LegalizeDAG.cpp revision e3d423244ae288b2c9021dbb3cd7fb973d1cfc31
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the SelectionDAG::Legalize method. 11// 12//===----------------------------------------------------------------------===// 13 14#include "llvm/CodeGen/SelectionDAG.h" 15#include "llvm/CodeGen/MachineFunction.h" 16#include "llvm/CodeGen/MachineFrameInfo.h" 17#include "llvm/CodeGen/MachineJumpTableInfo.h" 18#include "llvm/CodeGen/MachineModuleInfo.h" 19#include "llvm/CodeGen/DwarfWriter.h" 20#include "llvm/Analysis/DebugInfo.h" 21#include "llvm/CodeGen/PseudoSourceValue.h" 22#include "llvm/Target/TargetFrameInfo.h" 23#include "llvm/Target/TargetLowering.h" 24#include "llvm/Target/TargetData.h" 25#include "llvm/Target/TargetMachine.h" 26#include "llvm/Target/TargetOptions.h" 27#include "llvm/Target/TargetSubtarget.h" 28#include "llvm/CallingConv.h" 29#include "llvm/Constants.h" 30#include "llvm/DerivedTypes.h" 31#include "llvm/Function.h" 32#include "llvm/GlobalVariable.h" 33#include "llvm/Support/CommandLine.h" 34#include "llvm/Support/Compiler.h" 35#include "llvm/Support/MathExtras.h" 36#include "llvm/ADT/DenseMap.h" 37#include "llvm/ADT/SmallVector.h" 38#include "llvm/ADT/SmallPtrSet.h" 39#include <map> 40using namespace llvm; 41 42//===----------------------------------------------------------------------===// 43/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and 44/// hacks on it until the target machine can handle it. This involves 45/// eliminating value sizes the machine cannot handle (promoting small sizes to 46/// large sizes or splitting up large values into small values) as well as 47/// eliminating operations the machine cannot handle. 48/// 49/// This code also does a small amount of optimization and recognition of idioms 50/// as part of its processing. For example, if a target does not support a 51/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this 52/// will attempt merge setcc and brc instructions into brcc's. 53/// 54namespace { 55class VISIBILITY_HIDDEN SelectionDAGLegalize { 56 TargetLowering &TLI; 57 SelectionDAG &DAG; 58 bool TypesNeedLegalizing; 59 bool Fast; 60 61 // Libcall insertion helpers. 62 63 /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been 64 /// legalized. We use this to ensure that calls are properly serialized 65 /// against each other, including inserted libcalls. 66 SDValue LastCALLSEQ_END; 67 68 /// IsLegalizingCall - This member is used *only* for purposes of providing 69 /// helpful assertions that a libcall isn't created while another call is 70 /// being legalized (which could lead to non-serialized call sequences). 71 bool IsLegalizingCall; 72 73 /// IsLegalizingCallArguments - This member is used only for the purpose 74 /// of providing assert to check for LegalizeTypes because legalizing an 75 /// operation might introduce call nodes that might need type legalization. 76 bool IsLegalizingCallArgs; 77 78 enum LegalizeAction { 79 Legal, // The target natively supports this operation. 80 Promote, // This operation should be executed in a larger type. 81 Expand // Try to expand this to other ops, otherwise use a libcall. 82 }; 83 84 /// ValueTypeActions - This is a bitvector that contains two bits for each 85 /// value type, where the two bits correspond to the LegalizeAction enum. 86 /// This can be queried with "getTypeAction(VT)". 87 TargetLowering::ValueTypeActionImpl ValueTypeActions; 88 89 /// LegalizedNodes - For nodes that are of legal width, and that have more 90 /// than one use, this map indicates what regularized operand to use. This 91 /// allows us to avoid legalizing the same thing more than once. 92 DenseMap<SDValue, SDValue> LegalizedNodes; 93 94 /// PromotedNodes - For nodes that are below legal width, and that have more 95 /// than one use, this map indicates what promoted value to use. This allows 96 /// us to avoid promoting the same thing more than once. 97 DenseMap<SDValue, SDValue> PromotedNodes; 98 99 /// ExpandedNodes - For nodes that need to be expanded this map indicates 100 /// which operands are the expanded version of the input. This allows 101 /// us to avoid expanding the same node more than once. 102 DenseMap<SDValue, std::pair<SDValue, SDValue> > ExpandedNodes; 103 104 /// SplitNodes - For vector nodes that need to be split, this map indicates 105 /// which operands are the split version of the input. This allows us 106 /// to avoid splitting the same node more than once. 107 std::map<SDValue, std::pair<SDValue, SDValue> > SplitNodes; 108 109 /// ScalarizedNodes - For nodes that need to be converted from vector types to 110 /// scalar types, this contains the mapping of ones we have already 111 /// processed to the result. 112 std::map<SDValue, SDValue> ScalarizedNodes; 113 114 /// WidenNodes - For nodes that need to be widened from one vector type to 115 /// another, this contains the mapping of those that we have already widen. 116 /// This allows us to avoid widening more than once. 117 std::map<SDValue, SDValue> WidenNodes; 118 119 void AddLegalizedOperand(SDValue From, SDValue To) { 120 LegalizedNodes.insert(std::make_pair(From, To)); 121 // If someone requests legalization of the new node, return itself. 122 if (From != To) 123 LegalizedNodes.insert(std::make_pair(To, To)); 124 } 125 void AddPromotedOperand(SDValue From, SDValue To) { 126 bool isNew = PromotedNodes.insert(std::make_pair(From, To)).second; 127 assert(isNew && "Got into the map somehow?"); 128 isNew = isNew; 129 // If someone requests legalization of the new node, return itself. 130 LegalizedNodes.insert(std::make_pair(To, To)); 131 } 132 void AddWidenedOperand(SDValue From, SDValue To) { 133 bool isNew = WidenNodes.insert(std::make_pair(From, To)).second; 134 assert(isNew && "Got into the map somehow?"); 135 isNew = isNew; 136 // If someone requests legalization of the new node, return itself. 137 LegalizedNodes.insert(std::make_pair(To, To)); 138 } 139 140public: 141 explicit SelectionDAGLegalize(SelectionDAG &DAG, bool TypesNeedLegalizing, 142 bool fast); 143 144 /// getTypeAction - Return how we should legalize values of this type, either 145 /// it is already legal or we need to expand it into multiple registers of 146 /// smaller integer type, or we need to promote it to a larger type. 147 LegalizeAction getTypeAction(MVT VT) const { 148 return (LegalizeAction)ValueTypeActions.getTypeAction(VT); 149 } 150 151 /// isTypeLegal - Return true if this type is legal on this target. 152 /// 153 bool isTypeLegal(MVT VT) const { 154 return getTypeAction(VT) == Legal; 155 } 156 157 void LegalizeDAG(); 158 159private: 160 /// HandleOp - Legalize, Promote, or Expand the specified operand as 161 /// appropriate for its type. 162 void HandleOp(SDValue Op); 163 164 /// LegalizeOp - We know that the specified value has a legal type. 165 /// Recursively ensure that the operands have legal types, then return the 166 /// result. 167 SDValue LegalizeOp(SDValue O); 168 169 /// UnrollVectorOp - We know that the given vector has a legal type, however 170 /// the operation it performs is not legal and is an operation that we have 171 /// no way of lowering. "Unroll" the vector, splitting out the scalars and 172 /// operating on each element individually. 173 SDValue UnrollVectorOp(SDValue O); 174 175 /// PerformInsertVectorEltInMemory - Some target cannot handle a variable 176 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 177 /// is necessary to spill the vector being inserted into to memory, perform 178 /// the insert there, and then read the result back. 179 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, 180 SDValue Idx, DebugLoc dl); 181 182 /// PromoteOp - Given an operation that produces a value in an invalid type, 183 /// promote it to compute the value into a larger type. The produced value 184 /// will have the correct bits for the low portion of the register, but no 185 /// guarantee is made about the top bits: it may be zero, sign-extended, or 186 /// garbage. 187 SDValue PromoteOp(SDValue O); 188 189 /// ExpandOp - Expand the specified SDValue into its two component pieces 190 /// Lo&Hi. Note that the Op MUST be an expanded type. As a result of this, 191 /// the LegalizedNodes map is filled in for any results that are not expanded, 192 /// the ExpandedNodes map is filled in for any results that are expanded, and 193 /// the Lo/Hi values are returned. This applies to integer types and Vector 194 /// types. 195 void ExpandOp(SDValue O, SDValue &Lo, SDValue &Hi); 196 197 /// WidenVectorOp - Widen a vector operation to a wider type given by WidenVT 198 /// (e.g., v3i32 to v4i32). The produced value will have the correct value 199 /// for the existing elements but no guarantee is made about the new elements 200 /// at the end of the vector: it may be zero, ones, or garbage. This is useful 201 /// when we have an instruction operating on an illegal vector type and we 202 /// want to widen it to do the computation on a legal wider vector type. 203 SDValue WidenVectorOp(SDValue Op, MVT WidenVT); 204 205 /// SplitVectorOp - Given an operand of vector type, break it down into 206 /// two smaller values. 207 void SplitVectorOp(SDValue O, SDValue &Lo, SDValue &Hi); 208 209 /// ScalarizeVectorOp - Given an operand of single-element vector type 210 /// (e.g. v1f32), convert it into the equivalent operation that returns a 211 /// scalar (e.g. f32) value. 212 SDValue ScalarizeVectorOp(SDValue O); 213 214 /// Useful 16 element vector type that is used to pass operands for widening. 215 typedef SmallVector<SDValue, 16> SDValueVector; 216 217 /// LoadWidenVectorOp - Load a vector for a wider type. Returns true if 218 /// the LdChain contains a single load and false if it contains a token 219 /// factor for multiple loads. It takes 220 /// Result: location to return the result 221 /// LdChain: location to return the load chain 222 /// Op: load operation to widen 223 /// NVT: widen vector result type we want for the load 224 bool LoadWidenVectorOp(SDValue& Result, SDValue& LdChain, 225 SDValue Op, MVT NVT); 226 227 /// Helper genWidenVectorLoads - Helper function to generate a set of 228 /// loads to load a vector with a resulting wider type. It takes 229 /// LdChain: list of chains for the load we have generated 230 /// Chain: incoming chain for the ld vector 231 /// BasePtr: base pointer to load from 232 /// SV: memory disambiguation source value 233 /// SVOffset: memory disambiugation offset 234 /// Alignment: alignment of the memory 235 /// isVolatile: volatile load 236 /// LdWidth: width of memory that we want to load 237 /// ResType: the wider result result type for the resulting loaded vector 238 SDValue genWidenVectorLoads(SDValueVector& LdChain, SDValue Chain, 239 SDValue BasePtr, const Value *SV, 240 int SVOffset, unsigned Alignment, 241 bool isVolatile, unsigned LdWidth, 242 MVT ResType, DebugLoc dl); 243 244 /// StoreWidenVectorOp - Stores a widen vector into non widen memory 245 /// location. It takes 246 /// ST: store node that we want to replace 247 /// Chain: incoming store chain 248 /// BasePtr: base address of where we want to store into 249 SDValue StoreWidenVectorOp(StoreSDNode *ST, SDValue Chain, 250 SDValue BasePtr); 251 252 /// Helper genWidenVectorStores - Helper function to generate a set of 253 /// stores to store a widen vector into non widen memory 254 // It takes 255 // StChain: list of chains for the stores we have generated 256 // Chain: incoming chain for the ld vector 257 // BasePtr: base pointer to load from 258 // SV: memory disambiguation source value 259 // SVOffset: memory disambiugation offset 260 // Alignment: alignment of the memory 261 // isVolatile: volatile lod 262 // ValOp: value to store 263 // StWidth: width of memory that we want to store 264 void genWidenVectorStores(SDValueVector& StChain, SDValue Chain, 265 SDValue BasePtr, const Value *SV, 266 int SVOffset, unsigned Alignment, 267 bool isVolatile, SDValue ValOp, 268 unsigned StWidth, DebugLoc dl); 269 270 /// isShuffleLegal - Return non-null if a vector shuffle is legal with the 271 /// specified mask and type. Targets can specify exactly which masks they 272 /// support and the code generator is tasked with not creating illegal masks. 273 /// 274 /// Note that this will also return true for shuffles that are promoted to a 275 /// different type. 276 /// 277 /// If this is a legal shuffle, this method returns the (possibly promoted) 278 /// build_vector Mask. If it's not a legal shuffle, it returns null. 279 SDNode *isShuffleLegal(MVT VT, SDValue Mask) const; 280 281 bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest, 282 SmallPtrSet<SDNode*, 32> &NodesLeadingTo); 283 284 void LegalizeSetCCOperands(SDValue &LHS, SDValue &RHS, SDValue &CC, 285 DebugLoc dl); 286 void LegalizeSetCCCondCode(MVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, 287 DebugLoc dl); 288 void LegalizeSetCC(MVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, 289 DebugLoc dl) { 290 LegalizeSetCCOperands(LHS, RHS, CC, dl); 291 LegalizeSetCCCondCode(VT, LHS, RHS, CC, dl); 292 } 293 294 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned, 295 SDValue &Hi); 296 SDValue ExpandIntToFP(bool isSigned, MVT DestTy, SDValue Source, DebugLoc dl); 297 298 SDValue EmitStackConvert(SDValue SrcOp, MVT SlotVT, MVT DestVT, DebugLoc dl); 299 SDValue ExpandBUILD_VECTOR(SDNode *Node); 300 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); 301 SDValue LegalizeINT_TO_FP(SDValue Result, bool isSigned, MVT DestTy, 302 SDValue Op, DebugLoc dl); 303 SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, MVT DestVT, 304 DebugLoc dl); 305 SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, MVT DestVT, bool isSigned, 306 DebugLoc dl); 307 SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, MVT DestVT, bool isSigned, 308 DebugLoc dl); 309 310 SDValue ExpandBSWAP(SDValue Op, DebugLoc dl); 311 SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl); 312 bool ExpandShift(unsigned Opc, SDValue Op, SDValue Amt, 313 SDValue &Lo, SDValue &Hi, DebugLoc dl); 314 void ExpandShiftParts(unsigned NodeOp, SDValue Op, SDValue Amt, 315 SDValue &Lo, SDValue &Hi, DebugLoc dl); 316 317 SDValue ExpandEXTRACT_SUBVECTOR(SDValue Op); 318 SDValue ExpandEXTRACT_VECTOR_ELT(SDValue Op); 319}; 320} 321 322/// isVectorShuffleLegal - Return true if a vector shuffle is legal with the 323/// specified mask and type. Targets can specify exactly which masks they 324/// support and the code generator is tasked with not creating illegal masks. 325/// 326/// Note that this will also return true for shuffles that are promoted to a 327/// different type. 328SDNode *SelectionDAGLegalize::isShuffleLegal(MVT VT, SDValue Mask) const { 329 switch (TLI.getOperationAction(ISD::VECTOR_SHUFFLE, VT)) { 330 default: return 0; 331 case TargetLowering::Legal: 332 case TargetLowering::Custom: 333 break; 334 case TargetLowering::Promote: { 335 // If this is promoted to a different type, convert the shuffle mask and 336 // ask if it is legal in the promoted type! 337 MVT NVT = TLI.getTypeToPromoteTo(ISD::VECTOR_SHUFFLE, VT); 338 MVT EltVT = NVT.getVectorElementType(); 339 340 // If we changed # elements, change the shuffle mask. 341 unsigned NumEltsGrowth = 342 NVT.getVectorNumElements() / VT.getVectorNumElements(); 343 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); 344 if (NumEltsGrowth > 1) { 345 // Renumber the elements. 346 SmallVector<SDValue, 8> Ops; 347 for (unsigned i = 0, e = Mask.getNumOperands(); i != e; ++i) { 348 SDValue InOp = Mask.getOperand(i); 349 for (unsigned j = 0; j != NumEltsGrowth; ++j) { 350 if (InOp.getOpcode() == ISD::UNDEF) 351 Ops.push_back(DAG.getUNDEF(EltVT)); 352 else { 353 unsigned InEltNo = cast<ConstantSDNode>(InOp)->getZExtValue(); 354 Ops.push_back(DAG.getConstant(InEltNo*NumEltsGrowth+j, EltVT)); 355 } 356 } 357 } 358 Mask = DAG.getBUILD_VECTOR(NVT, Mask.getDebugLoc(), &Ops[0], Ops.size()); 359 } 360 VT = NVT; 361 break; 362 } 363 } 364 return TLI.isShuffleMaskLegal(Mask, VT) ? Mask.getNode() : 0; 365} 366 367SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag, 368 bool types, bool fast) 369 : TLI(dag.getTargetLoweringInfo()), DAG(dag), TypesNeedLegalizing(types), 370 Fast(fast), ValueTypeActions(TLI.getValueTypeActions()) { 371 assert(MVT::LAST_VALUETYPE <= 32 && 372 "Too many value types for ValueTypeActions to hold!"); 373} 374 375void SelectionDAGLegalize::LegalizeDAG() { 376 LastCALLSEQ_END = DAG.getEntryNode(); 377 IsLegalizingCall = false; 378 IsLegalizingCallArgs = false; 379 380 // The legalize process is inherently a bottom-up recursive process (users 381 // legalize their uses before themselves). Given infinite stack space, we 382 // could just start legalizing on the root and traverse the whole graph. In 383 // practice however, this causes us to run out of stack space on large basic 384 // blocks. To avoid this problem, compute an ordering of the nodes where each 385 // node is only legalized after all of its operands are legalized. 386 DAG.AssignTopologicalOrder(); 387 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 388 E = prior(DAG.allnodes_end()); I != next(E); ++I) 389 HandleOp(SDValue(I, 0)); 390 391 // Finally, it's possible the root changed. Get the new root. 392 SDValue OldRoot = DAG.getRoot(); 393 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 394 DAG.setRoot(LegalizedNodes[OldRoot]); 395 396 ExpandedNodes.clear(); 397 LegalizedNodes.clear(); 398 PromotedNodes.clear(); 399 SplitNodes.clear(); 400 ScalarizedNodes.clear(); 401 WidenNodes.clear(); 402 403 // Remove dead nodes now. 404 DAG.RemoveDeadNodes(); 405} 406 407 408/// FindCallEndFromCallStart - Given a chained node that is part of a call 409/// sequence, find the CALLSEQ_END node that terminates the call sequence. 410static SDNode *FindCallEndFromCallStart(SDNode *Node) { 411 if (Node->getOpcode() == ISD::CALLSEQ_END) 412 return Node; 413 if (Node->use_empty()) 414 return 0; // No CallSeqEnd 415 416 // The chain is usually at the end. 417 SDValue TheChain(Node, Node->getNumValues()-1); 418 if (TheChain.getValueType() != MVT::Other) { 419 // Sometimes it's at the beginning. 420 TheChain = SDValue(Node, 0); 421 if (TheChain.getValueType() != MVT::Other) { 422 // Otherwise, hunt for it. 423 for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i) 424 if (Node->getValueType(i) == MVT::Other) { 425 TheChain = SDValue(Node, i); 426 break; 427 } 428 429 // Otherwise, we walked into a node without a chain. 430 if (TheChain.getValueType() != MVT::Other) 431 return 0; 432 } 433 } 434 435 for (SDNode::use_iterator UI = Node->use_begin(), 436 E = Node->use_end(); UI != E; ++UI) { 437 438 // Make sure to only follow users of our token chain. 439 SDNode *User = *UI; 440 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) 441 if (User->getOperand(i) == TheChain) 442 if (SDNode *Result = FindCallEndFromCallStart(User)) 443 return Result; 444 } 445 return 0; 446} 447 448/// FindCallStartFromCallEnd - Given a chained node that is part of a call 449/// sequence, find the CALLSEQ_START node that initiates the call sequence. 450static SDNode *FindCallStartFromCallEnd(SDNode *Node) { 451 assert(Node && "Didn't find callseq_start for a call??"); 452 if (Node->getOpcode() == ISD::CALLSEQ_START) return Node; 453 454 assert(Node->getOperand(0).getValueType() == MVT::Other && 455 "Node doesn't have a token chain argument!"); 456 return FindCallStartFromCallEnd(Node->getOperand(0).getNode()); 457} 458 459/// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to 460/// see if any uses can reach Dest. If no dest operands can get to dest, 461/// legalize them, legalize ourself, and return false, otherwise, return true. 462/// 463/// Keep track of the nodes we fine that actually do lead to Dest in 464/// NodesLeadingTo. This avoids retraversing them exponential number of times. 465/// 466bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest, 467 SmallPtrSet<SDNode*, 32> &NodesLeadingTo) { 468 if (N == Dest) return true; // N certainly leads to Dest :) 469 470 // If we've already processed this node and it does lead to Dest, there is no 471 // need to reprocess it. 472 if (NodesLeadingTo.count(N)) return true; 473 474 // If the first result of this node has been already legalized, then it cannot 475 // reach N. 476 switch (getTypeAction(N->getValueType(0))) { 477 case Legal: 478 if (LegalizedNodes.count(SDValue(N, 0))) return false; 479 break; 480 case Promote: 481 if (PromotedNodes.count(SDValue(N, 0))) return false; 482 break; 483 case Expand: 484 if (ExpandedNodes.count(SDValue(N, 0))) return false; 485 break; 486 } 487 488 // Okay, this node has not already been legalized. Check and legalize all 489 // operands. If none lead to Dest, then we can legalize this node. 490 bool OperandsLeadToDest = false; 491 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) 492 OperandsLeadToDest |= // If an operand leads to Dest, so do we. 493 LegalizeAllNodesNotLeadingTo(N->getOperand(i).getNode(), Dest, NodesLeadingTo); 494 495 if (OperandsLeadToDest) { 496 NodesLeadingTo.insert(N); 497 return true; 498 } 499 500 // Okay, this node looks safe, legalize it and return false. 501 HandleOp(SDValue(N, 0)); 502 return false; 503} 504 505/// HandleOp - Legalize, Promote, Widen, or Expand the specified operand as 506/// appropriate for its type. 507void SelectionDAGLegalize::HandleOp(SDValue Op) { 508 MVT VT = Op.getValueType(); 509 // If the type legalizer was run then we should never see any illegal result 510 // types here except for target constants (the type legalizer does not touch 511 // those) or for build vector used as a mask for a vector shuffle. 512 // FIXME: We can removed the BUILD_VECTOR case when we fix PR2957. 513 assert((TypesNeedLegalizing || getTypeAction(VT) == Legal || 514 IsLegalizingCallArgs || Op.getOpcode() == ISD::TargetConstant || 515 Op.getOpcode() == ISD::BUILD_VECTOR) && 516 "Illegal type introduced after type legalization?"); 517 switch (getTypeAction(VT)) { 518 default: assert(0 && "Bad type action!"); 519 case Legal: (void)LegalizeOp(Op); break; 520 case Promote: 521 if (!VT.isVector()) { 522 (void)PromoteOp(Op); 523 break; 524 } 525 else { 526 // See if we can widen otherwise use Expand to either scalarize or split 527 MVT WidenVT = TLI.getWidenVectorType(VT); 528 if (WidenVT != MVT::Other) { 529 (void) WidenVectorOp(Op, WidenVT); 530 break; 531 } 532 // else fall thru to expand since we can't widen the vector 533 } 534 case Expand: 535 if (!VT.isVector()) { 536 // If this is an illegal scalar, expand it into its two component 537 // pieces. 538 SDValue X, Y; 539 if (Op.getOpcode() == ISD::TargetConstant) 540 break; // Allow illegal target nodes. 541 ExpandOp(Op, X, Y); 542 } else if (VT.getVectorNumElements() == 1) { 543 // If this is an illegal single element vector, convert it to a 544 // scalar operation. 545 (void)ScalarizeVectorOp(Op); 546 } else { 547 // This is an illegal multiple element vector. 548 // Split it in half and legalize both parts. 549 SDValue X, Y; 550 SplitVectorOp(Op, X, Y); 551 } 552 break; 553 } 554} 555 556/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or 557/// a load from the constant pool. 558static SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP, 559 SelectionDAG &DAG, const TargetLowering &TLI) { 560 bool Extend = false; 561 DebugLoc dl = CFP->getDebugLoc(); 562 563 // If a FP immediate is precise when represented as a float and if the 564 // target can do an extending load from float to double, we put it into 565 // the constant pool as a float, even if it's is statically typed as a 566 // double. This shrinks FP constants and canonicalizes them for targets where 567 // an FP extending load is the same cost as a normal load (such as on the x87 568 // fp stack or PPC FP unit). 569 MVT VT = CFP->getValueType(0); 570 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue()); 571 if (!UseCP) { 572 if (VT!=MVT::f64 && VT!=MVT::f32) 573 assert(0 && "Invalid type expansion"); 574 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), 575 (VT == MVT::f64) ? MVT::i64 : MVT::i32); 576 } 577 578 MVT OrigVT = VT; 579 MVT SVT = VT; 580 while (SVT != MVT::f32) { 581 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT() - 1); 582 if (CFP->isValueValidForType(SVT, CFP->getValueAPF()) && 583 // Only do this if the target has a native EXTLOAD instruction from 584 // smaller type. 585 TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) && 586 TLI.ShouldShrinkFPConstant(OrigVT)) { 587 const Type *SType = SVT.getTypeForMVT(); 588 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType)); 589 VT = SVT; 590 Extend = true; 591 } 592 } 593 594 SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy()); 595 unsigned Alignment = 1 << cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 596 if (Extend) 597 return DAG.getExtLoad(ISD::EXTLOAD, dl, 598 OrigVT, DAG.getEntryNode(), 599 CPIdx, PseudoSourceValue::getConstantPool(), 600 0, VT, false, Alignment); 601 return DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx, 602 PseudoSourceValue::getConstantPool(), 0, false, Alignment); 603} 604 605 606/// ExpandFCOPYSIGNToBitwiseOps - Expands fcopysign to a series of bitwise 607/// operations. 608static 609SDValue ExpandFCOPYSIGNToBitwiseOps(SDNode *Node, MVT NVT, 610 SelectionDAG &DAG, 611 const TargetLowering &TLI) { 612 DebugLoc dl = Node->getDebugLoc(); 613 MVT VT = Node->getValueType(0); 614 MVT SrcVT = Node->getOperand(1).getValueType(); 615 assert((SrcVT == MVT::f32 || SrcVT == MVT::f64) && 616 "fcopysign expansion only supported for f32 and f64"); 617 MVT SrcNVT = (SrcVT == MVT::f64) ? MVT::i64 : MVT::i32; 618 619 // First get the sign bit of second operand. 620 SDValue Mask1 = (SrcVT == MVT::f64) 621 ? DAG.getConstantFP(BitsToDouble(1ULL << 63), SrcVT) 622 : DAG.getConstantFP(BitsToFloat(1U << 31), SrcVT); 623 Mask1 = DAG.getNode(ISD::BIT_CONVERT, dl, SrcNVT, Mask1); 624 SDValue SignBit= DAG.getNode(ISD::BIT_CONVERT, dl, SrcNVT, 625 Node->getOperand(1)); 626 SignBit = DAG.getNode(ISD::AND, dl, SrcNVT, SignBit, Mask1); 627 // Shift right or sign-extend it if the two operands have different types. 628 int SizeDiff = SrcNVT.getSizeInBits() - NVT.getSizeInBits(); 629 if (SizeDiff > 0) { 630 SignBit = DAG.getNode(ISD::SRL, dl, SrcNVT, SignBit, 631 DAG.getConstant(SizeDiff, TLI.getShiftAmountTy())); 632 SignBit = DAG.getNode(ISD::TRUNCATE, dl, NVT, SignBit); 633 } else if (SizeDiff < 0) { 634 SignBit = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, SignBit); 635 SignBit = DAG.getNode(ISD::SHL, dl, NVT, SignBit, 636 DAG.getConstant(-SizeDiff, TLI.getShiftAmountTy())); 637 } 638 639 // Clear the sign bit of first operand. 640 SDValue Mask2 = (VT == MVT::f64) 641 ? DAG.getConstantFP(BitsToDouble(~(1ULL << 63)), VT) 642 : DAG.getConstantFP(BitsToFloat(~(1U << 31)), VT); 643 Mask2 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Mask2); 644 SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0)); 645 Result = DAG.getNode(ISD::AND, dl, NVT, Result, Mask2); 646 647 // Or the value with the sign bit. 648 Result = DAG.getNode(ISD::OR, dl, NVT, Result, SignBit); 649 return Result; 650} 651 652/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores. 653static 654SDValue ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG, 655 const TargetLowering &TLI) { 656 SDValue Chain = ST->getChain(); 657 SDValue Ptr = ST->getBasePtr(); 658 SDValue Val = ST->getValue(); 659 MVT VT = Val.getValueType(); 660 int Alignment = ST->getAlignment(); 661 int SVOffset = ST->getSrcValueOffset(); 662 DebugLoc dl = ST->getDebugLoc(); 663 if (ST->getMemoryVT().isFloatingPoint() || 664 ST->getMemoryVT().isVector()) { 665 MVT intVT = MVT::getIntegerVT(VT.getSizeInBits()); 666 if (TLI.isTypeLegal(intVT)) { 667 // Expand to a bitconvert of the value to the integer type of the 668 // same size, then a (misaligned) int store. 669 // FIXME: Does not handle truncating floating point stores! 670 SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, intVT, Val); 671 return DAG.getStore(Chain, dl, Result, Ptr, ST->getSrcValue(), 672 SVOffset, ST->isVolatile(), Alignment); 673 } else { 674 // Do a (aligned) store to a stack slot, then copy from the stack slot 675 // to the final destination using (unaligned) integer loads and stores. 676 MVT StoredVT = ST->getMemoryVT(); 677 MVT RegVT = 678 TLI.getRegisterType(MVT::getIntegerVT(StoredVT.getSizeInBits())); 679 unsigned StoredBytes = StoredVT.getSizeInBits() / 8; 680 unsigned RegBytes = RegVT.getSizeInBits() / 8; 681 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 682 683 // Make sure the stack slot is also aligned for the register type. 684 SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT); 685 686 // Perform the original store, only redirected to the stack slot. 687 SDValue Store = DAG.getTruncStore(Chain, dl, 688 Val, StackPtr, NULL, 0,StoredVT); 689 SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy()); 690 SmallVector<SDValue, 8> Stores; 691 unsigned Offset = 0; 692 693 // Do all but one copies using the full register width. 694 for (unsigned i = 1; i < NumRegs; i++) { 695 // Load one integer register's worth from the stack slot. 696 SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr, NULL, 0); 697 // Store it to the final location. Remember the store. 698 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 699 ST->getSrcValue(), SVOffset + Offset, 700 ST->isVolatile(), 701 MinAlign(ST->getAlignment(), Offset))); 702 // Increment the pointers. 703 Offset += RegBytes; 704 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr, 705 Increment); 706 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 707 } 708 709 // The last store may be partial. Do a truncating store. On big-endian 710 // machines this requires an extending load from the stack slot to ensure 711 // that the bits are in the right place. 712 MVT MemVT = MVT::getIntegerVT(8 * (StoredBytes - Offset)); 713 714 // Load from the stack slot. 715 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 716 NULL, 0, MemVT); 717 718 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 719 ST->getSrcValue(), SVOffset + Offset, 720 MemVT, ST->isVolatile(), 721 MinAlign(ST->getAlignment(), Offset))); 722 // The order of the stores doesn't matter - say it with a TokenFactor. 723 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0], 724 Stores.size()); 725 } 726 } 727 assert(ST->getMemoryVT().isInteger() && 728 !ST->getMemoryVT().isVector() && 729 "Unaligned store of unknown type."); 730 // Get the half-size VT 731 MVT NewStoredVT = 732 (MVT::SimpleValueType)(ST->getMemoryVT().getSimpleVT() - 1); 733 int NumBits = NewStoredVT.getSizeInBits(); 734 int IncrementSize = NumBits / 8; 735 736 // Divide the stored value in two parts. 737 SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy()); 738 SDValue Lo = Val; 739 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 740 741 // Store the two parts 742 SDValue Store1, Store2; 743 Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr, 744 ST->getSrcValue(), SVOffset, NewStoredVT, 745 ST->isVolatile(), Alignment); 746 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 747 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 748 Alignment = MinAlign(Alignment, IncrementSize); 749 Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr, 750 ST->getSrcValue(), SVOffset + IncrementSize, 751 NewStoredVT, ST->isVolatile(), Alignment); 752 753 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 754} 755 756/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads. 757static 758SDValue ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG, 759 const TargetLowering &TLI) { 760 int SVOffset = LD->getSrcValueOffset(); 761 SDValue Chain = LD->getChain(); 762 SDValue Ptr = LD->getBasePtr(); 763 MVT VT = LD->getValueType(0); 764 MVT LoadedVT = LD->getMemoryVT(); 765 DebugLoc dl = LD->getDebugLoc(); 766 if (VT.isFloatingPoint() || VT.isVector()) { 767 MVT intVT = MVT::getIntegerVT(LoadedVT.getSizeInBits()); 768 if (TLI.isTypeLegal(intVT)) { 769 // Expand to a (misaligned) integer load of the same size, 770 // then bitconvert to floating point or vector. 771 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getSrcValue(), 772 SVOffset, LD->isVolatile(), 773 LD->getAlignment()); 774 SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, LoadedVT, newLoad); 775 if (VT.isFloatingPoint() && LoadedVT != VT) 776 Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result); 777 778 SDValue Ops[] = { Result, Chain }; 779 return DAG.getMergeValues(Ops, 2, dl); 780 } else { 781 // Copy the value to a (aligned) stack slot using (unaligned) integer 782 // loads and stores, then do a (aligned) load from the stack slot. 783 MVT RegVT = TLI.getRegisterType(intVT); 784 unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8; 785 unsigned RegBytes = RegVT.getSizeInBits() / 8; 786 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 787 788 // Make sure the stack slot is also aligned for the register type. 789 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 790 791 SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy()); 792 SmallVector<SDValue, 8> Stores; 793 SDValue StackPtr = StackBase; 794 unsigned Offset = 0; 795 796 // Do all but one copies using the full register width. 797 for (unsigned i = 1; i < NumRegs; i++) { 798 // Load one integer register's worth from the original location. 799 SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr, LD->getSrcValue(), 800 SVOffset + Offset, LD->isVolatile(), 801 MinAlign(LD->getAlignment(), Offset)); 802 // Follow the load with a store to the stack slot. Remember the store. 803 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr, 804 NULL, 0)); 805 // Increment the pointers. 806 Offset += RegBytes; 807 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 808 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr, 809 Increment); 810 } 811 812 // The last copy may be partial. Do an extending load. 813 MVT MemVT = MVT::getIntegerVT(8 * (LoadedBytes - Offset)); 814 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 815 LD->getSrcValue(), SVOffset + Offset, 816 MemVT, LD->isVolatile(), 817 MinAlign(LD->getAlignment(), Offset)); 818 // Follow the load with a store to the stack slot. Remember the store. 819 // On big-endian machines this requires a truncating store to ensure 820 // that the bits end up in the right place. 821 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr, 822 NULL, 0, MemVT)); 823 824 // The order of the stores doesn't matter - say it with a TokenFactor. 825 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0], 826 Stores.size()); 827 828 // Finally, perform the original load only redirected to the stack slot. 829 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 830 NULL, 0, LoadedVT); 831 832 // Callers expect a MERGE_VALUES node. 833 SDValue Ops[] = { Load, TF }; 834 return DAG.getMergeValues(Ops, 2, dl); 835 } 836 } 837 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 838 "Unaligned load of unsupported type."); 839 840 // Compute the new VT that is half the size of the old one. This is an 841 // integer MVT. 842 unsigned NumBits = LoadedVT.getSizeInBits(); 843 MVT NewLoadedVT; 844 NewLoadedVT = MVT::getIntegerVT(NumBits/2); 845 NumBits >>= 1; 846 847 unsigned Alignment = LD->getAlignment(); 848 unsigned IncrementSize = NumBits / 8; 849 ISD::LoadExtType HiExtType = LD->getExtensionType(); 850 851 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 852 if (HiExtType == ISD::NON_EXTLOAD) 853 HiExtType = ISD::ZEXTLOAD; 854 855 // Load the value in two parts 856 SDValue Lo, Hi; 857 if (TLI.isLittleEndian()) { 858 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(), 859 SVOffset, NewLoadedVT, LD->isVolatile(), Alignment); 860 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 861 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 862 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(), 863 SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(), 864 MinAlign(Alignment, IncrementSize)); 865 } else { 866 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(), 867 SVOffset, NewLoadedVT,LD->isVolatile(), Alignment); 868 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 869 DAG.getConstant(IncrementSize, TLI.getPointerTy())); 870 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(), 871 SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(), 872 MinAlign(Alignment, IncrementSize)); 873 } 874 875 // aggregate the two parts 876 SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy()); 877 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 878 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 879 880 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 881 Hi.getValue(1)); 882 883 SDValue Ops[] = { Result, TF }; 884 return DAG.getMergeValues(Ops, 2, dl); 885} 886 887/// UnrollVectorOp - We know that the given vector has a legal type, however 888/// the operation it performs is not legal and is an operation that we have 889/// no way of lowering. "Unroll" the vector, splitting out the scalars and 890/// operating on each element individually. 891SDValue SelectionDAGLegalize::UnrollVectorOp(SDValue Op) { 892 MVT VT = Op.getValueType(); 893 assert(isTypeLegal(VT) && 894 "Caller should expand or promote operands that are not legal!"); 895 assert(Op.getNode()->getNumValues() == 1 && 896 "Can't unroll a vector with multiple results!"); 897 unsigned NE = VT.getVectorNumElements(); 898 MVT EltVT = VT.getVectorElementType(); 899 DebugLoc dl = Op.getDebugLoc(); 900 901 SmallVector<SDValue, 8> Scalars; 902 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 903 for (unsigned i = 0; i != NE; ++i) { 904 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 905 SDValue Operand = Op.getOperand(j); 906 MVT OperandVT = Operand.getValueType(); 907 if (OperandVT.isVector()) { 908 // A vector operand; extract a single element. 909 MVT OperandEltVT = OperandVT.getVectorElementType(); 910 Operands[j] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 911 OperandEltVT, 912 Operand, 913 DAG.getConstant(i, MVT::i32)); 914 } else { 915 // A scalar operand; just use it as is. 916 Operands[j] = Operand; 917 } 918 } 919 920 switch (Op.getOpcode()) { 921 default: 922 Scalars.push_back(DAG.getNode(Op.getOpcode(), dl, EltVT, 923 &Operands[0], Operands.size())); 924 break; 925 case ISD::SHL: 926 case ISD::SRA: 927 case ISD::SRL: 928 case ISD::ROTL: 929 case ISD::ROTR: 930 Scalars.push_back(DAG.getNode(Op.getOpcode(), dl, EltVT, Operands[0], 931 DAG.getShiftAmountOperand(Operands[1]))); 932 break; 933 } 934 } 935 936 return DAG.getBUILD_VECTOR(VT, dl, &Scalars[0], Scalars.size()); 937} 938 939/// GetFPLibCall - Return the right libcall for the given floating point type. 940static RTLIB::Libcall GetFPLibCall(MVT VT, 941 RTLIB::Libcall Call_F32, 942 RTLIB::Libcall Call_F64, 943 RTLIB::Libcall Call_F80, 944 RTLIB::Libcall Call_PPCF128) { 945 return 946 VT == MVT::f32 ? Call_F32 : 947 VT == MVT::f64 ? Call_F64 : 948 VT == MVT::f80 ? Call_F80 : 949 VT == MVT::ppcf128 ? Call_PPCF128 : 950 RTLIB::UNKNOWN_LIBCALL; 951} 952 953/// PerformInsertVectorEltInMemory - Some target cannot handle a variable 954/// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 955/// is necessary to spill the vector being inserted into to memory, perform 956/// the insert there, and then read the result back. 957SDValue SelectionDAGLegalize:: 958PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx, 959 DebugLoc dl) { 960 SDValue Tmp1 = Vec; 961 SDValue Tmp2 = Val; 962 SDValue Tmp3 = Idx; 963 964 // If the target doesn't support this, we have to spill the input vector 965 // to a temporary stack slot, update the element, then reload it. This is 966 // badness. We could also load the value into a vector register (either 967 // with a "move to register" or "extload into register" instruction, then 968 // permute it into place, if the idx is a constant and if the idx is 969 // supported by the target. 970 MVT VT = Tmp1.getValueType(); 971 MVT EltVT = VT.getVectorElementType(); 972 MVT IdxVT = Tmp3.getValueType(); 973 MVT PtrVT = TLI.getPointerTy(); 974 SDValue StackPtr = DAG.CreateStackTemporary(VT); 975 976 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 977 978 // Store the vector. 979 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr, 980 PseudoSourceValue::getFixedStack(SPFI), 0); 981 982 // Truncate or zero extend offset to target pointer type. 983 unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND; 984 Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3); 985 // Add the offset to the index. 986 unsigned EltSize = EltVT.getSizeInBits()/8; 987 Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT)); 988 SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr); 989 // Store the scalar value. 990 Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, 991 PseudoSourceValue::getFixedStack(SPFI), 0, EltVT); 992 // Load the updated vector. 993 return DAG.getLoad(VT, dl, Ch, StackPtr, 994 PseudoSourceValue::getFixedStack(SPFI), 0); 995} 996 997 998/// LegalizeOp - We know that the specified value has a legal type, and 999/// that its operands are legal. Now ensure that the operation itself 1000/// is legal, recursively ensuring that the operands' operations remain 1001/// legal. 1002SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) { 1003 if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes. 1004 return Op; 1005 1006 assert(isTypeLegal(Op.getValueType()) && 1007 "Caller should expand or promote operands that are not legal!"); 1008 SDNode *Node = Op.getNode(); 1009 DebugLoc dl = Node->getDebugLoc(); 1010 1011 // If this operation defines any values that cannot be represented in a 1012 // register on this target, make sure to expand or promote them. 1013 if (Node->getNumValues() > 1) { 1014 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 1015 if (getTypeAction(Node->getValueType(i)) != Legal) { 1016 HandleOp(Op.getValue(i)); 1017 assert(LegalizedNodes.count(Op) && 1018 "Handling didn't add legal operands!"); 1019 return LegalizedNodes[Op]; 1020 } 1021 } 1022 1023 // Note that LegalizeOp may be reentered even from single-use nodes, which 1024 // means that we always must cache transformed nodes. 1025 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); 1026 if (I != LegalizedNodes.end()) return I->second; 1027 1028 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 1029 SDValue Result = Op; 1030 bool isCustom = false; 1031 1032 switch (Node->getOpcode()) { 1033 case ISD::FrameIndex: 1034 case ISD::EntryToken: 1035 case ISD::Register: 1036 case ISD::BasicBlock: 1037 case ISD::TargetFrameIndex: 1038 case ISD::TargetJumpTable: 1039 case ISD::TargetConstant: 1040 case ISD::TargetConstantFP: 1041 case ISD::TargetConstantPool: 1042 case ISD::TargetGlobalAddress: 1043 case ISD::TargetGlobalTLSAddress: 1044 case ISD::TargetExternalSymbol: 1045 case ISD::VALUETYPE: 1046 case ISD::SRCVALUE: 1047 case ISD::MEMOPERAND: 1048 case ISD::CONDCODE: 1049 case ISD::ARG_FLAGS: 1050 // Primitives must all be legal. 1051 assert(TLI.isOperationLegal(Node->getOpcode(), Node->getValueType(0)) && 1052 "This must be legal!"); 1053 break; 1054 default: 1055 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { 1056 // If this is a target node, legalize it by legalizing the operands then 1057 // passing it through. 1058 SmallVector<SDValue, 8> Ops; 1059 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 1060 Ops.push_back(LegalizeOp(Node->getOperand(i))); 1061 1062 Result = DAG.UpdateNodeOperands(Result.getValue(0), &Ops[0], Ops.size()); 1063 1064 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 1065 AddLegalizedOperand(Op.getValue(i), Result.getValue(i)); 1066 return Result.getValue(Op.getResNo()); 1067 } 1068 // Otherwise this is an unhandled builtin node. splat. 1069#ifndef NDEBUG 1070 cerr << "NODE: "; Node->dump(&DAG); cerr << "\n"; 1071#endif 1072 assert(0 && "Do not know how to legalize this operator!"); 1073 abort(); 1074 case ISD::GLOBAL_OFFSET_TABLE: 1075 case ISD::GlobalAddress: 1076 case ISD::GlobalTLSAddress: 1077 case ISD::ExternalSymbol: 1078 case ISD::ConstantPool: 1079 case ISD::JumpTable: // Nothing to do. 1080 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 1081 default: assert(0 && "This action is not supported yet!"); 1082 case TargetLowering::Custom: 1083 Tmp1 = TLI.LowerOperation(Op, DAG); 1084 if (Tmp1.getNode()) Result = Tmp1; 1085 // FALLTHROUGH if the target doesn't want to lower this op after all. 1086 case TargetLowering::Legal: 1087 break; 1088 } 1089 break; 1090 case ISD::FRAMEADDR: 1091 case ISD::RETURNADDR: 1092 // The only option for these nodes is to custom lower them. If the target 1093 // does not custom lower them, then return zero. 1094 Tmp1 = TLI.LowerOperation(Op, DAG); 1095 if (Tmp1.getNode()) 1096 Result = Tmp1; 1097 else 1098 Result = DAG.getConstant(0, TLI.getPointerTy()); 1099 break; 1100 case ISD::FRAME_TO_ARGS_OFFSET: { 1101 MVT VT = Node->getValueType(0); 1102 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 1103 default: assert(0 && "This action is not supported yet!"); 1104 case TargetLowering::Custom: 1105 Result = TLI.LowerOperation(Op, DAG); 1106 if (Result.getNode()) break; 1107 // Fall Thru 1108 case TargetLowering::Legal: 1109 Result = DAG.getConstant(0, VT); 1110 break; 1111 } 1112 } 1113 break; 1114 case ISD::EXCEPTIONADDR: { 1115 Tmp1 = LegalizeOp(Node->getOperand(0)); 1116 MVT VT = Node->getValueType(0); 1117 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 1118 default: assert(0 && "This action is not supported yet!"); 1119 case TargetLowering::Expand: { 1120 unsigned Reg = TLI.getExceptionAddressRegister(); 1121 Result = DAG.getCopyFromReg(Tmp1, dl, Reg, VT); 1122 } 1123 break; 1124 case TargetLowering::Custom: 1125 Result = TLI.LowerOperation(Op, DAG); 1126 if (Result.getNode()) break; 1127 // Fall Thru 1128 case TargetLowering::Legal: { 1129 SDValue Ops[] = { DAG.getConstant(0, VT), Tmp1 }; 1130 Result = DAG.getMergeValues(Ops, 2, dl); 1131 break; 1132 } 1133 } 1134 } 1135 if (Result.getNode()->getNumValues() == 1) break; 1136 1137 assert(Result.getNode()->getNumValues() == 2 && 1138 "Cannot return more than two values!"); 1139 1140 // Since we produced two values, make sure to remember that we 1141 // legalized both of them. 1142 Tmp1 = LegalizeOp(Result); 1143 Tmp2 = LegalizeOp(Result.getValue(1)); 1144 AddLegalizedOperand(Op.getValue(0), Tmp1); 1145 AddLegalizedOperand(Op.getValue(1), Tmp2); 1146 return Op.getResNo() ? Tmp2 : Tmp1; 1147 case ISD::EHSELECTION: { 1148 Tmp1 = LegalizeOp(Node->getOperand(0)); 1149 Tmp2 = LegalizeOp(Node->getOperand(1)); 1150 MVT VT = Node->getValueType(0); 1151 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 1152 default: assert(0 && "This action is not supported yet!"); 1153 case TargetLowering::Expand: { 1154 unsigned Reg = TLI.getExceptionSelectorRegister(); 1155 Result = DAG.getCopyFromReg(Tmp2, dl, Reg, VT); 1156 } 1157 break; 1158 case TargetLowering::Custom: 1159 Result = TLI.LowerOperation(Op, DAG); 1160 if (Result.getNode()) break; 1161 // Fall Thru 1162 case TargetLowering::Legal: { 1163 SDValue Ops[] = { DAG.getConstant(0, VT), Tmp2 }; 1164 Result = DAG.getMergeValues(Ops, 2, dl); 1165 break; 1166 } 1167 } 1168 } 1169 if (Result.getNode()->getNumValues() == 1) break; 1170 1171 assert(Result.getNode()->getNumValues() == 2 && 1172 "Cannot return more than two values!"); 1173 1174 // Since we produced two values, make sure to remember that we 1175 // legalized both of them. 1176 Tmp1 = LegalizeOp(Result); 1177 Tmp2 = LegalizeOp(Result.getValue(1)); 1178 AddLegalizedOperand(Op.getValue(0), Tmp1); 1179 AddLegalizedOperand(Op.getValue(1), Tmp2); 1180 return Op.getResNo() ? Tmp2 : Tmp1; 1181 case ISD::EH_RETURN: { 1182 MVT VT = Node->getValueType(0); 1183 // The only "good" option for this node is to custom lower it. 1184 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 1185 default: assert(0 && "This action is not supported at all!"); 1186 case TargetLowering::Custom: 1187 Result = TLI.LowerOperation(Op, DAG); 1188 if (Result.getNode()) break; 1189 // Fall Thru 1190 case TargetLowering::Legal: 1191 // Target does not know, how to lower this, lower to noop 1192 Result = LegalizeOp(Node->getOperand(0)); 1193 break; 1194 } 1195 } 1196 break; 1197 case ISD::AssertSext: 1198 case ISD::AssertZext: 1199 Tmp1 = LegalizeOp(Node->getOperand(0)); 1200 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 1201 break; 1202 case ISD::MERGE_VALUES: 1203 // Legalize eliminates MERGE_VALUES nodes. 1204 Result = Node->getOperand(Op.getResNo()); 1205 break; 1206 case ISD::CopyFromReg: 1207 Tmp1 = LegalizeOp(Node->getOperand(0)); 1208 Result = Op.getValue(0); 1209 if (Node->getNumValues() == 2) { 1210 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 1211 } else { 1212 assert(Node->getNumValues() == 3 && "Invalid copyfromreg!"); 1213 if (Node->getNumOperands() == 3) { 1214 Tmp2 = LegalizeOp(Node->getOperand(2)); 1215 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1),Tmp2); 1216 } else { 1217 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 1218 } 1219 AddLegalizedOperand(Op.getValue(2), Result.getValue(2)); 1220 } 1221 // Since CopyFromReg produces two values, make sure to remember that we 1222 // legalized both of them. 1223 AddLegalizedOperand(Op.getValue(0), Result); 1224 AddLegalizedOperand(Op.getValue(1), Result.getValue(1)); 1225 return Result.getValue(Op.getResNo()); 1226 case ISD::UNDEF: { 1227 MVT VT = Op.getValueType(); 1228 switch (TLI.getOperationAction(ISD::UNDEF, VT)) { 1229 default: assert(0 && "This action is not supported yet!"); 1230 case TargetLowering::Expand: 1231 if (VT.isInteger()) 1232 Result = DAG.getConstant(0, VT); 1233 else if (VT.isFloatingPoint()) 1234 Result = DAG.getConstantFP(APFloat(APInt(VT.getSizeInBits(), 0)), 1235 VT); 1236 else 1237 assert(0 && "Unknown value type!"); 1238 break; 1239 case TargetLowering::Legal: 1240 break; 1241 } 1242 break; 1243 } 1244 1245 case ISD::INTRINSIC_W_CHAIN: 1246 case ISD::INTRINSIC_WO_CHAIN: 1247 case ISD::INTRINSIC_VOID: { 1248 SmallVector<SDValue, 8> Ops; 1249 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 1250 Ops.push_back(LegalizeOp(Node->getOperand(i))); 1251 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1252 1253 // Allow the target to custom lower its intrinsics if it wants to. 1254 if (TLI.getOperationAction(Node->getOpcode(), MVT::Other) == 1255 TargetLowering::Custom) { 1256 Tmp3 = TLI.LowerOperation(Result, DAG); 1257 if (Tmp3.getNode()) Result = Tmp3; 1258 } 1259 1260 if (Result.getNode()->getNumValues() == 1) break; 1261 1262 // Must have return value and chain result. 1263 assert(Result.getNode()->getNumValues() == 2 && 1264 "Cannot return more than two values!"); 1265 1266 // Since loads produce two values, make sure to remember that we 1267 // legalized both of them. 1268 AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0)); 1269 AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1)); 1270 return Result.getValue(Op.getResNo()); 1271 } 1272 1273 case ISD::DBG_STOPPOINT: 1274 assert(Node->getNumOperands() == 1 && "Invalid DBG_STOPPOINT node!"); 1275 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the input chain. 1276 1277 switch (TLI.getOperationAction(ISD::DBG_STOPPOINT, MVT::Other)) { 1278 case TargetLowering::Promote: 1279 default: assert(0 && "This action is not supported yet!"); 1280 case TargetLowering::Expand: { 1281 DwarfWriter *DW = DAG.getDwarfWriter(); 1282 bool useDEBUG_LOC = TLI.isOperationLegalOrCustom(ISD::DEBUG_LOC, 1283 MVT::Other); 1284 bool useLABEL = TLI.isOperationLegalOrCustom(ISD::DBG_LABEL, MVT::Other); 1285 1286 const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(Node); 1287 GlobalVariable *CU_GV = cast<GlobalVariable>(DSP->getCompileUnit()); 1288 if (DW && (useDEBUG_LOC || useLABEL) && !CU_GV->isDeclaration()) { 1289 DICompileUnit CU(cast<GlobalVariable>(DSP->getCompileUnit())); 1290 unsigned SrcFile = DW->getOrCreateSourceID(CU.getDirectory(), 1291 CU.getFilename()); 1292 1293 unsigned Line = DSP->getLine(); 1294 unsigned Col = DSP->getColumn(); 1295 1296 if (Fast) { 1297 // A bit self-referential to have DebugLoc on Debug_Loc nodes, but it 1298 // won't hurt anything. 1299 if (useDEBUG_LOC) { 1300 SDValue Ops[] = { Tmp1, DAG.getConstant(Line, MVT::i32), 1301 DAG.getConstant(Col, MVT::i32), 1302 DAG.getConstant(SrcFile, MVT::i32) }; 1303 Result = DAG.getNode(ISD::DEBUG_LOC, dl, MVT::Other, Ops, 4); 1304 } else { 1305 unsigned ID = DW->RecordSourceLine(Line, Col, SrcFile); 1306 Result = DAG.getLabel(ISD::DBG_LABEL, dl, Tmp1, ID); 1307 } 1308 } else { 1309 Result = Tmp1; // chain 1310 } 1311 } else { 1312 Result = Tmp1; // chain 1313 } 1314 break; 1315 } 1316 case TargetLowering::Legal: { 1317 LegalizeAction Action = getTypeAction(Node->getOperand(1).getValueType()); 1318 if (Action == Legal && Tmp1 == Node->getOperand(0)) 1319 break; 1320 1321 SmallVector<SDValue, 8> Ops; 1322 Ops.push_back(Tmp1); 1323 if (Action == Legal) { 1324 Ops.push_back(Node->getOperand(1)); // line # must be legal. 1325 Ops.push_back(Node->getOperand(2)); // col # must be legal. 1326 } else { 1327 // Otherwise promote them. 1328 Ops.push_back(PromoteOp(Node->getOperand(1))); 1329 Ops.push_back(PromoteOp(Node->getOperand(2))); 1330 } 1331 Ops.push_back(Node->getOperand(3)); // filename must be legal. 1332 Ops.push_back(Node->getOperand(4)); // working dir # must be legal. 1333 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1334 break; 1335 } 1336 } 1337 break; 1338 1339 case ISD::DECLARE: 1340 assert(Node->getNumOperands() == 3 && "Invalid DECLARE node!"); 1341 switch (TLI.getOperationAction(ISD::DECLARE, MVT::Other)) { 1342 default: assert(0 && "This action is not supported yet!"); 1343 case TargetLowering::Legal: 1344 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1345 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the address. 1346 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the variable. 1347 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1348 break; 1349 case TargetLowering::Expand: 1350 Result = LegalizeOp(Node->getOperand(0)); 1351 break; 1352 } 1353 break; 1354 1355 case ISD::DEBUG_LOC: 1356 assert(Node->getNumOperands() == 4 && "Invalid DEBUG_LOC node!"); 1357 switch (TLI.getOperationAction(ISD::DEBUG_LOC, MVT::Other)) { 1358 default: assert(0 && "This action is not supported yet!"); 1359 case TargetLowering::Legal: { 1360 LegalizeAction Action = getTypeAction(Node->getOperand(1).getValueType()); 1361 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1362 if (Action == Legal && Tmp1 == Node->getOperand(0)) 1363 break; 1364 if (Action == Legal) { 1365 Tmp2 = Node->getOperand(1); 1366 Tmp3 = Node->getOperand(2); 1367 Tmp4 = Node->getOperand(3); 1368 } else { 1369 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the line #. 1370 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the col #. 1371 Tmp4 = LegalizeOp(Node->getOperand(3)); // Legalize the source file id. 1372 } 1373 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, Tmp4); 1374 break; 1375 } 1376 } 1377 break; 1378 1379 case ISD::DBG_LABEL: 1380 case ISD::EH_LABEL: 1381 assert(Node->getNumOperands() == 1 && "Invalid LABEL node!"); 1382 switch (TLI.getOperationAction(Node->getOpcode(), MVT::Other)) { 1383 default: assert(0 && "This action is not supported yet!"); 1384 case TargetLowering::Legal: 1385 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1386 Result = DAG.UpdateNodeOperands(Result, Tmp1); 1387 break; 1388 case TargetLowering::Expand: 1389 Result = LegalizeOp(Node->getOperand(0)); 1390 break; 1391 } 1392 break; 1393 1394 case ISD::PREFETCH: 1395 assert(Node->getNumOperands() == 4 && "Invalid Prefetch node!"); 1396 switch (TLI.getOperationAction(ISD::PREFETCH, MVT::Other)) { 1397 default: assert(0 && "This action is not supported yet!"); 1398 case TargetLowering::Legal: 1399 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1400 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the address. 1401 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the rw specifier. 1402 Tmp4 = LegalizeOp(Node->getOperand(3)); // Legalize locality specifier. 1403 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, Tmp4); 1404 break; 1405 case TargetLowering::Expand: 1406 // It's a noop. 1407 Result = LegalizeOp(Node->getOperand(0)); 1408 break; 1409 } 1410 break; 1411 1412 case ISD::MEMBARRIER: { 1413 assert(Node->getNumOperands() == 6 && "Invalid MemBarrier node!"); 1414 switch (TLI.getOperationAction(ISD::MEMBARRIER, MVT::Other)) { 1415 default: assert(0 && "This action is not supported yet!"); 1416 case TargetLowering::Legal: { 1417 SDValue Ops[6]; 1418 Ops[0] = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1419 for (int x = 1; x < 6; ++x) { 1420 Ops[x] = Node->getOperand(x); 1421 if (!isTypeLegal(Ops[x].getValueType())) 1422 Ops[x] = PromoteOp(Ops[x]); 1423 } 1424 Result = DAG.UpdateNodeOperands(Result, &Ops[0], 6); 1425 break; 1426 } 1427 case TargetLowering::Expand: 1428 //There is no libgcc call for this op 1429 Result = Node->getOperand(0); // Noop 1430 break; 1431 } 1432 break; 1433 } 1434 1435 case ISD::ATOMIC_CMP_SWAP: { 1436 unsigned int num_operands = 4; 1437 assert(Node->getNumOperands() == num_operands && "Invalid Atomic node!"); 1438 SDValue Ops[4]; 1439 for (unsigned int x = 0; x < num_operands; ++x) 1440 Ops[x] = LegalizeOp(Node->getOperand(x)); 1441 Result = DAG.UpdateNodeOperands(Result, &Ops[0], num_operands); 1442 1443 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 1444 default: assert(0 && "This action is not supported yet!"); 1445 case TargetLowering::Custom: 1446 Result = TLI.LowerOperation(Result, DAG); 1447 break; 1448 case TargetLowering::Legal: 1449 break; 1450 } 1451 AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0)); 1452 AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1)); 1453 return Result.getValue(Op.getResNo()); 1454 } 1455 case ISD::ATOMIC_LOAD_ADD: 1456 case ISD::ATOMIC_LOAD_SUB: 1457 case ISD::ATOMIC_LOAD_AND: 1458 case ISD::ATOMIC_LOAD_OR: 1459 case ISD::ATOMIC_LOAD_XOR: 1460 case ISD::ATOMIC_LOAD_NAND: 1461 case ISD::ATOMIC_LOAD_MIN: 1462 case ISD::ATOMIC_LOAD_MAX: 1463 case ISD::ATOMIC_LOAD_UMIN: 1464 case ISD::ATOMIC_LOAD_UMAX: 1465 case ISD::ATOMIC_SWAP: { 1466 unsigned int num_operands = 3; 1467 assert(Node->getNumOperands() == num_operands && "Invalid Atomic node!"); 1468 SDValue Ops[3]; 1469 for (unsigned int x = 0; x < num_operands; ++x) 1470 Ops[x] = LegalizeOp(Node->getOperand(x)); 1471 Result = DAG.UpdateNodeOperands(Result, &Ops[0], num_operands); 1472 1473 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 1474 default: assert(0 && "This action is not supported yet!"); 1475 case TargetLowering::Custom: 1476 Result = TLI.LowerOperation(Result, DAG); 1477 break; 1478 case TargetLowering::Legal: 1479 break; 1480 } 1481 AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0)); 1482 AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1)); 1483 return Result.getValue(Op.getResNo()); 1484 } 1485 case ISD::Constant: { 1486 ConstantSDNode *CN = cast<ConstantSDNode>(Node); 1487 unsigned opAction = 1488 TLI.getOperationAction(ISD::Constant, CN->getValueType(0)); 1489 1490 // We know we don't need to expand constants here, constants only have one 1491 // value and we check that it is fine above. 1492 1493 if (opAction == TargetLowering::Custom) { 1494 Tmp1 = TLI.LowerOperation(Result, DAG); 1495 if (Tmp1.getNode()) 1496 Result = Tmp1; 1497 } 1498 break; 1499 } 1500 case ISD::ConstantFP: { 1501 // Spill FP immediates to the constant pool if the target cannot directly 1502 // codegen them. Targets often have some immediate values that can be 1503 // efficiently generated into an FP register without a load. We explicitly 1504 // leave these constants as ConstantFP nodes for the target to deal with. 1505 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 1506 1507 switch (TLI.getOperationAction(ISD::ConstantFP, CFP->getValueType(0))) { 1508 default: assert(0 && "This action is not supported yet!"); 1509 case TargetLowering::Legal: 1510 break; 1511 case TargetLowering::Custom: 1512 Tmp3 = TLI.LowerOperation(Result, DAG); 1513 if (Tmp3.getNode()) { 1514 Result = Tmp3; 1515 break; 1516 } 1517 // FALLTHROUGH 1518 case TargetLowering::Expand: { 1519 // Check to see if this FP immediate is already legal. 1520 bool isLegal = false; 1521 for (TargetLowering::legal_fpimm_iterator I = TLI.legal_fpimm_begin(), 1522 E = TLI.legal_fpimm_end(); I != E; ++I) { 1523 if (CFP->isExactlyValue(*I)) { 1524 isLegal = true; 1525 break; 1526 } 1527 } 1528 // If this is a legal constant, turn it into a TargetConstantFP node. 1529 if (isLegal) 1530 break; 1531 Result = ExpandConstantFP(CFP, true, DAG, TLI); 1532 } 1533 } 1534 break; 1535 } 1536 case ISD::TokenFactor: 1537 if (Node->getNumOperands() == 2) { 1538 Tmp1 = LegalizeOp(Node->getOperand(0)); 1539 Tmp2 = LegalizeOp(Node->getOperand(1)); 1540 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1541 } else if (Node->getNumOperands() == 3) { 1542 Tmp1 = LegalizeOp(Node->getOperand(0)); 1543 Tmp2 = LegalizeOp(Node->getOperand(1)); 1544 Tmp3 = LegalizeOp(Node->getOperand(2)); 1545 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1546 } else { 1547 SmallVector<SDValue, 8> Ops; 1548 // Legalize the operands. 1549 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) 1550 Ops.push_back(LegalizeOp(Node->getOperand(i))); 1551 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1552 } 1553 break; 1554 1555 case ISD::FORMAL_ARGUMENTS: 1556 case ISD::CALL: 1557 // The only option for this is to custom lower it. 1558 Tmp3 = TLI.LowerOperation(Result.getValue(0), DAG); 1559 assert(Tmp3.getNode() && "Target didn't custom lower this node!"); 1560 // A call within a calling sequence must be legalized to something 1561 // other than the normal CALLSEQ_END. Violating this gets Legalize 1562 // into an infinite loop. 1563 assert ((!IsLegalizingCall || 1564 Node->getOpcode() != ISD::CALL || 1565 Tmp3.getNode()->getOpcode() != ISD::CALLSEQ_END) && 1566 "Nested CALLSEQ_START..CALLSEQ_END not supported."); 1567 1568 // The number of incoming and outgoing values should match; unless the final 1569 // outgoing value is a flag. 1570 assert((Tmp3.getNode()->getNumValues() == Result.getNode()->getNumValues() || 1571 (Tmp3.getNode()->getNumValues() == Result.getNode()->getNumValues() + 1 && 1572 Tmp3.getNode()->getValueType(Tmp3.getNode()->getNumValues() - 1) == 1573 MVT::Flag)) && 1574 "Lowering call/formal_arguments produced unexpected # results!"); 1575 1576 // Since CALL/FORMAL_ARGUMENTS nodes produce multiple values, make sure to 1577 // remember that we legalized all of them, so it doesn't get relegalized. 1578 for (unsigned i = 0, e = Tmp3.getNode()->getNumValues(); i != e; ++i) { 1579 if (Tmp3.getNode()->getValueType(i) == MVT::Flag) 1580 continue; 1581 Tmp1 = LegalizeOp(Tmp3.getValue(i)); 1582 if (Op.getResNo() == i) 1583 Tmp2 = Tmp1; 1584 AddLegalizedOperand(SDValue(Node, i), Tmp1); 1585 } 1586 return Tmp2; 1587 case ISD::EXTRACT_SUBREG: { 1588 Tmp1 = LegalizeOp(Node->getOperand(0)); 1589 ConstantSDNode *idx = dyn_cast<ConstantSDNode>(Node->getOperand(1)); 1590 assert(idx && "Operand must be a constant"); 1591 Tmp2 = DAG.getTargetConstant(idx->getAPIntValue(), idx->getValueType(0)); 1592 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1593 } 1594 break; 1595 case ISD::INSERT_SUBREG: { 1596 Tmp1 = LegalizeOp(Node->getOperand(0)); 1597 Tmp2 = LegalizeOp(Node->getOperand(1)); 1598 ConstantSDNode *idx = dyn_cast<ConstantSDNode>(Node->getOperand(2)); 1599 assert(idx && "Operand must be a constant"); 1600 Tmp3 = DAG.getTargetConstant(idx->getAPIntValue(), idx->getValueType(0)); 1601 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1602 } 1603 break; 1604 case ISD::BUILD_VECTOR: 1605 switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) { 1606 default: assert(0 && "This action is not supported yet!"); 1607 case TargetLowering::Custom: 1608 Tmp3 = TLI.LowerOperation(Result, DAG); 1609 if (Tmp3.getNode()) { 1610 Result = Tmp3; 1611 break; 1612 } 1613 // FALLTHROUGH 1614 case TargetLowering::Expand: 1615 Result = ExpandBUILD_VECTOR(Result.getNode()); 1616 break; 1617 } 1618 break; 1619 case ISD::INSERT_VECTOR_ELT: 1620 Tmp1 = LegalizeOp(Node->getOperand(0)); // InVec 1621 Tmp3 = LegalizeOp(Node->getOperand(2)); // InEltNo 1622 1623 // The type of the value to insert may not be legal, even though the vector 1624 // type is legal. Legalize/Promote accordingly. We do not handle Expand 1625 // here. 1626 switch (getTypeAction(Node->getOperand(1).getValueType())) { 1627 default: assert(0 && "Cannot expand insert element operand"); 1628 case Legal: Tmp2 = LegalizeOp(Node->getOperand(1)); break; 1629 case Promote: Tmp2 = PromoteOp(Node->getOperand(1)); break; 1630 case Expand: 1631 // FIXME: An alternative would be to check to see if the target is not 1632 // going to custom lower this operation, we could bitcast to half elt 1633 // width and perform two inserts at that width, if that is legal. 1634 Tmp2 = Node->getOperand(1); 1635 break; 1636 } 1637 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1638 1639 switch (TLI.getOperationAction(ISD::INSERT_VECTOR_ELT, 1640 Node->getValueType(0))) { 1641 default: assert(0 && "This action is not supported yet!"); 1642 case TargetLowering::Legal: 1643 break; 1644 case TargetLowering::Custom: 1645 Tmp4 = TLI.LowerOperation(Result, DAG); 1646 if (Tmp4.getNode()) { 1647 Result = Tmp4; 1648 break; 1649 } 1650 // FALLTHROUGH 1651 case TargetLowering::Promote: 1652 // Fall thru for vector case 1653 case TargetLowering::Expand: { 1654 // If the insert index is a constant, codegen this as a scalar_to_vector, 1655 // then a shuffle that inserts it into the right position in the vector. 1656 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Tmp3)) { 1657 // SCALAR_TO_VECTOR requires that the type of the value being inserted 1658 // match the element type of the vector being created. 1659 if (Tmp2.getValueType() == 1660 Op.getValueType().getVectorElementType()) { 1661 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, 1662 Tmp1.getValueType(), Tmp2); 1663 1664 unsigned NumElts = Tmp1.getValueType().getVectorNumElements(); 1665 MVT ShufMaskVT = 1666 MVT::getIntVectorWithNumElements(NumElts); 1667 MVT ShufMaskEltVT = ShufMaskVT.getVectorElementType(); 1668 1669 // We generate a shuffle of InVec and ScVec, so the shuffle mask 1670 // should be 0,1,2,3,4,5... with the appropriate element replaced with 1671 // elt 0 of the RHS. 1672 SmallVector<SDValue, 8> ShufOps; 1673 for (unsigned i = 0; i != NumElts; ++i) { 1674 if (i != InsertPos->getZExtValue()) 1675 ShufOps.push_back(DAG.getConstant(i, ShufMaskEltVT)); 1676 else 1677 ShufOps.push_back(DAG.getConstant(NumElts, ShufMaskEltVT)); 1678 } 1679 SDValue ShufMask = DAG.getBUILD_VECTOR(ShufMaskVT, dl, 1680 &ShufOps[0], ShufOps.size()); 1681 1682 Result = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, Tmp1.getValueType(), 1683 Tmp1, ScVec, ShufMask); 1684 Result = LegalizeOp(Result); 1685 break; 1686 } 1687 } 1688 Result = PerformInsertVectorEltInMemory(Tmp1, Tmp2, Tmp3, dl); 1689 break; 1690 } 1691 } 1692 break; 1693 case ISD::SCALAR_TO_VECTOR: 1694 if (!TLI.isTypeLegal(Node->getOperand(0).getValueType())) { 1695 Result = LegalizeOp(ExpandSCALAR_TO_VECTOR(Node)); 1696 break; 1697 } 1698 1699 Tmp1 = LegalizeOp(Node->getOperand(0)); // InVal 1700 Result = DAG.UpdateNodeOperands(Result, Tmp1); 1701 switch (TLI.getOperationAction(ISD::SCALAR_TO_VECTOR, 1702 Node->getValueType(0))) { 1703 default: assert(0 && "This action is not supported yet!"); 1704 case TargetLowering::Legal: 1705 break; 1706 case TargetLowering::Custom: 1707 Tmp3 = TLI.LowerOperation(Result, DAG); 1708 if (Tmp3.getNode()) { 1709 Result = Tmp3; 1710 break; 1711 } 1712 // FALLTHROUGH 1713 case TargetLowering::Expand: 1714 Result = LegalizeOp(ExpandSCALAR_TO_VECTOR(Node)); 1715 break; 1716 } 1717 break; 1718 case ISD::VECTOR_SHUFFLE: 1719 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the input vectors, 1720 Tmp2 = LegalizeOp(Node->getOperand(1)); // but not the shuffle mask. 1721 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 1722 1723 // Allow targets to custom lower the SHUFFLEs they support. 1724 switch (TLI.getOperationAction(ISD::VECTOR_SHUFFLE,Result.getValueType())) { 1725 default: assert(0 && "Unknown operation action!"); 1726 case TargetLowering::Legal: 1727 assert(isShuffleLegal(Result.getValueType(), Node->getOperand(2)) && 1728 "vector shuffle should not be created if not legal!"); 1729 break; 1730 case TargetLowering::Custom: 1731 Tmp3 = TLI.LowerOperation(Result, DAG); 1732 if (Tmp3.getNode()) { 1733 Result = Tmp3; 1734 break; 1735 } 1736 // FALLTHROUGH 1737 case TargetLowering::Expand: { 1738 MVT VT = Node->getValueType(0); 1739 MVT EltVT = VT.getVectorElementType(); 1740 MVT PtrVT = TLI.getPointerTy(); 1741 SDValue Mask = Node->getOperand(2); 1742 unsigned NumElems = Mask.getNumOperands(); 1743 SmallVector<SDValue,8> Ops; 1744 for (unsigned i = 0; i != NumElems; ++i) { 1745 SDValue Arg = Mask.getOperand(i); 1746 if (Arg.getOpcode() == ISD::UNDEF) { 1747 Ops.push_back(DAG.getUNDEF(EltVT)); 1748 } else { 1749 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); 1750 unsigned Idx = cast<ConstantSDNode>(Arg)->getZExtValue(); 1751 if (Idx < NumElems) 1752 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Tmp1, 1753 DAG.getConstant(Idx, PtrVT))); 1754 else 1755 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Tmp2, 1756 DAG.getConstant(Idx - NumElems, PtrVT))); 1757 } 1758 } 1759 Result = DAG.getBUILD_VECTOR(VT, dl, &Ops[0], Ops.size()); 1760 break; 1761 } 1762 case TargetLowering::Promote: { 1763 // Change base type to a different vector type. 1764 MVT OVT = Node->getValueType(0); 1765 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 1766 1767 // Cast the two input vectors. 1768 Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Tmp1); 1769 Tmp2 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Tmp2); 1770 1771 // Convert the shuffle mask to the right # elements. 1772 Tmp3 = SDValue(isShuffleLegal(OVT, Node->getOperand(2)), 0); 1773 assert(Tmp3.getNode() && "Shuffle not legal?"); 1774 Result = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, NVT, Tmp1, Tmp2, Tmp3); 1775 Result = DAG.getNode(ISD::BIT_CONVERT, dl, OVT, Result); 1776 break; 1777 } 1778 } 1779 break; 1780 1781 case ISD::EXTRACT_VECTOR_ELT: 1782 Tmp1 = Node->getOperand(0); 1783 Tmp2 = LegalizeOp(Node->getOperand(1)); 1784 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1785 Result = ExpandEXTRACT_VECTOR_ELT(Result); 1786 break; 1787 1788 case ISD::EXTRACT_SUBVECTOR: 1789 Tmp1 = Node->getOperand(0); 1790 Tmp2 = LegalizeOp(Node->getOperand(1)); 1791 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 1792 Result = ExpandEXTRACT_SUBVECTOR(Result); 1793 break; 1794 1795 case ISD::CONCAT_VECTORS: { 1796 // Use extract/insert/build vector for now. We might try to be 1797 // more clever later. 1798 MVT PtrVT = TLI.getPointerTy(); 1799 SmallVector<SDValue, 8> Ops; 1800 unsigned NumOperands = Node->getNumOperands(); 1801 for (unsigned i=0; i < NumOperands; ++i) { 1802 SDValue SubOp = Node->getOperand(i); 1803 MVT VVT = SubOp.getNode()->getValueType(0); 1804 MVT EltVT = VVT.getVectorElementType(); 1805 unsigned NumSubElem = VVT.getVectorNumElements(); 1806 for (unsigned j=0; j < NumSubElem; ++j) { 1807 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, SubOp, 1808 DAG.getConstant(j, PtrVT))); 1809 } 1810 } 1811 return LegalizeOp(DAG.getBUILD_VECTOR(Node->getValueType(0), dl, 1812 &Ops[0], Ops.size())); 1813 } 1814 1815 case ISD::CALLSEQ_START: { 1816 SDNode *CallEnd = FindCallEndFromCallStart(Node); 1817 1818 // Recursively Legalize all of the inputs of the call end that do not lead 1819 // to this call start. This ensures that any libcalls that need be inserted 1820 // are inserted *before* the CALLSEQ_START. 1821 IsLegalizingCallArgs = true; 1822 {SmallPtrSet<SDNode*, 32> NodesLeadingTo; 1823 for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i) 1824 LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).getNode(), Node, 1825 NodesLeadingTo); 1826 } 1827 IsLegalizingCallArgs = false; 1828 1829 // Now that we legalized all of the inputs (which may have inserted 1830 // libcalls) create the new CALLSEQ_START node. 1831 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1832 1833 // Merge in the last call, to ensure that this call start after the last 1834 // call ended. 1835 if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) { 1836 Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 1837 Tmp1, LastCALLSEQ_END); 1838 Tmp1 = LegalizeOp(Tmp1); 1839 } 1840 1841 // Do not try to legalize the target-specific arguments (#1+). 1842 if (Tmp1 != Node->getOperand(0)) { 1843 SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end()); 1844 Ops[0] = Tmp1; 1845 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1846 } 1847 1848 // Remember that the CALLSEQ_START is legalized. 1849 AddLegalizedOperand(Op.getValue(0), Result); 1850 if (Node->getNumValues() == 2) // If this has a flag result, remember it. 1851 AddLegalizedOperand(Op.getValue(1), Result.getValue(1)); 1852 1853 // Now that the callseq_start and all of the non-call nodes above this call 1854 // sequence have been legalized, legalize the call itself. During this 1855 // process, no libcalls can/will be inserted, guaranteeing that no calls 1856 // can overlap. 1857 assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!"); 1858 // Note that we are selecting this call! 1859 LastCALLSEQ_END = SDValue(CallEnd, 0); 1860 IsLegalizingCall = true; 1861 1862 // Legalize the call, starting from the CALLSEQ_END. 1863 LegalizeOp(LastCALLSEQ_END); 1864 assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!"); 1865 return Result; 1866 } 1867 case ISD::CALLSEQ_END: 1868 // If the CALLSEQ_START node hasn't been legalized first, legalize it. This 1869 // will cause this node to be legalized as well as handling libcalls right. 1870 if (LastCALLSEQ_END.getNode() != Node) { 1871 LegalizeOp(SDValue(FindCallStartFromCallEnd(Node), 0)); 1872 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); 1873 assert(I != LegalizedNodes.end() && 1874 "Legalizing the call start should have legalized this node!"); 1875 return I->second; 1876 } 1877 1878 // Otherwise, the call start has been legalized and everything is going 1879 // according to plan. Just legalize ourselves normally here. 1880 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1881 // Do not try to legalize the target-specific arguments (#1+), except for 1882 // an optional flag input. 1883 if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Flag){ 1884 if (Tmp1 != Node->getOperand(0)) { 1885 SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end()); 1886 Ops[0] = Tmp1; 1887 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1888 } 1889 } else { 1890 Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1)); 1891 if (Tmp1 != Node->getOperand(0) || 1892 Tmp2 != Node->getOperand(Node->getNumOperands()-1)) { 1893 SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end()); 1894 Ops[0] = Tmp1; 1895 Ops.back() = Tmp2; 1896 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1897 } 1898 } 1899 assert(IsLegalizingCall && "Call sequence imbalance between start/end?"); 1900 // This finishes up call legalization. 1901 IsLegalizingCall = false; 1902 1903 // If the CALLSEQ_END node has a flag, remember that we legalized it. 1904 AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0)); 1905 if (Node->getNumValues() == 2) 1906 AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1)); 1907 return Result.getValue(Op.getResNo()); 1908 case ISD::DYNAMIC_STACKALLOC: { 1909 MVT VT = Node->getValueType(0); 1910 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 1911 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the size. 1912 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the alignment. 1913 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 1914 1915 Tmp1 = Result.getValue(0); 1916 Tmp2 = Result.getValue(1); 1917 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 1918 default: assert(0 && "This action is not supported yet!"); 1919 case TargetLowering::Expand: { 1920 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1921 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" 1922 " not tell us which reg is the stack pointer!"); 1923 SDValue Chain = Tmp1.getOperand(0); 1924 1925 // Chain the dynamic stack allocation so that it doesn't modify the stack 1926 // pointer when other instructions are using the stack. 1927 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true)); 1928 1929 SDValue Size = Tmp2.getOperand(1); 1930 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 1931 Chain = SP.getValue(1); 1932 unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue(); 1933 unsigned StackAlign = 1934 TLI.getTargetMachine().getFrameInfo()->getStackAlignment(); 1935 if (Align > StackAlign) 1936 SP = DAG.getNode(ISD::AND, dl, VT, SP, 1937 DAG.getConstant(-(uint64_t)Align, VT)); 1938 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value 1939 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain 1940 1941 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, true), 1942 DAG.getIntPtrConstant(0, true), SDValue()); 1943 1944 Tmp1 = LegalizeOp(Tmp1); 1945 Tmp2 = LegalizeOp(Tmp2); 1946 break; 1947 } 1948 case TargetLowering::Custom: 1949 Tmp3 = TLI.LowerOperation(Tmp1, DAG); 1950 if (Tmp3.getNode()) { 1951 Tmp1 = LegalizeOp(Tmp3); 1952 Tmp2 = LegalizeOp(Tmp3.getValue(1)); 1953 } 1954 break; 1955 case TargetLowering::Legal: 1956 break; 1957 } 1958 // Since this op produce two values, make sure to remember that we 1959 // legalized both of them. 1960 AddLegalizedOperand(SDValue(Node, 0), Tmp1); 1961 AddLegalizedOperand(SDValue(Node, 1), Tmp2); 1962 return Op.getResNo() ? Tmp2 : Tmp1; 1963 } 1964 case ISD::INLINEASM: { 1965 SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end()); 1966 bool Changed = false; 1967 // Legalize all of the operands of the inline asm, in case they are nodes 1968 // that need to be expanded or something. Note we skip the asm string and 1969 // all of the TargetConstant flags. 1970 SDValue Op = LegalizeOp(Ops[0]); 1971 Changed = Op != Ops[0]; 1972 Ops[0] = Op; 1973 1974 bool HasInFlag = Ops.back().getValueType() == MVT::Flag; 1975 for (unsigned i = 2, e = Ops.size()-HasInFlag; i < e; ) { 1976 unsigned NumVals = cast<ConstantSDNode>(Ops[i])->getZExtValue() >> 3; 1977 for (++i; NumVals; ++i, --NumVals) { 1978 SDValue Op = LegalizeOp(Ops[i]); 1979 if (Op != Ops[i]) { 1980 Changed = true; 1981 Ops[i] = Op; 1982 } 1983 } 1984 } 1985 1986 if (HasInFlag) { 1987 Op = LegalizeOp(Ops.back()); 1988 Changed |= Op != Ops.back(); 1989 Ops.back() = Op; 1990 } 1991 1992 if (Changed) 1993 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 1994 1995 // INLINE asm returns a chain and flag, make sure to add both to the map. 1996 AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0)); 1997 AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1)); 1998 return Result.getValue(Op.getResNo()); 1999 } 2000 case ISD::BR: 2001 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2002 // Ensure that libcalls are emitted before a branch. 2003 Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1, LastCALLSEQ_END); 2004 Tmp1 = LegalizeOp(Tmp1); 2005 LastCALLSEQ_END = DAG.getEntryNode(); 2006 2007 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 2008 break; 2009 case ISD::BRIND: 2010 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2011 // Ensure that libcalls are emitted before a branch. 2012 Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1, LastCALLSEQ_END); 2013 Tmp1 = LegalizeOp(Tmp1); 2014 LastCALLSEQ_END = DAG.getEntryNode(); 2015 2016 switch (getTypeAction(Node->getOperand(1).getValueType())) { 2017 default: assert(0 && "Indirect target must be legal type (pointer)!"); 2018 case Legal: 2019 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the condition. 2020 break; 2021 } 2022 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 2023 break; 2024 case ISD::BR_JT: 2025 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2026 // Ensure that libcalls are emitted before a branch. 2027 Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1, LastCALLSEQ_END); 2028 Tmp1 = LegalizeOp(Tmp1); 2029 LastCALLSEQ_END = DAG.getEntryNode(); 2030 2031 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the jumptable node. 2032 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 2033 2034 switch (TLI.getOperationAction(ISD::BR_JT, MVT::Other)) { 2035 default: assert(0 && "This action is not supported yet!"); 2036 case TargetLowering::Legal: break; 2037 case TargetLowering::Custom: 2038 Tmp1 = TLI.LowerOperation(Result, DAG); 2039 if (Tmp1.getNode()) Result = Tmp1; 2040 break; 2041 case TargetLowering::Expand: { 2042 SDValue Chain = Result.getOperand(0); 2043 SDValue Table = Result.getOperand(1); 2044 SDValue Index = Result.getOperand(2); 2045 2046 MVT PTy = TLI.getPointerTy(); 2047 MachineFunction &MF = DAG.getMachineFunction(); 2048 unsigned EntrySize = MF.getJumpTableInfo()->getEntrySize(); 2049 Index= DAG.getNode(ISD::MUL, dl, PTy, 2050 Index, DAG.getConstant(EntrySize, PTy)); 2051 SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table); 2052 2053 MVT MemVT = MVT::getIntegerVT(EntrySize * 8); 2054 SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr, 2055 PseudoSourceValue::getJumpTable(), 0, MemVT); 2056 Addr = LD; 2057 if (TLI.getTargetMachine().getRelocationModel() == Reloc::PIC_) { 2058 // For PIC, the sequence is: 2059 // BRIND(load(Jumptable + index) + RelocBase) 2060 // RelocBase can be JumpTable, GOT or some sort of global base. 2061 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, 2062 TLI.getPICJumpTableRelocBase(Table, DAG)); 2063 } 2064 Result = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr); 2065 } 2066 } 2067 break; 2068 case ISD::BRCOND: 2069 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2070 // Ensure that libcalls are emitted before a return. 2071 Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1, LastCALLSEQ_END); 2072 Tmp1 = LegalizeOp(Tmp1); 2073 LastCALLSEQ_END = DAG.getEntryNode(); 2074 2075 switch (getTypeAction(Node->getOperand(1).getValueType())) { 2076 case Expand: assert(0 && "It's impossible to expand bools"); 2077 case Legal: 2078 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the condition. 2079 break; 2080 case Promote: { 2081 Tmp2 = PromoteOp(Node->getOperand(1)); // Promote the condition. 2082 2083 // The top bits of the promoted condition are not necessarily zero, ensure 2084 // that the value is properly zero extended. 2085 unsigned BitWidth = Tmp2.getValueSizeInBits(); 2086 if (!DAG.MaskedValueIsZero(Tmp2, 2087 APInt::getHighBitsSet(BitWidth, BitWidth-1))) 2088 Tmp2 = DAG.getZeroExtendInReg(Tmp2, dl, MVT::i1); 2089 break; 2090 } 2091 } 2092 2093 // Basic block destination (Op#2) is always legal. 2094 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 2095 2096 switch (TLI.getOperationAction(ISD::BRCOND, MVT::Other)) { 2097 default: assert(0 && "This action is not supported yet!"); 2098 case TargetLowering::Legal: break; 2099 case TargetLowering::Custom: 2100 Tmp1 = TLI.LowerOperation(Result, DAG); 2101 if (Tmp1.getNode()) Result = Tmp1; 2102 break; 2103 case TargetLowering::Expand: 2104 // Expand brcond's setcc into its constituent parts and create a BR_CC 2105 // Node. 2106 if (Tmp2.getOpcode() == ISD::SETCC) { 2107 Result = DAG.getNode(ISD::BR_CC, dl, MVT::Other, 2108 Tmp1, Tmp2.getOperand(2), 2109 Tmp2.getOperand(0), Tmp2.getOperand(1), 2110 Node->getOperand(2)); 2111 } else { 2112 Result = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, 2113 DAG.getCondCode(ISD::SETNE), Tmp2, 2114 DAG.getConstant(0, Tmp2.getValueType()), 2115 Node->getOperand(2)); 2116 } 2117 break; 2118 } 2119 break; 2120 case ISD::BR_CC: 2121 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2122 // Ensure that libcalls are emitted before a branch. 2123 Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1, LastCALLSEQ_END); 2124 Tmp1 = LegalizeOp(Tmp1); 2125 Tmp2 = Node->getOperand(2); // LHS 2126 Tmp3 = Node->getOperand(3); // RHS 2127 Tmp4 = Node->getOperand(1); // CC 2128 2129 LegalizeSetCC(TLI.getSetCCResultType(Tmp2.getValueType()), 2130 Tmp2, Tmp3, Tmp4, dl); 2131 LastCALLSEQ_END = DAG.getEntryNode(); 2132 2133 // If we didn't get both a LHS and RHS back from LegalizeSetCC, 2134 // the LHS is a legal SETCC itself. In this case, we need to compare 2135 // the result against zero to select between true and false values. 2136 if (Tmp3.getNode() == 0) { 2137 Tmp3 = DAG.getConstant(0, Tmp2.getValueType()); 2138 Tmp4 = DAG.getCondCode(ISD::SETNE); 2139 } 2140 2141 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp4, Tmp2, Tmp3, 2142 Node->getOperand(4)); 2143 2144 switch (TLI.getOperationAction(ISD::BR_CC, Tmp3.getValueType())) { 2145 default: assert(0 && "Unexpected action for BR_CC!"); 2146 case TargetLowering::Legal: break; 2147 case TargetLowering::Custom: 2148 Tmp4 = TLI.LowerOperation(Result, DAG); 2149 if (Tmp4.getNode()) Result = Tmp4; 2150 break; 2151 } 2152 break; 2153 case ISD::LOAD: { 2154 LoadSDNode *LD = cast<LoadSDNode>(Node); 2155 Tmp1 = LegalizeOp(LD->getChain()); // Legalize the chain. 2156 Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer. 2157 2158 ISD::LoadExtType ExtType = LD->getExtensionType(); 2159 if (ExtType == ISD::NON_EXTLOAD) { 2160 MVT VT = Node->getValueType(0); 2161 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset()); 2162 Tmp3 = Result.getValue(0); 2163 Tmp4 = Result.getValue(1); 2164 2165 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 2166 default: assert(0 && "This action is not supported yet!"); 2167 case TargetLowering::Legal: 2168 // If this is an unaligned load and the target doesn't support it, 2169 // expand it. 2170 if (!TLI.allowsUnalignedMemoryAccesses()) { 2171 unsigned ABIAlignment = TLI.getTargetData()-> 2172 getABITypeAlignment(LD->getMemoryVT().getTypeForMVT()); 2173 if (LD->getAlignment() < ABIAlignment){ 2174 Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()), DAG, 2175 TLI); 2176 Tmp3 = Result.getOperand(0); 2177 Tmp4 = Result.getOperand(1); 2178 Tmp3 = LegalizeOp(Tmp3); 2179 Tmp4 = LegalizeOp(Tmp4); 2180 } 2181 } 2182 break; 2183 case TargetLowering::Custom: 2184 Tmp1 = TLI.LowerOperation(Tmp3, DAG); 2185 if (Tmp1.getNode()) { 2186 Tmp3 = LegalizeOp(Tmp1); 2187 Tmp4 = LegalizeOp(Tmp1.getValue(1)); 2188 } 2189 break; 2190 case TargetLowering::Promote: { 2191 // Only promote a load of vector type to another. 2192 assert(VT.isVector() && "Cannot promote this load!"); 2193 // Change base type to a different vector type. 2194 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 2195 2196 Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getSrcValue(), 2197 LD->getSrcValueOffset(), 2198 LD->isVolatile(), LD->getAlignment()); 2199 Tmp3 = LegalizeOp(DAG.getNode(ISD::BIT_CONVERT, dl, VT, Tmp1)); 2200 Tmp4 = LegalizeOp(Tmp1.getValue(1)); 2201 break; 2202 } 2203 } 2204 // Since loads produce two values, make sure to remember that we 2205 // legalized both of them. 2206 AddLegalizedOperand(SDValue(Node, 0), Tmp3); 2207 AddLegalizedOperand(SDValue(Node, 1), Tmp4); 2208 return Op.getResNo() ? Tmp4 : Tmp3; 2209 } else { 2210 MVT SrcVT = LD->getMemoryVT(); 2211 unsigned SrcWidth = SrcVT.getSizeInBits(); 2212 int SVOffset = LD->getSrcValueOffset(); 2213 unsigned Alignment = LD->getAlignment(); 2214 bool isVolatile = LD->isVolatile(); 2215 2216 if (SrcWidth != SrcVT.getStoreSizeInBits() && 2217 // Some targets pretend to have an i1 loading operation, and actually 2218 // load an i8. This trick is correct for ZEXTLOAD because the top 7 2219 // bits are guaranteed to be zero; it helps the optimizers understand 2220 // that these bits are zero. It is also useful for EXTLOAD, since it 2221 // tells the optimizers that those bits are undefined. It would be 2222 // nice to have an effective generic way of getting these benefits... 2223 // Until such a way is found, don't insist on promoting i1 here. 2224 (SrcVT != MVT::i1 || 2225 TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) { 2226 // Promote to a byte-sized load if not loading an integral number of 2227 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 2228 unsigned NewWidth = SrcVT.getStoreSizeInBits(); 2229 MVT NVT = MVT::getIntegerVT(NewWidth); 2230 SDValue Ch; 2231 2232 // The extra bits are guaranteed to be zero, since we stored them that 2233 // way. A zext load from NVT thus automatically gives zext from SrcVT. 2234 2235 ISD::LoadExtType NewExtType = 2236 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; 2237 2238 Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), 2239 Tmp1, Tmp2, LD->getSrcValue(), SVOffset, 2240 NVT, isVolatile, Alignment); 2241 2242 Ch = Result.getValue(1); // The chain. 2243 2244 if (ExtType == ISD::SEXTLOAD) 2245 // Having the top bits zero doesn't help when sign extending. 2246 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 2247 Result.getValueType(), 2248 Result, DAG.getValueType(SrcVT)); 2249 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) 2250 // All the top bits are guaranteed to be zero - inform the optimizers. 2251 Result = DAG.getNode(ISD::AssertZext, dl, 2252 Result.getValueType(), Result, 2253 DAG.getValueType(SrcVT)); 2254 2255 Tmp1 = LegalizeOp(Result); 2256 Tmp2 = LegalizeOp(Ch); 2257 } else if (SrcWidth & (SrcWidth - 1)) { 2258 // If not loading a power-of-2 number of bits, expand as two loads. 2259 assert(SrcVT.isExtended() && !SrcVT.isVector() && 2260 "Unsupported extload!"); 2261 unsigned RoundWidth = 1 << Log2_32(SrcWidth); 2262 assert(RoundWidth < SrcWidth); 2263 unsigned ExtraWidth = SrcWidth - RoundWidth; 2264 assert(ExtraWidth < RoundWidth); 2265 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 2266 "Load size not an integral number of bytes!"); 2267 MVT RoundVT = MVT::getIntegerVT(RoundWidth); 2268 MVT ExtraVT = MVT::getIntegerVT(ExtraWidth); 2269 SDValue Lo, Hi, Ch; 2270 unsigned IncrementSize; 2271 2272 if (TLI.isLittleEndian()) { 2273 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) 2274 // Load the bottom RoundWidth bits. 2275 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, 2276 Node->getValueType(0), Tmp1, Tmp2, 2277 LD->getSrcValue(), SVOffset, RoundVT, isVolatile, 2278 Alignment); 2279 2280 // Load the remaining ExtraWidth bits. 2281 IncrementSize = RoundWidth / 8; 2282 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, 2283 DAG.getIntPtrConstant(IncrementSize)); 2284 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2, 2285 LD->getSrcValue(), SVOffset + IncrementSize, 2286 ExtraVT, isVolatile, 2287 MinAlign(Alignment, IncrementSize)); 2288 2289 // Build a factor node to remember that this load is independent of the 2290 // other one. 2291 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 2292 Hi.getValue(1)); 2293 2294 // Move the top bits to the right place. 2295 Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi, 2296 DAG.getConstant(RoundWidth, TLI.getShiftAmountTy())); 2297 2298 // Join the hi and lo parts. 2299 Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 2300 } else { 2301 // Big endian - avoid unaligned loads. 2302 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 2303 // Load the top RoundWidth bits. 2304 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2, 2305 LD->getSrcValue(), SVOffset, RoundVT, isVolatile, 2306 Alignment); 2307 2308 // Load the remaining ExtraWidth bits. 2309 IncrementSize = RoundWidth / 8; 2310 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, 2311 DAG.getIntPtrConstant(IncrementSize)); 2312 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, 2313 Node->getValueType(0), Tmp1, Tmp2, 2314 LD->getSrcValue(), SVOffset + IncrementSize, 2315 ExtraVT, isVolatile, 2316 MinAlign(Alignment, IncrementSize)); 2317 2318 // Build a factor node to remember that this load is independent of the 2319 // other one. 2320 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 2321 Hi.getValue(1)); 2322 2323 // Move the top bits to the right place. 2324 Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi, 2325 DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy())); 2326 2327 // Join the hi and lo parts. 2328 Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 2329 } 2330 2331 Tmp1 = LegalizeOp(Result); 2332 Tmp2 = LegalizeOp(Ch); 2333 } else { 2334 switch (TLI.getLoadExtAction(ExtType, SrcVT)) { 2335 default: assert(0 && "This action is not supported yet!"); 2336 case TargetLowering::Custom: 2337 isCustom = true; 2338 // FALLTHROUGH 2339 case TargetLowering::Legal: 2340 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset()); 2341 Tmp1 = Result.getValue(0); 2342 Tmp2 = Result.getValue(1); 2343 2344 if (isCustom) { 2345 Tmp3 = TLI.LowerOperation(Result, DAG); 2346 if (Tmp3.getNode()) { 2347 Tmp1 = LegalizeOp(Tmp3); 2348 Tmp2 = LegalizeOp(Tmp3.getValue(1)); 2349 } 2350 } else { 2351 // If this is an unaligned load and the target doesn't support it, 2352 // expand it. 2353 if (!TLI.allowsUnalignedMemoryAccesses()) { 2354 unsigned ABIAlignment = TLI.getTargetData()-> 2355 getABITypeAlignment(LD->getMemoryVT().getTypeForMVT()); 2356 if (LD->getAlignment() < ABIAlignment){ 2357 Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()), DAG, 2358 TLI); 2359 Tmp1 = Result.getOperand(0); 2360 Tmp2 = Result.getOperand(1); 2361 Tmp1 = LegalizeOp(Tmp1); 2362 Tmp2 = LegalizeOp(Tmp2); 2363 } 2364 } 2365 } 2366 break; 2367 case TargetLowering::Expand: 2368 // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND 2369 if (SrcVT == MVT::f32 && Node->getValueType(0) == MVT::f64) { 2370 SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2, LD->getSrcValue(), 2371 LD->getSrcValueOffset(), 2372 LD->isVolatile(), LD->getAlignment()); 2373 Result = DAG.getNode(ISD::FP_EXTEND, dl, 2374 Node->getValueType(0), Load); 2375 Tmp1 = LegalizeOp(Result); // Relegalize new nodes. 2376 Tmp2 = LegalizeOp(Load.getValue(1)); 2377 break; 2378 } 2379 assert(ExtType != ISD::EXTLOAD &&"EXTLOAD should always be supported!"); 2380 // Turn the unsupported load into an EXTLOAD followed by an explicit 2381 // zero/sign extend inreg. 2382 Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0), 2383 Tmp1, Tmp2, LD->getSrcValue(), 2384 LD->getSrcValueOffset(), SrcVT, 2385 LD->isVolatile(), LD->getAlignment()); 2386 SDValue ValRes; 2387 if (ExtType == ISD::SEXTLOAD) 2388 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 2389 Result.getValueType(), 2390 Result, DAG.getValueType(SrcVT)); 2391 else 2392 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT); 2393 Tmp1 = LegalizeOp(ValRes); // Relegalize new nodes. 2394 Tmp2 = LegalizeOp(Result.getValue(1)); // Relegalize new nodes. 2395 break; 2396 } 2397 } 2398 2399 // Since loads produce two values, make sure to remember that we legalized 2400 // both of them. 2401 AddLegalizedOperand(SDValue(Node, 0), Tmp1); 2402 AddLegalizedOperand(SDValue(Node, 1), Tmp2); 2403 return Op.getResNo() ? Tmp2 : Tmp1; 2404 } 2405 } 2406 case ISD::EXTRACT_ELEMENT: { 2407 MVT OpTy = Node->getOperand(0).getValueType(); 2408 switch (getTypeAction(OpTy)) { 2409 default: assert(0 && "EXTRACT_ELEMENT action for type unimplemented!"); 2410 case Legal: 2411 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { 2412 // 1 -> Hi 2413 Result = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0), 2414 DAG.getConstant(OpTy.getSizeInBits()/2, 2415 TLI.getShiftAmountTy())); 2416 Result = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Result); 2417 } else { 2418 // 0 -> Lo 2419 Result = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), 2420 Node->getOperand(0)); 2421 } 2422 break; 2423 case Expand: 2424 // Get both the low and high parts. 2425 ExpandOp(Node->getOperand(0), Tmp1, Tmp2); 2426 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) 2427 Result = Tmp2; // 1 -> Hi 2428 else 2429 Result = Tmp1; // 0 -> Lo 2430 break; 2431 } 2432 break; 2433 } 2434 2435 case ISD::CopyToReg: 2436 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2437 2438 assert(isTypeLegal(Node->getOperand(2).getValueType()) && 2439 "Register type must be legal!"); 2440 // Legalize the incoming value (must be a legal type). 2441 Tmp2 = LegalizeOp(Node->getOperand(2)); 2442 if (Node->getNumValues() == 1) { 2443 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1), Tmp2); 2444 } else { 2445 assert(Node->getNumValues() == 2 && "Unknown CopyToReg"); 2446 if (Node->getNumOperands() == 4) { 2447 Tmp3 = LegalizeOp(Node->getOperand(3)); 2448 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1), Tmp2, 2449 Tmp3); 2450 } else { 2451 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1),Tmp2); 2452 } 2453 2454 // Since this produces two values, make sure to remember that we legalized 2455 // both of them. 2456 AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0)); 2457 AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1)); 2458 return Result; 2459 } 2460 break; 2461 2462 case ISD::RET: 2463 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2464 2465 // Ensure that libcalls are emitted before a return. 2466 Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1, LastCALLSEQ_END); 2467 Tmp1 = LegalizeOp(Tmp1); 2468 LastCALLSEQ_END = DAG.getEntryNode(); 2469 2470 switch (Node->getNumOperands()) { 2471 case 3: // ret val 2472 Tmp2 = Node->getOperand(1); 2473 Tmp3 = Node->getOperand(2); // Signness 2474 switch (getTypeAction(Tmp2.getValueType())) { 2475 case Legal: 2476 Result = DAG.UpdateNodeOperands(Result, Tmp1, LegalizeOp(Tmp2), Tmp3); 2477 break; 2478 case Expand: 2479 if (!Tmp2.getValueType().isVector()) { 2480 SDValue Lo, Hi; 2481 ExpandOp(Tmp2, Lo, Hi); 2482 2483 // Big endian systems want the hi reg first. 2484 if (TLI.isBigEndian()) 2485 std::swap(Lo, Hi); 2486 2487 if (Hi.getNode()) 2488 Result = DAG.getNode(ISD::RET, dl, MVT::Other, 2489 Tmp1, Lo, Tmp3, Hi,Tmp3); 2490 else 2491 Result = DAG.getNode(ISD::RET, dl, MVT::Other, Tmp1, Lo, Tmp3); 2492 Result = LegalizeOp(Result); 2493 } else { 2494 SDNode *InVal = Tmp2.getNode(); 2495 int InIx = Tmp2.getResNo(); 2496 unsigned NumElems = InVal->getValueType(InIx).getVectorNumElements(); 2497 MVT EVT = InVal->getValueType(InIx).getVectorElementType(); 2498 2499 // Figure out if there is a simple type corresponding to this Vector 2500 // type. If so, convert to the vector type. 2501 MVT TVT = MVT::getVectorVT(EVT, NumElems); 2502 if (TLI.isTypeLegal(TVT)) { 2503 // Turn this into a return of the vector type. 2504 Tmp2 = LegalizeOp(Tmp2); 2505 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2506 } else if (NumElems == 1) { 2507 // Turn this into a return of the scalar type. 2508 Tmp2 = ScalarizeVectorOp(Tmp2); 2509 Tmp2 = LegalizeOp(Tmp2); 2510 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2511 2512 // FIXME: Returns of gcc generic vectors smaller than a legal type 2513 // should be returned in integer registers! 2514 2515 // The scalarized value type may not be legal, e.g. it might require 2516 // promotion or expansion. Relegalize the return. 2517 Result = LegalizeOp(Result); 2518 } else { 2519 // FIXME: Returns of gcc generic vectors larger than a legal vector 2520 // type should be returned by reference! 2521 SDValue Lo, Hi; 2522 SplitVectorOp(Tmp2, Lo, Hi); 2523 Result = DAG.getNode(ISD::RET, dl, MVT::Other, 2524 Tmp1, Lo, Tmp3, Hi,Tmp3); 2525 Result = LegalizeOp(Result); 2526 } 2527 } 2528 break; 2529 case Promote: 2530 Tmp2 = PromoteOp(Node->getOperand(1)); 2531 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2532 Result = LegalizeOp(Result); 2533 break; 2534 } 2535 break; 2536 case 1: // ret void 2537 Result = DAG.UpdateNodeOperands(Result, Tmp1); 2538 break; 2539 default: { // ret <values> 2540 SmallVector<SDValue, 8> NewValues; 2541 NewValues.push_back(Tmp1); 2542 for (unsigned i = 1, e = Node->getNumOperands(); i < e; i += 2) 2543 switch (getTypeAction(Node->getOperand(i).getValueType())) { 2544 case Legal: 2545 NewValues.push_back(LegalizeOp(Node->getOperand(i))); 2546 NewValues.push_back(Node->getOperand(i+1)); 2547 break; 2548 case Expand: { 2549 SDValue Lo, Hi; 2550 assert(!Node->getOperand(i).getValueType().isExtended() && 2551 "FIXME: TODO: implement returning non-legal vector types!"); 2552 ExpandOp(Node->getOperand(i), Lo, Hi); 2553 NewValues.push_back(Lo); 2554 NewValues.push_back(Node->getOperand(i+1)); 2555 if (Hi.getNode()) { 2556 NewValues.push_back(Hi); 2557 NewValues.push_back(Node->getOperand(i+1)); 2558 } 2559 break; 2560 } 2561 case Promote: 2562 assert(0 && "Can't promote multiple return value yet!"); 2563 } 2564 2565 if (NewValues.size() == Node->getNumOperands()) 2566 Result = DAG.UpdateNodeOperands(Result, &NewValues[0],NewValues.size()); 2567 else 2568 Result = DAG.getNode(ISD::RET, dl, MVT::Other, 2569 &NewValues[0], NewValues.size()); 2570 break; 2571 } 2572 } 2573 2574 if (Result.getOpcode() == ISD::RET) { 2575 switch (TLI.getOperationAction(Result.getOpcode(), MVT::Other)) { 2576 default: assert(0 && "This action is not supported yet!"); 2577 case TargetLowering::Legal: break; 2578 case TargetLowering::Custom: 2579 Tmp1 = TLI.LowerOperation(Result, DAG); 2580 if (Tmp1.getNode()) Result = Tmp1; 2581 break; 2582 } 2583 } 2584 break; 2585 case ISD::STORE: { 2586 StoreSDNode *ST = cast<StoreSDNode>(Node); 2587 Tmp1 = LegalizeOp(ST->getChain()); // Legalize the chain. 2588 Tmp2 = LegalizeOp(ST->getBasePtr()); // Legalize the pointer. 2589 int SVOffset = ST->getSrcValueOffset(); 2590 unsigned Alignment = ST->getAlignment(); 2591 bool isVolatile = ST->isVolatile(); 2592 2593 if (!ST->isTruncatingStore()) { 2594 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 2595 // FIXME: We shouldn't do this for TargetConstantFP's. 2596 // FIXME: move this to the DAG Combiner! Note that we can't regress due 2597 // to phase ordering between legalized code and the dag combiner. This 2598 // probably means that we need to integrate dag combiner and legalizer 2599 // together. 2600 // We generally can't do this one for long doubles. 2601 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) { 2602 if (CFP->getValueType(0) == MVT::f32 && 2603 getTypeAction(MVT::i32) == Legal) { 2604 Tmp3 = DAG.getConstant(CFP->getValueAPF(). 2605 bitcastToAPInt().zextOrTrunc(32), 2606 MVT::i32); 2607 Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(), 2608 SVOffset, isVolatile, Alignment); 2609 break; 2610 } else if (CFP->getValueType(0) == MVT::f64) { 2611 // If this target supports 64-bit registers, do a single 64-bit store. 2612 if (getTypeAction(MVT::i64) == Legal) { 2613 Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 2614 zextOrTrunc(64), MVT::i64); 2615 Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(), 2616 SVOffset, isVolatile, Alignment); 2617 break; 2618 } else if (getTypeAction(MVT::i32) == Legal && !ST->isVolatile()) { 2619 // Otherwise, if the target supports 32-bit registers, use 2 32-bit 2620 // stores. If the target supports neither 32- nor 64-bits, this 2621 // xform is certainly not worth it. 2622 const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt(); 2623 SDValue Lo = DAG.getConstant(APInt(IntVal).trunc(32), MVT::i32); 2624 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32); 2625 if (TLI.isBigEndian()) std::swap(Lo, Hi); 2626 2627 Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getSrcValue(), 2628 SVOffset, isVolatile, Alignment); 2629 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, 2630 DAG.getIntPtrConstant(4)); 2631 Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(), SVOffset+4, 2632 isVolatile, MinAlign(Alignment, 4U)); 2633 2634 Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 2635 break; 2636 } 2637 } 2638 } 2639 2640 switch (getTypeAction(ST->getMemoryVT())) { 2641 case Legal: { 2642 Tmp3 = LegalizeOp(ST->getValue()); 2643 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2, 2644 ST->getOffset()); 2645 2646 MVT VT = Tmp3.getValueType(); 2647 switch (TLI.getOperationAction(ISD::STORE, VT)) { 2648 default: assert(0 && "This action is not supported yet!"); 2649 case TargetLowering::Legal: 2650 // If this is an unaligned store and the target doesn't support it, 2651 // expand it. 2652 if (!TLI.allowsUnalignedMemoryAccesses()) { 2653 unsigned ABIAlignment = TLI.getTargetData()-> 2654 getABITypeAlignment(ST->getMemoryVT().getTypeForMVT()); 2655 if (ST->getAlignment() < ABIAlignment) 2656 Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()), DAG, 2657 TLI); 2658 } 2659 break; 2660 case TargetLowering::Custom: 2661 Tmp1 = TLI.LowerOperation(Result, DAG); 2662 if (Tmp1.getNode()) Result = Tmp1; 2663 break; 2664 case TargetLowering::Promote: 2665 assert(VT.isVector() && "Unknown legal promote case!"); 2666 Tmp3 = DAG.getNode(ISD::BIT_CONVERT, dl, 2667 TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3); 2668 Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, 2669 ST->getSrcValue(), SVOffset, isVolatile, 2670 Alignment); 2671 break; 2672 } 2673 break; 2674 } 2675 case Promote: 2676 if (!ST->getMemoryVT().isVector()) { 2677 // Truncate the value and store the result. 2678 Tmp3 = PromoteOp(ST->getValue()); 2679 Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(), 2680 SVOffset, ST->getMemoryVT(), 2681 isVolatile, Alignment); 2682 break; 2683 } 2684 // Fall thru to expand for vector 2685 case Expand: { 2686 unsigned IncrementSize = 0; 2687 SDValue Lo, Hi; 2688 2689 // If this is a vector type, then we have to calculate the increment as 2690 // the product of the element size in bytes, and the number of elements 2691 // in the high half of the vector. 2692 if (ST->getValue().getValueType().isVector()) { 2693 SDNode *InVal = ST->getValue().getNode(); 2694 int InIx = ST->getValue().getResNo(); 2695 MVT InVT = InVal->getValueType(InIx); 2696 unsigned NumElems = InVT.getVectorNumElements(); 2697 MVT EVT = InVT.getVectorElementType(); 2698 2699 // Figure out if there is a simple type corresponding to this Vector 2700 // type. If so, convert to the vector type. 2701 MVT TVT = MVT::getVectorVT(EVT, NumElems); 2702 if (TLI.isTypeLegal(TVT)) { 2703 // Turn this into a normal store of the vector type. 2704 Tmp3 = LegalizeOp(ST->getValue()); 2705 Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(), 2706 SVOffset, isVolatile, Alignment); 2707 Result = LegalizeOp(Result); 2708 break; 2709 } else if (NumElems == 1) { 2710 // Turn this into a normal store of the scalar type. 2711 Tmp3 = ScalarizeVectorOp(ST->getValue()); 2712 Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(), 2713 SVOffset, isVolatile, Alignment); 2714 // The scalarized value type may not be legal, e.g. it might require 2715 // promotion or expansion. Relegalize the scalar store. 2716 Result = LegalizeOp(Result); 2717 break; 2718 } else { 2719 // Check if we have widen this node with another value 2720 std::map<SDValue, SDValue>::iterator I = 2721 WidenNodes.find(ST->getValue()); 2722 if (I != WidenNodes.end()) { 2723 Result = StoreWidenVectorOp(ST, Tmp1, Tmp2); 2724 break; 2725 } 2726 else { 2727 SplitVectorOp(ST->getValue(), Lo, Hi); 2728 IncrementSize = Lo.getNode()->getValueType(0).getVectorNumElements() * 2729 EVT.getSizeInBits()/8; 2730 } 2731 } 2732 } else { 2733 ExpandOp(ST->getValue(), Lo, Hi); 2734 IncrementSize = Hi.getNode() ? Hi.getValueType().getSizeInBits()/8 : 0; 2735 2736 if (Hi.getNode() && TLI.isBigEndian()) 2737 std::swap(Lo, Hi); 2738 } 2739 2740 Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getSrcValue(), 2741 SVOffset, isVolatile, Alignment); 2742 2743 if (Hi.getNode() == NULL) { 2744 // Must be int <-> float one-to-one expansion. 2745 Result = Lo; 2746 break; 2747 } 2748 2749 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, 2750 DAG.getIntPtrConstant(IncrementSize)); 2751 assert(isTypeLegal(Tmp2.getValueType()) && 2752 "Pointers must be legal!"); 2753 SVOffset += IncrementSize; 2754 Alignment = MinAlign(Alignment, IncrementSize); 2755 Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(), 2756 SVOffset, isVolatile, Alignment); 2757 Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 2758 break; 2759 } // case Expand 2760 } 2761 } else { 2762 switch (getTypeAction(ST->getValue().getValueType())) { 2763 case Legal: 2764 Tmp3 = LegalizeOp(ST->getValue()); 2765 break; 2766 case Promote: 2767 if (!ST->getValue().getValueType().isVector()) { 2768 // We can promote the value, the truncstore will still take care of it. 2769 Tmp3 = PromoteOp(ST->getValue()); 2770 break; 2771 } 2772 // Vector case falls through to expand 2773 case Expand: 2774 // Just store the low part. This may become a non-trunc store, so make 2775 // sure to use getTruncStore, not UpdateNodeOperands below. 2776 ExpandOp(ST->getValue(), Tmp3, Tmp4); 2777 return DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(), 2778 SVOffset, MVT::i8, isVolatile, Alignment); 2779 } 2780 2781 MVT StVT = ST->getMemoryVT(); 2782 unsigned StWidth = StVT.getSizeInBits(); 2783 2784 if (StWidth != StVT.getStoreSizeInBits()) { 2785 // Promote to a byte-sized store with upper bits zero if not 2786 // storing an integral number of bytes. For example, promote 2787 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 2788 MVT NVT = MVT::getIntegerVT(StVT.getStoreSizeInBits()); 2789 Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT); 2790 Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(), 2791 SVOffset, NVT, isVolatile, Alignment); 2792 } else if (StWidth & (StWidth - 1)) { 2793 // If not storing a power-of-2 number of bits, expand as two stores. 2794 assert(StVT.isExtended() && !StVT.isVector() && 2795 "Unsupported truncstore!"); 2796 unsigned RoundWidth = 1 << Log2_32(StWidth); 2797 assert(RoundWidth < StWidth); 2798 unsigned ExtraWidth = StWidth - RoundWidth; 2799 assert(ExtraWidth < RoundWidth); 2800 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 2801 "Store size not an integral number of bytes!"); 2802 MVT RoundVT = MVT::getIntegerVT(RoundWidth); 2803 MVT ExtraVT = MVT::getIntegerVT(ExtraWidth); 2804 SDValue Lo, Hi; 2805 unsigned IncrementSize; 2806 2807 if (TLI.isLittleEndian()) { 2808 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) 2809 // Store the bottom RoundWidth bits. 2810 Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(), 2811 SVOffset, RoundVT, 2812 isVolatile, Alignment); 2813 2814 // Store the remaining ExtraWidth bits. 2815 IncrementSize = RoundWidth / 8; 2816 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, 2817 DAG.getIntPtrConstant(IncrementSize)); 2818 Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3, 2819 DAG.getConstant(RoundWidth, TLI.getShiftAmountTy())); 2820 Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(), 2821 SVOffset + IncrementSize, ExtraVT, isVolatile, 2822 MinAlign(Alignment, IncrementSize)); 2823 } else { 2824 // Big endian - avoid unaligned stores. 2825 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X 2826 // Store the top RoundWidth bits. 2827 Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3, 2828 DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy())); 2829 Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(), 2830 SVOffset, RoundVT, isVolatile, Alignment); 2831 2832 // Store the remaining ExtraWidth bits. 2833 IncrementSize = RoundWidth / 8; 2834 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, 2835 DAG.getIntPtrConstant(IncrementSize)); 2836 Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(), 2837 SVOffset + IncrementSize, ExtraVT, isVolatile, 2838 MinAlign(Alignment, IncrementSize)); 2839 } 2840 2841 // The order of the stores doesn't matter. 2842 Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 2843 } else { 2844 if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() || 2845 Tmp2 != ST->getBasePtr()) 2846 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2, 2847 ST->getOffset()); 2848 2849 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { 2850 default: assert(0 && "This action is not supported yet!"); 2851 case TargetLowering::Legal: 2852 // If this is an unaligned store and the target doesn't support it, 2853 // expand it. 2854 if (!TLI.allowsUnalignedMemoryAccesses()) { 2855 unsigned ABIAlignment = TLI.getTargetData()-> 2856 getABITypeAlignment(ST->getMemoryVT().getTypeForMVT()); 2857 if (ST->getAlignment() < ABIAlignment) 2858 Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()), DAG, 2859 TLI); 2860 } 2861 break; 2862 case TargetLowering::Custom: 2863 Result = TLI.LowerOperation(Result, DAG); 2864 break; 2865 case Expand: 2866 // TRUNCSTORE:i16 i32 -> STORE i16 2867 assert(isTypeLegal(StVT) && "Do not know how to expand this store!"); 2868 Tmp3 = DAG.getNode(ISD::TRUNCATE, dl, StVT, Tmp3); 2869 Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(), 2870 SVOffset, isVolatile, Alignment); 2871 break; 2872 } 2873 } 2874 } 2875 break; 2876 } 2877 case ISD::PCMARKER: 2878 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2879 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 2880 break; 2881 case ISD::STACKSAVE: 2882 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2883 Result = DAG.UpdateNodeOperands(Result, Tmp1); 2884 Tmp1 = Result.getValue(0); 2885 Tmp2 = Result.getValue(1); 2886 2887 switch (TLI.getOperationAction(ISD::STACKSAVE, MVT::Other)) { 2888 default: assert(0 && "This action is not supported yet!"); 2889 case TargetLowering::Legal: break; 2890 case TargetLowering::Custom: 2891 Tmp3 = TLI.LowerOperation(Result, DAG); 2892 if (Tmp3.getNode()) { 2893 Tmp1 = LegalizeOp(Tmp3); 2894 Tmp2 = LegalizeOp(Tmp3.getValue(1)); 2895 } 2896 break; 2897 case TargetLowering::Expand: 2898 // Expand to CopyFromReg if the target set 2899 // StackPointerRegisterToSaveRestore. 2900 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 2901 Tmp1 = DAG.getCopyFromReg(Result.getOperand(0), dl, SP, 2902 Node->getValueType(0)); 2903 Tmp2 = Tmp1.getValue(1); 2904 } else { 2905 Tmp1 = DAG.getUNDEF(Node->getValueType(0)); 2906 Tmp2 = Node->getOperand(0); 2907 } 2908 break; 2909 } 2910 2911 // Since stacksave produce two values, make sure to remember that we 2912 // legalized both of them. 2913 AddLegalizedOperand(SDValue(Node, 0), Tmp1); 2914 AddLegalizedOperand(SDValue(Node, 1), Tmp2); 2915 return Op.getResNo() ? Tmp2 : Tmp1; 2916 2917 case ISD::STACKRESTORE: 2918 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 2919 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. 2920 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 2921 2922 switch (TLI.getOperationAction(ISD::STACKRESTORE, MVT::Other)) { 2923 default: assert(0 && "This action is not supported yet!"); 2924 case TargetLowering::Legal: break; 2925 case TargetLowering::Custom: 2926 Tmp1 = TLI.LowerOperation(Result, DAG); 2927 if (Tmp1.getNode()) Result = Tmp1; 2928 break; 2929 case TargetLowering::Expand: 2930 // Expand to CopyToReg if the target set 2931 // StackPointerRegisterToSaveRestore. 2932 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 2933 Result = DAG.getCopyToReg(Tmp1, dl, SP, Tmp2); 2934 } else { 2935 Result = Tmp1; 2936 } 2937 break; 2938 } 2939 break; 2940 2941 case ISD::READCYCLECOUNTER: 2942 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain 2943 Result = DAG.UpdateNodeOperands(Result, Tmp1); 2944 switch (TLI.getOperationAction(ISD::READCYCLECOUNTER, 2945 Node->getValueType(0))) { 2946 default: assert(0 && "This action is not supported yet!"); 2947 case TargetLowering::Legal: 2948 Tmp1 = Result.getValue(0); 2949 Tmp2 = Result.getValue(1); 2950 break; 2951 case TargetLowering::Custom: 2952 Result = TLI.LowerOperation(Result, DAG); 2953 Tmp1 = LegalizeOp(Result.getValue(0)); 2954 Tmp2 = LegalizeOp(Result.getValue(1)); 2955 break; 2956 } 2957 2958 // Since rdcc produce two values, make sure to remember that we legalized 2959 // both of them. 2960 AddLegalizedOperand(SDValue(Node, 0), Tmp1); 2961 AddLegalizedOperand(SDValue(Node, 1), Tmp2); 2962 return Result; 2963 2964 case ISD::SELECT: 2965 switch (getTypeAction(Node->getOperand(0).getValueType())) { 2966 case Expand: assert(0 && "It's impossible to expand bools"); 2967 case Legal: 2968 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the condition. 2969 break; 2970 case Promote: { 2971 assert(!Node->getOperand(0).getValueType().isVector() && "not possible"); 2972 Tmp1 = PromoteOp(Node->getOperand(0)); // Promote the condition. 2973 // Make sure the condition is either zero or one. 2974 unsigned BitWidth = Tmp1.getValueSizeInBits(); 2975 if (!DAG.MaskedValueIsZero(Tmp1, 2976 APInt::getHighBitsSet(BitWidth, BitWidth-1))) 2977 Tmp1 = DAG.getZeroExtendInReg(Tmp1, dl, MVT::i1); 2978 break; 2979 } 2980 } 2981 Tmp2 = LegalizeOp(Node->getOperand(1)); // TrueVal 2982 Tmp3 = LegalizeOp(Node->getOperand(2)); // FalseVal 2983 2984 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 2985 2986 switch (TLI.getOperationAction(ISD::SELECT, Tmp2.getValueType())) { 2987 default: assert(0 && "This action is not supported yet!"); 2988 case TargetLowering::Legal: break; 2989 case TargetLowering::Custom: { 2990 Tmp1 = TLI.LowerOperation(Result, DAG); 2991 if (Tmp1.getNode()) Result = Tmp1; 2992 break; 2993 } 2994 case TargetLowering::Expand: 2995 if (Tmp1.getOpcode() == ISD::SETCC) { 2996 Result = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1), 2997 Tmp2, Tmp3, 2998 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); 2999 } else { 3000 Result = DAG.getSelectCC(dl, Tmp1, 3001 DAG.getConstant(0, Tmp1.getValueType()), 3002 Tmp2, Tmp3, ISD::SETNE); 3003 } 3004 break; 3005 case TargetLowering::Promote: { 3006 MVT NVT = 3007 TLI.getTypeToPromoteTo(ISD::SELECT, Tmp2.getValueType()); 3008 unsigned ExtOp, TruncOp; 3009 if (Tmp2.getValueType().isVector()) { 3010 ExtOp = ISD::BIT_CONVERT; 3011 TruncOp = ISD::BIT_CONVERT; 3012 } else if (Tmp2.getValueType().isInteger()) { 3013 ExtOp = ISD::ANY_EXTEND; 3014 TruncOp = ISD::TRUNCATE; 3015 } else { 3016 ExtOp = ISD::FP_EXTEND; 3017 TruncOp = ISD::FP_ROUND; 3018 } 3019 // Promote each of the values to the new type. 3020 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Tmp2); 3021 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Tmp3); 3022 // Perform the larger operation, then round down. 3023 Result = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2,Tmp3); 3024 if (TruncOp != ISD::FP_ROUND) 3025 Result = DAG.getNode(TruncOp, dl, Node->getValueType(0), Result); 3026 else 3027 Result = DAG.getNode(TruncOp, dl, Node->getValueType(0), Result, 3028 DAG.getIntPtrConstant(0)); 3029 break; 3030 } 3031 } 3032 break; 3033 case ISD::SELECT_CC: { 3034 Tmp1 = Node->getOperand(0); // LHS 3035 Tmp2 = Node->getOperand(1); // RHS 3036 Tmp3 = LegalizeOp(Node->getOperand(2)); // True 3037 Tmp4 = LegalizeOp(Node->getOperand(3)); // False 3038 SDValue CC = Node->getOperand(4); 3039 3040 LegalizeSetCC(TLI.getSetCCResultType(Tmp1.getValueType()), 3041 Tmp1, Tmp2, CC, dl); 3042 3043 // If we didn't get both a LHS and RHS back from LegalizeSetCC, 3044 // the LHS is a legal SETCC itself. In this case, we need to compare 3045 // the result against zero to select between true and false values. 3046 if (Tmp2.getNode() == 0) { 3047 Tmp2 = DAG.getConstant(0, Tmp1.getValueType()); 3048 CC = DAG.getCondCode(ISD::SETNE); 3049 } 3050 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, Tmp4, CC); 3051 3052 // Everything is legal, see if we should expand this op or something. 3053 switch (TLI.getOperationAction(ISD::SELECT_CC, Tmp3.getValueType())) { 3054 default: assert(0 && "This action is not supported yet!"); 3055 case TargetLowering::Legal: break; 3056 case TargetLowering::Custom: 3057 Tmp1 = TLI.LowerOperation(Result, DAG); 3058 if (Tmp1.getNode()) Result = Tmp1; 3059 break; 3060 } 3061 break; 3062 } 3063 case ISD::SETCC: 3064 Tmp1 = Node->getOperand(0); 3065 Tmp2 = Node->getOperand(1); 3066 Tmp3 = Node->getOperand(2); 3067 LegalizeSetCC(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl); 3068 3069 // If we had to Expand the SetCC operands into a SELECT node, then it may 3070 // not always be possible to return a true LHS & RHS. In this case, just 3071 // return the value we legalized, returned in the LHS 3072 if (Tmp2.getNode() == 0) { 3073 Result = Tmp1; 3074 break; 3075 } 3076 3077 switch (TLI.getOperationAction(ISD::SETCC, Tmp1.getValueType())) { 3078 default: assert(0 && "Cannot handle this action for SETCC yet!"); 3079 case TargetLowering::Custom: 3080 isCustom = true; 3081 // FALLTHROUGH. 3082 case TargetLowering::Legal: 3083 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 3084 if (isCustom) { 3085 Tmp4 = TLI.LowerOperation(Result, DAG); 3086 if (Tmp4.getNode()) Result = Tmp4; 3087 } 3088 break; 3089 case TargetLowering::Promote: { 3090 // First step, figure out the appropriate operation to use. 3091 // Allow SETCC to not be supported for all legal data types 3092 // Mostly this targets FP 3093 MVT NewInTy = Node->getOperand(0).getValueType(); 3094 MVT OldVT = NewInTy; OldVT = OldVT; 3095 3096 // Scan for the appropriate larger type to use. 3097 while (1) { 3098 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT()+1); 3099 3100 assert(NewInTy.isInteger() == OldVT.isInteger() && 3101 "Fell off of the edge of the integer world"); 3102 assert(NewInTy.isFloatingPoint() == OldVT.isFloatingPoint() && 3103 "Fell off of the edge of the floating point world"); 3104 3105 // If the target supports SETCC of this type, use it. 3106 if (TLI.isOperationLegalOrCustom(ISD::SETCC, NewInTy)) 3107 break; 3108 } 3109 if (NewInTy.isInteger()) 3110 assert(0 && "Cannot promote Legal Integer SETCC yet"); 3111 else { 3112 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NewInTy, Tmp1); 3113 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NewInTy, Tmp2); 3114 } 3115 Tmp1 = LegalizeOp(Tmp1); 3116 Tmp2 = LegalizeOp(Tmp2); 3117 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 3118 Result = LegalizeOp(Result); 3119 break; 3120 } 3121 case TargetLowering::Expand: 3122 // Expand a setcc node into a select_cc of the same condition, lhs, and 3123 // rhs that selects between const 1 (true) and const 0 (false). 3124 MVT VT = Node->getValueType(0); 3125 Result = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2, 3126 DAG.getConstant(1, VT), DAG.getConstant(0, VT), 3127 Tmp3); 3128 break; 3129 } 3130 break; 3131 case ISD::VSETCC: { 3132 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 3133 Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS 3134 SDValue CC = Node->getOperand(2); 3135 3136 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, CC); 3137 3138 // Everything is legal, see if we should expand this op or something. 3139 switch (TLI.getOperationAction(ISD::VSETCC, Tmp1.getValueType())) { 3140 default: assert(0 && "This action is not supported yet!"); 3141 case TargetLowering::Legal: break; 3142 case TargetLowering::Custom: 3143 Tmp1 = TLI.LowerOperation(Result, DAG); 3144 if (Tmp1.getNode()) Result = Tmp1; 3145 break; 3146 case TargetLowering::Expand: { 3147 // Unroll into a nasty set of scalar code for now. 3148 MVT VT = Node->getValueType(0); 3149 unsigned NumElems = VT.getVectorNumElements(); 3150 MVT EltVT = VT.getVectorElementType(); 3151 MVT TmpEltVT = Tmp1.getValueType().getVectorElementType(); 3152 SmallVector<SDValue, 8> Ops(NumElems); 3153 for (unsigned i = 0; i < NumElems; ++i) { 3154 SDValue In1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, 3155 Tmp1, DAG.getIntPtrConstant(i)); 3156 Ops[i] = DAG.getNode(ISD::SETCC, dl, TLI.getSetCCResultType(TmpEltVT), 3157 In1, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 3158 TmpEltVT, Tmp2, 3159 DAG.getIntPtrConstant(i)), 3160 CC); 3161 Ops[i] = DAG.getNode(ISD::SELECT, dl, EltVT, Ops[i], DAG.getConstant( 3162 APInt::getAllOnesValue(EltVT.getSizeInBits()), 3163 EltVT), DAG.getConstant(0, EltVT)); 3164 } 3165 Result = DAG.getBUILD_VECTOR(VT, dl, &Ops[0], NumElems); 3166 break; 3167 } 3168 } 3169 break; 3170 } 3171 3172 case ISD::SHL_PARTS: 3173 case ISD::SRA_PARTS: 3174 case ISD::SRL_PARTS: { 3175 SmallVector<SDValue, 8> Ops; 3176 bool Changed = false; 3177 unsigned N = Node->getNumOperands(); 3178 for (unsigned i = 0; i + 1 < N; ++i) { 3179 Ops.push_back(LegalizeOp(Node->getOperand(i))); 3180 Changed |= Ops.back() != Node->getOperand(i); 3181 } 3182 Ops.push_back(LegalizeOp(DAG.getShiftAmountOperand(Node->getOperand(N-1)))); 3183 Changed |= Ops.back() != Node->getOperand(N-1); 3184 if (Changed) 3185 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); 3186 3187 switch (TLI.getOperationAction(Node->getOpcode(), 3188 Node->getValueType(0))) { 3189 default: assert(0 && "This action is not supported yet!"); 3190 case TargetLowering::Legal: break; 3191 case TargetLowering::Custom: 3192 Tmp1 = TLI.LowerOperation(Result, DAG); 3193 if (Tmp1.getNode()) { 3194 SDValue Tmp2, RetVal(0, 0); 3195 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) { 3196 Tmp2 = LegalizeOp(Tmp1.getValue(i)); 3197 AddLegalizedOperand(SDValue(Node, i), Tmp2); 3198 if (i == Op.getResNo()) 3199 RetVal = Tmp2; 3200 } 3201 assert(RetVal.getNode() && "Illegal result number"); 3202 return RetVal; 3203 } 3204 break; 3205 } 3206 3207 // Since these produce multiple values, make sure to remember that we 3208 // legalized all of them. 3209 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 3210 AddLegalizedOperand(SDValue(Node, i), Result.getValue(i)); 3211 return Result.getValue(Op.getResNo()); 3212 } 3213 3214 // Binary operators 3215 case ISD::ADD: 3216 case ISD::SUB: 3217 case ISD::MUL: 3218 case ISD::MULHS: 3219 case ISD::MULHU: 3220 case ISD::UDIV: 3221 case ISD::SDIV: 3222 case ISD::AND: 3223 case ISD::OR: 3224 case ISD::XOR: 3225 case ISD::SHL: 3226 case ISD::SRL: 3227 case ISD::SRA: 3228 case ISD::FADD: 3229 case ISD::FSUB: 3230 case ISD::FMUL: 3231 case ISD::FDIV: 3232 case ISD::FPOW: 3233 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 3234 Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS 3235 3236 if ((Node->getOpcode() == ISD::SHL || 3237 Node->getOpcode() == ISD::SRL || 3238 Node->getOpcode() == ISD::SRA) && 3239 !Node->getValueType(0).isVector()) 3240 Tmp2 = DAG.getShiftAmountOperand(Tmp2); 3241 3242 switch (getTypeAction(Tmp2.getValueType())) { 3243 case Expand: assert(0 && "Not possible"); 3244 case Legal: 3245 Tmp2 = LegalizeOp(Tmp2); // Legalize the RHS. 3246 break; 3247 case Promote: 3248 Tmp2 = PromoteOp(Tmp2); // Promote the RHS. 3249 break; 3250 } 3251 3252 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3253 3254 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3255 default: assert(0 && "BinOp legalize operation not supported"); 3256 case TargetLowering::Legal: break; 3257 case TargetLowering::Custom: 3258 Tmp1 = TLI.LowerOperation(Result, DAG); 3259 if (Tmp1.getNode()) { 3260 Result = Tmp1; 3261 break; 3262 } 3263 // Fall through if the custom lower can't deal with the operation 3264 case TargetLowering::Expand: { 3265 MVT VT = Op.getValueType(); 3266 3267 // See if multiply or divide can be lowered using two-result operations. 3268 SDVTList VTs = DAG.getVTList(VT, VT); 3269 if (Node->getOpcode() == ISD::MUL) { 3270 // We just need the low half of the multiply; try both the signed 3271 // and unsigned forms. If the target supports both SMUL_LOHI and 3272 // UMUL_LOHI, form a preference by checking which forms of plain 3273 // MULH it supports. 3274 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT); 3275 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT); 3276 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT); 3277 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT); 3278 unsigned OpToUse = 0; 3279 if (HasSMUL_LOHI && !HasMULHS) { 3280 OpToUse = ISD::SMUL_LOHI; 3281 } else if (HasUMUL_LOHI && !HasMULHU) { 3282 OpToUse = ISD::UMUL_LOHI; 3283 } else if (HasSMUL_LOHI) { 3284 OpToUse = ISD::SMUL_LOHI; 3285 } else if (HasUMUL_LOHI) { 3286 OpToUse = ISD::UMUL_LOHI; 3287 } 3288 if (OpToUse) { 3289 Result = SDValue(DAG.getNode(OpToUse, dl, VTs, Tmp1, Tmp2).getNode(), 3290 0); 3291 break; 3292 } 3293 } 3294 if (Node->getOpcode() == ISD::MULHS && 3295 TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) { 3296 Result = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, 3297 VTs, Tmp1, Tmp2).getNode(), 3298 1); 3299 break; 3300 } 3301 if (Node->getOpcode() == ISD::MULHU && 3302 TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) { 3303 Result = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, 3304 VTs, Tmp1, Tmp2).getNode(), 3305 1); 3306 break; 3307 } 3308 if (Node->getOpcode() == ISD::SDIV && 3309 TLI.isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 3310 Result = SDValue(DAG.getNode(ISD::SDIVREM, dl, 3311 VTs, Tmp1, Tmp2).getNode(), 3312 0); 3313 break; 3314 } 3315 if (Node->getOpcode() == ISD::UDIV && 3316 TLI.isOperationLegalOrCustom(ISD::UDIVREM, VT)) { 3317 Result = SDValue(DAG.getNode(ISD::UDIVREM, dl, 3318 VTs, Tmp1, Tmp2).getNode(), 3319 0); 3320 break; 3321 } 3322 3323 // Check to see if we have a libcall for this operator. 3324 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 3325 bool isSigned = false; 3326 switch (Node->getOpcode()) { 3327 case ISD::UDIV: 3328 case ISD::SDIV: 3329 if (VT == MVT::i32) { 3330 LC = Node->getOpcode() == ISD::UDIV 3331 ? RTLIB::UDIV_I32 : RTLIB::SDIV_I32; 3332 isSigned = Node->getOpcode() == ISD::SDIV; 3333 } 3334 break; 3335 case ISD::MUL: 3336 if (VT == MVT::i32) 3337 LC = RTLIB::MUL_I32; 3338 else if (VT == MVT::i64) 3339 LC = RTLIB::MUL_I64; 3340 break; 3341 case ISD::FPOW: 3342 LC = GetFPLibCall(VT, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80, 3343 RTLIB::POW_PPCF128); 3344 break; 3345 case ISD::FDIV: 3346 LC = GetFPLibCall(VT, RTLIB::DIV_F32, RTLIB::DIV_F64, RTLIB::DIV_F80, 3347 RTLIB::DIV_PPCF128); 3348 break; 3349 default: break; 3350 } 3351 if (LC != RTLIB::UNKNOWN_LIBCALL) { 3352 SDValue Dummy; 3353 Result = ExpandLibCall(LC, Node, isSigned, Dummy); 3354 break; 3355 } 3356 3357 assert(Node->getValueType(0).isVector() && 3358 "Cannot expand this binary operator!"); 3359 // Expand the operation into a bunch of nasty scalar code. 3360 Result = LegalizeOp(UnrollVectorOp(Op)); 3361 break; 3362 } 3363 case TargetLowering::Promote: { 3364 switch (Node->getOpcode()) { 3365 default: assert(0 && "Do not know how to promote this BinOp!"); 3366 case ISD::AND: 3367 case ISD::OR: 3368 case ISD::XOR: { 3369 MVT OVT = Node->getValueType(0); 3370 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 3371 assert(OVT.isVector() && "Cannot promote this BinOp!"); 3372 // Bit convert each of the values to the new type. 3373 Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Tmp1); 3374 Tmp2 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Tmp2); 3375 Result = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 3376 // Bit convert the result back the original type. 3377 Result = DAG.getNode(ISD::BIT_CONVERT, dl, OVT, Result); 3378 break; 3379 } 3380 } 3381 } 3382 } 3383 break; 3384 3385 case ISD::SMUL_LOHI: 3386 case ISD::UMUL_LOHI: 3387 case ISD::SDIVREM: 3388 case ISD::UDIVREM: 3389 // These nodes will only be produced by target-specific lowering, so 3390 // they shouldn't be here if they aren't legal. 3391 assert(TLI.isOperationLegal(Node->getOpcode(), Node->getValueType(0)) && 3392 "This must be legal!"); 3393 3394 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 3395 Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS 3396 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3397 break; 3398 3399 case ISD::FCOPYSIGN: // FCOPYSIGN does not require LHS/RHS to match type! 3400 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 3401 switch (getTypeAction(Node->getOperand(1).getValueType())) { 3402 case Expand: assert(0 && "Not possible"); 3403 case Legal: 3404 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the RHS. 3405 break; 3406 case Promote: 3407 Tmp2 = PromoteOp(Node->getOperand(1)); // Promote the RHS. 3408 break; 3409 } 3410 3411 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3412 3413 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3414 default: assert(0 && "Operation not supported"); 3415 case TargetLowering::Custom: 3416 Tmp1 = TLI.LowerOperation(Result, DAG); 3417 if (Tmp1.getNode()) Result = Tmp1; 3418 break; 3419 case TargetLowering::Legal: break; 3420 case TargetLowering::Expand: { 3421 // If this target supports fabs/fneg natively and select is cheap, 3422 // do this efficiently. 3423 if (!TLI.isSelectExpensive() && 3424 TLI.getOperationAction(ISD::FABS, Tmp1.getValueType()) == 3425 TargetLowering::Legal && 3426 TLI.getOperationAction(ISD::FNEG, Tmp1.getValueType()) == 3427 TargetLowering::Legal) { 3428 // Get the sign bit of the RHS. 3429 MVT IVT = 3430 Tmp2.getValueType() == MVT::f32 ? MVT::i32 : MVT::i64; 3431 SDValue SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, IVT, Tmp2); 3432 SignBit = DAG.getSetCC(dl, TLI.getSetCCResultType(IVT), 3433 SignBit, DAG.getConstant(0, IVT), ISD::SETLT); 3434 // Get the absolute value of the result. 3435 SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1); 3436 // Select between the nabs and abs value based on the sign bit of 3437 // the input. 3438 Result = DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit, 3439 DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), 3440 AbsVal), 3441 AbsVal); 3442 Result = LegalizeOp(Result); 3443 break; 3444 } 3445 3446 // Otherwise, do bitwise ops! 3447 MVT NVT = 3448 Node->getValueType(0) == MVT::f32 ? MVT::i32 : MVT::i64; 3449 Result = ExpandFCOPYSIGNToBitwiseOps(Node, NVT, DAG, TLI); 3450 Result = DAG.getNode(ISD::BIT_CONVERT, dl, Node->getValueType(0), Result); 3451 Result = LegalizeOp(Result); 3452 break; 3453 } 3454 } 3455 break; 3456 3457 case ISD::ADDC: 3458 case ISD::SUBC: 3459 Tmp1 = LegalizeOp(Node->getOperand(0)); 3460 Tmp2 = LegalizeOp(Node->getOperand(1)); 3461 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3462 Tmp3 = Result.getValue(0); 3463 Tmp4 = Result.getValue(1); 3464 3465 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3466 default: assert(0 && "This action is not supported yet!"); 3467 case TargetLowering::Legal: 3468 break; 3469 case TargetLowering::Custom: 3470 Tmp1 = TLI.LowerOperation(Tmp3, DAG); 3471 if (Tmp1.getNode() != NULL) { 3472 Tmp3 = LegalizeOp(Tmp1); 3473 Tmp4 = LegalizeOp(Tmp1.getValue(1)); 3474 } 3475 break; 3476 } 3477 // Since this produces two values, make sure to remember that we legalized 3478 // both of them. 3479 AddLegalizedOperand(SDValue(Node, 0), Tmp3); 3480 AddLegalizedOperand(SDValue(Node, 1), Tmp4); 3481 return Op.getResNo() ? Tmp4 : Tmp3; 3482 3483 case ISD::ADDE: 3484 case ISD::SUBE: 3485 Tmp1 = LegalizeOp(Node->getOperand(0)); 3486 Tmp2 = LegalizeOp(Node->getOperand(1)); 3487 Tmp3 = LegalizeOp(Node->getOperand(2)); 3488 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); 3489 Tmp3 = Result.getValue(0); 3490 Tmp4 = Result.getValue(1); 3491 3492 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3493 default: assert(0 && "This action is not supported yet!"); 3494 case TargetLowering::Legal: 3495 break; 3496 case TargetLowering::Custom: 3497 Tmp1 = TLI.LowerOperation(Tmp3, DAG); 3498 if (Tmp1.getNode() != NULL) { 3499 Tmp3 = LegalizeOp(Tmp1); 3500 Tmp4 = LegalizeOp(Tmp1.getValue(1)); 3501 } 3502 break; 3503 } 3504 // Since this produces two values, make sure to remember that we legalized 3505 // both of them. 3506 AddLegalizedOperand(SDValue(Node, 0), Tmp3); 3507 AddLegalizedOperand(SDValue(Node, 1), Tmp4); 3508 return Op.getResNo() ? Tmp4 : Tmp3; 3509 3510 case ISD::BUILD_PAIR: { 3511 MVT PairTy = Node->getValueType(0); 3512 // TODO: handle the case where the Lo and Hi operands are not of legal type 3513 Tmp1 = LegalizeOp(Node->getOperand(0)); // Lo 3514 Tmp2 = LegalizeOp(Node->getOperand(1)); // Hi 3515 switch (TLI.getOperationAction(ISD::BUILD_PAIR, PairTy)) { 3516 case TargetLowering::Promote: 3517 case TargetLowering::Custom: 3518 assert(0 && "Cannot promote/custom this yet!"); 3519 case TargetLowering::Legal: 3520 if (Tmp1 != Node->getOperand(0) || Tmp2 != Node->getOperand(1)) 3521 Result = DAG.getNode(ISD::BUILD_PAIR, dl, PairTy, Tmp1, Tmp2); 3522 break; 3523 case TargetLowering::Expand: 3524 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Tmp1); 3525 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Tmp2); 3526 Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2, 3527 DAG.getConstant(PairTy.getSizeInBits()/2, 3528 TLI.getShiftAmountTy())); 3529 Result = DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2); 3530 break; 3531 } 3532 break; 3533 } 3534 3535 case ISD::UREM: 3536 case ISD::SREM: 3537 case ISD::FREM: 3538 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 3539 Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS 3540 3541 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3542 case TargetLowering::Promote: assert(0 && "Cannot promote this yet!"); 3543 case TargetLowering::Custom: 3544 isCustom = true; 3545 // FALLTHROUGH 3546 case TargetLowering::Legal: 3547 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3548 if (isCustom) { 3549 Tmp1 = TLI.LowerOperation(Result, DAG); 3550 if (Tmp1.getNode()) Result = Tmp1; 3551 } 3552 break; 3553 case TargetLowering::Expand: { 3554 unsigned DivOpc= (Node->getOpcode() == ISD::UREM) ? ISD::UDIV : ISD::SDIV; 3555 bool isSigned = DivOpc == ISD::SDIV; 3556 MVT VT = Node->getValueType(0); 3557 3558 // See if remainder can be lowered using two-result operations. 3559 SDVTList VTs = DAG.getVTList(VT, VT); 3560 if (Node->getOpcode() == ISD::SREM && 3561 TLI.isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 3562 Result = SDValue(DAG.getNode(ISD::SDIVREM, dl, 3563 VTs, Tmp1, Tmp2).getNode(), 1); 3564 break; 3565 } 3566 if (Node->getOpcode() == ISD::UREM && 3567 TLI.isOperationLegalOrCustom(ISD::UDIVREM, VT)) { 3568 Result = SDValue(DAG.getNode(ISD::UDIVREM, dl, 3569 VTs, Tmp1, Tmp2).getNode(), 1); 3570 break; 3571 } 3572 3573 if (VT.isInteger()) { 3574 if (TLI.getOperationAction(DivOpc, VT) == 3575 TargetLowering::Legal) { 3576 // X % Y -> X-X/Y*Y 3577 Result = DAG.getNode(DivOpc, dl, VT, Tmp1, Tmp2); 3578 Result = DAG.getNode(ISD::MUL, dl, VT, Result, Tmp2); 3579 Result = DAG.getNode(ISD::SUB, dl, VT, Tmp1, Result); 3580 } else if (VT.isVector()) { 3581 Result = LegalizeOp(UnrollVectorOp(Op)); 3582 } else { 3583 assert(VT == MVT::i32 && 3584 "Cannot expand this binary operator!"); 3585 RTLIB::Libcall LC = Node->getOpcode() == ISD::UREM 3586 ? RTLIB::UREM_I32 : RTLIB::SREM_I32; 3587 SDValue Dummy; 3588 Result = ExpandLibCall(LC, Node, isSigned, Dummy); 3589 } 3590 } else { 3591 assert(VT.isFloatingPoint() && 3592 "remainder op must have integer or floating-point type"); 3593 if (VT.isVector()) { 3594 Result = LegalizeOp(UnrollVectorOp(Op)); 3595 } else { 3596 // Floating point mod -> fmod libcall. 3597 RTLIB::Libcall LC = GetFPLibCall(VT, RTLIB::REM_F32, RTLIB::REM_F64, 3598 RTLIB::REM_F80, RTLIB::REM_PPCF128); 3599 SDValue Dummy; 3600 Result = ExpandLibCall(LC, Node, false/*sign irrelevant*/, Dummy); 3601 } 3602 } 3603 break; 3604 } 3605 } 3606 break; 3607 case ISD::VAARG: { 3608 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 3609 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. 3610 3611 MVT VT = Node->getValueType(0); 3612 switch (TLI.getOperationAction(Node->getOpcode(), MVT::Other)) { 3613 default: assert(0 && "This action is not supported yet!"); 3614 case TargetLowering::Custom: 3615 isCustom = true; 3616 // FALLTHROUGH 3617 case TargetLowering::Legal: 3618 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 3619 Result = Result.getValue(0); 3620 Tmp1 = Result.getValue(1); 3621 3622 if (isCustom) { 3623 Tmp2 = TLI.LowerOperation(Result, DAG); 3624 if (Tmp2.getNode()) { 3625 Result = LegalizeOp(Tmp2); 3626 Tmp1 = LegalizeOp(Tmp2.getValue(1)); 3627 } 3628 } 3629 break; 3630 case TargetLowering::Expand: { 3631 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 3632 SDValue VAList = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2, V, 0); 3633 // Increment the pointer, VAList, to the next vaarg 3634 Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList, 3635 DAG.getConstant(TLI.getTargetData()-> 3636 getTypePaddedSize(VT.getTypeForMVT()), 3637 TLI.getPointerTy())); 3638 // Store the incremented VAList to the legalized pointer 3639 Tmp3 = DAG.getStore(VAList.getValue(1), dl, Tmp3, Tmp2, V, 0); 3640 // Load the actual argument out of the pointer VAList 3641 Result = DAG.getLoad(VT, dl, Tmp3, VAList, NULL, 0); 3642 Tmp1 = LegalizeOp(Result.getValue(1)); 3643 Result = LegalizeOp(Result); 3644 break; 3645 } 3646 } 3647 // Since VAARG produces two values, make sure to remember that we 3648 // legalized both of them. 3649 AddLegalizedOperand(SDValue(Node, 0), Result); 3650 AddLegalizedOperand(SDValue(Node, 1), Tmp1); 3651 return Op.getResNo() ? Tmp1 : Result; 3652 } 3653 3654 case ISD::VACOPY: 3655 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 3656 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the dest pointer. 3657 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the source pointer. 3658 3659 switch (TLI.getOperationAction(ISD::VACOPY, MVT::Other)) { 3660 default: assert(0 && "This action is not supported yet!"); 3661 case TargetLowering::Custom: 3662 isCustom = true; 3663 // FALLTHROUGH 3664 case TargetLowering::Legal: 3665 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, 3666 Node->getOperand(3), Node->getOperand(4)); 3667 if (isCustom) { 3668 Tmp1 = TLI.LowerOperation(Result, DAG); 3669 if (Tmp1.getNode()) Result = Tmp1; 3670 } 3671 break; 3672 case TargetLowering::Expand: 3673 // This defaults to loading a pointer from the input and storing it to the 3674 // output, returning the chain. 3675 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 3676 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 3677 Tmp4 = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp3, VS, 0); 3678 Result = DAG.getStore(Tmp4.getValue(1), dl, Tmp4, Tmp2, VD, 0); 3679 break; 3680 } 3681 break; 3682 3683 case ISD::VAEND: 3684 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 3685 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. 3686 3687 switch (TLI.getOperationAction(ISD::VAEND, MVT::Other)) { 3688 default: assert(0 && "This action is not supported yet!"); 3689 case TargetLowering::Custom: 3690 isCustom = true; 3691 // FALLTHROUGH 3692 case TargetLowering::Legal: 3693 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 3694 if (isCustom) { 3695 Tmp1 = TLI.LowerOperation(Tmp1, DAG); 3696 if (Tmp1.getNode()) Result = Tmp1; 3697 } 3698 break; 3699 case TargetLowering::Expand: 3700 Result = Tmp1; // Default to a no-op, return the chain 3701 break; 3702 } 3703 break; 3704 3705 case ISD::VASTART: 3706 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. 3707 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. 3708 3709 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); 3710 3711 switch (TLI.getOperationAction(ISD::VASTART, MVT::Other)) { 3712 default: assert(0 && "This action is not supported yet!"); 3713 case TargetLowering::Legal: break; 3714 case TargetLowering::Custom: 3715 Tmp1 = TLI.LowerOperation(Result, DAG); 3716 if (Tmp1.getNode()) Result = Tmp1; 3717 break; 3718 } 3719 break; 3720 3721 case ISD::ROTL: 3722 case ISD::ROTR: 3723 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS 3724 Tmp2 = LegalizeOp(DAG.getShiftAmountOperand(Node->getOperand(1))); // RHS 3725 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); 3726 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3727 default: 3728 assert(0 && "ROTL/ROTR legalize operation not supported"); 3729 break; 3730 case TargetLowering::Legal: 3731 break; 3732 case TargetLowering::Custom: 3733 Tmp1 = TLI.LowerOperation(Result, DAG); 3734 if (Tmp1.getNode()) Result = Tmp1; 3735 break; 3736 case TargetLowering::Promote: 3737 assert(0 && "Do not know how to promote ROTL/ROTR"); 3738 break; 3739 case TargetLowering::Expand: 3740 assert(0 && "Do not know how to expand ROTL/ROTR"); 3741 break; 3742 } 3743 break; 3744 3745 case ISD::BSWAP: 3746 Tmp1 = LegalizeOp(Node->getOperand(0)); // Op 3747 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3748 case TargetLowering::Custom: 3749 assert(0 && "Cannot custom legalize this yet!"); 3750 case TargetLowering::Legal: 3751 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3752 break; 3753 case TargetLowering::Promote: { 3754 MVT OVT = Tmp1.getValueType(); 3755 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 3756 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); 3757 3758 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Tmp1); 3759 Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1); 3760 Result = DAG.getNode(ISD::SRL, dl, NVT, Tmp1, 3761 DAG.getConstant(DiffBits, TLI.getShiftAmountTy())); 3762 break; 3763 } 3764 case TargetLowering::Expand: 3765 Result = ExpandBSWAP(Tmp1, dl); 3766 break; 3767 } 3768 break; 3769 3770 case ISD::CTPOP: 3771 case ISD::CTTZ: 3772 case ISD::CTLZ: 3773 Tmp1 = LegalizeOp(Node->getOperand(0)); // Op 3774 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3775 case TargetLowering::Custom: 3776 case TargetLowering::Legal: 3777 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3778 if (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)) == 3779 TargetLowering::Custom) { 3780 Tmp1 = TLI.LowerOperation(Result, DAG); 3781 if (Tmp1.getNode()) { 3782 Result = Tmp1; 3783 } 3784 } 3785 break; 3786 case TargetLowering::Promote: { 3787 MVT OVT = Tmp1.getValueType(); 3788 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 3789 3790 // Zero extend the argument. 3791 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Tmp1); 3792 // Perform the larger operation, then subtract if needed. 3793 Tmp1 = DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Tmp1); 3794 switch (Node->getOpcode()) { 3795 case ISD::CTPOP: 3796 Result = Tmp1; 3797 break; 3798 case ISD::CTTZ: 3799 //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT) 3800 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()), 3801 Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT), 3802 ISD::SETEQ); 3803 Result = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, 3804 DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1); 3805 break; 3806 case ISD::CTLZ: 3807 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 3808 Result = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, 3809 DAG.getConstant(NVT.getSizeInBits() - 3810 OVT.getSizeInBits(), NVT)); 3811 break; 3812 } 3813 break; 3814 } 3815 case TargetLowering::Expand: 3816 Result = ExpandBitCount(Node->getOpcode(), Tmp1, dl); 3817 break; 3818 } 3819 break; 3820 3821 // Unary operators 3822 case ISD::FABS: 3823 case ISD::FNEG: 3824 case ISD::FSQRT: 3825 case ISD::FSIN: 3826 case ISD::FCOS: 3827 case ISD::FLOG: 3828 case ISD::FLOG2: 3829 case ISD::FLOG10: 3830 case ISD::FEXP: 3831 case ISD::FEXP2: 3832 case ISD::FTRUNC: 3833 case ISD::FFLOOR: 3834 case ISD::FCEIL: 3835 case ISD::FRINT: 3836 case ISD::FNEARBYINT: 3837 Tmp1 = LegalizeOp(Node->getOperand(0)); 3838 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 3839 case TargetLowering::Promote: 3840 case TargetLowering::Custom: 3841 isCustom = true; 3842 // FALLTHROUGH 3843 case TargetLowering::Legal: 3844 Result = DAG.UpdateNodeOperands(Result, Tmp1); 3845 if (isCustom) { 3846 Tmp1 = TLI.LowerOperation(Result, DAG); 3847 if (Tmp1.getNode()) Result = Tmp1; 3848 } 3849 break; 3850 case TargetLowering::Expand: 3851 switch (Node->getOpcode()) { 3852 default: assert(0 && "Unreachable!"); 3853 case ISD::FNEG: 3854 // Expand Y = FNEG(X) -> Y = SUB -0.0, X 3855 Tmp2 = DAG.getConstantFP(-0.0, Node->getValueType(0)); 3856 Result = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp2, Tmp1); 3857 break; 3858 case ISD::FABS: { 3859 // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X). 3860 MVT VT = Node->getValueType(0); 3861 Tmp2 = DAG.getConstantFP(0.0, VT); 3862 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()), 3863 Tmp1, Tmp2, ISD::SETUGT); 3864 Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1); 3865 Result = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3); 3866 break; 3867 } 3868 case ISD::FSQRT: 3869 case ISD::FSIN: 3870 case ISD::FCOS: 3871 case ISD::FLOG: 3872 case ISD::FLOG2: 3873 case ISD::FLOG10: 3874 case ISD::FEXP: 3875 case ISD::FEXP2: 3876 case ISD::FTRUNC: 3877 case ISD::FFLOOR: 3878 case ISD::FCEIL: 3879 case ISD::FRINT: 3880 case ISD::FNEARBYINT: { 3881 MVT VT = Node->getValueType(0); 3882 3883 // Expand unsupported unary vector operators by unrolling them. 3884 if (VT.isVector()) { 3885 Result = LegalizeOp(UnrollVectorOp(Op)); 3886 break; 3887 } 3888 3889 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 3890 switch(Node->getOpcode()) { 3891 case ISD::FSQRT: 3892 LC = GetFPLibCall(VT, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 3893 RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128); 3894 break; 3895 case ISD::FSIN: 3896 LC = GetFPLibCall(VT, RTLIB::SIN_F32, RTLIB::SIN_F64, 3897 RTLIB::SIN_F80, RTLIB::SIN_PPCF128); 3898 break; 3899 case ISD::FCOS: 3900 LC = GetFPLibCall(VT, RTLIB::COS_F32, RTLIB::COS_F64, 3901 RTLIB::COS_F80, RTLIB::COS_PPCF128); 3902 break; 3903 case ISD::FLOG: 3904 LC = GetFPLibCall(VT, RTLIB::LOG_F32, RTLIB::LOG_F64, 3905 RTLIB::LOG_F80, RTLIB::LOG_PPCF128); 3906 break; 3907 case ISD::FLOG2: 3908 LC = GetFPLibCall(VT, RTLIB::LOG2_F32, RTLIB::LOG2_F64, 3909 RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128); 3910 break; 3911 case ISD::FLOG10: 3912 LC = GetFPLibCall(VT, RTLIB::LOG10_F32, RTLIB::LOG10_F64, 3913 RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128); 3914 break; 3915 case ISD::FEXP: 3916 LC = GetFPLibCall(VT, RTLIB::EXP_F32, RTLIB::EXP_F64, 3917 RTLIB::EXP_F80, RTLIB::EXP_PPCF128); 3918 break; 3919 case ISD::FEXP2: 3920 LC = GetFPLibCall(VT, RTLIB::EXP2_F32, RTLIB::EXP2_F64, 3921 RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128); 3922 break; 3923 case ISD::FTRUNC: 3924 LC = GetFPLibCall(VT, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, 3925 RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128); 3926 break; 3927 case ISD::FFLOOR: 3928 LC = GetFPLibCall(VT, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, 3929 RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128); 3930 break; 3931 case ISD::FCEIL: 3932 LC = GetFPLibCall(VT, RTLIB::CEIL_F32, RTLIB::CEIL_F64, 3933 RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128); 3934 break; 3935 case ISD::FRINT: 3936 LC = GetFPLibCall(VT, RTLIB::RINT_F32, RTLIB::RINT_F64, 3937 RTLIB::RINT_F80, RTLIB::RINT_PPCF128); 3938 break; 3939 case ISD::FNEARBYINT: 3940 LC = GetFPLibCall(VT, RTLIB::NEARBYINT_F32, RTLIB::NEARBYINT_F64, 3941 RTLIB::NEARBYINT_F80, RTLIB::NEARBYINT_PPCF128); 3942 break; 3943 break; 3944 default: assert(0 && "Unreachable!"); 3945 } 3946 SDValue Dummy; 3947 Result = ExpandLibCall(LC, Node, false/*sign irrelevant*/, Dummy); 3948 break; 3949 } 3950 } 3951 break; 3952 } 3953 break; 3954 case ISD::FPOWI: { 3955 MVT VT = Node->getValueType(0); 3956 3957 // Expand unsupported unary vector operators by unrolling them. 3958 if (VT.isVector()) { 3959 Result = LegalizeOp(UnrollVectorOp(Op)); 3960 break; 3961 } 3962 3963 // We always lower FPOWI into a libcall. No target support for it yet. 3964 RTLIB::Libcall LC = GetFPLibCall(VT, RTLIB::POWI_F32, RTLIB::POWI_F64, 3965 RTLIB::POWI_F80, RTLIB::POWI_PPCF128); 3966 SDValue Dummy; 3967 Result = ExpandLibCall(LC, Node, false/*sign irrelevant*/, Dummy); 3968 break; 3969 } 3970 case ISD::BIT_CONVERT: 3971 if (!isTypeLegal(Node->getOperand(0).getValueType())) { 3972 Result = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 3973 Node->getValueType(0), dl); 3974 } else if (Op.getOperand(0).getValueType().isVector()) { 3975 // The input has to be a vector type, we have to either scalarize it, pack 3976 // it, or convert it based on whether the input vector type is legal. 3977 SDNode *InVal = Node->getOperand(0).getNode(); 3978 int InIx = Node->getOperand(0).getResNo(); 3979 unsigned NumElems = InVal->getValueType(InIx).getVectorNumElements(); 3980 MVT EVT = InVal->getValueType(InIx).getVectorElementType(); 3981 3982 // Figure out if there is a simple type corresponding to this Vector 3983 // type. If so, convert to the vector type. 3984 MVT TVT = MVT::getVectorVT(EVT, NumElems); 3985 if (TLI.isTypeLegal(TVT)) { 3986 // Turn this into a bit convert of the vector input. 3987 Result = DAG.getNode(ISD::BIT_CONVERT, dl, Node->getValueType(0), 3988 LegalizeOp(Node->getOperand(0))); 3989 break; 3990 } else if (NumElems == 1) { 3991 // Turn this into a bit convert of the scalar input. 3992 Result = DAG.getNode(ISD::BIT_CONVERT, dl, Node->getValueType(0), 3993 ScalarizeVectorOp(Node->getOperand(0))); 3994 break; 3995 } else { 3996 // FIXME: UNIMP! Store then reload 3997 assert(0 && "Cast from unsupported vector type not implemented yet!"); 3998 } 3999 } else { 4000 switch (TLI.getOperationAction(ISD::BIT_CONVERT, 4001 Node->getOperand(0).getValueType())) { 4002 default: assert(0 && "Unknown operation action!"); 4003 case TargetLowering::Expand: 4004 Result = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 4005 Node->getValueType(0), dl); 4006 break; 4007 case TargetLowering::Legal: 4008 Tmp1 = LegalizeOp(Node->getOperand(0)); 4009 Result = DAG.UpdateNodeOperands(Result, Tmp1); 4010 break; 4011 } 4012 } 4013 break; 4014 case ISD::CONVERT_RNDSAT: { 4015 ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(Node)->getCvtCode(); 4016 switch (CvtCode) { 4017 default: assert(0 && "Unknown cvt code!"); 4018 case ISD::CVT_SF: 4019 case ISD::CVT_UF: 4020 case ISD::CVT_FF: 4021 break; 4022 case ISD::CVT_FS: 4023 case ISD::CVT_FU: 4024 case ISD::CVT_SS: 4025 case ISD::CVT_SU: 4026 case ISD::CVT_US: 4027 case ISD::CVT_UU: { 4028 SDValue DTyOp = Node->getOperand(1); 4029 SDValue STyOp = Node->getOperand(2); 4030 SDValue RndOp = Node->getOperand(3); 4031 SDValue SatOp = Node->getOperand(4); 4032 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4033 case Expand: assert(0 && "Shouldn't need to expand other operators here!"); 4034 case Legal: 4035 Tmp1 = LegalizeOp(Node->getOperand(0)); 4036 Result = DAG.UpdateNodeOperands(Result, Tmp1, DTyOp, STyOp, 4037 RndOp, SatOp); 4038 if (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)) == 4039 TargetLowering::Custom) { 4040 Tmp1 = TLI.LowerOperation(Result, DAG); 4041 if (Tmp1.getNode()) Result = Tmp1; 4042 } 4043 break; 4044 case Promote: 4045 Result = PromoteOp(Node->getOperand(0)); 4046 // For FP, make Op1 a i32 4047 4048 Result = DAG.getConvertRndSat(Op.getValueType(), dl, Result, 4049 DTyOp, STyOp, RndOp, SatOp, CvtCode); 4050 break; 4051 } 4052 break; 4053 } 4054 } // end switch CvtCode 4055 break; 4056 } 4057 // Conversion operators. The source and destination have different types. 4058 case ISD::SINT_TO_FP: 4059 case ISD::UINT_TO_FP: { 4060 bool isSigned = Node->getOpcode() == ISD::SINT_TO_FP; 4061 Result = LegalizeINT_TO_FP(Result, isSigned, 4062 Node->getValueType(0), Node->getOperand(0), dl); 4063 break; 4064 } 4065 case ISD::TRUNCATE: 4066 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4067 case Legal: 4068 Tmp1 = LegalizeOp(Node->getOperand(0)); 4069 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { 4070 default: assert(0 && "Unknown TRUNCATE legalization operation action!"); 4071 case TargetLowering::Custom: 4072 isCustom = true; 4073 // FALLTHROUGH 4074 case TargetLowering::Legal: 4075 Result = DAG.UpdateNodeOperands(Result, Tmp1); 4076 if (isCustom) { 4077 Tmp1 = TLI.LowerOperation(Result, DAG); 4078 if (Tmp1.getNode()) Result = Tmp1; 4079 } 4080 break; 4081 case TargetLowering::Expand: 4082 assert(Result.getValueType().isVector() && "must be vector type"); 4083 // Unroll the truncate. We should do better. 4084 Result = LegalizeOp(UnrollVectorOp(Result)); 4085 } 4086 break; 4087 case Expand: 4088 ExpandOp(Node->getOperand(0), Tmp1, Tmp2); 4089 4090 // Since the result is legal, we should just be able to truncate the low 4091 // part of the source. 4092 Result = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1); 4093 break; 4094 case Promote: 4095 Result = PromoteOp(Node->getOperand(0)); 4096 Result = DAG.getNode(ISD::TRUNCATE, dl, Op.getValueType(), Result); 4097 break; 4098 } 4099 break; 4100 4101 case ISD::FP_TO_SINT: 4102 case ISD::FP_TO_UINT: 4103 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4104 case Legal: 4105 Tmp1 = LegalizeOp(Node->getOperand(0)); 4106 4107 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))){ 4108 default: assert(0 && "Unknown operation action!"); 4109 case TargetLowering::Custom: 4110 isCustom = true; 4111 // FALLTHROUGH 4112 case TargetLowering::Legal: 4113 Result = DAG.UpdateNodeOperands(Result, Tmp1); 4114 if (isCustom) { 4115 Tmp1 = TLI.LowerOperation(Result, DAG); 4116 if (Tmp1.getNode()) Result = Tmp1; 4117 } 4118 break; 4119 case TargetLowering::Promote: 4120 Result = PromoteLegalFP_TO_INT(Tmp1, Node->getValueType(0), 4121 Node->getOpcode() == ISD::FP_TO_SINT, 4122 dl); 4123 break; 4124 case TargetLowering::Expand: 4125 if (Node->getOpcode() == ISD::FP_TO_UINT) { 4126 SDValue True, False; 4127 MVT VT = Node->getOperand(0).getValueType(); 4128 MVT NVT = Node->getValueType(0); 4129 const uint64_t zero[] = {0, 0}; 4130 APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero)); 4131 APInt x = APInt::getSignBit(NVT.getSizeInBits()); 4132 (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven); 4133 Tmp2 = DAG.getConstantFP(apf, VT); 4134 Tmp3 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), 4135 Node->getOperand(0), 4136 Tmp2, ISD::SETLT); 4137 True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0)); 4138 False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, 4139 DAG.getNode(ISD::FSUB, dl, VT, 4140 Node->getOperand(0), Tmp2)); 4141 False = DAG.getNode(ISD::XOR, dl, NVT, False, 4142 DAG.getConstant(x, NVT)); 4143 Result = DAG.getNode(ISD::SELECT, dl, NVT, Tmp3, True, False); 4144 break; 4145 } else { 4146 assert(0 && "Do not know how to expand FP_TO_SINT yet!"); 4147 } 4148 break; 4149 } 4150 break; 4151 case Expand: { 4152 MVT VT = Op.getValueType(); 4153 MVT OVT = Node->getOperand(0).getValueType(); 4154 // Convert ppcf128 to i32 4155 if (OVT == MVT::ppcf128 && VT == MVT::i32) { 4156 if (Node->getOpcode() == ISD::FP_TO_SINT) { 4157 Result = DAG.getNode(ISD::FP_ROUND_INREG, dl, MVT::ppcf128, 4158 Node->getOperand(0), DAG.getValueType(MVT::f64)); 4159 Result = DAG.getNode(ISD::FP_ROUND, dl, MVT::f64, Result, 4160 DAG.getIntPtrConstant(1)); 4161 Result = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Result); 4162 } else { 4163 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 4164 APFloat apf = APFloat(APInt(128, 2, TwoE31)); 4165 Tmp2 = DAG.getConstantFP(apf, OVT); 4166 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 4167 // FIXME: generated code sucks. 4168 Result = DAG.getNode(ISD::SELECT_CC, dl, VT, Node->getOperand(0), 4169 Tmp2, 4170 DAG.getNode(ISD::ADD, dl, MVT::i32, 4171 DAG.getNode(ISD::FP_TO_SINT, dl, VT, 4172 DAG.getNode(ISD::FSUB, dl, OVT, 4173 Node->getOperand(0), Tmp2)), 4174 DAG.getConstant(0x80000000, MVT::i32)), 4175 DAG.getNode(ISD::FP_TO_SINT, dl, VT, 4176 Node->getOperand(0)), 4177 DAG.getCondCode(ISD::SETGE)); 4178 } 4179 break; 4180 } 4181 // Convert f32 / f64 to i32 / i64 / i128. 4182 RTLIB::Libcall LC = (Node->getOpcode() == ISD::FP_TO_SINT) ? 4183 RTLIB::getFPTOSINT(OVT, VT) : RTLIB::getFPTOUINT(OVT, VT); 4184 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpectd fp-to-int conversion!"); 4185 SDValue Dummy; 4186 Result = ExpandLibCall(LC, Node, false/*sign irrelevant*/, Dummy); 4187 break; 4188 } 4189 case Promote: 4190 Tmp1 = PromoteOp(Node->getOperand(0)); 4191 Result = DAG.UpdateNodeOperands(Result, LegalizeOp(Tmp1)); 4192 Result = LegalizeOp(Result); 4193 break; 4194 } 4195 break; 4196 4197 case ISD::FP_EXTEND: { 4198 MVT DstVT = Op.getValueType(); 4199 MVT SrcVT = Op.getOperand(0).getValueType(); 4200 if (TLI.getConvertAction(SrcVT, DstVT) == TargetLowering::Expand) { 4201 // The only other way we can lower this is to turn it into a STORE, 4202 // LOAD pair, targetting a temporary location (a stack slot). 4203 Result = EmitStackConvert(Node->getOperand(0), SrcVT, DstVT, dl); 4204 break; 4205 } 4206 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4207 case Expand: assert(0 && "Shouldn't need to expand other operators here!"); 4208 case Legal: 4209 Tmp1 = LegalizeOp(Node->getOperand(0)); 4210 Result = DAG.UpdateNodeOperands(Result, Tmp1); 4211 break; 4212 case Promote: 4213 Tmp1 = PromoteOp(Node->getOperand(0)); 4214 Result = DAG.getNode(ISD::FP_EXTEND, dl, Op.getValueType(), Tmp1); 4215 break; 4216 } 4217 break; 4218 } 4219 case ISD::FP_ROUND: { 4220 MVT DstVT = Op.getValueType(); 4221 MVT SrcVT = Op.getOperand(0).getValueType(); 4222 if (TLI.getConvertAction(SrcVT, DstVT) == TargetLowering::Expand) { 4223 if (SrcVT == MVT::ppcf128) { 4224 SDValue Lo; 4225 ExpandOp(Node->getOperand(0), Lo, Result); 4226 // Round it the rest of the way (e.g. to f32) if needed. 4227 if (DstVT!=MVT::f64) 4228 Result = DAG.getNode(ISD::FP_ROUND, dl, 4229 DstVT, Result, Op.getOperand(1)); 4230 break; 4231 } 4232 // The only other way we can lower this is to turn it into a STORE, 4233 // LOAD pair, targetting a temporary location (a stack slot). 4234 Result = EmitStackConvert(Node->getOperand(0), DstVT, DstVT, dl); 4235 break; 4236 } 4237 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4238 case Expand: assert(0 && "Shouldn't need to expand other operators here!"); 4239 case Legal: 4240 Tmp1 = LegalizeOp(Node->getOperand(0)); 4241 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 4242 break; 4243 case Promote: 4244 Tmp1 = PromoteOp(Node->getOperand(0)); 4245 Result = DAG.getNode(ISD::FP_ROUND, dl, Op.getValueType(), Tmp1, 4246 Node->getOperand(1)); 4247 break; 4248 } 4249 break; 4250 } 4251 case ISD::ANY_EXTEND: 4252 case ISD::ZERO_EXTEND: 4253 case ISD::SIGN_EXTEND: 4254 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4255 case Expand: assert(0 && "Shouldn't need to expand other operators here!"); 4256 case Legal: 4257 Tmp1 = LegalizeOp(Node->getOperand(0)); 4258 Result = DAG.UpdateNodeOperands(Result, Tmp1); 4259 if (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)) == 4260 TargetLowering::Custom) { 4261 Tmp1 = TLI.LowerOperation(Result, DAG); 4262 if (Tmp1.getNode()) Result = Tmp1; 4263 } 4264 break; 4265 case Promote: 4266 switch (Node->getOpcode()) { 4267 case ISD::ANY_EXTEND: 4268 Tmp1 = PromoteOp(Node->getOperand(0)); 4269 Result = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), Tmp1); 4270 break; 4271 case ISD::ZERO_EXTEND: 4272 Result = PromoteOp(Node->getOperand(0)); 4273 Result = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), Result); 4274 Result = DAG.getZeroExtendInReg(Result, dl, 4275 Node->getOperand(0).getValueType()); 4276 break; 4277 case ISD::SIGN_EXTEND: 4278 Result = PromoteOp(Node->getOperand(0)); 4279 Result = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), Result); 4280 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Result.getValueType(), 4281 Result, 4282 DAG.getValueType(Node->getOperand(0).getValueType())); 4283 break; 4284 } 4285 } 4286 break; 4287 case ISD::FP_ROUND_INREG: 4288 case ISD::SIGN_EXTEND_INREG: { 4289 Tmp1 = LegalizeOp(Node->getOperand(0)); 4290 MVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 4291 4292 // If this operation is not supported, convert it to a shl/shr or load/store 4293 // pair. 4294 switch (TLI.getOperationAction(Node->getOpcode(), ExtraVT)) { 4295 default: assert(0 && "This action not supported for this op yet!"); 4296 case TargetLowering::Legal: 4297 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); 4298 break; 4299 case TargetLowering::Expand: 4300 // If this is an integer extend and shifts are supported, do that. 4301 if (Node->getOpcode() == ISD::SIGN_EXTEND_INREG) { 4302 // NOTE: we could fall back on load/store here too for targets without 4303 // SAR. However, it is doubtful that any exist. 4304 unsigned BitsDiff = Node->getValueType(0).getSizeInBits() - 4305 ExtraVT.getSizeInBits(); 4306 SDValue ShiftCst = DAG.getConstant(BitsDiff, TLI.getShiftAmountTy()); 4307 Result = DAG.getNode(ISD::SHL, dl, Node->getValueType(0), 4308 Node->getOperand(0), ShiftCst); 4309 Result = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), 4310 Result, ShiftCst); 4311 } else if (Node->getOpcode() == ISD::FP_ROUND_INREG) { 4312 // The only way we can lower this is to turn it into a TRUNCSTORE, 4313 // EXTLOAD pair, targetting a temporary location (a stack slot). 4314 4315 // NOTE: there is a choice here between constantly creating new stack 4316 // slots and always reusing the same one. We currently always create 4317 // new ones, as reuse may inhibit scheduling. 4318 Result = EmitStackConvert(Node->getOperand(0), ExtraVT, 4319 Node->getValueType(0), dl); 4320 } else { 4321 assert(0 && "Unknown op"); 4322 } 4323 break; 4324 } 4325 break; 4326 } 4327 case ISD::TRAMPOLINE: { 4328 SDValue Ops[6]; 4329 for (unsigned i = 0; i != 6; ++i) 4330 Ops[i] = LegalizeOp(Node->getOperand(i)); 4331 Result = DAG.UpdateNodeOperands(Result, Ops, 6); 4332 // The only option for this node is to custom lower it. 4333 Result = TLI.LowerOperation(Result, DAG); 4334 assert(Result.getNode() && "Should always custom lower!"); 4335 4336 // Since trampoline produces two values, make sure to remember that we 4337 // legalized both of them. 4338 Tmp1 = LegalizeOp(Result.getValue(1)); 4339 Result = LegalizeOp(Result); 4340 AddLegalizedOperand(SDValue(Node, 0), Result); 4341 AddLegalizedOperand(SDValue(Node, 1), Tmp1); 4342 return Op.getResNo() ? Tmp1 : Result; 4343 } 4344 case ISD::FLT_ROUNDS_: { 4345 MVT VT = Node->getValueType(0); 4346 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 4347 default: assert(0 && "This action not supported for this op yet!"); 4348 case TargetLowering::Custom: 4349 Result = TLI.LowerOperation(Op, DAG); 4350 if (Result.getNode()) break; 4351 // Fall Thru 4352 case TargetLowering::Legal: 4353 // If this operation is not supported, lower it to constant 1 4354 Result = DAG.getConstant(1, VT); 4355 break; 4356 } 4357 break; 4358 } 4359 case ISD::TRAP: { 4360 MVT VT = Node->getValueType(0); 4361 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 4362 default: assert(0 && "This action not supported for this op yet!"); 4363 case TargetLowering::Legal: 4364 Tmp1 = LegalizeOp(Node->getOperand(0)); 4365 Result = DAG.UpdateNodeOperands(Result, Tmp1); 4366 break; 4367 case TargetLowering::Custom: 4368 Result = TLI.LowerOperation(Op, DAG); 4369 if (Result.getNode()) break; 4370 // Fall Thru 4371 case TargetLowering::Expand: 4372 // If this operation is not supported, lower it to 'abort()' call 4373 Tmp1 = LegalizeOp(Node->getOperand(0)); 4374 TargetLowering::ArgListTy Args; 4375 std::pair<SDValue,SDValue> CallResult = 4376 TLI.LowerCallTo(Tmp1, Type::VoidTy, 4377 false, false, false, false, CallingConv::C, false, 4378 DAG.getExternalSymbol("abort", TLI.getPointerTy()), 4379 Args, DAG, dl); 4380 Result = CallResult.second; 4381 break; 4382 } 4383 break; 4384 } 4385 4386 case ISD::SADDO: 4387 case ISD::SSUBO: { 4388 MVT VT = Node->getValueType(0); 4389 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 4390 default: assert(0 && "This action not supported for this op yet!"); 4391 case TargetLowering::Custom: 4392 Result = TLI.LowerOperation(Op, DAG); 4393 if (Result.getNode()) break; 4394 // FALLTHROUGH 4395 case TargetLowering::Legal: { 4396 SDValue LHS = LegalizeOp(Node->getOperand(0)); 4397 SDValue RHS = LegalizeOp(Node->getOperand(1)); 4398 4399 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ? 4400 ISD::ADD : ISD::SUB, dl, LHS.getValueType(), 4401 LHS, RHS); 4402 MVT OType = Node->getValueType(1); 4403 4404 SDValue Zero = DAG.getConstant(0, LHS.getValueType()); 4405 4406 // LHSSign -> LHS >= 0 4407 // RHSSign -> RHS >= 0 4408 // SumSign -> Sum >= 0 4409 // 4410 // Add: 4411 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign) 4412 // Sub: 4413 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign) 4414 // 4415 SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE); 4416 SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE); 4417 SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign, 4418 Node->getOpcode() == ISD::SADDO ? 4419 ISD::SETEQ : ISD::SETNE); 4420 4421 SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE); 4422 SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE); 4423 4424 SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE); 4425 4426 MVT ValueVTs[] = { LHS.getValueType(), OType }; 4427 SDValue Ops[] = { Sum, Cmp }; 4428 4429 Result = DAG.getNode(ISD::MERGE_VALUES, dl, 4430 DAG.getVTList(&ValueVTs[0], 2), 4431 &Ops[0], 2); 4432 SDNode *RNode = Result.getNode(); 4433 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), SDValue(RNode, 0)); 4434 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(RNode, 1)); 4435 break; 4436 } 4437 } 4438 4439 break; 4440 } 4441 case ISD::UADDO: 4442 case ISD::USUBO: { 4443 MVT VT = Node->getValueType(0); 4444 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 4445 default: assert(0 && "This action not supported for this op yet!"); 4446 case TargetLowering::Custom: 4447 Result = TLI.LowerOperation(Op, DAG); 4448 if (Result.getNode()) break; 4449 // FALLTHROUGH 4450 case TargetLowering::Legal: { 4451 SDValue LHS = LegalizeOp(Node->getOperand(0)); 4452 SDValue RHS = LegalizeOp(Node->getOperand(1)); 4453 4454 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ? 4455 ISD::ADD : ISD::SUB, dl, LHS.getValueType(), 4456 LHS, RHS); 4457 MVT OType = Node->getValueType(1); 4458 SDValue Cmp = DAG.getSetCC(dl, OType, Sum, LHS, 4459 Node->getOpcode () == ISD::UADDO ? 4460 ISD::SETULT : ISD::SETUGT); 4461 4462 MVT ValueVTs[] = { LHS.getValueType(), OType }; 4463 SDValue Ops[] = { Sum, Cmp }; 4464 4465 Result = DAG.getNode(ISD::MERGE_VALUES, dl, 4466 DAG.getVTList(&ValueVTs[0], 2), 4467 &Ops[0], 2); 4468 SDNode *RNode = Result.getNode(); 4469 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), SDValue(RNode, 0)); 4470 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(RNode, 1)); 4471 break; 4472 } 4473 } 4474 4475 break; 4476 } 4477 case ISD::SMULO: 4478 case ISD::UMULO: { 4479 MVT VT = Node->getValueType(0); 4480 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 4481 default: assert(0 && "This action is not supported at all!"); 4482 case TargetLowering::Custom: 4483 Result = TLI.LowerOperation(Op, DAG); 4484 if (Result.getNode()) break; 4485 // Fall Thru 4486 case TargetLowering::Legal: 4487 // FIXME: According to Hacker's Delight, this can be implemented in 4488 // target independent lowering, but it would be inefficient, since it 4489 // requires a division + a branch. 4490 assert(0 && "Target independent lowering is not supported for SMULO/UMULO!"); 4491 break; 4492 } 4493 break; 4494 } 4495 4496 } 4497 4498 assert(Result.getValueType() == Op.getValueType() && 4499 "Bad legalization!"); 4500 4501 // Make sure that the generated code is itself legal. 4502 if (Result != Op) 4503 Result = LegalizeOp(Result); 4504 4505 // Note that LegalizeOp may be reentered even from single-use nodes, which 4506 // means that we always must cache transformed nodes. 4507 AddLegalizedOperand(Op, Result); 4508 return Result; 4509} 4510 4511/// PromoteOp - Given an operation that produces a value in an invalid type, 4512/// promote it to compute the value into a larger type. The produced value will 4513/// have the correct bits for the low portion of the register, but no guarantee 4514/// is made about the top bits: it may be zero, sign-extended, or garbage. 4515SDValue SelectionDAGLegalize::PromoteOp(SDValue Op) { 4516 MVT VT = Op.getValueType(); 4517 MVT NVT = TLI.getTypeToTransformTo(VT); 4518 assert(getTypeAction(VT) == Promote && 4519 "Caller should expand or legalize operands that are not promotable!"); 4520 assert(NVT.bitsGT(VT) && NVT.isInteger() == VT.isInteger() && 4521 "Cannot promote to smaller type!"); 4522 4523 SDValue Tmp1, Tmp2, Tmp3; 4524 SDValue Result; 4525 SDNode *Node = Op.getNode(); 4526 DebugLoc dl = Node->getDebugLoc(); 4527 4528 DenseMap<SDValue, SDValue>::iterator I = PromotedNodes.find(Op); 4529 if (I != PromotedNodes.end()) return I->second; 4530 4531 switch (Node->getOpcode()) { 4532 case ISD::CopyFromReg: 4533 assert(0 && "CopyFromReg must be legal!"); 4534 default: 4535#ifndef NDEBUG 4536 cerr << "NODE: "; Node->dump(&DAG); cerr << "\n"; 4537#endif 4538 assert(0 && "Do not know how to promote this operator!"); 4539 abort(); 4540 case ISD::UNDEF: 4541 Result = DAG.getUNDEF(NVT); 4542 break; 4543 case ISD::Constant: 4544 if (VT != MVT::i1) 4545 Result = DAG.getNode(ISD::SIGN_EXTEND, dl, NVT, Op); 4546 else 4547 Result = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Op); 4548 assert(isa<ConstantSDNode>(Result) && "Didn't constant fold zext?"); 4549 break; 4550 case ISD::ConstantFP: 4551 Result = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op); 4552 assert(isa<ConstantFPSDNode>(Result) && "Didn't constant fold fp_extend?"); 4553 break; 4554 4555 case ISD::SETCC: { 4556 MVT VT0 = Node->getOperand(0).getValueType(); 4557 assert(isTypeLegal(TLI.getSetCCResultType(VT0)) 4558 && "SetCC type is not legal??"); 4559 Result = DAG.getNode(ISD::SETCC, dl, TLI.getSetCCResultType(VT0), 4560 Node->getOperand(0), Node->getOperand(1), 4561 Node->getOperand(2)); 4562 break; 4563 } 4564 case ISD::TRUNCATE: 4565 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4566 case Legal: 4567 Result = LegalizeOp(Node->getOperand(0)); 4568 assert(Result.getValueType().bitsGE(NVT) && 4569 "This truncation doesn't make sense!"); 4570 if (Result.getValueType().bitsGT(NVT)) // Truncate to NVT instead of VT 4571 Result = DAG.getNode(ISD::TRUNCATE, dl, NVT, Result); 4572 break; 4573 case Promote: 4574 // The truncation is not required, because we don't guarantee anything 4575 // about high bits anyway. 4576 Result = PromoteOp(Node->getOperand(0)); 4577 break; 4578 case Expand: 4579 ExpandOp(Node->getOperand(0), Tmp1, Tmp2); 4580 // Truncate the low part of the expanded value to the result type 4581 Result = DAG.getNode(ISD::TRUNCATE, dl, NVT, Tmp1); 4582 } 4583 break; 4584 case ISD::SIGN_EXTEND: 4585 case ISD::ZERO_EXTEND: 4586 case ISD::ANY_EXTEND: 4587 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4588 case Expand: assert(0 && "BUG: Smaller reg should have been promoted!"); 4589 case Legal: 4590 // Input is legal? Just do extend all the way to the larger type. 4591 Result = DAG.getNode(Node->getOpcode(), dl, NVT, Node->getOperand(0)); 4592 break; 4593 case Promote: 4594 // Promote the reg if it's smaller. 4595 Result = PromoteOp(Node->getOperand(0)); 4596 // The high bits are not guaranteed to be anything. Insert an extend. 4597 if (Node->getOpcode() == ISD::SIGN_EXTEND) 4598 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Result, 4599 DAG.getValueType(Node->getOperand(0).getValueType())); 4600 else if (Node->getOpcode() == ISD::ZERO_EXTEND) 4601 Result = DAG.getZeroExtendInReg(Result, dl, 4602 Node->getOperand(0).getValueType()); 4603 break; 4604 } 4605 break; 4606 case ISD::CONVERT_RNDSAT: { 4607 ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(Node)->getCvtCode(); 4608 assert ((CvtCode == ISD::CVT_SS || CvtCode == ISD::CVT_SU || 4609 CvtCode == ISD::CVT_US || CvtCode == ISD::CVT_UU || 4610 CvtCode == ISD::CVT_SF || CvtCode == ISD::CVT_UF) && 4611 "can only promote integers"); 4612 Result = DAG.getConvertRndSat(NVT, dl, Node->getOperand(0), 4613 Node->getOperand(1), Node->getOperand(2), 4614 Node->getOperand(3), Node->getOperand(4), 4615 CvtCode); 4616 break; 4617 4618 } 4619 case ISD::BIT_CONVERT: 4620 Result = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 4621 Node->getValueType(0), dl); 4622 Result = PromoteOp(Result); 4623 break; 4624 4625 case ISD::FP_EXTEND: 4626 assert(0 && "Case not implemented. Dynamically dead with 2 FP types!"); 4627 case ISD::FP_ROUND: 4628 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4629 case Expand: assert(0 && "BUG: Cannot expand FP regs!"); 4630 case Promote: assert(0 && "Unreachable with 2 FP types!"); 4631 case Legal: 4632 if (Node->getConstantOperandVal(1) == 0) { 4633 // Input is legal? Do an FP_ROUND_INREG. 4634 Result = DAG.getNode(ISD::FP_ROUND_INREG, dl, NVT, Node->getOperand(0), 4635 DAG.getValueType(VT)); 4636 } else { 4637 // Just remove the truncate, it isn't affecting the value. 4638 Result = DAG.getNode(ISD::FP_ROUND, dl, NVT, Node->getOperand(0), 4639 Node->getOperand(1)); 4640 } 4641 break; 4642 } 4643 break; 4644 case ISD::SINT_TO_FP: 4645 case ISD::UINT_TO_FP: 4646 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4647 case Legal: 4648 // No extra round required here. 4649 Result = DAG.getNode(Node->getOpcode(), dl, NVT, Node->getOperand(0)); 4650 break; 4651 4652 case Promote: 4653 Result = PromoteOp(Node->getOperand(0)); 4654 if (Node->getOpcode() == ISD::SINT_TO_FP) 4655 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Result.getValueType(), 4656 Result, 4657 DAG.getValueType(Node->getOperand(0).getValueType())); 4658 else 4659 Result = DAG.getZeroExtendInReg(Result, dl, 4660 Node->getOperand(0).getValueType()); 4661 // No extra round required here. 4662 Result = DAG.getNode(Node->getOpcode(), dl, NVT, Result); 4663 break; 4664 case Expand: 4665 Result = ExpandIntToFP(Node->getOpcode() == ISD::SINT_TO_FP, NVT, 4666 Node->getOperand(0), dl); 4667 // Round if we cannot tolerate excess precision. 4668 if (NoExcessFPPrecision) 4669 Result = DAG.getNode(ISD::FP_ROUND_INREG, dl, NVT, Result, 4670 DAG.getValueType(VT)); 4671 break; 4672 } 4673 break; 4674 4675 case ISD::SIGN_EXTEND_INREG: 4676 Result = PromoteOp(Node->getOperand(0)); 4677 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Result, 4678 Node->getOperand(1)); 4679 break; 4680 case ISD::FP_TO_SINT: 4681 case ISD::FP_TO_UINT: 4682 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4683 case Legal: 4684 case Expand: 4685 Tmp1 = Node->getOperand(0); 4686 break; 4687 case Promote: 4688 // The input result is prerounded, so we don't have to do anything 4689 // special. 4690 Tmp1 = PromoteOp(Node->getOperand(0)); 4691 break; 4692 } 4693 // If we're promoting a UINT to a larger size, check to see if the new node 4694 // will be legal. If it isn't, check to see if FP_TO_SINT is legal, since 4695 // we can use that instead. This allows us to generate better code for 4696 // FP_TO_UINT for small destination sizes on targets where FP_TO_UINT is not 4697 // legal, such as PowerPC. 4698 if (Node->getOpcode() == ISD::FP_TO_UINT && 4699 !TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NVT) && 4700 (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT) || 4701 TLI.getOperationAction(ISD::FP_TO_SINT, NVT)==TargetLowering::Custom)){ 4702 Result = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Tmp1); 4703 } else { 4704 Result = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4705 } 4706 break; 4707 4708 case ISD::FABS: 4709 case ISD::FNEG: 4710 Tmp1 = PromoteOp(Node->getOperand(0)); 4711 assert(Tmp1.getValueType() == NVT); 4712 Result = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4713 // NOTE: we do not have to do any extra rounding here for 4714 // NoExcessFPPrecision, because we know the input will have the appropriate 4715 // precision, and these operations don't modify precision at all. 4716 break; 4717 4718 case ISD::FLOG: 4719 case ISD::FLOG2: 4720 case ISD::FLOG10: 4721 case ISD::FEXP: 4722 case ISD::FEXP2: 4723 case ISD::FSQRT: 4724 case ISD::FSIN: 4725 case ISD::FCOS: 4726 case ISD::FTRUNC: 4727 case ISD::FFLOOR: 4728 case ISD::FCEIL: 4729 case ISD::FRINT: 4730 case ISD::FNEARBYINT: 4731 Tmp1 = PromoteOp(Node->getOperand(0)); 4732 assert(Tmp1.getValueType() == NVT); 4733 Result = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4734 if (NoExcessFPPrecision) 4735 Result = DAG.getNode(ISD::FP_ROUND_INREG, dl, NVT, Result, 4736 DAG.getValueType(VT)); 4737 break; 4738 4739 case ISD::FPOW: 4740 case ISD::FPOWI: { 4741 // Promote f32 pow(i) to f64 pow(i). Note that this could insert a libcall 4742 // directly as well, which may be better. 4743 Tmp1 = PromoteOp(Node->getOperand(0)); 4744 Tmp2 = Node->getOperand(1); 4745 if (Node->getOpcode() == ISD::FPOW) 4746 Tmp2 = PromoteOp(Tmp2); 4747 assert(Tmp1.getValueType() == NVT); 4748 Result = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4749 if (NoExcessFPPrecision) 4750 Result = DAG.getNode(ISD::FP_ROUND_INREG, dl, NVT, Result, 4751 DAG.getValueType(VT)); 4752 break; 4753 } 4754 4755 case ISD::ATOMIC_CMP_SWAP: { 4756 AtomicSDNode* AtomNode = cast<AtomicSDNode>(Node); 4757 Tmp2 = PromoteOp(Node->getOperand(2)); 4758 Tmp3 = PromoteOp(Node->getOperand(3)); 4759 Result = DAG.getAtomic(Node->getOpcode(), dl, AtomNode->getMemoryVT(), 4760 AtomNode->getChain(), 4761 AtomNode->getBasePtr(), Tmp2, Tmp3, 4762 AtomNode->getSrcValue(), 4763 AtomNode->getAlignment()); 4764 // Remember that we legalized the chain. 4765 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); 4766 break; 4767 } 4768 case ISD::ATOMIC_LOAD_ADD: 4769 case ISD::ATOMIC_LOAD_SUB: 4770 case ISD::ATOMIC_LOAD_AND: 4771 case ISD::ATOMIC_LOAD_OR: 4772 case ISD::ATOMIC_LOAD_XOR: 4773 case ISD::ATOMIC_LOAD_NAND: 4774 case ISD::ATOMIC_LOAD_MIN: 4775 case ISD::ATOMIC_LOAD_MAX: 4776 case ISD::ATOMIC_LOAD_UMIN: 4777 case ISD::ATOMIC_LOAD_UMAX: 4778 case ISD::ATOMIC_SWAP: { 4779 AtomicSDNode* AtomNode = cast<AtomicSDNode>(Node); 4780 Tmp2 = PromoteOp(Node->getOperand(2)); 4781 Result = DAG.getAtomic(Node->getOpcode(), dl, AtomNode->getMemoryVT(), 4782 AtomNode->getChain(), 4783 AtomNode->getBasePtr(), Tmp2, 4784 AtomNode->getSrcValue(), 4785 AtomNode->getAlignment()); 4786 // Remember that we legalized the chain. 4787 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); 4788 break; 4789 } 4790 4791 case ISD::AND: 4792 case ISD::OR: 4793 case ISD::XOR: 4794 case ISD::ADD: 4795 case ISD::SUB: 4796 case ISD::MUL: 4797 // The input may have strange things in the top bits of the registers, but 4798 // these operations don't care. They may have weird bits going out, but 4799 // that too is okay if they are integer operations. 4800 Tmp1 = PromoteOp(Node->getOperand(0)); 4801 Tmp2 = PromoteOp(Node->getOperand(1)); 4802 assert(Tmp1.getValueType() == NVT && Tmp2.getValueType() == NVT); 4803 Result = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4804 break; 4805 case ISD::FADD: 4806 case ISD::FSUB: 4807 case ISD::FMUL: 4808 Tmp1 = PromoteOp(Node->getOperand(0)); 4809 Tmp2 = PromoteOp(Node->getOperand(1)); 4810 assert(Tmp1.getValueType() == NVT && Tmp2.getValueType() == NVT); 4811 Result = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4812 4813 // Floating point operations will give excess precision that we may not be 4814 // able to tolerate. If we DO allow excess precision, just leave it, 4815 // otherwise excise it. 4816 // FIXME: Why would we need to round FP ops more than integer ones? 4817 // Is Round(Add(Add(A,B),C)) != Round(Add(Round(Add(A,B)), C)) 4818 if (NoExcessFPPrecision) 4819 Result = DAG.getNode(ISD::FP_ROUND_INREG, dl, NVT, Result, 4820 DAG.getValueType(VT)); 4821 break; 4822 4823 case ISD::SDIV: 4824 case ISD::SREM: 4825 // These operators require that their input be sign extended. 4826 Tmp1 = PromoteOp(Node->getOperand(0)); 4827 Tmp2 = PromoteOp(Node->getOperand(1)); 4828 if (NVT.isInteger()) { 4829 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Tmp1, 4830 DAG.getValueType(VT)); 4831 Tmp2 = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Tmp2, 4832 DAG.getValueType(VT)); 4833 } 4834 Result = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4835 4836 // Perform FP_ROUND: this is probably overly pessimistic. 4837 if (NVT.isFloatingPoint() && NoExcessFPPrecision) 4838 Result = DAG.getNode(ISD::FP_ROUND_INREG, dl, NVT, Result, 4839 DAG.getValueType(VT)); 4840 break; 4841 case ISD::FDIV: 4842 case ISD::FREM: 4843 case ISD::FCOPYSIGN: 4844 // These operators require that their input be fp extended. 4845 switch (getTypeAction(Node->getOperand(0).getValueType())) { 4846 case Expand: assert(0 && "not implemented"); 4847 case Legal: Tmp1 = LegalizeOp(Node->getOperand(0)); break; 4848 case Promote: Tmp1 = PromoteOp(Node->getOperand(0)); break; 4849 } 4850 switch (getTypeAction(Node->getOperand(1).getValueType())) { 4851 case Expand: assert(0 && "not implemented"); 4852 case Legal: Tmp2 = LegalizeOp(Node->getOperand(1)); break; 4853 case Promote: Tmp2 = PromoteOp(Node->getOperand(1)); break; 4854 } 4855 Result = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4856 4857 // Perform FP_ROUND: this is probably overly pessimistic. 4858 if (NoExcessFPPrecision && Node->getOpcode() != ISD::FCOPYSIGN) 4859 Result = DAG.getNode(ISD::FP_ROUND_INREG, dl, NVT, Result, 4860 DAG.getValueType(VT)); 4861 break; 4862 4863 case ISD::UDIV: 4864 case ISD::UREM: 4865 // These operators require that their input be zero extended. 4866 Tmp1 = PromoteOp(Node->getOperand(0)); 4867 Tmp2 = PromoteOp(Node->getOperand(1)); 4868 assert(NVT.isInteger() && "Operators don't apply to FP!"); 4869 Tmp1 = DAG.getZeroExtendInReg(Tmp1, dl, VT); 4870 Tmp2 = DAG.getZeroExtendInReg(Tmp2, dl, VT); 4871 Result = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4872 break; 4873 4874 case ISD::SHL: 4875 Tmp1 = PromoteOp(Node->getOperand(0)); 4876 Result = DAG.getNode(ISD::SHL, dl, NVT, Tmp1, Node->getOperand(1)); 4877 break; 4878 case ISD::SRA: 4879 // The input value must be properly sign extended. 4880 Tmp1 = PromoteOp(Node->getOperand(0)); 4881 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Tmp1, 4882 DAG.getValueType(VT)); 4883 Result = DAG.getNode(ISD::SRA, dl, NVT, Tmp1, Node->getOperand(1)); 4884 break; 4885 case ISD::SRL: 4886 // The input value must be properly zero extended. 4887 Tmp1 = PromoteOp(Node->getOperand(0)); 4888 Tmp1 = DAG.getZeroExtendInReg(Tmp1, dl, VT); 4889 Result = DAG.getNode(ISD::SRL, dl, NVT, Tmp1, Node->getOperand(1)); 4890 break; 4891 4892 case ISD::VAARG: 4893 Tmp1 = Node->getOperand(0); // Get the chain. 4894 Tmp2 = Node->getOperand(1); // Get the pointer. 4895 if (TLI.getOperationAction(ISD::VAARG, VT) == TargetLowering::Custom) { 4896 Tmp3 = DAG.getVAArg(VT, dl, Tmp1, Tmp2, Node->getOperand(2)); 4897 Result = TLI.LowerOperation(Tmp3, DAG); 4898 } else { 4899 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 4900 SDValue VAList = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2, V, 0); 4901 // Increment the pointer, VAList, to the next vaarg 4902 Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList, 4903 DAG.getConstant(VT.getSizeInBits()/8, 4904 TLI.getPointerTy())); 4905 // Store the incremented VAList to the legalized pointer 4906 Tmp3 = DAG.getStore(VAList.getValue(1), dl, Tmp3, Tmp2, V, 0); 4907 // Load the actual argument out of the pointer VAList 4908 Result = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Tmp3, VAList, NULL, 0, VT); 4909 } 4910 // Remember that we legalized the chain. 4911 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); 4912 break; 4913 4914 case ISD::LOAD: { 4915 LoadSDNode *LD = cast<LoadSDNode>(Node); 4916 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(Node) 4917 ? ISD::EXTLOAD : LD->getExtensionType(); 4918 Result = DAG.getExtLoad(ExtType, dl, NVT, 4919 LD->getChain(), LD->getBasePtr(), 4920 LD->getSrcValue(), LD->getSrcValueOffset(), 4921 LD->getMemoryVT(), 4922 LD->isVolatile(), 4923 LD->getAlignment()); 4924 // Remember that we legalized the chain. 4925 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); 4926 break; 4927 } 4928 case ISD::SELECT: { 4929 Tmp2 = PromoteOp(Node->getOperand(1)); // Legalize the op0 4930 Tmp3 = PromoteOp(Node->getOperand(2)); // Legalize the op1 4931 4932 MVT VT2 = Tmp2.getValueType(); 4933 assert(VT2 == Tmp3.getValueType() 4934 && "PromoteOp SELECT: Operands 2 and 3 ValueTypes don't match"); 4935 // Ensure that the resulting node is at least the same size as the operands' 4936 // value types, because we cannot assume that TLI.getSetCCValueType() is 4937 // constant. 4938 Result = DAG.getNode(ISD::SELECT, dl, VT2, Node->getOperand(0), Tmp2, Tmp3); 4939 break; 4940 } 4941 case ISD::SELECT_CC: 4942 Tmp2 = PromoteOp(Node->getOperand(2)); // True 4943 Tmp3 = PromoteOp(Node->getOperand(3)); // False 4944 Result = DAG.getNode(ISD::SELECT_CC, dl, NVT, Node->getOperand(0), 4945 Node->getOperand(1), Tmp2, Tmp3, Node->getOperand(4)); 4946 break; 4947 case ISD::BSWAP: 4948 Tmp1 = Node->getOperand(0); 4949 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Tmp1); 4950 Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1); 4951 Result = DAG.getNode(ISD::SRL, dl, NVT, Tmp1, 4952 DAG.getConstant(NVT.getSizeInBits() - 4953 VT.getSizeInBits(), 4954 TLI.getShiftAmountTy())); 4955 break; 4956 case ISD::CTPOP: 4957 case ISD::CTTZ: 4958 case ISD::CTLZ: 4959 // Zero extend the argument 4960 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4961 // Perform the larger operation, then subtract if needed. 4962 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4963 switch(Node->getOpcode()) { 4964 case ISD::CTPOP: 4965 Result = Tmp1; 4966 break; 4967 case ISD::CTTZ: 4968 // if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT) 4969 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()), Tmp1, 4970 DAG.getConstant(NVT.getSizeInBits(), NVT), 4971 ISD::SETEQ); 4972 Result = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, 4973 DAG.getConstant(VT.getSizeInBits(), NVT), Tmp1); 4974 break; 4975 case ISD::CTLZ: 4976 //Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 4977 Result = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, 4978 DAG.getConstant(NVT.getSizeInBits() - 4979 VT.getSizeInBits(), NVT)); 4980 break; 4981 } 4982 break; 4983 case ISD::EXTRACT_SUBVECTOR: 4984 Result = PromoteOp(ExpandEXTRACT_SUBVECTOR(Op)); 4985 break; 4986 case ISD::EXTRACT_VECTOR_ELT: 4987 Result = PromoteOp(ExpandEXTRACT_VECTOR_ELT(Op)); 4988 break; 4989 } 4990 4991 assert(Result.getNode() && "Didn't set a result!"); 4992 4993 // Make sure the result is itself legal. 4994 Result = LegalizeOp(Result); 4995 4996 // Remember that we promoted this! 4997 AddPromotedOperand(Op, Result); 4998 return Result; 4999} 5000 5001/// ExpandEXTRACT_VECTOR_ELT - Expand an EXTRACT_VECTOR_ELT operation into 5002/// a legal EXTRACT_VECTOR_ELT operation, scalar code, or memory traffic, 5003/// based on the vector type. The return type of this matches the element type 5004/// of the vector, which may not be legal for the target. 5005SDValue SelectionDAGLegalize::ExpandEXTRACT_VECTOR_ELT(SDValue Op) { 5006 // We know that operand #0 is the Vec vector. If the index is a constant 5007 // or if the invec is a supported hardware type, we can use it. Otherwise, 5008 // lower to a store then an indexed load. 5009 SDValue Vec = Op.getOperand(0); 5010 SDValue Idx = Op.getOperand(1); 5011 DebugLoc dl = Op.getDebugLoc(); 5012 5013 MVT TVT = Vec.getValueType(); 5014 unsigned NumElems = TVT.getVectorNumElements(); 5015 5016 switch (TLI.getOperationAction(ISD::EXTRACT_VECTOR_ELT, TVT)) { 5017 default: assert(0 && "This action is not supported yet!"); 5018 case TargetLowering::Custom: { 5019 Vec = LegalizeOp(Vec); 5020 Op = DAG.UpdateNodeOperands(Op, Vec, Idx); 5021 SDValue Tmp3 = TLI.LowerOperation(Op, DAG); 5022 if (Tmp3.getNode()) 5023 return Tmp3; 5024 break; 5025 } 5026 case TargetLowering::Legal: 5027 if (isTypeLegal(TVT)) { 5028 Vec = LegalizeOp(Vec); 5029 Op = DAG.UpdateNodeOperands(Op, Vec, Idx); 5030 return Op; 5031 } 5032 break; 5033 case TargetLowering::Promote: 5034 assert(TVT.isVector() && "not vector type"); 5035 // fall thru to expand since vectors are by default are promote 5036 case TargetLowering::Expand: 5037 break; 5038 } 5039 5040 if (NumElems == 1) { 5041 // This must be an access of the only element. Return it. 5042 Op = ScalarizeVectorOp(Vec); 5043 } else if (!TLI.isTypeLegal(TVT) && isa<ConstantSDNode>(Idx)) { 5044 unsigned NumLoElts = 1 << Log2_32(NumElems-1); 5045 ConstantSDNode *CIdx = cast<ConstantSDNode>(Idx); 5046 SDValue Lo, Hi; 5047 SplitVectorOp(Vec, Lo, Hi); 5048 if (CIdx->getZExtValue() < NumLoElts) { 5049 Vec = Lo; 5050 } else { 5051 Vec = Hi; 5052 Idx = DAG.getConstant(CIdx->getZExtValue() - NumLoElts, 5053 Idx.getValueType()); 5054 } 5055 5056 // It's now an extract from the appropriate high or low part. Recurse. 5057 Op = DAG.UpdateNodeOperands(Op, Vec, Idx); 5058 Op = ExpandEXTRACT_VECTOR_ELT(Op); 5059 } else { 5060 // Store the value to a temporary stack slot, then LOAD the scalar 5061 // element back out. 5062 SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType()); 5063 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, NULL, 0); 5064 5065 // Add the offset to the index. 5066 unsigned EltSize = Op.getValueType().getSizeInBits()/8; 5067 Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx, 5068 DAG.getConstant(EltSize, Idx.getValueType())); 5069 5070 if (Idx.getValueType().bitsGT(TLI.getPointerTy())) 5071 Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx); 5072 else 5073 Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx); 5074 5075 StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr); 5076 5077 Op = DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, NULL, 0); 5078 } 5079 return Op; 5080} 5081 5082/// ExpandEXTRACT_SUBVECTOR - Expand a EXTRACT_SUBVECTOR operation. For now 5083/// we assume the operation can be split if it is not already legal. 5084SDValue SelectionDAGLegalize::ExpandEXTRACT_SUBVECTOR(SDValue Op) { 5085 // We know that operand #0 is the Vec vector. For now we assume the index 5086 // is a constant and that the extracted result is a supported hardware type. 5087 SDValue Vec = Op.getOperand(0); 5088 SDValue Idx = LegalizeOp(Op.getOperand(1)); 5089 5090 unsigned NumElems = Vec.getValueType().getVectorNumElements(); 5091 5092 if (NumElems == Op.getValueType().getVectorNumElements()) { 5093 // This must be an access of the desired vector length. Return it. 5094 return Vec; 5095 } 5096 5097 ConstantSDNode *CIdx = cast<ConstantSDNode>(Idx); 5098 SDValue Lo, Hi; 5099 SplitVectorOp(Vec, Lo, Hi); 5100 if (CIdx->getZExtValue() < NumElems/2) { 5101 Vec = Lo; 5102 } else { 5103 Vec = Hi; 5104 Idx = DAG.getConstant(CIdx->getZExtValue() - NumElems/2, 5105 Idx.getValueType()); 5106 } 5107 5108 // It's now an extract from the appropriate high or low part. Recurse. 5109 Op = DAG.UpdateNodeOperands(Op, Vec, Idx); 5110 return ExpandEXTRACT_SUBVECTOR(Op); 5111} 5112 5113/// LegalizeSetCCOperands - Attempts to create a legal LHS and RHS for a SETCC 5114/// with condition CC on the current target. This usually involves legalizing 5115/// or promoting the arguments. In the case where LHS and RHS must be expanded, 5116/// there may be no choice but to create a new SetCC node to represent the 5117/// legalized value of setcc lhs, rhs. In this case, the value is returned in 5118/// LHS, and the SDValue returned in RHS has a nil SDNode value. 5119void SelectionDAGLegalize::LegalizeSetCCOperands(SDValue &LHS, 5120 SDValue &RHS, 5121 SDValue &CC, 5122 DebugLoc dl) { 5123 SDValue Tmp1, Tmp2, Tmp3, Result; 5124 5125 switch (getTypeAction(LHS.getValueType())) { 5126 case Legal: 5127 Tmp1 = LegalizeOp(LHS); // LHS 5128 Tmp2 = LegalizeOp(RHS); // RHS 5129 break; 5130 case Promote: 5131 Tmp1 = PromoteOp(LHS); // LHS 5132 Tmp2 = PromoteOp(RHS); // RHS 5133 5134 // If this is an FP compare, the operands have already been extended. 5135 if (LHS.getValueType().isInteger()) { 5136 MVT VT = LHS.getValueType(); 5137 MVT NVT = TLI.getTypeToTransformTo(VT); 5138 5139 // Otherwise, we have to insert explicit sign or zero extends. Note 5140 // that we could insert sign extends for ALL conditions, but zero extend 5141 // is cheaper on many machines (an AND instead of two shifts), so prefer 5142 // it. 5143 switch (cast<CondCodeSDNode>(CC)->get()) { 5144 default: assert(0 && "Unknown integer comparison!"); 5145 case ISD::SETEQ: 5146 case ISD::SETNE: 5147 case ISD::SETUGE: 5148 case ISD::SETUGT: 5149 case ISD::SETULE: 5150 case ISD::SETULT: 5151 // ALL of these operations will work if we either sign or zero extend 5152 // the operands (including the unsigned comparisons!). Zero extend is 5153 // usually a simpler/cheaper operation, so prefer it. 5154 Tmp1 = DAG.getZeroExtendInReg(Tmp1, dl, VT); 5155 Tmp2 = DAG.getZeroExtendInReg(Tmp2, dl, VT); 5156 break; 5157 case ISD::SETGE: 5158 case ISD::SETGT: 5159 case ISD::SETLT: 5160 case ISD::SETLE: 5161 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Tmp1, 5162 DAG.getValueType(VT)); 5163 Tmp2 = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Tmp2, 5164 DAG.getValueType(VT)); 5165 Tmp1 = LegalizeOp(Tmp1); // Relegalize new nodes. 5166 Tmp2 = LegalizeOp(Tmp2); // Relegalize new nodes. 5167 break; 5168 } 5169 } 5170 break; 5171 case Expand: { 5172 MVT VT = LHS.getValueType(); 5173 if (VT == MVT::f32 || VT == MVT::f64) { 5174 // Expand into one or more soft-fp libcall(s). 5175 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 5176 switch (cast<CondCodeSDNode>(CC)->get()) { 5177 case ISD::SETEQ: 5178 case ISD::SETOEQ: 5179 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : RTLIB::OEQ_F64; 5180 break; 5181 case ISD::SETNE: 5182 case ISD::SETUNE: 5183 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : RTLIB::UNE_F64; 5184 break; 5185 case ISD::SETGE: 5186 case ISD::SETOGE: 5187 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : RTLIB::OGE_F64; 5188 break; 5189 case ISD::SETLT: 5190 case ISD::SETOLT: 5191 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64; 5192 break; 5193 case ISD::SETLE: 5194 case ISD::SETOLE: 5195 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : RTLIB::OLE_F64; 5196 break; 5197 case ISD::SETGT: 5198 case ISD::SETOGT: 5199 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : RTLIB::OGT_F64; 5200 break; 5201 case ISD::SETUO: 5202 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : RTLIB::UO_F64; 5203 break; 5204 case ISD::SETO: 5205 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : RTLIB::O_F64; 5206 break; 5207 default: 5208 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : RTLIB::UO_F64; 5209 switch (cast<CondCodeSDNode>(CC)->get()) { 5210 case ISD::SETONE: 5211 // SETONE = SETOLT | SETOGT 5212 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64; 5213 // Fallthrough 5214 case ISD::SETUGT: 5215 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : RTLIB::OGT_F64; 5216 break; 5217 case ISD::SETUGE: 5218 LC2 = (VT == MVT::f32) ? RTLIB::OGE_F32 : RTLIB::OGE_F64; 5219 break; 5220 case ISD::SETULT: 5221 LC2 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64; 5222 break; 5223 case ISD::SETULE: 5224 LC2 = (VT == MVT::f32) ? RTLIB::OLE_F32 : RTLIB::OLE_F64; 5225 break; 5226 case ISD::SETUEQ: 5227 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : RTLIB::OEQ_F64; 5228 break; 5229 default: assert(0 && "Unsupported FP setcc!"); 5230 } 5231 } 5232 5233 SDValue Dummy; 5234 SDValue Ops[2] = { LHS, RHS }; 5235 Tmp1 = ExpandLibCall(LC1, DAG.getMergeValues(Ops, 2, dl).getNode(), 5236 false /*sign irrelevant*/, Dummy); 5237 Tmp2 = DAG.getConstant(0, MVT::i32); 5238 CC = DAG.getCondCode(TLI.getCmpLibcallCC(LC1)); 5239 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 5240 Tmp1 = DAG.getNode(ISD::SETCC, dl, 5241 TLI.getSetCCResultType(Tmp1.getValueType()), 5242 Tmp1, Tmp2, CC); 5243 LHS = ExpandLibCall(LC2, DAG.getMergeValues(Ops, 2, dl).getNode(), 5244 false /*sign irrelevant*/, Dummy); 5245 Tmp2 = DAG.getNode(ISD::SETCC, dl, 5246 TLI.getSetCCResultType(LHS.getValueType()), LHS, 5247 Tmp2, DAG.getCondCode(TLI.getCmpLibcallCC(LC2))); 5248 Tmp1 = DAG.getNode(ISD::OR, dl, Tmp1.getValueType(), Tmp1, Tmp2); 5249 Tmp2 = SDValue(); 5250 } 5251 LHS = LegalizeOp(Tmp1); 5252 RHS = Tmp2; 5253 return; 5254 } 5255 5256 SDValue LHSLo, LHSHi, RHSLo, RHSHi; 5257 ExpandOp(LHS, LHSLo, LHSHi); 5258 ExpandOp(RHS, RHSLo, RHSHi); 5259 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 5260 5261 if (VT==MVT::ppcf128) { 5262 // FIXME: This generated code sucks. We want to generate 5263 // FCMPU crN, hi1, hi2 5264 // BNE crN, L: 5265 // FCMPU crN, lo1, lo2 5266 // The following can be improved, but not that much. 5267 Tmp1 = DAG.getSetCC(dl, TLI.getSetCCResultType(LHSHi.getValueType()), 5268 LHSHi, RHSHi, ISD::SETOEQ); 5269 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(LHSLo.getValueType()), 5270 LHSLo, RHSLo, CCCode); 5271 Tmp3 = DAG.getNode(ISD::AND, dl, Tmp1.getValueType(), Tmp1, Tmp2); 5272 Tmp1 = DAG.getSetCC(dl, TLI.getSetCCResultType(LHSHi.getValueType()), 5273 LHSHi, RHSHi, ISD::SETUNE); 5274 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(LHSHi.getValueType()), 5275 LHSHi, RHSHi, CCCode); 5276 Tmp1 = DAG.getNode(ISD::AND, dl, Tmp1.getValueType(), Tmp1, Tmp2); 5277 Tmp1 = DAG.getNode(ISD::OR, dl, Tmp1.getValueType(), Tmp1, Tmp3); 5278 Tmp2 = SDValue(); 5279 break; 5280 } 5281 5282 switch (CCCode) { 5283 case ISD::SETEQ: 5284 case ISD::SETNE: 5285 if (RHSLo == RHSHi) 5286 if (ConstantSDNode *RHSCST = dyn_cast<ConstantSDNode>(RHSLo)) 5287 if (RHSCST->isAllOnesValue()) { 5288 // Comparison to -1. 5289 Tmp1 = DAG.getNode(ISD::AND, dl,LHSLo.getValueType(), LHSLo, LHSHi); 5290 Tmp2 = RHSLo; 5291 break; 5292 } 5293 5294 Tmp1 = DAG.getNode(ISD::XOR, dl, LHSLo.getValueType(), LHSLo, RHSLo); 5295 Tmp2 = DAG.getNode(ISD::XOR, dl, LHSLo.getValueType(), LHSHi, RHSHi); 5296 Tmp1 = DAG.getNode(ISD::OR, dl, Tmp1.getValueType(), Tmp1, Tmp2); 5297 Tmp2 = DAG.getConstant(0, Tmp1.getValueType()); 5298 break; 5299 default: 5300 // If this is a comparison of the sign bit, just look at the top part. 5301 // X > -1, x < 0 5302 if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(RHS)) 5303 if ((cast<CondCodeSDNode>(CC)->get() == ISD::SETLT && 5304 CST->isNullValue()) || // X < 0 5305 (cast<CondCodeSDNode>(CC)->get() == ISD::SETGT && 5306 CST->isAllOnesValue())) { // X > -1 5307 Tmp1 = LHSHi; 5308 Tmp2 = RHSHi; 5309 break; 5310 } 5311 5312 // FIXME: This generated code sucks. 5313 ISD::CondCode LowCC; 5314 switch (CCCode) { 5315 default: assert(0 && "Unknown integer setcc!"); 5316 case ISD::SETLT: 5317 case ISD::SETULT: LowCC = ISD::SETULT; break; 5318 case ISD::SETGT: 5319 case ISD::SETUGT: LowCC = ISD::SETUGT; break; 5320 case ISD::SETLE: 5321 case ISD::SETULE: LowCC = ISD::SETULE; break; 5322 case ISD::SETGE: 5323 case ISD::SETUGE: LowCC = ISD::SETUGE; break; 5324 } 5325 5326 // Tmp1 = lo(op1) < lo(op2) // Always unsigned comparison 5327 // Tmp2 = hi(op1) < hi(op2) // Signedness depends on operands 5328 // dest = hi(op1) == hi(op2) ? Tmp1 : Tmp2; 5329 5330 // NOTE: on targets without efficient SELECT of bools, we can always use 5331 // this identity: (B1 ? B2 : B3) --> (B1 & B2)|(!B1&B3) 5332 TargetLowering::DAGCombinerInfo DagCombineInfo(DAG, false, true, NULL); 5333 Tmp1 = TLI.SimplifySetCC(TLI.getSetCCResultType(LHSLo.getValueType()), 5334 LHSLo, RHSLo, LowCC, false, DagCombineInfo, dl); 5335 if (!Tmp1.getNode()) 5336 Tmp1 = DAG.getSetCC(dl, TLI.getSetCCResultType(LHSLo.getValueType()), 5337 LHSLo, RHSLo, LowCC); 5338 Tmp2 = TLI.SimplifySetCC(TLI.getSetCCResultType(LHSHi.getValueType()), 5339 LHSHi, RHSHi, CCCode, false, DagCombineInfo, dl); 5340 if (!Tmp2.getNode()) 5341 Tmp2 = DAG.getNode(ISD::SETCC, dl, 5342 TLI.getSetCCResultType(LHSHi.getValueType()), 5343 LHSHi, RHSHi,CC); 5344 5345 ConstantSDNode *Tmp1C = dyn_cast<ConstantSDNode>(Tmp1.getNode()); 5346 ConstantSDNode *Tmp2C = dyn_cast<ConstantSDNode>(Tmp2.getNode()); 5347 if ((Tmp1C && Tmp1C->isNullValue()) || 5348 (Tmp2C && Tmp2C->isNullValue() && 5349 (CCCode == ISD::SETLE || CCCode == ISD::SETGE || 5350 CCCode == ISD::SETUGE || CCCode == ISD::SETULE)) || 5351 (Tmp2C && Tmp2C->getAPIntValue() == 1 && 5352 (CCCode == ISD::SETLT || CCCode == ISD::SETGT || 5353 CCCode == ISD::SETUGT || CCCode == ISD::SETULT))) { 5354 // low part is known false, returns high part. 5355 // For LE / GE, if high part is known false, ignore the low part. 5356 // For LT / GT, if high part is known true, ignore the low part. 5357 Tmp1 = Tmp2; 5358 Tmp2 = SDValue(); 5359 } else { 5360 Result = TLI.SimplifySetCC(TLI.getSetCCResultType(LHSHi.getValueType()), 5361 LHSHi, RHSHi, ISD::SETEQ, false, 5362 DagCombineInfo, dl); 5363 if (!Result.getNode()) 5364 Result=DAG.getSetCC(dl, TLI.getSetCCResultType(LHSHi.getValueType()), 5365 LHSHi, RHSHi, ISD::SETEQ); 5366 Result = LegalizeOp(DAG.getNode(ISD::SELECT, dl, Tmp1.getValueType(), 5367 Result, Tmp1, Tmp2)); 5368 Tmp1 = Result; 5369 Tmp2 = SDValue(); 5370 } 5371 } 5372 } 5373 } 5374 LHS = Tmp1; 5375 RHS = Tmp2; 5376} 5377 5378/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and 5379/// condition code CC on the current target. This routine assumes LHS and rHS 5380/// have already been legalized by LegalizeSetCCOperands. It expands SETCC with 5381/// illegal condition code into AND / OR of multiple SETCC values. 5382void SelectionDAGLegalize::LegalizeSetCCCondCode(MVT VT, 5383 SDValue &LHS, SDValue &RHS, 5384 SDValue &CC, 5385 DebugLoc dl) { 5386 MVT OpVT = LHS.getValueType(); 5387 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 5388 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 5389 default: assert(0 && "Unknown condition code action!"); 5390 case TargetLowering::Legal: 5391 // Nothing to do. 5392 break; 5393 case TargetLowering::Expand: { 5394 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 5395 unsigned Opc = 0; 5396 switch (CCCode) { 5397 default: assert(0 && "Don't know how to expand this condition!"); abort(); 5398 case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO; Opc = ISD::AND; break; 5399 case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO; Opc = ISD::AND; break; 5400 case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO; Opc = ISD::AND; break; 5401 case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO; Opc = ISD::AND; break; 5402 case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO; Opc = ISD::AND; break; 5403 case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO; Opc = ISD::AND; break; 5404 case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR; break; 5405 case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR; break; 5406 case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR; break; 5407 case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR; break; 5408 case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR; break; 5409 case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR; break; 5410 // FIXME: Implement more expansions. 5411 } 5412 5413 SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1); 5414 SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2); 5415 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 5416 RHS = SDValue(); 5417 CC = SDValue(); 5418 break; 5419 } 5420 } 5421} 5422 5423/// EmitStackConvert - Emit a store/load combination to the stack. This stores 5424/// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does 5425/// a load from the stack slot to DestVT, extending it if needed. 5426/// The resultant code need not be legal. 5427SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, 5428 MVT SlotVT, 5429 MVT DestVT, 5430 DebugLoc dl) { 5431 // Create the stack frame object. 5432 unsigned SrcAlign = TLI.getTargetData()->getPrefTypeAlignment( 5433 SrcOp.getValueType().getTypeForMVT()); 5434 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign); 5435 5436 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); 5437 int SPFI = StackPtrFI->getIndex(); 5438 const Value *SV = PseudoSourceValue::getFixedStack(SPFI); 5439 5440 unsigned SrcSize = SrcOp.getValueType().getSizeInBits(); 5441 unsigned SlotSize = SlotVT.getSizeInBits(); 5442 unsigned DestSize = DestVT.getSizeInBits(); 5443 unsigned DestAlign = TLI.getTargetData()->getPrefTypeAlignment( 5444 DestVT.getTypeForMVT()); 5445 5446 // Emit a store to the stack slot. Use a truncstore if the input value is 5447 // later than DestVT. 5448 SDValue Store; 5449 5450 if (SrcSize > SlotSize) 5451 Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, 5452 SV, 0, SlotVT, false, SrcAlign); 5453 else { 5454 assert(SrcSize == SlotSize && "Invalid store"); 5455 Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, 5456 SV, 0, false, SrcAlign); 5457 } 5458 5459 // Result is a load from the stack slot. 5460 if (SlotSize == DestSize) 5461 return DAG.getLoad(DestVT, dl, Store, FIPtr, SV, 0, false, DestAlign); 5462 5463 assert(SlotSize < DestSize && "Unknown extension!"); 5464 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, SV, 0, SlotVT, 5465 false, DestAlign); 5466} 5467 5468SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { 5469 DebugLoc dl = Node->getDebugLoc(); 5470 // Create a vector sized/aligned stack slot, store the value to element #0, 5471 // then load the whole vector back out. 5472 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); 5473 5474 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); 5475 int SPFI = StackPtrFI->getIndex(); 5476 5477 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(0), 5478 StackPtr, 5479 PseudoSourceValue::getFixedStack(SPFI), 0); 5480 return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr, 5481 PseudoSourceValue::getFixedStack(SPFI), 0); 5482} 5483 5484 5485/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't 5486/// support the operation, but do support the resultant vector type. 5487SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { 5488 5489 // If the only non-undef value is the low element, turn this into a 5490 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. 5491 unsigned NumElems = Node->getNumOperands(); 5492 bool isOnlyLowElement = true; 5493 SDValue SplatValue = Node->getOperand(0); 5494 DebugLoc dl = Node->getDebugLoc(); 5495 5496 // FIXME: it would be far nicer to change this into map<SDValue,uint64_t> 5497 // and use a bitmask instead of a list of elements. 5498 std::map<SDValue, std::vector<unsigned> > Values; 5499 Values[SplatValue].push_back(0); 5500 bool isConstant = true; 5501 if (!isa<ConstantFPSDNode>(SplatValue) && !isa<ConstantSDNode>(SplatValue) && 5502 SplatValue.getOpcode() != ISD::UNDEF) 5503 isConstant = false; 5504 5505 for (unsigned i = 1; i < NumElems; ++i) { 5506 SDValue V = Node->getOperand(i); 5507 Values[V].push_back(i); 5508 if (V.getOpcode() != ISD::UNDEF) 5509 isOnlyLowElement = false; 5510 if (SplatValue != V) 5511 SplatValue = SDValue(0,0); 5512 5513 // If this isn't a constant element or an undef, we can't use a constant 5514 // pool load. 5515 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V) && 5516 V.getOpcode() != ISD::UNDEF) 5517 isConstant = false; 5518 } 5519 5520 if (isOnlyLowElement) { 5521 // If the low element is an undef too, then this whole things is an undef. 5522 if (Node->getOperand(0).getOpcode() == ISD::UNDEF) 5523 return DAG.getUNDEF(Node->getValueType(0)); 5524 // Otherwise, turn this into a scalar_to_vector node. 5525 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, Node->getValueType(0), 5526 Node->getOperand(0)); 5527 } 5528 5529 // If all elements are constants, create a load from the constant pool. 5530 if (isConstant) { 5531 MVT VT = Node->getValueType(0); 5532 std::vector<Constant*> CV; 5533 for (unsigned i = 0, e = NumElems; i != e; ++i) { 5534 if (ConstantFPSDNode *V = 5535 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { 5536 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue())); 5537 } else if (ConstantSDNode *V = 5538 dyn_cast<ConstantSDNode>(Node->getOperand(i))) { 5539 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue())); 5540 } else { 5541 assert(Node->getOperand(i).getOpcode() == ISD::UNDEF); 5542 const Type *OpNTy = 5543 Node->getOperand(0).getValueType().getTypeForMVT(); 5544 CV.push_back(UndefValue::get(OpNTy)); 5545 } 5546 } 5547 Constant *CP = ConstantVector::get(CV); 5548 SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy()); 5549 unsigned Alignment = 1 << cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 5550 return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx, 5551 PseudoSourceValue::getConstantPool(), 0, 5552 false, Alignment); 5553 } 5554 5555 if (SplatValue.getNode()) { // Splat of one value? 5556 // Build the shuffle constant vector: <0, 0, 0, 0> 5557 MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems); 5558 SDValue Zero = DAG.getConstant(0, MaskVT.getVectorElementType()); 5559 std::vector<SDValue> ZeroVec(NumElems, Zero); 5560 SDValue SplatMask = DAG.getBUILD_VECTOR(MaskVT, dl, 5561 &ZeroVec[0], ZeroVec.size()); 5562 5563 // If the target supports VECTOR_SHUFFLE and this shuffle mask, use it. 5564 if (isShuffleLegal(Node->getValueType(0), SplatMask)) { 5565 // Get the splatted value into the low element of a vector register. 5566 SDValue LowValVec = 5567 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, 5568 Node->getValueType(0), SplatValue); 5569 5570 // Return shuffle(LowValVec, undef, <0,0,0,0>) 5571 return DAG.getNode(ISD::VECTOR_SHUFFLE, dl, 5572 Node->getValueType(0), LowValVec, 5573 DAG.getUNDEF(Node->getValueType(0)), 5574 SplatMask); 5575 } 5576 } 5577 5578 // If there are only two unique elements, we may be able to turn this into a 5579 // vector shuffle. 5580 if (Values.size() == 2) { 5581 // Get the two values in deterministic order. 5582 SDValue Val1 = Node->getOperand(1); 5583 SDValue Val2; 5584 std::map<SDValue, std::vector<unsigned> >::iterator MI = Values.begin(); 5585 if (MI->first != Val1) 5586 Val2 = MI->first; 5587 else 5588 Val2 = (++MI)->first; 5589 5590 // If Val1 is an undef, make sure end ends up as Val2, to ensure that our 5591 // vector shuffle has the undef vector on the RHS. 5592 if (Val1.getOpcode() == ISD::UNDEF) 5593 std::swap(Val1, Val2); 5594 5595 // Build the shuffle constant vector: e.g. <0, 4, 0, 4> 5596 MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems); 5597 MVT MaskEltVT = MaskVT.getVectorElementType(); 5598 std::vector<SDValue> MaskVec(NumElems); 5599 5600 // Set elements of the shuffle mask for Val1. 5601 std::vector<unsigned> &Val1Elts = Values[Val1]; 5602 for (unsigned i = 0, e = Val1Elts.size(); i != e; ++i) 5603 MaskVec[Val1Elts[i]] = DAG.getConstant(0, MaskEltVT); 5604 5605 // Set elements of the shuffle mask for Val2. 5606 std::vector<unsigned> &Val2Elts = Values[Val2]; 5607 for (unsigned i = 0, e = Val2Elts.size(); i != e; ++i) 5608 if (Val2.getOpcode() != ISD::UNDEF) 5609 MaskVec[Val2Elts[i]] = DAG.getConstant(NumElems, MaskEltVT); 5610 else 5611 MaskVec[Val2Elts[i]] = DAG.getUNDEF(MaskEltVT); 5612 5613 SDValue ShuffleMask = DAG.getBUILD_VECTOR(MaskVT, dl, 5614 &MaskVec[0], MaskVec.size()); 5615 5616 // If the target supports SCALAR_TO_VECTOR and this shuffle mask, use it. 5617 if (TLI.isOperationLegalOrCustom(ISD::SCALAR_TO_VECTOR, 5618 Node->getValueType(0)) && 5619 isShuffleLegal(Node->getValueType(0), ShuffleMask)) { 5620 Val1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,Node->getValueType(0), Val1); 5621 Val2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,Node->getValueType(0), Val2); 5622 SDValue Ops[] = { Val1, Val2, ShuffleMask }; 5623 5624 // Return shuffle(LoValVec, HiValVec, <0,1,0,1>) 5625 return DAG.getNode(ISD::VECTOR_SHUFFLE, dl,Node->getValueType(0), Ops, 3); 5626 } 5627 } 5628 5629 // Otherwise, we can't handle this case efficiently. Allocate a sufficiently 5630 // aligned object on the stack, store each element into it, then load 5631 // the result as a vector. 5632 MVT VT = Node->getValueType(0); 5633 // Create the stack frame object. 5634 SDValue FIPtr = DAG.CreateStackTemporary(VT); 5635 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex(); 5636 const Value *SV = PseudoSourceValue::getFixedStack(FI); 5637 5638 // Emit a store of each element to the stack slot. 5639 SmallVector<SDValue, 8> Stores; 5640 unsigned TypeByteSize = Node->getOperand(0).getValueType().getSizeInBits()/8; 5641 // Store (in the right endianness) the elements to memory. 5642 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 5643 // Ignore undef elements. 5644 if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue; 5645 5646 unsigned Offset = TypeByteSize*i; 5647 5648 SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType()); 5649 Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx); 5650 5651 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i), 5652 Idx, SV, Offset)); 5653 } 5654 5655 SDValue StoreChain; 5656 if (!Stores.empty()) // Not all undef elements? 5657 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 5658 &Stores[0], Stores.size()); 5659 else 5660 StoreChain = DAG.getEntryNode(); 5661 5662 // Result is a load from the stack slot. 5663 return DAG.getLoad(VT, dl, StoreChain, FIPtr, SV, 0); 5664} 5665 5666void SelectionDAGLegalize::ExpandShiftParts(unsigned NodeOp, 5667 SDValue Op, SDValue Amt, 5668 SDValue &Lo, SDValue &Hi, 5669 DebugLoc dl) { 5670 // Expand the subcomponents. 5671 SDValue LHSL, LHSH; 5672 ExpandOp(Op, LHSL, LHSH); 5673 5674 SDValue Ops[] = { LHSL, LHSH, Amt }; 5675 MVT VT = LHSL.getValueType(); 5676 Lo = DAG.getNode(NodeOp, dl, DAG.getNodeValueTypes(VT, VT), 2, Ops, 3); 5677 Hi = Lo.getValue(1); 5678} 5679 5680 5681/// ExpandShift - Try to find a clever way to expand this shift operation out to 5682/// smaller elements. If we can't find a way that is more efficient than a 5683/// libcall on this target, return false. Otherwise, return true with the 5684/// low-parts expanded into Lo and Hi. 5685bool SelectionDAGLegalize::ExpandShift(unsigned Opc, SDValue Op,SDValue Amt, 5686 SDValue &Lo, SDValue &Hi, 5687 DebugLoc dl) { 5688 assert((Opc == ISD::SHL || Opc == ISD::SRA || Opc == ISD::SRL) && 5689 "This is not a shift!"); 5690 5691 MVT NVT = TLI.getTypeToTransformTo(Op.getValueType()); 5692 SDValue ShAmt = LegalizeOp(Amt); 5693 MVT ShTy = ShAmt.getValueType(); 5694 unsigned ShBits = ShTy.getSizeInBits(); 5695 unsigned VTBits = Op.getValueType().getSizeInBits(); 5696 unsigned NVTBits = NVT.getSizeInBits(); 5697 5698 // Handle the case when Amt is an immediate. 5699 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Amt.getNode())) { 5700 unsigned Cst = CN->getZExtValue(); 5701 // Expand the incoming operand to be shifted, so that we have its parts 5702 SDValue InL, InH; 5703 ExpandOp(Op, InL, InH); 5704 switch(Opc) { 5705 case ISD::SHL: 5706 if (Cst > VTBits) { 5707 Lo = DAG.getConstant(0, NVT); 5708 Hi = DAG.getConstant(0, NVT); 5709 } else if (Cst > NVTBits) { 5710 Lo = DAG.getConstant(0, NVT); 5711 Hi = DAG.getNode(ISD::SHL, dl, 5712 NVT, InL, DAG.getConstant(Cst-NVTBits,ShTy)); 5713 } else if (Cst == NVTBits) { 5714 Lo = DAG.getConstant(0, NVT); 5715 Hi = InL; 5716 } else { 5717 Lo = DAG.getNode(ISD::SHL, dl, NVT, InL, DAG.getConstant(Cst, ShTy)); 5718 Hi = DAG.getNode(ISD::OR, dl, NVT, 5719 DAG.getNode(ISD::SHL, dl, NVT, InH, DAG.getConstant(Cst, ShTy)), 5720 DAG.getNode(ISD::SRL, dl, NVT, InL, 5721 DAG.getConstant(NVTBits-Cst, ShTy))); 5722 } 5723 return true; 5724 case ISD::SRL: 5725 if (Cst > VTBits) { 5726 Lo = DAG.getConstant(0, NVT); 5727 Hi = DAG.getConstant(0, NVT); 5728 } else if (Cst > NVTBits) { 5729 Lo = DAG.getNode(ISD::SRL, dl, NVT, 5730 InH, DAG.getConstant(Cst-NVTBits,ShTy)); 5731 Hi = DAG.getConstant(0, NVT); 5732 } else if (Cst == NVTBits) { 5733 Lo = InH; 5734 Hi = DAG.getConstant(0, NVT); 5735 } else { 5736 Lo = DAG.getNode(ISD::OR, dl, NVT, 5737 DAG.getNode(ISD::SRL, dl, NVT, InL, DAG.getConstant(Cst, ShTy)), 5738 DAG.getNode(ISD::SHL, dl, NVT, InH, 5739 DAG.getConstant(NVTBits-Cst, ShTy))); 5740 Hi = DAG.getNode(ISD::SRL, dl, NVT, InH, DAG.getConstant(Cst, ShTy)); 5741 } 5742 return true; 5743 case ISD::SRA: 5744 if (Cst > VTBits) { 5745 Hi = Lo = DAG.getNode(ISD::SRA, dl, NVT, InH, 5746 DAG.getConstant(NVTBits-1, ShTy)); 5747 } else if (Cst > NVTBits) { 5748 Lo = DAG.getNode(ISD::SRA, dl, NVT, InH, 5749 DAG.getConstant(Cst-NVTBits, ShTy)); 5750 Hi = DAG.getNode(ISD::SRA, dl, NVT, InH, 5751 DAG.getConstant(NVTBits-1, ShTy)); 5752 } else if (Cst == NVTBits) { 5753 Lo = InH; 5754 Hi = DAG.getNode(ISD::SRA, dl, NVT, InH, 5755 DAG.getConstant(NVTBits-1, ShTy)); 5756 } else { 5757 Lo = DAG.getNode(ISD::OR, dl, NVT, 5758 DAG.getNode(ISD::SRL, dl, NVT, InL, DAG.getConstant(Cst, ShTy)), 5759 DAG.getNode(ISD::SHL, dl, 5760 NVT, InH, DAG.getConstant(NVTBits-Cst, ShTy))); 5761 Hi = DAG.getNode(ISD::SRA, dl, NVT, InH, DAG.getConstant(Cst, ShTy)); 5762 } 5763 return true; 5764 } 5765 } 5766 5767 // Okay, the shift amount isn't constant. However, if we can tell that it is 5768 // >= 32 or < 32, we can still simplify it, without knowing the actual value. 5769 APInt Mask = APInt::getHighBitsSet(ShBits, ShBits - Log2_32(NVTBits)); 5770 APInt KnownZero, KnownOne; 5771 DAG.ComputeMaskedBits(Amt, Mask, KnownZero, KnownOne); 5772 5773 // If we know that if any of the high bits of the shift amount are one, then 5774 // we can do this as a couple of simple shifts. 5775 if (KnownOne.intersects(Mask)) { 5776 // Mask out the high bit, which we know is set. 5777 Amt = DAG.getNode(ISD::AND, dl, Amt.getValueType(), Amt, 5778 DAG.getConstant(~Mask, Amt.getValueType())); 5779 5780 // Expand the incoming operand to be shifted, so that we have its parts 5781 SDValue InL, InH; 5782 ExpandOp(Op, InL, InH); 5783 switch(Opc) { 5784 case ISD::SHL: 5785 Lo = DAG.getConstant(0, NVT); // Low part is zero. 5786 Hi = DAG.getNode(ISD::SHL, dl, NVT, InL, Amt); // High part from Lo part. 5787 return true; 5788 case ISD::SRL: 5789 Hi = DAG.getConstant(0, NVT); // Hi part is zero. 5790 Lo = DAG.getNode(ISD::SRL, dl, NVT, InH, Amt); // Lo part from Hi part. 5791 return true; 5792 case ISD::SRA: 5793 Hi = DAG.getNode(ISD::SRA, dl, NVT, InH, // Sign extend high part. 5794 DAG.getConstant(NVTBits-1, Amt.getValueType())); 5795 Lo = DAG.getNode(ISD::SRA, dl, NVT, InH, Amt); // Lo part from Hi part. 5796 return true; 5797 } 5798 } 5799 5800 // If we know that the high bits of the shift amount are all zero, then we can 5801 // do this as a couple of simple shifts. 5802 if ((KnownZero & Mask) == Mask) { 5803 // Compute 32-amt. 5804 SDValue Amt2 = DAG.getNode(ISD::SUB, dl, Amt.getValueType(), 5805 DAG.getConstant(NVTBits, Amt.getValueType()), 5806 Amt); 5807 5808 // Expand the incoming operand to be shifted, so that we have its parts 5809 SDValue InL, InH; 5810 ExpandOp(Op, InL, InH); 5811 switch(Opc) { 5812 case ISD::SHL: 5813 Lo = DAG.getNode(ISD::SHL, dl, NVT, InL, Amt); 5814 Hi = DAG.getNode(ISD::OR, dl, NVT, 5815 DAG.getNode(ISD::SHL, dl, NVT, InH, Amt), 5816 DAG.getNode(ISD::SRL, dl, NVT, InL, Amt2)); 5817 return true; 5818 case ISD::SRL: 5819 Hi = DAG.getNode(ISD::SRL, dl, NVT, InH, Amt); 5820 Lo = DAG.getNode(ISD::OR, dl, NVT, 5821 DAG.getNode(ISD::SRL, dl, NVT, InL, Amt), 5822 DAG.getNode(ISD::SHL, dl, NVT, InH, Amt2)); 5823 return true; 5824 case ISD::SRA: 5825 Hi = DAG.getNode(ISD::SRA, dl, NVT, InH, Amt); 5826 Lo = DAG.getNode(ISD::OR, dl, NVT, 5827 DAG.getNode(ISD::SRL, dl, NVT, InL, Amt), 5828 DAG.getNode(ISD::SHL, dl, NVT, InH, Amt2)); 5829 return true; 5830 } 5831 } 5832 5833 return false; 5834} 5835 5836 5837// ExpandLibCall - Expand a node into a call to a libcall. If the result value 5838// does not fit into a register, return the lo part and set the hi part to the 5839// by-reg argument. If it does fit into a single register, return the result 5840// and leave the Hi part unset. 5841SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, 5842 bool isSigned, SDValue &Hi) { 5843 assert(!IsLegalizingCall && "Cannot overlap legalization of calls!"); 5844 // The input chain to this libcall is the entry node of the function. 5845 // Legalizing the call will automatically add the previous call to the 5846 // dependence. 5847 SDValue InChain = DAG.getEntryNode(); 5848 5849 TargetLowering::ArgListTy Args; 5850 TargetLowering::ArgListEntry Entry; 5851 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 5852 MVT ArgVT = Node->getOperand(i).getValueType(); 5853 const Type *ArgTy = ArgVT.getTypeForMVT(); 5854 Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy; 5855 Entry.isSExt = isSigned; 5856 Entry.isZExt = !isSigned; 5857 Args.push_back(Entry); 5858 } 5859 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 5860 TLI.getPointerTy()); 5861 5862 // Splice the libcall in wherever FindInputOutputChains tells us to. 5863 const Type *RetTy = Node->getValueType(0).getTypeForMVT(); 5864 std::pair<SDValue,SDValue> CallInfo = 5865 TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false, 5866 CallingConv::C, false, Callee, Args, DAG, 5867 Node->getDebugLoc()); 5868 5869 // Legalize the call sequence, starting with the chain. This will advance 5870 // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that 5871 // was added by LowerCallTo (guaranteeing proper serialization of calls). 5872 LegalizeOp(CallInfo.second); 5873 SDValue Result; 5874 switch (getTypeAction(CallInfo.first.getValueType())) { 5875 default: assert(0 && "Unknown thing"); 5876 case Legal: 5877 Result = CallInfo.first; 5878 break; 5879 case Expand: 5880 ExpandOp(CallInfo.first, Result, Hi); 5881 break; 5882 } 5883 return Result; 5884} 5885 5886/// LegalizeINT_TO_FP - Legalize a [US]INT_TO_FP operation. 5887/// 5888SDValue SelectionDAGLegalize:: 5889LegalizeINT_TO_FP(SDValue Result, bool isSigned, MVT DestTy, SDValue Op, 5890 DebugLoc dl) { 5891 bool isCustom = false; 5892 SDValue Tmp1; 5893 switch (getTypeAction(Op.getValueType())) { 5894 case Legal: 5895 switch (TLI.getOperationAction(isSigned ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 5896 Op.getValueType())) { 5897 default: assert(0 && "Unknown operation action!"); 5898 case TargetLowering::Custom: 5899 isCustom = true; 5900 // FALLTHROUGH 5901 case TargetLowering::Legal: 5902 Tmp1 = LegalizeOp(Op); 5903 if (Result.getNode()) 5904 Result = DAG.UpdateNodeOperands(Result, Tmp1); 5905 else 5906 Result = DAG.getNode(isSigned ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, dl, 5907 DestTy, Tmp1); 5908 if (isCustom) { 5909 Tmp1 = TLI.LowerOperation(Result, DAG); 5910 if (Tmp1.getNode()) Result = Tmp1; 5911 } 5912 break; 5913 case TargetLowering::Expand: 5914 Result = ExpandLegalINT_TO_FP(isSigned, LegalizeOp(Op), DestTy, dl); 5915 break; 5916 case TargetLowering::Promote: 5917 Result = PromoteLegalINT_TO_FP(LegalizeOp(Op), DestTy, isSigned, dl); 5918 break; 5919 } 5920 break; 5921 case Expand: 5922 Result = ExpandIntToFP(isSigned, DestTy, Op, dl) ; 5923 break; 5924 case Promote: 5925 Tmp1 = PromoteOp(Op); 5926 if (isSigned) { 5927 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Tmp1.getValueType(), 5928 Tmp1, DAG.getValueType(Op.getValueType())); 5929 } else { 5930 Tmp1 = DAG.getZeroExtendInReg(Tmp1, dl, 5931 Op.getValueType()); 5932 } 5933 if (Result.getNode()) 5934 Result = DAG.UpdateNodeOperands(Result, Tmp1); 5935 else 5936 Result = DAG.getNode(isSigned ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, dl, 5937 DestTy, Tmp1); 5938 Result = LegalizeOp(Result); // The 'op' is not necessarily legal! 5939 break; 5940 } 5941 return Result; 5942} 5943 5944/// ExpandIntToFP - Expand a [US]INT_TO_FP operation. 5945/// 5946SDValue SelectionDAGLegalize:: 5947ExpandIntToFP(bool isSigned, MVT DestTy, SDValue Source, DebugLoc dl) { 5948 MVT SourceVT = Source.getValueType(); 5949 bool ExpandSource = getTypeAction(SourceVT) == Expand; 5950 5951 // Expand unsupported int-to-fp vector casts by unrolling them. 5952 if (DestTy.isVector()) { 5953 if (!ExpandSource) 5954 return LegalizeOp(UnrollVectorOp(Source)); 5955 MVT DestEltTy = DestTy.getVectorElementType(); 5956 if (DestTy.getVectorNumElements() == 1) { 5957 SDValue Scalar = ScalarizeVectorOp(Source); 5958 SDValue Result = LegalizeINT_TO_FP(SDValue(), isSigned, 5959 DestEltTy, Scalar, dl); 5960 return DAG.getBUILD_VECTOR(DestTy, dl, Result); 5961 } 5962 SDValue Lo, Hi; 5963 SplitVectorOp(Source, Lo, Hi); 5964 MVT SplitDestTy = MVT::getVectorVT(DestEltTy, 5965 DestTy.getVectorNumElements() / 2); 5966 SDValue LoResult = LegalizeINT_TO_FP(SDValue(), isSigned, SplitDestTy, 5967 Lo, dl); 5968 SDValue HiResult = LegalizeINT_TO_FP(SDValue(), isSigned, SplitDestTy, 5969 Hi, dl); 5970 return LegalizeOp(DAG.getNode(ISD::CONCAT_VECTORS, dl, DestTy, LoResult, 5971 HiResult)); 5972 } 5973 5974 // Special case for i32 source to take advantage of UINTTOFP_I32_F32, etc. 5975 if (!isSigned && SourceVT != MVT::i32) { 5976 // The integer value loaded will be incorrectly if the 'sign bit' of the 5977 // incoming integer is set. To handle this, we dynamically test to see if 5978 // it is set, and, if so, add a fudge factor. 5979 SDValue Hi; 5980 if (ExpandSource) { 5981 SDValue Lo; 5982 ExpandOp(Source, Lo, Hi); 5983 Source = DAG.getNode(ISD::BUILD_PAIR, dl, SourceVT, Lo, Hi); 5984 } else { 5985 // The comparison for the sign bit will use the entire operand. 5986 Hi = Source; 5987 } 5988 5989 // Check to see if the target has a custom way to lower this. If so, use 5990 // it. (Note we've already expanded the operand in this case.) 5991 switch (TLI.getOperationAction(ISD::UINT_TO_FP, SourceVT)) { 5992 default: assert(0 && "This action not implemented for this operation!"); 5993 case TargetLowering::Legal: 5994 case TargetLowering::Expand: 5995 break; // This case is handled below. 5996 case TargetLowering::Custom: { 5997 SDValue NV = TLI.LowerOperation(DAG.getNode(ISD::UINT_TO_FP, dl, DestTy, 5998 Source), DAG); 5999 if (NV.getNode()) 6000 return LegalizeOp(NV); 6001 break; // The target decided this was legal after all 6002 } 6003 } 6004 6005 // If this is unsigned, and not supported, first perform the conversion to 6006 // signed, then adjust the result if the sign bit is set. 6007 SDValue SignedConv = ExpandIntToFP(true, DestTy, Source, dl); 6008 6009 SDValue SignSet = DAG.getSetCC(dl, 6010 TLI.getSetCCResultType(Hi.getValueType()), 6011 Hi, DAG.getConstant(0, Hi.getValueType()), 6012 ISD::SETLT); 6013 SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4); 6014 SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), 6015 SignSet, Four, Zero); 6016 uint64_t FF = 0x5f800000ULL; 6017 if (TLI.isLittleEndian()) FF <<= 32; 6018 static Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF); 6019 6020 SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy()); 6021 unsigned Alignment = 1 << cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 6022 CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset); 6023 Alignment = std::min(Alignment, 4u); 6024 SDValue FudgeInReg; 6025 if (DestTy == MVT::f32) 6026 FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx, 6027 PseudoSourceValue::getConstantPool(), 0, 6028 false, Alignment); 6029 else if (DestTy.bitsGT(MVT::f32)) 6030 // FIXME: Avoid the extend by construction the right constantpool? 6031 FudgeInReg = DAG.getExtLoad(ISD::EXTLOAD, dl, DestTy, DAG.getEntryNode(), 6032 CPIdx, 6033 PseudoSourceValue::getConstantPool(), 0, 6034 MVT::f32, false, Alignment); 6035 else 6036 assert(0 && "Unexpected conversion"); 6037 6038 MVT SCVT = SignedConv.getValueType(); 6039 if (SCVT != DestTy) { 6040 // Destination type needs to be expanded as well. The FADD now we are 6041 // constructing will be expanded into a libcall. 6042 if (SCVT.getSizeInBits() != DestTy.getSizeInBits()) { 6043 assert(SCVT.getSizeInBits() * 2 == DestTy.getSizeInBits()); 6044 SignedConv = DAG.getNode(ISD::BUILD_PAIR, dl, DestTy, 6045 SignedConv, SignedConv.getValue(1)); 6046 } 6047 SignedConv = DAG.getNode(ISD::BIT_CONVERT, dl, DestTy, SignedConv); 6048 } 6049 return DAG.getNode(ISD::FADD, dl, DestTy, SignedConv, FudgeInReg); 6050 } 6051 6052 // Check to see if the target has a custom way to lower this. If so, use it. 6053 switch (TLI.getOperationAction(ISD::SINT_TO_FP, SourceVT)) { 6054 default: assert(0 && "This action not implemented for this operation!"); 6055 case TargetLowering::Legal: 6056 case TargetLowering::Expand: 6057 break; // This case is handled below. 6058 case TargetLowering::Custom: { 6059 SDValue NV = TLI.LowerOperation(DAG.getNode(ISD::SINT_TO_FP, dl, DestTy, 6060 Source), DAG); 6061 if (NV.getNode()) 6062 return LegalizeOp(NV); 6063 break; // The target decided this was legal after all 6064 } 6065 } 6066 6067 // Expand the source, then glue it back together for the call. We must expand 6068 // the source in case it is shared (this pass of legalize must traverse it). 6069 if (ExpandSource) { 6070 SDValue SrcLo, SrcHi; 6071 ExpandOp(Source, SrcLo, SrcHi); 6072 Source = DAG.getNode(ISD::BUILD_PAIR, dl, SourceVT, SrcLo, SrcHi); 6073 } 6074 6075 RTLIB::Libcall LC = isSigned ? 6076 RTLIB::getSINTTOFP(SourceVT, DestTy) : 6077 RTLIB::getUINTTOFP(SourceVT, DestTy); 6078 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unknown int value type"); 6079 6080 Source = DAG.getNode(ISD::SINT_TO_FP, dl, DestTy, Source); 6081 SDValue HiPart; 6082 SDValue Result = ExpandLibCall(LC, Source.getNode(), isSigned, HiPart); 6083 if (Result.getValueType() != DestTy && HiPart.getNode()) 6084 Result = DAG.getNode(ISD::BUILD_PAIR, dl, DestTy, Result, HiPart); 6085 return Result; 6086} 6087 6088/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a 6089/// INT_TO_FP operation of the specified operand when the target requests that 6090/// we expand it. At this point, we know that the result and operand types are 6091/// legal for the target. 6092SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned, 6093 SDValue Op0, 6094 MVT DestVT, 6095 DebugLoc dl) { 6096 if (Op0.getValueType() == MVT::i32) { 6097 // simple 32-bit [signed|unsigned] integer to float/double expansion 6098 6099 // Get the stack frame index of a 8 byte buffer. 6100 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); 6101 6102 // word offset constant for Hi/Lo address computation 6103 SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy()); 6104 // set up Hi and Lo (into buffer) address based on endian 6105 SDValue Hi = StackSlot; 6106 SDValue Lo = DAG.getNode(ISD::ADD, dl, 6107 TLI.getPointerTy(), StackSlot,WordOff); 6108 if (TLI.isLittleEndian()) 6109 std::swap(Hi, Lo); 6110 6111 // if signed map to unsigned space 6112 SDValue Op0Mapped; 6113 if (isSigned) { 6114 // constant used to invert sign bit (signed to unsigned mapping) 6115 SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32); 6116 Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit); 6117 } else { 6118 Op0Mapped = Op0; 6119 } 6120 // store the lo of the constructed double - based on integer input 6121 SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, 6122 Op0Mapped, Lo, NULL, 0); 6123 // initial hi portion of constructed double 6124 SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32); 6125 // store the hi of the constructed double - biased exponent 6126 SDValue Store2=DAG.getStore(Store1, dl, InitialHi, Hi, NULL, 0); 6127 // load the constructed double 6128 SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot, NULL, 0); 6129 // FP constant to bias correct the final result 6130 SDValue Bias = DAG.getConstantFP(isSigned ? 6131 BitsToDouble(0x4330000080000000ULL) 6132 : BitsToDouble(0x4330000000000000ULL), 6133 MVT::f64); 6134 // subtract the bias 6135 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias); 6136 // final result 6137 SDValue Result; 6138 // handle final rounding 6139 if (DestVT == MVT::f64) { 6140 // do nothing 6141 Result = Sub; 6142 } else if (DestVT.bitsLT(MVT::f64)) { 6143 Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub, 6144 DAG.getIntPtrConstant(0)); 6145 } else if (DestVT.bitsGT(MVT::f64)) { 6146 Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub); 6147 } 6148 return Result; 6149 } 6150 assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet"); 6151 SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 6152 6153 SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()), 6154 Op0, DAG.getConstant(0, Op0.getValueType()), 6155 ISD::SETLT); 6156 SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4); 6157 SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), 6158 SignSet, Four, Zero); 6159 6160 // If the sign bit of the integer is set, the large number will be treated 6161 // as a negative number. To counteract this, the dynamic code adds an 6162 // offset depending on the data type. 6163 uint64_t FF; 6164 switch (Op0.getValueType().getSimpleVT()) { 6165 default: assert(0 && "Unsupported integer type!"); 6166 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) 6167 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) 6168 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) 6169 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) 6170 } 6171 if (TLI.isLittleEndian()) FF <<= 32; 6172 static Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF); 6173 6174 SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy()); 6175 unsigned Alignment = 1 << cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 6176 CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset); 6177 Alignment = std::min(Alignment, 4u); 6178 SDValue FudgeInReg; 6179 if (DestVT == MVT::f32) 6180 FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx, 6181 PseudoSourceValue::getConstantPool(), 0, 6182 false, Alignment); 6183 else { 6184 FudgeInReg = 6185 LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, 6186 DAG.getEntryNode(), CPIdx, 6187 PseudoSourceValue::getConstantPool(), 0, 6188 MVT::f32, false, Alignment)); 6189 } 6190 6191 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg); 6192} 6193 6194/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a 6195/// *INT_TO_FP operation of the specified operand when the target requests that 6196/// we promote it. At this point, we know that the result and operand types are 6197/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP 6198/// operation that takes a larger input. 6199SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp, 6200 MVT DestVT, 6201 bool isSigned, 6202 DebugLoc dl) { 6203 // First step, figure out the appropriate *INT_TO_FP operation to use. 6204 MVT NewInTy = LegalOp.getValueType(); 6205 6206 unsigned OpToUse = 0; 6207 6208 // Scan for the appropriate larger type to use. 6209 while (1) { 6210 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT()+1); 6211 assert(NewInTy.isInteger() && "Ran out of possibilities!"); 6212 6213 // If the target supports SINT_TO_FP of this type, use it. 6214 switch (TLI.getOperationAction(ISD::SINT_TO_FP, NewInTy)) { 6215 default: break; 6216 case TargetLowering::Legal: 6217 if (!TLI.isTypeLegal(NewInTy)) 6218 break; // Can't use this datatype. 6219 // FALL THROUGH. 6220 case TargetLowering::Custom: 6221 OpToUse = ISD::SINT_TO_FP; 6222 break; 6223 } 6224 if (OpToUse) break; 6225 if (isSigned) continue; 6226 6227 // If the target supports UINT_TO_FP of this type, use it. 6228 switch (TLI.getOperationAction(ISD::UINT_TO_FP, NewInTy)) { 6229 default: break; 6230 case TargetLowering::Legal: 6231 if (!TLI.isTypeLegal(NewInTy)) 6232 break; // Can't use this datatype. 6233 // FALL THROUGH. 6234 case TargetLowering::Custom: 6235 OpToUse = ISD::UINT_TO_FP; 6236 break; 6237 } 6238 if (OpToUse) break; 6239 6240 // Otherwise, try a larger type. 6241 } 6242 6243 // Okay, we found the operation and type to use. Zero extend our input to the 6244 // desired type then run the operation on it. 6245 return DAG.getNode(OpToUse, dl, DestVT, 6246 DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 6247 dl, NewInTy, LegalOp)); 6248} 6249 6250/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a 6251/// FP_TO_*INT operation of the specified operand when the target requests that 6252/// we promote it. At this point, we know that the result and operand types are 6253/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT 6254/// operation that returns a larger result. 6255SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp, 6256 MVT DestVT, 6257 bool isSigned, 6258 DebugLoc dl) { 6259 // First step, figure out the appropriate FP_TO*INT operation to use. 6260 MVT NewOutTy = DestVT; 6261 6262 unsigned OpToUse = 0; 6263 6264 // Scan for the appropriate larger type to use. 6265 while (1) { 6266 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT()+1); 6267 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 6268 6269 // If the target supports FP_TO_SINT returning this type, use it. 6270 switch (TLI.getOperationAction(ISD::FP_TO_SINT, NewOutTy)) { 6271 default: break; 6272 case TargetLowering::Legal: 6273 if (!TLI.isTypeLegal(NewOutTy)) 6274 break; // Can't use this datatype. 6275 // FALL THROUGH. 6276 case TargetLowering::Custom: 6277 OpToUse = ISD::FP_TO_SINT; 6278 break; 6279 } 6280 if (OpToUse) break; 6281 6282 // If the target supports FP_TO_UINT of this type, use it. 6283 switch (TLI.getOperationAction(ISD::FP_TO_UINT, NewOutTy)) { 6284 default: break; 6285 case TargetLowering::Legal: 6286 if (!TLI.isTypeLegal(NewOutTy)) 6287 break; // Can't use this datatype. 6288 // FALL THROUGH. 6289 case TargetLowering::Custom: 6290 OpToUse = ISD::FP_TO_UINT; 6291 break; 6292 } 6293 if (OpToUse) break; 6294 6295 // Otherwise, try a larger type. 6296 } 6297 6298 6299 // Okay, we found the operation and type to use. 6300 SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp); 6301 6302 // If the operation produces an invalid type, it must be custom lowered. Use 6303 // the target lowering hooks to expand it. Just keep the low part of the 6304 // expanded operation, we know that we're truncating anyway. 6305 if (getTypeAction(NewOutTy) == Expand) { 6306 SmallVector<SDValue, 2> Results; 6307 TLI.ReplaceNodeResults(Operation.getNode(), Results, DAG); 6308 assert(Results.size() == 1 && "Incorrect FP_TO_XINT lowering!"); 6309 Operation = Results[0]; 6310 } 6311 6312 // Truncate the result of the extended FP_TO_*INT operation to the desired 6313 // size. 6314 return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation); 6315} 6316 6317/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation. 6318/// 6319SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) { 6320 MVT VT = Op.getValueType(); 6321 MVT SHVT = TLI.getShiftAmountTy(); 6322 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 6323 switch (VT.getSimpleVT()) { 6324 default: assert(0 && "Unhandled Expand type in BSWAP!"); abort(); 6325 case MVT::i16: 6326 Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT)); 6327 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT)); 6328 return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); 6329 case MVT::i32: 6330 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT)); 6331 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT)); 6332 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT)); 6333 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT)); 6334 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT)); 6335 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT)); 6336 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 6337 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 6338 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 6339 case MVT::i64: 6340 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT)); 6341 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT)); 6342 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT)); 6343 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT)); 6344 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT)); 6345 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT)); 6346 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT)); 6347 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT)); 6348 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT)); 6349 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT)); 6350 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT)); 6351 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT)); 6352 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT)); 6353 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT)); 6354 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 6355 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 6356 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 6357 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 6358 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 6359 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 6360 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 6361 } 6362} 6363 6364/// ExpandBitCount - Expand the specified bitcount instruction into operations. 6365/// 6366SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op, 6367 DebugLoc dl) { 6368 switch (Opc) { 6369 default: assert(0 && "Cannot expand this yet!"); 6370 case ISD::CTPOP: { 6371 static const uint64_t mask[6] = { 6372 0x5555555555555555ULL, 0x3333333333333333ULL, 6373 0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL, 6374 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL 6375 }; 6376 MVT VT = Op.getValueType(); 6377 MVT ShVT = TLI.getShiftAmountTy(); 6378 unsigned len = VT.getSizeInBits(); 6379 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) { 6380 //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8]) 6381 unsigned EltSize = VT.isVector() ? 6382 VT.getVectorElementType().getSizeInBits() : len; 6383 SDValue Tmp2 = DAG.getConstant(APInt(EltSize, mask[i]), VT); 6384 SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT); 6385 Op = DAG.getNode(ISD::ADD, dl, VT, 6386 DAG.getNode(ISD::AND, dl, VT, Op, Tmp2), 6387 DAG.getNode(ISD::AND, dl, VT, 6388 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3), 6389 Tmp2)); 6390 } 6391 return Op; 6392 } 6393 case ISD::CTLZ: { 6394 // for now, we do this: 6395 // x = x | (x >> 1); 6396 // x = x | (x >> 2); 6397 // ... 6398 // x = x | (x >>16); 6399 // x = x | (x >>32); // for 64-bit input 6400 // return popcount(~x); 6401 // 6402 // but see also: http://www.hackersdelight.org/HDcode/nlz.cc 6403 MVT VT = Op.getValueType(); 6404 MVT ShVT = TLI.getShiftAmountTy(); 6405 unsigned len = VT.getSizeInBits(); 6406 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) { 6407 SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT); 6408 Op = DAG.getNode(ISD::OR, dl, VT, Op, 6409 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3)); 6410 } 6411 Op = DAG.getNOT(dl, Op, VT); 6412 return DAG.getNode(ISD::CTPOP, dl, VT, Op); 6413 } 6414 case ISD::CTTZ: { 6415 // for now, we use: { return popcount(~x & (x - 1)); } 6416 // unless the target has ctlz but not ctpop, in which case we use: 6417 // { return 32 - nlz(~x & (x-1)); } 6418 // see also http://www.hackersdelight.org/HDcode/ntz.cc 6419 MVT VT = Op.getValueType(); 6420 SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT, 6421 DAG.getNOT(dl, Op, VT), 6422 DAG.getNode(ISD::SUB, dl, VT, Op, 6423 DAG.getConstant(1, VT))); 6424 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 6425 if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) && 6426 TLI.isOperationLegalOrCustom(ISD::CTLZ, VT)) 6427 return DAG.getNode(ISD::SUB, dl, VT, 6428 DAG.getConstant(VT.getSizeInBits(), VT), 6429 DAG.getNode(ISD::CTLZ, dl, VT, Tmp3)); 6430 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3); 6431 } 6432 } 6433} 6434 6435/// ExpandOp - Expand the specified SDValue into its two component pieces 6436/// Lo&Hi. Note that the Op MUST be an expanded type. As a result of this, the 6437/// LegalizedNodes map is filled in for any results that are not expanded, the 6438/// ExpandedNodes map is filled in for any results that are expanded, and the 6439/// Lo/Hi values are returned. 6440void SelectionDAGLegalize::ExpandOp(SDValue Op, SDValue &Lo, SDValue &Hi){ 6441 MVT VT = Op.getValueType(); 6442 MVT NVT = TLI.getTypeToTransformTo(VT); 6443 SDNode *Node = Op.getNode(); 6444 DebugLoc dl = Node->getDebugLoc(); 6445 assert(getTypeAction(VT) == Expand && "Not an expanded type!"); 6446 assert(((NVT.isInteger() && NVT.bitsLT(VT)) || VT.isFloatingPoint() || 6447 VT.isVector()) && "Cannot expand to FP value or to larger int value!"); 6448 6449 // See if we already expanded it. 6450 DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator I 6451 = ExpandedNodes.find(Op); 6452 if (I != ExpandedNodes.end()) { 6453 Lo = I->second.first; 6454 Hi = I->second.second; 6455 return; 6456 } 6457 6458 switch (Node->getOpcode()) { 6459 case ISD::CopyFromReg: 6460 assert(0 && "CopyFromReg must be legal!"); 6461 case ISD::FP_ROUND_INREG: 6462 if (VT == MVT::ppcf128 && 6463 TLI.getOperationAction(ISD::FP_ROUND_INREG, VT) == 6464 TargetLowering::Custom) { 6465 SDValue SrcLo, SrcHi, Src; 6466 ExpandOp(Op.getOperand(0), SrcLo, SrcHi); 6467 Src = DAG.getNode(ISD::BUILD_PAIR, dl, VT, SrcLo, SrcHi); 6468 SDValue Result = TLI.LowerOperation( 6469 DAG.getNode(ISD::FP_ROUND_INREG, dl, VT, Src, Op.getOperand(1)), DAG); 6470 assert(Result.getNode()->getOpcode() == ISD::BUILD_PAIR); 6471 Lo = Result.getNode()->getOperand(0); 6472 Hi = Result.getNode()->getOperand(1); 6473 break; 6474 } 6475 // fall through 6476 default: 6477#ifndef NDEBUG 6478 cerr << "NODE: "; Node->dump(&DAG); cerr << "\n"; 6479#endif 6480 assert(0 && "Do not know how to expand this operator!"); 6481 abort(); 6482 case ISD::EXTRACT_ELEMENT: 6483 ExpandOp(Node->getOperand(0), Lo, Hi); 6484 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) 6485 return ExpandOp(Hi, Lo, Hi); 6486 return ExpandOp(Lo, Lo, Hi); 6487 case ISD::EXTRACT_VECTOR_ELT: 6488 // ExpandEXTRACT_VECTOR_ELT tolerates invalid result types. 6489 Lo = ExpandEXTRACT_VECTOR_ELT(Op); 6490 return ExpandOp(Lo, Lo, Hi); 6491 case ISD::UNDEF: 6492 Lo = DAG.getUNDEF(NVT); 6493 Hi = DAG.getUNDEF(NVT); 6494 break; 6495 case ISD::Constant: { 6496 unsigned NVTBits = NVT.getSizeInBits(); 6497 const APInt &Cst = cast<ConstantSDNode>(Node)->getAPIntValue(); 6498 Lo = DAG.getConstant(APInt(Cst).trunc(NVTBits), NVT); 6499 Hi = DAG.getConstant(Cst.lshr(NVTBits).trunc(NVTBits), NVT); 6500 break; 6501 } 6502 case ISD::ConstantFP: { 6503 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 6504 if (CFP->getValueType(0) == MVT::ppcf128) { 6505 APInt api = CFP->getValueAPF().bitcastToAPInt(); 6506 Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &api.getRawData()[1])), 6507 MVT::f64); 6508 Hi = DAG.getConstantFP(APFloat(APInt(64, 1, &api.getRawData()[0])), 6509 MVT::f64); 6510 break; 6511 } 6512 Lo = ExpandConstantFP(CFP, false, DAG, TLI); 6513 if (getTypeAction(Lo.getValueType()) == Expand) 6514 ExpandOp(Lo, Lo, Hi); 6515 break; 6516 } 6517 case ISD::BUILD_PAIR: 6518 // Return the operands. 6519 Lo = Node->getOperand(0); 6520 Hi = Node->getOperand(1); 6521 break; 6522 6523 case ISD::MERGE_VALUES: 6524 if (Node->getNumValues() == 1) { 6525 ExpandOp(Op.getOperand(0), Lo, Hi); 6526 break; 6527 } 6528 // FIXME: For now only expand i64,chain = MERGE_VALUES (x, y) 6529 assert(Op.getResNo() == 0 && Node->getNumValues() == 2 && 6530 Op.getValue(1).getValueType() == MVT::Other && 6531 "unhandled MERGE_VALUES"); 6532 ExpandOp(Op.getOperand(0), Lo, Hi); 6533 // Remember that we legalized the chain. 6534 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Op.getOperand(1))); 6535 break; 6536 6537 case ISD::SIGN_EXTEND_INREG: 6538 ExpandOp(Node->getOperand(0), Lo, Hi); 6539 // sext_inreg the low part if needed. 6540 Lo = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Lo, Node->getOperand(1)); 6541 6542 // The high part gets the sign extension from the lo-part. This handles 6543 // things like sextinreg V:i64 from i8. 6544 Hi = DAG.getNode(ISD::SRA, dl, NVT, Lo, 6545 DAG.getConstant(NVT.getSizeInBits()-1, 6546 TLI.getShiftAmountTy())); 6547 break; 6548 6549 case ISD::BSWAP: { 6550 ExpandOp(Node->getOperand(0), Lo, Hi); 6551 SDValue TempLo = DAG.getNode(ISD::BSWAP, dl, NVT, Hi); 6552 Hi = DAG.getNode(ISD::BSWAP, dl, NVT, Lo); 6553 Lo = TempLo; 6554 break; 6555 } 6556 6557 case ISD::CTPOP: 6558 ExpandOp(Node->getOperand(0), Lo, Hi); 6559 Lo = DAG.getNode(ISD::ADD, dl, NVT, // ctpop(HL) -> ctpop(H)+ctpop(L) 6560 DAG.getNode(ISD::CTPOP, dl, NVT, Lo), 6561 DAG.getNode(ISD::CTPOP, dl, NVT, Hi)); 6562 Hi = DAG.getConstant(0, NVT); 6563 break; 6564 6565 case ISD::CTLZ: { 6566 // ctlz (HL) -> ctlz(H) != 32 ? ctlz(H) : (ctlz(L)+32) 6567 ExpandOp(Node->getOperand(0), Lo, Hi); 6568 SDValue BitsC = DAG.getConstant(NVT.getSizeInBits(), NVT); 6569 SDValue HLZ = DAG.getNode(ISD::CTLZ, dl, NVT, Hi); 6570 SDValue TopNotZero = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT), HLZ, 6571 BitsC, ISD::SETNE); 6572 SDValue LowPart = DAG.getNode(ISD::CTLZ, dl, NVT, Lo); 6573 LowPart = DAG.getNode(ISD::ADD, dl, NVT, LowPart, BitsC); 6574 6575 Lo = DAG.getNode(ISD::SELECT, dl, NVT, TopNotZero, HLZ, LowPart); 6576 Hi = DAG.getConstant(0, NVT); 6577 break; 6578 } 6579 6580 case ISD::CTTZ: { 6581 // cttz (HL) -> cttz(L) != 32 ? cttz(L) : (cttz(H)+32) 6582 ExpandOp(Node->getOperand(0), Lo, Hi); 6583 SDValue BitsC = DAG.getConstant(NVT.getSizeInBits(), NVT); 6584 SDValue LTZ = DAG.getNode(ISD::CTTZ, dl, NVT, Lo); 6585 SDValue BotNotZero = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT), LTZ, 6586 BitsC, ISD::SETNE); 6587 SDValue HiPart = DAG.getNode(ISD::CTTZ, dl, NVT, Hi); 6588 HiPart = DAG.getNode(ISD::ADD, dl, NVT, HiPart, BitsC); 6589 6590 Lo = DAG.getNode(ISD::SELECT, dl, NVT, BotNotZero, LTZ, HiPart); 6591 Hi = DAG.getConstant(0, NVT); 6592 break; 6593 } 6594 6595 case ISD::VAARG: { 6596 SDValue Ch = Node->getOperand(0); // Legalize the chain. 6597 SDValue Ptr = Node->getOperand(1); // Legalize the pointer. 6598 Lo = DAG.getVAArg(NVT, dl, Ch, Ptr, Node->getOperand(2)); 6599 Hi = DAG.getVAArg(NVT, dl, Lo.getValue(1), Ptr, Node->getOperand(2)); 6600 6601 // Remember that we legalized the chain. 6602 Hi = LegalizeOp(Hi); 6603 AddLegalizedOperand(Op.getValue(1), Hi.getValue(1)); 6604 if (TLI.isBigEndian()) 6605 std::swap(Lo, Hi); 6606 break; 6607 } 6608 6609 case ISD::LOAD: { 6610 LoadSDNode *LD = cast<LoadSDNode>(Node); 6611 SDValue Ch = LD->getChain(); // Legalize the chain. 6612 SDValue Ptr = LD->getBasePtr(); // Legalize the pointer. 6613 ISD::LoadExtType ExtType = LD->getExtensionType(); 6614 const Value *SV = LD->getSrcValue(); 6615 int SVOffset = LD->getSrcValueOffset(); 6616 unsigned Alignment = LD->getAlignment(); 6617 bool isVolatile = LD->isVolatile(); 6618 6619 if (ExtType == ISD::NON_EXTLOAD) { 6620 Lo = DAG.getLoad(NVT, dl, Ch, Ptr, SV, SVOffset, 6621 isVolatile, Alignment); 6622 if (VT == MVT::f32 || VT == MVT::f64) { 6623 // f32->i32 or f64->i64 one to one expansion. 6624 // Remember that we legalized the chain. 6625 AddLegalizedOperand(SDValue(Node, 1), LegalizeOp(Lo.getValue(1))); 6626 // Recursively expand the new load. 6627 if (getTypeAction(NVT) == Expand) 6628 ExpandOp(Lo, Lo, Hi); 6629 break; 6630 } 6631 6632 // Increment the pointer to the other half. 6633 unsigned IncrementSize = Lo.getValueType().getSizeInBits()/8; 6634 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 6635 DAG.getIntPtrConstant(IncrementSize)); 6636 SVOffset += IncrementSize; 6637 Alignment = MinAlign(Alignment, IncrementSize); 6638 Hi = DAG.getLoad(NVT, dl, Ch, Ptr, SV, SVOffset, 6639 isVolatile, Alignment); 6640 6641 // Build a factor node to remember that this load is independent of the 6642 // other one. 6643 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 6644 Hi.getValue(1)); 6645 6646 // Remember that we legalized the chain. 6647 AddLegalizedOperand(Op.getValue(1), LegalizeOp(TF)); 6648 if (TLI.isBigEndian()) 6649 std::swap(Lo, Hi); 6650 } else { 6651 MVT EVT = LD->getMemoryVT(); 6652 6653 if ((VT == MVT::f64 && EVT == MVT::f32) || 6654 (VT == MVT::ppcf128 && (EVT==MVT::f64 || EVT==MVT::f32))) { 6655 // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND 6656 SDValue Load = DAG.getLoad(EVT, dl, Ch, Ptr, SV, 6657 SVOffset, isVolatile, Alignment); 6658 // Remember that we legalized the chain. 6659 AddLegalizedOperand(SDValue(Node, 1), LegalizeOp(Load.getValue(1))); 6660 ExpandOp(DAG.getNode(ISD::FP_EXTEND, dl, VT, Load), Lo, Hi); 6661 break; 6662 } 6663 6664 if (EVT == NVT) 6665 Lo = DAG.getLoad(NVT, dl, Ch, Ptr, SV, 6666 SVOffset, isVolatile, Alignment); 6667 else 6668 Lo = DAG.getExtLoad(ExtType, dl, NVT, Ch, Ptr, SV, 6669 SVOffset, EVT, isVolatile, 6670 Alignment); 6671 6672 // Remember that we legalized the chain. 6673 AddLegalizedOperand(SDValue(Node, 1), LegalizeOp(Lo.getValue(1))); 6674 6675 if (ExtType == ISD::SEXTLOAD) { 6676 // The high part is obtained by SRA'ing all but one of the bits of the 6677 // lo part. 6678 unsigned LoSize = Lo.getValueType().getSizeInBits(); 6679 Hi = DAG.getNode(ISD::SRA, dl, NVT, Lo, 6680 DAG.getConstant(LoSize-1, TLI.getShiftAmountTy())); 6681 } else if (ExtType == ISD::ZEXTLOAD) { 6682 // The high part is just a zero. 6683 Hi = DAG.getConstant(0, NVT); 6684 } else /* if (ExtType == ISD::EXTLOAD) */ { 6685 // The high part is undefined. 6686 Hi = DAG.getUNDEF(NVT); 6687 } 6688 } 6689 break; 6690 } 6691 case ISD::AND: 6692 case ISD::OR: 6693 case ISD::XOR: { // Simple logical operators -> two trivial pieces. 6694 SDValue LL, LH, RL, RH; 6695 ExpandOp(Node->getOperand(0), LL, LH); 6696 ExpandOp(Node->getOperand(1), RL, RH); 6697 Lo = DAG.getNode(Node->getOpcode(), dl, NVT, LL, RL); 6698 Hi = DAG.getNode(Node->getOpcode(), dl, NVT, LH, RH); 6699 break; 6700 } 6701 case ISD::SELECT: { 6702 SDValue LL, LH, RL, RH; 6703 ExpandOp(Node->getOperand(1), LL, LH); 6704 ExpandOp(Node->getOperand(2), RL, RH); 6705 if (getTypeAction(NVT) == Expand) 6706 NVT = TLI.getTypeToExpandTo(NVT); 6707 Lo = DAG.getNode(ISD::SELECT, dl, NVT, Node->getOperand(0), LL, RL); 6708 if (VT != MVT::f32) 6709 Hi = DAG.getNode(ISD::SELECT, dl, NVT, Node->getOperand(0), LH, RH); 6710 break; 6711 } 6712 case ISD::SELECT_CC: { 6713 SDValue TL, TH, FL, FH; 6714 ExpandOp(Node->getOperand(2), TL, TH); 6715 ExpandOp(Node->getOperand(3), FL, FH); 6716 if (getTypeAction(NVT) == Expand) 6717 NVT = TLI.getTypeToExpandTo(NVT); 6718 Lo = DAG.getNode(ISD::SELECT_CC, dl, NVT, Node->getOperand(0), 6719 Node->getOperand(1), TL, FL, Node->getOperand(4)); 6720 if (VT != MVT::f32) 6721 Hi = DAG.getNode(ISD::SELECT_CC, dl, NVT, Node->getOperand(0), 6722 Node->getOperand(1), TH, FH, Node->getOperand(4)); 6723 break; 6724 } 6725 case ISD::ANY_EXTEND: 6726 // The low part is any extension of the input (which degenerates to a copy). 6727 Lo = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(0)); 6728 // The high part is undefined. 6729 Hi = DAG.getUNDEF(NVT); 6730 break; 6731 case ISD::SIGN_EXTEND: { 6732 // The low part is just a sign extension of the input (which degenerates to 6733 // a copy). 6734 Lo = DAG.getNode(ISD::SIGN_EXTEND, dl, NVT, Node->getOperand(0)); 6735 6736 // The high part is obtained by SRA'ing all but one of the bits of the lo 6737 // part. 6738 unsigned LoSize = Lo.getValueType().getSizeInBits(); 6739 Hi = DAG.getNode(ISD::SRA, dl, NVT, Lo, 6740 DAG.getConstant(LoSize-1, TLI.getShiftAmountTy())); 6741 break; 6742 } 6743 case ISD::ZERO_EXTEND: 6744 // The low part is just a zero extension of the input (which degenerates to 6745 // a copy). 6746 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 6747 6748 // The high part is just a zero. 6749 Hi = DAG.getConstant(0, NVT); 6750 break; 6751 6752 case ISD::TRUNCATE: { 6753 // The input value must be larger than this value. Expand *it*. 6754 SDValue NewLo; 6755 ExpandOp(Node->getOperand(0), NewLo, Hi); 6756 6757 // The low part is now either the right size, or it is closer. If not the 6758 // right size, make an illegal truncate so we recursively expand it. 6759 if (NewLo.getValueType() != Node->getValueType(0)) 6760 NewLo = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), NewLo); 6761 ExpandOp(NewLo, Lo, Hi); 6762 break; 6763 } 6764 6765 case ISD::BIT_CONVERT: { 6766 SDValue Tmp; 6767 if (TLI.getOperationAction(ISD::BIT_CONVERT, VT) == TargetLowering::Custom){ 6768 // If the target wants to, allow it to lower this itself. 6769 switch (getTypeAction(Node->getOperand(0).getValueType())) { 6770 case Expand: assert(0 && "cannot expand FP!"); 6771 case Legal: Tmp = LegalizeOp(Node->getOperand(0)); break; 6772 case Promote: Tmp = PromoteOp (Node->getOperand(0)); break; 6773 } 6774 Tmp = TLI.LowerOperation(DAG.getNode(ISD::BIT_CONVERT, dl, VT, Tmp), DAG); 6775 } 6776 6777 // f32 / f64 must be expanded to i32 / i64. 6778 if (VT == MVT::f32 || VT == MVT::f64) { 6779 Lo = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0)); 6780 if (getTypeAction(NVT) == Expand) 6781 ExpandOp(Lo, Lo, Hi); 6782 break; 6783 } 6784 6785 // If source operand will be expanded to the same type as VT, i.e. 6786 // i64 <- f64, i32 <- f32, expand the source operand instead. 6787 MVT VT0 = Node->getOperand(0).getValueType(); 6788 if (getTypeAction(VT0) == Expand && TLI.getTypeToTransformTo(VT0) == VT) { 6789 ExpandOp(Node->getOperand(0), Lo, Hi); 6790 break; 6791 } 6792 6793 // Turn this into a load/store pair by default. 6794 if (Tmp.getNode() == 0) 6795 Tmp = EmitStackConvert(Node->getOperand(0), VT, VT, dl); 6796 6797 ExpandOp(Tmp, Lo, Hi); 6798 break; 6799 } 6800 6801 case ISD::READCYCLECOUNTER: { 6802 assert(TLI.getOperationAction(ISD::READCYCLECOUNTER, VT) == 6803 TargetLowering::Custom && 6804 "Must custom expand ReadCycleCounter"); 6805 SDValue Tmp = TLI.LowerOperation(Op, DAG); 6806 assert(Tmp.getNode() && "Node must be custom expanded!"); 6807 ExpandOp(Tmp.getValue(0), Lo, Hi); 6808 AddLegalizedOperand(SDValue(Node, 1), // Remember we legalized the chain. 6809 LegalizeOp(Tmp.getValue(1))); 6810 break; 6811 } 6812 6813 case ISD::ATOMIC_CMP_SWAP: { 6814 // This operation does not need a loop. 6815 SDValue Tmp = TLI.LowerOperation(Op, DAG); 6816 assert(Tmp.getNode() && "Node must be custom expanded!"); 6817 ExpandOp(Tmp.getValue(0), Lo, Hi); 6818 AddLegalizedOperand(SDValue(Node, 1), // Remember we legalized the chain. 6819 LegalizeOp(Tmp.getValue(1))); 6820 break; 6821 } 6822 6823 case ISD::ATOMIC_LOAD_ADD: 6824 case ISD::ATOMIC_LOAD_SUB: 6825 case ISD::ATOMIC_LOAD_AND: 6826 case ISD::ATOMIC_LOAD_OR: 6827 case ISD::ATOMIC_LOAD_XOR: 6828 case ISD::ATOMIC_LOAD_NAND: 6829 case ISD::ATOMIC_SWAP: { 6830 // These operations require a loop to be generated. We can't do that yet, 6831 // so substitute a target-dependent pseudo and expand that later. 6832 SDValue In2Lo, In2Hi, In2; 6833 ExpandOp(Op.getOperand(2), In2Lo, In2Hi); 6834 In2 = DAG.getNode(ISD::BUILD_PAIR, dl, VT, In2Lo, In2Hi); 6835 AtomicSDNode* Anode = cast<AtomicSDNode>(Node); 6836 SDValue Replace = 6837 DAG.getAtomic(Op.getOpcode(), dl, Anode->getMemoryVT(), 6838 Op.getOperand(0), Op.getOperand(1), In2, 6839 Anode->getSrcValue(), Anode->getAlignment()); 6840 SDValue Result = TLI.LowerOperation(Replace, DAG); 6841 ExpandOp(Result.getValue(0), Lo, Hi); 6842 // Remember that we legalized the chain. 6843 AddLegalizedOperand(SDValue(Node,1), LegalizeOp(Result.getValue(1))); 6844 break; 6845 } 6846 6847 // These operators cannot be expanded directly, emit them as calls to 6848 // library functions. 6849 case ISD::FP_TO_SINT: { 6850 if (TLI.getOperationAction(ISD::FP_TO_SINT, VT) == TargetLowering::Custom) { 6851 SDValue Op; 6852 switch (getTypeAction(Node->getOperand(0).getValueType())) { 6853 case Expand: assert(0 && "cannot expand FP!"); 6854 case Legal: Op = LegalizeOp(Node->getOperand(0)); break; 6855 case Promote: Op = PromoteOp (Node->getOperand(0)); break; 6856 } 6857 6858 Op = TLI.LowerOperation(DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op), DAG); 6859 6860 // Now that the custom expander is done, expand the result, which is still 6861 // VT. 6862 if (Op.getNode()) { 6863 ExpandOp(Op, Lo, Hi); 6864 break; 6865 } 6866 } 6867 6868 RTLIB::Libcall LC = RTLIB::getFPTOSINT(Node->getOperand(0).getValueType(), 6869 VT); 6870 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected uint-to-fp conversion!"); 6871 Lo = ExpandLibCall(LC, Node, false/*sign irrelevant*/, Hi); 6872 break; 6873 } 6874 6875 case ISD::FP_TO_UINT: { 6876 if (TLI.getOperationAction(ISD::FP_TO_UINT, VT) == TargetLowering::Custom) { 6877 SDValue Op; 6878 switch (getTypeAction(Node->getOperand(0).getValueType())) { 6879 case Expand: assert(0 && "cannot expand FP!"); 6880 case Legal: Op = LegalizeOp(Node->getOperand(0)); break; 6881 case Promote: Op = PromoteOp (Node->getOperand(0)); break; 6882 } 6883 6884 Op = TLI.LowerOperation(DAG.getNode(ISD::FP_TO_UINT, dl, VT, Op), DAG); 6885 6886 // Now that the custom expander is done, expand the result. 6887 if (Op.getNode()) { 6888 ExpandOp(Op, Lo, Hi); 6889 break; 6890 } 6891 } 6892 6893 RTLIB::Libcall LC = RTLIB::getFPTOUINT(Node->getOperand(0).getValueType(), 6894 VT); 6895 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fp-to-uint conversion!"); 6896 Lo = ExpandLibCall(LC, Node, false/*sign irrelevant*/, Hi); 6897 break; 6898 } 6899 6900 case ISD::SHL: { 6901 // If the target wants custom lowering, do so. 6902 SDValue ShiftAmt = LegalizeOp(Node->getOperand(1)); 6903 if (TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Custom) { 6904 SDValue Op = DAG.getNode(ISD::SHL, dl, VT, Node->getOperand(0), ShiftAmt); 6905 Op = TLI.LowerOperation(Op, DAG); 6906 if (Op.getNode()) { 6907 // Now that the custom expander is done, expand the result, which is 6908 // still VT. 6909 ExpandOp(Op, Lo, Hi); 6910 break; 6911 } 6912 } 6913 6914 // If ADDC/ADDE are supported and if the shift amount is a constant 1, emit 6915 // this X << 1 as X+X. 6916 if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(ShiftAmt)) { 6917 if (ShAmt->getAPIntValue() == 1 && 6918 TLI.isOperationLegalOrCustom(ISD::ADDC, NVT) && 6919 TLI.isOperationLegalOrCustom(ISD::ADDE, NVT)) { 6920 SDValue LoOps[2], HiOps[3]; 6921 ExpandOp(Node->getOperand(0), LoOps[0], HiOps[0]); 6922 SDVTList VTList = DAG.getVTList(LoOps[0].getValueType(), MVT::Flag); 6923 LoOps[1] = LoOps[0]; 6924 Lo = DAG.getNode(ISD::ADDC, dl, VTList, LoOps, 2); 6925 6926 HiOps[1] = HiOps[0]; 6927 HiOps[2] = Lo.getValue(1); 6928 Hi = DAG.getNode(ISD::ADDE, dl, VTList, HiOps, 3); 6929 break; 6930 } 6931 } 6932 6933 // If we can emit an efficient shift operation, do so now. 6934 if (ExpandShift(ISD::SHL, Node->getOperand(0), ShiftAmt, Lo, Hi, dl)) 6935 break; 6936 6937 // If this target supports SHL_PARTS, use it. 6938 TargetLowering::LegalizeAction Action = 6939 TLI.getOperationAction(ISD::SHL_PARTS, NVT); 6940 if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) || 6941 Action == TargetLowering::Custom) { 6942 ExpandShiftParts(ISD::SHL_PARTS, Node->getOperand(0), 6943 ShiftAmt, Lo, Hi, dl); 6944 break; 6945 } 6946 6947 // Otherwise, emit a libcall. 6948 Lo = ExpandLibCall(RTLIB::SHL_I64, Node, false/*left shift=unsigned*/, Hi); 6949 break; 6950 } 6951 6952 case ISD::SRA: { 6953 // If the target wants custom lowering, do so. 6954 SDValue ShiftAmt = LegalizeOp(Node->getOperand(1)); 6955 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Custom) { 6956 SDValue Op = DAG.getNode(ISD::SRA, dl, VT, Node->getOperand(0), ShiftAmt); 6957 Op = TLI.LowerOperation(Op, DAG); 6958 if (Op.getNode()) { 6959 // Now that the custom expander is done, expand the result, which is 6960 // still VT. 6961 ExpandOp(Op, Lo, Hi); 6962 break; 6963 } 6964 } 6965 6966 // If we can emit an efficient shift operation, do so now. 6967 if (ExpandShift(ISD::SRA, Node->getOperand(0), ShiftAmt, Lo, Hi, dl)) 6968 break; 6969 6970 // If this target supports SRA_PARTS, use it. 6971 TargetLowering::LegalizeAction Action = 6972 TLI.getOperationAction(ISD::SRA_PARTS, NVT); 6973 if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) || 6974 Action == TargetLowering::Custom) { 6975 ExpandShiftParts(ISD::SRA_PARTS, Node->getOperand(0), 6976 ShiftAmt, Lo, Hi, dl); 6977 break; 6978 } 6979 6980 // Otherwise, emit a libcall. 6981 Lo = ExpandLibCall(RTLIB::SRA_I64, Node, true/*ashr is signed*/, Hi); 6982 break; 6983 } 6984 6985 case ISD::SRL: { 6986 // If the target wants custom lowering, do so. 6987 SDValue ShiftAmt = LegalizeOp(Node->getOperand(1)); 6988 if (TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Custom) { 6989 SDValue Op = DAG.getNode(ISD::SRL, dl, VT, Node->getOperand(0), ShiftAmt); 6990 Op = TLI.LowerOperation(Op, DAG); 6991 if (Op.getNode()) { 6992 // Now that the custom expander is done, expand the result, which is 6993 // still VT. 6994 ExpandOp(Op, Lo, Hi); 6995 break; 6996 } 6997 } 6998 6999 // If we can emit an efficient shift operation, do so now. 7000 if (ExpandShift(ISD::SRL, Node->getOperand(0), ShiftAmt, Lo, Hi, dl)) 7001 break; 7002 7003 // If this target supports SRL_PARTS, use it. 7004 TargetLowering::LegalizeAction Action = 7005 TLI.getOperationAction(ISD::SRL_PARTS, NVT); 7006 if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) || 7007 Action == TargetLowering::Custom) { 7008 ExpandShiftParts(ISD::SRL_PARTS, 7009 Node->getOperand(0), ShiftAmt, Lo, Hi, dl); 7010 break; 7011 } 7012 7013 // Otherwise, emit a libcall. 7014 Lo = ExpandLibCall(RTLIB::SRL_I64, Node, false/*lshr is unsigned*/, Hi); 7015 break; 7016 } 7017 7018 case ISD::ADD: 7019 case ISD::SUB: { 7020 // If the target wants to custom expand this, let them. 7021 if (TLI.getOperationAction(Node->getOpcode(), VT) == 7022 TargetLowering::Custom) { 7023 SDValue Result = TLI.LowerOperation(Op, DAG); 7024 if (Result.getNode()) { 7025 ExpandOp(Result, Lo, Hi); 7026 break; 7027 } 7028 } 7029 // Expand the subcomponents. 7030 SDValue LHSL, LHSH, RHSL, RHSH; 7031 ExpandOp(Node->getOperand(0), LHSL, LHSH); 7032 ExpandOp(Node->getOperand(1), RHSL, RHSH); 7033 SDValue LoOps[2], HiOps[3]; 7034 LoOps[0] = LHSL; 7035 LoOps[1] = RHSL; 7036 HiOps[0] = LHSH; 7037 HiOps[1] = RHSH; 7038 7039 //cascaded check to see if any smaller size has a a carry flag. 7040 unsigned OpV = Node->getOpcode() == ISD::ADD ? ISD::ADDC : ISD::SUBC; 7041 bool hasCarry = false; 7042 for (unsigned BitSize = NVT.getSizeInBits(); BitSize != 0; BitSize /= 2) { 7043 MVT AVT = MVT::getIntegerVT(BitSize); 7044 if (TLI.isOperationLegalOrCustom(OpV, AVT)) { 7045 hasCarry = true; 7046 break; 7047 } 7048 } 7049 7050 if(hasCarry) { 7051 SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); 7052 if (Node->getOpcode() == ISD::ADD) { 7053 Lo = DAG.getNode(ISD::ADDC, dl, VTList, LoOps, 2); 7054 HiOps[2] = Lo.getValue(1); 7055 Hi = DAG.getNode(ISD::ADDE, dl, VTList, HiOps, 3); 7056 } else { 7057 Lo = DAG.getNode(ISD::SUBC, dl, VTList, LoOps, 2); 7058 HiOps[2] = Lo.getValue(1); 7059 Hi = DAG.getNode(ISD::SUBE, dl, VTList, HiOps, 3); 7060 } 7061 break; 7062 } else { 7063 if (Node->getOpcode() == ISD::ADD) { 7064 Lo = DAG.getNode(ISD::ADD, dl, NVT, LoOps, 2); 7065 Hi = DAG.getNode(ISD::ADD, dl, NVT, HiOps, 2); 7066 SDValue Cmp1 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT), 7067 Lo, LoOps[0], ISD::SETULT); 7068 SDValue Carry1 = DAG.getNode(ISD::SELECT, dl, NVT, Cmp1, 7069 DAG.getConstant(1, NVT), 7070 DAG.getConstant(0, NVT)); 7071 SDValue Cmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT), 7072 Lo, LoOps[1], ISD::SETULT); 7073 SDValue Carry2 = DAG.getNode(ISD::SELECT, dl, NVT, Cmp2, 7074 DAG.getConstant(1, NVT), 7075 Carry1); 7076 Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, Carry2); 7077 } else { 7078 Lo = DAG.getNode(ISD::SUB, dl, NVT, LoOps, 2); 7079 Hi = DAG.getNode(ISD::SUB, dl, NVT, HiOps, 2); 7080 SDValue Cmp = DAG.getSetCC(dl, NVT, LoOps[0], LoOps[1], ISD::SETULT); 7081 SDValue Borrow = DAG.getNode(ISD::SELECT, dl, NVT, Cmp, 7082 DAG.getConstant(1, NVT), 7083 DAG.getConstant(0, NVT)); 7084 Hi = DAG.getNode(ISD::SUB, dl, NVT, Hi, Borrow); 7085 } 7086 break; 7087 } 7088 } 7089 7090 case ISD::ADDC: 7091 case ISD::SUBC: { 7092 // Expand the subcomponents. 7093 SDValue LHSL, LHSH, RHSL, RHSH; 7094 ExpandOp(Node->getOperand(0), LHSL, LHSH); 7095 ExpandOp(Node->getOperand(1), RHSL, RHSH); 7096 SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); 7097 SDValue LoOps[2] = { LHSL, RHSL }; 7098 SDValue HiOps[3] = { LHSH, RHSH }; 7099 7100 if (Node->getOpcode() == ISD::ADDC) { 7101 Lo = DAG.getNode(ISD::ADDC, dl, VTList, LoOps, 2); 7102 HiOps[2] = Lo.getValue(1); 7103 Hi = DAG.getNode(ISD::ADDE, dl, VTList, HiOps, 3); 7104 } else { 7105 Lo = DAG.getNode(ISD::SUBC, dl, VTList, LoOps, 2); 7106 HiOps[2] = Lo.getValue(1); 7107 Hi = DAG.getNode(ISD::SUBE, dl, VTList, HiOps, 3); 7108 } 7109 // Remember that we legalized the flag. 7110 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Hi.getValue(1))); 7111 break; 7112 } 7113 case ISD::ADDE: 7114 case ISD::SUBE: { 7115 // Expand the subcomponents. 7116 SDValue LHSL, LHSH, RHSL, RHSH; 7117 ExpandOp(Node->getOperand(0), LHSL, LHSH); 7118 ExpandOp(Node->getOperand(1), RHSL, RHSH); 7119 SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); 7120 SDValue LoOps[3] = { LHSL, RHSL, Node->getOperand(2) }; 7121 SDValue HiOps[3] = { LHSH, RHSH }; 7122 7123 Lo = DAG.getNode(Node->getOpcode(), dl, VTList, LoOps, 3); 7124 HiOps[2] = Lo.getValue(1); 7125 Hi = DAG.getNode(Node->getOpcode(), dl, VTList, HiOps, 3); 7126 7127 // Remember that we legalized the flag. 7128 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Hi.getValue(1))); 7129 break; 7130 } 7131 case ISD::MUL: { 7132 // If the target wants to custom expand this, let them. 7133 if (TLI.getOperationAction(ISD::MUL, VT) == TargetLowering::Custom) { 7134 SDValue New = TLI.LowerOperation(Op, DAG); 7135 if (New.getNode()) { 7136 ExpandOp(New, Lo, Hi); 7137 break; 7138 } 7139 } 7140 7141 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, NVT); 7142 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, NVT); 7143 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, NVT); 7144 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, NVT); 7145 if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) { 7146 SDValue LL, LH, RL, RH; 7147 ExpandOp(Node->getOperand(0), LL, LH); 7148 ExpandOp(Node->getOperand(1), RL, RH); 7149 unsigned OuterBitSize = Op.getValueSizeInBits(); 7150 unsigned InnerBitSize = RH.getValueSizeInBits(); 7151 unsigned LHSSB = DAG.ComputeNumSignBits(Op.getOperand(0)); 7152 unsigned RHSSB = DAG.ComputeNumSignBits(Op.getOperand(1)); 7153 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 7154 if (DAG.MaskedValueIsZero(Node->getOperand(0), HighMask) && 7155 DAG.MaskedValueIsZero(Node->getOperand(1), HighMask)) { 7156 // The inputs are both zero-extended. 7157 if (HasUMUL_LOHI) { 7158 // We can emit a umul_lohi. 7159 Lo = DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(NVT, NVT), LL, RL); 7160 Hi = SDValue(Lo.getNode(), 1); 7161 break; 7162 } 7163 if (HasMULHU) { 7164 // We can emit a mulhu+mul. 7165 Lo = DAG.getNode(ISD::MUL, dl, NVT, LL, RL); 7166 Hi = DAG.getNode(ISD::MULHU, dl, NVT, LL, RL); 7167 break; 7168 } 7169 } 7170 if (LHSSB > InnerBitSize && RHSSB > InnerBitSize) { 7171 // The input values are both sign-extended. 7172 if (HasSMUL_LOHI) { 7173 // We can emit a smul_lohi. 7174 Lo = DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(NVT, NVT), LL, RL); 7175 Hi = SDValue(Lo.getNode(), 1); 7176 break; 7177 } 7178 if (HasMULHS) { 7179 // We can emit a mulhs+mul. 7180 Lo = DAG.getNode(ISD::MUL, dl, NVT, LL, RL); 7181 Hi = DAG.getNode(ISD::MULHS, dl, NVT, LL, RL); 7182 break; 7183 } 7184 } 7185 if (HasUMUL_LOHI) { 7186 // Lo,Hi = umul LHS, RHS. 7187 SDValue UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, dl, 7188 DAG.getVTList(NVT, NVT), LL, RL); 7189 Lo = UMulLOHI; 7190 Hi = UMulLOHI.getValue(1); 7191 RH = DAG.getNode(ISD::MUL, dl, NVT, LL, RH); 7192 LH = DAG.getNode(ISD::MUL, dl, NVT, LH, RL); 7193 Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, RH); 7194 Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, LH); 7195 break; 7196 } 7197 if (HasMULHU) { 7198 Lo = DAG.getNode(ISD::MUL, dl, NVT, LL, RL); 7199 Hi = DAG.getNode(ISD::MULHU, dl, NVT, LL, RL); 7200 RH = DAG.getNode(ISD::MUL, dl, NVT, LL, RH); 7201 LH = DAG.getNode(ISD::MUL, dl, NVT, LH, RL); 7202 Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, RH); 7203 Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, LH); 7204 break; 7205 } 7206 } 7207 7208 // If nothing else, we can make a libcall. 7209 Lo = ExpandLibCall(RTLIB::MUL_I64, Node, false/*sign irrelevant*/, Hi); 7210 break; 7211 } 7212 case ISD::SDIV: 7213 Lo = ExpandLibCall(RTLIB::SDIV_I64, Node, true, Hi); 7214 break; 7215 case ISD::UDIV: 7216 Lo = ExpandLibCall(RTLIB::UDIV_I64, Node, true, Hi); 7217 break; 7218 case ISD::SREM: 7219 Lo = ExpandLibCall(RTLIB::SREM_I64, Node, true, Hi); 7220 break; 7221 case ISD::UREM: 7222 Lo = ExpandLibCall(RTLIB::UREM_I64, Node, true, Hi); 7223 break; 7224 7225 case ISD::FADD: 7226 Lo = ExpandLibCall(GetFPLibCall(VT, RTLIB::ADD_F32, 7227 RTLIB::ADD_F64, 7228 RTLIB::ADD_F80, 7229 RTLIB::ADD_PPCF128), 7230 Node, false, Hi); 7231 break; 7232 case ISD::FSUB: 7233 Lo = ExpandLibCall(GetFPLibCall(VT, RTLIB::SUB_F32, 7234 RTLIB::SUB_F64, 7235 RTLIB::SUB_F80, 7236 RTLIB::SUB_PPCF128), 7237 Node, false, Hi); 7238 break; 7239 case ISD::FMUL: 7240 Lo = ExpandLibCall(GetFPLibCall(VT, RTLIB::MUL_F32, 7241 RTLIB::MUL_F64, 7242 RTLIB::MUL_F80, 7243 RTLIB::MUL_PPCF128), 7244 Node, false, Hi); 7245 break; 7246 case ISD::FDIV: 7247 Lo = ExpandLibCall(GetFPLibCall(VT, RTLIB::DIV_F32, 7248 RTLIB::DIV_F64, 7249 RTLIB::DIV_F80, 7250 RTLIB::DIV_PPCF128), 7251 Node, false, Hi); 7252 break; 7253 case ISD::FP_EXTEND: { 7254 if (VT == MVT::ppcf128) { 7255 assert(Node->getOperand(0).getValueType()==MVT::f32 || 7256 Node->getOperand(0).getValueType()==MVT::f64); 7257 const uint64_t zero = 0; 7258 if (Node->getOperand(0).getValueType()==MVT::f32) 7259 Hi = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Node->getOperand(0)); 7260 else 7261 Hi = Node->getOperand(0); 7262 Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &zero)), MVT::f64); 7263 break; 7264 } 7265 RTLIB::Libcall LC = RTLIB::getFPEXT(Node->getOperand(0).getValueType(), VT); 7266 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported FP_EXTEND!"); 7267 Lo = ExpandLibCall(LC, Node, true, Hi); 7268 break; 7269 } 7270 case ISD::FP_ROUND: { 7271 RTLIB::Libcall LC = RTLIB::getFPROUND(Node->getOperand(0).getValueType(), 7272 VT); 7273 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported FP_ROUND!"); 7274 Lo = ExpandLibCall(LC, Node, true, Hi); 7275 break; 7276 } 7277 case ISD::FSQRT: 7278 case ISD::FSIN: 7279 case ISD::FCOS: 7280 case ISD::FLOG: 7281 case ISD::FLOG2: 7282 case ISD::FLOG10: 7283 case ISD::FEXP: 7284 case ISD::FEXP2: 7285 case ISD::FTRUNC: 7286 case ISD::FFLOOR: 7287 case ISD::FCEIL: 7288 case ISD::FRINT: 7289 case ISD::FNEARBYINT: 7290 case ISD::FPOW: 7291 case ISD::FPOWI: { 7292 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 7293 switch(Node->getOpcode()) { 7294 case ISD::FSQRT: 7295 LC = GetFPLibCall(VT, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 7296 RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128); 7297 break; 7298 case ISD::FSIN: 7299 LC = GetFPLibCall(VT, RTLIB::SIN_F32, RTLIB::SIN_F64, 7300 RTLIB::SIN_F80, RTLIB::SIN_PPCF128); 7301 break; 7302 case ISD::FCOS: 7303 LC = GetFPLibCall(VT, RTLIB::COS_F32, RTLIB::COS_F64, 7304 RTLIB::COS_F80, RTLIB::COS_PPCF128); 7305 break; 7306 case ISD::FLOG: 7307 LC = GetFPLibCall(VT, RTLIB::LOG_F32, RTLIB::LOG_F64, 7308 RTLIB::LOG_F80, RTLIB::LOG_PPCF128); 7309 break; 7310 case ISD::FLOG2: 7311 LC = GetFPLibCall(VT, RTLIB::LOG2_F32, RTLIB::LOG2_F64, 7312 RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128); 7313 break; 7314 case ISD::FLOG10: 7315 LC = GetFPLibCall(VT, RTLIB::LOG10_F32, RTLIB::LOG10_F64, 7316 RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128); 7317 break; 7318 case ISD::FEXP: 7319 LC = GetFPLibCall(VT, RTLIB::EXP_F32, RTLIB::EXP_F64, 7320 RTLIB::EXP_F80, RTLIB::EXP_PPCF128); 7321 break; 7322 case ISD::FEXP2: 7323 LC = GetFPLibCall(VT, RTLIB::EXP2_F32, RTLIB::EXP2_F64, 7324 RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128); 7325 break; 7326 case ISD::FTRUNC: 7327 LC = GetFPLibCall(VT, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, 7328 RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128); 7329 break; 7330 case ISD::FFLOOR: 7331 LC = GetFPLibCall(VT, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, 7332 RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128); 7333 break; 7334 case ISD::FCEIL: 7335 LC = GetFPLibCall(VT, RTLIB::CEIL_F32, RTLIB::CEIL_F64, 7336 RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128); 7337 break; 7338 case ISD::FRINT: 7339 LC = GetFPLibCall(VT, RTLIB::RINT_F32, RTLIB::RINT_F64, 7340 RTLIB::RINT_F80, RTLIB::RINT_PPCF128); 7341 break; 7342 case ISD::FNEARBYINT: 7343 LC = GetFPLibCall(VT, RTLIB::NEARBYINT_F32, RTLIB::NEARBYINT_F64, 7344 RTLIB::NEARBYINT_F80, RTLIB::NEARBYINT_PPCF128); 7345 break; 7346 case ISD::FPOW: 7347 LC = GetFPLibCall(VT, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80, 7348 RTLIB::POW_PPCF128); 7349 break; 7350 case ISD::FPOWI: 7351 LC = GetFPLibCall(VT, RTLIB::POWI_F32, RTLIB::POWI_F64, RTLIB::POWI_F80, 7352 RTLIB::POWI_PPCF128); 7353 break; 7354 default: assert(0 && "Unreachable!"); 7355 } 7356 Lo = ExpandLibCall(LC, Node, false, Hi); 7357 break; 7358 } 7359 case ISD::FABS: { 7360 if (VT == MVT::ppcf128) { 7361 SDValue Tmp; 7362 ExpandOp(Node->getOperand(0), Lo, Tmp); 7363 Hi = DAG.getNode(ISD::FABS, dl, NVT, Tmp); 7364 // lo = hi==fabs(hi) ? lo : -lo; 7365 Lo = DAG.getNode(ISD::SELECT_CC, dl, NVT, Hi, Tmp, 7366 Lo, DAG.getNode(ISD::FNEG, dl, NVT, Lo), 7367 DAG.getCondCode(ISD::SETEQ)); 7368 break; 7369 } 7370 SDValue Mask = (VT == MVT::f64) 7371 ? DAG.getConstantFP(BitsToDouble(~(1ULL << 63)), VT) 7372 : DAG.getConstantFP(BitsToFloat(~(1U << 31)), VT); 7373 Mask = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Mask); 7374 Lo = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0)); 7375 Lo = DAG.getNode(ISD::AND, dl, NVT, Lo, Mask); 7376 if (getTypeAction(NVT) == Expand) 7377 ExpandOp(Lo, Lo, Hi); 7378 break; 7379 } 7380 case ISD::FNEG: { 7381 if (VT == MVT::ppcf128) { 7382 ExpandOp(Node->getOperand(0), Lo, Hi); 7383 Lo = DAG.getNode(ISD::FNEG, dl, MVT::f64, Lo); 7384 Hi = DAG.getNode(ISD::FNEG, dl, MVT::f64, Hi); 7385 break; 7386 } 7387 SDValue Mask = (VT == MVT::f64) 7388 ? DAG.getConstantFP(BitsToDouble(1ULL << 63), VT) 7389 : DAG.getConstantFP(BitsToFloat(1U << 31), VT); 7390 Mask = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Mask); 7391 Lo = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0)); 7392 Lo = DAG.getNode(ISD::XOR, dl, NVT, Lo, Mask); 7393 if (getTypeAction(NVT) == Expand) 7394 ExpandOp(Lo, Lo, Hi); 7395 break; 7396 } 7397 case ISD::FCOPYSIGN: { 7398 Lo = ExpandFCOPYSIGNToBitwiseOps(Node, NVT, DAG, TLI); 7399 if (getTypeAction(NVT) == Expand) 7400 ExpandOp(Lo, Lo, Hi); 7401 break; 7402 } 7403 case ISD::SINT_TO_FP: 7404 case ISD::UINT_TO_FP: { 7405 bool isSigned = Node->getOpcode() == ISD::SINT_TO_FP; 7406 MVT SrcVT = Node->getOperand(0).getValueType(); 7407 7408 // Promote the operand if needed. Do this before checking for 7409 // ppcf128 so conversions of i16 and i8 work. 7410 if (getTypeAction(SrcVT) == Promote) { 7411 SDValue Tmp = PromoteOp(Node->getOperand(0)); 7412 Tmp = isSigned 7413 ? DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Tmp.getValueType(), Tmp, 7414 DAG.getValueType(SrcVT)) 7415 : DAG.getZeroExtendInReg(Tmp, dl, SrcVT); 7416 Node = DAG.UpdateNodeOperands(Op, Tmp).getNode(); 7417 SrcVT = Node->getOperand(0).getValueType(); 7418 } 7419 7420 if (VT == MVT::ppcf128 && SrcVT == MVT::i32) { 7421 static const uint64_t zero = 0; 7422 if (isSigned) { 7423 Hi = LegalizeOp(DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f64, 7424 Node->getOperand(0))); 7425 Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &zero)), MVT::f64); 7426 } else { 7427 static const uint64_t TwoE32[] = { 0x41f0000000000000LL, 0 }; 7428 Hi = LegalizeOp(DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f64, 7429 Node->getOperand(0))); 7430 Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &zero)), MVT::f64); 7431 Hi = DAG.getNode(ISD::BUILD_PAIR, dl, VT, Lo, Hi); 7432 // X>=0 ? {(f64)x, 0} : {(f64)x, 0} + 2^32 7433 ExpandOp(DAG.getNode(ISD::SELECT_CC, dl, 7434 MVT::ppcf128, Node->getOperand(0), 7435 DAG.getConstant(0, MVT::i32), 7436 DAG.getNode(ISD::FADD, dl, MVT::ppcf128, Hi, 7437 DAG.getConstantFP( 7438 APFloat(APInt(128, 2, TwoE32)), 7439 MVT::ppcf128)), 7440 Hi, 7441 DAG.getCondCode(ISD::SETLT)), 7442 Lo, Hi); 7443 } 7444 break; 7445 } 7446 if (VT == MVT::ppcf128 && SrcVT == MVT::i64 && !isSigned) { 7447 // si64->ppcf128 done by libcall, below 7448 static const uint64_t TwoE64[] = { 0x43f0000000000000LL, 0 }; 7449 ExpandOp(DAG.getNode(ISD::SINT_TO_FP, dl, MVT::ppcf128, 7450 Node->getOperand(0)), Lo, Hi); 7451 Hi = DAG.getNode(ISD::BUILD_PAIR, dl, VT, Lo, Hi); 7452 // x>=0 ? (ppcf128)(i64)x : (ppcf128)(i64)x + 2^64 7453 ExpandOp(DAG.getNode(ISD::SELECT_CC, dl, MVT::ppcf128, 7454 Node->getOperand(0), 7455 DAG.getConstant(0, MVT::i64), 7456 DAG.getNode(ISD::FADD, dl, MVT::ppcf128, Hi, 7457 DAG.getConstantFP( 7458 APFloat(APInt(128, 2, TwoE64)), 7459 MVT::ppcf128)), 7460 Hi, 7461 DAG.getCondCode(ISD::SETLT)), 7462 Lo, Hi); 7463 break; 7464 } 7465 7466 Lo = ExpandIntToFP(Node->getOpcode() == ISD::SINT_TO_FP, VT, 7467 Node->getOperand(0), dl); 7468 if (getTypeAction(Lo.getValueType()) == Expand) 7469 // float to i32 etc. can be 'expanded' to a single node. 7470 ExpandOp(Lo, Lo, Hi); 7471 break; 7472 } 7473 } 7474 7475 // Make sure the resultant values have been legalized themselves, unless this 7476 // is a type that requires multi-step expansion. 7477 if (getTypeAction(NVT) != Expand && NVT != MVT::isVoid) { 7478 Lo = LegalizeOp(Lo); 7479 if (Hi.getNode()) 7480 // Don't legalize the high part if it is expanded to a single node. 7481 Hi = LegalizeOp(Hi); 7482 } 7483 7484 // Remember in a map if the values will be reused later. 7485 bool isNew = 7486 ExpandedNodes.insert(std::make_pair(Op, std::make_pair(Lo, Hi))).second; 7487 assert(isNew && "Value already expanded?!?"); 7488 isNew = isNew; 7489} 7490 7491/// SplitVectorOp - Given an operand of vector type, break it down into 7492/// two smaller values, still of vector type. 7493void SelectionDAGLegalize::SplitVectorOp(SDValue Op, SDValue &Lo, 7494 SDValue &Hi) { 7495 assert(Op.getValueType().isVector() && "Cannot split non-vector type!"); 7496 SDNode *Node = Op.getNode(); 7497 DebugLoc dl = Node->getDebugLoc(); 7498 unsigned NumElements = Op.getValueType().getVectorNumElements(); 7499 assert(NumElements > 1 && "Cannot split a single element vector!"); 7500 7501 MVT NewEltVT = Op.getValueType().getVectorElementType(); 7502 7503 unsigned NewNumElts_Lo = 1 << Log2_32(NumElements-1); 7504 unsigned NewNumElts_Hi = NumElements - NewNumElts_Lo; 7505 7506 MVT NewVT_Lo = MVT::getVectorVT(NewEltVT, NewNumElts_Lo); 7507 MVT NewVT_Hi = MVT::getVectorVT(NewEltVT, NewNumElts_Hi); 7508 7509 // See if we already split it. 7510 std::map<SDValue, std::pair<SDValue, SDValue> >::iterator I 7511 = SplitNodes.find(Op); 7512 if (I != SplitNodes.end()) { 7513 Lo = I->second.first; 7514 Hi = I->second.second; 7515 return; 7516 } 7517 7518 switch (Node->getOpcode()) { 7519 default: 7520#ifndef NDEBUG 7521 Node->dump(&DAG); 7522#endif 7523 assert(0 && "Unhandled operation in SplitVectorOp!"); 7524 case ISD::UNDEF: 7525 Lo = DAG.getUNDEF(NewVT_Lo); 7526 Hi = DAG.getUNDEF(NewVT_Hi); 7527 break; 7528 case ISD::BUILD_PAIR: 7529 Lo = Node->getOperand(0); 7530 Hi = Node->getOperand(1); 7531 break; 7532 case ISD::INSERT_VECTOR_ELT: { 7533 if (ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Node->getOperand(2))) { 7534 SplitVectorOp(Node->getOperand(0), Lo, Hi); 7535 unsigned Index = Idx->getZExtValue(); 7536 SDValue ScalarOp = Node->getOperand(1); 7537 if (Index < NewNumElts_Lo) 7538 Lo = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, NewVT_Lo, Lo, ScalarOp, 7539 DAG.getIntPtrConstant(Index)); 7540 else 7541 Hi = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, NewVT_Hi, Hi, ScalarOp, 7542 DAG.getIntPtrConstant(Index - NewNumElts_Lo)); 7543 break; 7544 } 7545 SDValue Tmp = PerformInsertVectorEltInMemory(Node->getOperand(0), 7546 Node->getOperand(1), 7547 Node->getOperand(2), dl); 7548 SplitVectorOp(Tmp, Lo, Hi); 7549 break; 7550 } 7551 case ISD::VECTOR_SHUFFLE: { 7552 // Build the low part. 7553 SDValue Mask = Node->getOperand(2); 7554 SmallVector<SDValue, 8> Ops; 7555 MVT PtrVT = TLI.getPointerTy(); 7556 7557 // Insert all of the elements from the input that are needed. We use 7558 // buildvector of extractelement here because the input vectors will have 7559 // to be legalized, so this makes the code simpler. 7560 for (unsigned i = 0; i != NewNumElts_Lo; ++i) { 7561 SDValue IdxNode = Mask.getOperand(i); 7562 if (IdxNode.getOpcode() == ISD::UNDEF) { 7563 Ops.push_back(DAG.getUNDEF(NewEltVT)); 7564 continue; 7565 } 7566 unsigned Idx = cast<ConstantSDNode>(IdxNode)->getZExtValue(); 7567 SDValue InVec = Node->getOperand(0); 7568 if (Idx >= NumElements) { 7569 InVec = Node->getOperand(1); 7570 Idx -= NumElements; 7571 } 7572 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NewEltVT, InVec, 7573 DAG.getConstant(Idx, PtrVT))); 7574 } 7575 Lo = DAG.getBUILD_VECTOR(NewVT_Lo, dl, &Ops[0], Ops.size()); 7576 Ops.clear(); 7577 7578 for (unsigned i = NewNumElts_Lo; i != NumElements; ++i) { 7579 SDValue IdxNode = Mask.getOperand(i); 7580 if (IdxNode.getOpcode() == ISD::UNDEF) { 7581 Ops.push_back(DAG.getUNDEF(NewEltVT)); 7582 continue; 7583 } 7584 unsigned Idx = cast<ConstantSDNode>(IdxNode)->getZExtValue(); 7585 SDValue InVec = Node->getOperand(0); 7586 if (Idx >= NumElements) { 7587 InVec = Node->getOperand(1); 7588 Idx -= NumElements; 7589 } 7590 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NewEltVT, InVec, 7591 DAG.getConstant(Idx, PtrVT))); 7592 } 7593 Hi = DAG.getBUILD_VECTOR(NewVT_Hi, dl, &Ops[0], Ops.size()); 7594 break; 7595 } 7596 case ISD::BUILD_VECTOR: { 7597 SmallVector<SDValue, 8> LoOps(Node->op_begin(), 7598 Node->op_begin()+NewNumElts_Lo); 7599 Lo = DAG.getBUILD_VECTOR(NewVT_Lo, dl, &LoOps[0], LoOps.size()); 7600 7601 SmallVector<SDValue, 8> HiOps(Node->op_begin()+NewNumElts_Lo, 7602 Node->op_end()); 7603 Hi = DAG.getBUILD_VECTOR(NewVT_Hi, dl, &HiOps[0], HiOps.size()); 7604 break; 7605 } 7606 case ISD::CONCAT_VECTORS: { 7607 // FIXME: Handle non-power-of-two vectors? 7608 unsigned NewNumSubvectors = Node->getNumOperands() / 2; 7609 if (NewNumSubvectors == 1) { 7610 Lo = Node->getOperand(0); 7611 Hi = Node->getOperand(1); 7612 } else { 7613 SmallVector<SDValue, 8> LoOps(Node->op_begin(), 7614 Node->op_begin()+NewNumSubvectors); 7615 Lo = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewVT_Lo, 7616 &LoOps[0], LoOps.size()); 7617 7618 SmallVector<SDValue, 8> HiOps(Node->op_begin()+NewNumSubvectors, 7619 Node->op_end()); 7620 Hi = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewVT_Hi, 7621 &HiOps[0], HiOps.size()); 7622 } 7623 break; 7624 } 7625 case ISD::EXTRACT_SUBVECTOR: { 7626 SDValue Vec = Op.getOperand(0); 7627 SDValue Idx = Op.getOperand(1); 7628 MVT IdxVT = Idx.getValueType(); 7629 7630 Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NewVT_Lo, Vec, Idx); 7631 ConstantSDNode *CIdx = dyn_cast<ConstantSDNode>(Idx); 7632 if (CIdx) { 7633 Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NewVT_Hi, Vec, 7634 DAG.getConstant(CIdx->getZExtValue() + NewNumElts_Lo, 7635 IdxVT)); 7636 } else { 7637 Idx = DAG.getNode(ISD::ADD, dl, IdxVT, Idx, 7638 DAG.getConstant(NewNumElts_Lo, IdxVT)); 7639 Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NewVT_Hi, Vec, Idx); 7640 } 7641 break; 7642 } 7643 case ISD::SELECT: { 7644 SDValue Cond = Node->getOperand(0); 7645 7646 SDValue LL, LH, RL, RH; 7647 SplitVectorOp(Node->getOperand(1), LL, LH); 7648 SplitVectorOp(Node->getOperand(2), RL, RH); 7649 7650 if (Cond.getValueType().isVector()) { 7651 // Handle a vector merge. 7652 SDValue CL, CH; 7653 SplitVectorOp(Cond, CL, CH); 7654 Lo = DAG.getNode(Node->getOpcode(), dl, NewVT_Lo, CL, LL, RL); 7655 Hi = DAG.getNode(Node->getOpcode(), dl, NewVT_Hi, CH, LH, RH); 7656 } else { 7657 // Handle a simple select with vector operands. 7658 Lo = DAG.getNode(Node->getOpcode(), dl, NewVT_Lo, Cond, LL, RL); 7659 Hi = DAG.getNode(Node->getOpcode(), dl, NewVT_Hi, Cond, LH, RH); 7660 } 7661 break; 7662 } 7663 case ISD::SELECT_CC: { 7664 SDValue CondLHS = Node->getOperand(0); 7665 SDValue CondRHS = Node->getOperand(1); 7666 SDValue CondCode = Node->getOperand(4); 7667 7668 SDValue LL, LH, RL, RH; 7669 SplitVectorOp(Node->getOperand(2), LL, LH); 7670 SplitVectorOp(Node->getOperand(3), RL, RH); 7671 7672 // Handle a simple select with vector operands. 7673 Lo = DAG.getNode(ISD::SELECT_CC, dl, NewVT_Lo, CondLHS, CondRHS, 7674 LL, RL, CondCode); 7675 Hi = DAG.getNode(ISD::SELECT_CC, dl, NewVT_Hi, CondLHS, CondRHS, 7676 LH, RH, CondCode); 7677 break; 7678 } 7679 case ISD::VSETCC: { 7680 SDValue LL, LH, RL, RH; 7681 SplitVectorOp(Node->getOperand(0), LL, LH); 7682 SplitVectorOp(Node->getOperand(1), RL, RH); 7683 Lo = DAG.getNode(ISD::VSETCC, dl, NewVT_Lo, LL, RL, Node->getOperand(2)); 7684 Hi = DAG.getNode(ISD::VSETCC, dl, NewVT_Hi, LH, RH, Node->getOperand(2)); 7685 break; 7686 } 7687 case ISD::ADD: 7688 case ISD::SUB: 7689 case ISD::MUL: 7690 case ISD::FADD: 7691 case ISD::FSUB: 7692 case ISD::FMUL: 7693 case ISD::SDIV: 7694 case ISD::UDIV: 7695 case ISD::FDIV: 7696 case ISD::FPOW: 7697 case ISD::AND: 7698 case ISD::OR: 7699 case ISD::XOR: 7700 case ISD::UREM: 7701 case ISD::SREM: 7702 case ISD::FREM: 7703 case ISD::SHL: 7704 case ISD::SRA: 7705 case ISD::SRL: { 7706 SDValue LL, LH, RL, RH; 7707 SplitVectorOp(Node->getOperand(0), LL, LH); 7708 SplitVectorOp(Node->getOperand(1), RL, RH); 7709 7710 Lo = DAG.getNode(Node->getOpcode(), dl, NewVT_Lo, LL, RL); 7711 Hi = DAG.getNode(Node->getOpcode(), dl, NewVT_Hi, LH, RH); 7712 break; 7713 } 7714 case ISD::FP_ROUND: 7715 case ISD::FPOWI: { 7716 SDValue L, H; 7717 SplitVectorOp(Node->getOperand(0), L, H); 7718 7719 Lo = DAG.getNode(Node->getOpcode(), dl, NewVT_Lo, L, Node->getOperand(1)); 7720 Hi = DAG.getNode(Node->getOpcode(), dl, NewVT_Hi, H, Node->getOperand(1)); 7721 break; 7722 } 7723 case ISD::CTTZ: 7724 case ISD::CTLZ: 7725 case ISD::CTPOP: 7726 case ISD::FNEG: 7727 case ISD::FABS: 7728 case ISD::FSQRT: 7729 case ISD::FSIN: 7730 case ISD::FCOS: 7731 case ISD::FLOG: 7732 case ISD::FLOG2: 7733 case ISD::FLOG10: 7734 case ISD::FEXP: 7735 case ISD::FEXP2: 7736 case ISD::FP_TO_SINT: 7737 case ISD::FP_TO_UINT: 7738 case ISD::SINT_TO_FP: 7739 case ISD::UINT_TO_FP: 7740 case ISD::TRUNCATE: 7741 case ISD::ANY_EXTEND: 7742 case ISD::SIGN_EXTEND: 7743 case ISD::ZERO_EXTEND: 7744 case ISD::FP_EXTEND: { 7745 SDValue L, H; 7746 SplitVectorOp(Node->getOperand(0), L, H); 7747 7748 Lo = DAG.getNode(Node->getOpcode(), dl, NewVT_Lo, L); 7749 Hi = DAG.getNode(Node->getOpcode(), dl, NewVT_Hi, H); 7750 break; 7751 } 7752 case ISD::CONVERT_RNDSAT: { 7753 ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(Node)->getCvtCode(); 7754 SDValue L, H; 7755 SplitVectorOp(Node->getOperand(0), L, H); 7756 SDValue DTyOpL = DAG.getValueType(NewVT_Lo); 7757 SDValue DTyOpH = DAG.getValueType(NewVT_Hi); 7758 SDValue STyOpL = DAG.getValueType(L.getValueType()); 7759 SDValue STyOpH = DAG.getValueType(H.getValueType()); 7760 7761 SDValue RndOp = Node->getOperand(3); 7762 SDValue SatOp = Node->getOperand(4); 7763 7764 Lo = DAG.getConvertRndSat(NewVT_Lo, dl, L, DTyOpL, STyOpL, 7765 RndOp, SatOp, CvtCode); 7766 Hi = DAG.getConvertRndSat(NewVT_Hi, dl, H, DTyOpH, STyOpH, 7767 RndOp, SatOp, CvtCode); 7768 break; 7769 } 7770 case ISD::LOAD: { 7771 LoadSDNode *LD = cast<LoadSDNode>(Node); 7772 SDValue Ch = LD->getChain(); 7773 SDValue Ptr = LD->getBasePtr(); 7774 ISD::LoadExtType ExtType = LD->getExtensionType(); 7775 const Value *SV = LD->getSrcValue(); 7776 int SVOffset = LD->getSrcValueOffset(); 7777 MVT MemoryVT = LD->getMemoryVT(); 7778 unsigned Alignment = LD->getAlignment(); 7779 bool isVolatile = LD->isVolatile(); 7780 7781 assert(LD->isUnindexed() && "Indexed vector loads are not supported yet!"); 7782 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 7783 7784 MVT MemNewEltVT = MemoryVT.getVectorElementType(); 7785 MVT MemNewVT_Lo = MVT::getVectorVT(MemNewEltVT, NewNumElts_Lo); 7786 MVT MemNewVT_Hi = MVT::getVectorVT(MemNewEltVT, NewNumElts_Hi); 7787 7788 Lo = DAG.getLoad(ISD::UNINDEXED, dl, ExtType, 7789 NewVT_Lo, Ch, Ptr, Offset, 7790 SV, SVOffset, MemNewVT_Lo, isVolatile, Alignment); 7791 unsigned IncrementSize = NewNumElts_Lo * MemNewEltVT.getSizeInBits()/8; 7792 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 7793 DAG.getIntPtrConstant(IncrementSize)); 7794 SVOffset += IncrementSize; 7795 Alignment = MinAlign(Alignment, IncrementSize); 7796 Hi = DAG.getLoad(ISD::UNINDEXED, dl, ExtType, 7797 NewVT_Hi, Ch, Ptr, Offset, 7798 SV, SVOffset, MemNewVT_Hi, isVolatile, Alignment); 7799 7800 // Build a factor node to remember that this load is independent of the 7801 // other one. 7802 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 7803 Hi.getValue(1)); 7804 7805 // Remember that we legalized the chain. 7806 AddLegalizedOperand(Op.getValue(1), LegalizeOp(TF)); 7807 break; 7808 } 7809 case ISD::BIT_CONVERT: { 7810 // We know the result is a vector. The input may be either a vector or a 7811 // scalar value. 7812 SDValue InOp = Node->getOperand(0); 7813 if (!InOp.getValueType().isVector() || 7814 InOp.getValueType().getVectorNumElements() == 1) { 7815 // The input is a scalar or single-element vector. 7816 // Lower to a store/load so that it can be split. 7817 // FIXME: this could be improved probably. 7818 unsigned LdAlign = TLI.getTargetData()->getPrefTypeAlignment( 7819 Op.getValueType().getTypeForMVT()); 7820 SDValue Ptr = DAG.CreateStackTemporary(InOp.getValueType(), LdAlign); 7821 int FI = cast<FrameIndexSDNode>(Ptr.getNode())->getIndex(); 7822 7823 SDValue St = DAG.getStore(DAG.getEntryNode(), dl, 7824 InOp, Ptr, 7825 PseudoSourceValue::getFixedStack(FI), 0); 7826 InOp = DAG.getLoad(Op.getValueType(), dl, St, Ptr, 7827 PseudoSourceValue::getFixedStack(FI), 0); 7828 } 7829 // Split the vector and convert each of the pieces now. 7830 SplitVectorOp(InOp, Lo, Hi); 7831 Lo = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT_Lo, Lo); 7832 Hi = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT_Hi, Hi); 7833 break; 7834 } 7835 } 7836 7837 // Remember in a map if the values will be reused later. 7838 bool isNew = 7839 SplitNodes.insert(std::make_pair(Op, std::make_pair(Lo, Hi))).second; 7840 assert(isNew && "Value already split?!?"); 7841 isNew = isNew; 7842} 7843 7844 7845/// ScalarizeVectorOp - Given an operand of single-element vector type 7846/// (e.g. v1f32), convert it into the equivalent operation that returns a 7847/// scalar (e.g. f32) value. 7848SDValue SelectionDAGLegalize::ScalarizeVectorOp(SDValue Op) { 7849 assert(Op.getValueType().isVector() && "Bad ScalarizeVectorOp invocation!"); 7850 SDNode *Node = Op.getNode(); 7851 DebugLoc dl = Node->getDebugLoc(); 7852 MVT NewVT = Op.getValueType().getVectorElementType(); 7853 assert(Op.getValueType().getVectorNumElements() == 1); 7854 7855 // See if we already scalarized it. 7856 std::map<SDValue, SDValue>::iterator I = ScalarizedNodes.find(Op); 7857 if (I != ScalarizedNodes.end()) return I->second; 7858 7859 SDValue Result; 7860 switch (Node->getOpcode()) { 7861 default: 7862#ifndef NDEBUG 7863 Node->dump(&DAG); cerr << "\n"; 7864#endif 7865 assert(0 && "Unknown vector operation in ScalarizeVectorOp!"); 7866 case ISD::ADD: 7867 case ISD::FADD: 7868 case ISD::SUB: 7869 case ISD::FSUB: 7870 case ISD::MUL: 7871 case ISD::FMUL: 7872 case ISD::SDIV: 7873 case ISD::UDIV: 7874 case ISD::FDIV: 7875 case ISD::SREM: 7876 case ISD::UREM: 7877 case ISD::FREM: 7878 case ISD::FPOW: 7879 case ISD::AND: 7880 case ISD::OR: 7881 case ISD::XOR: 7882 Result = DAG.getNode(Node->getOpcode(), dl, 7883 NewVT, 7884 ScalarizeVectorOp(Node->getOperand(0)), 7885 ScalarizeVectorOp(Node->getOperand(1))); 7886 break; 7887 case ISD::FNEG: 7888 case ISD::FABS: 7889 case ISD::FSQRT: 7890 case ISD::FSIN: 7891 case ISD::FCOS: 7892 case ISD::FLOG: 7893 case ISD::FLOG2: 7894 case ISD::FLOG10: 7895 case ISD::FEXP: 7896 case ISD::FEXP2: 7897 case ISD::FP_TO_SINT: 7898 case ISD::FP_TO_UINT: 7899 case ISD::SINT_TO_FP: 7900 case ISD::UINT_TO_FP: 7901 case ISD::SIGN_EXTEND: 7902 case ISD::ZERO_EXTEND: 7903 case ISD::ANY_EXTEND: 7904 case ISD::TRUNCATE: 7905 case ISD::FP_EXTEND: 7906 Result = DAG.getNode(Node->getOpcode(), dl, 7907 NewVT, 7908 ScalarizeVectorOp(Node->getOperand(0))); 7909 break; 7910 case ISD::CONVERT_RNDSAT: { 7911 SDValue Op0 = ScalarizeVectorOp(Node->getOperand(0)); 7912 Result = DAG.getConvertRndSat(NewVT, dl, Op0, 7913 DAG.getValueType(NewVT), 7914 DAG.getValueType(Op0.getValueType()), 7915 Node->getOperand(3), 7916 Node->getOperand(4), 7917 cast<CvtRndSatSDNode>(Node)->getCvtCode()); 7918 break; 7919 } 7920 case ISD::FPOWI: 7921 case ISD::FP_ROUND: 7922 Result = DAG.getNode(Node->getOpcode(), dl, 7923 NewVT, 7924 ScalarizeVectorOp(Node->getOperand(0)), 7925 Node->getOperand(1)); 7926 break; 7927 case ISD::LOAD: { 7928 LoadSDNode *LD = cast<LoadSDNode>(Node); 7929 SDValue Ch = LegalizeOp(LD->getChain()); // Legalize the chain. 7930 SDValue Ptr = LegalizeOp(LD->getBasePtr()); // Legalize the pointer. 7931 ISD::LoadExtType ExtType = LD->getExtensionType(); 7932 const Value *SV = LD->getSrcValue(); 7933 int SVOffset = LD->getSrcValueOffset(); 7934 MVT MemoryVT = LD->getMemoryVT(); 7935 unsigned Alignment = LD->getAlignment(); 7936 bool isVolatile = LD->isVolatile(); 7937 7938 assert(LD->isUnindexed() && "Indexed vector loads are not supported yet!"); 7939 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 7940 7941 Result = DAG.getLoad(ISD::UNINDEXED, dl, ExtType, 7942 NewVT, Ch, Ptr, Offset, SV, SVOffset, 7943 MemoryVT.getVectorElementType(), 7944 isVolatile, Alignment); 7945 7946 // Remember that we legalized the chain. 7947 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); 7948 break; 7949 } 7950 case ISD::BUILD_VECTOR: 7951 Result = Node->getOperand(0); 7952 break; 7953 case ISD::INSERT_VECTOR_ELT: 7954 // Returning the inserted scalar element. 7955 Result = Node->getOperand(1); 7956 break; 7957 case ISD::CONCAT_VECTORS: 7958 assert(Node->getOperand(0).getValueType() == NewVT && 7959 "Concat of non-legal vectors not yet supported!"); 7960 Result = Node->getOperand(0); 7961 break; 7962 case ISD::VECTOR_SHUFFLE: { 7963 // Figure out if the scalar is the LHS or RHS and return it. 7964 SDValue EltNum = Node->getOperand(2).getOperand(0); 7965 if (cast<ConstantSDNode>(EltNum)->getZExtValue()) 7966 Result = ScalarizeVectorOp(Node->getOperand(1)); 7967 else 7968 Result = ScalarizeVectorOp(Node->getOperand(0)); 7969 break; 7970 } 7971 case ISD::EXTRACT_SUBVECTOR: 7972 Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NewVT, 7973 Node->getOperand(0), Node->getOperand(1)); 7974 break; 7975 case ISD::BIT_CONVERT: { 7976 SDValue Op0 = Op.getOperand(0); 7977 if (Op0.getValueType().getVectorNumElements() == 1) 7978 Op0 = ScalarizeVectorOp(Op0); 7979 Result = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, Op0); 7980 break; 7981 } 7982 case ISD::SELECT: 7983 Result = DAG.getNode(ISD::SELECT, dl, NewVT, Op.getOperand(0), 7984 ScalarizeVectorOp(Op.getOperand(1)), 7985 ScalarizeVectorOp(Op.getOperand(2))); 7986 break; 7987 case ISD::SELECT_CC: 7988 Result = DAG.getNode(ISD::SELECT_CC, dl, NewVT, Node->getOperand(0), 7989 Node->getOperand(1), 7990 ScalarizeVectorOp(Op.getOperand(2)), 7991 ScalarizeVectorOp(Op.getOperand(3)), 7992 Node->getOperand(4)); 7993 break; 7994 case ISD::VSETCC: { 7995 SDValue Op0 = ScalarizeVectorOp(Op.getOperand(0)); 7996 SDValue Op1 = ScalarizeVectorOp(Op.getOperand(1)); 7997 Result = DAG.getNode(ISD::SETCC, dl, 7998 TLI.getSetCCResultType(Op0.getValueType()), 7999 Op0, Op1, Op.getOperand(2)); 8000 Result = DAG.getNode(ISD::SELECT, dl, NewVT, Result, 8001 DAG.getConstant(-1ULL, NewVT), 8002 DAG.getConstant(0ULL, NewVT)); 8003 break; 8004 } 8005 } 8006 8007 if (TLI.isTypeLegal(NewVT)) 8008 Result = LegalizeOp(Result); 8009 bool isNew = ScalarizedNodes.insert(std::make_pair(Op, Result)).second; 8010 assert(isNew && "Value already scalarized?"); 8011 isNew = isNew; 8012 return Result; 8013} 8014 8015 8016SDValue SelectionDAGLegalize::WidenVectorOp(SDValue Op, MVT WidenVT) { 8017 std::map<SDValue, SDValue>::iterator I = WidenNodes.find(Op); 8018 if (I != WidenNodes.end()) return I->second; 8019 8020 MVT VT = Op.getValueType(); 8021 assert(VT.isVector() && "Cannot widen non-vector type!"); 8022 8023 SDValue Result; 8024 SDNode *Node = Op.getNode(); 8025 DebugLoc dl = Node->getDebugLoc(); 8026 MVT EVT = VT.getVectorElementType(); 8027 8028 unsigned NumElts = VT.getVectorNumElements(); 8029 unsigned NewNumElts = WidenVT.getVectorNumElements(); 8030 assert(NewNumElts > NumElts && "Cannot widen to smaller type!"); 8031 assert(NewNumElts < 17); 8032 8033 // When widen is called, it is assumed that it is more efficient to use a 8034 // wide type. The default action is to widen to operation to a wider legal 8035 // vector type and then do the operation if it is legal by calling LegalizeOp 8036 // again. If there is no vector equivalent, we will unroll the operation, do 8037 // it, and rebuild the vector. If most of the operations are vectorizible to 8038 // the legal type, the resulting code will be more efficient. If this is not 8039 // the case, the resulting code will preform badly as we end up generating 8040 // code to pack/unpack the results. It is the function that calls widen 8041 // that is responsible for seeing this doesn't happen. 8042 switch (Node->getOpcode()) { 8043 default: 8044#ifndef NDEBUG 8045 Node->dump(&DAG); 8046#endif 8047 assert(0 && "Unexpected operation in WidenVectorOp!"); 8048 break; 8049 case ISD::CopyFromReg: 8050 assert(0 && "CopyFromReg doesn't need widening!"); 8051 case ISD::Constant: 8052 case ISD::ConstantFP: 8053 // To build a vector of these elements, clients should call BuildVector 8054 // and with each element instead of creating a node with a vector type 8055 assert(0 && "Unexpected operation in WidenVectorOp!"); 8056 case ISD::VAARG: 8057 // Variable Arguments with vector types doesn't make any sense to me 8058 assert(0 && "Unexpected operation in WidenVectorOp!"); 8059 break; 8060 case ISD::UNDEF: 8061 Result = DAG.getUNDEF(WidenVT); 8062 break; 8063 case ISD::BUILD_VECTOR: { 8064 // Build a vector with undefined for the new nodes 8065 SDValueVector NewOps(Node->op_begin(), Node->op_end()); 8066 for (unsigned i = NumElts; i < NewNumElts; ++i) { 8067 NewOps.push_back(DAG.getUNDEF(EVT)); 8068 } 8069 Result = DAG.getBUILD_VECTOR(WidenVT, dl, &NewOps[0], NewOps.size()); 8070 break; 8071 } 8072 case ISD::INSERT_VECTOR_ELT: { 8073 SDValue Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT); 8074 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, WidenVT, Tmp1, 8075 Node->getOperand(1), Node->getOperand(2)); 8076 break; 8077 } 8078 case ISD::VECTOR_SHUFFLE: { 8079 SDValue Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT); 8080 SDValue Tmp2 = WidenVectorOp(Node->getOperand(1), WidenVT); 8081 // VECTOR_SHUFFLE 3rd operand must be a constant build vector that is 8082 // used as permutation array. We build the vector here instead of widening 8083 // because we don't want to legalize and have it turned to something else. 8084 SDValue PermOp = Node->getOperand(2); 8085 SDValueVector NewOps; 8086 MVT PVT = PermOp.getValueType().getVectorElementType(); 8087 for (unsigned i = 0; i < NumElts; ++i) { 8088 if (PermOp.getOperand(i).getOpcode() == ISD::UNDEF) { 8089 NewOps.push_back(PermOp.getOperand(i)); 8090 } else { 8091 unsigned Idx = 8092 cast<ConstantSDNode>(PermOp.getOperand(i))->getZExtValue(); 8093 if (Idx < NumElts) { 8094 NewOps.push_back(PermOp.getOperand(i)); 8095 } 8096 else { 8097 NewOps.push_back(DAG.getConstant(Idx + NewNumElts - NumElts, 8098 PermOp.getOperand(i).getValueType())); 8099 } 8100 } 8101 } 8102 for (unsigned i = NumElts; i < NewNumElts; ++i) { 8103 NewOps.push_back(DAG.getUNDEF(PVT)); 8104 } 8105 8106 SDValue Tmp3 = DAG.getBUILD_VECTOR(MVT::getVectorVT(PVT, NewOps.size()), dl, 8107 &NewOps[0], NewOps.size()); 8108 8109 Result = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, WidenVT, Tmp1, Tmp2, Tmp3); 8110 break; 8111 } 8112 case ISD::LOAD: { 8113 // If the load widen returns true, we can use a single load for the 8114 // vector. Otherwise, it is returning a token factor for multiple 8115 // loads. 8116 SDValue TFOp; 8117 if (LoadWidenVectorOp(Result, TFOp, Op, WidenVT)) 8118 AddLegalizedOperand(Op.getValue(1), LegalizeOp(TFOp.getValue(1))); 8119 else 8120 AddLegalizedOperand(Op.getValue(1), LegalizeOp(TFOp.getValue(0))); 8121 break; 8122 } 8123 8124 case ISD::BIT_CONVERT: { 8125 SDValue Tmp1 = Node->getOperand(0); 8126 // Converts between two different types so we need to determine 8127 // the correct widen type for the input operand. 8128 MVT InVT = Tmp1.getValueType(); 8129 unsigned WidenSize = WidenVT.getSizeInBits(); 8130 if (InVT.isVector()) { 8131 MVT InEltVT = InVT.getVectorElementType(); 8132 unsigned InEltSize = InEltVT.getSizeInBits(); 8133 assert(WidenSize % InEltSize == 0 && 8134 "can not widen bit convert that are not multiple of element type"); 8135 MVT NewInWidenVT = MVT::getVectorVT(InEltVT, WidenSize / InEltSize); 8136 Tmp1 = WidenVectorOp(Tmp1, NewInWidenVT); 8137 assert(Tmp1.getValueType().getSizeInBits() == WidenVT.getSizeInBits()); 8138 Result = DAG.getNode(ISD::BIT_CONVERT, dl, WidenVT, Tmp1); 8139 } else { 8140 // If the result size is a multiple of the input size, widen the input 8141 // and then convert. 8142 unsigned InSize = InVT.getSizeInBits(); 8143 assert(WidenSize % InSize == 0 && 8144 "can not widen bit convert that are not multiple of element type"); 8145 unsigned NewNumElts = WidenSize / InSize; 8146 SmallVector<SDValue, 16> Ops(NewNumElts); 8147 SDValue UndefVal = DAG.getUNDEF(InVT); 8148 Ops[0] = Tmp1; 8149 for (unsigned i = 1; i < NewNumElts; ++i) 8150 Ops[i] = UndefVal; 8151 8152 MVT NewInVT = MVT::getVectorVT(InVT, NewNumElts); 8153 Result = DAG.getBUILD_VECTOR(NewInVT, dl, &Ops[0], NewNumElts); 8154 Result = DAG.getNode(ISD::BIT_CONVERT, dl, WidenVT, Result); 8155 } 8156 break; 8157 } 8158 8159 case ISD::SINT_TO_FP: 8160 case ISD::UINT_TO_FP: 8161 case ISD::FP_TO_SINT: 8162 case ISD::FP_TO_UINT: 8163 case ISD::FP_ROUND: { 8164 SDValue Tmp1 = Node->getOperand(0); 8165 // Converts between two different types so we need to determine 8166 // the correct widen type for the input operand. 8167 MVT TVT = Tmp1.getValueType(); 8168 assert(TVT.isVector() && "can not widen non vector type"); 8169 MVT TEVT = TVT.getVectorElementType(); 8170 MVT TWidenVT = MVT::getVectorVT(TEVT, NewNumElts); 8171 Tmp1 = WidenVectorOp(Tmp1, TWidenVT); 8172 assert(Tmp1.getValueType().getVectorNumElements() == NewNumElts); 8173 Result = DAG.getNode(Node->getOpcode(), dl, WidenVT, Tmp1); 8174 break; 8175 } 8176 8177 case ISD::FP_EXTEND: 8178 assert(0 && "Case not implemented. Dynamically dead with 2 FP types!"); 8179 case ISD::TRUNCATE: 8180 case ISD::SIGN_EXTEND: 8181 case ISD::ZERO_EXTEND: 8182 case ISD::ANY_EXTEND: 8183 case ISD::SIGN_EXTEND_INREG: 8184 case ISD::FABS: 8185 case ISD::FNEG: 8186 case ISD::FSQRT: 8187 case ISD::FSIN: 8188 case ISD::FCOS: 8189 case ISD::CTPOP: 8190 case ISD::CTTZ: 8191 case ISD::CTLZ: { 8192 // Unary op widening 8193 SDValue Tmp1; 8194 Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT); 8195 assert(Tmp1.getValueType() == WidenVT); 8196 Result = DAG.getNode(Node->getOpcode(), dl, WidenVT, Tmp1); 8197 break; 8198 } 8199 case ISD::CONVERT_RNDSAT: { 8200 SDValue RndOp = Node->getOperand(3); 8201 SDValue SatOp = Node->getOperand(4); 8202 SDValue SrcOp = Node->getOperand(0); 8203 8204 // Converts between two different types so we need to determine 8205 // the correct widen type for the input operand. 8206 MVT SVT = SrcOp.getValueType(); 8207 assert(SVT.isVector() && "can not widen non vector type"); 8208 MVT SEVT = SVT.getVectorElementType(); 8209 MVT SWidenVT = MVT::getVectorVT(SEVT, NewNumElts); 8210 8211 SrcOp = WidenVectorOp(SrcOp, SWidenVT); 8212 assert(SrcOp.getValueType() == WidenVT); 8213 SDValue DTyOp = DAG.getValueType(WidenVT); 8214 SDValue STyOp = DAG.getValueType(SrcOp.getValueType()); 8215 ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(Node)->getCvtCode(); 8216 8217 Result = DAG.getConvertRndSat(WidenVT, dl, SrcOp, DTyOp, STyOp, 8218 RndOp, SatOp, CvtCode); 8219 break; 8220 } 8221 case ISD::FPOW: 8222 case ISD::FPOWI: 8223 case ISD::ADD: 8224 case ISD::SUB: 8225 case ISD::MUL: 8226 case ISD::MULHS: 8227 case ISD::MULHU: 8228 case ISD::AND: 8229 case ISD::OR: 8230 case ISD::XOR: 8231 case ISD::FADD: 8232 case ISD::FSUB: 8233 case ISD::FMUL: 8234 case ISD::SDIV: 8235 case ISD::SREM: 8236 case ISD::FDIV: 8237 case ISD::FREM: 8238 case ISD::FCOPYSIGN: 8239 case ISD::UDIV: 8240 case ISD::UREM: 8241 case ISD::BSWAP: { 8242 // Binary op widening 8243 SDValue Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT); 8244 SDValue Tmp2 = WidenVectorOp(Node->getOperand(1), WidenVT); 8245 assert(Tmp1.getValueType() == WidenVT && Tmp2.getValueType() == WidenVT); 8246 Result = DAG.getNode(Node->getOpcode(), dl, WidenVT, Tmp1, Tmp2); 8247 break; 8248 } 8249 8250 case ISD::SHL: 8251 case ISD::SRA: 8252 case ISD::SRL: { 8253 SDValue Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT); 8254 assert(Tmp1.getValueType() == WidenVT); 8255 SDValue ShOp = Node->getOperand(1); 8256 MVT ShVT = ShOp.getValueType(); 8257 MVT NewShVT = MVT::getVectorVT(ShVT.getVectorElementType(), 8258 WidenVT.getVectorNumElements()); 8259 ShOp = WidenVectorOp(ShOp, NewShVT); 8260 assert(ShOp.getValueType() == NewShVT); 8261 Result = DAG.getNode(Node->getOpcode(), dl, WidenVT, Tmp1, ShOp); 8262 break; 8263 } 8264 8265 case ISD::EXTRACT_VECTOR_ELT: { 8266 SDValue Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT); 8267 assert(Tmp1.getValueType() == WidenVT); 8268 Result = DAG.getNode(Node->getOpcode(), dl, EVT, Tmp1, Node->getOperand(1)); 8269 break; 8270 } 8271 case ISD::CONCAT_VECTORS: { 8272 // We concurrently support only widen on a multiple of the incoming vector. 8273 // We could widen on a multiple of the incoming operand if necessary. 8274 unsigned NumConcat = NewNumElts / NumElts; 8275 assert(NewNumElts % NumElts == 0 && "Can widen only a multiple of vector"); 8276 SDValue UndefVal = DAG.getUNDEF(VT); 8277 SmallVector<SDValue, 8> MOps; 8278 MOps.push_back(Op); 8279 for (unsigned i = 1; i != NumConcat; ++i) { 8280 MOps.push_back(UndefVal); 8281 } 8282 Result = LegalizeOp(DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, 8283 &MOps[0], MOps.size())); 8284 break; 8285 } 8286 case ISD::EXTRACT_SUBVECTOR: { 8287 SDValue Tmp1 = Node->getOperand(0); 8288 SDValue Idx = Node->getOperand(1); 8289 ConstantSDNode *CIdx = dyn_cast<ConstantSDNode>(Idx); 8290 if (CIdx && CIdx->getZExtValue() == 0) { 8291 // Since we are access the start of the vector, the incoming 8292 // vector type might be the proper. 8293 MVT Tmp1VT = Tmp1.getValueType(); 8294 if (Tmp1VT == WidenVT) 8295 return Tmp1; 8296 else { 8297 unsigned Tmp1VTNumElts = Tmp1VT.getVectorNumElements(); 8298 if (Tmp1VTNumElts < NewNumElts) 8299 Result = WidenVectorOp(Tmp1, WidenVT); 8300 else 8301 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, WidenVT, Tmp1, Idx); 8302 } 8303 } else if (NewNumElts % NumElts == 0) { 8304 // Widen the extracted subvector. 8305 unsigned NumConcat = NewNumElts / NumElts; 8306 SDValue UndefVal = DAG.getUNDEF(VT); 8307 SmallVector<SDValue, 8> MOps; 8308 MOps.push_back(Op); 8309 for (unsigned i = 1; i != NumConcat; ++i) { 8310 MOps.push_back(UndefVal); 8311 } 8312 Result = LegalizeOp(DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, 8313 &MOps[0], MOps.size())); 8314 } else { 8315 assert(0 && "can not widen extract subvector"); 8316 // This could be implemented using insert and build vector but I would 8317 // like to see when this happens. 8318 } 8319 break; 8320 } 8321 8322 case ISD::SELECT: { 8323 // Determine new condition widen type and widen 8324 SDValue Cond1 = Node->getOperand(0); 8325 MVT CondVT = Cond1.getValueType(); 8326 assert(CondVT.isVector() && "can not widen non vector type"); 8327 MVT CondEVT = CondVT.getVectorElementType(); 8328 MVT CondWidenVT = MVT::getVectorVT(CondEVT, NewNumElts); 8329 Cond1 = WidenVectorOp(Cond1, CondWidenVT); 8330 assert(Cond1.getValueType() == CondWidenVT && "Condition not widen"); 8331 8332 SDValue Tmp1 = WidenVectorOp(Node->getOperand(1), WidenVT); 8333 SDValue Tmp2 = WidenVectorOp(Node->getOperand(2), WidenVT); 8334 assert(Tmp1.getValueType() == WidenVT && Tmp2.getValueType() == WidenVT); 8335 Result = DAG.getNode(Node->getOpcode(), dl, WidenVT, Cond1, Tmp1, Tmp2); 8336 break; 8337 } 8338 8339 case ISD::SELECT_CC: { 8340 // Determine new condition widen type and widen 8341 SDValue Cond1 = Node->getOperand(0); 8342 SDValue Cond2 = Node->getOperand(1); 8343 MVT CondVT = Cond1.getValueType(); 8344 assert(CondVT.isVector() && "can not widen non vector type"); 8345 assert(CondVT == Cond2.getValueType() && "mismatch lhs/rhs"); 8346 MVT CondEVT = CondVT.getVectorElementType(); 8347 MVT CondWidenVT = MVT::getVectorVT(CondEVT, NewNumElts); 8348 Cond1 = WidenVectorOp(Cond1, CondWidenVT); 8349 Cond2 = WidenVectorOp(Cond2, CondWidenVT); 8350 assert(Cond1.getValueType() == CondWidenVT && 8351 Cond2.getValueType() == CondWidenVT && "condition not widen"); 8352 8353 SDValue Tmp1 = WidenVectorOp(Node->getOperand(2), WidenVT); 8354 SDValue Tmp2 = WidenVectorOp(Node->getOperand(3), WidenVT); 8355 assert(Tmp1.getValueType() == WidenVT && Tmp2.getValueType() == WidenVT && 8356 "operands not widen"); 8357 Result = DAG.getNode(Node->getOpcode(), dl, WidenVT, Cond1, Cond2, Tmp1, 8358 Tmp2, Node->getOperand(4)); 8359 break; 8360 } 8361 case ISD::VSETCC: { 8362 // Determine widen for the operand 8363 SDValue Tmp1 = Node->getOperand(0); 8364 MVT TmpVT = Tmp1.getValueType(); 8365 assert(TmpVT.isVector() && "can not widen non vector type"); 8366 MVT TmpEVT = TmpVT.getVectorElementType(); 8367 MVT TmpWidenVT = MVT::getVectorVT(TmpEVT, NewNumElts); 8368 Tmp1 = WidenVectorOp(Tmp1, TmpWidenVT); 8369 SDValue Tmp2 = WidenVectorOp(Node->getOperand(1), TmpWidenVT); 8370 Result = DAG.getNode(Node->getOpcode(), dl, WidenVT, Tmp1, Tmp2, 8371 Node->getOperand(2)); 8372 break; 8373 } 8374 case ISD::ATOMIC_CMP_SWAP: 8375 case ISD::ATOMIC_LOAD_ADD: 8376 case ISD::ATOMIC_LOAD_SUB: 8377 case ISD::ATOMIC_LOAD_AND: 8378 case ISD::ATOMIC_LOAD_OR: 8379 case ISD::ATOMIC_LOAD_XOR: 8380 case ISD::ATOMIC_LOAD_NAND: 8381 case ISD::ATOMIC_LOAD_MIN: 8382 case ISD::ATOMIC_LOAD_MAX: 8383 case ISD::ATOMIC_LOAD_UMIN: 8384 case ISD::ATOMIC_LOAD_UMAX: 8385 case ISD::ATOMIC_SWAP: { 8386 // For now, we assume that using vectors for these operations don't make 8387 // much sense so we just split it. We return an empty result 8388 SDValue X, Y; 8389 SplitVectorOp(Op, X, Y); 8390 return Result; 8391 break; 8392 } 8393 8394 } // end switch (Node->getOpcode()) 8395 8396 assert(Result.getNode() && "Didn't set a result!"); 8397 if (Result != Op) 8398 Result = LegalizeOp(Result); 8399 8400 AddWidenedOperand(Op, Result); 8401 return Result; 8402} 8403 8404// Utility function to find a legal vector type and its associated element 8405// type from a preferred width and whose vector type must be the same size 8406// as the VVT. 8407// TLI: Target lowering used to determine legal types 8408// Width: Preferred width of element type 8409// VVT: Vector value type whose size we must match. 8410// Returns VecEVT and EVT - the vector type and its associated element type 8411static void FindWidenVecType(const TargetLowering &TLI, unsigned Width, MVT VVT, 8412 MVT& EVT, MVT& VecEVT) { 8413 // We start with the preferred width, make it a power of 2 and see if 8414 // we can find a vector type of that width. If not, we reduce it by 8415 // another power of 2. If we have widen the type, a vector of bytes should 8416 // always be legal. 8417 assert(TLI.isTypeLegal(VVT)); 8418 unsigned EWidth = Width + 1; 8419 do { 8420 assert(EWidth > 0); 8421 EWidth = (1 << Log2_32(EWidth-1)); 8422 EVT = MVT::getIntegerVT(EWidth); 8423 unsigned NumEVT = VVT.getSizeInBits()/EWidth; 8424 VecEVT = MVT::getVectorVT(EVT, NumEVT); 8425 } while (!TLI.isTypeLegal(VecEVT) || 8426 VVT.getSizeInBits() != VecEVT.getSizeInBits()); 8427} 8428 8429SDValue SelectionDAGLegalize::genWidenVectorLoads(SDValueVector& LdChain, 8430 SDValue Chain, 8431 SDValue BasePtr, 8432 const Value *SV, 8433 int SVOffset, 8434 unsigned Alignment, 8435 bool isVolatile, 8436 unsigned LdWidth, 8437 MVT ResType, 8438 DebugLoc dl) { 8439 // We assume that we have good rules to handle loading power of two loads so 8440 // we break down the operations to power of 2 loads. The strategy is to 8441 // load the largest power of 2 that we can easily transform to a legal vector 8442 // and then insert into that vector, and the cast the result into the legal 8443 // vector that we want. This avoids unnecessary stack converts. 8444 // TODO: If the Ldwidth is legal, alignment is the same as the LdWidth, and 8445 // the load is nonvolatile, we an use a wider load for the value. 8446 // Find a vector length we can load a large chunk 8447 MVT EVT, VecEVT; 8448 unsigned EVTWidth; 8449 FindWidenVecType(TLI, LdWidth, ResType, EVT, VecEVT); 8450 EVTWidth = EVT.getSizeInBits(); 8451 8452 SDValue LdOp = DAG.getLoad(EVT, dl, Chain, BasePtr, SV, SVOffset, 8453 isVolatile, Alignment); 8454 SDValue VecOp = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecEVT, LdOp); 8455 LdChain.push_back(LdOp.getValue(1)); 8456 8457 // Check if we can load the element with one instruction 8458 if (LdWidth == EVTWidth) { 8459 return DAG.getNode(ISD::BIT_CONVERT, dl, ResType, VecOp); 8460 } 8461 8462 // The vector element order is endianness dependent. 8463 unsigned Idx = 1; 8464 LdWidth -= EVTWidth; 8465 unsigned Offset = 0; 8466 8467 while (LdWidth > 0) { 8468 unsigned Increment = EVTWidth / 8; 8469 Offset += Increment; 8470 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 8471 DAG.getIntPtrConstant(Increment)); 8472 8473 if (LdWidth < EVTWidth) { 8474 // Our current type we are using is too large, use a smaller size by 8475 // using a smaller power of 2 8476 unsigned oEVTWidth = EVTWidth; 8477 FindWidenVecType(TLI, LdWidth, ResType, EVT, VecEVT); 8478 EVTWidth = EVT.getSizeInBits(); 8479 // Readjust position and vector position based on new load type 8480 Idx = Idx * (oEVTWidth/EVTWidth); 8481 VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, VecEVT, VecOp); 8482 } 8483 8484 SDValue LdOp = DAG.getLoad(EVT, dl, Chain, BasePtr, SV, 8485 SVOffset+Offset, isVolatile, 8486 MinAlign(Alignment, Offset)); 8487 LdChain.push_back(LdOp.getValue(1)); 8488 VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VecEVT, VecOp, LdOp, 8489 DAG.getIntPtrConstant(Idx++)); 8490 8491 LdWidth -= EVTWidth; 8492 } 8493 8494 return DAG.getNode(ISD::BIT_CONVERT, dl, ResType, VecOp); 8495} 8496 8497bool SelectionDAGLegalize::LoadWidenVectorOp(SDValue& Result, 8498 SDValue& TFOp, 8499 SDValue Op, 8500 MVT NVT) { 8501 // TODO: Add support for ConcatVec and the ability to load many vector 8502 // types (e.g., v4i8). This will not work when a vector register 8503 // to memory mapping is strange (e.g., vector elements are not 8504 // stored in some sequential order). 8505 8506 // It must be true that the widen vector type is bigger than where 8507 // we need to load from. 8508 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 8509 MVT LdVT = LD->getMemoryVT(); 8510 DebugLoc dl = LD->getDebugLoc(); 8511 assert(LdVT.isVector() && NVT.isVector()); 8512 assert(LdVT.getVectorElementType() == NVT.getVectorElementType()); 8513 8514 // Load information 8515 SDValue Chain = LD->getChain(); 8516 SDValue BasePtr = LD->getBasePtr(); 8517 int SVOffset = LD->getSrcValueOffset(); 8518 unsigned Alignment = LD->getAlignment(); 8519 bool isVolatile = LD->isVolatile(); 8520 const Value *SV = LD->getSrcValue(); 8521 unsigned int LdWidth = LdVT.getSizeInBits(); 8522 8523 // Load value as a large register 8524 SDValueVector LdChain; 8525 Result = genWidenVectorLoads(LdChain, Chain, BasePtr, SV, SVOffset, 8526 Alignment, isVolatile, LdWidth, NVT, dl); 8527 8528 if (LdChain.size() == 1) { 8529 TFOp = LdChain[0]; 8530 return true; 8531 } 8532 else { 8533 TFOp=DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 8534 &LdChain[0], LdChain.size()); 8535 return false; 8536 } 8537} 8538 8539 8540void SelectionDAGLegalize::genWidenVectorStores(SDValueVector& StChain, 8541 SDValue Chain, 8542 SDValue BasePtr, 8543 const Value *SV, 8544 int SVOffset, 8545 unsigned Alignment, 8546 bool isVolatile, 8547 SDValue ValOp, 8548 unsigned StWidth, 8549 DebugLoc dl) { 8550 // Breaks the stores into a series of power of 2 width stores. For any 8551 // width, we convert the vector to the vector of element size that we 8552 // want to store. This avoids requiring a stack convert. 8553 8554 // Find a width of the element type we can store with 8555 MVT VVT = ValOp.getValueType(); 8556 MVT EVT, VecEVT; 8557 unsigned EVTWidth; 8558 FindWidenVecType(TLI, StWidth, VVT, EVT, VecEVT); 8559 EVTWidth = EVT.getSizeInBits(); 8560 8561 SDValue VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, VecEVT, ValOp); 8562 SDValue EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EVT, VecOp, 8563 DAG.getIntPtrConstant(0)); 8564 SDValue StOp = DAG.getStore(Chain, dl, EOp, BasePtr, SV, SVOffset, 8565 isVolatile, Alignment); 8566 StChain.push_back(StOp); 8567 8568 // Check if we are done 8569 if (StWidth == EVTWidth) { 8570 return; 8571 } 8572 8573 unsigned Idx = 1; 8574 StWidth -= EVTWidth; 8575 unsigned Offset = 0; 8576 8577 while (StWidth > 0) { 8578 unsigned Increment = EVTWidth / 8; 8579 Offset += Increment; 8580 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 8581 DAG.getIntPtrConstant(Increment)); 8582 8583 if (StWidth < EVTWidth) { 8584 // Our current type we are using is too large, use a smaller size by 8585 // using a smaller power of 2 8586 unsigned oEVTWidth = EVTWidth; 8587 FindWidenVecType(TLI, StWidth, VVT, EVT, VecEVT); 8588 EVTWidth = EVT.getSizeInBits(); 8589 // Readjust position and vector position based on new load type 8590 Idx = Idx * (oEVTWidth/EVTWidth); 8591 VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, VecEVT, VecOp); 8592 } 8593 8594 EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EVT, VecOp, 8595 DAG.getIntPtrConstant(Idx++)); 8596 StChain.push_back(DAG.getStore(Chain, dl, EOp, BasePtr, SV, 8597 SVOffset + Offset, isVolatile, 8598 MinAlign(Alignment, Offset))); 8599 StWidth -= EVTWidth; 8600 } 8601} 8602 8603 8604SDValue SelectionDAGLegalize::StoreWidenVectorOp(StoreSDNode *ST, 8605 SDValue Chain, 8606 SDValue BasePtr) { 8607 // TODO: It might be cleaner if we can use SplitVector and have more legal 8608 // vector types that can be stored into memory (e.g., v4xi8 can 8609 // be stored as a word). This will not work when a vector register 8610 // to memory mapping is strange (e.g., vector elements are not 8611 // stored in some sequential order). 8612 8613 MVT StVT = ST->getMemoryVT(); 8614 SDValue ValOp = ST->getValue(); 8615 DebugLoc dl = ST->getDebugLoc(); 8616 8617 // Check if we have widen this node with another value 8618 std::map<SDValue, SDValue>::iterator I = WidenNodes.find(ValOp); 8619 if (I != WidenNodes.end()) 8620 ValOp = I->second; 8621 8622 MVT VVT = ValOp.getValueType(); 8623 8624 // It must be true that we the widen vector type is bigger than where 8625 // we need to store. 8626 assert(StVT.isVector() && VVT.isVector()); 8627 assert(StVT.bitsLT(VVT)); 8628 assert(StVT.getVectorElementType() == VVT.getVectorElementType()); 8629 8630 // Store value 8631 SDValueVector StChain; 8632 genWidenVectorStores(StChain, Chain, BasePtr, ST->getSrcValue(), 8633 ST->getSrcValueOffset(), ST->getAlignment(), 8634 ST->isVolatile(), ValOp, StVT.getSizeInBits(), dl); 8635 if (StChain.size() == 1) 8636 return StChain[0]; 8637 else 8638 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 8639 &StChain[0], StChain.size()); 8640} 8641 8642 8643// SelectionDAG::Legalize - This is the entry point for the file. 8644// 8645void SelectionDAG::Legalize(bool TypesNeedLegalizing, bool Fast) { 8646 /// run - This is the main entry point to this class. 8647 /// 8648 SelectionDAGLegalize(*this, TypesNeedLegalizing, Fast).LegalizeDAG(); 8649} 8650 8651