand Op) { 759 if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes. 760 return Op; 761 762 assert(isTypeLegal(Op.getValueType()) && 763 "Caller should expand or promote operands that are not legal!"); 764 SDNode *Node = Op.Val; 765 766 // If this operation defines any values that cannot be represented in a 767 // register on this target, make sure to expand or promote them. 768 if (Node->getNumValues() > 1) { 769 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 770 if (getTypeAction(Node->getValueType(i)) != Legal) { 771 HandleOp(Op.getValue(i)); 772 assert(LegalizedNodes.count(Op) && 773 "Handling didn't add legal operands!"); 774 return LegalizedNodes[Op]; 775 } 776 } 777 778 // Note that LegalizeOp may be reentered even from single-use nodes, which 779 // means that we always must cache transformed nodes. 780 DenseMap<SDOperand, SDOperand>::iterator I = LegalizedNodes.find(Op); 781 if (I != LegalizedNodes.end()) return I->second; 782 783 SDOperand Tmp1, Tmp2, Tmp3, Tmp4; 784 SDOperand Result = Op; 785 bool isCustom = false; 786 787 switch (Node->getOpcode()) { 788 case ISD::FrameIndex: 789 case ISD::EntryToken: 790 case ISD::Register: 791 case ISD::BasicBlock: 792 case ISD::TargetFrameIndex: 793 case ISD::TargetJumpTable: 794 case ISD::TargetConstant: 795 case ISD::TargetConstantFP: 796 case ISD::TargetConstantPool: 797 case ISD::TargetGlobalAddress: 798 case ISD::TargetGlobalTLSAddress: 799 case ISD::TargetExternalSymbol: 800 case ISD::VALUETYPE: 801 case ISD::SRCVALUE: 802 case ISD::MEMOPERAND: 803 case ISD::STRING: 804 case ISD::CONDCODE: 805 // Primitives must all be legal. 806 assert(TLI.isOperationLegal(Node->getOpcode(), Node->getValueType(0)) && 807 "This must be legal!"); 808 break; 809 default: 810 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { 811 // If this is a target node, legalize it by legalizing the operands then 812 // passing it through. 813 SmallVector<SDOperand, 8> Ops; 814 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 815 Ops.push_back(LegalizeOp(Node->getOperand(i))); 816 817 Result = DAG.UpdateNodeOperands(Result.getValue(0), &Ops[0], Ops.size()); 818 819 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 820 AddLegalizedOperand(Op.getValue(i), Result.getValue(i)); 821 return Result.getValue(Op.ResNo); 822 } 823 // Otherwise this is an unhandled builtin node. splat. 824#ifndef NDEBUG 825 cerr << "NODE: "; Node->dump(&DAG); cerr << "\n"; 826#endif 827 assert(0 && "Do not know how to legalize this operator!"); 828 abort(); 829 case ISD::GLOBAL_OFFSET_TABLE: 830 case ISD::GlobalAddress: 831 case ISD::GlobalTLSAddress: 832 case ISD::ExternalSymbol: 833 case ISD::ConstantPool: 834 case ISD::JumpTable: // Nothing to do. 835 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 836 default: assert(0 && "This action is not supported yet!"); 837 case TargetLowering::Custom: 838 Tmp1 = TLI.LowerOperation(Op, DAG); 839 if (Tmp1.Val) Result = Tmp1; 840 // FALLTHROUGH if the target doesn't want to lower this op after all. 841 case TargetLowering::Legal: 842 break; 843 } 844 break; 845 case ISD::FRAMEADDR: 846 case ISD::RETURNADDR: 847 // The only option for these nodes is to custom lower them. If the target 848 // does not custom lower them, then return zero. 849 Tmp1 = TLI.LowerOperation(Op, DAG); 850 if (Tmp1.Val) 851 Result = Tmp1; 852 else 853 Result = DAG.getConstant(0, TLI.getPointerTy()); 854 break; 855 case ISD::FRAME_TO_ARGS_OFFSET: { 856 MVT::ValueType VT = Node->getValueType(0); 857 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 858 default: assert(0 && "This action is not supported yet!"); 859 case TargetLowering::Custom: 860 Result = TLI.LowerOperation(Op, DAG); 861 if (Result.Val) break; 862 // Fall Thru 863 case TargetLowering::Legal: 864 Result = DAG.getConstant(0, VT); 865 break; 866 } 867 } 868 break; 869 case ISD::EXCEPTIONADDR: { 870 Tmp1 = LegalizeOp(Node->getOperand(0)); 871 MVT::ValueType VT = Node->getValueType(0); 872 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 873 default: assert(0 && "This action is not supported yet!"); 874 case TargetLowering::Expand: { 875 unsigned Reg = TLI.getExceptionAddressRegister(); 876 Result = DAG.getCopyFromReg(Tmp1, Reg, VT); 877 } 878 break; 879 case TargetLowering::Custom: 880 Result = TLI.LowerOperation(Op, DAG); 881 if (Result.Val) break; 882 // Fall Thru 883 case TargetLowering::Legal: { 884 SDOperand Ops[] = { DAG.getConstant(0, VT), Tmp1 }; 885 Result = DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, MVT::Other), 886 Ops, 2); 887 break; 888 } 889 } 890 } 891 if (Result.Val->getNumValues() == 1) break; 892 893 assert(Result.Val->getNumValues() == 2 && 894 "Cannot return more than two values!"); 895 896 // Since we produced two values, make sure to remember that we 897 // legalized both of them. 898 Tmp1 = LegalizeOp(Result); 899 Tmp2 = LegalizeOp(Result.getValue(1)); 900 AddLegalizedOperand(Op.getValue(0), Tmp1); 901 AddLegalizedOperand(Op.getValue(1), Tmp2); 902 return Op.ResNo ? Tmp2 : Tmp1; 903 case ISD::EHSELECTION: { 904 Tmp1 = LegalizeOp(Node->getOperand(0)); 905 Tmp2 = LegalizeOp(Node->getOperand(1)); 906 MVT::ValueType VT = Node->getValueType(0); 907 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 908 default: assert(0 && "This action is not supported yet!"); 909 case TargetLowering::Expand: { 910 unsigned Reg = TLI.getExceptionSelectorRegister(); 911 Result = DAG.getCopyFromReg(Tmp2, Reg, VT); 912 } 913 break; 914 case TargetLowering::Custom: 915 Result = TLI.LowerOperation(Op, DAG); 916 if (Result.Val) break; 917 // Fall Thru 918 case TargetLowering::Legal: { 919 SDOperand Ops[] = { DAG.getConstant(0, VT), Tmp2 }; 920 Result = DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, MVT::Other), 921 Ops, 2); 922 break; 923 } 924 } 925 } 926 if (Result.Val->getNumValues() == 1) break; 927 928 assert(Result.Val->getNumValues() == 2 && 929 "Cannot return more than two values!"); 930 931 // Since we produced two values, make sure to remember that we 932 // legalized both of them. 933 Tmp1 = LegalizeOp(Result); 934 Tmp2 = LegalizeOp(Result.getValue(1)); 935 AddLegalizedOperand(Op.getValue(0), Tmp1); 936 AddLegalizedOperand(Op.getValue(1), Tmp2); 937 return Op.ResNo ? Tmp2 : Tmp1; 938 case ISD::EH_RETURN: { 939 MVT::ValueType VT = Node->getValueType(0); 940 // The only "good" option for this node is to custom lower it. 941 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 942 default: assert(0 && "This action is not supported at all!"); 943 case TargetLowering::Custom: 944 Result = TLI.LowerOperation(Op, DAG); 945 if (Result.Val) break; 946 // Fall Thru 947 case TargetLowering::Legal: 948 // Target does not know, how to lower this, lower to noop 949 Result = LegalizeOp(Node->getOperand(0)); 950 break; 951 } 952 } 953 break; 954 case ISD::AssertSext: 955 case ISD::AssertZext: 956 Tmp1 = LegalizeOp(Node->getOperand(0)); 957 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 958 break; 959 case ISD::MERGE_VALUES: 960 // Legalize eliminates MERGE_VALUES nodes. 961 Result = Node->getOperand(Op.ResNo); 962 break; 963 case ISD::CopyFromReg: 964 Tmp1 = LegalizeOp(Node->getOperand(0)); 965 Result = Op.getValue(0); 966 if (Node->getNumValues() == 2) { 967 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 968 } else { 969 assert(Node->getNumValues() == 3 && "Invalid copyfromreg!"); 970 if (Node->getNumOperands() == 3) { 971 Tmp2 = LegalizeOp(Node->getOperand(2)); 972 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1),Tmp2); 973 } else { 974 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 975 } 976 AddLegalizedOperand(Op.getValue(2), Result.getValue(2)); 977 } 978 // Since CopyFromReg produces two values, make sure to remember that we 979 // legalized both of them. 980 AddLegalizedOperand(Op.getValue(0), Result); 981 AddLegalizedOperand(Op.getValue(1), Result.getValue(1)); 982 return Result.getValue(Op.ResNo); 983 case ISD::UNDEF: { 984 MVT::ValueType VT = Op.getValueType(); 985 switch (TLI.getOperationAction(ISD::UNDEF, VT)) { 986 default: assert(0 && "This action is not supported yet!"); 987 case TargetLowering::Expand: 988 if (MVT::isInteger(VT)) 989 Result = DAG.getConstant(0, VT); 990 else if (MVT::isFloatingPoint(VT)) 991 Result = DAG.getConstantFP(APFloat(APInt(MVT::getSizeInBits(VT), 0)), 992 VT); 993 else 994 assert(0 && "Unknown value type!"); 995 break; 996 case TargetLowering::Legal: 997 break; 998 } 999 break; 1000 } 1001 1002 case ISD::INTRINSIC_W_CHAIN: 1003 case ISD::INTRINSIC_WO_CHAIN: 1004 case ISD::INTRINSIC_VOID: { 1005 SmallVector<SDOperand, 8> Ops; 1006 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 1007 Ops.push_back(LegalizeOp(Node->getOperand(i))); 1008 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1009 1010 // Allow the target to custom lower its intrinsics if it wants to. 1011 if (TLI.getOperationAction(Node->getOpcode(), MVT::Other) == 1012 TargetLowering::Custom) { 1013 Tmp3 = TLI.LowerOperation(Result, DAG); 1014 if (Tmp3.Val) Result = Tmp3; 1015 } 1016 1017 if (Result.Val->getNumValues() == 1) break; 1018 1019 // Must have return value and chain result. 1020 assert(Result.Val->getNumValues() == 2 && 1021 "Cannot return more than two values!"); 1022 1023 // Since loads produce two values, make sure to remember that we 1024 // legalized both of them. 1025 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 1026 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 1027 return Result.getValue(Op.ResNo); 1028 } 1029 1030 case ISD::LOCATION: 1031 assert(Node->getNumOperands() == 5 && "Invalid LOCATION node!"); 1032 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the input chain. 1033 1034 switch (TLI.getOperationAction(ISD::LOCATION, MVT::Other)) { 1035 case TargetLowering::Promote: 1036 default: assert(0 && "This action is not supported yet!"); 1037 case TargetLowering::Expand: { 1038 MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); 1039 bool useDEBUG_LOC = TLI.isOperationLegal(ISD::DEBUG_LOC, MVT::Other); 1040 bool useLABEL = TLI.isOperationLegal(ISD::LABEL, MVT::Other); 1041 1042 if (MMI && (useDEBUG_LOC || useLABEL)) { 1043 const std::string &FName = 1044 cast<StringSDNode>(Node->getOperand(3))->getValue(); 1045 const std::string &DirName = 1046 cast<StringSDNode>(Node->getOperand(4))->getValue(); 1047 unsigned SrcFile = MMI->RecordSource(DirName, FName); 1048 1049 SmallVector<SDOperand, 8> Ops; 1050 Ops.push_back(Tmp1); // chain 1051 SDOperand LineOp = Node->getOperand(1); 1052 SDOperand ColOp = Node->getOperand(2); 1053 1054 if (useDEBUG_LOC) { 1055 Ops.push_back(LineOp); // line # 1056 Ops.push_back(ColOp); // col # 1057 Ops.push_back(DAG.getConstant(SrcFile, MVT::i32)); // source file id 1058 Result = DAG.getNode(ISD::DEBUG_LOC, MVT::Other, &Ops[0], Ops.size()); 1059 } else { 1060 unsigned Line = cast<ConstantSDNode>(LineOp)->getValue(); 1061 unsigned Col = cast<ConstantSDNode>(ColOp)->getValue(); 1062 unsigned ID = MMI->RecordSourceLine(Line, Col, SrcFile); 1063 Ops.push_back(DAG.getConstant(ID, MVT::i32)); 1064 Ops.push_back(DAG.getConstant(0, MVT::i32)); // a debug label 1065 Result = DAG.getNode(ISD::LABEL, MVT::Other, &Ops[0], Ops.size()); 1066 } 1067 } else { 1068 Result = Tmp1; // chain 1069 } 1070 break; 1071 } 1072 case TargetLowering::Legal: 1073 if (Tmp1 != Node->getOperand(0) || 1074 getTypeAction(Node->getOperand(1).getValueType()) == Promote) { 1075 SmallVector<SDOperand, 8> Ops; 1076 Ops.push_back(Tmp1); 1077 if (getTypeAction(Node->getOperand(1).getValueType()) == Legal) { 1078 Ops.push_back(Node->getOperand(1)); // line # must be legal. 1079 Ops.push_back(Node->getOperand(2)); // col # must be legal. 1080 } else { 1081 // Otherwise promote them. 1082 Ops.push_back(PromoteOp(Node->getOperand(1))); 1083 Ops.push_back(PromoteOp(Node->getOperand(2))); 1084 } 1085 Ops.push_back(Node->getOperand(3)); // filename must be legal. 1086 Ops.push_back(Node->getOperand(4)); // working dir # must be legal. 1087 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1088 } 1089 break; 1090 } 1091 break; 1092 1093 case ISD::DECLARE: 1094 assert(Node->getNumOperands() == 3 && "Invalid DECLARE node!"); 1095 switch (TLI.getOperationAction(ISD::DECLARE, MVT::Other)) { 1096 default: assert(0 && "This action is not supported yet!"); 1097 case TargetLowering::Legal: 1098 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1099 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the address. 1100 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the variable. 1101 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1102 break; 1103 } 1104 break; 1105 1106 case ISD::DEBUG_LOC: 1107 assert(Node->getNumOperands() == 4 && "Invalid DEBUG_LOC node!"); 1108 switch (TLI.getOperationAction(ISD::DEBUG_LOC, MVT::Other)) { 1109 default: assert(0 && "This action is not supported yet!"); 1110 case TargetLowering::Legal: 1111 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1112 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the line #. 1113 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the col #. 1114 Tmp4 = LegalizeOp(Node->getOperand(3)); // Legalize the source file id. 1115 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, Tmp4); 1116 break; 1117 } 1118 break; 1119 1120 case ISD::LABEL: 1121 assert(Node->getNumOperands() == 3 && "Invalid LABEL node!"); 1122 switch (TLI.getOperationAction(ISD::LABEL, MVT::Other)) { 1123 default: assert(0 && "This action is not supported yet!"); 1124 case TargetLowering::Legal: 1125 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1126 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the label id. 1127 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the "flavor" operand. 1128 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1129 break; 1130 case TargetLowering::Expand: 1131 Result = LegalizeOp(Node->getOperand(0)); 1132 break; 1133 } 1134 break; 1135 1136 case ISD::Constant: { 1137 ConstantSDNode *CN = cast<ConstantSDNode>(Node); 1138 unsigned opAction = 1139 TLI.getOperationAction(ISD::Constant, CN->getValueType(0)); 1140 1141 // We know we don't need to expand constants here, constants only have one 1142 // value and we check that it is fine above. 1143 1144 if (opAction == TargetLowering::Custom) { 1145 Tmp1 = TLI.LowerOperation(Result, DAG); 1146 if (Tmp1.Val) 1147 Result = Tmp1; 1148 } 1149 break; 1150 } 1151 case ISD::ConstantFP: { 1152 // Spill FP immediates to the constant pool if the target cannot directly 1153 // codegen them. Targets often have some immediate values that can be 1154 // efficiently generated into an FP register without a load. We explicitly 1155 // leave these constants as ConstantFP nodes for the target to deal with. 1156 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 1157 1158 switch (TLI.getOperationAction(ISD::ConstantFP, CFP->getValueType(0))) { 1159 default: assert(0 && "This action is not supported yet!"); 1160 case TargetLowering::Legal: 1161 break; 1162 case TargetLowering::Custom: 1163 Tmp3 = TLI.LowerOperation(Result, DAG); 1164 if (Tmp3.Val) { 1165 Result = Tmp3; 1166 break; 1167 } 1168 // FALLTHROUGH 1169 case TargetLowering::Expand: { 1170 // Check to see if this FP immediate is already legal. 1171 bool isLegal = false; 1172 for (TargetLowering::legal_fpimm_iterator I = TLI.legal_fpimm_begin(), 1173 E = TLI.legal_fpimm_end(); I != E; ++I) { 1174 if (CFP->isExactlyValue(*I)) { 1175 isLegal = true; 1176 break; 1177 } 1178 } 1179 // If this is a legal constant, turn it into a TargetConstantFP node. 1180 if (isLegal) 1181 break; 1182 Result = ExpandConstantFP(CFP, true, DAG, TLI); 1183 } 1184 } 1185 break; 1186 } 1187 case ISD::TokenFactor: 1188 if (Node->getNumOperands() == 2) { 1189 Tmp1 = LegalizeOp(Node->getOperand(0)); 1190 Tmp2 = LegalizeOp(Node->getOperand(1)); 1191 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1192 } else if (Node->getNumOperands() == 3) { 1193 Tmp1 = LegalizeOp(Node->getOperand(0)); 1194 Tmp2 = LegalizeOp(Node->getOperand(1)); 1195 Tmp3 = LegalizeOp(Node->getOperand(2)); 1196 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1197 } else { 1198 SmallVector<SDOperand, 8> Ops; 1199 // Legalize the operands. 1200 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 1201 Ops.push_back(LegalizeOp(Node->getOperand(i))); 1202 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1203 } 1204 break; 1205 1206 case ISD::FORMAL_ARGUMENTS: 1207 case ISD::CALL: 1208 // The only option for this is to custom lower it. 1209 Tmp3 = TLI.LowerOperation(Result.getValue(0), DAG); 1210 assert(Tmp3.Val && "Target didn't custom lower this node!"); 1211 1212 // The number of incoming and outgoing values should match; unless the final 1213 // outgoing value is a flag. 1214 assert((Tmp3.Val->getNumValues() == Result.Val->getNumValues() || 1215 (Tmp3.Val->getNumValues() == Result.Val->getNumValues() + 1 && 1216 Tmp3.Val->getValueType(Tmp3.Val->getNumValues() - 1) == 1217 MVT::Flag)) && 1218 "Lowering call/formal_arguments produced unexpected # results!"); 1219 1220 // Since CALL/FORMAL_ARGUMENTS nodes produce multiple values, make sure to 1221 // remember that we legalized all of them, so it doesn't get relegalized. 1222 for (unsigned i = 0, e = Tmp3.Val->getNumValues(); i != e; ++i) { 1223 if (Tmp3.Val->getValueType(i) == MVT::Flag) 1224 continue; 1225 Tmp1 = LegalizeOp(Tmp3.getValue(i)); 1226 if (Op.ResNo == i) 1227 Tmp2 = Tmp1; 1228 AddLegalizedOperand(SDOperand(Node, i), Tmp1); 1229 } 1230 return Tmp2; 1231 case ISD::EXTRACT_SUBREG: { 1232 Tmp1 = LegalizeOp(Node->getOperand(0)); 1233 ConstantSDNode *idx = dyn_cast<ConstantSDNode>(Node->getOperand(1)); 1234 assert(idx && "Operand must be a constant"); 1235 Tmp2 = DAG.getTargetConstant(idx->getValue(), idx->getValueType(0)); 1236 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1237 } 1238 break; 1239 case ISD::INSERT_SUBREG: { 1240 Tmp1 = LegalizeOp(Node->getOperand(0)); 1241 Tmp2 = LegalizeOp(Node->getOperand(1)); 1242 ConstantSDNode *idx = dyn_cast<ConstantSDNode>(Node->getOperand(2)); 1243 assert(idx && "Operand must be a constant"); 1244 Tmp3 = DAG.getTargetConstant(idx->getValue(), idx->getValueType(0)); 1245 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1246 } 1247 break; 1248 case ISD::BUILD_VECTOR: 1249 switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) { 1250 default: assert(0 && "This action is not supported yet!"); 1251 case TargetLowering::Custom: 1252 Tmp3 = TLI.LowerOperation(Result, DAG); 1253 if (Tmp3.Val) { 1254 Result = Tmp3; 1255 break; 1256 } 1257 // FALLTHROUGH 1258 case TargetLowering::Expand: 1259 Result = ExpandBUILD_VECTOR(Result.Val); 1260 break; 1261 } 1262 break; 1263 case ISD::INSERT_VECTOR_ELT: 1264 Tmp1 = LegalizeOp(Node->getOperand(0)); // InVec 1265 Tmp3 = LegalizeOp(Node->getOperand(2)); // InEltNo 1266 1267 // The type of the value to insert may not be legal, even though the vector 1268 // type is legal. Legalize/Promote accordingly. We do not handle Expand 1269 // here. 1270 switch (getTypeAction(Node->getOperand(1).getValueType())) { 1271 default: assert(0 && "Cannot expand insert element operand"); 1272 case Legal: Tmp2 = LegalizeOp(Node->getOperand(1)); break; 1273 case Promote: Tmp2 = PromoteOp(Node->getOperand(1)); break; 1274 } 1275 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1276 1277 switch (TLI.getOperationAction(ISD::INSERT_VECTOR_ELT, 1278 Node->getValueType(0))) { 1279 default: assert(0 && "This action is not supported yet!"); 1280 case TargetLowering::Legal: 1281 break; 1282 case TargetLowering::Custom: 1283 Tmp4 = TLI.LowerOperation(Result, DAG); 1284 if (Tmp4.Val) { 1285 Result = Tmp4; 1286 break; 1287 } 1288 // FALLTHROUGH 1289 case TargetLowering::Expand: { 1290 // If the insert index is a constant, codegen this as a scalar_to_vector, 1291 // then a shuffle that inserts it into the right position in the vector. 1292 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Tmp3)) { 1293 // SCALAR_TO_VECTOR requires that the type of the value being inserted 1294 // match the element type of the vector being created. 1295 if (Tmp2.getValueType() == 1296 MVT::getVectorElementType(Op.getValueType())) { 1297 SDOperand ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, 1298 Tmp1.getValueType(), Tmp2); 1299 1300 unsigned NumElts = MVT::getVectorNumElements(Tmp1.getValueType()); 1301 MVT::ValueType ShufMaskVT = MVT::getIntVectorWithNumElements(NumElts); 1302 MVT::ValueType ShufMaskEltVT = MVT::getVectorElementType(ShufMaskVT); 1303 1304 // We generate a shuffle of InVec and ScVec, so the shuffle mask 1305 // should be 0,1,2,3,4,5... with the appropriate element replaced with 1306 // elt 0 of the RHS. 1307 SmallVector<SDOperand, 8> ShufOps; 1308 for (unsigned i = 0; i != NumElts; ++i) { 1309 if (i != InsertPos->getValue()) 1310 ShufOps.push_back(DAG.getConstant(i, ShufMaskEltVT)); 1311 else 1312 ShufOps.push_back(DAG.getConstant(NumElts, ShufMaskEltVT)); 1313 } 1314 SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, ShufMaskVT, 1315 &ShufOps[0], ShufOps.size()); 1316 1317 Result = DAG.getNode(ISD::VECTOR_SHUFFLE, Tmp1.getValueType(), 1318 Tmp1, ScVec, ShufMask); 1319 Result = LegalizeOp(Result); 1320 break; 1321 } 1322 } 1323 1324 // If the target doesn't support this, we have to spill the input vector 1325 // to a temporary stack slot, update the element, then reload it. This is 1326 // badness. We could also load the value into a vector register (either 1327 // with a "move to register" or "extload into register" instruction, then 1328 // permute it into place, if the idx is a constant and if the idx is 1329 // supported by the target. 1330 MVT::ValueType VT = Tmp1.getValueType(); 1331 MVT::ValueType EltVT = MVT::getVectorElementType(VT); 1332 MVT::ValueType IdxVT = Tmp3.getValueType(); 1333 MVT::ValueType PtrVT = TLI.getPointerTy(); 1334 SDOperand StackPtr = DAG.CreateStackTemporary(VT); 1335 1336 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr.Val); 1337 int SPFI = StackPtrFI->getIndex(); 1338 1339 // Store the vector. 1340 SDOperand Ch = DAG.getStore(DAG.getEntryNode(), Tmp1, StackPtr, 1341 PseudoSourceValue::getFixedStack(), 1342 SPFI); 1343 1344 // Truncate or zero extend offset to target pointer type. 1345 unsigned CastOpc = (IdxVT > PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND; 1346 Tmp3 = DAG.getNode(CastOpc, PtrVT, Tmp3); 1347 // Add the offset to the index. 1348 unsigned EltSize = MVT::getSizeInBits(EltVT)/8; 1349 Tmp3 = DAG.getNode(ISD::MUL, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT)); 1350 SDOperand StackPtr2 = DAG.getNode(ISD::ADD, IdxVT, Tmp3, StackPtr); 1351 // Store the scalar value. 1352 Ch = DAG.getTruncStore(Ch, Tmp2, StackPtr2, 1353 PseudoSourceValue::getFixedStack(), SPFI, EltVT); 1354 // Load the updated vector. 1355 Result = DAG.getLoad(VT, Ch, StackPtr, 1356 PseudoSourceValue::getFixedStack(), SPFI); 1357 break; 1358 } 1359 } 1360 break; 1361 case ISD::SCALAR_TO_VECTOR: 1362 if (!TLI.isTypeLegal(Node->getOperand(0).getValueType())) { 1363 Result = LegalizeOp(ExpandSCALAR_TO_VECTOR(Node)); 1364 break; 1365 } 1366 1367 Tmp1 = LegalizeOp(Node->getOperand(0)); // InVal 1368 Result = DAG.UpdateNodeOperands(Result, Tmp1); 1369 switch (TLI.getOperationAction(ISD::SCALAR_TO_VECTOR, 1370 Node->getValueType(0))) { 1371 default: assert(0 && "This action is not supported yet!"); 1372 case TargetLowering::Legal: 1373 break; 1374 case TargetLowering::Custom: 1375 Tmp3 = TLI.LowerOperation(Result, DAG); 1376 if (Tmp3.Val) { 1377 Result = Tmp3; 1378 break; 1379 } 1380 // FALLTHROUGH 1381 case TargetLowering::Expand: 1382 Result = LegalizeOp(ExpandSCALAR_TO_VECTOR(Node)); 1383 break; 1384 } 1385 break; 1386 case ISD::VECTOR_SHUFFLE: 1387 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the input vectors, 1388 Tmp2 = LegalizeOp(Node->getOperand(1)); // but not the shuffle mask. 1389 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 1390 1391 // Allow targets to custom lower the SHUFFLEs they support. 1392 switch (TLI.getOperationAction(ISD::VECTOR_SHUFFLE,Result.getValueType())) { 1393 default: assert(0 && "Unknown operation action!"); 1394 case TargetLowering::Legal: 1395 assert(isShuffleLegal(Result.getValueType(), Node->getOperand(2)) && 1396 "vector shuffle should not be created if not legal!"); 1397 break; 1398 case TargetLowering::Custom: 1399 Tmp3 = TLI.LowerOperation(Result, DAG); 1400 if (Tmp3.Val) { 1401 Result = Tmp3; 1402 break; 1403 } 1404 // FALLTHROUGH 1405 case TargetLowering::Expand: { 1406 MVT::ValueType VT = Node->getValueType(0); 1407 MVT::ValueType EltVT = MVT::getVectorElementType(VT); 1408 MVT::ValueType PtrVT = TLI.getPointerTy(); 1409 SDOperand Mask = Node->getOperand(2); 1410 unsigned NumElems = Mask.getNumOperands(); 1411 SmallVector<SDOperand,8> Ops; 1412 for (unsigned i = 0; i != NumElems; ++i) { 1413 SDOperand Arg = Mask.getOperand(i); 1414 if (Arg.getOpcode() == ISD::UNDEF) { 1415 Ops.push_back(DAG.getNode(ISD::UNDEF, EltVT)); 1416 } else { 1417 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); 1418 unsigned Idx = cast<ConstantSDNode>(Arg)->getValue(); 1419 if (Idx < NumElems) 1420 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EltVT, Tmp1, 1421 DAG.getConstant(Idx, PtrVT))); 1422 else 1423 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EltVT, Tmp2, 1424 DAG.getConstant(Idx - NumElems, PtrVT))); 1425 } 1426 } 1427 Result = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size()); 1428 break; 1429 } 1430 case TargetLowering::Promote: { 1431 // Change base type to a different vector type. 1432 MVT::ValueType OVT = Node->getValueType(0); 1433 MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 1434 1435 // Cast the two input vectors. 1436 Tmp1 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp1); 1437 Tmp2 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp2); 1438 1439 // Convert the shuffle mask to the right # elements. 1440 Tmp3 = SDOperand(isShuffleLegal(OVT, Node->getOperand(2)), 0); 1441 assert(Tmp3.Val && "Shuffle not legal?"); 1442 Result = DAG.getNode(ISD::VECTOR_SHUFFLE, NVT, Tmp1, Tmp2, Tmp3); 1443 Result = DAG.getNode(ISD::BIT_CONVERT, OVT, Result); 1444 break; 1445 } 1446 } 1447 break; 1448 1449 case ISD::EXTRACT_VECTOR_ELT: 1450 Tmp1 = Node->getOperand(0); 1451 Tmp2 = LegalizeOp(Node->getOperand(1)); 1452 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1453 Result = ExpandEXTRACT_VECTOR_ELT(Result); 1454 break; 1455 1456 case ISD::EXTRACT_SUBVECTOR: 1457 Tmp1 = Node->getOperand(0); 1458 Tmp2 = LegalizeOp(Node->getOperand(1)); 1459 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1460 Result = ExpandEXTRACT_SUBVECTOR(Result); 1461 break; 1462 1463 case ISD::CALLSEQ_START: { 1464 SDNode *CallEnd = FindCallEndFromCallStart(Node); 1465 1466 // Recursively Legalize all of the inputs of the call end that do not lead 1467 // to this call start. This ensures that any libcalls that need be inserted 1468 // are inserted *before* the CALLSEQ_START. 1469 {SmallPtrSet<SDNode*, 32> NodesLeadingTo; 1470 for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i) 1471 LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).Val, Node, 1472 NodesLeadingTo); 1473 } 1474 1475 // Now that we legalized all of the inputs (which may have inserted 1476 // libcalls) create the new CALLSEQ_START node. 1477 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1478 1479 // Merge in the last call, to ensure that this call start after the last 1480 // call ended. 1481 if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) { 1482 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1483 Tmp1 = LegalizeOp(Tmp1); 1484 } 1485 1486 // Do not try to legalize the target-specific arguments (#1+). 1487 if (Tmp1 != Node->getOperand(0)) { 1488 SmallVector<SDOperand, 8> Ops(Node->op_begin(), Node->op_end()); 1489 Ops[0] = Tmp1; 1490 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1491 } 1492 1493 // Remember that the CALLSEQ_START is legalized. 1494 AddLegalizedOperand(Op.getValue(0), Result); 1495 if (Node->getNumValues() == 2) // If this has a flag result, remember it. 1496 AddLegalizedOperand(Op.getValue(1), Result.getValue(1)); 1497 1498 // Now that the callseq_start and all of the non-call nodes above this call 1499 // sequence have been legalized, legalize the call itself. During this 1500 // process, no libcalls can/will be inserted, guaranteeing that no calls 1501 // can overlap. 1502 assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!"); 1503 SDOperand InCallSEQ = LastCALLSEQ_END; 1504 // Note that we are selecting this call! 1505 LastCALLSEQ_END = SDOperand(CallEnd, 0); 1506 IsLegalizingCall = true; 1507 1508 // Legalize the call, starting from the CALLSEQ_END. 1509 LegalizeOp(LastCALLSEQ_END); 1510 assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!"); 1511 return Result; 1512 } 1513 case ISD::CALLSEQ_END: 1514 // If the CALLSEQ_START node hasn't been legalized first, legalize it. This 1515 // will cause this node to be legalized as well as handling libcalls right. 1516 if (LastCALLSEQ_END.Val != Node) { 1517 LegalizeOp(SDOperand(FindCallStartFromCallEnd(Node), 0)); 1518 DenseMap<SDOperand, SDOperand>::iterator I = LegalizedNodes.find(Op); 1519 assert(I != LegalizedNodes.end() && 1520 "Legalizing the call start should have legalized this node!"); 1521 return I->second; 1522 } 1523 1524 // Otherwise, the call start has been legalized and everything is going 1525 // according to plan. Just legalize ourselves normally here. 1526 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1527 // Do not try to legalize the target-specific arguments (#1+), except for 1528 // an optional flag input. 1529 if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Flag){ 1530 if (Tmp1 != Node->getOperand(0)) { 1531 SmallVector<SDOperand, 8> Ops(Node->op_begin(), Node->op_end()); 1532 Ops[0] = Tmp1; 1533 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1534 } 1535 } else { 1536 Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1)); 1537 if (Tmp1 != Node->getOperand(0) || 1538 Tmp2 != Node->getOperand(Node->getNumOperands()-1)) { 1539 SmallVector<SDOperand, 8> Ops(Node->op_begin(), Node->op_end()); 1540 Ops[0] = Tmp1; 1541 Ops.back() = Tmp2; 1542 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1543 } 1544 } 1545 assert(IsLegalizingCall && "Call sequence imbalance between start/end?"); 1546 // This finishes up call legalization. 1547 IsLegalizingCall = false; 1548 1549 // If the CALLSEQ_END node has a flag, remember that we legalized it. 1550 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 1551 if (Node->getNumValues() == 2) 1552 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 1553 return Result.getValue(Op.ResNo); 1554 case ISD::DYNAMIC_STACKALLOC: { 1555 MVT::ValueType VT = Node->getValueType(0); 1556 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1557 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the size. 1558 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the alignment. 1559 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1560 1561 Tmp1 = Result.getValue(0); 1562 Tmp2 = Result.getValue(1); 1563 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 1564 default: assert(0 && "This action is not supported yet!"); 1565 case TargetLowering::Expand: { 1566 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1567 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" 1568 " not tell us which reg is the stack pointer!"); 1569 SDOperand Chain = Tmp1.getOperand(0); 1570 1571 // Chain the dynamic stack allocation so that it doesn't modify the stack 1572 // pointer when other instructions are using the stack. 1573 Chain = DAG.getCALLSEQ_START(Chain, 1574 DAG.getConstant(0, TLI.getPointerTy())); 1575 1576 SDOperand Size = Tmp2.getOperand(1); 1577 SDOperand SP = DAG.getCopyFromReg(Chain, SPReg, VT); 1578 Chain = SP.getValue(1); 1579 unsigned Align = cast<ConstantSDNode>(Tmp3)->getValue(); 1580 unsigned StackAlign = 1581 TLI.getTargetMachine().getFrameInfo()->getStackAlignment(); 1582 if (Align > StackAlign) 1583 SP = DAG.getNode(ISD::AND, VT, SP, 1584 DAG.getConstant(-(uint64_t)Align, VT)); 1585 Tmp1 = DAG.getNode(ISD::SUB, VT, SP, Size); // Value 1586 Chain = DAG.getCopyToReg(Chain, SPReg, Tmp1); // Output chain 1587 1588 Tmp2 = 1589 DAG.getCALLSEQ_END(Chain, 1590 DAG.getConstant(0, TLI.getPointerTy()), 1591 DAG.getConstant(0, TLI.getPointerTy()), 1592 SDOperand()); 1593 1594 Tmp1 = LegalizeOp(Tmp1); 1595 Tmp2 = LegalizeOp(Tmp2); 1596 break; 1597 } 1598 case TargetLowering::Custom: 1599 Tmp3 = TLI.LowerOperation(Tmp1, DAG); 1600 if (Tmp3.Val) { 1601 Tmp1 = LegalizeOp(Tmp3); 1602 Tmp2 = LegalizeOp(Tmp3.getValue(1)); 1603 } 1604 break; 1605 case TargetLowering::Legal: 1606 break; 1607 } 1608 // Since this op produce two values, make sure to remember that we 1609 // legalized both of them. 1610 AddLegalizedOperand(SDOperand(Node, 0), Tmp1); 1611 AddLegalizedOperand(SDOperand(Node, 1), Tmp2); 1612 return Op.ResNo ? Tmp2 : Tmp1; 1613 } 1614 case ISD::INLINEASM: { 1615 SmallVector<SDOperand, 8> Ops(Node->op_begin(), Node->op_end()); 1616 bool Changed = false; 1617 // Legalize all of the operands of the inline asm, in case they are nodes 1618 // that need to be expanded or something. Note we skip the asm string and 1619 // all of the TargetConstant flags. 1620 SDOperand Op = LegalizeOp(Ops[0]); 1621 Changed = Op != Ops[0]; 1622 Ops[0] = Op; 1623 1624 bool HasInFlag = Ops.back().getValueType() == MVT::Flag; 1625 for (unsigned i = 2, e = Ops.size()-HasInFlag; i < e; ) { 1626 unsigned NumVals = cast<ConstantSDNode>(Ops[i])->getValue() >> 3; 1627 for (++i; NumVals; ++i, --NumVals) { 1628 SDOperand Op = LegalizeOp(Ops[i]); 1629 if (Op != Ops[i]) { 1630 Changed = true; 1631 Ops[i] = Op; 1632 } 1633 } 1634 } 1635 1636 if (HasInFlag) { 1637 Op = LegalizeOp(Ops.back()); 1638 Changed |= Op != Ops.back(); 1639 Ops.back() = Op; 1640 } 1641 1642 if (Changed) 1643 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1644 1645 // INLINE asm returns a chain and flag, make sure to add both to the map. 1646 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 1647 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 1648 return Result.getValue(Op.ResNo); 1649 } 1650 case ISD::BR: 1651 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1652 // Ensure that libcalls are emitted before a branch. 1653 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1654 Tmp1 = LegalizeOp(Tmp1); 1655 LastCALLSEQ_END = DAG.getEntryNode(); 1656 1657 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 1658 break; 1659 case ISD::BRIND: 1660 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1661 // Ensure that libcalls are emitted before a branch. 1662 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1663 Tmp1 = LegalizeOp(Tmp1); 1664 LastCALLSEQ_END = DAG.getEntryNode(); 1665 1666 switch (getTypeAction(Node->getOperand(1).getValueType())) { 1667 default: assert(0 && "Indirect target must be legal type (pointer)!"); 1668 case Legal: 1669 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the condition. 1670 break; 1671 } 1672 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1673 break; 1674 case ISD::BR_JT: 1675 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1676 // Ensure that libcalls are emitted before a branch. 1677 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1678 Tmp1 = LegalizeOp(Tmp1); 1679 LastCALLSEQ_END = DAG.getEntryNode(); 1680 1681 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the jumptable node. 1682 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 1683 1684 switch (TLI.getOperationAction(ISD::BR_JT, MVT::Other)) { 1685 default: assert(0 && "This action is not supported yet!"); 1686 case TargetLowering::Legal: break; 1687 case TargetLowering::Custom: 1688 Tmp1 = TLI.LowerOperation(Result, DAG); 1689 if (Tmp1.Val) Result = Tmp1; 1690 break; 1691 case TargetLowering::Expand: { 1692 SDOperand Chain = Result.getOperand(0); 1693 SDOperand Table = Result.getOperand(1); 1694 SDOperand Index = Result.getOperand(2); 1695 1696 MVT::ValueType PTy = TLI.getPointerTy(); 1697 MachineFunction &MF = DAG.getMachineFunction(); 1698 unsigned EntrySize = MF.getJumpTableInfo()->getEntrySize(); 1699 Index= DAG.getNode(ISD::MUL, PTy, Index, DAG.getConstant(EntrySize, PTy)); 1700 SDOperand Addr = DAG.getNode(ISD::ADD, PTy, Index, Table); 1701 1702 SDOperand LD; 1703 switch (EntrySize) { 1704 default: assert(0 && "Size of jump table not supported yet."); break; 1705 case 4: LD = DAG.getLoad(MVT::i32, Chain, Addr, 1706 PseudoSourceValue::getJumpTable(), 0); break; 1707 case 8: LD = DAG.getLoad(MVT::i64, Chain, Addr, 1708 PseudoSourceValue::getJumpTable(), 0); break; 1709 } 1710 1711 Addr = LD; 1712 if (TLI.getTargetMachine().getRelocationModel() == Reloc::PIC_) { 1713 // For PIC, the sequence is: 1714 // BRIND(load(Jumptable + index) + RelocBase) 1715 // RelocBase can be JumpTable, GOT or some sort of global base. 1716 if (PTy != MVT::i32) 1717 Addr = DAG.getNode(ISD::SIGN_EXTEND, PTy, Addr); 1718 Addr = DAG.getNode(ISD::ADD, PTy, Addr, 1719 TLI.getPICJumpTableRelocBase(Table, DAG)); 1720 } 1721 Result = DAG.getNode(ISD::BRIND, MVT::Other, LD.getValue(1), Addr); 1722 } 1723 } 1724 break; 1725 case ISD::BRCOND: 1726 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1727 // Ensure that libcalls are emitted before a return. 1728 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1729 Tmp1 = LegalizeOp(Tmp1); 1730 LastCALLSEQ_END = DAG.getEntryNode(); 1731 1732 switch (getTypeAction(Node->getOperand(1).getValueType())) { 1733 case Expand: assert(0 && "It's impossible to expand bools"); 1734 case Legal: 1735 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the condition. 1736 break; 1737 case Promote: 1738 Tmp2 = PromoteOp(Node->getOperand(1)); // Promote the condition. 1739 1740 // The top bits of the promoted condition are not necessarily zero, ensure 1741 // that the value is properly zero extended. 1742 if (!DAG.MaskedValueIsZero(Tmp2, 1743 MVT::getIntVTBitMask(Tmp2.getValueType())^1)) 1744 Tmp2 = DAG.getZeroExtendInReg(Tmp2, MVT::i1); 1745 break; 1746 } 1747 1748 // Basic block destination (Op#2) is always legal. 1749 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 1750 1751 switch (TLI.getOperationAction(ISD::BRCOND, MVT::Other)) { 1752 default: assert(0 && "This action is not supported yet!"); 1753 case TargetLowering::Legal: break; 1754 case TargetLowering::Custom: 1755 Tmp1 = TLI.LowerOperation(Result, DAG); 1756 if (Tmp1.Val) Result = Tmp1; 1757 break; 1758 case TargetLowering::Expand: 1759 // Expand brcond's setcc into its constituent parts and create a BR_CC 1760 // Node. 1761 if (Tmp2.getOpcode() == ISD::SETCC) { 1762 Result = DAG.getNode(ISD::BR_CC, MVT::Other, Tmp1, Tmp2.getOperand(2), 1763 Tmp2.getOperand(0), Tmp2.getOperand(1), 1764 Node->getOperand(2)); 1765 } else { 1766 Result = DAG.getNode(ISD::BR_CC, MVT::Other, Tmp1, 1767 DAG.getCondCode(ISD::SETNE), Tmp2, 1768 DAG.getConstant(0, Tmp2.getValueType()), 1769 Node->getOperand(2)); 1770 } 1771 break; 1772 } 1773 break; 1774 case ISD::BR_CC: 1775 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1776 // Ensure that libcalls are emitted before a branch. 1777 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 1778 Tmp1 = LegalizeOp(Tmp1); 1779 Tmp2 = Node->getOperand(2); // LHS 1780 Tmp3 = Node->getOperand(3); // RHS 1781 Tmp4 = Node->getOperand(1); // CC 1782 1783 LegalizeSetCCOperands(Tmp2, Tmp3, Tmp4); 1784 LastCALLSEQ_END = DAG.getEntryNode(); 1785 1786 // If we didn't get both a LHS and RHS back from LegalizeSetCCOperands, 1787 // the LHS is a legal SETCC itself. In this case, we need to compare 1788 // the result against zero to select between true and false values. 1789 if (Tmp3.Val == 0) { 1790 Tmp3 = DAG.getConstant(0, Tmp2.getValueType()); 1791 Tmp4 = DAG.getCondCode(ISD::SETNE); 1792 } 1793 1794 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp4, Tmp2, Tmp3, 1795 Node->getOperand(4)); 1796 1797 switch (TLI.getOperationAction(ISD::BR_CC, Tmp3.getValueType())) { 1798 default: assert(0 && "Unexpected action for BR_CC!"); 1799 case TargetLowering::Legal: break; 1800 case TargetLowering::Custom: 1801 Tmp4 = TLI.LowerOperation(Result, DAG); 1802 if (Tmp4.Val) Result = Tmp4; 1803 break; 1804 } 1805 break; 1806 case ISD::LOAD: { 1807 LoadSDNode *LD = cast<LoadSDNode>(Node); 1808 Tmp1 = LegalizeOp(LD->getChain()); // Legalize the chain. 1809 Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer. 1810 1811 ISD::LoadExtType ExtType = LD->getExtensionType(); 1812 if (ExtType == ISD::NON_EXTLOAD) { 1813 MVT::ValueType VT = Node->getValueType(0); 1814 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset()); 1815 Tmp3 = Result.getValue(0); 1816 Tmp4 = Result.getValue(1); 1817 1818 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 1819 default: assert(0 && "This action is not supported yet!"); 1820 case TargetLowering::Legal: 1821 // If this is an unaligned load and the target doesn't support it, 1822 // expand it. 1823 if (!TLI.allowsUnalignedMemoryAccesses()) { 1824 unsigned ABIAlignment = TLI.getTargetData()-> 1825 getABITypeAlignment(MVT::getTypeForValueType(LD->getMemoryVT())); 1826 if (LD->getAlignment() < ABIAlignment){ 1827 Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.Val), DAG, 1828 TLI); 1829 Tmp3 = Result.getOperand(0); 1830 Tmp4 = Result.getOperand(1); 1831 Tmp3 = LegalizeOp(Tmp3); 1832 Tmp4 = LegalizeOp(Tmp4); 1833 } 1834 } 1835 break; 1836 case TargetLowering::Custom: 1837 Tmp1 = TLI.LowerOperation(Tmp3, DAG); 1838 if (Tmp1.Val) { 1839 Tmp3 = LegalizeOp(Tmp1); 1840 Tmp4 = LegalizeOp(Tmp1.getValue(1)); 1841 } 1842 break; 1843 case TargetLowering::Promote: { 1844 // Only promote a load of vector type to another. 1845 assert(MVT::isVector(VT) && "Cannot promote this load!"); 1846 // Change base type to a different vector type. 1847 MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 1848 1849 Tmp1 = DAG.getLoad(NVT, Tmp1, Tmp2, LD->getSrcValue(), 1850 LD->getSrcValueOffset(), 1851 LD->isVolatile(), LD->getAlignment()); 1852 Tmp3 = LegalizeOp(DAG.getNode(ISD::BIT_CONVERT, VT, Tmp1)); 1853 Tmp4 = LegalizeOp(Tmp1.getValue(1)); 1854 break; 1855 } 1856 } 1857 // Since loads produce two values, make sure to remember that we 1858 // legalized both of them. 1859 AddLegalizedOperand(SDOperand(Node, 0), Tmp3); 1860 AddLegalizedOperand(SDOperand(Node, 1), Tmp4); 1861 return Op.ResNo ? Tmp4 : Tmp3; 1862 } else { 1863 MVT::ValueType SrcVT = LD->getMemoryVT(); 1864 unsigned SrcWidth = MVT::getSizeInBits(SrcVT); 1865 int SVOffset = LD->getSrcValueOffset(); 1866 unsigned Alignment = LD->getAlignment(); 1867 bool isVolatile = LD->isVolatile(); 1868 1869 if (SrcWidth != MVT::getStoreSizeInBits(SrcVT) && 1870 // Some targets pretend to have an i1 loading operation, and actually 1871 // load an i8. This trick is correct for ZEXTLOAD because the top 7 1872 // bits are guaranteed to be zero; it helps the optimizers understand 1873 // that these bits are zero. It is also useful for EXTLOAD, since it 1874 // tells the optimizers that those bits are undefined. It would be 1875 // nice to have an effective generic way of getting these benefits... 1876 // Until such a way is found, don't insist on promoting i1 here. 1877 (SrcVT != MVT::i1 || 1878 TLI.getLoadXAction(ExtType, MVT::i1) == TargetLowering::Promote)) { 1879 // Promote to a byte-sized load if not loading an integral number of 1880 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 1881 unsigned NewWidth = MVT::getStoreSizeInBits(SrcVT); 1882 MVT::ValueType NVT = MVT::getIntegerType(NewWidth); 1883 SDOperand Ch; 1884 1885 // The extra bits are guaranteed to be zero, since we stored them that 1886 // way. A zext load from NVT thus automatically gives zext from SrcVT. 1887 1888 ISD::LoadExtType NewExtType = 1889 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; 1890 1891 Result = DAG.getExtLoad(NewExtType, Node->getValueType(0), 1892 Tmp1, Tmp2, LD->getSrcValue(), SVOffset, 1893 NVT, isVolatile, Alignment); 1894 1895 Ch = Result.getValue(1); // The chain. 1896 1897 if (ExtType == ISD::SEXTLOAD) 1898 // Having the top bits zero doesn't help when sign extending. 1899 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(), 1900 Result, DAG.getValueType(SrcVT)); 1901 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) 1902 // All the top bits are guaranteed to be zero - inform the optimizers. 1903 Result = DAG.getNode(ISD::AssertZext, Result.getValueType(), Result, 1904 DAG.getValueType(SrcVT)); 1905 1906 Tmp1 = LegalizeOp(Result); 1907 Tmp2 = LegalizeOp(Ch); 1908 } else if (SrcWidth & (SrcWidth - 1)) { 1909 // If not loading a power-of-2 number of bits, expand as two loads. 1910 assert(MVT::isExtendedVT(SrcVT) && !MVT::isVector(SrcVT) && 1911 "Unsupported extload!"); 1912 unsigned RoundWidth = 1 << Log2_32(SrcWidth); 1913 assert(RoundWidth < SrcWidth); 1914 unsigned ExtraWidth = SrcWidth - RoundWidth; 1915 assert(ExtraWidth < RoundWidth); 1916 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 1917 "Load size not an integral number of bytes!"); 1918 MVT::ValueType RoundVT = MVT::getIntegerType(RoundWidth); 1919 MVT::ValueType ExtraVT = MVT::getIntegerType(ExtraWidth); 1920 SDOperand Lo, Hi, Ch; 1921 unsigned IncrementSize; 1922 1923 if (TLI.isLittleEndian()) { 1924 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) 1925 // Load the bottom RoundWidth bits. 1926 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, Node->getValueType(0), Tmp1, Tmp2, 1927 LD->getSrcValue(), SVOffset, RoundVT, isVolatile, 1928 Alignment); 1929 1930 // Load the remaining ExtraWidth bits. 1931 IncrementSize = RoundWidth / 8; 1932 Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, 1933 DAG.getIntPtrConstant(IncrementSize)); 1934 Hi = DAG.getExtLoad(ExtType, Node->getValueType(0), Tmp1, Tmp2, 1935 LD->getSrcValue(), SVOffset + IncrementSize, 1936 ExtraVT, isVolatile, 1937 MinAlign(Alignment, IncrementSize)); 1938 1939 // Build a factor node to remember that this load is independent of the 1940 // other one. 1941 Ch = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), 1942 Hi.getValue(1)); 1943 1944 // Move the top bits to the right place. 1945 Hi = DAG.getNode(ISD::SHL, Hi.getValueType(), Hi, 1946 DAG.getConstant(RoundWidth, TLI.getShiftAmountTy())); 1947 1948 // Join the hi and lo parts. 1949 Result = DAG.getNode(ISD::OR, Node->getValueType(0), Lo, Hi); 1950 } else { 1951 // Big endian - avoid unaligned loads. 1952 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 1953 // Load the top RoundWidth bits. 1954 Hi = DAG.getExtLoad(ExtType, Node->getValueType(0), Tmp1, Tmp2, 1955 LD->getSrcValue(), SVOffset, RoundVT, isVolatile, 1956 Alignment); 1957 1958 // Load the remaining ExtraWidth bits. 1959 IncrementSize = RoundWidth / 8; 1960 Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, 1961 DAG.getIntPtrConstant(IncrementSize)); 1962 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, Node->getValueType(0), Tmp1, Tmp2, 1963 LD->getSrcValue(), SVOffset + IncrementSize, 1964 ExtraVT, isVolatile, 1965 MinAlign(Alignment, IncrementSize)); 1966 1967 // Build a factor node to remember that this load is independent of the 1968 // other one. 1969 Ch = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), 1970 Hi.getValue(1)); 1971 1972 // Move the top bits to the right place. 1973 Hi = DAG.getNode(ISD::SHL, Hi.getValueType(), Hi, 1974 DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy())); 1975 1976 // Join the hi and lo parts. 1977 Result = DAG.getNode(ISD::OR, Node->getValueType(0), Lo, Hi); 1978 } 1979 1980 Tmp1 = LegalizeOp(Result); 1981 Tmp2 = LegalizeOp(Ch); 1982 } else { 1983 switch (TLI.getLoadXAction(ExtType, SrcVT)) { 1984 default: assert(0 && "This action is not supported yet!"); 1985 case TargetLowering::Custom: 1986 isCustom = true; 1987 // FALLTHROUGH 1988 case TargetLowering::Legal: 1989 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset()); 1990 Tmp1 = Result.getValue(0); 1991 Tmp2 = Result.getValue(1); 1992 1993 if (isCustom) { 1994 Tmp3 = TLI.LowerOperation(Result, DAG); 1995 if (Tmp3.Val) { 1996 Tmp1 = LegalizeOp(Tmp3); 1997 Tmp2 = LegalizeOp(Tmp3.getValue(1)); 1998 } 1999 } else { 2000 // If this is an unaligned load and the target doesn't support it, 2001 // expand it. 2002 if (!TLI.allowsUnalignedMemoryAccesses()) { 2003 unsigned ABIAlignment = TLI.getTargetData()-> 2004 getABITypeAlignment(MVT::getTypeForValueType(LD->getMemoryVT())); 2005 if (LD->getAlignment() < ABIAlignment){ 2006 Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.Val), DAG, 2007 TLI); 2008 Tmp1 = Result.getOperand(0); 2009 Tmp2 = Result.getOperand(1); 2010 Tmp1 = LegalizeOp(Tmp1); 2011 Tmp2 = LegalizeOp(Tmp2); 2012 } 2013 } 2014 } 2015 break; 2016 case TargetLowering::Expand: 2017 // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND 2018 if (SrcVT == MVT::f32 && Node->getValueType(0) == MVT::f64) { 2019 SDOperand Load = DAG.getLoad(SrcVT, Tmp1, Tmp2, LD->getSrcValue(), 2020 LD->getSrcValueOffset(), 2021 LD->isVolatile(), LD->getAlignment()); 2022 Result = DAG.getNode(ISD::FP_EXTEND, Node->getValueType(0), Load); 2023 Tmp1 = LegalizeOp(Result); // Relegalize new nodes. 2024 Tmp2 = LegalizeOp(Load.getValue(1)); 2025 break; 2026 } 2027 assert(ExtType != ISD::EXTLOAD &&"EXTLOAD should always be supported!"); 2028 // Turn the unsupported load into an EXTLOAD followed by an explicit 2029 // zero/sign extend inreg. 2030 Result = DAG.getExtLoad(ISD::EXTLOAD, Node->getValueType(0), 2031 Tmp1, Tmp2, LD->getSrcValue(), 2032 LD->getSrcValueOffset(), SrcVT, 2033 LD->isVolatile(), LD->getAlignment()); 2034 SDOperand ValRes; 2035 if (ExtType == ISD::SEXTLOAD) 2036 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(), 2037 Result, DAG.getValueType(SrcVT)); 2038 else 2039 ValRes = DAG.getZeroExtendInReg(Result, SrcVT); 2040 Tmp1 = LegalizeOp(ValRes); // Relegalize new nodes. 2041 Tmp2 = LegalizeOp(Result.getValue(1)); // Relegalize new nodes. 2042 break; 2043 } 2044 } 2045 2046 // Since loads produce two values, make sure to remember that we legalized 2047 // both of them. 2048 AddLegalizedOperand(SDOperand(Node, 0), Tmp1); 2049 AddLegalizedOperand(SDOperand(Node, 1), Tmp2); 2050 return Op.ResNo ? Tmp2 : Tmp1; 2051 } 2052 } 2053 case ISD::EXTRACT_ELEMENT: { 2054 MVT::ValueType OpTy = Node->getOperand(0).getValueType(); 2055 switch (getTypeAction(OpTy)) { 2056 default: assert(0 && "EXTRACT_ELEMENT action for type unimplemented!"); 2057 case Legal: 2058 if (cast<ConstantSDNode>(Node->getOperand(1))->getValue()) { 2059 // 1 -> Hi 2060 Result = DAG.getNode(ISD::SRL, OpTy, Node->getOperand(0), 2061 DAG.getConstant(MVT::getSizeInBits(OpTy)/2, 2062 TLI.getShiftAmountTy())); 2063 Result = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), Result); 2064 } else { 2065 // 0 -> Lo 2066 Result = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), 2067 Node->getOperand(0)); 2068 } 2069 break; 2070 case Expand: 2071 // Get both the low and high parts. 2072 ExpandOp(Node->getOperand(0), Tmp1, Tmp2); 2073 if (cast<ConstantSDNode>(Node->getOperand(1))->getValue()) 2074 Result = Tmp2; // 1 -> Hi 2075 else 2076 Result = Tmp1; // 0 -> Lo 2077 break; 2078 } 2079 break; 2080 } 2081 2082 case ISD::CopyToReg: 2083 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2084 2085 assert(isTypeLegal(Node->getOperand(2).getValueType()) && 2086 "Register type must be legal!"); 2087 // Legalize the incoming value (must be a legal type). 2088 Tmp2 = LegalizeOp(Node->getOperand(2)); 2089 if (Node->getNumValues() == 1) { 2090 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1), Tmp2); 2091 } else { 2092 assert(Node->getNumValues() == 2 && "Unknown CopyToReg"); 2093 if (Node->getNumOperands() == 4) { 2094 Tmp3 = LegalizeOp(Node->getOperand(3)); 2095 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1), Tmp2, 2096 Tmp3); 2097 } else { 2098 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1),Tmp2); 2099 } 2100 2101 // Since this produces two values, make sure to remember that we legalized 2102 // both of them. 2103 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 2104 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 2105 return Result; 2106 } 2107 break; 2108 2109 case ISD::RET: 2110 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2111 2112 // Ensure that libcalls are emitted before a return. 2113 Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); 2114 Tmp1 = LegalizeOp(Tmp1); 2115 LastCALLSEQ_END = DAG.getEntryNode(); 2116 2117 switch (Node->getNumOperands()) { 2118 case 3: // ret val 2119 Tmp2 = Node->getOperand(1); 2120 Tmp3 = Node->getOperand(2); // Signness 2121 switch (getTypeAction(Tmp2.getValueType())) { 2122 case Legal: 2123 Result = DAG.UpdateNodeOperands(Result, Tmp1, LegalizeOp(Tmp2), Tmp3); 2124 break; 2125 case Expand: 2126 if (!MVT::isVector(Tmp2.getValueType())) { 2127 SDOperand Lo, Hi; 2128 ExpandOp(Tmp2, Lo, Hi); 2129 2130 // Big endian systems want the hi reg first. 2131 if (TLI.isBigEndian()) 2132 std::swap(Lo, Hi); 2133 2134 if (Hi.Val) 2135 Result = DAG.getNode(ISD::RET, MVT::Other, Tmp1, Lo, Tmp3, Hi,Tmp3); 2136 else 2137 Result = DAG.getNode(ISD::RET, MVT::Other, Tmp1, Lo, Tmp3); 2138 Result = LegalizeOp(Result); 2139 } else { 2140 SDNode *InVal = Tmp2.Val; 2141 int InIx = Tmp2.ResNo; 2142 unsigned NumElems = MVT::getVectorNumElements(InVal->getValueType(InIx)); 2143 MVT::ValueType EVT = MVT::getVectorElementType(InVal->getValueType(InIx)); 2144 2145 // Figure out if there is a simple type corresponding to this Vector 2146 // type. If so, convert to the vector type. 2147 MVT::ValueType TVT = MVT::getVectorType(EVT, NumElems); 2148 if (TLI.isTypeLegal(TVT)) { 2149 // Turn this into a return of the vector type. 2150 Tmp2 = LegalizeOp(Tmp2); 2151 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2152 } else if (NumElems == 1) { 2153 // Turn this into a return of the scalar type. 2154 Tmp2 = ScalarizeVectorOp(Tmp2); 2155 Tmp2 = LegalizeOp(Tmp2); 2156 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2157 2158 // FIXME: Returns of gcc generic vectors smaller than a legal type 2159 // should be returned in integer registers! 2160 2161 // The scalarized value type may not be legal, e.g. it might require 2162 // promotion or expansion. Relegalize the return. 2163 Result = LegalizeOp(Result); 2164 } else { 2165 // FIXME: Returns of gcc generic vectors larger than a legal vector 2166 // type should be returned by reference! 2167 SDOperand Lo, Hi; 2168 SplitVectorOp(Tmp2, Lo, Hi); 2169 Result = DAG.getNode(ISD::RET, MVT::Other, Tmp1, Lo, Tmp3, Hi,Tmp3); 2170 Result = LegalizeOp(Result); 2171 } 2172 } 2173 break; 2174 case Promote: 2175 Tmp2 = PromoteOp(Node->getOperand(1)); 2176 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2177 Result = LegalizeOp(Result); 2178 break; 2179 } 2180 break; 2181 case 1: // ret void 2182 Result = DAG.UpdateNodeOperands(Result, Tmp1); 2183 break; 2184 default: { // ret <values> 2185 SmallVector<SDOperand, 8> NewValues; 2186 NewValues.push_back(Tmp1); 2187 for (unsigned i = 1, e = Node->getNumOperands(); i < e; i += 2) 2188 switch (getTypeAction(Node->getOperand(i).getValueType())) { 2189 case Legal: 2190 NewValues.push_back(LegalizeOp(Node->getOperand(i))); 2191 NewValues.push_back(Node->getOperand(i+1)); 2192 break; 2193 case Expand: { 2194 SDOperand Lo, Hi; 2195 assert(!MVT::isExtendedVT(Node->getOperand(i).getValueType()) && 2196 "FIXME: TODO: implement returning non-legal vector types!"); 2197 ExpandOp(Node->getOperand(i), Lo, Hi); 2198 NewValues.push_back(Lo); 2199 NewValues.push_back(Node->getOperand(i+1)); 2200 if (Hi.Val) { 2201 NewValues.push_back(Hi); 2202 NewValues.push_back(Node->getOperand(i+1)); 2203 } 2204 break; 2205 } 2206 case Promote: 2207 assert(0 && "Can't promote multiple return value yet!"); 2208 } 2209 2210 if (NewValues.size() == Node->getNumOperands()) 2211 Result = DAG.UpdateNodeOperands(Result, &NewValues[0],NewValues.size()); 2212 else 2213 Result = DAG.getNode(ISD::RET, MVT::Other, 2214 &NewValues[0], NewValues.size()); 2215 break; 2216 } 2217 } 2218 2219 if (Result.getOpcode() == ISD::RET) { 2220 switch (TLI.getOperationAction(Result.getOpcode(), MVT::Other)) { 2221 default: assert(0 && "This action is not supported yet!"); 2222 case TargetLowering::Legal: break; 2223 case TargetLowering::Custom: 2224 Tmp1 = TLI.LowerOperation(Result, DAG); 2225 if (Tmp1.Val) Result = Tmp1; 2226 break; 2227 } 2228 } 2229 break; 2230 case ISD::STORE: { 2231 StoreSDNode *ST = cast<StoreSDNode>(Node); 2232 Tmp1 = LegalizeOp(ST->getChain()); // Legalize the chain. 2233 Tmp2 = LegalizeOp(ST->getBasePtr()); // Legalize the pointer. 2234 int SVOffset = ST->getSrcValueOffset(); 2235 unsigned Alignment = ST->getAlignment(); 2236 bool isVolatile = ST->isVolatile(); 2237 2238 if (!ST->isTruncatingStore()) { 2239 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 2240 // FIXME: We shouldn't do this for TargetConstantFP's. 2241 // FIXME: move this to the DAG Combiner! Note that we can't regress due 2242 // to phase ordering between legalized code and the dag combiner. This 2243 // probably means that we need to integrate dag combiner and legalizer 2244 // together. 2245 // We generally can't do this one for long doubles. 2246 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) { 2247 if (CFP->getValueType(0) == MVT::f32 && 2248 getTypeAction(MVT::i32) == Legal) { 2249 Tmp3 = DAG.getConstant((uint32_t)CFP->getValueAPF(). 2250 convertToAPInt().getZExtValue(), 2251 MVT::i32); 2252 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2253 SVOffset, isVolatile, Alignment); 2254 break; 2255 } else if (CFP->getValueType(0) == MVT::f64) { 2256 // If this target supports 64-bit registers, do a single 64-bit store. 2257 if (getTypeAction(MVT::i64) == Legal) { 2258 Tmp3 = DAG.getConstant(CFP->getValueAPF().convertToAPInt(). 2259 getZExtValue(), MVT::i64); 2260 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2261 SVOffset, isVolatile, Alignment); 2262 break; 2263 } else if (getTypeAction(MVT::i32) == Legal) { 2264 // Otherwise, if the target supports 32-bit registers, use 2 32-bit 2265 // stores. If the target supports neither 32- nor 64-bits, this 2266 // xform is certainly not worth it. 2267 uint64_t IntVal =CFP->getValueAPF().convertToAPInt().getZExtValue(); 2268 SDOperand Lo = DAG.getConstant(uint32_t(IntVal), MVT::i32); 2269 SDOperand Hi = DAG.getConstant(uint32_t(IntVal >>32), MVT::i32); 2270 if (TLI.isBigEndian()) std::swap(Lo, Hi); 2271 2272 Lo = DAG.getStore(Tmp1, Lo, Tmp2, ST->getSrcValue(), 2273 SVOffset, isVolatile, Alignment); 2274 Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, 2275 DAG.getIntPtrConstant(4)); 2276 Hi = DAG.getStore(Tmp1, Hi, Tmp2, ST->getSrcValue(), SVOffset+4, 2277 isVolatile, MinAlign(Alignment, 4U)); 2278 2279 Result = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi); 2280 break; 2281 } 2282 } 2283 } 2284 2285 switch (getTypeAction(ST->getMemoryVT())) { 2286 case Legal: { 2287 Tmp3 = LegalizeOp(ST->getValue()); 2288 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2, 2289 ST->getOffset()); 2290 2291 MVT::ValueType VT = Tmp3.getValueType(); 2292 switch (TLI.getOperationAction(ISD::STORE, VT)) { 2293 default: assert(0 && "This action is not supported yet!"); 2294 case TargetLowering::Legal: 2295 // If this is an unaligned store and the target doesn't support it, 2296 // expand it. 2297 if (!TLI.allowsUnalignedMemoryAccesses()) { 2298 unsigned ABIAlignment = TLI.getTargetData()-> 2299 getABITypeAlignment(MVT::getTypeForValueType(ST->getMemoryVT())); 2300 if (ST->getAlignment() < ABIAlignment) 2301 Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.Val), DAG, 2302 TLI); 2303 } 2304 break; 2305 case TargetLowering::Custom: 2306 Tmp1 = TLI.LowerOperation(Result, DAG); 2307 if (Tmp1.Val) Result = Tmp1; 2308 break; 2309 case TargetLowering::Promote: 2310 assert(MVT::isVector(VT) && "Unknown legal promote case!"); 2311 Tmp3 = DAG.getNode(ISD::BIT_CONVERT, 2312 TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3); 2313 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, 2314 ST->getSrcValue(), SVOffset, isVolatile, 2315 Alignment); 2316 break; 2317 } 2318 break; 2319 } 2320 case Promote: 2321 // Truncate the value and store the result. 2322 Tmp3 = PromoteOp(ST->getValue()); 2323 Result = DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2324 SVOffset, ST->getMemoryVT(), 2325 isVolatile, Alignment); 2326 break; 2327 2328 case Expand: 2329 unsigned IncrementSize = 0; 2330 SDOperand Lo, Hi; 2331 2332 // If this is a vector type, then we have to calculate the increment as 2333 // the product of the element size in bytes, and the number of elements 2334 // in the high half of the vector. 2335 if (MVT::isVector(ST->getValue().getValueType())) { 2336 SDNode *InVal = ST->getValue().Val; 2337 int InIx = ST->getValue().ResNo; 2338 MVT::ValueType InVT = InVal->getValueType(InIx); 2339 unsigned NumElems = MVT::getVectorNumElements(InVT); 2340 MVT::ValueType EVT = MVT::getVectorElementType(InVT); 2341 2342 // Figure out if there is a simple type corresponding to this Vector 2343 // type. If so, convert to the vector type. 2344 MVT::ValueType TVT = MVT::getVectorType(EVT, NumElems); 2345 if (TLI.isTypeLegal(TVT)) { 2346 // Turn this into a normal store of the vector type. 2347 Tmp3 = LegalizeOp(Node->getOperand(1)); 2348 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2349 SVOffset, isVolatile, Alignment); 2350 Result = LegalizeOp(Result); 2351 break; 2352 } else if (NumElems == 1) { 2353 // Turn this into a normal store of the scalar type. 2354 Tmp3 = ScalarizeVectorOp(Node->getOperand(1)); 2355 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2356 SVOffset, isVolatile, Alignment); 2357 // The scalarized value type may not be legal, e.g. it might require 2358 // promotion or expansion. Relegalize the scalar store. 2359 Result = LegalizeOp(Result); 2360 break; 2361 } else { 2362 SplitVectorOp(Node->getOperand(1), Lo, Hi); 2363 IncrementSize = MVT::getVectorNumElements(Lo.Val->getValueType(0)) * 2364 MVT::getSizeInBits(EVT)/8; 2365 } 2366 } else { 2367 ExpandOp(Node->getOperand(1), Lo, Hi); 2368 IncrementSize = Hi.Val ? MVT::getSizeInBits(Hi.getValueType())/8 : 0; 2369 2370 if (TLI.isBigEndian()) 2371 std::swap(Lo, Hi); 2372 } 2373 2374 Lo = DAG.getStore(Tmp1, Lo, Tmp2, ST->getSrcValue(), 2375 SVOffset, isVolatile, Alignment); 2376 2377 if (Hi.Val == NULL) { 2378 // Must be int <-> float one-to-one expansion. 2379 Result = Lo; 2380 break; 2381 } 2382 2383 Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, 2384 DAG.getIntPtrConstant(IncrementSize)); 2385 assert(isTypeLegal(Tmp2.getValueType()) && 2386 "Pointers must be legal!"); 2387 SVOffset += IncrementSize; 2388 Alignment = MinAlign(Alignment, IncrementSize); 2389 Hi = DAG.getStore(Tmp1, Hi, Tmp2, ST->getSrcValue(), 2390 SVOffset, isVolatile, Alignment); 2391 Result = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi); 2392 break; 2393 } 2394 } else { 2395 switch (getTypeAction(ST->getValue().getValueType())) { 2396 case Legal: 2397 Tmp3 = LegalizeOp(ST->getValue()); 2398 break; 2399 case Promote: 2400 // We can promote the value, the truncstore will still take care of it. 2401 Tmp3 = PromoteOp(ST->getValue()); 2402 break; 2403 case Expand: 2404 // Just store the low part. This may become a non-trunc store, so make 2405 // sure to use getTruncStore, not UpdateNodeOperands below. 2406 ExpandOp(ST->getValue(), Tmp3, Tmp4); 2407 return DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2408 SVOffset, MVT::i8, isVolatile, Alignment); 2409 } 2410 2411 MVT::ValueType StVT = ST->getMemoryVT(); 2412 unsigned StWidth = MVT::getSizeInBits(StVT); 2413 2414 if (StWidth != MVT::getStoreSizeInBits(StVT)) { 2415 // Promote to a byte-sized store with upper bits zero if not 2416 // storing an integral number of bytes. For example, promote 2417 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 2418 MVT::ValueType NVT = MVT::getIntegerType(MVT::getStoreSizeInBits(StVT)); 2419 Tmp3 = DAG.getZeroExtendInReg(Tmp3, StVT); 2420 Result = DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2421 SVOffset, NVT, isVolatile, Alignment); 2422 } else if (StWidth & (StWidth - 1)) { 2423 // If not storing a power-of-2 number of bits, expand as two stores. 2424 assert(MVT::isExtendedVT(StVT) && !MVT::isVector(StVT) && 2425 "Unsupported truncstore!"); 2426 unsigned RoundWidth = 1 << Log2_32(StWidth); 2427 assert(RoundWidth < StWidth); 2428 unsigned ExtraWidth = StWidth - RoundWidth; 2429 assert(ExtraWidth < RoundWidth); 2430 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 2431 "Store size not an integral number of bytes!"); 2432 MVT::ValueType RoundVT = MVT::getIntegerType(RoundWidth); 2433 MVT::ValueType ExtraVT = MVT::getIntegerType(ExtraWidth); 2434 SDOperand Lo, Hi; 2435 unsigned IncrementSize; 2436 2437 if (TLI.isLittleEndian()) { 2438 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) 2439 // Store the bottom RoundWidth bits. 2440 Lo = DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2441 SVOffset, RoundVT, 2442 isVolatile, Alignment); 2443 2444 // Store the remaining ExtraWidth bits. 2445 IncrementSize = RoundWidth / 8; 2446 Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, 2447 DAG.getIntPtrConstant(IncrementSize)); 2448 Hi = DAG.getNode(ISD::SRL, Tmp3.getValueType(), Tmp3, 2449 DAG.getConstant(RoundWidth, TLI.getShiftAmountTy())); 2450 Hi = DAG.getTruncStore(Tmp1, Hi, Tmp2, ST->getSrcValue(), 2451 SVOffset + IncrementSize, ExtraVT, isVolatile, 2452 MinAlign(Alignment, IncrementSize)); 2453 } else { 2454 // Big endian - avoid unaligned stores. 2455 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X 2456 // Store the top RoundWidth bits. 2457 Hi = DAG.getNode(ISD::SRL, Tmp3.getValueType(), Tmp3, 2458 DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy())); 2459 Hi = DAG.getTruncStore(Tmp1, Hi, Tmp2, ST->getSrcValue(), SVOffset, 2460 RoundVT, isVolatile, Alignment); 2461 2462 // Store the remaining ExtraWidth bits. 2463 IncrementSize = RoundWidth / 8; 2464 Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, 2465 DAG.getIntPtrConstant(IncrementSize)); 2466 Lo = DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), 2467 SVOffset + IncrementSize, ExtraVT, isVolatile, 2468 MinAlign(Alignment, IncrementSize)); 2469 } 2470 2471 // The order of the stores doesn't matter. 2472 Result = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi); 2473 } else { 2474 if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() || 2475 Tmp2 != ST->getBasePtr()) 2476 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2, 2477 ST->getOffset()); 2478 2479 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { 2480 default: assert(0 && "This action is not supported yet!"); 2481 case TargetLowering::Legal: 2482 // If this is an unaligned store and the target doesn't support it, 2483 // expand it. 2484 if (!TLI.allowsUnalignedMemoryAccesses()) { 2485 unsigned ABIAlignment = TLI.getTargetData()-> 2486 getABITypeAlignment(MVT::getTypeForValueType(ST->getMemoryVT())); 2487 if (ST->getAlignment() < ABIAlignment) 2488 Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.Val), DAG, 2489 TLI); 2490 } 2491 break; 2492 case TargetLowering::Custom: 2493 Result = TLI.LowerOperation(Result, DAG); 2494 break; 2495 case Expand: 2496 // TRUNCSTORE:i16 i32 -> STORE i16 2497 assert(isTypeLegal(StVT) && "Do not know how to expand this store!"); 2498 Tmp3 = DAG.getNode(ISD::TRUNCATE, StVT, Tmp3); 2499 Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), SVOffset, 2500 isVolatile, Alignment); 2501 break; 2502 } 2503 } 2504 } 2505 break; 2506 } 2507 case ISD::PCMARKER: 2508 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2509 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 2510 break; 2511 case ISD::STACKSAVE: 2512 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2513 Result = DAG.UpdateNodeOperands(Result, Tmp1); 2514 Tmp1 = Result.getValue(0); 2515 Tmp2 = Result.getValue(1); 2516 2517 switch (TLI.getOperationAction(ISD::STACKSAVE, MVT::Other)) { 2518 default: assert(0 && "This action is not supported yet!"); 2519 case TargetLowering::Legal: break; 2520 case TargetLowering::Custom: 2521 Tmp3 = TLI.LowerOperation(Result, DAG); 2522 if (Tmp3.Val) { 2523 Tmp1 = LegalizeOp(Tmp3); 2524 Tmp2 = LegalizeOp(Tmp3.getValue(1)); 2525 } 2526 break; 2527 case TargetLowering::Expand: 2528 // Expand to CopyFromReg if the target set 2529 // StackPointerRegisterToSaveRestore. 2530 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 2531 Tmp1 = DAG.getCopyFromReg(Result.getOperand(0), SP, 2532 Node->getValueType(0)); 2533 Tmp2 = Tmp1.getValue(1); 2534 } else { 2535 Tmp1 = DAG.getNode(ISD::UNDEF, Node->getValueType(0)); 2536 Tmp2 = Node->getOperand(0); 2537 } 2538 break; 2539 } 2540 2541 // Since stacksave produce two values, make sure to remember that we 2542 // legalized both of them. 2543 AddLegalizedOperand(SDOperand(Node, 0), Tmp1); 2544 AddLegalizedOperand(SDOperand(Node, 1), Tmp2); 2545 return Op.ResNo ? Tmp2 : Tmp1; 2546 2547 case ISD::STACKRESTORE: 2548 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2549 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. 2550 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 2551 2552 switch (TLI.getOperationAction(ISD::STACKRESTORE, MVT::Other)) { 2553 default: assert(0 && "This action is not supported yet!"); 2554 case TargetLowering::Legal: break; 2555 case TargetLowering::Custom: 2556 Tmp1 = TLI.LowerOperation(Result, DAG); 2557 if (Tmp1.Val) Result = Tmp1; 2558 break; 2559 case TargetLowering::Expand: 2560 // Expand to CopyToReg if the target set 2561 // StackPointerRegisterToSaveRestore. 2562 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 2563 Result = DAG.getCopyToReg(Tmp1, SP, Tmp2); 2564 } else { 2565 Result = Tmp1; 2566 } 2567 break; 2568 } 2569 break; 2570 2571 case ISD::READCYCLECOUNTER: 2572 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain 2573 Result = DAG.UpdateNodeOperands(Result, Tmp1); 2574 switch (TLI.getOperationAction(ISD::READCYCLECOUNTER, 2575 Node->getValueType(0))) { 2576 default: assert(0 && "This action is not supported yet!"); 2577 case TargetLowering::Legal: 2578 Tmp1 = Result.getValue(0); 2579 Tmp2 = Result.getValue(1); 2580 break; 2581 case TargetLowering::Custom: 2582 Result = TLI.LowerOperation(Result, DAG); 2583 Tmp1 = LegalizeOp(Result.getValue(0)); 2584 Tmp2 = LegalizeOp(Result.getValue(1)); 2585 break; 2586 } 2587 2588 // Since rdcc produce two values, make sure to remember that we legalized 2589 // both of them. 2590 AddLegalizedOperand(SDOperand(Node, 0), Tmp1); 2591 AddLegalizedOperand(SDOperand(Node, 1), Tmp2); 2592 return Result; 2593 2594 case ISD::SELECT: 2595 switch (getTypeAction(Node->getOperand(0).getValueType())) { 2596 case Expand: assert(0 && "It's impossible to expand bools"); 2597 case Legal: 2598 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the condition. 2599 break; 2600 case Promote: 2601 Tmp1 = PromoteOp(Node->getOperand(0)); // Promote the condition. 2602 // Make sure the condition is either zero or one. 2603 if (!DAG.MaskedValueIsZero(Tmp1, 2604 MVT::getIntVTBitMask(Tmp1.getValueType())^1)) 2605 Tmp1 = DAG.getZeroExtendInReg(Tmp1, MVT::i1); 2606 break; 2607 } 2608 Tmp2 = LegalizeOp(Node->getOperand(1)); // TrueVal 2609 Tmp3 = LegalizeOp(Node->getOperand(2)); // FalseVal 2610 2611 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2612 2613 switch (TLI.getOperationAction(ISD::SELECT, Tmp2.getValueType())) { 2614 default: assert(0 && "This action is not supported yet!"); 2615 case TargetLowering::Legal: break; 2616 case TargetLowering::Custom: { 2617 Tmp1 = TLI.LowerOperation(Result, DAG); 2618 if (Tmp1.Val) Result = Tmp1; 2619 break; 2620 } 2621 case TargetLowering::Expand: 2622 if (Tmp1.getOpcode() == ISD::SETCC) { 2623 Result = DAG.getSelectCC(Tmp1.getOperand(0), Tmp1.getOperand(1), 2624 Tmp2, Tmp3, 2625 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); 2626 } else { 2627 Result = DAG.getSelectCC(Tmp1, 2628 DAG.getConstant(0, Tmp1.getValueType()), 2629 Tmp2, Tmp3, ISD::SETNE); 2630 } 2631 break; 2632 case TargetLowering::Promote: { 2633 MVT::ValueType NVT = 2634 TLI.getTypeToPromoteTo(ISD::SELECT, Tmp2.getValueType()); 2635 unsigned ExtOp, TruncOp; 2636 if (MVT::isVector(Tmp2.getValueType())) { 2637 ExtOp = ISD::BIT_CONVERT; 2638 TruncOp = ISD::BIT_CONVERT; 2639 } else if (MVT::isInteger(Tmp2.getValueType())) { 2640 ExtOp = ISD::ANY_EXTEND; 2641 TruncOp = ISD::TRUNCATE; 2642 } else { 2643 ExtOp = ISD::FP_EXTEND; 2644 TruncOp = ISD::FP_ROUND; 2645 } 2646 // Promote each of the values to the new type. 2647 Tmp2 = DAG.getNode(ExtOp, NVT, Tmp2); 2648 Tmp3 = DAG.getNode(ExtOp, NVT, Tmp3); 2649 // Perform the larger operation, then round down. 2650 Result = DAG.getNode(ISD::SELECT, NVT, Tmp1, Tmp2,Tmp3); 2651 if (TruncOp != ISD::FP_ROUND) 2652 Result = DAG.getNode(TruncOp, Node->getValueType(0), Result); 2653 else 2654 Result = DAG.getNode(TruncOp, Node->getValueType(0), Result, 2655 DAG.getIntPtrConstant(0)); 2656 break; 2657 } 2658 } 2659 break; 2660 case ISD::SELECT_CC: { 2661 Tmp1 = Node->getOperand(0); // LHS 2662 Tmp2 = Node->getOperand(1); // RHS 2663 Tmp3 = LegalizeOp(Node->getOperand(2)); // True 2664 Tmp4 = LegalizeOp(Node->getOperand(3)); // False 2665 SDOperand CC = Node->getOperand(4); 2666 2667 LegalizeSetCCOperands(Tmp1, Tmp2, CC); 2668 2669 // If we didn't get both a LHS and RHS back from LegalizeSetCCOperands, 2670 // the LHS is a legal SETCC itself. In this case, we need to compare 2671 // the result against zero to select between true and false values. 2672 if (Tmp2.Val == 0) { 2673 Tmp2 = DAG.getConstant(0, Tmp1.getValueType()); 2674 CC = DAG.getCondCode(ISD::SETNE); 2675 } 2676 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, Tmp4, CC); 2677 2678 // Everything is legal, see if we should expand this op or something. 2679 switch (TLI.getOperationAction(ISD::SELECT_CC, Tmp3.getValueType())) { 2680 default: assert(0 && "This action is not supported yet!"); 2681 case TargetLowering::Legal: break; 2682 case TargetLowering::Custom: 2683 Tmp1 = TLI.LowerOperation(Result, DAG); 2684 if (Tmp1.Val) Result = Tmp1; 2685 break; 2686 } 2687 break; 2688 } 2689 case ISD::SETCC: 2690 Tmp1 = Node->getOperand(0); 2691 Tmp2 = Node->getOperand(1); 2692 Tmp3 = Node->getOperand(2); 2693 LegalizeSetCCOperands(Tmp1, Tmp2, Tmp3); 2694 2695 // If we had to Expand the SetCC operands into a SELECT node, then it may 2696 // not always be possible to return a true LHS & RHS. In this case, just 2697 // return the value we legalized, returned in the LHS 2698 if (Tmp2.Val == 0) { 2699 Result = Tmp1; 2700 break; 2701 } 2702 2703 switch (TLI.getOperationAction(ISD::SETCC, Tmp1.getValueType())) { 2704 default: assert(0 && "Cannot handle this action for SETCC yet!"); 2705 case TargetLowering::Custom: 2706 isCustom = true; 2707 // FALLTHROUGH. 2708 case TargetLowering::Legal: 2709 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2710 if (isCustom) { 2711 Tmp4 = TLI.LowerOperation(Result, DAG); 2712 if (Tmp4.Val) Result = Tmp4; 2713 } 2714 break; 2715 case TargetLowering::Promote: { 2716 // First step, figure out the appropriate operation to use. 2717 // Allow SETCC to not be supported for all legal data types 2718 // Mostly this targets FP 2719 MVT::ValueType NewInTy = Node->getOperand(0).getValueType(); 2720 MVT::ValueType OldVT = NewInTy; OldVT = OldVT; 2721 2722 // Scan for the appropriate larger type to use. 2723 while (1) { 2724 NewInTy = (MVT::ValueType)(NewInTy+1); 2725 2726 assert(MVT::isInteger(NewInTy) == MVT::isInteger(OldVT) && 2727 "Fell off of the edge of the integer world"); 2728 assert(MVT::isFloatingPoint(NewInTy) == MVT::isFloatingPoint(OldVT) && 2729 "Fell off of the edge of the floating point world"); 2730 2731 // If the target supports SETCC of this type, use it. 2732 if (TLI.isOperationLegal(ISD::SETCC, NewInTy)) 2733 break; 2734 } 2735 if (MVT::isInteger(NewInTy)) 2736 assert(0 && "Cannot promote Legal Integer SETCC yet"); 2737 else { 2738 Tmp1 = DAG.getNode(ISD::FP_EXTEND, NewInTy, Tmp1); 2739 Tmp2 = DAG.getNode(ISD::FP_EXTEND, NewInTy, Tmp2); 2740 } 2741 Tmp1 = LegalizeOp(Tmp1); 2742 Tmp2 = LegalizeOp(Tmp2); 2743 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2744 Result = LegalizeOp(Result); 2745 break; 2746 } 2747 case TargetLowering::Expand: 2748 // Expand a setcc node into a select_cc of the same condition, lhs, and 2749 // rhs that selects between const 1 (true) and const 0 (false). 2750 MVT::ValueType VT = Node->getValueType(0); 2751 Result = DAG.getNode(ISD::SELECT_CC, VT, Tmp1, Tmp2, 2752 DAG.getConstant(1, VT), DAG.getConstant(0, VT), 2753 Tmp3); 2754 break; 2755 } 2756 break; 2757 case ISD::MEMSET: 2758 case ISD::MEMCPY: 2759 case ISD::MEMMOVE: { 2760 Tmp1 = LegalizeOp(Node->getOperand(0)); // Chain 2761 Tmp2 = LegalizeOp(Node->getOperand(1)); // Pointer 2762 2763 if (Node->getOpcode() == ISD::MEMSET) { // memset = ubyte 2764 switch (getTypeAction(Node->getOperand(2).getValueType())) { 2765 case Expand: assert(0 && "Cannot expand a byte!"); 2766 case Legal: 2767 Tmp3 = LegalizeOp(Node->getOperand(2)); 2768 break; 2769 case Promote: 2770 Tmp3 = PromoteOp(Node->getOperand(2)); 2771 break; 2772 } 2773 } else { 2774 Tmp3 = LegalizeOp(Node->getOperand(2)); // memcpy/move = pointer, 2775 } 2776 2777 SDOperand Tmp4; 2778 switch (getTypeAction(Node->getOperand(3).getValueType())) { 2779 case Expand: { 2780 // Length is too big, just take the lo-part of the length. 2781 SDOperand HiPart; 2782 ExpandOp(Node->getOperand(3), Tmp4, HiPart); 2783 break; 2784 } 2785 case Legal: 2786 Tmp4 = LegalizeOp(Node->getOperand(3)); 2787 break; 2788 case Promote: 2789 Tmp4 = PromoteOp(Node->getOperand(3)); 2790 break; 2791 } 2792 2793 SDOperand Tmp5; 2794 switch (getTypeAction(Node->getOperand(4).getValueType())) { // uint 2795 case Expand: assert(0 && "Cannot expand this yet!"); 2796 case Legal: 2797 Tmp5 = LegalizeOp(Node->getOperand(4)); 2798 break; 2799 case Promote: 2800 Tmp5 = PromoteOp(Node->getOperand(4)); 2801 break; 2802 } 2803 2804 SDOperand Tmp6; 2805 switch (getTypeAction(Node->getOperand(5).getValueType())) { // bool 2806 case Expand: assert(0 && "Cannot expand this yet!"); 2807 case Legal: 2808 Tmp6 = LegalizeOp(Node->getOperand(5)); 2809 break; 2810 case Promote: 2811 Tmp6 = PromoteOp(Node->getOperand(5)); 2812 break; 2813 } 2814 2815 switch (TLI.getOperationAction(Node->getOpcode(), MVT::Other)) { 2816 default: assert(0 && "This action not implemented for this operation!"); 2817 case TargetLowering::Custom: 2818 isCustom = true; 2819 // FALLTHROUGH 2820 case TargetLowering::Legal: { 2821 SDOperand Ops[] = { Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6 }; 2822 Result = DAG.UpdateNodeOperands(Result, Ops, 6); 2823 if (isCustom) { 2824 Tmp1 = TLI.LowerOperation(Result, DAG); 2825 if (Tmp1.Val) Result = Tmp1; 2826 } 2827 break; 2828 } 2829 case TargetLowering::Expand: { 2830 // Otherwise, the target does not support this operation. Lower the 2831 // operation to an explicit libcall as appropriate. 2832 MVT::ValueType IntPtr = TLI.getPointerTy(); 2833 const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(); 2834 TargetLowering::ArgListTy Args; 2835 TargetLowering::ArgListEntry Entry; 2836 2837 const char *FnName = 0; 2838 if (Node->getOpcode() == ISD::MEMSET) { 2839 Entry.Node = Tmp2; Entry.Ty = IntPtrTy; 2840 Args.push_back(Entry); 2841 // Extend the (previously legalized) ubyte argument to be an int value 2842 // for the call. 2843 if (Tmp3.getValueType() > MVT::i32) 2844 Tmp3 = DAG.getNode(ISD::TRUNCATE, MVT::i32, Tmp3); 2845 else 2846 Tmp3 = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Tmp3); 2847 Entry.Node = Tmp3; Entry.Ty = Type::Int32Ty; Entry.isSExt = true; 2848 Args.push_back(Entry); 2849 Entry.Node = Tmp4; Entry.Ty = IntPtrTy; Entry.isSExt = false; 2850 Args.push_back(Entry); 2851 2852 FnName = "memset"; 2853 } else if (Node->getOpcode() == ISD::MEMCPY || 2854 Node->getOpcode() == ISD::MEMMOVE) { 2855 Entry.Ty = IntPtrTy; 2856 Entry.Node = Tmp2; Args.push_back(Entry); 2857 Entry.Node = Tmp3; Args.push_back(Entry); 2858 Entry.Node = Tmp4; Args.push_back(Entry); 2859 FnName = Node->getOpcode() == ISD::MEMMOVE ? "memmove" : "memcpy"; 2860 } else { 2861 assert(0 && "Unknown op!"); 2862 } 2863 2864 std::pair<SDOperand,SDOperand> CallResult = 2865 TLI.LowerCallTo(Tmp1, Type::VoidTy, false, false, CallingConv::C, false, 2866 DAG.getExternalSymbol(FnName, IntPtr), Args, DAG); 2867 Result = CallResult.second; 2868 break; 2869 } 2870 } 2871 break; 2872 } 2873 2874 case ISD::SHL_PARTS: 2875 case ISD::SRA_PARTS: 2876 case ISD::SRL_PARTS: { 2877 SmallVector<SDOperand, 8> Ops; 2878 bool Changed = false; 2879 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 2880 Ops.push_back(LegalizeOp(Node->getOperand(i))); 2881 Changed |= Ops.back() != Node->getOperand(i); 2882 } 2883 if (Changed) 2884 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 2885 2886 switch (TLI.getOperationAction(Node->getOpcode(), 2887 Node->getValueType(0))) { 2888 default: assert(0 && "This action is not supported yet!"); 2889 case TargetLowering::Legal: break; 2890 case TargetLowering::Custom: 2891 Tmp1 = TLI.LowerOperation(Result, DAG); 2892 if (Tmp1.Val) { 2893 SDOperand Tmp2, RetVal(0, 0); 2894 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) { 2895 Tmp2 = LegalizeOp(Tmp1.getValue(i)); 2896 AddLegalizedOperand(SDOperand(Node, i), Tmp2); 2897 if (i == Op.ResNo) 2898 RetVal = Tmp2; 2899 } 2900 assert(RetVal.Val && "Illegal result number"); 2901 return RetVal; 2902 } 2903 break; 2904 } 2905 2906 // Since these produce multiple values, make sure to remember that we 2907 // legalized all of them. 2908 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 2909 AddLegalizedOperand(SDOperand(Node, i), Result.getValue(i)); 2910 return Result.getValue(Op.ResNo); 2911 } 2912 2913 // Binary operators 2914 case ISD::ADD: 2915 case ISD::SUB: 2916 case ISD::MUL: 2917 case ISD::MULHS: 2918 case ISD::MULHU: 2919 case ISD::UDIV: 2920 case ISD::SDIV: 2921 case ISD::AND: 2922 case ISD::OR: 2923 case ISD::XOR: 2924 case ISD::SHL: 2925 case ISD::SRL: 2926 case ISD::SRA: 2927 case ISD::FADD: 2928 case ISD::FSUB: 2929 case ISD::FMUL: 2930 case ISD::FDIV: 2931 case ISD::FPOW: 2932 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 2933 switch (getTypeAction(Node->getOperand(1).getValueType())) { 2934 case Expand: assert(0 && "Not possible"); 2935 case Legal: 2936 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the RHS. 2937 break; 2938 case Promote: 2939 Tmp2 = PromoteOp(Node->getOperand(1)); // Promote the RHS. 2940 break; 2941 } 2942 2943 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 2944 2945 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 2946 default: assert(0 && "BinOp legalize operation not supported"); 2947 case TargetLowering::Legal: break; 2948 case TargetLowering::Custom: 2949 Tmp1 = TLI.LowerOperation(Result, DAG); 2950 if (Tmp1.Val) Result = Tmp1; 2951 break; 2952 case TargetLowering::Expand: { 2953 MVT::ValueType VT = Op.getValueType(); 2954 2955 // See if multiply or divide can be lowered using two-result operations. 2956 SDVTList VTs = DAG.getVTList(VT, VT); 2957 if (Node->getOpcode() == ISD::MUL) { 2958 // We just need the low half of the multiply; try both the signed 2959 // and unsigned forms. If the target supports both SMUL_LOHI and 2960 // UMUL_LOHI, form a preference by checking which forms of plain 2961 // MULH it supports. 2962 bool HasSMUL_LOHI = TLI.isOperationLegal(ISD::SMUL_LOHI, VT); 2963 bool HasUMUL_LOHI = TLI.isOperationLegal(ISD::UMUL_LOHI, VT); 2964 bool HasMULHS = TLI.isOperationLegal(ISD::MULHS, VT); 2965 bool HasMULHU = TLI.isOperationLegal(ISD::MULHU, VT); 2966 unsigned OpToUse = 0; 2967 if (HasSMUL_LOHI && !HasMULHS) { 2968 OpToUse = ISD::SMUL_LOHI; 2969 } else if (HasUMUL_LOHI && !HasMULHU) { 2970 OpToUse = ISD::UMUL_LOHI; 2971 } else if (HasSMUL_LOHI) { 2972 OpToUse = ISD::SMUL_LOHI; 2973 } else if (HasUMUL_LOHI) { 2974 OpToUse = ISD::UMUL_LOHI; 2975 } 2976 if (OpToUse) { 2977 Result = SDOperand(DAG.getNode(OpToUse, VTs, Tmp1, Tmp2).Val, 0); 2978 break; 2979 } 2980 } 2981 if (Node->getOpcode() == ISD::MULHS && 2982 TLI.isOperationLegal(ISD::SMUL_LOHI, VT)) { 2983 Result = SDOperand(DAG.getNode(ISD::SMUL_LOHI, VTs, Tmp1, Tmp2).Val, 1); 2984 break; 2985 } 2986 if (Node->getOpcode() == ISD::MULHU && 2987 TLI.isOperationLegal(ISD::UMUL_LOHI, VT)) { 2988 Result = SDOperand(DAG.getNode(ISD::UMUL_LOHI, VTs, Tmp1, Tmp2).Val, 1); 2989 break; 2990 } 2991 if (Node->getOpcode() == ISD::SDIV && 2992 TLI.isOperationLegal(ISD::SDIVREM, VT)) { 2993 Result = SDOperand(DAG.getNode(ISD::SDIVREM, VTs, Tmp1, Tmp2).Val, 0); 2994 break; 2995 } 2996 if (Node->getOpcode() == ISD::UDIV && 2997 TLI.isOperationLegal(ISD::UDIVREM, VT)) { 2998 Result = SDOperand(DAG.getNode(ISD::UDIVREM, VTs, Tmp1, Tmp2).Val, 0); 2999 break; 3000 } 3001 3002 // Check to see if we have a libcall for this operator. 3003 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 3004 bool isSigned = false; 3005 switch (Node->getOpcode()) { 3006 case ISD::UDIV: 3007 case ISD::SDIV: 3008 if (VT == MVT::i32) { 3009 LC = Node->getOpcode() == ISD::UDIV 3010 ? RTLIB::UDIV_I32 : RTLIB::SDIV_I32; 3011 isSigned = Node->getOpcode() == ISD::SDIV; 3012 } 3013 break; 3014 case ISD::FPOW: 3015 LC = GetFPLibCall(VT, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80, 3016 RTLIB::POW_PPCF128); 3017 break; 3018 default: break; 3019 } 3020 if (LC != RTLIB::UNKNOWN_LIBCALL) { 3021 SDOperand Dummy; 3022 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, isSigned, Dummy); 3023 break; 3024 } 3025 3026 assert(MVT::isVector(Node->getValueType(0)) && 3027 "Cannot expand this binary operator!"); 3028 // Expand the operation into a bunch of nasty scalar code. 3029 Result = LegalizeOp(UnrollVectorOp(Op)); 3030 break; 3031 } 3032 case TargetLowering::Promote: { 3033 switch (Node->getOpcode()) { 3034 default: assert(0 && "Do not know how to promote this BinOp!"); 3035 case ISD::AND: 3036 case ISD::OR: 3037 case ISD::XOR: { 3038 MVT::ValueType OVT = Node->getValueType(0); 3039 MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 3040 assert(MVT::isVector(OVT) && "Cannot promote this BinOp!"); 3041 // Bit convert each of the values to the new type. 3042 Tmp1 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp1); 3043 Tmp2 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp2); 3044 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 3045 // Bit convert the result back the original type. 3046 Result = DAG.getNode(ISD::BIT_CONVERT, OVT, Result); 3047 break; 3048 } 3049 } 3050 } 3051 } 3052 break; 3053 3054 case ISD::SMUL_LOHI: 3055 case ISD::UMUL_LOHI: 3056 case ISD::SDIVREM: 3057 case ISD::UDIVREM: 3058 // These nodes will only be produced by target-specific lowering, so 3059 // they shouldn't be here if they aren't legal. 3060 assert(TLI.isOperationLegal(Node->getOpcode(), Node->getValueType(0)) && 3061 "This must be legal!"); 3062 3063 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 3064 Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS 3065 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3066 break; 3067 3068 case ISD::FCOPYSIGN: // FCOPYSIGN does not require LHS/RHS to match type! 3069 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 3070 switch (getTypeAction(Node->getOperand(1).getValueType())) { 3071 case Expand: assert(0 && "Not possible"); 3072 case Legal: 3073 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the RHS. 3074 break; 3075 case Promote: 3076 Tmp2 = PromoteOp(Node->getOperand(1)); // Promote the RHS. 3077 break; 3078 } 3079 3080 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3081 3082 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3083 default: assert(0 && "Operation not supported"); 3084 case TargetLowering::Custom: 3085 Tmp1 = TLI.LowerOperation(Result, DAG); 3086 if (Tmp1.Val) Result = Tmp1; 3087 break; 3088 case TargetLowering::Legal: break; 3089 case TargetLowering::Expand: { 3090 // If this target supports fabs/fneg natively and select is cheap, 3091 // do this efficiently. 3092 if (!TLI.isSelectExpensive() && 3093 TLI.getOperationAction(ISD::FABS, Tmp1.getValueType()) == 3094 TargetLowering::Legal && 3095 TLI.getOperationAction(ISD::FNEG, Tmp1.getValueType()) == 3096 TargetLowering::Legal) { 3097 // Get the sign bit of the RHS. 3098 MVT::ValueType IVT = 3099 Tmp2.getValueType() == MVT::f32 ? MVT::i32 : MVT::i64; 3100 SDOperand SignBit = DAG.getNode(ISD::BIT_CONVERT, IVT, Tmp2); 3101 SignBit = DAG.getSetCC(TLI.getSetCCResultTy(), 3102 SignBit, DAG.getConstant(0, IVT), ISD::SETLT); 3103 // Get the absolute value of the result. 3104 SDOperand AbsVal = DAG.getNode(ISD::FABS, Tmp1.getValueType(), Tmp1); 3105 // Select between the nabs and abs value based on the sign bit of 3106 // the input. 3107 Result = DAG.getNode(ISD::SELECT, AbsVal.getValueType(), SignBit, 3108 DAG.getNode(ISD::FNEG, AbsVal.getValueType(), 3109 AbsVal), 3110 AbsVal); 3111 Result = LegalizeOp(Result); 3112 break; 3113 } 3114 3115 // Otherwise, do bitwise ops! 3116 MVT::ValueType NVT = 3117 Node->getValueType(0) == MVT::f32 ? MVT::i32 : MVT::i64; 3118 Result = ExpandFCOPYSIGNToBitwiseOps(Node, NVT, DAG, TLI); 3119 Result = DAG.getNode(ISD::BIT_CONVERT, Node->getValueType(0), Result); 3120 Result = LegalizeOp(Result); 3121 break; 3122 } 3123 } 3124 break; 3125 3126 case ISD::ADDC: 3127 case ISD::SUBC: 3128 Tmp1 = LegalizeOp(Node->getOperand(0)); 3129 Tmp2 = LegalizeOp(Node->getOperand(1)); 3130 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3131 // Since this produces two values, make sure to remember that we legalized 3132 // both of them. 3133 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 3134 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 3135 return Result; 3136 3137 case ISD::ADDE: 3138 case ISD::SUBE: 3139 Tmp1 = LegalizeOp(Node->getOperand(0)); 3140 Tmp2 = LegalizeOp(Node->getOperand(1)); 3141 Tmp3 = LegalizeOp(Node->getOperand(2)); 3142 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 3143 // Since this produces two values, make sure to remember that we legalized 3144 // both of them. 3145 AddLegalizedOperand(SDOperand(Node, 0), Result.getValue(0)); 3146 AddLegalizedOperand(SDOperand(Node, 1), Result.getValue(1)); 3147 return Result; 3148 3149 case ISD::BUILD_PAIR: { 3150 MVT::ValueType PairTy = Node->getValueType(0); 3151 // TODO: handle the case where the Lo and Hi operands are not of legal type 3152 Tmp1 = LegalizeOp(Node->getOperand(0)); // Lo 3153 Tmp2 = LegalizeOp(Node->getOperand(1)); // Hi 3154 switch (TLI.getOperationAction(ISD::BUILD_PAIR, PairTy)) { 3155 case TargetLowering::Promote: 3156 case TargetLowering::Custom: 3157 assert(0 && "Cannot promote/custom this yet!"); 3158 case TargetLowering::Legal: 3159 if (Tmp1 != Node->getOperand(0) || Tmp2 != Node->getOperand(1)) 3160 Result = DAG.getNode(ISD::BUILD_PAIR, PairTy, Tmp1, Tmp2); 3161 break; 3162 case TargetLowering::Expand: 3163 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, PairTy, Tmp1); 3164 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, PairTy, Tmp2); 3165 Tmp2 = DAG.getNode(ISD::SHL, PairTy, Tmp2, 3166 DAG.getConstant(MVT::getSizeInBits(PairTy)/2, 3167 TLI.getShiftAmountTy())); 3168 Result = DAG.getNode(ISD::OR, PairTy, Tmp1, Tmp2); 3169 break; 3170 } 3171 break; 3172 } 3173 3174 case ISD::UREM: 3175 case ISD::SREM: 3176 case ISD::FREM: 3177 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 3178 Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS 3179 3180 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3181 case TargetLowering::Promote: assert(0 && "Cannot promote this yet!"); 3182 case TargetLowering::Custom: 3183 isCustom = true; 3184 // FALLTHROUGH 3185 case TargetLowering::Legal: 3186 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3187 if (isCustom) { 3188 Tmp1 = TLI.LowerOperation(Result, DAG); 3189 if (Tmp1.Val) Result = Tmp1; 3190 } 3191 break; 3192 case TargetLowering::Expand: { 3193 unsigned DivOpc= (Node->getOpcode() == ISD::UREM) ? ISD::UDIV : ISD::SDIV; 3194 bool isSigned = DivOpc == ISD::SDIV; 3195 MVT::ValueType VT = Node->getValueType(0); 3196 3197 // See if remainder can be lowered using two-result operations. 3198 SDVTList VTs = DAG.getVTList(VT, VT); 3199 if (Node->getOpcode() == ISD::SREM && 3200 TLI.isOperationLegal(ISD::SDIVREM, VT)) { 3201 Result = SDOperand(DAG.getNode(ISD::SDIVREM, VTs, Tmp1, Tmp2).Val, 1); 3202 break; 3203 } 3204 if (Node->getOpcode() == ISD::UREM && 3205 TLI.isOperationLegal(ISD::UDIVREM, VT)) { 3206 Result = SDOperand(DAG.getNode(ISD::UDIVREM, VTs, Tmp1, Tmp2).Val, 1); 3207 break; 3208 } 3209 3210 if (MVT::isInteger(VT)) { 3211 if (TLI.getOperationAction(DivOpc, VT) == 3212 TargetLowering::Legal) { 3213 // X % Y -> X-X/Y*Y 3214 Result = DAG.getNode(DivOpc, VT, Tmp1, Tmp2); 3215 Result = DAG.getNode(ISD::MUL, VT, Result, Tmp2); 3216 Result = DAG.getNode(ISD::SUB, VT, Tmp1, Result); 3217 } else if (MVT::isVector(VT)) { 3218 Result = LegalizeOp(UnrollVectorOp(Op)); 3219 } else { 3220 assert(VT == MVT::i32 && 3221 "Cannot expand this binary operator!"); 3222 RTLIB::Libcall LC = Node->getOpcode() == ISD::UREM 3223 ? RTLIB::UREM_I32 : RTLIB::SREM_I32; 3224 SDOperand Dummy; 3225 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, isSigned, Dummy); 3226 } 3227 } else { 3228 assert(MVT::isFloatingPoint(VT) && 3229 "remainder op must have integer or floating-point type"); 3230 if (MVT::isVector(VT)) { 3231 Result = LegalizeOp(UnrollVectorOp(Op)); 3232 } else { 3233 // Floating point mod -> fmod libcall. 3234 RTLIB::Libcall LC = GetFPLibCall(VT, RTLIB::REM_F32, RTLIB::REM_F64, 3235 RTLIB::REM_F80, RTLIB::REM_PPCF128); 3236 SDOperand Dummy; 3237 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, 3238 false/*sign irrelevant*/, Dummy); 3239 } 3240 } 3241 break; 3242 } 3243 } 3244 break; 3245 case ISD::VAARG: { 3246 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 3247 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. 3248 3249 MVT::ValueType VT = Node->getValueType(0); 3250 switch (TLI.getOperationAction(Node->getOpcode(), MVT::Other)) { 3251 default: assert(0 && "This action is not supported yet!"); 3252 case TargetLowering::Custom: 3253 isCustom = true; 3254 // FALLTHROUGH 3255 case TargetLowering::Legal: 3256 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 3257 Result = Result.getValue(0); 3258 Tmp1 = Result.getValue(1); 3259 3260 if (isCustom) { 3261 Tmp2 = TLI.LowerOperation(Result, DAG); 3262 if (Tmp2.Val) { 3263 Result = LegalizeOp(Tmp2); 3264 Tmp1 = LegalizeOp(Tmp2.getValue(1)); 3265 } 3266 } 3267 break; 3268 case TargetLowering::Expand: { 3269 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 3270 SDOperand VAList = DAG.getLoad(TLI.getPointerTy(), Tmp1, Tmp2, V, 0); 3271 // Increment the pointer, VAList, to the next vaarg 3272 Tmp3 = DAG.getNode(ISD::ADD, TLI.getPointerTy(), VAList, 3273 DAG.getConstant(MVT::getSizeInBits(VT)/8, 3274 TLI.getPointerTy())); 3275 // Store the incremented VAList to the legalized pointer 3276 Tmp3 = DAG.getStore(VAList.getValue(1), Tmp3, Tmp2, V, 0); 3277 // Load the actual argument out of the pointer VAList 3278 Result = DAG.getLoad(VT, Tmp3, VAList, NULL, 0); 3279 Tmp1 = LegalizeOp(Result.getValue(1)); 3280 Result = LegalizeOp(Result); 3281 break; 3282 } 3283 } 3284 // Since VAARG produces two values, make sure to remember that we 3285 // legalized both of them. 3286 AddLegalizedOperand(SDOperand(Node, 0), Result); 3287 AddLegalizedOperand(SDOperand(Node, 1), Tmp1); 3288 return Op.ResNo ? Tmp1 : Result; 3289 } 3290 3291 case ISD::VACOPY: 3292 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 3293 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the dest pointer. 3294 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the source pointer. 3295 3296 switch (TLI.getOperationAction(ISD::VACOPY, MVT::Other)) { 3297 default: assert(0 && "This action is not supported yet!"); 3298 case TargetLowering::Custom: 3299 isCustom = true; 3300 // FALLTHROUGH 3301 case TargetLowering::Legal: 3302 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, 3303 Node->getOperand(3), Node->getOperand(4)); 3304 if (isCustom) { 3305 Tmp1 = TLI.LowerOperation(Result, DAG); 3306 if (Tmp1.Val) Result = Tmp1; 3307 } 3308 break; 3309 case TargetLowering::Expand: 3310 // This defaults to loading a pointer from the input and storing it to the 3311 // output, returning the chain. 3312 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 3313 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 3314 Tmp4 = DAG.getLoad(TLI.getPointerTy(), Tmp1, Tmp3, VD, 0); 3315 Result = DAG.getStore(Tmp4.getValue(1), Tmp4, Tmp2, VS, 0); 3316 break; 3317 } 3318 break; 3319 3320 case ISD::VAEND: 3321 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 3322 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. 3323 3324 switch (TLI.getOperationAction(ISD::VAEND, MVT::Other)) { 3325 default: assert(0 && "This action is not supported yet!"); 3326 case TargetLowering::Custom: 3327 isCustom = true; 3328 // FALLTHROUGH 3329 case TargetLowering::Legal: 3330 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 3331 if (isCustom) { 3332 Tmp1 = TLI.LowerOperation(Tmp1, DAG); 3333 if (Tmp1.Val) Result = Tmp1; 3334 } 3335 break; 3336 case TargetLowering::Expand: 3337 Result = Tmp1; // Default to a no-op, return the chain 3338 break; 3339 } 3340 break; 3341 3342 case ISD::VASTART: 3343 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 3344 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. 3345 3346 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 3347 3348 switch (TLI.getOperationAction(ISD::VASTART, MVT::Other)) { 3349 default: assert(0 && "This action is not supported yet!"); 3350 case TargetLowering::Legal: break; 3351 case TargetLowering::Custom: 3352 Tmp1 = TLI.LowerOperation(Result, DAG); 3353 if (Tmp1.Val) Result = Tmp1; 3354 break; 3355 } 3356 break; 3357 3358 case ISD::ROTL: 3359 case ISD::ROTR: 3360 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 3361 Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS 3362 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3363 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3364 default: 3365 assert(0 && "ROTL/ROTR legalize operation not supported"); 3366 break; 3367 case TargetLowering::Legal: 3368 break; 3369 case TargetLowering::Custom: 3370 Tmp1 = TLI.LowerOperation(Result, DAG); 3371 if (Tmp1.Val) Result = Tmp1; 3372 break; 3373 case TargetLowering::Promote: 3374 assert(0 && "Do not know how to promote ROTL/ROTR"); 3375 break; 3376 case TargetLowering::Expand: 3377 assert(0 && "Do not know how to expand ROTL/ROTR"); 3378 break; 3379 } 3380 break; 3381 3382 case ISD::BSWAP: 3383 Tmp1 = LegalizeOp(Node->getOperand(0)); // Op 3384 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3385 case TargetLowering::Custom: 3386 assert(0 && "Cannot custom legalize this yet!"); 3387 case TargetLowering::Legal: 3388 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3389 break; 3390 case TargetLowering::Promote: { 3391 MVT::ValueType OVT = Tmp1.getValueType(); 3392 MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 3393 unsigned DiffBits = MVT::getSizeInBits(NVT) - MVT::getSizeInBits(OVT); 3394 3395 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Tmp1); 3396 Tmp1 = DAG.getNode(ISD::BSWAP, NVT, Tmp1); 3397 Result = DAG.getNode(ISD::SRL, NVT, Tmp1, 3398 DAG.getConstant(DiffBits, TLI.getShiftAmountTy())); 3399 break; 3400 } 3401 case TargetLowering::Expand: 3402 Result = ExpandBSWAP(Tmp1); 3403 break; 3404 } 3405 break; 3406 3407 case ISD::CTPOP: 3408 case ISD::CTTZ: 3409 case ISD::CTLZ: 3410 Tmp1 = LegalizeOp(Node->getOperand(0)); // Op 3411 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3412 case TargetLowering::Custom: 3413 case TargetLowering::Legal: 3414 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3415 if (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)) == 3416 TargetLowering::Custom) { 3417 Tmp1 = TLI.LowerOperation(Result, DAG); 3418 if (Tmp1.Val) { 3419 Result = Tmp1; 3420 } 3421 } 3422 break; 3423 case TargetLowering::Promote: { 3424 MVT::ValueType OVT = Tmp1.getValueType(); 3425 MVT::ValueType NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 3426 3427 // Zero extend the argument. 3428 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Tmp1); 3429 // Perform the larger operation, then subtract if needed. 3430 Tmp1 = DAG.getNode(Node->getOpcode(), Node->getValueType(0), Tmp1); 3431 switch (Node->getOpcode()) { 3432 case ISD::CTPOP: 3433 Result = Tmp1; 3434 break; 3435 case ISD::CTTZ: 3436 //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT) 3437 Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), Tmp1, 3438 DAG.getConstant(MVT::getSizeInBits(NVT), NVT), 3439 ISD::SETEQ); 3440 Result = DAG.getNode(ISD::SELECT, NVT, Tmp2, 3441 DAG.getConstant(MVT::getSizeInBits(OVT),NVT), Tmp1); 3442 break; 3443 case ISD::CTLZ: 3444 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 3445 Result = DAG.getNode(ISD::SUB, NVT, Tmp1, 3446 DAG.getConstant(MVT::getSizeInBits(NVT) - 3447 MVT::getSizeInBits(OVT), NVT)); 3448 break; 3449 } 3450 break; 3451 } 3452 case TargetLowering::Expand: 3453 Result = ExpandBitCount(Node->getOpcode(), Tmp1); 3454 break; 3455 } 3456 break; 3457 3458 // Unary operators 3459 case ISD::FABS: 3460 case ISD::FNEG: 3461 case ISD::FSQRT: 3462 case ISD::FSIN: 3463 case ISD::FCOS: 3464 Tmp1 = LegalizeOp(Node->getOperand(0)); 3465 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3466 case TargetLowering::Promote: 3467 case TargetLowering::Custom: 3468 isCustom = true; 3469 // FALLTHROUGH 3470 case TargetLowering::Legal: 3471 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3472 if (isCustom) { 3473 Tmp1 = TLI.LowerOperation(Result, DAG); 3474 if (Tmp1.Val) Result = Tmp1; 3475 } 3476 break; 3477 case TargetLowering::Expand: 3478 switch (Node->getOpcode()) { 3479 default: assert(0 && "Unreachable!"); 3480 case ISD::FNEG: 3481 // Expand Y = FNEG(X) -> Y = SUB -0.0, X 3482 Tmp2 = DAG.getConstantFP(-0.0, Node->getValueType(0)); 3483 Result = DAG.getNode(ISD::FSUB, Node->getValueType(0), Tmp2, Tmp1); 3484 break; 3485 case ISD::FABS: { 3486 // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X). 3487 MVT::ValueType VT = Node->getValueType(0); 3488 Tmp2 = DAG.getConstantFP(0.0, VT); 3489 Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), Tmp1, Tmp2, ISD::SETUGT); 3490 Tmp3 = DAG.getNode(ISD::FNEG, VT, Tmp1); 3491 Result = DAG.getNode(ISD::SELECT, VT, Tmp2, Tmp1, Tmp3); 3492 break; 3493 } 3494 case ISD::FSQRT: 3495 case ISD::FSIN: 3496 case ISD::FCOS: { 3497 MVT::ValueType VT = Node->getValueType(0); 3498 3499 // Expand unsupported unary vector operators by unrolling them. 3500 if (MVT::isVector(VT)) { 3501 Result = LegalizeOp(UnrollVectorOp(Op)); 3502 break; 3503 } 3504 3505 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 3506 switch(Node->getOpcode()) { 3507 case ISD::FSQRT: 3508 LC = GetFPLibCall(VT, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 3509 RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128); 3510 break; 3511 case ISD::FSIN: 3512 LC = GetFPLibCall(VT, RTLIB::SIN_F32, RTLIB::SIN_F64, 3513 RTLIB::SIN_F80, RTLIB::SIN_PPCF128); 3514 break; 3515 case ISD::FCOS: 3516 LC = GetFPLibCall(VT, RTLIB::COS_F32, RTLIB::COS_F64, 3517 RTLIB::COS_F80, RTLIB::COS_PPCF128); 3518 break; 3519 default: assert(0 && "Unreachable!"); 3520 } 3521 SDOperand Dummy; 3522 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, 3523 false/*sign irrelevant*/, Dummy); 3524 break; 3525 } 3526 } 3527 break; 3528 } 3529 break; 3530 case ISD::FPOWI: { 3531 MVT::ValueType VT = Node->getValueType(0); 3532 3533 // Expand unsupported unary vector operators by unrolling them. 3534 if (MVT::isVector(VT)) { 3535 Result = LegalizeOp(UnrollVectorOp(Op)); 3536 break; 3537 } 3538 3539 // We always lower FPOWI into a libcall. No target support for it yet. 3540 RTLIB::Libcall LC = GetFPLibCall(VT, RTLIB::POWI_F32, RTLIB::POWI_F64, 3541 RTLIB::POWI_F80, RTLIB::POWI_PPCF128); 3542 SDOperand Dummy; 3543 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, 3544 false/*sign irrelevant*/, Dummy); 3545 break; 3546 } 3547 case ISD::BIT_CONVERT: 3548 if (!isTypeLegal(Node->getOperand(0).getValueType())) { 3549 Result = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 3550 Node->getValueType(0)); 3551 } else if (MVT::isVector(Op.getOperand(0).getValueType())) { 3552 // The input has to be a vector type, we have to either scalarize it, pack 3553 // it, or convert it based on whether the input vector type is legal. 3554 SDNode *InVal = Node->getOperand(0).Val; 3555 int InIx = Node->getOperand(0).ResNo; 3556 unsigned NumElems = MVT::getVectorNumElements(InVal->getValueType(InIx)); 3557 MVT::ValueType EVT = MVT::getVectorElementType(InVal->getValueType(InIx)); 3558 3559 // Figure out if there is a simple type corresponding to this Vector 3560 // type. If so, convert to the vector type. 3561 MVT::ValueType TVT = MVT::getVectorType(EVT, NumElems); 3562 if (TLI.isTypeLegal(TVT)) { 3563 // Turn this into a bit convert of the vector input. 3564 Result = DAG.getNode(ISD::BIT_CONVERT, Node->getValueType(0), 3565 LegalizeOp(Node->getOperand(0))); 3566 break; 3567 } else if (NumElems == 1) { 3568 // Turn this into a bit convert of the scalar input. 3569 Result = DAG.getNode(ISD::BIT_CONVERT, Node->getValueType(0), 3570 ScalarizeVectorOp(Node->getOperand(0))); 3571 break; 3572 } else { 3573 // FIXME: UNIMP! Store then reload 3574 assert(0 && "Cast from unsupported vector type not implemented yet!"); 3575 } 3576 } else { 3577 switch (TLI.getOperationAction(ISD::BIT_CONVERT, 3578 Node->getOperand(0).getValueType())) { 3579 default: assert(0 && "Unknown operation action!"); 3580 case TargetLowering::Expand: 3581 Result = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 3582 Node->getValueType(0)); 3583 break; 3584 case TargetLowering::Legal: 3585 Tmp1 = LegalizeOp(Node->getOperand(0)); 3586 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3587 break; 3588 } 3589 } 3590 break; 3591 3592 // Conversion operators. The source and destination have different types. 3593 case ISD::SINT_TO_FP: 3594 case ISD::UINT_TO_FP: { 3595 bool isSigned = Node->getOpcode() == ISD::SINT_TO_FP; 3596 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3597 case Legal: 3598 switch (TLI.getOperationAction(Node->getOpcode(), 3599 Node->getOperand(0).getValueType())) { 3600 default: assert(0 && "Unknown operation action!"); 3601 case TargetLowering::Custom: 3602 isCustom = true; 3603 // FALLTHROUGH 3604 case TargetLowering::Legal: 3605 Tmp1 = LegalizeOp(Node->getOperand(0)); 3606 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3607 if (isCustom) { 3608 Tmp1 = TLI.LowerOperation(Result, DAG); 3609 if (Tmp1.Val) Result = Tmp1; 3610 } 3611 break; 3612 case TargetLowering::Expand: 3613 Result = ExpandLegalINT_TO_FP(isSigned, 3614 LegalizeOp(Node->getOperand(0)), 3615 Node->getValueType(0)); 3616 break; 3617 case TargetLowering::Promote: 3618 Result = PromoteLegalINT_TO_FP(LegalizeOp(Node->getOperand(0)), 3619 Node->getValueType(0), 3620 isSigned); 3621 break; 3622 } 3623 break; 3624 case Expand: 3625 Result = ExpandIntToFP(Node->getOpcode() == ISD::SINT_TO_FP, 3626 Node->getValueType(0), Node->getOperand(0)); 3627 break; 3628 case Promote: 3629 Tmp1 = PromoteOp(Node->getOperand(0)); 3630 if (isSigned) { 3631 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, Tmp1.getValueType(), 3632 Tmp1, DAG.getValueType(Node->getOperand(0).getValueType())); 3633 } else { 3634 Tmp1 = DAG.getZeroExtendInReg(Tmp1, 3635 Node->getOperand(0).getValueType()); 3636 } 3637 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3638 Result = LegalizeOp(Result); // The 'op' is not necessarily legal! 3639 break; 3640 } 3641 break; 3642 } 3643 case ISD::TRUNCATE: 3644 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3645 case Legal: 3646 Tmp1 = LegalizeOp(Node->getOperand(0)); 3647 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3648 break; 3649 case Expand: 3650 ExpandOp(Node->getOperand(0), Tmp1, Tmp2); 3651 3652 // Since the result is legal, we should just be able to truncate the low 3653 // part of the source. 3654 Result = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), Tmp1); 3655 break; 3656 case Promote: 3657 Result = PromoteOp(Node->getOperand(0)); 3658 Result = DAG.getNode(ISD::TRUNCATE, Op.getValueType(), Result); 3659 break; 3660 } 3661 break; 3662 3663 case ISD::FP_TO_SINT: 3664 case ISD::FP_TO_UINT: 3665 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3666 case Legal: 3667 Tmp1 = LegalizeOp(Node->getOperand(0)); 3668 3669 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))){ 3670 default: assert(0 && "Unknown operation action!"); 3671 case TargetLowering::Custom: 3672 isCustom = true; 3673 // FALLTHROUGH 3674 case TargetLowering::Legal: 3675 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3676 if (isCustom) { 3677 Tmp1 = TLI.LowerOperation(Result, DAG); 3678 if (Tmp1.Val) Result = Tmp1; 3679 } 3680 break; 3681 case TargetLowering::Promote: 3682 Result = PromoteLegalFP_TO_INT(Tmp1, Node->getValueType(0), 3683 Node->getOpcode() == ISD::FP_TO_SINT); 3684 break; 3685 case TargetLowering::Expand: 3686 if (Node->getOpcode() == ISD::FP_TO_UINT) { 3687 SDOperand True, False; 3688 MVT::ValueType VT = Node->getOperand(0).getValueType(); 3689 MVT::ValueType NVT = Node->getValueType(0); 3690 unsigned ShiftAmt = MVT::getSizeInBits(NVT)-1; 3691 const uint64_t zero[] = {0, 0}; 3692 APFloat apf = APFloat(APInt(MVT::getSizeInBits(VT), 2, zero)); 3693 uint64_t x = 1ULL << ShiftAmt; 3694 (void)apf.convertFromZeroExtendedInteger 3695 (&x, MVT::getSizeInBits(NVT), false, APFloat::rmNearestTiesToEven); 3696 Tmp2 = DAG.getConstantFP(apf, VT); 3697 Tmp3 = DAG.getSetCC(TLI.getSetCCResultTy(), 3698 Node->getOperand(0), Tmp2, ISD::SETLT); 3699 True = DAG.getNode(ISD::FP_TO_SINT, NVT, Node->getOperand(0)); 3700 False = DAG.getNode(ISD::FP_TO_SINT, NVT, 3701 DAG.getNode(ISD::FSUB, VT, Node->getOperand(0), 3702 Tmp2)); 3703 False = DAG.getNode(ISD::XOR, NVT, False, 3704 DAG.getConstant(1ULL << ShiftAmt, NVT)); 3705 Result = DAG.getNode(ISD::SELECT, NVT, Tmp3, True, False); 3706 break; 3707 } else { 3708 assert(0 && "Do not know how to expand FP_TO_SINT yet!"); 3709 } 3710 break; 3711 } 3712 break; 3713 case Expand: { 3714 MVT::ValueType VT = Op.getValueType(); 3715 MVT::ValueType OVT = Node->getOperand(0).getValueType(); 3716 // Convert ppcf128 to i32 3717 if (OVT == MVT::ppcf128 && VT == MVT::i32) { 3718 if (Node->getOpcode() == ISD::FP_TO_SINT) { 3719 Result = DAG.getNode(ISD::FP_ROUND_INREG, MVT::ppcf128, 3720 Node->getOperand(0), DAG.getValueType(MVT::f64)); 3721 Result = DAG.getNode(ISD::FP_ROUND, MVT::f64, Result, 3722 DAG.getIntPtrConstant(1)); 3723 Result = DAG.getNode(ISD::FP_TO_SINT, VT, Result); 3724 } else { 3725 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 3726 APFloat apf = APFloat(APInt(128, 2, TwoE31)); 3727 Tmp2 = DAG.getConstantFP(apf, OVT); 3728 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 3729 // FIXME: generated code sucks. 3730 Result = DAG.getNode(ISD::SELECT_CC, VT, Node->getOperand(0), Tmp2, 3731 DAG.getNode(ISD::ADD, MVT::i32, 3732 DAG.getNode(ISD::FP_TO_SINT, VT, 3733 DAG.getNode(ISD::FSUB, OVT, 3734 Node->getOperand(0), Tmp2)), 3735 DAG.getConstant(0x80000000, MVT::i32)), 3736 DAG.getNode(ISD::FP_TO_SINT, VT, 3737 Node->getOperand(0)), 3738 DAG.getCondCode(ISD::SETGE)); 3739 } 3740 break; 3741 } 3742 // Convert f32 / f64 to i32 / i64. 3743 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 3744 switch (Node->getOpcode()) { 3745 case ISD::FP_TO_SINT: { 3746 if (OVT == MVT::f32) 3747 LC = (VT == MVT::i32) 3748 ? RTLIB::FPTOSINT_F32_I32 : RTLIB::FPTOSINT_F32_I64; 3749 else if (OVT == MVT::f64) 3750 LC = (VT == MVT::i32) 3751 ? RTLIB::FPTOSINT_F64_I32 : RTLIB::FPTOSINT_F64_I64; 3752 else if (OVT == MVT::f80) { 3753 assert(VT == MVT::i64); 3754 LC = RTLIB::FPTOSINT_F80_I64; 3755 } 3756 else if (OVT == MVT::ppcf128) { 3757 assert(VT == MVT::i64); 3758 LC = RTLIB::FPTOSINT_PPCF128_I64; 3759 } 3760 break; 3761 } 3762 case ISD::FP_TO_UINT: { 3763 if (OVT == MVT::f32) 3764 LC = (VT == MVT::i32) 3765 ? RTLIB::FPTOUINT_F32_I32 : RTLIB::FPTOSINT_F32_I64; 3766 else if (OVT == MVT::f64) 3767 LC = (VT == MVT::i32) 3768 ? RTLIB::FPTOUINT_F64_I32 : RTLIB::FPTOSINT_F64_I64; 3769 else if (OVT == MVT::f80) { 3770 LC = (VT == MVT::i32) 3771 ? RTLIB::FPTOUINT_F80_I32 : RTLIB::FPTOUINT_F80_I64; 3772 } 3773 else if (OVT == MVT::ppcf128) { 3774 assert(VT == MVT::i64); 3775 LC = RTLIB::FPTOUINT_PPCF128_I64; 3776 } 3777 break; 3778 } 3779 default: assert(0 && "Unreachable!"); 3780 } 3781 SDOperand Dummy; 3782 Result = ExpandLibCall(TLI.getLibcallName(LC), Node, 3783 false/*sign irrelevant*/, Dummy); 3784 break; 3785 } 3786 case Promote: 3787 Tmp1 = PromoteOp(Node->getOperand(0)); 3788 Result = DAG.UpdateNodeOperands(Result, LegalizeOp(Tmp1)); 3789 Result = LegalizeOp(Result); 3790 break; 3791 } 3792 break; 3793 3794 case ISD::FP_EXTEND: { 3795 MVT::ValueType DstVT = Op.getValueType(); 3796 MVT::ValueType SrcVT = Op.getOperand(0).getValueType(); 3797 if (TLI.getConvertAction(SrcVT, DstVT) == TargetLowering::Expand) { 3798 // The only other way we can lower this is to turn it into a STORE, 3799 // LOAD pair, targetting a temporary location (a stack slot). 3800 Result = EmitStackConvert(Node->getOperand(0), SrcVT, DstVT); 3801 break; 3802 } 3803 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3804 case Expand: assert(0 && "Shouldn't need to expand other operators here!"); 3805 case Legal: 3806 Tmp1 = LegalizeOp(Node->getOperand(0)); 3807 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3808 break; 3809 case Promote: 3810 Tmp1 = PromoteOp(Node->getOperand(0)); 3811 Result = DAG.getNode(ISD::FP_EXTEND, Op.getValueType(), Tmp1); 3812 break; 3813 } 3814 break; 3815 } 3816 case ISD::FP_ROUND: { 3817 MVT::ValueType DstVT = Op.getValueType(); 3818 MVT::ValueType SrcVT = Op.getOperand(0).getValueType(); 3819 if (TLI.getConvertAction(SrcVT, DstVT) == TargetLowering::Expand) { 3820 if (SrcVT == MVT::ppcf128) { 3821 SDOperand Lo; 3822 ExpandOp(Node->getOperand(0), Lo, Result); 3823 // Round it the rest of the way (e.g. to f32) if needed. 3824 if (DstVT!=MVT::f64) 3825 Result = DAG.getNode(ISD::FP_ROUND, DstVT, Result, Op.getOperand(1)); 3826 break; 3827 } 3828 // The only other way we can lower this is to turn it into a STORE, 3829 // LOAD pair, targetting a temporary location (a stack slot). 3830 Result = EmitStackConvert(Node->getOperand(0), DstVT, DstVT); 3831 break; 3832 } 3833 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3834 case Expand: assert(0 && "Shouldn't need to expand other operators here!"); 3835 case Legal: 3836 Tmp1 = LegalizeOp(Node->getOperand(0)); 3837 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 3838 break; 3839 case Promote: 3840 Tmp1 = PromoteOp(Node->getOperand(0)); 3841 Result = DAG.getNode(ISD::FP_ROUND, Op.getValueType(), Tmp1, 3842 Node->getOperand(1)); 3843 break; 3844 } 3845 break; 3846 } 3847 case ISD::ANY_EXTEND: 3848 case ISD::ZERO_EXTEND: 3849 case ISD::SIGN_EXTEND: 3850 switch (getTypeAction(Node->getOperand(0).getValueType())) { 3851 case Expand: assert(0 && "Shouldn't need to expand other operators here!"); 3852 case Legal: 3853 Tmp1 = LegalizeOp(Node->getOperand(0)); 3854 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3855 break; 3856 case Promote: 3857 switch (Node->getOpcode()) { 3858 case ISD::ANY_EXTEND: 3859 Tmp1 = PromoteOp(Node->getOperand(0)); 3860 Result = DAG.getNode(ISD::ANY_EXTEND, Op.getValueType(), Tmp1); 3861 break; 3862 case ISD::ZERO_EXTEND: 3863 Result = PromoteOp(Node->getOperand(0)); 3864 Result = DAG.getNode(ISD::ANY_EXTEND, Op.getValueType(), Result); 3865 Result = DAG.getZeroExtendInReg(Result, 3866 Node->getOperand(0).getValueType()); 3867 break; 3868 case ISD::SIGN_EXTEND: 3869 Result = PromoteOp(Node->getOperand(0)); 3870 Result = DAG.getNode(ISD::ANY_EXTEND, Op.getValueType(), Result); 3871 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(), 3872 Result, 3873 DAG.getValueType(Node->getOperand(0).getValueType())); 3874 break; 3875 } 3876 } 3877 break; 3878 case ISD::FP_ROUND_INREG: 3879 case ISD::SIGN_EXTEND_INREG: { 3880 Tmp1 = LegalizeOp(Node->getOperand(0)); 3881 MVT::ValueType ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 3882 3883 // If this operation is not supported, convert it to a shl/shr or load/store 3884 // pair. 3885 switch (TLI.getOperationAction(Node->getOpcode(), ExtraVT)) { 3886 default: assert(0 && "This action not supported for this op yet!"); 3887 case TargetLowering::Legal: 3888 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 3889 break; 3890 case TargetLowering::Expand: 3891 // If this is an integer extend and shifts are supported, do that. 3892 if (Node->getOpcode() == ISD::SIGN_EXTEND_INREG) { 3893 // NOTE: we could fall back on load/store here too for targets without 3894 // SAR. However, it is doubtful that any exist. 3895 unsigned BitsDiff = MVT::getSizeInBits(Node->getValueType(0)) - 3896 MVT::getSizeInBits(ExtraVT); 3897 SDOperand ShiftCst = DAG.getConstant(BitsDiff, TLI.getShiftAmountTy()); 3898 Result = DAG.getNode(ISD::SHL, Node->getValueType(0), 3899 Node->getOperand(0), ShiftCst); 3900 Result = DAG.getNode(ISD::SRA, Node->getValueType(0), 3901 Result, ShiftCst); 3902 } else if (Node->getOpcode() == ISD::FP_ROUND_INREG) { 3903 // The only way we can lower this is to turn it into a TRUNCSTORE, 3904 // EXTLOAD pair, targetting a temporary location (a stack slot). 3905 3906 // NOTE: there is a choice here between constantly creating new stack 3907 // slots and always reusing the same one. We currently always create 3908 // new ones, as reuse may inhibit scheduling. 3909 Result = EmitStackConvert(Node->getOperand(0), ExtraVT, 3910 Node->getValueType(0)); 3911 } else { 3912 assert(0 && "Unknown op"); 3913 } 3914 break; 3915 } 3916 break; 3917 } 3918 case ISD::TRAMPOLINE: { 3919 SDOperand Ops[6]; 3920 for (unsigned i = 0; i != 6; ++i) 3921 Ops[i] = LegalizeOp(Node->getOperand(i)); 3922 Result = DAG.UpdateNodeOperands(Result, Ops, 6); 3923 // The only option for this node is to custom lower it. 3924 Result = TLI.LowerOperation(Result, DAG); 3925 assert(Result.Val && "Should always custom lower!"); 3926 3927 // Since trampoline produces two values, make sure to remember that we 3928 // legalized both of them. 3929 Tmp1 = LegalizeOp(Result.getValue(1)); 3930 Result = LegalizeOp(Result); 3931 AddLegalizedOperand(SDOperand(Node, 0), Result); 3932 AddLegalizedOperand(SDOperand(Node, 1), Tmp1); 3933 return Op.ResNo ? Tmp1 : Result; 3934 } 3935 case ISD::FLT_ROUNDS_: { 3936 MVT::ValueType VT = Node->getValueType(0); 3937 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 3938 default: assert(0 && "This action not supported for this op yet!"); 3939 case TargetLowering::Custom: 3940 Result = TLI.LowerOperation(Op, DAG); 3941 if (Result.Val) break; 3942 // Fall Thru 3943 case TargetLowering::Legal: 3944 // If this operation is not supported, lower it to constant 1 3945 Result = DAG.getConstant(1, VT); 3946 break; 3947 } 3948 } 3949 case ISD::TRAP: { 3950 MVT::ValueType VT = Node->getValueType(0); 3951 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 3952 default: assert(0 && "This action not supported for this op yet!"); 3953 case TargetLowering::Legal: 3954 Tmp1 = LegalizeOp(Node->getOperand(0)); 3955 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3956 break; 3957 case TargetLowering::Custom: 3958 Result = TLI.LowerOperation(Op, DAG); 3959 if (Result.Val) break; 3960 // Fall Thru 3961 case TargetLowering::Expand: 3962 // If this operation is not supported, lower it to 'abort()' call 3963 Tmp1 = LegalizeOp(Node->getOperand(0)); 3964 TargetLowering::ArgListTy Args; 3965 std::pair<SDOperand,SDOperand> CallResult = 3966 TLI.LowerCallTo(Tmp1, Type::VoidTy, false, false, CallingConv::C, false, 3967 DAG.getExternalSymbol("abort", TLI.getPointerTy()), 3968 Args, DAG); 3969 Result = CallResult.second; 3970 break; 3971 } 3972 break; 3973 } 3974 } 3975 3976 assert(Result.getValueType() == Op.getValueType() && 3977 "Bad legalization!"); 3978 3979 // Make sure that the generated code is itself legal. 3980 if (Result != Op) 3981 Result = LegalizeOp(Result); 3982 3983 // Note that LegalizeOp may be reentered even from single-use nodes, which 3984 // means that we always must cache transformed nodes. 3985 AddLegalizedOperand(Op, Result); 3986 return Result; 3987} 3988 3989/// PromoteOp - Given an operation that produces a value in an invalid type, 3990/// promote it to compute the value into a larger type. The produced value will 3991/// have the correct bits for the low portion of the register, but no guarantee 3992/// is made about the top bits: it may be zero, sign-extended, or garbage. 3993SDOperand SelectionDAGLegalize::PromoteOp(SDOperand Op) { 3994 MVT::ValueType VT = Op.getValueType(); 3995 MVT::ValueType NVT = TLI.getTypeToTransformTo(VT); 3996 assert(getTypeAction(VT) == Promote && 3997 "Caller should expand or legalize operands that are not promotable!"); 3998 assert(NVT > VT && MVT::isInteger(NVT) == MVT::isInteger(VT) && 3999 "Cannot promote to smaller type!"); 4000 4001 SDOperand Tmp1, Tmp2, Tmp3; 4002 SDOperand Result; 4003 SDNode *Node = Op.Val; 4004 4005 DenseMap<SDOperand, SDOperand>::iterator I = PromotedNodes.find(Op); 4006 if (I != PromotedNodes.end()) return I->second; 4007 4008 switch (Node->getOpcode()) { 4009 case ISD::CopyFromReg: 4010 assert(0 && "CopyFromReg must be legal!"); 4011 default: 4012#ifndef NDEBUG 4013 cerr << "NODE: "; Node->dump(&DAG); cerr << "\n"; 4014#endif 4015 assert(0 && "Do not know how to promote this operator!"); 4016 abort(); 4017 case ISD::UNDEF: 4018 Result = DAG.getNode(ISD::UNDEF, NVT); 4019 break; 4020 case ISD::Constant: 4021 if (VT != MVT::i1) 4022 Result = DAG.getNode(ISD::SIGN_EXTEND, NVT, Op); 4023 else 4024 Result = DAG.getNode(ISD::ZERO_EXTEND, NVT, Op); 4025 assert(isa<ConstantSDNode>(Result) && "Didn't constant fold zext?"); 4026 break; 4027 case ISD::ConstantFP: 4028 Result = DAG.getNode(ISD::FP_EXTEND, NVT, Op); 4029 assert(isa<ConstantFPSDNode>(Result) && "Didn't constant fold fp_extend?"); 4030 break; 4031 4032 case ISD::SETCC: 4033 assert(isTypeLegal(TLI.getSetCCResultTy()) && "SetCC type is not legal??"); 4034 Result = DAG.getNode(ISD::SETCC, TLI.getSetCCResultTy(),Node->getOperand(0), 4035 Node->getOperand(1), Node->getOperand(2)); 4036 break; 4037 4038 case ISD::TRUNCATE: 4039 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4040 case Legal: 4041 Result = LegalizeOp(Node->getOperand(0)); 4042 assert(Result.getValueType() >= NVT && 4043 "This truncation doesn't make sense!"); 4044 if (Result.getValueType() > NVT) // Truncate to NVT instead of VT 4045 Result = DAG.getNode(ISD::TRUNCATE, NVT, Result); 4046 break; 4047 case Promote: 4048 // The truncation is not required, because we don't guarantee anything 4049 // about high bits anyway. 4050 Result = PromoteOp(Node->getOperand(0)); 4051 break; 4052 case Expand: 4053 ExpandOp(Node->getOperand(0), Tmp1, Tmp2); 4054 // Truncate the low part of the expanded value to the result type 4055 Result = DAG.getNode(ISD::TRUNCATE, NVT, Tmp1); 4056 } 4057 break; 4058 case ISD::SIGN_EXTEND: 4059 case ISD::ZERO_EXTEND: 4060 case ISD::ANY_EXTEND: 4061 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4062 case Expand: assert(0 && "BUG: Smaller reg should have been promoted!"); 4063 case Legal: 4064 // Input is legal? Just do extend all the way to the larger type. 4065 Result = DAG.getNode(Node->getOpcode(), NVT, Node->getOperand(0)); 4066 break; 4067 case Promote: 4068 // Promote the reg if it's smaller. 4069 Result = PromoteOp(Node->getOperand(0)); 4070 // The high bits are not guaranteed to be anything. Insert an extend. 4071 if (Node->getOpcode() == ISD::SIGN_EXTEND) 4072 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Result, 4073 DAG.getValueType(Node->getOperand(0).getValueType())); 4074 else if (Node->getOpcode() == ISD::ZERO_EXTEND) 4075 Result = DAG.getZeroExtendInReg(Result, 4076 Node->getOperand(0).getValueType()); 4077 break; 4078 } 4079 break; 4080 case ISD::BIT_CONVERT: 4081 Result = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 4082 Node->getValueType(0)); 4083 Result = PromoteOp(Result); 4084 break; 4085 4086 case ISD::FP_EXTEND: 4087 assert(0 && "Case not implemented. Dynamically dead with 2 FP types!"); 4088 case ISD::FP_ROUND: 4089 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4090 case Expand: assert(0 && "BUG: Cannot expand FP regs!"); 4091 case Promote: assert(0 && "Unreachable with 2 FP types!"); 4092 case Legal: 4093 if (Node->getConstantOperandVal(1) == 0) { 4094 // Input is legal? Do an FP_ROUND_INREG. 4095 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Node->getOperand(0), 4096 DAG.getValueType(VT)); 4097 } else { 4098 // Just remove the truncate, it isn't affecting the value. 4099 Result = DAG.getNode(ISD::FP_ROUND, NVT, Node->getOperand(0), 4100 Node->getOperand(1)); 4101 } 4102 break; 4103 } 4104 break; 4105 case ISD::SINT_TO_FP: 4106 case ISD::UINT_TO_FP: 4107 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4108 case Legal: 4109 // No extra round required here. 4110 Result = DAG.getNode(Node->getOpcode(), NVT, Node->getOperand(0)); 4111 break; 4112 4113 case Promote: 4114 Result = PromoteOp(Node->getOperand(0)); 4115 if (Node->getOpcode() == ISD::SINT_TO_FP) 4116 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(), 4117 Result, 4118 DAG.getValueType(Node->getOperand(0).getValueType())); 4119 else 4120 Result = DAG.getZeroExtendInReg(Result, 4121 Node->getOperand(0).getValueType()); 4122 // No extra round required here. 4123 Result = DAG.getNode(Node->getOpcode(), NVT, Result); 4124 break; 4125 case Expand: 4126 Result = ExpandIntToFP(Node->getOpcode() == ISD::SINT_TO_FP, NVT, 4127 Node->getOperand(0)); 4128 // Round if we cannot tolerate excess precision. 4129 if (NoExcessFPPrecision) 4130 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 4131 DAG.getValueType(VT)); 4132 break; 4133 } 4134 break; 4135 4136 case ISD::SIGN_EXTEND_INREG: 4137 Result = PromoteOp(Node->getOperand(0)); 4138 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Result, 4139 Node->getOperand(1)); 4140 break; 4141 case ISD::FP_TO_SINT: 4142 case ISD::FP_TO_UINT: 4143 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4144 case Legal: 4145 case Expand: 4146 Tmp1 = Node->getOperand(0); 4147 break; 4148 case Promote: 4149 // The input result is prerounded, so we don't have to do anything 4150 // special. 4151 Tmp1 = PromoteOp(Node->getOperand(0)); 4152 break; 4153 } 4154 // If we're promoting a UINT to a larger size, check to see if the new node 4155 // will be legal. If it isn't, check to see if FP_TO_SINT is legal, since 4156 // we can use that instead. This allows us to generate better code for 4157 // FP_TO_UINT for small destination sizes on targets where FP_TO_UINT is not 4158 // legal, such as PowerPC. 4159 if (Node->getOpcode() == ISD::FP_TO_UINT && 4160 !TLI.isOperationLegal(ISD::FP_TO_UINT, NVT) && 4161 (TLI.isOperationLegal(ISD::FP_TO_SINT, NVT) || 4162 TLI.getOperationAction(ISD::FP_TO_SINT, NVT)==TargetLowering::Custom)){ 4163 Result = DAG.getNode(ISD::FP_TO_SINT, NVT, Tmp1); 4164 } else { 4165 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1); 4166 } 4167 break; 4168 4169 case ISD::FABS: 4170 case ISD::FNEG: 4171 Tmp1 = PromoteOp(Node->getOperand(0)); 4172 assert(Tmp1.getValueType() == NVT); 4173 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1); 4174 // NOTE: we do not have to do any extra rounding here for 4175 // NoExcessFPPrecision, because we know the input will have the appropriate 4176 // precision, and these operations don't modify precision at all. 4177 break; 4178 4179 case ISD::FSQRT: 4180 case ISD::FSIN: 4181 case ISD::FCOS: 4182 Tmp1 = PromoteOp(Node->getOperand(0)); 4183 assert(Tmp1.getValueType() == NVT); 4184 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1); 4185 if (NoExcessFPPrecision) 4186 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 4187 DAG.getValueType(VT)); 4188 break; 4189 4190 case ISD::FPOWI: { 4191 // Promote f32 powi to f64 powi. Note that this could insert a libcall 4192 // directly as well, which may be better. 4193 Tmp1 = PromoteOp(Node->getOperand(0)); 4194 assert(Tmp1.getValueType() == NVT); 4195 Result = DAG.getNode(ISD::FPOWI, NVT, Tmp1, Node->getOperand(1)); 4196 if (NoExcessFPPrecision) 4197 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 4198 DAG.getValueType(VT)); 4199 break; 4200 } 4201 4202 case ISD::AND: 4203 case ISD::OR: 4204 case ISD::XOR: 4205 case ISD::ADD: 4206 case ISD::SUB: 4207 case ISD::MUL: 4208 // The input may have strange things in the top bits of the registers, but 4209 // these operations don't care. They may have weird bits going out, but 4210 // that too is okay if they are integer operations. 4211 Tmp1 = PromoteOp(Node->getOperand(0)); 4212 Tmp2 = PromoteOp(Node->getOperand(1)); 4213 assert(Tmp1.getValueType() == NVT && Tmp2.getValueType() == NVT); 4214 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 4215 break; 4216 case ISD::FADD: 4217 case ISD::FSUB: 4218 case ISD::FMUL: 4219 Tmp1 = PromoteOp(Node->getOperand(0)); 4220 Tmp2 = PromoteOp(Node->getOperand(1)); 4221 assert(Tmp1.getValueType() == NVT && Tmp2.getValueType() == NVT); 4222 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 4223 4224 // Floating point operations will give excess precision that we may not be 4225 // able to tolerate. If we DO allow excess precision, just leave it, 4226 // otherwise excise it. 4227 // FIXME: Why would we need to round FP ops more than integer ones? 4228 // Is Round(Add(Add(A,B),C)) != Round(Add(Round(Add(A,B)), C)) 4229 if (NoExcessFPPrecision) 4230 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 4231 DAG.getValueType(VT)); 4232 break; 4233 4234 case ISD::SDIV: 4235 case ISD::SREM: 4236 // These operators require that their input be sign extended. 4237 Tmp1 = PromoteOp(Node->getOperand(0)); 4238 Tmp2 = PromoteOp(Node->getOperand(1)); 4239 if (MVT::isInteger(NVT)) { 4240 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp1, 4241 DAG.getValueType(VT)); 4242 Tmp2 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp2, 4243 DAG.getValueType(VT)); 4244 } 4245 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 4246 4247 // Perform FP_ROUND: this is probably overly pessimistic. 4248 if (MVT::isFloatingPoint(NVT) && NoExcessFPPrecision) 4249 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 4250 DAG.getValueType(VT)); 4251 break; 4252 case ISD::FDIV: 4253 case ISD::FREM: 4254 case ISD::FCOPYSIGN: 4255 // These operators require that their input be fp extended. 4256 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4257 case Expand: assert(0 && "not implemented"); 4258 case Legal: Tmp1 = LegalizeOp(Node->getOperand(0)); break; 4259 case Promote: Tmp1 = PromoteOp(Node->getOperand(0)); break; 4260 } 4261 switch (getTypeAction(Node->getOperand(1).getValueType())) { 4262 case Expand: assert(0 && "not implemented"); 4263 case Legal: Tmp2 = LegalizeOp(Node->getOperand(1)); break; 4264 case Promote: Tmp2 = PromoteOp(Node->getOperand(1)); break; 4265 } 4266 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 4267 4268 // Perform FP_ROUND: this is probably overly pessimistic. 4269 if (NoExcessFPPrecision && Node->getOpcode() != ISD::FCOPYSIGN) 4270 Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, 4271 DAG.getValueType(VT)); 4272 break; 4273 4274 case ISD::UDIV: 4275 case ISD::UREM: 4276 // These operators require that their input be zero extended. 4277 Tmp1 = PromoteOp(Node->getOperand(0)); 4278 Tmp2 = PromoteOp(Node->getOperand(1)); 4279 assert(MVT::isInteger(NVT) && "Operators don't apply to FP!"); 4280 Tmp1 = DAG.getZeroExtendInReg(Tmp1, VT); 4281 Tmp2 = DAG.getZeroExtendInReg(Tmp2, VT); 4282 Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); 4283 break; 4284 4285 case ISD::SHL: 4286 Tmp1 = PromoteOp(Node->getOperand(0)); 4287 Result = DAG.getNode(ISD::SHL, NVT, Tmp1, Node->getOperand(1)); 4288 break; 4289 case ISD::SRA: 4290 // The input value must be properly sign extended. 4291 Tmp1 = PromoteOp(Node->getOperand(0)); 4292 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp1, 4293 DAG.getValueType(VT)); 4294 Result = DAG.getNode(ISD::SRA, NVT, Tmp1, Node->getOperand(1)); 4295 break; 4296 case ISD::SRL: 4297 // The input value must be properly zero extended. 4298 Tmp1 = PromoteOp(Node->getOperand(0)); 4299 Tmp1 = DAG.getZeroExtendInReg(Tmp1, VT); 4300 Result = DAG.getNode(ISD::SRL, NVT, Tmp1, Node->getOperand(1)); 4301 break; 4302 4303 case ISD::VAARG: 4304 Tmp1 = Node->getOperand(0); // Get the chain. 4305 Tmp2 = Node->getOperand(1); // Get the pointer. 4306 if (TLI.getOperationAction(ISD::VAARG, VT) == TargetLowering::Custom) { 4307 Tmp3 = DAG.getVAArg(VT, Tmp1, Tmp2, Node->getOperand(2)); 4308 Result = TLI.CustomPromoteOperation(Tmp3, DAG); 4309 } else { 4310 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 4311 SDOperand VAList = DAG.getLoad(TLI.getPointerTy(), Tmp1, Tmp2, V, 0); 4312 // Increment the pointer, VAList, to the next vaarg 4313 Tmp3 = DAG.getNode(ISD::ADD, TLI.getPointerTy(), VAList, 4314 DAG.getConstant(MVT::getSizeInBits(VT)/8, 4315 TLI.getPointerTy())); 4316 // Store the incremented VAList to the legalized pointer 4317 Tmp3 = DAG.getStore(VAList.getValue(1), Tmp3, Tmp2, V, 0); 4318 // Load the actual argument out of the pointer VAList 4319 Result = DAG.getExtLoad(ISD::EXTLOAD, NVT, Tmp3, VAList, NULL, 0, VT); 4320 } 4321 // Remember that we legalized the chain. 4322 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); 4323 break; 4324 4325 case ISD::LOAD: { 4326 LoadSDNode *LD = cast<LoadSDNode>(Node); 4327 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(Node) 4328 ? ISD::EXTLOAD : LD->getExtensionType(); 4329 Result = DAG.getExtLoad(ExtType, NVT, 4330 LD->getChain(), LD->getBasePtr(), 4331 LD->getSrcValue(), LD->getSrcValueOffset(), 4332 LD->getMemoryVT(), 4333 LD->isVolatile(), 4334 LD->getAlignment()); 4335 // Remember that we legalized the chain. 4336 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); 4337 break; 4338 } 4339 case ISD::SELECT: 4340 Tmp2 = PromoteOp(Node->getOperand(1)); // Legalize the op0 4341 Tmp3 = PromoteOp(Node->getOperand(2)); // Legalize the op1 4342 Result = DAG.getNode(ISD::SELECT, NVT, Node->getOperand(0), Tmp2, Tmp3); 4343 break; 4344 case ISD::SELECT_CC: 4345 Tmp2 = PromoteOp(Node->getOperand(2)); // True 4346 Tmp3 = PromoteOp(Node->getOperand(3)); // False 4347 Result = DAG.getNode(ISD::SELECT_CC, NVT, Node->getOperand(0), 4348 Node->getOperand(1), Tmp2, Tmp3, Node->getOperand(4)); 4349 break; 4350 case ISD::BSWAP: 4351 Tmp1 = Node->getOperand(0); 4352 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Tmp1); 4353 Tmp1 = DAG.getNode(ISD::BSWAP, NVT, Tmp1); 4354 Result = DAG.getNode(ISD::SRL, NVT, Tmp1, 4355 DAG.getConstant(MVT::getSizeInBits(NVT) - 4356 MVT::getSizeInBits(VT), 4357 TLI.getShiftAmountTy())); 4358 break; 4359 case ISD::CTPOP: 4360 case ISD::CTTZ: 4361 case ISD::CTLZ: 4362 // Zero extend the argument 4363 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Node->getOperand(0)); 4364 // Perform the larger operation, then subtract if needed. 4365 Tmp1 = DAG.getNode(Node->getOpcode(), NVT, Tmp1); 4366 switch(Node->getOpcode()) { 4367 case ISD::CTPOP: 4368 Result = Tmp1; 4369 break; 4370 case ISD::CTTZ: 4371 // if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT) 4372 Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), Tmp1, 4373 DAG.getConstant(MVT::getSizeInBits(NVT), NVT), 4374 ISD::SETEQ); 4375 Result = DAG.getNode(ISD::SELECT, NVT, Tmp2, 4376 DAG.getConstant(MVT::getSizeInBits(VT), NVT), Tmp1); 4377 break; 4378 case ISD::CTLZ: 4379 //Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 4380 Result = DAG.getNode(ISD::SUB, NVT, Tmp1, 4381 DAG.getConstant(MVT::getSizeInBits(NVT) - 4382 MVT::getSizeInBits(VT), NVT)); 4383 break; 4384 } 4385 break; 4386 case ISD::EXTRACT_SUBVECTOR: 4387 Result = PromoteOp(ExpandEXTRACT_SUBVECTOR(Op)); 4388 break; 4389 case ISD::EXTRACT_VECTOR_ELT: 4390 Result = PromoteOp(ExpandEXTRACT_VECTOR_ELT(Op)); 4391 break; 4392 } 4393 4394 assert(Result.Val && "Didn't set a result!"); 4395 4396 // Make sure the result is itself legal. 4397 Result = LegalizeOp(Result); 4398 4399 // Remember that we promoted this! 4400 AddPromotedOperand(Op, Result); 4401 return Result; 4402} 4403 4404/// ExpandEXTRACT_VECTOR_ELT - Expand an EXTRACT_VECTOR_ELT operation into 4405/// a legal EXTRACT_VECTOR_ELT operation, scalar code, or memory traffic, 4406/// based on the vector type. The return type of this matches the element type 4407/// of the vector, which may not be legal for the target. 4408SDOperand SelectionDAGLegalize::ExpandEXTRACT_VECTOR_ELT(SDOperand Op) { 4409 // We know that operand #0 is the Vec vector. If the index is a constant 4410 // or if the invec is a supported hardware type, we can use it. Otherwise, 4411 // lower to a store then an indexed load. 4412 SDOperand Vec = Op.getOperand(0); 4413 SDOperand Idx = Op.getOperand(1); 4414 4415 MVT::ValueType TVT = Vec.getValueType(); 4416 unsigned NumElems = MVT::getVectorNumElements(TVT); 4417 4418 switch (TLI.getOperationAction(ISD::EXTRACT_VECTOR_ELT, TVT)) { 4419 default: assert(0 && "This action is not supported yet!"); 4420 case TargetLowering::Custom: { 4421 Vec = LegalizeOp(Vec); 4422 Op = DAG.UpdateNodeOperands(Op, Vec, Idx); 4423 SDOperand Tmp3 = TLI.LowerOperation(Op, DAG); 4424 if (Tmp3.Val) 4425 return Tmp3; 4426 break; 4427 } 4428 case TargetLowering::Legal: 4429 if (isTypeLegal(TVT)) { 4430 Vec = LegalizeOp(Vec); 4431 Op = DAG.UpdateNodeOperands(Op, Vec, Idx); 4432 return Op; 4433 } 4434 break; 4435 case TargetLowering::Expand: 4436 break; 4437 } 4438 4439 if (NumElems == 1) { 4440 // This must be an access of the only element. Return it. 4441 Op = ScalarizeVectorOp(Vec); 4442 } else if (!TLI.isTypeLegal(TVT) && isa<ConstantSDNode>(Idx)) { 4443 unsigned NumLoElts = 1 << Log2_32(NumElems-1); 4444 ConstantSDNode *CIdx = cast<ConstantSDNode>(Idx); 4445 SDOperand Lo, Hi; 4446 SplitVectorOp(Vec, Lo, Hi); 4447 if (CIdx->getValue() < NumLoElts) { 4448 Vec = Lo; 4449 } else { 4450 Vec = Hi; 4451 Idx = DAG.getConstant(CIdx->getValue() - NumLoElts, 4452 Idx.getValueType()); 4453 } 4454 4455 // It's now an extract from the appropriate high or low part. Recurse. 4456 Op = DAG.UpdateNodeOperands(Op, Vec, Idx); 4457 Op = ExpandEXTRACT_VECTOR_ELT(Op); 4458 } else { 4459 // Store the value to a temporary stack slot, then LOAD the scalar 4460 // element back out. 4461 SDOperand StackPtr = DAG.CreateStackTemporary(Vec.getValueType()); 4462 SDOperand Ch = DAG.getStore(DAG.getEntryNode(), Vec, StackPtr, NULL, 0); 4463 4464 // Add the offset to the index. 4465 unsigned EltSize = MVT::getSizeInBits(Op.getValueType())/8; 4466 Idx = DAG.getNode(ISD::MUL, Idx.getValueType(), Idx, 4467 DAG.getConstant(EltSize, Idx.getValueType())); 4468 4469 if (MVT::getSizeInBits(Idx.getValueType()) > 4470 MVT::getSizeInBits(TLI.getPointerTy())) 4471 Idx = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), Idx); 4472 else 4473 Idx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), Idx); 4474 4475 StackPtr = DAG.getNode(ISD::ADD, Idx.getValueType(), Idx, StackPtr); 4476 4477 Op = DAG.getLoad(Op.getValueType(), Ch, StackPtr, NULL, 0); 4478 } 4479 return Op; 4480} 4481 4482/// ExpandEXTRACT_SUBVECTOR - Expand a EXTRACT_SUBVECTOR operation. For now 4483/// we assume the operation can be split if it is not already legal. 4484SDOperand SelectionDAGLegalize::ExpandEXTRACT_SUBVECTOR(SDOperand Op) { 4485 // We know that operand #0 is the Vec vector. For now we assume the index 4486 // is a constant and that the extracted result is a supported hardware type. 4487 SDOperand Vec = Op.getOperand(0); 4488 SDOperand Idx = LegalizeOp(Op.getOperand(1)); 4489 4490 unsigned NumElems = MVT::getVectorNumElements(Vec.getValueType()); 4491 4492 if (NumElems == MVT::getVectorNumElements(Op.getValueType())) { 4493 // This must be an access of the desired vector length. Return it. 4494 return Vec; 4495 } 4496 4497 ConstantSDNode *CIdx = cast<ConstantSDNode>(Idx); 4498 SDOperand Lo, Hi; 4499 SplitVectorOp(Vec, Lo, Hi); 4500 if (CIdx->getValue() < NumElems/2) { 4501 Vec = Lo; 4502 } else { 4503 Vec = Hi; 4504 Idx = DAG.getConstant(CIdx->getValue() - NumElems/2, Idx.getValueType()); 4505 } 4506 4507 // It's now an extract from the appropriate high or low part. Recurse. 4508 Op = DAG.UpdateNodeOperands(Op, Vec, Idx); 4509 return ExpandEXTRACT_SUBVECTOR(Op); 4510} 4511 4512/// LegalizeSetCCOperands - Attempts to create a legal LHS and RHS for a SETCC 4513/// with condition CC on the current target. This usually involves legalizing 4514/// or promoting the arguments. In the case where LHS and RHS must be expanded, 4515/// there may be no choice but to create a new SetCC node to represent the 4516/// legalized value of setcc lhs, rhs. In this case, the value is returned in 4517/// LHS, and the SDOperand returned in RHS has a nil SDNode value. 4518void SelectionDAGLegalize::LegalizeSetCCOperands(SDOperand &LHS, 4519 SDOperand &RHS, 4520 SDOperand &CC) { 4521 SDOperand Tmp1, Tmp2, Tmp3, Result; 4522 4523 switch (getTypeAction(LHS.getValueType())) { 4524 case Legal: 4525 Tmp1 = LegalizeOp(LHS); // LHS 4526 Tmp2 = LegalizeOp(RHS); // RHS 4527 break; 4528 case Promote: 4529 Tmp1 = PromoteOp(LHS); // LHS 4530 Tmp2 = PromoteOp(RHS); // RHS 4531 4532 // If this is an FP compare, the operands have already been extended. 4533 if (MVT::isInteger(LHS.getValueType())) { 4534 MVT::ValueType VT = LHS.getValueType(); 4535 MVT::ValueType NVT = TLI.getTypeToTransformTo(VT); 4536 4537 // Otherwise, we have to insert explicit sign or zero extends. Note 4538 // that we could insert sign extends for ALL conditions, but zero extend 4539 // is cheaper on many machines (an AND instead of two shifts), so prefer 4540 // it. 4541 switch (cast<CondCodeSDNode>(CC)->get()) { 4542 default: assert(0 && "Unknown integer comparison!"); 4543 case ISD::SETEQ: 4544 case ISD::SETNE: 4545 case ISD::SETUGE: 4546 case ISD::SETUGT: 4547 case ISD::SETULE: 4548 case ISD::SETULT: 4549 // ALL of these operations will work if we either sign or zero extend 4550 // the operands (including the unsigned comparisons!). Zero extend is 4551 // usually a simpler/cheaper operation, so prefer it. 4552 Tmp1 = DAG.getZeroExtendInReg(Tmp1, VT); 4553 Tmp2 = DAG.getZeroExtendInReg(Tmp2, VT); 4554 break; 4555 case ISD::SETGE: 4556 case ISD::SETGT: 4557 case ISD::SETLT: 4558 case ISD::SETLE: 4559 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp1, 4560 DAG.getValueType(VT)); 4561 Tmp2 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp2, 4562 DAG.getValueType(VT)); 4563 break; 4564 } 4565 } 4566 break; 4567 case Expand: { 4568 MVT::ValueType VT = LHS.getValueType(); 4569 if (VT == MVT::f32 || VT == MVT::f64) { 4570 // Expand into one or more soft-fp libcall(s). 4571 RTLIB::Libcall LC1, LC2 = RTLIB::UNKNOWN_LIBCALL; 4572 switch (cast<CondCodeSDNode>(CC)->get()) { 4573 case ISD::SETEQ: 4574 case ISD::SETOEQ: 4575 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : RTLIB::OEQ_F64; 4576 break; 4577 case ISD::SETNE: 4578 case ISD::SETUNE: 4579 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : RTLIB::UNE_F64; 4580 break; 4581 case ISD::SETGE: 4582 case ISD::SETOGE: 4583 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : RTLIB::OGE_F64; 4584 break; 4585 case ISD::SETLT: 4586 case ISD::SETOLT: 4587 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64; 4588 break; 4589 case ISD::SETLE: 4590 case ISD::SETOLE: 4591 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : RTLIB::OLE_F64; 4592 break; 4593 case ISD::SETGT: 4594 case ISD::SETOGT: 4595 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : RTLIB::OGT_F64; 4596 break; 4597 case ISD::SETUO: 4598 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : RTLIB::UO_F64; 4599 break; 4600 case ISD::SETO: 4601 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : RTLIB::O_F64; 4602 break; 4603 default: 4604 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : RTLIB::UO_F64; 4605 switch (cast<CondCodeSDNode>(CC)->get()) { 4606 case ISD::SETONE: 4607 // SETONE = SETOLT | SETOGT 4608 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64; 4609 // Fallthrough 4610 case ISD::SETUGT: 4611 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : RTLIB::OGT_F64; 4612 break; 4613 case ISD::SETUGE: 4614 LC2 = (VT == MVT::f32) ? RTLIB::OGE_F32 : RTLIB::OGE_F64; 4615 break; 4616 case ISD::SETULT: 4617 LC2 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64; 4618 break; 4619 case ISD::SETULE: 4620 LC2 = (VT == MVT::f32) ? RTLIB::OLE_F32 : RTLIB::OLE_F64; 4621 break; 4622 case ISD::SETUEQ: 4623 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : RTLIB::OEQ_F64; 4624 break; 4625 default: assert(0 && "Unsupported FP setcc!"); 4626 } 4627 } 4628 4629 SDOperand Dummy; 4630 Tmp1 = ExpandLibCall(TLI.getLibcallName(LC1), 4631 DAG.getNode(ISD::MERGE_VALUES, VT, LHS, RHS).Val, 4632 false /*sign irrelevant*/, Dummy); 4633 Tmp2 = DAG.getConstant(0, MVT::i32); 4634 CC = DAG.getCondCode(TLI.getCmpLibcallCC(LC1)); 4635 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 4636 Tmp1 = DAG.getNode(ISD::SETCC, TLI.getSetCCResultTy(), Tmp1, Tmp2, CC); 4637 LHS = ExpandLibCall(TLI.getLibcallName(LC2), 4638 DAG.getNode(ISD::MERGE_VALUES, VT, LHS, RHS).Val, 4639 false /*sign irrelevant*/, Dummy); 4640 Tmp2 = DAG.getNode(ISD::SETCC, TLI.getSetCCResultTy(), LHS, Tmp2, 4641 DAG.getCondCode(TLI.getCmpLibcallCC(LC2))); 4642 Tmp1 = DAG.getNode(ISD::OR, Tmp1.getValueType(), Tmp1, Tmp2); 4643 Tmp2 = SDOperand(); 4644 } 4645 LHS = Tmp1; 4646 RHS = Tmp2; 4647 return; 4648 } 4649 4650 SDOperand LHSLo, LHSHi, RHSLo, RHSHi; 4651 ExpandOp(LHS, LHSLo, LHSHi); 4652 ExpandOp(RHS, RHSLo, RHSHi); 4653 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 4654 4655 if (VT==MVT::ppcf128) { 4656 // FIXME: This generated code sucks. We want to generate 4657 // FCMP crN, hi1, hi2 4658 // BNE crN, L: 4659 // FCMP crN, lo1, lo2 4660 // The following can be improved, but not that much. 4661 Tmp1 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, ISD::SETEQ); 4662 Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSLo, RHSLo, CCCode); 4663 Tmp3 = DAG.getNode(ISD::AND, Tmp1.getValueType(), Tmp1, Tmp2); 4664 Tmp1 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, ISD::SETNE); 4665 Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, CCCode); 4666 Tmp1 = DAG.getNode(ISD::AND, Tmp1.getValueType(), Tmp1, Tmp2); 4667 Tmp1 = DAG.getNode(ISD::OR, Tmp1.getValueType(), Tmp1, Tmp3); 4668 Tmp2 = SDOperand(); 4669 break; 4670 } 4671 4672 switch (CCCode) { 4673 case ISD::SETEQ: 4674 case ISD::SETNE: 4675 if (RHSLo == RHSHi) 4676 if (ConstantSDNode *RHSCST = dyn_cast<ConstantSDNode>(RHSLo)) 4677 if (RHSCST->isAllOnesValue()) { 4678 // Comparison to -1. 4679 Tmp1 = DAG.getNode(ISD::AND, LHSLo.getValueType(), LHSLo, LHSHi); 4680 Tmp2 = RHSLo; 4681 break; 4682 } 4683 4684 Tmp1 = DAG.getNode(ISD::XOR, LHSLo.getValueType(), LHSLo, RHSLo); 4685 Tmp2 = DAG.getNode(ISD::XOR, LHSLo.getValueType(), LHSHi, RHSHi); 4686 Tmp1 = DAG.getNode(ISD::OR, Tmp1.getValueType(), Tmp1, Tmp2); 4687 Tmp2 = DAG.getConstant(0, Tmp1.getValueType()); 4688 break; 4689 default: 4690 // If this is a comparison of the sign bit, just look at the top part. 4691 // X > -1, x < 0 4692 if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(RHS)) 4693 if ((cast<CondCodeSDNode>(CC)->get() == ISD::SETLT && 4694 CST->getValue() == 0) || // X < 0 4695 (cast<CondCodeSDNode>(CC)->get() == ISD::SETGT && 4696 CST->isAllOnesValue())) { // X > -1 4697 Tmp1 = LHSHi; 4698 Tmp2 = RHSHi; 4699 break; 4700 } 4701 4702 // FIXME: This generated code sucks. 4703 ISD::CondCode LowCC; 4704 switch (CCCode) { 4705 default: assert(0 && "Unknown integer setcc!"); 4706 case ISD::SETLT: 4707 case ISD::SETULT: LowCC = ISD::SETULT; break; 4708 case ISD::SETGT: 4709 case ISD::SETUGT: LowCC = ISD::SETUGT; break; 4710 case ISD::SETLE: 4711 case ISD::SETULE: LowCC = ISD::SETULE; break; 4712 case ISD::SETGE: 4713 case ISD::SETUGE: LowCC = ISD::SETUGE; break; 4714 } 4715 4716 // Tmp1 = lo(op1) < lo(op2) // Always unsigned comparison 4717 // Tmp2 = hi(op1) < hi(op2) // Signedness depends on operands 4718 // dest = hi(op1) == hi(op2) ? Tmp1 : Tmp2; 4719 4720 // NOTE: on targets without efficient SELECT of bools, we can always use 4721 // this identity: (B1 ? B2 : B3) --> (B1 & B2)|(!B1&B3) 4722 TargetLowering::DAGCombinerInfo DagCombineInfo(DAG, false, true, NULL); 4723 Tmp1 = TLI.SimplifySetCC(TLI.getSetCCResultTy(), LHSLo, RHSLo, LowCC, 4724 false, DagCombineInfo); 4725 if (!Tmp1.Val) 4726 Tmp1 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSLo, RHSLo, LowCC); 4727 Tmp2 = TLI.SimplifySetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, 4728 CCCode, false, DagCombineInfo); 4729 if (!Tmp2.Val) 4730 Tmp2 = DAG.getNode(ISD::SETCC, TLI.getSetCCResultTy(), LHSHi, RHSHi,CC); 4731 4732 ConstantSDNode *Tmp1C = dyn_cast<ConstantSDNode>(Tmp1.Val); 4733 ConstantSDNode *Tmp2C = dyn_cast<ConstantSDNode>(Tmp2.Val); 4734 if ((Tmp1C && Tmp1C->getValue() == 0) || 4735 (Tmp2C && Tmp2C->getValue() == 0 && 4736 (CCCode == ISD::SETLE || CCCode == ISD::SETGE || 4737 CCCode == ISD::SETUGE || CCCode == ISD::SETULE)) || 4738 (Tmp2C && Tmp2C->getValue() == 1 && 4739 (CCCode == ISD::SETLT || CCCode == ISD::SETGT || 4740 CCCode == ISD::SETUGT || CCCode == ISD::SETULT))) { 4741 // low part is known false, returns high part. 4742 // For LE / GE, if high part is known false, ignore the low part. 4743 // For LT / GT, if high part is known true, ignore the low part. 4744 Tmp1 = Tmp2; 4745 Tmp2 = SDOperand(); 4746 } else { 4747 Result = TLI.SimplifySetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, 4748 ISD::SETEQ, false, DagCombineInfo); 4749 if (!Result.Val) 4750 Result=DAG.getSetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, ISD::SETEQ); 4751 Result = LegalizeOp(DAG.getNode(ISD::SELECT, Tmp1.getValueType(), 4752 Result, Tmp1, Tmp2)); 4753 Tmp1 = Result; 4754 Tmp2 = SDOperand(); 4755 } 4756 } 4757 } 4758 } 4759 LHS = Tmp1; 4760 RHS = Tmp2; 4761} 4762 4763/// EmitStackConvert - Emit a store/load combination to the stack. This stores 4764/// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does 4765/// a load from the stack slot to DestVT, extending it if needed. 4766/// The resultant code need not be legal. 4767SDOperand SelectionDAGLegalize::EmitStackConvert(SDOperand SrcOp, 4768 MVT::ValueType SlotVT, 4769 MVT::ValueType DestVT) { 4770 // Create the stack frame object. 4771 SDOperand FIPtr = DAG.CreateStackTemporary(SlotVT); 4772 4773 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); 4774 int SPFI = StackPtrFI->getIndex(); 4775 4776 unsigned SrcSize = MVT::getSizeInBits(SrcOp.getValueType()); 4777 unsigned SlotSize = MVT::getSizeInBits(SlotVT); 4778 unsigned DestSize = MVT::getSizeInBits(DestVT); 4779 4780 // Emit a store to the stack slot. Use a truncstore if the input value is 4781 // later than DestVT. 4782 SDOperand Store; 4783 if (SrcSize > SlotSize) 4784 Store = DAG.getTruncStore(DAG.getEntryNode(), SrcOp, FIPtr, 4785 PseudoSourceValue::getFixedStack(), 4786 SPFI, SlotVT); 4787 else { 4788 assert(SrcSize == SlotSize && "Invalid store"); 4789 Store = DAG.getStore(DAG.getEntryNode(), SrcOp, FIPtr, 4790 PseudoSourceValue::getFixedStack(), 4791 SPFI, SlotVT); 4792 } 4793 4794 // Result is a load from the stack slot. 4795 if (SlotSize == DestSize) 4796 return DAG.getLoad(DestVT, Store, FIPtr, NULL, 0); 4797 4798 assert(SlotSize < DestSize && "Unknown extension!"); 4799 return DAG.getExtLoad(ISD::EXTLOAD, DestVT, Store, FIPtr, NULL, 0, SlotVT); 4800} 4801 4802SDOperand SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { 4803 // Create a vector sized/aligned stack slot, store the value to element #0, 4804 // then load the whole vector back out. 4805 SDOperand StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); 4806 4807 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); 4808 int SPFI = StackPtrFI->getIndex(); 4809 4810 SDOperand Ch = DAG.getStore(DAG.getEntryNode(), Node->getOperand(0), StackPtr, 4811 PseudoSourceValue::getFixedStack(), SPFI); 4812 return DAG.getLoad(Node->getValueType(0), Ch, StackPtr, 4813 PseudoSourceValue::getFixedStack(), SPFI); 4814} 4815 4816 4817/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't 4818/// support the operation, but do support the resultant vector type. 4819SDOperand SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { 4820 4821 // If the only non-undef value is the low element, turn this into a 4822 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. 4823 unsigned NumElems = Node->getNumOperands(); 4824 bool isOnlyLowElement = true; 4825 SDOperand SplatValue = Node->getOperand(0); 4826 std::map<SDOperand, std::vector<unsigned> > Values; 4827 Values[SplatValue].push_back(0); 4828 bool isConstant = true; 4829 if (!isa<ConstantFPSDNode>(SplatValue) && !isa<ConstantSDNode>(SplatValue) && 4830 SplatValue.getOpcode() != ISD::UNDEF) 4831 isConstant = false; 4832 4833 for (unsigned i = 1; i < NumElems; ++i) { 4834 SDOperand V = Node->getOperand(i); 4835 Values[V].push_back(i); 4836 if (V.getOpcode() != ISD::UNDEF) 4837 isOnlyLowElement = false; 4838 if (SplatValue != V) 4839 SplatValue = SDOperand(0,0); 4840 4841 // If this isn't a constant element or an undef, we can't use a constant 4842 // pool load. 4843 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V) && 4844 V.getOpcode() != ISD::UNDEF) 4845 isConstant = false; 4846 } 4847 4848 if (isOnlyLowElement) { 4849 // If the low element is an undef too, then this whole things is an undef. 4850 if (Node->getOperand(0).getOpcode() == ISD::UNDEF) 4851 return DAG.getNode(ISD::UNDEF, Node->getValueType(0)); 4852 // Otherwise, turn this into a scalar_to_vector node. 4853 return DAG.getNode(ISD::SCALAR_TO_VECTOR, Node->getValueType(0), 4854 Node->getOperand(0)); 4855 } 4856 4857 // If all elements are constants, create a load from the constant pool. 4858 if (isConstant) { 4859 MVT::ValueType VT = Node->getValueType(0); 4860 const Type *OpNTy = 4861 MVT::getTypeForValueType(Node->getOperand(0).getValueType()); 4862 std::vector<Constant*> CV; 4863 for (unsigned i = 0, e = NumElems; i != e; ++i) { 4864 if (ConstantFPSDNode *V = 4865 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { 4866 CV.push_back(ConstantFP::get(OpNTy, V->getValueAPF())); 4867 } else if (ConstantSDNode *V = 4868 dyn_cast<ConstantSDNode>(Node->getOperand(i))) { 4869 CV.push_back(ConstantInt::get(OpNTy, V->getValue())); 4870 } else { 4871 assert(Node->getOperand(i).getOpcode() == ISD::UNDEF); 4872 CV.push_back(UndefValue::get(OpNTy)); 4873 } 4874 } 4875 Constant *CP = ConstantVector::get(CV); 4876 SDOperand CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy()); 4877 return DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, 4878 PseudoSourceValue::getConstantPool(), 0); 4879 } 4880 4881 if (SplatValue.Val) { // Splat of one value? 4882 // Build the shuffle constant vector: <0, 0, 0, 0> 4883 MVT::ValueType MaskVT = 4884 MVT::getIntVectorWithNumElements(NumElems); 4885 SDOperand Zero = DAG.getConstant(0, MVT::getVectorElementType(MaskVT)); 4886 std::vector<SDOperand> ZeroVec(NumElems, Zero); 4887 SDOperand SplatMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 4888 &ZeroVec[0], ZeroVec.size()); 4889 4890 // If the target supports VECTOR_SHUFFLE and this shuffle mask, use it. 4891 if (isShuffleLegal(Node->getValueType(0), SplatMask)) { 4892 // Get the splatted value into the low element of a vector register. 4893 SDOperand LowValVec = 4894 DAG.getNode(ISD::SCALAR_TO_VECTOR, Node->getValueType(0), SplatValue); 4895 4896 // Return shuffle(LowValVec, undef, <0,0,0,0>) 4897 return DAG.getNode(ISD::VECTOR_SHUFFLE, Node->getValueType(0), LowValVec, 4898 DAG.getNode(ISD::UNDEF, Node->getValueType(0)), 4899 SplatMask); 4900 } 4901 } 4902 4903 // If there are only two unique elements, we may be able to turn this into a 4904 // vector shuffle. 4905 if (Values.size() == 2) { 4906 // Build the shuffle constant vector: e.g. <0, 4, 0, 4> 4907 MVT::ValueType MaskVT = 4908 MVT::getIntVectorWithNumElements(NumElems); 4909 std::vector<SDOperand> MaskVec(NumElems); 4910 unsigned i = 0; 4911 for (std::map<SDOperand,std::vector<unsigned> >::iterator I=Values.begin(), 4912 E = Values.end(); I != E; ++I) { 4913 for (std::vector<unsigned>::iterator II = I->second.begin(), 4914 EE = I->second.end(); II != EE; ++II) 4915 MaskVec[*II] = DAG.getConstant(i, MVT::getVectorElementType(MaskVT)); 4916 i += NumElems; 4917 } 4918 SDOperand ShuffleMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 4919 &MaskVec[0], MaskVec.size()); 4920 4921 // If the target supports VECTOR_SHUFFLE and this shuffle mask, use it. 4922 if (TLI.isOperationLegal(ISD::SCALAR_TO_VECTOR, Node->getValueType(0)) && 4923 isShuffleLegal(Node->getValueType(0), ShuffleMask)) { 4924 SmallVector<SDOperand, 8> Ops; 4925 for(std::map<SDOperand,std::vector<unsigned> >::iterator I=Values.begin(), 4926 E = Values.end(); I != E; ++I) { 4927 SDOperand Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, Node->getValueType(0), 4928 I->first); 4929 Ops.push_back(Op); 4930 } 4931 Ops.push_back(ShuffleMask); 4932 4933 // Return shuffle(LoValVec, HiValVec, <0,1,0,1>) 4934 return DAG.getNode(ISD::VECTOR_SHUFFLE, Node->getValueType(0), 4935 &Ops[0], Ops.size()); 4936 } 4937 } 4938 4939 // Otherwise, we can't handle this case efficiently. Allocate a sufficiently 4940 // aligned object on the stack, store each element into it, then load 4941 // the result as a vector. 4942 MVT::ValueType VT = Node->getValueType(0); 4943 // Create the stack frame object. 4944 SDOperand FIPtr = DAG.CreateStackTemporary(VT); 4945 4946 // Emit a store of each element to the stack slot. 4947 SmallVector<SDOperand, 8> Stores; 4948 unsigned TypeByteSize = 4949 MVT::getSizeInBits(Node->getOperand(0).getValueType())/8; 4950 // Store (in the right endianness) the elements to memory. 4951 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 4952 // Ignore undef elements. 4953 if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue; 4954 4955 unsigned Offset = TypeByteSize*i; 4956 4957 SDOperand Idx = DAG.getConstant(Offset, FIPtr.getValueType()); 4958 Idx = DAG.getNode(ISD::ADD, FIPtr.getValueType(), FIPtr, Idx); 4959 4960 Stores.push_back(DAG.getStore(DAG.getEntryNode(), Node->getOperand(i), Idx, 4961 NULL, 0)); 4962 } 4963 4964 SDOperand StoreChain; 4965 if (!Stores.empty()) // Not all undef elements? 4966 StoreChain = DAG.getNode(ISD::TokenFactor, MVT::Other, 4967 &Stores[0], Stores.size()); 4968 else 4969 StoreChain = DAG.getEntryNode(); 4970 4971 // Result is a load from the stack slot. 4972 return DAG.getLoad(VT, StoreChain, FIPtr, NULL, 0); 4973} 4974 4975void SelectionDAGLegalize::ExpandShiftParts(unsigned NodeOp, 4976 SDOperand Op, SDOperand Amt, 4977 SDOperand &Lo, SDOperand &Hi) { 4978 // Expand the subcomponents. 4979 SDOperand LHSL, LHSH; 4980 ExpandOp(Op, LHSL, LHSH); 4981 4982 SDOperand Ops[] = { LHSL, LHSH, Amt }; 4983 MVT::ValueType VT = LHSL.getValueType(); 4984 Lo = DAG.getNode(NodeOp, DAG.getNodeValueTypes(VT, VT), 2, Ops, 3); 4985 Hi = Lo.getValue(1); 4986} 4987 4988 4989/// ExpandShift - Try to find a clever way to expand this shift operation out to 4990/// smaller elements. If we can't find a way that is more efficient than a 4991/// libcall on this target, return false. Otherwise, return true with the 4992/// low-parts expanded into Lo and Hi. 4993bool SelectionDAGLegalize::ExpandShift(unsigned Opc, SDOperand Op,SDOperand Amt, 4994 SDOperand &Lo, SDOperand &Hi) { 4995 assert((Opc == ISD::SHL || Opc == ISD::SRA || Opc == ISD::SRL) && 4996 "This is not a shift!"); 4997 4998 MVT::ValueType NVT = TLI.getTypeToTransformTo(Op.getValueType()); 4999 SDOperand ShAmt = LegalizeOp(Amt); 5000 MVT::ValueType ShTy = ShAmt.getValueType(); 5001 unsigned VTBits = MVT::getSizeInBits(Op.getValueType()); 5002 unsigned NVTBits = MVT::getSizeInBits(NVT); 5003 5004 // Handle the case when Amt is an immediate. 5005 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Amt.Val)) { 5006 unsigned Cst = CN->getValue(); 5007 // Expand the incoming operand to be shifted, so that we have its parts 5008 SDOperand InL, InH; 5009 ExpandOp(Op, InL, InH); 5010 switch(Opc) { 5011 case ISD::SHL: 5012 if (Cst > VTBits) { 5013 Lo = DAG.getConstant(0, NVT); 5014 Hi = DAG.getConstant(0, NVT); 5015 } else if (Cst > NVTBits) { 5016 Lo = DAG.getConstant(0, NVT); 5017 Hi = DAG.getNode(ISD::SHL, NVT, InL, DAG.getConstant(Cst-NVTBits,ShTy)); 5018 } else if (Cst == NVTBits) { 5019 Lo = DAG.getConstant(0, NVT); 5020 Hi = InL; 5021 } else { 5022 Lo = DAG.getNode(ISD::SHL, NVT, InL, DAG.getConstant(Cst, ShTy)); 5023 Hi = DAG.getNode(ISD::OR, NVT, 5024 DAG.getNode(ISD::SHL, NVT, InH, DAG.getConstant(Cst, ShTy)), 5025 DAG.getNode(ISD::SRL, NVT, InL, DAG.getConstant(NVTBits-Cst, ShTy))); 5026 } 5027 return true; 5028 case ISD::SRL: 5029 if (Cst > VTBits) { 5030 Lo = DAG.getConstant(0, NVT); 5031 Hi = DAG.getConstant(0, NVT); 5032 } else if (Cst > NVTBits) { 5033 Lo = DAG.getNode(ISD::SRL, NVT, InH, DAG.getConstant(Cst-NVTBits,ShTy)); 5034 Hi = DAG.getConstant(0, NVT); 5035 } else if (Cst == NVTBits) { 5036 Lo = InH; 5037 Hi = DAG.getConstant(0, NVT); 5038 } else { 5039 Lo = DAG.getNode(ISD::OR, NVT, 5040 DAG.getNode(ISD::SRL, NVT, InL, DAG.getConstant(Cst, ShTy)), 5041 DAG.getNode(ISD::SHL, NVT, InH, DAG.getConstant(NVTBits-Cst, ShTy))); 5042 Hi = DAG.getNode(ISD::SRL, NVT, InH, DAG.getConstant(Cst, ShTy)); 5043 } 5044 return true; 5045 case ISD::SRA: 5046 if (Cst > VTBits) { 5047 Hi = Lo = DAG.getNode(ISD::SRA, NVT, InH, 5048 DAG.getConstant(NVTBits-1, ShTy)); 5049 } else if (Cst > NVTBits) { 5050 Lo = DAG.getNode(ISD::SRA, NVT, InH, 5051 DAG.getConstant(Cst-NVTBits, ShTy)); 5052 Hi = DAG.getNode(ISD::SRA, NVT, InH, 5053 DAG.getConstant(NVTBits-1, ShTy)); 5054 } else if (Cst == NVTBits) { 5055 Lo = InH; 5056 Hi = DAG.getNode(ISD::SRA, NVT, InH, 5057 DAG.getConstant(NVTBits-1, ShTy)); 5058 } else { 5059 Lo = DAG.getNode(ISD::OR, NVT, 5060 DAG.getNode(ISD::SRL, NVT, InL, DAG.getConstant(Cst, ShTy)), 5061 DAG.getNode(ISD::SHL, NVT, InH, DAG.getConstant(NVTBits-Cst, ShTy))); 5062 Hi = DAG.getNode(ISD::SRA, NVT, InH, DAG.getConstant(Cst, ShTy)); 5063 } 5064 return true; 5065 } 5066 } 5067 5068 // Okay, the shift amount isn't constant. However, if we can tell that it is 5069 // >= 32 or < 32, we can still simplify it, without knowing the actual value. 5070 uint64_t Mask = NVTBits, KnownZero, KnownOne; 5071 DAG.ComputeMaskedBits(Amt, Mask, KnownZero, KnownOne); 5072 5073 // If we know that the high bit of the shift amount is one, then we can do 5074 // this as a couple of simple shifts. 5075 if (KnownOne & Mask) { 5076 // Mask out the high bit, which we know is set. 5077 Amt = DAG.getNode(ISD::AND, Amt.getValueType(), Amt, 5078 DAG.getConstant(NVTBits-1, Amt.getValueType())); 5079 5080 // Expand the incoming operand to be shifted, so that we have its parts 5081 SDOperand InL, InH; 5082 ExpandOp(Op, InL, InH); 5083 switch(Opc) { 5084 case ISD::SHL: 5085 Lo = DAG.getConstant(0, NVT); // Low part is zero. 5086 Hi = DAG.getNode(ISD::SHL, NVT, InL, Amt); // High part from Lo part. 5087 return true; 5088 case ISD::SRL: 5089 Hi = DAG.getConstant(0, NVT); // Hi part is zero. 5090 Lo = DAG.getNode(ISD::SRL, NVT, InH, Amt); // Lo part from Hi part. 5091 return true; 5092 case ISD::SRA: 5093 Hi = DAG.getNode(ISD::SRA, NVT, InH, // Sign extend high part. 5094 DAG.getConstant(NVTBits-1, Amt.getValueType())); 5095 Lo = DAG.getNode(ISD::SRA, NVT, InH, Amt); // Lo part from Hi part. 5096 return true; 5097 } 5098 } 5099 5100 // If we know that the high bit of the shift amount is zero, then we can do 5101 // this as a couple of simple shifts. 5102 if (KnownZero & Mask) { 5103 // Compute 32-amt. 5104 SDOperand Amt2 = DAG.getNode(ISD::SUB, Amt.getValueType(), 5105 DAG.getConstant(NVTBits, Amt.getValueType()), 5106 Amt); 5107 5108 // Expand the incoming operand to be shifted, so that we have its parts 5109 SDOperand InL, InH; 5110 ExpandOp(Op, InL, InH); 5111 switch(Opc) { 5112 case ISD::SHL: 5113 Lo = DAG.getNode(ISD::SHL, NVT, InL, Amt); 5114 Hi = DAG.getNode(ISD::OR, NVT, 5115 DAG.getNode(ISD::SHL, NVT, InH, Amt), 5116 DAG.getNode(ISD::SRL, NVT, InL, Amt2)); 5117 return true; 5118 case ISD::SRL: 5119 Hi = DAG.getNode(ISD::SRL, NVT, InH, Amt); 5120 Lo = DAG.getNode(ISD::OR, NVT, 5121 DAG.getNode(ISD::SRL, NVT, InL, Amt), 5122 DAG.getNode(ISD::SHL, NVT, InH, Amt2)); 5123 return true; 5124 case ISD::SRA: 5125 Hi = DAG.getNode(ISD::SRA, NVT, InH, Amt); 5126 Lo = DAG.getNode(ISD::OR, NVT, 5127 DAG.getNode(ISD::SRL, NVT, InL, Amt), 5128 DAG.getNode(ISD::SHL, NVT, InH, Amt2)); 5129 return true; 5130 } 5131 } 5132 5133 return false; 5134} 5135 5136 5137// ExpandLibCall - Expand a node into a call to a libcall. If the result value 5138// does not fit into a register, return the lo part and set the hi part to the 5139// by-reg argument. If it does fit into a single register, return the result 5140// and leave the Hi part unset. 5141SDOperand SelectionDAGLegalize::ExpandLibCall(const char *Name, SDNode *Node, 5142 bool isSigned, SDOperand &Hi) { 5143 assert(!IsLegalizingCall && "Cannot overlap legalization of calls!"); 5144 // The input chain to this libcall is the entry node of the function. 5145 // Legalizing the call will automatically add the previous call to the 5146 // dependence. 5147 SDOperand InChain = DAG.getEntryNode(); 5148 5149 TargetLowering::ArgListTy Args; 5150 TargetLowering::ArgListEntry Entry; 5151 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 5152 MVT::ValueType ArgVT = Node->getOperand(i).getValueType(); 5153 const Type *ArgTy = MVT::getTypeForValueType(ArgVT); 5154 Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy; 5155 Entry.isSExt = isSigned; 5156 Args.push_back(Entry); 5157 } 5158 SDOperand Callee = DAG.getExternalSymbol(Name, TLI.getPointerTy()); 5159 5160 // Splice the libcall in wherever FindInputOutputChains tells us to. 5161 const Type *RetTy = MVT::getTypeForValueType(Node->getValueType(0)); 5162 std::pair<SDOperand,SDOperand> CallInfo = 5163 TLI.LowerCallTo(InChain, RetTy, isSigned, false, CallingConv::C, false, 5164 Callee, Args, DAG); 5165 5166 // Legalize the call sequence, starting with the chain. This will advance 5167 // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that 5168 // was added by LowerCallTo (guaranteeing proper serialization of calls). 5169 LegalizeOp(CallInfo.second); 5170 SDOperand Result; 5171 switch (getTypeAction(CallInfo.first.getValueType())) { 5172 default: assert(0 && "Unknown thing"); 5173 case Legal: 5174 Result = CallInfo.first; 5175 break; 5176 case Expand: 5177 ExpandOp(CallInfo.first, Result, Hi); 5178 break; 5179 } 5180 return Result; 5181} 5182 5183 5184/// ExpandIntToFP - Expand a [US]INT_TO_FP operation. 5185/// 5186SDOperand SelectionDAGLegalize:: 5187ExpandIntToFP(bool isSigned, MVT::ValueType DestTy, SDOperand Source) { 5188 assert(getTypeAction(Source.getValueType()) == Expand && 5189 "This is not an expansion!"); 5190 assert(Source.getValueType() == MVT::i64 && "Only handle expand from i64!"); 5191 5192 if (!isSigned) { 5193 assert(Source.getValueType() == MVT::i64 && 5194 "This only works for 64-bit -> FP"); 5195 // The 64-bit value loaded will be incorrectly if the 'sign bit' of the 5196 // incoming integer is set. To handle this, we dynamically test to see if 5197 // it is set, and, if so, add a fudge factor. 5198 SDOperand Lo, Hi; 5199 ExpandOp(Source, Lo, Hi); 5200 5201 // If this is unsigned, and not supported, first perform the conversion to 5202 // signed, then adjust the result if the sign bit is set. 5203 SDOperand SignedConv = ExpandIntToFP(true, DestTy, 5204 DAG.getNode(ISD::BUILD_PAIR, Source.getValueType(), Lo, Hi)); 5205 5206 SDOperand SignSet = DAG.getSetCC(TLI.getSetCCResultTy(), Hi, 5207 DAG.getConstant(0, Hi.getValueType()), 5208 ISD::SETLT); 5209 SDOperand Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4); 5210 SDOperand CstOffset = DAG.getNode(ISD::SELECT, Zero.getValueType(), 5211 SignSet, Four, Zero); 5212 uint64_t FF = 0x5f800000ULL; 5213 if (TLI.isLittleEndian()) FF <<= 32; 5214 static Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF); 5215 5216 SDOperand CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy()); 5217 CPIdx = DAG.getNode(ISD::ADD, TLI.getPointerTy(), CPIdx, CstOffset); 5218 SDOperand FudgeInReg; 5219 if (DestTy == MVT::f32) 5220 FudgeInReg = DAG.getLoad(MVT::f32, DAG.getEntryNode(), CPIdx, 5221 PseudoSourceValue::getConstantPool(), 0); 5222 else if (MVT::getSizeInBits(DestTy) > MVT::getSizeInBits(MVT::f32)) 5223 // FIXME: Avoid the extend by construction the right constantpool? 5224 FudgeInReg = DAG.getExtLoad(ISD::EXTLOAD, DestTy, DAG.getEntryNode(), 5225 CPIdx, 5226 PseudoSourceValue::getConstantPool(), 0, 5227 MVT::f32); 5228 else 5229 assert(0 && "Unexpected conversion"); 5230 5231 MVT::ValueType SCVT = SignedConv.getValueType(); 5232 if (SCVT != DestTy) { 5233 // Destination type needs to be expanded as well. The FADD now we are 5234 // constructing will be expanded into a libcall. 5235 if (MVT::getSizeInBits(SCVT) != MVT::getSizeInBits(DestTy)) { 5236 assert(SCVT == MVT::i32 && DestTy == MVT::f64); 5237 SignedConv = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, 5238 SignedConv, SignedConv.getValue(1)); 5239 } 5240 SignedConv = DAG.getNode(ISD::BIT_CONVERT, DestTy, SignedConv); 5241 } 5242 return DAG.getNode(ISD::FADD, DestTy, SignedConv, FudgeInReg); 5243 } 5244 5245 // Check to see if the target has a custom way to lower this. If so, use it. 5246 switch (TLI.getOperationAction(ISD::SINT_TO_FP, Source.getValueType())) { 5247 default: assert(0 && "This action not implemented for this operation!"); 5248 case TargetLowering::Legal: 5249 case TargetLowering::Expand: 5250 break; // This case is handled below. 5251 case TargetLowering::Custom: { 5252 SDOperand NV = TLI.LowerOperation(DAG.getNode(ISD::SINT_TO_FP, DestTy, 5253 Source), DAG); 5254 if (NV.Val) 5255 return LegalizeOp(NV); 5256 break; // The target decided this was legal after all 5257 } 5258 } 5259 5260 // Expand the source, then glue it back together for the call. We must expand 5261 // the source in case it is shared (this pass of legalize must traverse it). 5262 SDOperand SrcLo, SrcHi; 5263 ExpandOp(Source, SrcLo, SrcHi); 5264 Source = DAG.getNode(ISD::BUILD_PAIR, Source.getValueType(), SrcLo, SrcHi); 5265 5266 RTLIB::Libcall LC; 5267 if (DestTy == MVT::f32) 5268 LC = RTLIB::SINTTOFP_I64_F32; 5269 else { 5270 assert(DestTy == MVT::f64 && "Unknown fp value type!"); 5271 LC = RTLIB::SINTTOFP_I64_F64; 5272 } 5273 5274 assert(TLI.getLibcallName(LC) && "Don't know how to expand this SINT_TO_FP!"); 5275 Source = DAG.getNode(ISD::SINT_TO_FP, DestTy, Source); 5276 SDOperand UnusedHiPart; 5277 return ExpandLibCall(TLI.getLibcallName(LC), Source.Val, isSigned, 5278 UnusedHiPart); 5279} 5280 5281/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a 5282/// INT_TO_FP operation of the specified operand when the target requests that 5283/// we expand it. At this point, we know that the result and operand types are 5284/// legal for the target. 5285SDOperand SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned, 5286 SDOperand Op0, 5287 MVT::ValueType DestVT) { 5288 if (Op0.getValueType() == MVT::i32) { 5289 // simple 32-bit [signed|unsigned] integer to float/double expansion 5290 5291 // Get the stack frame index of a 8 byte buffer. 5292 SDOperand StackSlot = DAG.CreateStackTemporary(MVT::f64); 5293 5294 // word offset constant for Hi/Lo address computation 5295 SDOperand WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy()); 5296 // set up Hi and Lo (into buffer) address based on endian 5297 SDOperand Hi = StackSlot; 5298 SDOperand Lo = DAG.getNode(ISD::ADD, TLI.getPointerTy(), StackSlot,WordOff); 5299 if (TLI.isLittleEndian()) 5300 std::swap(Hi, Lo); 5301 5302 // if signed map to unsigned space 5303 SDOperand Op0Mapped; 5304 if (isSigned) { 5305 // constant used to invert sign bit (signed to unsigned mapping) 5306 SDOperand SignBit = DAG.getConstant(0x80000000u, MVT::i32); 5307 Op0Mapped = DAG.getNode(ISD::XOR, MVT::i32, Op0, SignBit); 5308 } else { 5309 Op0Mapped = Op0; 5310 } 5311 // store the lo of the constructed double - based on integer input 5312 SDOperand Store1 = DAG.getStore(DAG.getEntryNode(), 5313 Op0Mapped, Lo, NULL, 0); 5314 // initial hi portion of constructed double 5315 SDOperand InitialHi = DAG.getConstant(0x43300000u, MVT::i32); 5316 // store the hi of the constructed double - biased exponent 5317 SDOperand Store2=DAG.getStore(Store1, InitialHi, Hi, NULL, 0); 5318 // load the constructed double 5319 SDOperand Load = DAG.getLoad(MVT::f64, Store2, StackSlot, NULL, 0); 5320 // FP constant to bias correct the final result 5321 SDOperand Bias = DAG.getConstantFP(isSigned ? 5322 BitsToDouble(0x4330000080000000ULL) 5323 : BitsToDouble(0x4330000000000000ULL), 5324 MVT::f64); 5325 // subtract the bias 5326 SDOperand Sub = DAG.getNode(ISD::FSUB, MVT::f64, Load, Bias); 5327 // final result 5328 SDOperand Result; 5329 // handle final rounding 5330 if (DestVT == MVT::f64) { 5331 // do nothing 5332 Result = Sub; 5333 } else if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(MVT::f64)) { 5334 Result = DAG.getNode(ISD::FP_ROUND, DestVT, Sub, 5335 DAG.getIntPtrConstant(0)); 5336 } else if (MVT::getSizeInBits(DestVT) > MVT::getSizeInBits(MVT::f64)) { 5337 Result = DAG.getNode(ISD::FP_EXTEND, DestVT, Sub); 5338 } 5339 return Result; 5340 } 5341 assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet"); 5342 SDOperand Tmp1 = DAG.getNode(ISD::SINT_TO_FP, DestVT, Op0); 5343 5344 SDOperand SignSet = DAG.getSetCC(TLI.getSetCCResultTy(), Op0, 5345 DAG.getConstant(0, Op0.getValueType()), 5346 ISD::SETLT); 5347 SDOperand Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4); 5348 SDOperand CstOffset = DAG.getNode(ISD::SELECT, Zero.getValueType(), 5349 SignSet, Four, Zero); 5350 5351 // If the sign bit of the integer is set, the large number will be treated 5352 // as a negative number. To counteract this, the dynamic code adds an 5353 // offset depending on the data type. 5354 uint64_t FF; 5355 switch (Op0.getValueType()) { 5356 default: assert(0 && "Unsupported integer type!"); 5357 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) 5358 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) 5359 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) 5360 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) 5361 } 5362 if (TLI.isLittleEndian()) FF <<= 32; 5363 static Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF); 5364 5365 SDOperand CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy()); 5366 CPIdx = DAG.getNode(ISD::ADD, TLI.getPointerTy(), CPIdx, CstOffset); 5367 SDOperand FudgeInReg; 5368 if (DestVT == MVT::f32) 5369 FudgeInReg = DAG.getLoad(MVT::f32, DAG.getEntryNode(), CPIdx, 5370 PseudoSourceValue::getConstantPool(), 0); 5371 else { 5372 FudgeInReg = 5373 LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, DestVT, 5374 DAG.getEntryNode(), CPIdx, 5375 PseudoSourceValue::getConstantPool(), 0, 5376 MVT::f32)); 5377 } 5378 5379 return DAG.getNode(ISD::FADD, DestVT, Tmp1, FudgeInReg); 5380} 5381 5382/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a 5383/// *INT_TO_FP operation of the specified operand when the target requests that 5384/// we promote it. At this point, we know that the result and operand types are 5385/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP 5386/// operation that takes a larger input. 5387SDOperand SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDOperand LegalOp, 5388 MVT::ValueType DestVT, 5389 bool isSigned) { 5390 // First step, figure out the appropriate *INT_TO_FP operation to use. 5391 MVT::ValueType NewInTy = LegalOp.getValueType(); 5392 5393 unsigned OpToUse = 0; 5394 5395 // Scan for the appropriate larger type to use. 5396 while (1) { 5397 NewInTy = (MVT::ValueType)(NewInTy+1); 5398 assert(MVT::isInteger(NewInTy) && "Ran out of possibilities!"); 5399 5400 // If the target supports SINT_TO_FP of this type, use it. 5401 switch (TLI.getOperationAction(ISD::SINT_TO_FP, NewInTy)) { 5402 default: break; 5403 case TargetLowering::Legal: 5404 if (!TLI.isTypeLegal(NewInTy)) 5405 break; // Can't use this datatype. 5406 // FALL THROUGH. 5407 case TargetLowering::Custom: 5408 OpToUse = ISD::SINT_TO_FP; 5409 break; 5410 } 5411 if (OpToUse) break; 5412 if (isSigned) continue; 5413 5414 // If the target supports UINT_TO_FP of this type, use it. 5415 switch (TLI.getOperationAction(ISD::UINT_TO_FP, NewInTy)) { 5416 default: break; 5417 case TargetLowering::Legal: 5418 if (!TLI.isTypeLegal(NewInTy)) 5419 break; // Can't use this datatype. 5420 // FALL THROUGH. 5421 case TargetLowering::Custom: 5422 OpToUse = ISD::UINT_TO_FP; 5423 break; 5424 } 5425 if (OpToUse) break; 5426 5427 // Otherwise, try a larger type. 5428 } 5429 5430 // Okay, we found the operation and type to use. Zero extend our input to the 5431 // desired type then run the operation on it. 5432 return DAG.getNode(OpToUse, DestVT, 5433 DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 5434 NewInTy, LegalOp)); 5435} 5436 5437/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a 5438/// FP_TO_*INT operation of the specified operand when the target requests that 5439/// we promote it. At this point, we know that the result and operand types are 5440/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT 5441/// operation that returns a larger result. 5442SDOperand SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDOperand LegalOp, 5443 MVT::ValueType DestVT, 5444 bool isSigned) { 5445 // First step, figure out the appropriate FP_TO*INT operation to use. 5446 MVT::ValueType NewOutTy = DestVT; 5447 5448 unsigned OpToUse = 0; 5449 5450 // Scan for the appropriate larger type to use. 5451 while (1) { 5452 NewOutTy = (MVT::ValueType)(NewOutTy+1); 5453 assert(MVT::isInteger(NewOutTy) && "Ran out of possibilities!"); 5454 5455 // If the target supports FP_TO_SINT returning this type, use it. 5456 switch (TLI.getOperationAction(ISD::FP_TO_SINT, NewOutTy)) { 5457 default: break; 5458 case TargetLowering::Legal: 5459 if (!TLI.isTypeLegal(NewOutTy)) 5460 break; // Can't use this datatype. 5461 // FALL THROUGH. 5462 case TargetLowering::Custom: 5463 OpToUse = ISD::FP_TO_SINT; 5464 break; 5465 } 5466 if (OpToUse) break; 5467 5468 // If the target supports FP_TO_UINT of this type, use it. 5469 switch (TLI.getOperationAction(ISD::FP_TO_UINT, NewOutTy)) { 5470 default: break; 5471 case TargetLowering::Legal: 5472 if (!TLI.isTypeLegal(NewOutTy)) 5473 break; // Can't use this datatype. 5474 // FALL THROUGH. 5475 case TargetLowering::Custom: 5476 OpToUse = ISD::FP_TO_UINT; 5477 break; 5478 } 5479 if (OpToUse) break; 5480 5481 // Otherwise, try a larger type. 5482 } 5483 5484 5485 // Okay, we found the operation and type to use. 5486 SDOperand Operation = DAG.getNode(OpToUse, NewOutTy, LegalOp); 5487 5488 // If the operation produces an invalid type, it must be custom lowered. Use 5489 // the target lowering hooks to expand it. Just keep the low part of the 5490 // expanded operation, we know that we're truncating anyway. 5491 if (getTypeAction(NewOutTy) == Expand) { 5492 Operation = SDOperand(TLI.ExpandOperationResult(Operation.Val, DAG), 0); 5493 assert(Operation.Val && "Didn't return anything"); 5494 } 5495 5496 // Truncate the result of the extended FP_TO_*INT operation to the desired 5497 // size. 5498 return DAG.getNode(ISD::TRUNCATE, DestVT, Operation); 5499} 5500 5501/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation. 5502/// 5503SDOperand SelectionDAGLegalize::ExpandBSWAP(SDOperand Op) { 5504 MVT::ValueType VT = Op.getValueType(); 5505 MVT::ValueType SHVT = TLI.getShiftAmountTy(); 5506 SDOperand Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 5507 switch (VT) { 5508 default: assert(0 && "Unhandled Expand type in BSWAP!"); abort(); 5509 case MVT::i16: 5510 Tmp2 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(8, SHVT)); 5511 Tmp1 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(8, SHVT)); 5512 return DAG.getNode(ISD::OR, VT, Tmp1, Tmp2); 5513 case MVT::i32: 5514 Tmp4 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(24, SHVT)); 5515 Tmp3 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(8, SHVT)); 5516 Tmp2 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(8, SHVT)); 5517 Tmp1 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(24, SHVT)); 5518 Tmp3 = DAG.getNode(ISD::AND, VT, Tmp3, DAG.getConstant(0xFF0000, VT)); 5519 Tmp2 = DAG.getNode(ISD::AND, VT, Tmp2, DAG.getConstant(0xFF00, VT)); 5520 Tmp4 = DAG.getNode(ISD::OR, VT, Tmp4, Tmp3); 5521 Tmp2 = DAG.getNode(ISD::OR, VT, Tmp2, Tmp1); 5522 return DAG.getNode(ISD::OR, VT, Tmp4, Tmp2); 5523 case MVT::i64: 5524 Tmp8 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(56, SHVT)); 5525 Tmp7 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(40, SHVT)); 5526 Tmp6 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(24, SHVT)); 5527 Tmp5 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(8, SHVT)); 5528 Tmp4 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(8, SHVT)); 5529 Tmp3 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(24, SHVT)); 5530 Tmp2 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(40, SHVT)); 5531 Tmp1 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(56, SHVT)); 5532 Tmp7 = DAG.getNode(ISD::AND, VT, Tmp7, DAG.getConstant(255ULL<<48, VT)); 5533 Tmp6 = DAG.getNode(ISD::AND, VT, Tmp6, DAG.getConstant(255ULL<<40, VT)); 5534 Tmp5 = DAG.getNode(ISD::AND, VT, Tmp5, DAG.getConstant(255ULL<<32, VT)); 5535 Tmp4 = DAG.getNode(ISD::AND, VT, Tmp4, DAG.getConstant(255ULL<<24, VT)); 5536 Tmp3 = DAG.getNode(ISD::AND, VT, Tmp3, DAG.getConstant(255ULL<<16, VT)); 5537 Tmp2 = DAG.getNode(ISD::AND, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT)); 5538 Tmp8 = DAG.getNode(ISD::OR, VT, Tmp8, Tmp7); 5539 Tmp6 = DAG.getNode(ISD::OR, VT, Tmp6, Tmp5); 5540 Tmp4 = DAG.getNode(ISD::OR, VT, Tmp4, Tmp3); 5541 Tmp2 = DAG.getNode(ISD::OR, VT, Tmp2, Tmp1); 5542 Tmp8 = DAG.getNode(ISD::OR, VT, Tmp8, Tmp6); 5543 Tmp4 = DAG.getNode(ISD::OR, VT, Tmp4, Tmp2); 5544 return DAG.getNode(ISD::OR, VT, Tmp8, Tmp4); 5545 } 5546} 5547 5548/// ExpandBitCount - Expand the specified bitcount instruction into operations. 5549/// 5550SDOperand SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDOperand Op) { 5551 switch (Opc) { 5552 default: assert(0 && "Cannot expand this yet!"); 5553 case ISD::CTPOP: { 5554 static const uint64_t mask[6] = { 5555 0x5555555555555555ULL, 0x3333333333333333ULL, 5556 0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL, 5557 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL 5558 }; 5559 MVT::ValueType VT = Op.getValueType(); 5560 MVT::ValueType ShVT = TLI.getShiftAmountTy(); 5561 unsigned len = MVT::getSizeInBits(VT); 5562 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) { 5563 //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8]) 5564 SDOperand Tmp2 = DAG.getConstant(mask[i], VT); 5565 SDOperand Tmp3 = DAG.getConstant(1ULL << i, ShVT); 5566 Op = DAG.getNode(ISD::ADD, VT, DAG.getNode(ISD::AND, VT, Op, Tmp2), 5567 DAG.getNode(ISD::AND, VT, 5568 DAG.getNode(ISD::SRL, VT, Op, Tmp3),Tmp2)); 5569 } 5570 return Op; 5571 } 5572 case ISD::CTLZ: { 5573 // for now, we do this: 5574 // x = x | (x >> 1); 5575 // x = x | (x >> 2); 5576 // ... 5577 // x = x | (x >>16); 5578 // x = x | (x >>32); // for 64-bit input 5579 // return popcount(~x); 5580 // 5581 // but see also: http://www.hackersdelight.org/HDcode/nlz.cc 5582 MVT::ValueType VT = Op.getValueType(); 5583 MVT::ValueType ShVT = TLI.getShiftAmountTy(); 5584 unsigned len = MVT::getSizeInBits(VT); 5585 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) { 5586 SDOperand Tmp3 = DAG.getConstant(1ULL << i, ShVT); 5587 Op = DAG.getNode(ISD::OR, VT, Op, DAG.getNode(ISD::SRL, VT, Op, Tmp3)); 5588 } 5589 Op = DAG.getNode(ISD::XOR, VT, Op, DAG.getConstant(~0ULL, VT)); 5590 return DAG.getNode(ISD::CTPOP, VT, Op); 5591 } 5592 case ISD::CTTZ: { 5593 // for now, we use: { return popcount(~x & (x - 1)); } 5594 // unless the target has ctlz but not ctpop, in which case we use: 5595 // { return 32 - nlz(~x & (x-1)); } 5596 // see also http://www.hackersdelight.org/HDcode/ntz.cc 5597 MVT::ValueType VT = Op.getValueType(); 5598 SDOperand Tmp2 = DAG.getConstant(~0ULL, VT); 5599 SDOperand Tmp3 = DAG.getNode(ISD::AND, VT, 5600 DAG.getNode(ISD::XOR, VT, Op, Tmp2), 5601 DAG.getNode(ISD::SUB, VT, Op, DAG.getConstant(1, VT))); 5602 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 5603 if (!TLI.isOperationLegal(ISD::CTPOP, VT) && 5604 TLI.isOperationLegal(ISD::CTLZ, VT)) 5605 return DAG.getNode(ISD::SUB, VT, 5606 DAG.getConstant(MVT::getSizeInBits(VT), VT), 5607 DAG.getNode(ISD::CTLZ, VT, Tmp3)); 5608 return DAG.getNode(ISD::CTPOP, VT, Tmp3); 5609 } 5610 } 5611} 5612 5613/// ExpandOp - Expand the specified SDOperand into its two component pieces 5614/// Lo&Hi. Note that the Op MUST be an expanded type. As a result of this, the 5615/// LegalizeNodes map is filled in for any results that are not expanded, the 5616/// ExpandedNodes map is filled in for any results that are expanded, and the 5617/// Lo/Hi values are returned. 5618void SelectionDAGLegalize::ExpandOp(SDOperand Op, SDOperand &Lo, SDOperand &Hi){ 5619 MVT::ValueType VT = Op.getValueType(); 5620 MVT::ValueType NVT = TLI.getTypeToTransformTo(VT); 5621 SDNode *Node = Op.Val; 5622 assert(getTypeAction(VT) == Expand && "Not an expanded type!"); 5623 assert(((MVT::isInteger(NVT) && NVT < VT) || MVT::isFloatingPoint(VT) || 5624 MVT::isVector(VT)) && 5625 "Cannot expand to FP value or to larger int value!"); 5626 5627 // See if we already expanded it. 5628 DenseMap<SDOperand, std::pair<SDOperand, SDOperand> >::iterator I 5629 = ExpandedNodes.find(Op); 5630 if (I != ExpandedNodes.end()) { 5631 Lo = I->second.first; 5632 Hi = I->second.second; 5633 return; 5634 } 5635 5636 switch (Node->getOpcode()) { 5637 case ISD::CopyFromReg: 5638 assert(0 && "CopyFromReg must be legal!"); 5639 case ISD::FP_ROUND_INREG: 5640 if (VT == MVT::ppcf128 && 5641 TLI.getOperationAction(ISD::FP_ROUND_INREG, VT) == 5642 TargetLowering::Custom) { 5643 SDOperand SrcLo, SrcHi, Src; 5644 ExpandOp(Op.getOperand(0), SrcLo, SrcHi); 5645 Src = DAG.getNode(ISD::BUILD_PAIR, VT, SrcLo, SrcHi); 5646 SDOperand Result = TLI.LowerOperation( 5647 DAG.getNode(ISD::FP_ROUND_INREG, VT, Src, Op.getOperand(1)), DAG); 5648 assert(Result.Val->getOpcode() == ISD::BUILD_PAIR); 5649 Lo = Result.Val->getOperand(0); 5650 Hi = Result.Val->getOperand(1); 5651 break; 5652 } 5653 // fall through 5654 default: 5655#ifndef NDEBUG 5656 cerr << "NODE: "; Node->dump(&DAG); cerr << "\n"; 5657#endif 5658 assert(0 && "Do not know how to expand this operator!"); 5659 abort(); 5660 case ISD::EXTRACT_VECTOR_ELT: 5661 assert(VT==MVT::i64 && "Do not know how to expand this operator!"); 5662 // ExpandEXTRACT_VECTOR_ELT tolerates invalid result types. 5663 Lo = ExpandEXTRACT_VECTOR_ELT(Op); 5664 return ExpandOp(Lo, Lo, Hi); 5665 case ISD::UNDEF: 5666 NVT = TLI.getTypeToExpandTo(VT); 5667 Lo = DAG.getNode(ISD::UNDEF, NVT); 5668 Hi = DAG.getNode(ISD::UNDEF, NVT); 5669 break; 5670 case ISD::Constant: { 5671 uint64_t Cst = cast<ConstantSDNode>(Node)->getValue(); 5672 Lo = DAG.getConstant(Cst, NVT); 5673 Hi = DAG.getConstant(Cst >> MVT::getSizeInBits(NVT), NVT); 5674 break; 5675 } 5676 case ISD::ConstantFP: { 5677 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 5678 if (CFP->getValueType(0) == MVT::ppcf128) { 5679 APInt api = CFP->getValueAPF().convertToAPInt(); 5680 Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &api.getRawData()[1])), 5681 MVT::f64); 5682 Hi = DAG.getConstantFP(APFloat(APInt(64, 1, &api.getRawData()[0])), 5683 MVT::f64); 5684 break; 5685 } 5686 Lo = ExpandConstantFP(CFP, false, DAG, TLI); 5687 if (getTypeAction(Lo.getValueType()) == Expand) 5688 ExpandOp(Lo, Lo, Hi); 5689 break; 5690 } 5691 case ISD::BUILD_PAIR: 5692 // Return the operands. 5693 Lo = Node->getOperand(0); 5694 Hi = Node->getOperand(1); 5695 break; 5696 5697 case ISD::MERGE_VALUES: 5698 if (Node->getNumValues() == 1) { 5699 ExpandOp(Op.getOperand(0), Lo, Hi); 5700 break; 5701 } 5702 // FIXME: For now only expand i64,chain = MERGE_VALUES (x, y) 5703 assert(Op.ResNo == 0 && Node->getNumValues() == 2 && 5704 Op.getValue(1).getValueType() == MVT::Other && 5705 "unhandled MERGE_VALUES"); 5706 ExpandOp(Op.getOperand(0), Lo, Hi); 5707 // Remember that we legalized the chain. 5708 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Op.getOperand(1))); 5709 break; 5710 5711 case ISD::SIGN_EXTEND_INREG: 5712 ExpandOp(Node->getOperand(0), Lo, Hi); 5713 // sext_inreg the low part if needed. 5714 Lo = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Lo, Node->getOperand(1)); 5715 5716 // The high part gets the sign extension from the lo-part. This handles 5717 // things like sextinreg V:i64 from i8. 5718 Hi = DAG.getNode(ISD::SRA, NVT, Lo, 5719 DAG.getConstant(MVT::getSizeInBits(NVT)-1, 5720 TLI.getShiftAmountTy())); 5721 break; 5722 5723 case ISD::BSWAP: { 5724 ExpandOp(Node->getOperand(0), Lo, Hi); 5725 SDOperand TempLo = DAG.getNode(ISD::BSWAP, NVT, Hi); 5726 Hi = DAG.getNode(ISD::BSWAP, NVT, Lo); 5727 Lo = TempLo; 5728 break; 5729 } 5730 5731 case ISD::CTPOP: 5732 ExpandOp(Node->getOperand(0), Lo, Hi); 5733 Lo = DAG.getNode(ISD::ADD, NVT, // ctpop(HL) -> ctpop(H)+ctpop(L) 5734 DAG.getNode(ISD::CTPOP, NVT, Lo), 5735 DAG.getNode(ISD::CTPOP, NVT, Hi)); 5736 Hi = DAG.getConstant(0, NVT); 5737 break; 5738 5739 case ISD::CTLZ: { 5740 // ctlz (HL) -> ctlz(H) != 32 ? ctlz(H) : (ctlz(L)+32) 5741 ExpandOp(Node->getOperand(0), Lo, Hi); 5742 SDOperand BitsC = DAG.getConstant(MVT::getSizeInBits(NVT), NVT); 5743 SDOperand HLZ = DAG.getNode(ISD::CTLZ, NVT, Hi); 5744 SDOperand TopNotZero = DAG.getSetCC(TLI.getSetCCResultTy(), HLZ, BitsC, 5745 ISD::SETNE); 5746 SDOperand LowPart = DAG.getNode(ISD::CTLZ, NVT, Lo); 5747 LowPart = DAG.getNode(ISD::ADD, NVT, LowPart, BitsC); 5748 5749 Lo = DAG.getNode(ISD::SELECT, NVT, TopNotZero, HLZ, LowPart); 5750 Hi = DAG.getConstant(0, NVT); 5751 break; 5752 } 5753 5754 case ISD::CTTZ: { 5755 // cttz (HL) -> cttz(L) != 32 ? cttz(L) : (cttz(H)+32) 5756 ExpandOp(Node->getOperand(0), Lo, Hi); 5757 SDOperand BitsC = DAG.getConstant(MVT::getSizeInBits(NVT), NVT); 5758 SDOperand LTZ = DAG.getNode(ISD::CTTZ, NVT, Lo); 5759 SDOperand BotNotZero = DAG.getSetCC(TLI.getSetCCResultTy(), LTZ, BitsC, 5760 ISD::SETNE); 5761 SDOperand HiPart = DAG.getNode(ISD::CTTZ, NVT, Hi); 5762 HiPart = DAG.getNode(ISD::ADD, NVT, HiPart, BitsC); 5763 5764 Lo = DAG.getNode(ISD::SELECT, NVT, BotNotZero, LTZ, HiPart); 5765 Hi = DAG.getConstant(0, NVT); 5766 break; 5767 } 5768 5769 case ISD::VAARG: { 5770 SDOperand Ch = Node->getOperand(0); // Legalize the chain. 5771 SDOperand Ptr = Node->getOperand(1); // Legalize the pointer. 5772 Lo = DAG.getVAArg(NVT, Ch, Ptr, Node->getOperand(2)); 5773 Hi = DAG.getVAArg(NVT, Lo.getValue(1), Ptr, Node->getOperand(2)); 5774 5775 // Remember that we legalized the chain. 5776 Hi = LegalizeOp(Hi); 5777 AddLegalizedOperand(Op.getValue(1), Hi.getValue(1)); 5778 if (TLI.isBigEndian()) 5779 std::swap(Lo, Hi); 5780 break; 5781 } 5782 5783 case ISD::LOAD: { 5784 LoadSDNode *LD = cast<LoadSDNode>(Node); 5785 SDOperand Ch = LD->getChain(); // Legalize the chain. 5786 SDOperand Ptr = LD->getBasePtr(); // Legalize the pointer. 5787 ISD::LoadExtType ExtType = LD->getExtensionType(); 5788 int SVOffset = LD->getSrcValueOffset(); 5789 unsigned Alignment = LD->getAlignment(); 5790 bool isVolatile = LD->isVolatile(); 5791 5792 if (ExtType == ISD::NON_EXTLOAD) { 5793 Lo = DAG.getLoad(NVT, Ch, Ptr, LD->getSrcValue(), SVOffset, 5794 isVolatile, Alignment); 5795 if (VT == MVT::f32 || VT == MVT::f64) { 5796 // f32->i32 or f64->i64 one to one expansion. 5797 // Remember that we legalized the chain. 5798 AddLegalizedOperand(SDOperand(Node, 1), LegalizeOp(Lo.getValue(1))); 5799 // Recursively expand the new load. 5800 if (getTypeAction(NVT) == Expand) 5801 ExpandOp(Lo, Lo, Hi); 5802 break; 5803 } 5804 5805 // Increment the pointer to the other half. 5806 unsigned IncrementSize = MVT::getSizeInBits(Lo.getValueType())/8; 5807 Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, 5808 DAG.getIntPtrConstant(IncrementSize)); 5809 SVOffset += IncrementSize; 5810 Alignment = MinAlign(Alignment, IncrementSize); 5811 Hi = DAG.getLoad(NVT, Ch, Ptr, LD->getSrcValue(), SVOffset, 5812 isVolatile, Alignment); 5813 5814 // Build a factor node to remember that this load is independent of the 5815 // other one. 5816 SDOperand TF = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), 5817 Hi.getValue(1)); 5818 5819 // Remember that we legalized the chain. 5820 AddLegalizedOperand(Op.getValue(1), LegalizeOp(TF)); 5821 if (TLI.isBigEndian()) 5822 std::swap(Lo, Hi); 5823 } else { 5824 MVT::ValueType EVT = LD->getMemoryVT(); 5825 5826 if ((VT == MVT::f64 && EVT == MVT::f32) || 5827 (VT == MVT::ppcf128 && (EVT==MVT::f64 || EVT==MVT::f32))) { 5828 // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND 5829 SDOperand Load = DAG.getLoad(EVT, Ch, Ptr, LD->getSrcValue(), 5830 SVOffset, isVolatile, Alignment); 5831 // Remember that we legalized the chain. 5832 AddLegalizedOperand(SDOperand(Node, 1), LegalizeOp(Load.getValue(1))); 5833 ExpandOp(DAG.getNode(ISD::FP_EXTEND, VT, Load), Lo, Hi); 5834 break; 5835 } 5836 5837 if (EVT == NVT) 5838 Lo = DAG.getLoad(NVT, Ch, Ptr, LD->getSrcValue(), 5839 SVOffset, isVolatile, Alignment); 5840 else 5841 Lo = DAG.getExtLoad(ExtType, NVT, Ch, Ptr, LD->getSrcValue(), 5842 SVOffset, EVT, isVolatile, 5843 Alignment); 5844 5845 // Remember that we legalized the chain. 5846 AddLegalizedOperand(SDOperand(Node, 1), LegalizeOp(Lo.getValue(1))); 5847 5848 if (ExtType == ISD::SEXTLOAD) { 5849 // The high part is obtained by SRA'ing all but one of the bits of the 5850 // lo part. 5851 unsigned LoSize = MVT::getSizeInBits(Lo.getValueType()); 5852 Hi = DAG.getNode(ISD::SRA, NVT, Lo, 5853 DAG.getConstant(LoSize-1, TLI.getShiftAmountTy())); 5854 } else if (ExtType == ISD::ZEXTLOAD) { 5855 // The high part is just a zero. 5856 Hi = DAG.getConstant(0, NVT); 5857 } else /* if (ExtType == ISD::EXTLOAD) */ { 5858 // The high part is undefined. 5859 Hi = DAG.getNode(ISD::UNDEF, NVT); 5860 } 5861 } 5862 break; 5863 } 5864 case ISD::AND: 5865 case ISD::OR: 5866 case ISD::XOR: { // Simple logical operators -> two trivial pieces. 5867 SDOperand LL, LH, RL, RH; 5868 ExpandOp(Node->getOperand(0), LL, LH); 5869 ExpandOp(Node->getOperand(1), RL, RH); 5870 Lo = DAG.getNode(Node->getOpcode(), NVT, LL, RL); 5871 Hi = DAG.getNode(Node->getOpcode(), NVT, LH, RH); 5872 break; 5873 } 5874 case ISD::SELECT: { 5875 SDOperand LL, LH, RL, RH; 5876 ExpandOp(Node->getOperand(1), LL, LH); 5877 ExpandOp(Node->getOperand(2), RL, RH); 5878 if (getTypeAction(NVT) == Expand) 5879 NVT = TLI.getTypeToExpandTo(NVT); 5880 Lo = DAG.getNode(ISD::SELECT, NVT, Node->getOperand(0), LL, RL); 5881 if (VT != MVT::f32) 5882 Hi = DAG.getNode(ISD::SELECT, NVT, Node->getOperand(0), LH, RH); 5883 break; 5884 } 5885 case ISD::SELECT_CC: { 5886 SDOperand TL, TH, FL, FH; 5887 ExpandOp(Node->getOperand(2), TL, TH); 5888 ExpandOp(Node->getOperand(3), FL, FH); 5889 if (getTypeAction(NVT) == Expand) 5890 NVT = TLI.getTypeToExpandTo(NVT); 5891 Lo = DAG.getNode(ISD::SELECT_CC, NVT, Node->getOperand(0), 5892 Node->getOperand(1), TL, FL, Node->getOperand(4)); 5893 if (VT != MVT::f32) 5894 Hi = DAG.getNode(ISD::SELECT_CC, NVT, Node->getOperand(0), 5895 Node->getOperand(1), TH, FH, Node->getOperand(4)); 5896 break; 5897 } 5898 case ISD::ANY_EXTEND: 5899 // The low part is any extension of the input (which degenerates to a copy). 5900 Lo = DAG.getNode(ISD::ANY_EXTEND, NVT, Node->getOperand(0)); 5901 // The high part is undefined. 5902 Hi = DAG.getNode(ISD::UNDEF, NVT); 5903 break; 5904 case ISD::SIGN_EXTEND: { 5905 // The low part is just a sign extension of the input (which degenerates to 5906 // a copy). 5907 Lo = DAG.getNode(ISD::SIGN_EXTEND, NVT, Node->getOperand(0)); 5908 5909 // The high part is obtained by SRA'ing all but one of the bits of the lo 5910 // part. 5911 unsigned LoSize = MVT::getSizeInBits(Lo.getValueType()); 5912 Hi = DAG.getNode(ISD::SRA, NVT, Lo, 5913 DAG.getConstant(LoSize-1, TLI.getShiftAmountTy())); 5914 break; 5915 } 5916 case ISD::ZERO_EXTEND: 5917 // The low part is just a zero extension of the input (which degenerates to 5918 // a copy). 5919 Lo = DAG.getNode(ISD::ZERO_EXTEND, NVT, Node->getOperand(0)); 5920 5921 // The high part is just a zero. 5922 Hi = DAG.getConstant(0, NVT); 5923 break; 5924 5925 case ISD::TRUNCATE: { 5926 // The input value must be larger than this value. Expand *it*. 5927 SDOperand NewLo; 5928 ExpandOp(Node->getOperand(0), NewLo, Hi); 5929 5930 // The low part is now either the right size, or it is closer. If not the 5931 // right size, make an illegal truncate so we recursively expand it. 5932 if (NewLo.getValueType() != Node->getValueType(0)) 5933 NewLo = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), NewLo); 5934 ExpandOp(NewLo, Lo, Hi); 5935 break; 5936 } 5937 5938 case ISD::BIT_CONVERT: { 5939 SDOperand Tmp; 5940 if (TLI.getOperationAction(ISD::BIT_CONVERT, VT) == TargetLowering::Custom){ 5941 // If the target wants to, allow it to lower this itself. 5942 switch (getTypeAction(Node->getOperand(0).getValueType())) { 5943 case Expand: assert(0 && "cannot expand FP!"); 5944 case Legal: Tmp = LegalizeOp(Node->getOperand(0)); break; 5945 case Promote: Tmp = PromoteOp (Node->getOperand(0)); break; 5946 } 5947 Tmp = TLI.LowerOperation(DAG.getNode(ISD::BIT_CONVERT, VT, Tmp), DAG); 5948 } 5949 5950 // f32 / f64 must be expanded to i32 / i64. 5951 if (VT == MVT::f32 || VT == MVT::f64) { 5952 Lo = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0)); 5953 if (getTypeAction(NVT) == Expand) 5954 ExpandOp(Lo, Lo, Hi); 5955 break; 5956 } 5957 5958 // If source operand will be expanded to the same type as VT, i.e. 5959 // i64 <- f64, i32 <- f32, expand the source operand instead. 5960 MVT::ValueType VT0 = Node->getOperand(0).getValueType(); 5961 if (getTypeAction(VT0) == Expand && TLI.getTypeToTransformTo(VT0) == VT) { 5962 ExpandOp(Node->getOperand(0), Lo, Hi); 5963 break; 5964 } 5965 5966 // Turn this into a load/store pair by default. 5967 if (Tmp.Val == 0) 5968 Tmp = EmitStackConvert(Node->getOperand(0), VT, VT); 5969 5970 ExpandOp(Tmp, Lo, Hi); 5971 break; 5972 } 5973 5974 case ISD::READCYCLECOUNTER: { 5975 assert(TLI.getOperationAction(ISD::READCYCLECOUNTER, VT) == 5976 TargetLowering::Custom && 5977 "Must custom expand ReadCycleCounter"); 5978 SDOperand Tmp = TLI.LowerOperation(Op, DAG); 5979 assert(Tmp.Val && "Node must be custom expanded!"); 5980 ExpandOp(Tmp.getValue(0), Lo, Hi); 5981 AddLegalizedOperand(SDOperand(Node, 1), // Remember we legalized the chain. 5982 LegalizeOp(Tmp.getValue(1))); 5983 break; 5984 } 5985 5986 // These operators cannot be expanded directly, emit them as calls to 5987 // library functions. 5988 case ISD::FP_TO_SINT: { 5989 if (TLI.getOperationAction(ISD::FP_TO_SINT, VT) == TargetLowering::Custom) { 5990 SDOperand Op; 5991 switch (getTypeAction(Node->getOperand(0).getValueType())) { 5992 case Expand: assert(0 && "cannot expand FP!"); 5993 case Legal: Op = LegalizeOp(Node->getOperand(0)); break; 5994 case Promote: Op = PromoteOp (Node->getOperand(0)); break; 5995 } 5996 5997 Op = TLI.LowerOperation(DAG.getNode(ISD::FP_TO_SINT, VT, Op), DAG); 5998 5999 // Now that the custom expander is done, expand the result, which is still 6000 // VT. 6001 if (Op.Val) { 6002 ExpandOp(Op, Lo, Hi); 6003 break; 6004 } 6005 } 6006 6007 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 6008 if (Node->getOperand(0).getValueType() == MVT::f32) 6009 LC = RTLIB::FPTOSINT_F32_I64; 6010 else if (Node->getOperand(0).getValueType() == MVT::f64) 6011 LC = RTLIB::FPTOSINT_F64_I64; 6012 else if (Node->getOperand(0).getValueType() == MVT::f80) 6013 LC = RTLIB::FPTOSINT_F80_I64; 6014 else if (Node->getOperand(0).getValueType() == MVT::ppcf128) 6015 LC = RTLIB::FPTOSINT_PPCF128_I64; 6016 Lo = ExpandLibCall(TLI.getLibcallName(LC), Node, 6017 false/*sign irrelevant*/, Hi); 6018 break; 6019 } 6020 6021 case ISD::FP_TO_UINT: { 6022 if (TLI.getOperationAction(ISD::FP_TO_UINT, VT) == TargetLowering::Custom) { 6023 SDOperand Op; 6024 switch (getTypeAction(Node->getOperand(0).getValueType())) { 6025 case Expand: assert(0 && "cannot expand FP!"); 6026 case Legal: Op = LegalizeOp(Node->getOperand(0)); break; 6027 case Promote: Op = PromoteOp (Node->getOperand(0)); break; 6028 } 6029 6030 Op = TLI.LowerOperation(DAG.getNode(ISD::FP_TO_UINT, VT, Op), DAG); 6031 6032 // Now that the custom expander is done, expand the result. 6033 if (Op.Val) { 6034 ExpandOp(Op, Lo, Hi); 6035 break; 6036 } 6037 } 6038 6039 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 6040 if (Node->getOperand(0).getValueType() == MVT::f32) 6041 LC = RTLIB::FPTOUINT_F32_I64; 6042 else if (Node->getOperand(0).getValueType() == MVT::f64) 6043 LC = RTLIB::FPTOUINT_F64_I64; 6044 else if (Node->getOperand(0).getValueType() == MVT::f80) 6045 LC = RTLIB::FPTOUINT_F80_I64; 6046 else if (Node->getOperand(0).getValueType() == MVT::ppcf128) 6047 LC = RTLIB::FPTOUINT_PPCF128_I64; 6048 Lo = ExpandLibCall(TLI.getLibcallName(LC), Node, 6049 false/*sign irrelevant*/, Hi); 6050 break; 6051 } 6052 6053 case ISD::SHL: { 6054 // If the target wants custom lowering, do so. 6055 SDOperand ShiftAmt = LegalizeOp(Node->getOperand(1)); 6056 if (TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Custom) { 6057 SDOperand Op = DAG.getNode(ISD::SHL, VT, Node->getOperand(0), ShiftAmt); 6058 Op = TLI.LowerOperation(Op, DAG); 6059 if (Op.Val) { 6060 // Now that the custom expander is done, expand the result, which is 6061 // still VT. 6062 ExpandOp(Op, Lo, Hi); 6063 break; 6064 } 6065 } 6066 6067 // If ADDC/ADDE are supported and if the shift amount is a constant 1, emit 6068 // this X << 1 as X+X. 6069 if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(ShiftAmt)) { 6070 if (ShAmt->getValue() == 1 && TLI.isOperationLegal(ISD::ADDC, NVT) && 6071 TLI.isOperationLegal(ISD::ADDE, NVT)) { 6072 SDOperand LoOps[2], HiOps[3]; 6073 ExpandOp(Node->getOperand(0), LoOps[0], HiOps[0]); 6074 SDVTList VTList = DAG.getVTList(LoOps[0].getValueType(), MVT::Flag); 6075 LoOps[1] = LoOps[0]; 6076 Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2); 6077 6078 HiOps[1] = HiOps[0]; 6079 HiOps[2] = Lo.getValue(1); 6080 Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3); 6081 break; 6082 } 6083 } 6084 6085 // If we can emit an efficient shift operation, do so now. 6086 if (ExpandShift(ISD::SHL, Node->getOperand(0), ShiftAmt, Lo, Hi)) 6087 break; 6088 6089 // If this target supports SHL_PARTS, use it. 6090 TargetLowering::LegalizeAction Action = 6091 TLI.getOperationAction(ISD::SHL_PARTS, NVT); 6092 if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) || 6093 Action == TargetLowering::Custom) { 6094 ExpandShiftParts(ISD::SHL_PARTS, Node->getOperand(0), ShiftAmt, Lo, Hi); 6095 break; 6096 } 6097 6098 // Otherwise, emit a libcall. 6099 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SHL_I64), Node, 6100 false/*left shift=unsigned*/, Hi); 6101 break; 6102 } 6103 6104 case ISD::SRA: { 6105 // If the target wants custom lowering, do so. 6106 SDOperand ShiftAmt = LegalizeOp(Node->getOperand(1)); 6107 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Custom) { 6108 SDOperand Op = DAG.getNode(ISD::SRA, VT, Node->getOperand(0), ShiftAmt); 6109 Op = TLI.LowerOperation(Op, DAG); 6110 if (Op.Val) { 6111 // Now that the custom expander is done, expand the result, which is 6112 // still VT. 6113 ExpandOp(Op, Lo, Hi); 6114 break; 6115 } 6116 } 6117 6118 // If we can emit an efficient shift operation, do so now. 6119 if (ExpandShift(ISD::SRA, Node->getOperand(0), ShiftAmt, Lo, Hi)) 6120 break; 6121 6122 // If this target supports SRA_PARTS, use it. 6123 TargetLowering::LegalizeAction Action = 6124 TLI.getOperationAction(ISD::SRA_PARTS, NVT); 6125 if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) || 6126 Action == TargetLowering::Custom) { 6127 ExpandShiftParts(ISD::SRA_PARTS, Node->getOperand(0), ShiftAmt, Lo, Hi); 6128 break; 6129 } 6130 6131 // Otherwise, emit a libcall. 6132 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SRA_I64), Node, 6133 true/*ashr is signed*/, Hi); 6134 break; 6135 } 6136 6137 case ISD::SRL: { 6138 // If the target wants custom lowering, do so. 6139 SDOperand ShiftAmt = LegalizeOp(Node->getOperand(1)); 6140 if (TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Custom) { 6141 SDOperand Op = DAG.getNode(ISD::SRL, VT, Node->getOperand(0), ShiftAmt); 6142 Op = TLI.LowerOperation(Op, DAG); 6143 if (Op.Val) { 6144 // Now that the custom expander is done, expand the result, which is 6145 // still VT. 6146 ExpandOp(Op, Lo, Hi); 6147 break; 6148 } 6149 } 6150 6151 // If we can emit an efficient shift operation, do so now. 6152 if (ExpandShift(ISD::SRL, Node->getOperand(0), ShiftAmt, Lo, Hi)) 6153 break; 6154 6155 // If this target supports SRL_PARTS, use it. 6156 TargetLowering::LegalizeAction Action = 6157 TLI.getOperationAction(ISD::SRL_PARTS, NVT); 6158 if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) || 6159 Action == TargetLowering::Custom) { 6160 ExpandShiftParts(ISD::SRL_PARTS, Node->getOperand(0), ShiftAmt, Lo, Hi); 6161 break; 6162 } 6163 6164 // Otherwise, emit a libcall. 6165 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SRL_I64), Node, 6166 false/*lshr is unsigned*/, Hi); 6167 break; 6168 } 6169 6170 case ISD::ADD: 6171 case ISD::SUB: { 6172 // If the target wants to custom expand this, let them. 6173 if (TLI.getOperationAction(Node->getOpcode(), VT) == 6174 TargetLowering::Custom) { 6175 Op = TLI.LowerOperation(Op, DAG); 6176 if (Op.Val) { 6177 ExpandOp(Op, Lo, Hi); 6178 break; 6179 } 6180 } 6181 6182 // Expand the subcomponents. 6183 SDOperand LHSL, LHSH, RHSL, RHSH; 6184 ExpandOp(Node->getOperand(0), LHSL, LHSH); 6185 ExpandOp(Node->getOperand(1), RHSL, RHSH); 6186 SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); 6187 SDOperand LoOps[2], HiOps[3]; 6188 LoOps[0] = LHSL; 6189 LoOps[1] = RHSL; 6190 HiOps[0] = LHSH; 6191 HiOps[1] = RHSH; 6192 if (Node->getOpcode() == ISD::ADD) { 6193 Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2); 6194 HiOps[2] = Lo.getValue(1); 6195 Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3); 6196 } else { 6197 Lo = DAG.getNode(ISD::SUBC, VTList, LoOps, 2); 6198 HiOps[2] = Lo.getValue(1); 6199 Hi = DAG.getNode(ISD::SUBE, VTList, HiOps, 3); 6200 } 6201 break; 6202 } 6203 6204 case ISD::ADDC: 6205 case ISD::SUBC: { 6206 // Expand the subcomponents. 6207 SDOperand LHSL, LHSH, RHSL, RHSH; 6208 ExpandOp(Node->getOperand(0), LHSL, LHSH); 6209 ExpandOp(Node->getOperand(1), RHSL, RHSH); 6210 SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); 6211 SDOperand LoOps[2] = { LHSL, RHSL }; 6212 SDOperand HiOps[3] = { LHSH, RHSH }; 6213 6214 if (Node->getOpcode() == ISD::ADDC) { 6215 Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2); 6216 HiOps[2] = Lo.getValue(1); 6217 Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3); 6218 } else { 6219 Lo = DAG.getNode(ISD::SUBC, VTList, LoOps, 2); 6220 HiOps[2] = Lo.getValue(1); 6221 Hi = DAG.getNode(ISD::SUBE, VTList, HiOps, 3); 6222 } 6223 // Remember that we legalized the flag. 6224 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Hi.getValue(1))); 6225 break; 6226 } 6227 case ISD::ADDE: 6228 case ISD::SUBE: { 6229 // Expand the subcomponents. 6230 SDOperand LHSL, LHSH, RHSL, RHSH; 6231 ExpandOp(Node->getOperand(0), LHSL, LHSH); 6232 ExpandOp(Node->getOperand(1), RHSL, RHSH); 6233 SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); 6234 SDOperand LoOps[3] = { LHSL, RHSL, Node->getOperand(2) }; 6235 SDOperand HiOps[3] = { LHSH, RHSH }; 6236 6237 Lo = DAG.getNode(Node->getOpcode(), VTList, LoOps, 3); 6238 HiOps[2] = Lo.getValue(1); 6239 Hi = DAG.getNode(Node->getOpcode(), VTList, HiOps, 3); 6240 6241 // Remember that we legalized the flag. 6242 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Hi.getValue(1))); 6243 break; 6244 } 6245 case ISD::MUL: { 6246 // If the target wants to custom expand this, let them. 6247 if (TLI.getOperationAction(ISD::MUL, VT) == TargetLowering::Custom) { 6248 SDOperand New = TLI.LowerOperation(Op, DAG); 6249 if (New.Val) { 6250 ExpandOp(New, Lo, Hi); 6251 break; 6252 } 6253 } 6254 6255 bool HasMULHS = TLI.isOperationLegal(ISD::MULHS, NVT); 6256 bool HasMULHU = TLI.isOperationLegal(ISD::MULHU, NVT); 6257 bool HasSMUL_LOHI = TLI.isOperationLegal(ISD::SMUL_LOHI, NVT); 6258 bool HasUMUL_LOHI = TLI.isOperationLegal(ISD::UMUL_LOHI, NVT); 6259 if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) { 6260 SDOperand LL, LH, RL, RH; 6261 ExpandOp(Node->getOperand(0), LL, LH); 6262 ExpandOp(Node->getOperand(1), RL, RH); 6263 unsigned BitSize = MVT::getSizeInBits(RH.getValueType()); 6264 unsigned LHSSB = DAG.ComputeNumSignBits(Op.getOperand(0)); 6265 unsigned RHSSB = DAG.ComputeNumSignBits(Op.getOperand(1)); 6266 // FIXME: generalize this to handle other bit sizes 6267 if (LHSSB == 32 && RHSSB == 32 && 6268 DAG.MaskedValueIsZero(Op.getOperand(0), 0xFFFFFFFF00000000ULL) && 6269 DAG.MaskedValueIsZero(Op.getOperand(1), 0xFFFFFFFF00000000ULL)) { 6270 // The inputs are both zero-extended. 6271 if (HasUMUL_LOHI) { 6272 // We can emit a umul_lohi. 6273 Lo = DAG.getNode(ISD::UMUL_LOHI, DAG.getVTList(NVT, NVT), LL, RL); 6274 Hi = SDOperand(Lo.Val, 1); 6275 break; 6276 } 6277 if (HasMULHU) { 6278 // We can emit a mulhu+mul. 6279 Lo = DAG.getNode(ISD::MUL, NVT, LL, RL); 6280 Hi = DAG.getNode(ISD::MULHU, NVT, LL, RL); 6281 break; 6282 } 6283 } 6284 if (LHSSB > BitSize && RHSSB > BitSize) { 6285 // The input values are both sign-extended. 6286 if (HasSMUL_LOHI) { 6287 // We can emit a smul_lohi. 6288 Lo = DAG.getNode(ISD::SMUL_LOHI, DAG.getVTList(NVT, NVT), LL, RL); 6289 Hi = SDOperand(Lo.Val, 1); 6290 break; 6291 } 6292 if (HasMULHS) { 6293 // We can emit a mulhs+mul. 6294 Lo = DAG.getNode(ISD::MUL, NVT, LL, RL); 6295 Hi = DAG.getNode(ISD::MULHS, NVT, LL, RL); 6296 break; 6297 } 6298 } 6299 if (HasUMUL_LOHI) { 6300 // Lo,Hi = umul LHS, RHS. 6301 SDOperand UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, 6302 DAG.getVTList(NVT, NVT), LL, RL); 6303 Lo = UMulLOHI; 6304 Hi = UMulLOHI.getValue(1); 6305 RH = DAG.getNode(ISD::MUL, NVT, LL, RH); 6306 LH = DAG.getNode(ISD::MUL, NVT, LH, RL); 6307 Hi = DAG.getNode(ISD::ADD, NVT, Hi, RH); 6308 Hi = DAG.getNode(ISD::ADD, NVT, Hi, LH); 6309 break; 6310 } 6311 if (HasMULHU) { 6312 Lo = DAG.getNode(ISD::MUL, NVT, LL, RL); 6313 Hi = DAG.getNode(ISD::MULHU, NVT, LL, RL); 6314 RH = DAG.getNode(ISD::MUL, NVT, LL, RH); 6315 LH = DAG.getNode(ISD::MUL, NVT, LH, RL); 6316 Hi = DAG.getNode(ISD::ADD, NVT, Hi, RH); 6317 Hi = DAG.getNode(ISD::ADD, NVT, Hi, LH); 6318 break; 6319 } 6320 } 6321 6322 // If nothing else, we can make a libcall. 6323 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::MUL_I64), Node, 6324 false/*sign irrelevant*/, Hi); 6325 break; 6326 } 6327 case ISD::SDIV: 6328 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SDIV_I64), Node, true, Hi); 6329 break; 6330 case ISD::UDIV: 6331 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::UDIV_I64), Node, true, Hi); 6332 break; 6333 case ISD::SREM: 6334 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SREM_I64), Node, true, Hi); 6335 break; 6336 case ISD::UREM: 6337 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::UREM_I64), Node, true, Hi); 6338 break; 6339 6340 case ISD::FADD: 6341 Lo = ExpandLibCall(TLI.getLibcallName(GetFPLibCall(VT, RTLIB::ADD_F32, 6342 RTLIB::ADD_F64, 6343 RTLIB::ADD_F80, 6344 RTLIB::ADD_PPCF128)), 6345 Node, false, Hi); 6346 break; 6347 case ISD::FSUB: 6348 Lo = ExpandLibCall(TLI.getLibcallName(GetFPLibCall(VT, RTLIB::SUB_F32, 6349 RTLIB::SUB_F64, 6350 RTLIB::SUB_F80, 6351 RTLIB::SUB_PPCF128)), 6352 Node, false, Hi); 6353 break; 6354 case ISD::FMUL: 6355 Lo = ExpandLibCall(TLI.getLibcallName(GetFPLibCall(VT, RTLIB::MUL_F32, 6356 RTLIB::MUL_F64, 6357 RTLIB::MUL_F80, 6358 RTLIB::MUL_PPCF128)), 6359 Node, false, Hi); 6360 break; 6361 case ISD::FDIV: 6362 Lo = ExpandLibCall(TLI.getLibcallName(GetFPLibCall(VT, RTLIB::DIV_F32, 6363 RTLIB::DIV_F64, 6364 RTLIB::DIV_F80, 6365 RTLIB::DIV_PPCF128)), 6366 Node, false, Hi); 6367 break; 6368 case ISD::FP_EXTEND: 6369 if (VT == MVT::ppcf128) { 6370 assert(Node->getOperand(0).getValueType()==MVT::f32 || 6371 Node->getOperand(0).getValueType()==MVT::f64); 6372 const uint64_t zero = 0; 6373 if (Node->getOperand(0).getValueType()==MVT::f32) 6374 Hi = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Node->getOperand(0)); 6375 else 6376 Hi = Node->getOperand(0); 6377 Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &zero)), MVT::f64); 6378 break; 6379 } 6380 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::FPEXT_F32_F64), Node, true,Hi); 6381 break; 6382 case ISD::FP_ROUND: 6383 Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::FPROUND_F64_F32),Node,true,Hi); 6384 break; 6385 case ISD::FPOWI: 6386 Lo = ExpandLibCall(TLI.getLibcallName(GetFPLibCall(VT, RTLIB::POWI_F32, 6387 RTLIB::POWI_F64, 6388 RTLIB::POWI_F80, 6389 RTLIB::POWI_PPCF128)), 6390 Node, false, Hi); 6391 break; 6392 case ISD::FSQRT: 6393 case ISD::FSIN: 6394 case ISD::FCOS: { 6395 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 6396 switch(Node->getOpcode()) { 6397 case ISD::FSQRT: 6398 LC = GetFPLibCall(VT, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 6399 RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128); 6400 break; 6401 case ISD::FSIN: 6402 LC = GetFPLibCall(VT, RTLIB::SIN_F32, RTLIB::SIN_F64, 6403 RTLIB::SIN_F80, RTLIB::SIN_PPCF128); 6404 break; 6405 case ISD::FCOS: 6406 LC = GetFPLibCall(VT, RTLIB::COS_F32, RTLIB::COS_F64, 6407 RTLIB::COS_F80, RTLIB::COS_PPCF128); 6408 break; 6409 default: assert(0 && "Unreachable!"); 6410 } 6411 Lo = ExpandLibCall(TLI.getLibcallName(LC), Node, false, Hi); 6412 break; 6413 } 6414 case ISD::FABS: { 6415 if (VT == MVT::ppcf128) { 6416 SDOperand Tmp; 6417 ExpandOp(Node->getOperand(0), Lo, Tmp); 6418 Hi = DAG.getNode(ISD::FABS, NVT, Tmp); 6419 // lo = hi==fabs(hi) ? lo : -lo; 6420 Lo = DAG.getNode(ISD::SELECT_CC, NVT, Hi, Tmp, 6421 Lo, DAG.getNode(ISD::FNEG, NVT, Lo), 6422 DAG.getCondCode(ISD::SETEQ)); 6423 break; 6424 } 6425 SDOperand Mask = (VT == MVT::f64) 6426 ? DAG.getConstantFP(BitsToDouble(~(1ULL << 63)), VT) 6427 : DAG.getConstantFP(BitsToFloat(~(1U << 31)), VT); 6428 Mask = DAG.getNode(ISD::BIT_CONVERT, NVT, Mask); 6429 Lo = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0)); 6430 Lo = DAG.getNode(ISD::AND, NVT, Lo, Mask); 6431 if (getTypeAction(NVT) == Expand) 6432 ExpandOp(Lo, Lo, Hi); 6433 break; 6434 } 6435 case ISD::FNEG: { 6436 if (VT == MVT::ppcf128) { 6437 ExpandOp(Node->getOperand(0), Lo, Hi); 6438 Lo = DAG.getNode(ISD::FNEG, MVT::f64, Lo); 6439 Hi = DAG.getNode(ISD::FNEG, MVT::f64, Hi); 6440 break; 6441 } 6442 SDOperand Mask = (VT == MVT::f64) 6443 ? DAG.getConstantFP(BitsToDouble(1ULL << 63), VT) 6444 : DAG.getConstantFP(BitsToFloat(1U << 31), VT); 6445 Mask = DAG.getNode(ISD::BIT_CONVERT, NVT, Mask); 6446 Lo = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0)); 6447 Lo = DAG.getNode(ISD::XOR, NVT, Lo, Mask); 6448 if (getTypeAction(NVT) == Expand) 6449 ExpandOp(Lo, Lo, Hi); 6450 break; 6451 } 6452 case ISD::FCOPYSIGN: { 6453 Lo = ExpandFCOPYSIGNToBitwiseOps(Node, NVT, DAG, TLI); 6454 if (getTypeAction(NVT) == Expand) 6455 ExpandOp(Lo, Lo, Hi); 6456 break; 6457 } 6458 case ISD::SINT_TO_FP: 6459 case ISD::UINT_TO_FP: { 6460 bool isSigned = Node->getOpcode() == ISD::SINT_TO_FP; 6461 MVT::ValueType SrcVT = Node->getOperand(0).getValueType(); 6462 if (VT == MVT::ppcf128 && SrcVT != MVT::i64) { 6463 static uint64_t zero = 0; 6464 if (isSigned) { 6465 Hi = LegalizeOp(DAG.getNode(ISD::SINT_TO_FP, MVT::f64, 6466 Node->getOperand(0))); 6467 Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &zero)), MVT::f64); 6468 } else { 6469 static uint64_t TwoE32[] = { 0x41f0000000000000LL, 0 }; 6470 Hi = LegalizeOp(DAG.getNode(ISD::SINT_TO_FP, MVT::f64, 6471 Node->getOperand(0))); 6472 Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &zero)), MVT::f64); 6473 Hi = DAG.getNode(ISD::BUILD_PAIR, VT, Lo, Hi); 6474 // X>=0 ? {(f64)x, 0} : {(f64)x, 0} + 2^32 6475 ExpandOp(DAG.getNode(ISD::SELECT_CC, MVT::ppcf128, Node->getOperand(0), 6476 DAG.getConstant(0, MVT::i32), 6477 DAG.getNode(ISD::FADD, MVT::ppcf128, Hi, 6478 DAG.getConstantFP( 6479 APFloat(APInt(128, 2, TwoE32)), 6480 MVT::ppcf128)), 6481 Hi, 6482 DAG.getCondCode(ISD::SETLT)), 6483 Lo, Hi); 6484 } 6485 break; 6486 } 6487 if (VT == MVT::ppcf128 && SrcVT == MVT::i64 && !isSigned) { 6488 // si64->ppcf128 done by libcall, below 6489 static uint64_t TwoE64[] = { 0x43f0000000000000LL, 0 }; 6490 ExpandOp(DAG.getNode(ISD::SINT_TO_FP, MVT::ppcf128, Node->getOperand(0)), 6491 Lo, Hi); 6492 Hi = DAG.getNode(ISD::BUILD_PAIR, VT, Lo, Hi); 6493 // x>=0 ? (ppcf128)(i64)x : (ppcf128)(i64)x + 2^64 6494 ExpandOp(DAG.getNode(ISD::SELECT_CC, MVT::ppcf128, Node->getOperand(0), 6495 DAG.getConstant(0, MVT::i64), 6496 DAG.getNode(ISD::FADD, MVT::ppcf128, Hi, 6497 DAG.getConstantFP( 6498 APFloat(APInt(128, 2, TwoE64)), 6499 MVT::ppcf128)), 6500 Hi, 6501 DAG.getCondCode(ISD::SETLT)), 6502 Lo, Hi); 6503 break; 6504 } 6505 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 6506 if (Node->getOperand(0).getValueType() == MVT::i64) { 6507 if (VT == MVT::f32) 6508 LC = isSigned ? RTLIB::SINTTOFP_I64_F32 : RTLIB::UINTTOFP_I64_F32; 6509 else if (VT == MVT::f64) 6510 LC = isSigned ? RTLIB::SINTTOFP_I64_F64 : RTLIB::UINTTOFP_I64_F64; 6511 else if (VT == MVT::f80) { 6512 assert(isSigned); 6513 LC = RTLIB::SINTTOFP_I64_F80; 6514 } 6515 else if (VT == MVT::ppcf128) { 6516 assert(isSigned); 6517 LC = RTLIB::SINTTOFP_I64_PPCF128; 6518 } 6519 } else { 6520 if (VT == MVT::f32) 6521 LC = isSigned ? RTLIB::SINTTOFP_I32_F32 : RTLIB::UINTTOFP_I32_F32; 6522 else 6523 LC = isSigned ? RTLIB::SINTTOFP_I32_F64 : RTLIB::UINTTOFP_I32_F64; 6524 } 6525 6526 // Promote the operand if needed. 6527 if (getTypeAction(SrcVT) == Promote) { 6528 SDOperand Tmp = PromoteOp(Node->getOperand(0)); 6529 Tmp = isSigned 6530 ? DAG.getNode(ISD::SIGN_EXTEND_INREG, Tmp.getValueType(), Tmp, 6531 DAG.getValueType(SrcVT)) 6532 : DAG.getZeroExtendInReg(Tmp, SrcVT); 6533 Node = DAG.UpdateNodeOperands(Op, Tmp).Val; 6534 } 6535 6536 const char *LibCall = TLI.getLibcallName(LC); 6537 if (LibCall) 6538 Lo = ExpandLibCall(TLI.getLibcallName(LC), Node, isSigned, Hi); 6539 else { 6540 Lo = ExpandIntToFP(Node->getOpcode() == ISD::SINT_TO_FP, VT, 6541 Node->getOperand(0)); 6542 if (getTypeAction(Lo.getValueType()) == Expand) 6543 ExpandOp(Lo, Lo, Hi); 6544 } 6545 break; 6546 } 6547 } 6548 6549 // Make sure the resultant values have been legalized themselves, unless this 6550 // is a type that requires multi-step expansion. 6551 if (getTypeAction(NVT) != Expand && NVT != MVT::isVoid) { 6552 Lo = LegalizeOp(Lo); 6553 if (Hi.Val) 6554 // Don't legalize the high part if it is expanded to a single node. 6555 Hi = LegalizeOp(Hi); 6556 } 6557 6558 // Remember in a map if the values will be reused later. 6559 bool isNew = ExpandedNodes.insert(std::make_pair(Op, std::make_pair(Lo, Hi))); 6560 assert(isNew && "Value already expanded?!?"); 6561} 6562 6563/// SplitVectorOp - Given an operand of vector type, break it down into 6564/// two smaller values, still of vector type. 6565void SelectionDAGLegalize::SplitVectorOp(SDOperand Op, SDOperand &Lo, 6566 SDOperand &Hi) { 6567 assert(MVT::isVector(Op.getValueType()) && "Cannot split non-vector type!"); 6568 SDNode *Node = Op.Val; 6569 unsigned NumElements = MVT::getVectorNumElements(Op.getValueType()); 6570 assert(NumElements > 1 && "Cannot split a single element vector!"); 6571 6572 MVT::ValueType NewEltVT = MVT::getVectorElementType(Op.getValueType()); 6573 6574 unsigned NewNumElts_Lo = 1 << Log2_32(NumElements-1); 6575 unsigned NewNumElts_Hi = NumElements - NewNumElts_Lo; 6576 6577 MVT::ValueType NewVT_Lo = MVT::getVectorType(NewEltVT, NewNumElts_Lo); 6578 MVT::ValueType NewVT_Hi = MVT::getVectorType(NewEltVT, NewNumElts_Hi); 6579 6580 // See if we already split it. 6581 std::map<SDOperand, std::pair<SDOperand, SDOperand> >::iterator I 6582 = SplitNodes.find(Op); 6583 if (I != SplitNodes.end()) { 6584 Lo = I->second.first; 6585 Hi = I->second.second; 6586 return; 6587 } 6588 6589 switch (Node->getOpcode()) { 6590 default: 6591#ifndef NDEBUG 6592 Node->dump(&DAG); 6593#endif 6594 assert(0 && "Unhandled operation in SplitVectorOp!"); 6595 case ISD::UNDEF: 6596 Lo = DAG.getNode(ISD::UNDEF, NewVT_Lo); 6597 Hi = DAG.getNode(ISD::UNDEF, NewVT_Hi); 6598 break; 6599 case ISD::BUILD_PAIR: 6600 Lo = Node->getOperand(0); 6601 Hi = Node->getOperand(1); 6602 break; 6603 case ISD::INSERT_VECTOR_ELT: { 6604 SplitVectorOp(Node->getOperand(0), Lo, Hi); 6605 unsigned Index = cast<ConstantSDNode>(Node->getOperand(2))->getValue(); 6606 SDOperand ScalarOp = Node->getOperand(1); 6607 if (Index < NewNumElts_Lo) 6608 Lo = DAG.getNode(ISD::INSERT_VECTOR_ELT, NewVT_Lo, Lo, ScalarOp, 6609 DAG.getConstant(Index, TLI.getPointerTy())); 6610 else 6611 Hi = DAG.getNode(ISD::INSERT_VECTOR_ELT, NewVT_Hi, Hi, ScalarOp, 6612 DAG.getConstant(Index - NewNumElts_Lo, 6613 TLI.getPointerTy())); 6614 break; 6615 } 6616 case ISD::VECTOR_SHUFFLE: { 6617 // Build the low part. 6618 SDOperand Mask = Node->getOperand(2); 6619 SmallVector<SDOperand, 8> Ops; 6620 MVT::ValueType PtrVT = TLI.getPointerTy(); 6621 6622 // Insert all of the elements from the input that are needed. We use 6623 // buildvector of extractelement here because the input vectors will have 6624 // to be legalized, so this makes the code simpler. 6625 for (unsigned i = 0; i != NewNumElts_Lo; ++i) { 6626 unsigned Idx = cast<ConstantSDNode>(Mask.getOperand(i))->getValue(); 6627 SDOperand InVec = Node->getOperand(0); 6628 if (Idx >= NumElements) { 6629 InVec = Node->getOperand(1); 6630 Idx -= NumElements; 6631 } 6632 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, NewEltVT, InVec, 6633 DAG.getConstant(Idx, PtrVT))); 6634 } 6635 Lo = DAG.getNode(ISD::BUILD_VECTOR, NewVT_Lo, &Ops[0], Ops.size()); 6636 Ops.clear(); 6637 6638 for (unsigned i = NewNumElts_Lo; i != NumElements; ++i) { 6639 unsigned Idx = cast<ConstantSDNode>(Mask.getOperand(i))->getValue(); 6640 SDOperand InVec = Node->getOperand(0); 6641 if (Idx >= NumElements) { 6642 InVec = Node->getOperand(1); 6643 Idx -= NumElements; 6644 } 6645 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, NewEltVT, InVec, 6646 DAG.getConstant(Idx, PtrVT))); 6647 } 6648 Hi = DAG.getNode(ISD::BUILD_VECTOR, NewVT_Lo, &Ops[0], Ops.size()); 6649 break; 6650 } 6651 case ISD::BUILD_VECTOR: { 6652 SmallVector<SDOperand, 8> LoOps(Node->op_begin(), 6653 Node->op_begin()+NewNumElts_Lo); 6654 Lo = DAG.getNode(ISD::BUILD_VECTOR, NewVT_Lo, &LoOps[0], LoOps.size()); 6655 6656 SmallVector<SDOperand, 8> HiOps(Node->op_begin()+NewNumElts_Lo, 6657 Node->op_end()); 6658 Hi = DAG.getNode(ISD::BUILD_VECTOR, NewVT_Hi, &HiOps[0], HiOps.size()); 6659 break; 6660 } 6661 case ISD::CONCAT_VECTORS: { 6662 // FIXME: Handle non-power-of-two vectors? 6663 unsigned NewNumSubvectors = Node->getNumOperands() / 2; 6664 if (NewNumSubvectors == 1) { 6665 Lo = Node->getOperand(0); 6666 Hi = Node->getOperand(1); 6667 } else { 6668 SmallVector<SDOperand, 8> LoOps(Node->op_begin(), 6669 Node->op_begin()+NewNumSubvectors); 6670 Lo = DAG.getNode(ISD::CONCAT_VECTORS, NewVT_Lo, &LoOps[0], LoOps.size()); 6671 6672 SmallVector<SDOperand, 8> HiOps(Node->op_begin()+NewNumSubvectors, 6673 Node->op_end()); 6674 Hi = DAG.getNode(ISD::CONCAT_VECTORS, NewVT_Hi, &HiOps[0], HiOps.size()); 6675 } 6676 break; 6677 } 6678 case ISD::SELECT: { 6679 SDOperand Cond = Node->getOperand(0); 6680 6681 SDOperand LL, LH, RL, RH; 6682 SplitVectorOp(Node->getOperand(1), LL, LH); 6683 SplitVectorOp(Node->getOperand(2), RL, RH); 6684 6685 if (MVT::isVector(Cond.getValueType())) { 6686 // Handle a vector merge. 6687 SDOperand CL, CH; 6688 SplitVectorOp(Cond, CL, CH); 6689 Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, CL, LL, RL); 6690 Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, CH, LH, RH); 6691 } else { 6692 // Handle a simple select with vector operands. 6693 Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, Cond, LL, RL); 6694 Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, Cond, LH, RH); 6695 } 6696 break; 6697 } 6698 case ISD::ADD: 6699 case ISD::SUB: 6700 case ISD::MUL: 6701 case ISD::FADD: 6702 case ISD::FSUB: 6703 case ISD::FMUL: 6704 case ISD::SDIV: 6705 case ISD::UDIV: 6706 case ISD::FDIV: 6707 case ISD::FPOW: 6708 case ISD::AND: 6709 case ISD::OR: 6710 case ISD::XOR: 6711 case ISD::UREM: 6712 case ISD::SREM: 6713 case ISD::FREM: { 6714 SDOperand LL, LH, RL, RH; 6715 SplitVectorOp(Node->getOperand(0), LL, LH); 6716 SplitVectorOp(Node->getOperand(1), RL, RH); 6717 6718 Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, LL, RL); 6719 Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, LH, RH); 6720 break; 6721 } 6722 case ISD::FPOWI: { 6723 SDOperand L, H; 6724 SplitVectorOp(Node->getOperand(0), L, H); 6725 6726 Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, L, Node->getOperand(1)); 6727 Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, H, Node->getOperand(1)); 6728 break; 6729 } 6730 case ISD::CTTZ: 6731 case ISD::CTLZ: 6732 case ISD::CTPOP: 6733 case ISD::FNEG: 6734 case ISD::FABS: 6735 case ISD::FSQRT: 6736 case ISD::FSIN: 6737 case ISD::FCOS: 6738 case ISD::FP_TO_SINT: 6739 case ISD::FP_TO_UINT: 6740 case ISD::SINT_TO_FP: 6741 case ISD::UINT_TO_FP: { 6742 SDOperand L, H; 6743 SplitVectorOp(Node->getOperand(0), L, H); 6744 6745 Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, L); 6746 Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, H); 6747 break; 6748 } 6749 case ISD::LOAD: { 6750 LoadSDNode *LD = cast<LoadSDNode>(Node); 6751 SDOperand Ch = LD->getChain(); 6752 SDOperand Ptr = LD->getBasePtr(); 6753 const Value *SV = LD->getSrcValue(); 6754 int SVOffset = LD->getSrcValueOffset(); 6755 unsigned Alignment = LD->getAlignment(); 6756 bool isVolatile = LD->isVolatile(); 6757 6758 Lo = DAG.getLoad(NewVT_Lo, Ch, Ptr, SV, SVOffset, isVolatile, Alignment); 6759 unsigned IncrementSize = NewNumElts_Lo * MVT::getSizeInBits(NewEltVT)/8; 6760 Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, 6761 DAG.getIntPtrConstant(IncrementSize)); 6762 SVOffset += IncrementSize; 6763 Alignment = MinAlign(Alignment, IncrementSize); 6764 Hi = DAG.getLoad(NewVT_Hi, Ch, Ptr, SV, SVOffset, isVolatile, Alignment); 6765 6766 // Build a factor node to remember that this load is independent of the 6767 // other one. 6768 SDOperand TF = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), 6769 Hi.getValue(1)); 6770 6771 // Remember that we legalized the chain. 6772 AddLegalizedOperand(Op.getValue(1), LegalizeOp(TF)); 6773 break; 6774 } 6775 case ISD::BIT_CONVERT: { 6776 // We know the result is a vector. The input may be either a vector or a 6777 // scalar value. 6778 SDOperand InOp = Node->getOperand(0); 6779 if (!MVT::isVector(InOp.getValueType()) || 6780 MVT::getVectorNumElements(InOp.getValueType()) == 1) { 6781 // The input is a scalar or single-element vector. 6782 // Lower to a store/load so that it can be split. 6783 // FIXME: this could be improved probably. 6784 SDOperand Ptr = DAG.CreateStackTemporary(InOp.getValueType()); 6785 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(Ptr.Val); 6786 6787 SDOperand St = DAG.getStore(DAG.getEntryNode(), 6788 InOp, Ptr, 6789 PseudoSourceValue::getFixedStack(), 6790 FI->getIndex()); 6791 InOp = DAG.getLoad(Op.getValueType(), St, Ptr, 6792 PseudoSourceValue::getFixedStack(), 6793 FI->getIndex()); 6794 } 6795 // Split the vector and convert each of the pieces now. 6796 SplitVectorOp(InOp, Lo, Hi); 6797 Lo = DAG.getNode(ISD::BIT_CONVERT, NewVT_Lo, Lo); 6798 Hi = DAG.getNode(ISD::BIT_CONVERT, NewVT_Hi, Hi); 6799 break; 6800 } 6801 } 6802 6803 // Remember in a map if the values will be reused later. 6804 bool isNew = 6805 SplitNodes.insert(std::make_pair(Op, std::make_pair(Lo, Hi))).second; 6806 assert(isNew && "Value already split?!?"); 6807} 6808 6809 6810/// ScalarizeVectorOp - Given an operand of single-element vector type 6811/// (e.g. v1f32), convert it into the equivalent operation that returns a 6812/// scalar (e.g. f32) value. 6813SDOperand SelectionDAGLegalize::ScalarizeVectorOp(SDOperand Op) { 6814 assert(MVT::isVector(Op.getValueType()) && 6815 "Bad ScalarizeVectorOp invocation!"); 6816 SDNode *Node = Op.Val; 6817 MVT::ValueType NewVT = MVT::getVectorElementType(Op.getValueType()); 6818 assert(MVT::getVectorNumElements(Op.getValueType()) == 1); 6819 6820 // See if we already scalarized it. 6821 std::map<SDOperand, SDOperand>::iterator I = ScalarizedNodes.find(Op); 6822 if (I != ScalarizedNodes.end()) return I->second; 6823 6824 SDOperand Result; 6825 switch (Node->getOpcode()) { 6826 default: 6827#ifndef NDEBUG 6828 Node->dump(&DAG); cerr << "\n"; 6829#endif 6830 assert(0 && "Unknown vector operation in ScalarizeVectorOp!"); 6831 case ISD::ADD: 6832 case ISD::FADD: 6833 case ISD::SUB: 6834 case ISD::FSUB: 6835 case ISD::MUL: 6836 case ISD::FMUL: 6837 case ISD::SDIV: 6838 case ISD::UDIV: 6839 case ISD::FDIV: 6840 case ISD::SREM: 6841 case ISD::UREM: 6842 case ISD::FREM: 6843 case ISD::FPOW: 6844 case ISD::AND: 6845 case ISD::OR: 6846 case ISD::XOR: 6847 Result = DAG.getNode(Node->getOpcode(), 6848 NewVT, 6849 ScalarizeVectorOp(Node->getOperand(0)), 6850 ScalarizeVectorOp(Node->getOperand(1))); 6851 break; 6852 case ISD::FNEG: 6853 case ISD::FABS: 6854 case ISD::FSQRT: 6855 case ISD::FSIN: 6856 case ISD::FCOS: 6857 Result = DAG.getNode(Node->getOpcode(), 6858 NewVT, 6859 ScalarizeVectorOp(Node->getOperand(0))); 6860 break; 6861 case ISD::FPOWI: 6862 Result = DAG.getNode(Node->getOpcode(), 6863 NewVT, 6864 ScalarizeVectorOp(Node->getOperand(0)), 6865 Node->getOperand(1)); 6866 break; 6867 case ISD::LOAD: { 6868 LoadSDNode *LD = cast<LoadSDNode>(Node); 6869 SDOperand Ch = LegalizeOp(LD->getChain()); // Legalize the chain. 6870 SDOperand Ptr = LegalizeOp(LD->getBasePtr()); // Legalize the pointer. 6871 6872 const Value *SV = LD->getSrcValue(); 6873 int SVOffset = LD->getSrcValueOffset(); 6874 Result = DAG.getLoad(NewVT, Ch, Ptr, SV, SVOffset, 6875 LD->isVolatile(), LD->getAlignment()); 6876 6877 // Remember that we legalized the chain. 6878 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); 6879 break; 6880 } 6881 case ISD::BUILD_VECTOR: 6882 Result = Node->getOperand(0); 6883 break; 6884 case ISD::INSERT_VECTOR_ELT: 6885 // Returning the inserted scalar element. 6886 Result = Node->getOperand(1); 6887 break; 6888 case ISD::CONCAT_VECTORS: 6889 assert(Node->getOperand(0).getValueType() == NewVT && 6890 "Concat of non-legal vectors not yet supported!"); 6891 Result = Node->getOperand(0); 6892 break; 6893 case ISD::VECTOR_SHUFFLE: { 6894 // Figure out if the scalar is the LHS or RHS and return it. 6895 SDOperand EltNum = Node->getOperand(2).getOperand(0); 6896 if (cast<ConstantSDNode>(EltNum)->getValue()) 6897 Result = ScalarizeVectorOp(Node->getOperand(1)); 6898 else 6899 Result = ScalarizeVectorOp(Node->getOperand(0)); 6900 break; 6901 } 6902 case ISD::EXTRACT_SUBVECTOR: 6903 Result = Node->getOperand(0); 6904 assert(Result.getValueType() == NewVT); 6905 break; 6906 case ISD::BIT_CONVERT: 6907 Result = DAG.getNode(ISD::BIT_CONVERT, NewVT, Op.getOperand(0)); 6908 break; 6909 case ISD::SELECT: 6910 Result = DAG.getNode(ISD::SELECT, NewVT, Op.getOperand(0), 6911 ScalarizeVectorOp(Op.getOperand(1)), 6912 ScalarizeVectorOp(Op.getOperand(2))); 6913 break; 6914 } 6915 6916 if (TLI.isTypeLegal(NewVT)) 6917 Result = LegalizeOp(Result); 6918 bool isNew = ScalarizedNodes.insert(std::make_pair(Op, Result)).second; 6919 assert(isNew && "Value already scalarized?"); 6920 return Result; 6921} 6922 6923 6924// SelectionDAG::Legalize - This is the entry point for the file. 6925// 6926void SelectionDAG::Legalize() { 6927 if (ViewLegalizeDAGs) viewGraph(); 6928 6929 /// run - This is the main entry point to this class. 6930 /// 6931 SelectionDAGLegalize(*this).LegalizeDAG(); 6932} 6933 6934