LegalizeDAG.cpp revision e727d7a08406265acb10d0c52943ef92859710f2
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SelectionDAG::Legalize method.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/CodeGen/MachineFunction.h"
16#include "llvm/CodeGen/MachineFrameInfo.h"
17#include "llvm/CodeGen/MachineJumpTableInfo.h"
18#include "llvm/CodeGen/MachineModuleInfo.h"
19#include "llvm/CodeGen/DwarfWriter.h"
20#include "llvm/Analysis/DebugInfo.h"
21#include "llvm/CodeGen/PseudoSourceValue.h"
22#include "llvm/Target/TargetFrameInfo.h"
23#include "llvm/Target/TargetLowering.h"
24#include "llvm/Target/TargetData.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/Target/TargetOptions.h"
27#include "llvm/Target/TargetSubtarget.h"
28#include "llvm/CallingConv.h"
29#include "llvm/Constants.h"
30#include "llvm/DerivedTypes.h"
31#include "llvm/Function.h"
32#include "llvm/GlobalVariable.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/Compiler.h"
35#include "llvm/Support/MathExtras.h"
36#include "llvm/ADT/DenseMap.h"
37#include "llvm/ADT/SmallVector.h"
38#include "llvm/ADT/SmallPtrSet.h"
39#include <map>
40using namespace llvm;
41
42//===----------------------------------------------------------------------===//
43/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
44/// hacks on it until the target machine can handle it.  This involves
45/// eliminating value sizes the machine cannot handle (promoting small sizes to
46/// large sizes or splitting up large values into small values) as well as
47/// eliminating operations the machine cannot handle.
48///
49/// This code also does a small amount of optimization and recognition of idioms
50/// as part of its processing.  For example, if a target does not support a
51/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
52/// will attempt merge setcc and brc instructions into brcc's.
53///
54namespace {
55class VISIBILITY_HIDDEN SelectionDAGLegalize {
56  TargetLowering &TLI;
57  SelectionDAG &DAG;
58  CodeGenOpt::Level OptLevel;
59
60  // Libcall insertion helpers.
61
62  /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been
63  /// legalized.  We use this to ensure that calls are properly serialized
64  /// against each other, including inserted libcalls.
65  SDValue LastCALLSEQ_END;
66
67  /// IsLegalizingCall - This member is used *only* for purposes of providing
68  /// helpful assertions that a libcall isn't created while another call is
69  /// being legalized (which could lead to non-serialized call sequences).
70  bool IsLegalizingCall;
71
72  enum LegalizeAction {
73    Legal,      // The target natively supports this operation.
74    Promote,    // This operation should be executed in a larger type.
75    Expand      // Try to expand this to other ops, otherwise use a libcall.
76  };
77
78  /// ValueTypeActions - This is a bitvector that contains two bits for each
79  /// value type, where the two bits correspond to the LegalizeAction enum.
80  /// This can be queried with "getTypeAction(VT)".
81  TargetLowering::ValueTypeActionImpl ValueTypeActions;
82
83  /// LegalizedNodes - For nodes that are of legal width, and that have more
84  /// than one use, this map indicates what regularized operand to use.  This
85  /// allows us to avoid legalizing the same thing more than once.
86  DenseMap<SDValue, SDValue> LegalizedNodes;
87
88  void AddLegalizedOperand(SDValue From, SDValue To) {
89    LegalizedNodes.insert(std::make_pair(From, To));
90    // If someone requests legalization of the new node, return itself.
91    if (From != To)
92      LegalizedNodes.insert(std::make_pair(To, To));
93  }
94
95public:
96  SelectionDAGLegalize(SelectionDAG &DAG, CodeGenOpt::Level ol);
97
98  /// getTypeAction - Return how we should legalize values of this type, either
99  /// it is already legal or we need to expand it into multiple registers of
100  /// smaller integer type, or we need to promote it to a larger type.
101  LegalizeAction getTypeAction(MVT VT) const {
102    return (LegalizeAction)ValueTypeActions.getTypeAction(VT);
103  }
104
105  /// isTypeLegal - Return true if this type is legal on this target.
106  ///
107  bool isTypeLegal(MVT VT) const {
108    return getTypeAction(VT) == Legal;
109  }
110
111  void LegalizeDAG();
112
113private:
114  /// LegalizeOp - We know that the specified value has a legal type.
115  /// Recursively ensure that the operands have legal types, then return the
116  /// result.
117  SDValue LegalizeOp(SDValue O);
118
119  /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
120  /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
121  /// is necessary to spill the vector being inserted into to memory, perform
122  /// the insert there, and then read the result back.
123  SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
124                                         SDValue Idx, DebugLoc dl);
125  SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
126                                  SDValue Idx, DebugLoc dl);
127
128  /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
129  /// performs the same shuffe in terms of order or result bytes, but on a type
130  /// whose vector element type is narrower than the original shuffle type.
131  /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
132  SDValue ShuffleWithNarrowerEltType(MVT NVT, MVT VT, DebugLoc dl,
133                                     SDValue N1, SDValue N2,
134                                     SmallVectorImpl<int> &Mask) const;
135
136  bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
137                                    SmallPtrSet<SDNode*, 32> &NodesLeadingTo);
138
139  void LegalizeSetCCCondCode(MVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
140                             DebugLoc dl);
141
142  SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
143  SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
144                          RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
145                          RTLIB::Libcall Call_PPCF128);
146  SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, RTLIB::Libcall Call_I16,
147                           RTLIB::Libcall Call_I32, RTLIB::Libcall Call_I64,
148                           RTLIB::Libcall Call_I128);
149
150  SDValue EmitStackConvert(SDValue SrcOp, MVT SlotVT, MVT DestVT, DebugLoc dl);
151  SDValue ExpandBUILD_VECTOR(SDNode *Node);
152  SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
153  SDValue ExpandDBG_STOPPOINT(SDNode *Node);
154  void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
155                                SmallVectorImpl<SDValue> &Results);
156  SDValue ExpandFCOPYSIGN(SDNode *Node);
157  SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, MVT DestVT,
158                               DebugLoc dl);
159  SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, MVT DestVT, bool isSigned,
160                                DebugLoc dl);
161  SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, MVT DestVT, bool isSigned,
162                                DebugLoc dl);
163
164  SDValue ExpandBSWAP(SDValue Op, DebugLoc dl);
165  SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl);
166
167  SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
168
169  void ExpandNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
170  void PromoteNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
171};
172}
173
174/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
175/// performs the same shuffe in terms of order or result bytes, but on a type
176/// whose vector element type is narrower than the original shuffle type.
177/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
178SDValue
179SelectionDAGLegalize::ShuffleWithNarrowerEltType(MVT NVT, MVT VT,  DebugLoc dl,
180                                                 SDValue N1, SDValue N2,
181                                             SmallVectorImpl<int> &Mask) const {
182  MVT EltVT = NVT.getVectorElementType();
183  unsigned NumMaskElts = VT.getVectorNumElements();
184  unsigned NumDestElts = NVT.getVectorNumElements();
185  unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
186
187  assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
188
189  if (NumEltsGrowth == 1)
190    return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
191
192  SmallVector<int, 8> NewMask;
193  for (unsigned i = 0; i != NumMaskElts; ++i) {
194    int Idx = Mask[i];
195    for (unsigned j = 0; j != NumEltsGrowth; ++j) {
196      if (Idx < 0)
197        NewMask.push_back(-1);
198      else
199        NewMask.push_back(Idx * NumEltsGrowth + j);
200    }
201  }
202  assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
203  assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
204  return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
205}
206
207SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag,
208                                           CodeGenOpt::Level ol)
209  : TLI(dag.getTargetLoweringInfo()), DAG(dag), OptLevel(ol),
210    ValueTypeActions(TLI.getValueTypeActions()) {
211  assert(MVT::LAST_VALUETYPE <= 32 &&
212         "Too many value types for ValueTypeActions to hold!");
213}
214
215void SelectionDAGLegalize::LegalizeDAG() {
216  LastCALLSEQ_END = DAG.getEntryNode();
217  IsLegalizingCall = false;
218
219  // The legalize process is inherently a bottom-up recursive process (users
220  // legalize their uses before themselves).  Given infinite stack space, we
221  // could just start legalizing on the root and traverse the whole graph.  In
222  // practice however, this causes us to run out of stack space on large basic
223  // blocks.  To avoid this problem, compute an ordering of the nodes where each
224  // node is only legalized after all of its operands are legalized.
225  DAG.AssignTopologicalOrder();
226  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
227       E = prior(DAG.allnodes_end()); I != next(E); ++I)
228    LegalizeOp(SDValue(I, 0));
229
230  // Finally, it's possible the root changed.  Get the new root.
231  SDValue OldRoot = DAG.getRoot();
232  assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
233  DAG.setRoot(LegalizedNodes[OldRoot]);
234
235  LegalizedNodes.clear();
236
237  // Remove dead nodes now.
238  DAG.RemoveDeadNodes();
239}
240
241
242/// FindCallEndFromCallStart - Given a chained node that is part of a call
243/// sequence, find the CALLSEQ_END node that terminates the call sequence.
244static SDNode *FindCallEndFromCallStart(SDNode *Node) {
245  if (Node->getOpcode() == ISD::CALLSEQ_END)
246    return Node;
247  if (Node->use_empty())
248    return 0;   // No CallSeqEnd
249
250  // The chain is usually at the end.
251  SDValue TheChain(Node, Node->getNumValues()-1);
252  if (TheChain.getValueType() != MVT::Other) {
253    // Sometimes it's at the beginning.
254    TheChain = SDValue(Node, 0);
255    if (TheChain.getValueType() != MVT::Other) {
256      // Otherwise, hunt for it.
257      for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i)
258        if (Node->getValueType(i) == MVT::Other) {
259          TheChain = SDValue(Node, i);
260          break;
261        }
262
263      // Otherwise, we walked into a node without a chain.
264      if (TheChain.getValueType() != MVT::Other)
265        return 0;
266    }
267  }
268
269  for (SDNode::use_iterator UI = Node->use_begin(),
270       E = Node->use_end(); UI != E; ++UI) {
271
272    // Make sure to only follow users of our token chain.
273    SDNode *User = *UI;
274    for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
275      if (User->getOperand(i) == TheChain)
276        if (SDNode *Result = FindCallEndFromCallStart(User))
277          return Result;
278  }
279  return 0;
280}
281
282/// FindCallStartFromCallEnd - Given a chained node that is part of a call
283/// sequence, find the CALLSEQ_START node that initiates the call sequence.
284static SDNode *FindCallStartFromCallEnd(SDNode *Node) {
285  assert(Node && "Didn't find callseq_start for a call??");
286  if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
287
288  assert(Node->getOperand(0).getValueType() == MVT::Other &&
289         "Node doesn't have a token chain argument!");
290  return FindCallStartFromCallEnd(Node->getOperand(0).getNode());
291}
292
293/// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to
294/// see if any uses can reach Dest.  If no dest operands can get to dest,
295/// legalize them, legalize ourself, and return false, otherwise, return true.
296///
297/// Keep track of the nodes we fine that actually do lead to Dest in
298/// NodesLeadingTo.  This avoids retraversing them exponential number of times.
299///
300bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
301                                     SmallPtrSet<SDNode*, 32> &NodesLeadingTo) {
302  if (N == Dest) return true;  // N certainly leads to Dest :)
303
304  // If we've already processed this node and it does lead to Dest, there is no
305  // need to reprocess it.
306  if (NodesLeadingTo.count(N)) return true;
307
308  // If the first result of this node has been already legalized, then it cannot
309  // reach N.
310  if (LegalizedNodes.count(SDValue(N, 0))) return false;
311
312  // Okay, this node has not already been legalized.  Check and legalize all
313  // operands.  If none lead to Dest, then we can legalize this node.
314  bool OperandsLeadToDest = false;
315  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
316    OperandsLeadToDest |=     // If an operand leads to Dest, so do we.
317      LegalizeAllNodesNotLeadingTo(N->getOperand(i).getNode(), Dest, NodesLeadingTo);
318
319  if (OperandsLeadToDest) {
320    NodesLeadingTo.insert(N);
321    return true;
322  }
323
324  // Okay, this node looks safe, legalize it and return false.
325  LegalizeOp(SDValue(N, 0));
326  return false;
327}
328
329/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
330/// a load from the constant pool.
331static SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP,
332                                SelectionDAG &DAG, const TargetLowering &TLI) {
333  bool Extend = false;
334  DebugLoc dl = CFP->getDebugLoc();
335
336  // If a FP immediate is precise when represented as a float and if the
337  // target can do an extending load from float to double, we put it into
338  // the constant pool as a float, even if it's is statically typed as a
339  // double.  This shrinks FP constants and canonicalizes them for targets where
340  // an FP extending load is the same cost as a normal load (such as on the x87
341  // fp stack or PPC FP unit).
342  MVT VT = CFP->getValueType(0);
343  ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
344  if (!UseCP) {
345    assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
346    return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(),
347                           (VT == MVT::f64) ? MVT::i64 : MVT::i32);
348  }
349
350  MVT OrigVT = VT;
351  MVT SVT = VT;
352  while (SVT != MVT::f32) {
353    SVT = (MVT::SimpleValueType)(SVT.getSimpleVT() - 1);
354    if (CFP->isValueValidForType(SVT, CFP->getValueAPF()) &&
355        // Only do this if the target has a native EXTLOAD instruction from
356        // smaller type.
357        TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
358        TLI.ShouldShrinkFPConstant(OrigVT)) {
359      const Type *SType = SVT.getTypeForMVT();
360      LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
361      VT = SVT;
362      Extend = true;
363    }
364  }
365
366  SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
367  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
368  if (Extend)
369    return DAG.getExtLoad(ISD::EXTLOAD, dl,
370                          OrigVT, DAG.getEntryNode(),
371                          CPIdx, PseudoSourceValue::getConstantPool(),
372                          0, VT, false, Alignment);
373  return DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
374                     PseudoSourceValue::getConstantPool(), 0, false, Alignment);
375}
376
377/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
378static
379SDValue ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
380                             const TargetLowering &TLI) {
381  SDValue Chain = ST->getChain();
382  SDValue Ptr = ST->getBasePtr();
383  SDValue Val = ST->getValue();
384  MVT VT = Val.getValueType();
385  int Alignment = ST->getAlignment();
386  int SVOffset = ST->getSrcValueOffset();
387  DebugLoc dl = ST->getDebugLoc();
388  if (ST->getMemoryVT().isFloatingPoint() ||
389      ST->getMemoryVT().isVector()) {
390    MVT intVT = MVT::getIntegerVT(VT.getSizeInBits());
391    if (TLI.isTypeLegal(intVT)) {
392      // Expand to a bitconvert of the value to the integer type of the
393      // same size, then a (misaligned) int store.
394      // FIXME: Does not handle truncating floating point stores!
395      SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, intVT, Val);
396      return DAG.getStore(Chain, dl, Result, Ptr, ST->getSrcValue(),
397                          SVOffset, ST->isVolatile(), Alignment);
398    } else {
399      // Do a (aligned) store to a stack slot, then copy from the stack slot
400      // to the final destination using (unaligned) integer loads and stores.
401      MVT StoredVT = ST->getMemoryVT();
402      MVT RegVT =
403        TLI.getRegisterType(MVT::getIntegerVT(StoredVT.getSizeInBits()));
404      unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
405      unsigned RegBytes = RegVT.getSizeInBits() / 8;
406      unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
407
408      // Make sure the stack slot is also aligned for the register type.
409      SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
410
411      // Perform the original store, only redirected to the stack slot.
412      SDValue Store = DAG.getTruncStore(Chain, dl,
413                                        Val, StackPtr, NULL, 0, StoredVT);
414      SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
415      SmallVector<SDValue, 8> Stores;
416      unsigned Offset = 0;
417
418      // Do all but one copies using the full register width.
419      for (unsigned i = 1; i < NumRegs; i++) {
420        // Load one integer register's worth from the stack slot.
421        SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr, NULL, 0);
422        // Store it to the final location.  Remember the store.
423        Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
424                                      ST->getSrcValue(), SVOffset + Offset,
425                                      ST->isVolatile(),
426                                      MinAlign(ST->getAlignment(), Offset)));
427        // Increment the pointers.
428        Offset += RegBytes;
429        StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
430                               Increment);
431        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
432      }
433
434      // The last store may be partial.  Do a truncating store.  On big-endian
435      // machines this requires an extending load from the stack slot to ensure
436      // that the bits are in the right place.
437      MVT MemVT = MVT::getIntegerVT(8 * (StoredBytes - Offset));
438
439      // Load from the stack slot.
440      SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
441                                    NULL, 0, MemVT);
442
443      Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
444                                         ST->getSrcValue(), SVOffset + Offset,
445                                         MemVT, ST->isVolatile(),
446                                         MinAlign(ST->getAlignment(), Offset)));
447      // The order of the stores doesn't matter - say it with a TokenFactor.
448      return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
449                         Stores.size());
450    }
451  }
452  assert(ST->getMemoryVT().isInteger() &&
453         !ST->getMemoryVT().isVector() &&
454         "Unaligned store of unknown type.");
455  // Get the half-size VT
456  MVT NewStoredVT =
457    (MVT::SimpleValueType)(ST->getMemoryVT().getSimpleVT() - 1);
458  int NumBits = NewStoredVT.getSizeInBits();
459  int IncrementSize = NumBits / 8;
460
461  // Divide the stored value in two parts.
462  SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
463  SDValue Lo = Val;
464  SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
465
466  // Store the two parts
467  SDValue Store1, Store2;
468  Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
469                             ST->getSrcValue(), SVOffset, NewStoredVT,
470                             ST->isVolatile(), Alignment);
471  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
472                    DAG.getConstant(IncrementSize, TLI.getPointerTy()));
473  Alignment = MinAlign(Alignment, IncrementSize);
474  Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
475                             ST->getSrcValue(), SVOffset + IncrementSize,
476                             NewStoredVT, ST->isVolatile(), Alignment);
477
478  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
479}
480
481/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
482static
483SDValue ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
484                            const TargetLowering &TLI) {
485  int SVOffset = LD->getSrcValueOffset();
486  SDValue Chain = LD->getChain();
487  SDValue Ptr = LD->getBasePtr();
488  MVT VT = LD->getValueType(0);
489  MVT LoadedVT = LD->getMemoryVT();
490  DebugLoc dl = LD->getDebugLoc();
491  if (VT.isFloatingPoint() || VT.isVector()) {
492    MVT intVT = MVT::getIntegerVT(LoadedVT.getSizeInBits());
493    if (TLI.isTypeLegal(intVT)) {
494      // Expand to a (misaligned) integer load of the same size,
495      // then bitconvert to floating point or vector.
496      SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getSrcValue(),
497                                    SVOffset, LD->isVolatile(),
498                                    LD->getAlignment());
499      SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, LoadedVT, newLoad);
500      if (VT.isFloatingPoint() && LoadedVT != VT)
501        Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result);
502
503      SDValue Ops[] = { Result, Chain };
504      return DAG.getMergeValues(Ops, 2, dl);
505    } else {
506      // Copy the value to a (aligned) stack slot using (unaligned) integer
507      // loads and stores, then do a (aligned) load from the stack slot.
508      MVT RegVT = TLI.getRegisterType(intVT);
509      unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
510      unsigned RegBytes = RegVT.getSizeInBits() / 8;
511      unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
512
513      // Make sure the stack slot is also aligned for the register type.
514      SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
515
516      SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
517      SmallVector<SDValue, 8> Stores;
518      SDValue StackPtr = StackBase;
519      unsigned Offset = 0;
520
521      // Do all but one copies using the full register width.
522      for (unsigned i = 1; i < NumRegs; i++) {
523        // Load one integer register's worth from the original location.
524        SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr, LD->getSrcValue(),
525                                   SVOffset + Offset, LD->isVolatile(),
526                                   MinAlign(LD->getAlignment(), Offset));
527        // Follow the load with a store to the stack slot.  Remember the store.
528        Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
529                                      NULL, 0));
530        // Increment the pointers.
531        Offset += RegBytes;
532        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
533        StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
534                               Increment);
535      }
536
537      // The last copy may be partial.  Do an extending load.
538      MVT MemVT = MVT::getIntegerVT(8 * (LoadedBytes - Offset));
539      SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
540                                    LD->getSrcValue(), SVOffset + Offset,
541                                    MemVT, LD->isVolatile(),
542                                    MinAlign(LD->getAlignment(), Offset));
543      // Follow the load with a store to the stack slot.  Remember the store.
544      // On big-endian machines this requires a truncating store to ensure
545      // that the bits end up in the right place.
546      Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
547                                         NULL, 0, MemVT));
548
549      // The order of the stores doesn't matter - say it with a TokenFactor.
550      SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
551                               Stores.size());
552
553      // Finally, perform the original load only redirected to the stack slot.
554      Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
555                            NULL, 0, LoadedVT);
556
557      // Callers expect a MERGE_VALUES node.
558      SDValue Ops[] = { Load, TF };
559      return DAG.getMergeValues(Ops, 2, dl);
560    }
561  }
562  assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
563         "Unaligned load of unsupported type.");
564
565  // Compute the new VT that is half the size of the old one.  This is an
566  // integer MVT.
567  unsigned NumBits = LoadedVT.getSizeInBits();
568  MVT NewLoadedVT;
569  NewLoadedVT = MVT::getIntegerVT(NumBits/2);
570  NumBits >>= 1;
571
572  unsigned Alignment = LD->getAlignment();
573  unsigned IncrementSize = NumBits / 8;
574  ISD::LoadExtType HiExtType = LD->getExtensionType();
575
576  // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
577  if (HiExtType == ISD::NON_EXTLOAD)
578    HiExtType = ISD::ZEXTLOAD;
579
580  // Load the value in two parts
581  SDValue Lo, Hi;
582  if (TLI.isLittleEndian()) {
583    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(),
584                        SVOffset, NewLoadedVT, LD->isVolatile(), Alignment);
585    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
586                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
587    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(),
588                        SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
589                        MinAlign(Alignment, IncrementSize));
590  } else {
591    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(),
592                        SVOffset, NewLoadedVT, LD->isVolatile(), Alignment);
593    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
594                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
595    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(),
596                        SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
597                        MinAlign(Alignment, IncrementSize));
598  }
599
600  // aggregate the two parts
601  SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
602  SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
603  Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
604
605  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
606                             Hi.getValue(1));
607
608  SDValue Ops[] = { Result, TF };
609  return DAG.getMergeValues(Ops, 2, dl);
610}
611
612/// PerformInsertVectorEltInMemory - Some target cannot handle a variable
613/// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
614/// is necessary to spill the vector being inserted into to memory, perform
615/// the insert there, and then read the result back.
616SDValue SelectionDAGLegalize::
617PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
618                               DebugLoc dl) {
619  SDValue Tmp1 = Vec;
620  SDValue Tmp2 = Val;
621  SDValue Tmp3 = Idx;
622
623  // If the target doesn't support this, we have to spill the input vector
624  // to a temporary stack slot, update the element, then reload it.  This is
625  // badness.  We could also load the value into a vector register (either
626  // with a "move to register" or "extload into register" instruction, then
627  // permute it into place, if the idx is a constant and if the idx is
628  // supported by the target.
629  MVT VT    = Tmp1.getValueType();
630  MVT EltVT = VT.getVectorElementType();
631  MVT IdxVT = Tmp3.getValueType();
632  MVT PtrVT = TLI.getPointerTy();
633  SDValue StackPtr = DAG.CreateStackTemporary(VT);
634
635  int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
636
637  // Store the vector.
638  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr,
639                            PseudoSourceValue::getFixedStack(SPFI), 0);
640
641  // Truncate or zero extend offset to target pointer type.
642  unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
643  Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3);
644  // Add the offset to the index.
645  unsigned EltSize = EltVT.getSizeInBits()/8;
646  Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
647  SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
648  // Store the scalar value.
649  Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2,
650                         PseudoSourceValue::getFixedStack(SPFI), 0, EltVT);
651  // Load the updated vector.
652  return DAG.getLoad(VT, dl, Ch, StackPtr,
653                     PseudoSourceValue::getFixedStack(SPFI), 0);
654}
655
656
657SDValue SelectionDAGLegalize::
658ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) {
659  if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
660    // SCALAR_TO_VECTOR requires that the type of the value being inserted
661    // match the element type of the vector being created, except for
662    // integers in which case the inserted value can be over width.
663    MVT EltVT = Vec.getValueType().getVectorElementType();
664    if (Val.getValueType() == EltVT ||
665        (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
666      SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
667                                  Vec.getValueType(), Val);
668
669      unsigned NumElts = Vec.getValueType().getVectorNumElements();
670      // We generate a shuffle of InVec and ScVec, so the shuffle mask
671      // should be 0,1,2,3,4,5... with the appropriate element replaced with
672      // elt 0 of the RHS.
673      SmallVector<int, 8> ShufOps;
674      for (unsigned i = 0; i != NumElts; ++i)
675        ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
676
677      return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
678                                  &ShufOps[0]);
679    }
680  }
681  return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
682}
683
684/// LegalizeOp - We know that the specified value has a legal type, and
685/// that its operands are legal.  Now ensure that the operation itself
686/// is legal, recursively ensuring that the operands' operations remain
687/// legal.
688SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
689  if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
690    return Op;
691
692  SDNode *Node = Op.getNode();
693  DebugLoc dl = Node->getDebugLoc();
694
695  for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
696    assert(getTypeAction(Node->getValueType(i)) == Legal &&
697           "Unexpected illegal type!");
698
699  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
700    assert((isTypeLegal(Node->getOperand(i).getValueType()) ||
701            Node->getOperand(i).getOpcode() == ISD::TargetConstant) &&
702           "Unexpected illegal type!");
703
704  // Note that LegalizeOp may be reentered even from single-use nodes, which
705  // means that we always must cache transformed nodes.
706  DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
707  if (I != LegalizedNodes.end()) return I->second;
708
709  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
710  SDValue Result = Op;
711  bool isCustom = false;
712
713  // Figure out the correct action; the way to query this varies by opcode
714  TargetLowering::LegalizeAction Action;
715  bool SimpleFinishLegalizing = true;
716  switch (Node->getOpcode()) {
717  case ISD::INTRINSIC_W_CHAIN:
718  case ISD::INTRINSIC_WO_CHAIN:
719  case ISD::INTRINSIC_VOID:
720  case ISD::VAARG:
721  case ISD::STACKSAVE:
722    Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
723    break;
724  case ISD::SINT_TO_FP:
725  case ISD::UINT_TO_FP:
726  case ISD::EXTRACT_VECTOR_ELT:
727    Action = TLI.getOperationAction(Node->getOpcode(),
728                                    Node->getOperand(0).getValueType());
729    break;
730  case ISD::FP_ROUND_INREG:
731  case ISD::SIGN_EXTEND_INREG: {
732    MVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
733    Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
734    break;
735  }
736  case ISD::SELECT_CC:
737  case ISD::SETCC:
738  case ISD::BR_CC: {
739    unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
740                         Node->getOpcode() == ISD::SETCC ? 2 : 1;
741    unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
742    MVT OpVT = Node->getOperand(CompareOperand).getValueType();
743    ISD::CondCode CCCode =
744        cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
745    Action = TLI.getCondCodeAction(CCCode, OpVT);
746    if (Action == TargetLowering::Legal) {
747      if (Node->getOpcode() == ISD::SELECT_CC)
748        Action = TLI.getOperationAction(Node->getOpcode(),
749                                        Node->getValueType(0));
750      else
751        Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
752    }
753    break;
754  }
755  case ISD::LOAD:
756  case ISD::STORE:
757    // FIXME: Model these properly.  LOAD and STORE are complicated, and
758    // STORE expects the unlegalized operand in some cases.
759    SimpleFinishLegalizing = false;
760    break;
761  case ISD::CALLSEQ_START:
762  case ISD::CALLSEQ_END:
763    // FIXME: This shouldn't be necessary.  These nodes have special properties
764    // dealing with the recursive nature of legalization.  Removing this
765    // special case should be done as part of making LegalizeDAG non-recursive.
766    SimpleFinishLegalizing = false;
767    break;
768  case ISD::CALL:
769    // FIXME: Legalization for calls requires custom-lowering the call before
770    // legalizing the operands!  (I haven't looked into precisely why.)
771    SimpleFinishLegalizing = false;
772    break;
773  case ISD::EXTRACT_ELEMENT:
774  case ISD::FLT_ROUNDS_:
775  case ISD::SADDO:
776  case ISD::SSUBO:
777  case ISD::UADDO:
778  case ISD::USUBO:
779  case ISD::SMULO:
780  case ISD::UMULO:
781  case ISD::FPOWI:
782  case ISD::MERGE_VALUES:
783  case ISD::EH_RETURN:
784  case ISD::FRAME_TO_ARGS_OFFSET:
785    // These operations lie about being legal: when they claim to be legal,
786    // they should actually be expanded.
787    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
788    if (Action == TargetLowering::Legal)
789      Action = TargetLowering::Expand;
790    break;
791  case ISD::TRAMPOLINE:
792  case ISD::FRAMEADDR:
793  case ISD::RETURNADDR:
794  case ISD::FORMAL_ARGUMENTS:
795    // These operations lie about being legal: when they claim to be legal,
796    // they should actually be custom-lowered.
797    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
798    if (Action == TargetLowering::Legal)
799      Action = TargetLowering::Custom;
800    break;
801  case ISD::BUILD_VECTOR:
802    // A weird case: legalization for BUILD_VECTOR never legalizes the
803    // operands!
804    // FIXME: This really sucks... changing it isn't semantically incorrect,
805    // but it massively pessimizes the code for floating-point BUILD_VECTORs
806    // because ConstantFP operands get legalized into constant pool loads
807    // before the BUILD_VECTOR code can see them.  It doesn't usually bite,
808    // though, because BUILD_VECTORS usually get lowered into other nodes
809    // which get legalized properly.
810    SimpleFinishLegalizing = false;
811    break;
812  default:
813    if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
814      Action = TargetLowering::Legal;
815    } else {
816      Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
817    }
818    break;
819  }
820
821  if (SimpleFinishLegalizing) {
822    SmallVector<SDValue, 8> Ops, ResultVals;
823    for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
824      Ops.push_back(LegalizeOp(Node->getOperand(i)));
825    switch (Node->getOpcode()) {
826    default: break;
827    case ISD::BR:
828    case ISD::BRIND:
829    case ISD::BR_JT:
830    case ISD::BR_CC:
831    case ISD::BRCOND:
832    case ISD::RET:
833      // Branches tweak the chain to include LastCALLSEQ_END
834      Ops[0] = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ops[0],
835                            LastCALLSEQ_END);
836      Ops[0] = LegalizeOp(Ops[0]);
837      LastCALLSEQ_END = DAG.getEntryNode();
838      break;
839    case ISD::SHL:
840    case ISD::SRL:
841    case ISD::SRA:
842    case ISD::ROTL:
843    case ISD::ROTR:
844      // Legalizing shifts/rotates requires adjusting the shift amount
845      // to the appropriate width.
846      if (!Ops[1].getValueType().isVector())
847        Ops[1] = LegalizeOp(DAG.getShiftAmountOperand(Ops[1]));
848      break;
849    }
850
851    Result = DAG.UpdateNodeOperands(Result.getValue(0), Ops.data(),
852                                    Ops.size());
853    switch (Action) {
854    case TargetLowering::Legal:
855      for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
856        ResultVals.push_back(Result.getValue(i));
857      break;
858    case TargetLowering::Custom:
859      // FIXME: The handling for custom lowering with multiple results is
860      // a complete mess.
861      Tmp1 = TLI.LowerOperation(Result, DAG);
862      if (Tmp1.getNode()) {
863        for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
864          if (e == 1)
865            ResultVals.push_back(Tmp1);
866          else
867            ResultVals.push_back(Tmp1.getValue(i));
868        }
869        break;
870      }
871
872      // FALL THROUGH
873    case TargetLowering::Expand:
874      ExpandNode(Result.getNode(), ResultVals);
875      break;
876    case TargetLowering::Promote:
877      PromoteNode(Result.getNode(), ResultVals);
878      break;
879    }
880    if (!ResultVals.empty()) {
881      for (unsigned i = 0, e = ResultVals.size(); i != e; ++i) {
882        if (ResultVals[i] != SDValue(Node, i))
883          ResultVals[i] = LegalizeOp(ResultVals[i]);
884        AddLegalizedOperand(SDValue(Node, i), ResultVals[i]);
885      }
886      return ResultVals[Op.getResNo()];
887    }
888  }
889
890  switch (Node->getOpcode()) {
891  default:
892#ifndef NDEBUG
893    cerr << "NODE: "; Node->dump(&DAG); cerr << "\n";
894#endif
895    assert(0 && "Do not know how to legalize this operator!");
896    abort();
897  case ISD::CALL:
898    // The only option for this is to custom lower it.
899    Tmp3 = TLI.LowerOperation(Result.getValue(0), DAG);
900    assert(Tmp3.getNode() && "Target didn't custom lower this node!");
901    // A call within a calling sequence must be legalized to something
902    // other than the normal CALLSEQ_END.  Violating this gets Legalize
903    // into an infinite loop.
904    assert ((!IsLegalizingCall ||
905             Node->getOpcode() != ISD::CALL ||
906             Tmp3.getNode()->getOpcode() != ISD::CALLSEQ_END) &&
907            "Nested CALLSEQ_START..CALLSEQ_END not supported.");
908
909    // The number of incoming and outgoing values should match; unless the final
910    // outgoing value is a flag.
911    assert((Tmp3.getNode()->getNumValues() == Result.getNode()->getNumValues() ||
912            (Tmp3.getNode()->getNumValues() == Result.getNode()->getNumValues() + 1 &&
913             Tmp3.getNode()->getValueType(Tmp3.getNode()->getNumValues() - 1) ==
914               MVT::Flag)) &&
915           "Lowering call/formal_arguments produced unexpected # results!");
916
917    // Since CALL/FORMAL_ARGUMENTS nodes produce multiple values, make sure to
918    // remember that we legalized all of them, so it doesn't get relegalized.
919    for (unsigned i = 0, e = Tmp3.getNode()->getNumValues(); i != e; ++i) {
920      if (Tmp3.getNode()->getValueType(i) == MVT::Flag)
921        continue;
922      Tmp1 = LegalizeOp(Tmp3.getValue(i));
923      if (Op.getResNo() == i)
924        Tmp2 = Tmp1;
925      AddLegalizedOperand(SDValue(Node, i), Tmp1);
926    }
927    return Tmp2;
928  case ISD::BUILD_VECTOR:
929    switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) {
930    default: assert(0 && "This action is not supported yet!");
931    case TargetLowering::Custom:
932      Tmp3 = TLI.LowerOperation(Result, DAG);
933      if (Tmp3.getNode()) {
934        Result = Tmp3;
935        break;
936      }
937      // FALLTHROUGH
938    case TargetLowering::Expand:
939      Result = ExpandBUILD_VECTOR(Result.getNode());
940      break;
941    }
942    break;
943  case ISD::CALLSEQ_START: {
944    SDNode *CallEnd = FindCallEndFromCallStart(Node);
945
946    // Recursively Legalize all of the inputs of the call end that do not lead
947    // to this call start.  This ensures that any libcalls that need be inserted
948    // are inserted *before* the CALLSEQ_START.
949    {SmallPtrSet<SDNode*, 32> NodesLeadingTo;
950    for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i)
951      LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).getNode(), Node,
952                                   NodesLeadingTo);
953    }
954
955    // Now that we legalized all of the inputs (which may have inserted
956    // libcalls) create the new CALLSEQ_START node.
957    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
958
959    // Merge in the last call, to ensure that this call start after the last
960    // call ended.
961    if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) {
962      Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
963                         Tmp1, LastCALLSEQ_END);
964      Tmp1 = LegalizeOp(Tmp1);
965    }
966
967    // Do not try to legalize the target-specific arguments (#1+).
968    if (Tmp1 != Node->getOperand(0)) {
969      SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
970      Ops[0] = Tmp1;
971      Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
972    }
973
974    // Remember that the CALLSEQ_START is legalized.
975    AddLegalizedOperand(Op.getValue(0), Result);
976    if (Node->getNumValues() == 2)    // If this has a flag result, remember it.
977      AddLegalizedOperand(Op.getValue(1), Result.getValue(1));
978
979    // Now that the callseq_start and all of the non-call nodes above this call
980    // sequence have been legalized, legalize the call itself.  During this
981    // process, no libcalls can/will be inserted, guaranteeing that no calls
982    // can overlap.
983    assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!");
984    // Note that we are selecting this call!
985    LastCALLSEQ_END = SDValue(CallEnd, 0);
986    IsLegalizingCall = true;
987
988    // Legalize the call, starting from the CALLSEQ_END.
989    LegalizeOp(LastCALLSEQ_END);
990    assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!");
991    return Result;
992  }
993  case ISD::CALLSEQ_END:
994    // If the CALLSEQ_START node hasn't been legalized first, legalize it.  This
995    // will cause this node to be legalized as well as handling libcalls right.
996    if (LastCALLSEQ_END.getNode() != Node) {
997      LegalizeOp(SDValue(FindCallStartFromCallEnd(Node), 0));
998      DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
999      assert(I != LegalizedNodes.end() &&
1000             "Legalizing the call start should have legalized this node!");
1001      return I->second;
1002    }
1003
1004    // Otherwise, the call start has been legalized and everything is going
1005    // according to plan.  Just legalize ourselves normally here.
1006    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1007    // Do not try to legalize the target-specific arguments (#1+), except for
1008    // an optional flag input.
1009    if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Flag){
1010      if (Tmp1 != Node->getOperand(0)) {
1011        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1012        Ops[0] = Tmp1;
1013        Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1014      }
1015    } else {
1016      Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1));
1017      if (Tmp1 != Node->getOperand(0) ||
1018          Tmp2 != Node->getOperand(Node->getNumOperands()-1)) {
1019        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1020        Ops[0] = Tmp1;
1021        Ops.back() = Tmp2;
1022        Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1023      }
1024    }
1025    assert(IsLegalizingCall && "Call sequence imbalance between start/end?");
1026    // This finishes up call legalization.
1027    IsLegalizingCall = false;
1028
1029    // If the CALLSEQ_END node has a flag, remember that we legalized it.
1030    AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0));
1031    if (Node->getNumValues() == 2)
1032      AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1));
1033    return Result.getValue(Op.getResNo());
1034  case ISD::LOAD: {
1035    LoadSDNode *LD = cast<LoadSDNode>(Node);
1036    Tmp1 = LegalizeOp(LD->getChain());   // Legalize the chain.
1037    Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer.
1038
1039    ISD::LoadExtType ExtType = LD->getExtensionType();
1040    if (ExtType == ISD::NON_EXTLOAD) {
1041      MVT VT = Node->getValueType(0);
1042      Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset());
1043      Tmp3 = Result.getValue(0);
1044      Tmp4 = Result.getValue(1);
1045
1046      switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
1047      default: assert(0 && "This action is not supported yet!");
1048      case TargetLowering::Legal:
1049        // If this is an unaligned load and the target doesn't support it,
1050        // expand it.
1051        if (!TLI.allowsUnalignedMemoryAccesses()) {
1052          unsigned ABIAlignment = TLI.getTargetData()->
1053            getABITypeAlignment(LD->getMemoryVT().getTypeForMVT());
1054          if (LD->getAlignment() < ABIAlignment){
1055            Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()), DAG,
1056                                         TLI);
1057            Tmp3 = Result.getOperand(0);
1058            Tmp4 = Result.getOperand(1);
1059            Tmp3 = LegalizeOp(Tmp3);
1060            Tmp4 = LegalizeOp(Tmp4);
1061          }
1062        }
1063        break;
1064      case TargetLowering::Custom:
1065        Tmp1 = TLI.LowerOperation(Tmp3, DAG);
1066        if (Tmp1.getNode()) {
1067          Tmp3 = LegalizeOp(Tmp1);
1068          Tmp4 = LegalizeOp(Tmp1.getValue(1));
1069        }
1070        break;
1071      case TargetLowering::Promote: {
1072        // Only promote a load of vector type to another.
1073        assert(VT.isVector() && "Cannot promote this load!");
1074        // Change base type to a different vector type.
1075        MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
1076
1077        Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
1078                           LD->getSrcValueOffset(),
1079                           LD->isVolatile(), LD->getAlignment());
1080        Tmp3 = LegalizeOp(DAG.getNode(ISD::BIT_CONVERT, dl, VT, Tmp1));
1081        Tmp4 = LegalizeOp(Tmp1.getValue(1));
1082        break;
1083      }
1084      }
1085      // Since loads produce two values, make sure to remember that we
1086      // legalized both of them.
1087      AddLegalizedOperand(SDValue(Node, 0), Tmp3);
1088      AddLegalizedOperand(SDValue(Node, 1), Tmp4);
1089      return Op.getResNo() ? Tmp4 : Tmp3;
1090    } else {
1091      MVT SrcVT = LD->getMemoryVT();
1092      unsigned SrcWidth = SrcVT.getSizeInBits();
1093      int SVOffset = LD->getSrcValueOffset();
1094      unsigned Alignment = LD->getAlignment();
1095      bool isVolatile = LD->isVolatile();
1096
1097      if (SrcWidth != SrcVT.getStoreSizeInBits() &&
1098          // Some targets pretend to have an i1 loading operation, and actually
1099          // load an i8.  This trick is correct for ZEXTLOAD because the top 7
1100          // bits are guaranteed to be zero; it helps the optimizers understand
1101          // that these bits are zero.  It is also useful for EXTLOAD, since it
1102          // tells the optimizers that those bits are undefined.  It would be
1103          // nice to have an effective generic way of getting these benefits...
1104          // Until such a way is found, don't insist on promoting i1 here.
1105          (SrcVT != MVT::i1 ||
1106           TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
1107        // Promote to a byte-sized load if not loading an integral number of
1108        // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
1109        unsigned NewWidth = SrcVT.getStoreSizeInBits();
1110        MVT NVT = MVT::getIntegerVT(NewWidth);
1111        SDValue Ch;
1112
1113        // The extra bits are guaranteed to be zero, since we stored them that
1114        // way.  A zext load from NVT thus automatically gives zext from SrcVT.
1115
1116        ISD::LoadExtType NewExtType =
1117          ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
1118
1119        Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
1120                                Tmp1, Tmp2, LD->getSrcValue(), SVOffset,
1121                                NVT, isVolatile, Alignment);
1122
1123        Ch = Result.getValue(1); // The chain.
1124
1125        if (ExtType == ISD::SEXTLOAD)
1126          // Having the top bits zero doesn't help when sign extending.
1127          Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1128                               Result.getValueType(),
1129                               Result, DAG.getValueType(SrcVT));
1130        else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
1131          // All the top bits are guaranteed to be zero - inform the optimizers.
1132          Result = DAG.getNode(ISD::AssertZext, dl,
1133                               Result.getValueType(), Result,
1134                               DAG.getValueType(SrcVT));
1135
1136        Tmp1 = LegalizeOp(Result);
1137        Tmp2 = LegalizeOp(Ch);
1138      } else if (SrcWidth & (SrcWidth - 1)) {
1139        // If not loading a power-of-2 number of bits, expand as two loads.
1140        assert(SrcVT.isExtended() && !SrcVT.isVector() &&
1141               "Unsupported extload!");
1142        unsigned RoundWidth = 1 << Log2_32(SrcWidth);
1143        assert(RoundWidth < SrcWidth);
1144        unsigned ExtraWidth = SrcWidth - RoundWidth;
1145        assert(ExtraWidth < RoundWidth);
1146        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1147               "Load size not an integral number of bytes!");
1148        MVT RoundVT = MVT::getIntegerVT(RoundWidth);
1149        MVT ExtraVT = MVT::getIntegerVT(ExtraWidth);
1150        SDValue Lo, Hi, Ch;
1151        unsigned IncrementSize;
1152
1153        if (TLI.isLittleEndian()) {
1154          // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
1155          // Load the bottom RoundWidth bits.
1156          Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl,
1157                              Node->getValueType(0), Tmp1, Tmp2,
1158                              LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
1159                              Alignment);
1160
1161          // Load the remaining ExtraWidth bits.
1162          IncrementSize = RoundWidth / 8;
1163          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1164                             DAG.getIntPtrConstant(IncrementSize));
1165          Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1166                              LD->getSrcValue(), SVOffset + IncrementSize,
1167                              ExtraVT, isVolatile,
1168                              MinAlign(Alignment, IncrementSize));
1169
1170          // Build a factor node to remember that this load is independent of the
1171          // other one.
1172          Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1173                           Hi.getValue(1));
1174
1175          // Move the top bits to the right place.
1176          Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1177                           DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1178
1179          // Join the hi and lo parts.
1180          Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1181        } else {
1182          // Big endian - avoid unaligned loads.
1183          // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
1184          // Load the top RoundWidth bits.
1185          Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1186                              LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
1187                              Alignment);
1188
1189          // Load the remaining ExtraWidth bits.
1190          IncrementSize = RoundWidth / 8;
1191          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1192                             DAG.getIntPtrConstant(IncrementSize));
1193          Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl,
1194                              Node->getValueType(0), Tmp1, Tmp2,
1195                              LD->getSrcValue(), SVOffset + IncrementSize,
1196                              ExtraVT, isVolatile,
1197                              MinAlign(Alignment, IncrementSize));
1198
1199          // Build a factor node to remember that this load is independent of the
1200          // other one.
1201          Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1202                           Hi.getValue(1));
1203
1204          // Move the top bits to the right place.
1205          Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1206                           DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1207
1208          // Join the hi and lo parts.
1209          Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1210        }
1211
1212        Tmp1 = LegalizeOp(Result);
1213        Tmp2 = LegalizeOp(Ch);
1214      } else {
1215        switch (TLI.getLoadExtAction(ExtType, SrcVT)) {
1216        default: assert(0 && "This action is not supported yet!");
1217        case TargetLowering::Custom:
1218          isCustom = true;
1219          // FALLTHROUGH
1220        case TargetLowering::Legal:
1221          Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset());
1222          Tmp1 = Result.getValue(0);
1223          Tmp2 = Result.getValue(1);
1224
1225          if (isCustom) {
1226            Tmp3 = TLI.LowerOperation(Result, DAG);
1227            if (Tmp3.getNode()) {
1228              Tmp1 = LegalizeOp(Tmp3);
1229              Tmp2 = LegalizeOp(Tmp3.getValue(1));
1230            }
1231          } else {
1232            // If this is an unaligned load and the target doesn't support it,
1233            // expand it.
1234            if (!TLI.allowsUnalignedMemoryAccesses()) {
1235              unsigned ABIAlignment = TLI.getTargetData()->
1236                getABITypeAlignment(LD->getMemoryVT().getTypeForMVT());
1237              if (LD->getAlignment() < ABIAlignment){
1238                Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()), DAG,
1239                                             TLI);
1240                Tmp1 = Result.getOperand(0);
1241                Tmp2 = Result.getOperand(1);
1242                Tmp1 = LegalizeOp(Tmp1);
1243                Tmp2 = LegalizeOp(Tmp2);
1244              }
1245            }
1246          }
1247          break;
1248        case TargetLowering::Expand:
1249          // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND
1250          if (SrcVT == MVT::f32 && Node->getValueType(0) == MVT::f64) {
1251            SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
1252                                         LD->getSrcValueOffset(),
1253                                         LD->isVolatile(), LD->getAlignment());
1254            Result = DAG.getNode(ISD::FP_EXTEND, dl,
1255                                 Node->getValueType(0), Load);
1256            Tmp1 = LegalizeOp(Result);  // Relegalize new nodes.
1257            Tmp2 = LegalizeOp(Load.getValue(1));
1258            break;
1259          }
1260          assert(ExtType != ISD::EXTLOAD &&"EXTLOAD should always be supported!");
1261          // Turn the unsupported load into an EXTLOAD followed by an explicit
1262          // zero/sign extend inreg.
1263          Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0),
1264                                  Tmp1, Tmp2, LD->getSrcValue(),
1265                                  LD->getSrcValueOffset(), SrcVT,
1266                                  LD->isVolatile(), LD->getAlignment());
1267          SDValue ValRes;
1268          if (ExtType == ISD::SEXTLOAD)
1269            ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1270                                 Result.getValueType(),
1271                                 Result, DAG.getValueType(SrcVT));
1272          else
1273            ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT);
1274          Tmp1 = LegalizeOp(ValRes);  // Relegalize new nodes.
1275          Tmp2 = LegalizeOp(Result.getValue(1));  // Relegalize new nodes.
1276          break;
1277        }
1278      }
1279
1280      // Since loads produce two values, make sure to remember that we legalized
1281      // both of them.
1282      AddLegalizedOperand(SDValue(Node, 0), Tmp1);
1283      AddLegalizedOperand(SDValue(Node, 1), Tmp2);
1284      return Op.getResNo() ? Tmp2 : Tmp1;
1285    }
1286  }
1287  case ISD::STORE: {
1288    StoreSDNode *ST = cast<StoreSDNode>(Node);
1289    Tmp1 = LegalizeOp(ST->getChain());    // Legalize the chain.
1290    Tmp2 = LegalizeOp(ST->getBasePtr());  // Legalize the pointer.
1291    int SVOffset = ST->getSrcValueOffset();
1292    unsigned Alignment = ST->getAlignment();
1293    bool isVolatile = ST->isVolatile();
1294
1295    if (!ST->isTruncatingStore()) {
1296      // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
1297      // FIXME: We shouldn't do this for TargetConstantFP's.
1298      // FIXME: move this to the DAG Combiner!  Note that we can't regress due
1299      // to phase ordering between legalized code and the dag combiner.  This
1300      // probably means that we need to integrate dag combiner and legalizer
1301      // together.
1302      // We generally can't do this one for long doubles.
1303      if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
1304        if (CFP->getValueType(0) == MVT::f32 &&
1305            getTypeAction(MVT::i32) == Legal) {
1306          Tmp3 = DAG.getConstant(CFP->getValueAPF().
1307                                          bitcastToAPInt().zextOrTrunc(32),
1308                                  MVT::i32);
1309          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1310                                SVOffset, isVolatile, Alignment);
1311          break;
1312        } else if (CFP->getValueType(0) == MVT::f64) {
1313          // If this target supports 64-bit registers, do a single 64-bit store.
1314          if (getTypeAction(MVT::i64) == Legal) {
1315            Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
1316                                     zextOrTrunc(64), MVT::i64);
1317            Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1318                                  SVOffset, isVolatile, Alignment);
1319            break;
1320          } else if (getTypeAction(MVT::i32) == Legal && !ST->isVolatile()) {
1321            // Otherwise, if the target supports 32-bit registers, use 2 32-bit
1322            // stores.  If the target supports neither 32- nor 64-bits, this
1323            // xform is certainly not worth it.
1324            const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt();
1325            SDValue Lo = DAG.getConstant(APInt(IntVal).trunc(32), MVT::i32);
1326            SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32);
1327            if (TLI.isBigEndian()) std::swap(Lo, Hi);
1328
1329            Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getSrcValue(),
1330                              SVOffset, isVolatile, Alignment);
1331            Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1332                               DAG.getIntPtrConstant(4));
1333            Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(), SVOffset+4,
1334                              isVolatile, MinAlign(Alignment, 4U));
1335
1336            Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
1337            break;
1338          }
1339        }
1340      }
1341
1342      {
1343        Tmp3 = LegalizeOp(ST->getValue());
1344        Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2,
1345                                        ST->getOffset());
1346
1347        MVT VT = Tmp3.getValueType();
1348        switch (TLI.getOperationAction(ISD::STORE, VT)) {
1349        default: assert(0 && "This action is not supported yet!");
1350        case TargetLowering::Legal:
1351          // If this is an unaligned store and the target doesn't support it,
1352          // expand it.
1353          if (!TLI.allowsUnalignedMemoryAccesses()) {
1354            unsigned ABIAlignment = TLI.getTargetData()->
1355              getABITypeAlignment(ST->getMemoryVT().getTypeForMVT());
1356            if (ST->getAlignment() < ABIAlignment)
1357              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()), DAG,
1358                                            TLI);
1359          }
1360          break;
1361        case TargetLowering::Custom:
1362          Tmp1 = TLI.LowerOperation(Result, DAG);
1363          if (Tmp1.getNode()) Result = Tmp1;
1364          break;
1365        case TargetLowering::Promote:
1366          assert(VT.isVector() && "Unknown legal promote case!");
1367          Tmp3 = DAG.getNode(ISD::BIT_CONVERT, dl,
1368                             TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3);
1369          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2,
1370                                ST->getSrcValue(), SVOffset, isVolatile,
1371                                Alignment);
1372          break;
1373        }
1374        break;
1375      }
1376    } else {
1377      Tmp3 = LegalizeOp(ST->getValue());
1378
1379      MVT StVT = ST->getMemoryVT();
1380      unsigned StWidth = StVT.getSizeInBits();
1381
1382      if (StWidth != StVT.getStoreSizeInBits()) {
1383        // Promote to a byte-sized store with upper bits zero if not
1384        // storing an integral number of bytes.  For example, promote
1385        // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
1386        MVT NVT = MVT::getIntegerVT(StVT.getStoreSizeInBits());
1387        Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT);
1388        Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1389                                   SVOffset, NVT, isVolatile, Alignment);
1390      } else if (StWidth & (StWidth - 1)) {
1391        // If not storing a power-of-2 number of bits, expand as two stores.
1392        assert(StVT.isExtended() && !StVT.isVector() &&
1393               "Unsupported truncstore!");
1394        unsigned RoundWidth = 1 << Log2_32(StWidth);
1395        assert(RoundWidth < StWidth);
1396        unsigned ExtraWidth = StWidth - RoundWidth;
1397        assert(ExtraWidth < RoundWidth);
1398        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1399               "Store size not an integral number of bytes!");
1400        MVT RoundVT = MVT::getIntegerVT(RoundWidth);
1401        MVT ExtraVT = MVT::getIntegerVT(ExtraWidth);
1402        SDValue Lo, Hi;
1403        unsigned IncrementSize;
1404
1405        if (TLI.isLittleEndian()) {
1406          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
1407          // Store the bottom RoundWidth bits.
1408          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1409                                 SVOffset, RoundVT,
1410                                 isVolatile, Alignment);
1411
1412          // Store the remaining ExtraWidth bits.
1413          IncrementSize = RoundWidth / 8;
1414          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1415                             DAG.getIntPtrConstant(IncrementSize));
1416          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1417                           DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1418          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
1419                                 SVOffset + IncrementSize, ExtraVT, isVolatile,
1420                                 MinAlign(Alignment, IncrementSize));
1421        } else {
1422          // Big endian - avoid unaligned stores.
1423          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
1424          // Store the top RoundWidth bits.
1425          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1426                           DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1427          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
1428                                 SVOffset, RoundVT, isVolatile, Alignment);
1429
1430          // Store the remaining ExtraWidth bits.
1431          IncrementSize = RoundWidth / 8;
1432          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1433                             DAG.getIntPtrConstant(IncrementSize));
1434          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1435                                 SVOffset + IncrementSize, ExtraVT, isVolatile,
1436                                 MinAlign(Alignment, IncrementSize));
1437        }
1438
1439        // The order of the stores doesn't matter.
1440        Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
1441      } else {
1442        if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() ||
1443            Tmp2 != ST->getBasePtr())
1444          Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2,
1445                                          ST->getOffset());
1446
1447        switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
1448        default: assert(0 && "This action is not supported yet!");
1449        case TargetLowering::Legal:
1450          // If this is an unaligned store and the target doesn't support it,
1451          // expand it.
1452          if (!TLI.allowsUnalignedMemoryAccesses()) {
1453            unsigned ABIAlignment = TLI.getTargetData()->
1454              getABITypeAlignment(ST->getMemoryVT().getTypeForMVT());
1455            if (ST->getAlignment() < ABIAlignment)
1456              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()), DAG,
1457                                            TLI);
1458          }
1459          break;
1460        case TargetLowering::Custom:
1461          Result = TLI.LowerOperation(Result, DAG);
1462          break;
1463        case Expand:
1464          // TRUNCSTORE:i16 i32 -> STORE i16
1465          assert(isTypeLegal(StVT) && "Do not know how to expand this store!");
1466          Tmp3 = DAG.getNode(ISD::TRUNCATE, dl, StVT, Tmp3);
1467          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1468                                SVOffset, isVolatile, Alignment);
1469          break;
1470        }
1471      }
1472    }
1473    break;
1474  }
1475  }
1476  assert(Result.getValueType() == Op.getValueType() &&
1477         "Bad legalization!");
1478
1479  // Make sure that the generated code is itself legal.
1480  if (Result != Op)
1481    Result = LegalizeOp(Result);
1482
1483  // Note that LegalizeOp may be reentered even from single-use nodes, which
1484  // means that we always must cache transformed nodes.
1485  AddLegalizedOperand(Op, Result);
1486  return Result;
1487}
1488
1489SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1490  SDValue Vec = Op.getOperand(0);
1491  SDValue Idx = Op.getOperand(1);
1492  DebugLoc dl = Op.getDebugLoc();
1493  // Store the value to a temporary stack slot, then LOAD the returned part.
1494  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1495  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, NULL, 0);
1496
1497  // Add the offset to the index.
1498  unsigned EltSize =
1499      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1500  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1501                    DAG.getConstant(EltSize, Idx.getValueType()));
1502
1503  if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1504    Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1505  else
1506    Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1507
1508  StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
1509
1510  return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, NULL, 0);
1511}
1512
1513SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) {
1514  DebugLoc dl = Node->getDebugLoc();
1515  SDValue Tmp1 = Node->getOperand(0);
1516  SDValue Tmp2 = Node->getOperand(1);
1517  assert((Tmp2.getValueType() == MVT::f32 ||
1518          Tmp2.getValueType() == MVT::f64) &&
1519          "Ugly special-cased code!");
1520  // Get the sign bit of the RHS.
1521  SDValue SignBit;
1522  MVT IVT = Tmp2.getValueType() == MVT::f64 ? MVT::i64 : MVT::i32;
1523  if (isTypeLegal(IVT)) {
1524    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, IVT, Tmp2);
1525  } else {
1526    assert(isTypeLegal(TLI.getPointerTy()) &&
1527            (TLI.getPointerTy() == MVT::i32 ||
1528            TLI.getPointerTy() == MVT::i64) &&
1529            "Legal type for load?!");
1530    SDValue StackPtr = DAG.CreateStackTemporary(Tmp2.getValueType());
1531    SDValue StorePtr = StackPtr, LoadPtr = StackPtr;
1532    SDValue Ch =
1533        DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StorePtr, NULL, 0);
1534    if (Tmp2.getValueType() == MVT::f64 && TLI.isLittleEndian())
1535      LoadPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(),
1536                            LoadPtr, DAG.getIntPtrConstant(4));
1537    SignBit = DAG.getExtLoad(ISD::SEXTLOAD, dl, TLI.getPointerTy(),
1538                              Ch, LoadPtr, NULL, 0, MVT::i32);
1539  }
1540  SignBit =
1541      DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()),
1542                    SignBit, DAG.getConstant(0, SignBit.getValueType()),
1543                    ISD::SETLT);
1544  // Get the absolute value of the result.
1545  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1);
1546  // Select between the nabs and abs value based on the sign bit of
1547  // the input.
1548  return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit,
1549                     DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal),
1550                     AbsVal);
1551}
1552
1553SDValue SelectionDAGLegalize::ExpandDBG_STOPPOINT(SDNode* Node) {
1554  DebugLoc dl = Node->getDebugLoc();
1555  DwarfWriter *DW = DAG.getDwarfWriter();
1556  bool useDEBUG_LOC = TLI.isOperationLegalOrCustom(ISD::DEBUG_LOC,
1557                                                    MVT::Other);
1558  bool useLABEL = TLI.isOperationLegalOrCustom(ISD::DBG_LABEL, MVT::Other);
1559
1560  const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(Node);
1561  GlobalVariable *CU_GV = cast<GlobalVariable>(DSP->getCompileUnit());
1562  if (DW && (useDEBUG_LOC || useLABEL) && !CU_GV->isDeclaration()) {
1563    DICompileUnit CU(cast<GlobalVariable>(DSP->getCompileUnit()));
1564
1565    unsigned Line = DSP->getLine();
1566    unsigned Col = DSP->getColumn();
1567
1568    if (OptLevel == CodeGenOpt::None) {
1569      // A bit self-referential to have DebugLoc on Debug_Loc nodes, but it
1570      // won't hurt anything.
1571      if (useDEBUG_LOC) {
1572        return DAG.getNode(ISD::DEBUG_LOC, dl, MVT::Other, Node->getOperand(0),
1573                           DAG.getConstant(Line, MVT::i32),
1574                           DAG.getConstant(Col, MVT::i32),
1575                           DAG.getSrcValue(CU.getGV()));
1576      } else {
1577        unsigned ID = DW->RecordSourceLine(Line, Col, CU);
1578        return DAG.getLabel(ISD::DBG_LABEL, dl, Node->getOperand(0), ID);
1579      }
1580    }
1581  }
1582  return Node->getOperand(0);
1583}
1584
1585void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1586                                           SmallVectorImpl<SDValue> &Results) {
1587  unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1588  assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1589          " not tell us which reg is the stack pointer!");
1590  DebugLoc dl = Node->getDebugLoc();
1591  MVT VT = Node->getValueType(0);
1592  SDValue Tmp1 = SDValue(Node, 0);
1593  SDValue Tmp2 = SDValue(Node, 1);
1594  SDValue Tmp3 = Node->getOperand(2);
1595  SDValue Chain = Tmp1.getOperand(0);
1596
1597  // Chain the dynamic stack allocation so that it doesn't modify the stack
1598  // pointer when other instructions are using the stack.
1599  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
1600
1601  SDValue Size  = Tmp2.getOperand(1);
1602  SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1603  Chain = SP.getValue(1);
1604  unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1605  unsigned StackAlign =
1606    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
1607  if (Align > StackAlign)
1608    SP = DAG.getNode(ISD::AND, dl, VT, SP,
1609                      DAG.getConstant(-(uint64_t)Align, VT));
1610  Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size);       // Value
1611  Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain
1612
1613  Tmp2 = DAG.getCALLSEQ_END(Chain,  DAG.getIntPtrConstant(0, true),
1614                            DAG.getIntPtrConstant(0, true), SDValue());
1615
1616  Results.push_back(Tmp1);
1617  Results.push_back(Tmp2);
1618}
1619
1620/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
1621/// condition code CC on the current target. This routine assumes LHS and rHS
1622/// have already been legalized by LegalizeSetCCOperands. It expands SETCC with
1623/// illegal condition code into AND / OR of multiple SETCC values.
1624void SelectionDAGLegalize::LegalizeSetCCCondCode(MVT VT,
1625                                                 SDValue &LHS, SDValue &RHS,
1626                                                 SDValue &CC,
1627                                                 DebugLoc dl) {
1628  MVT OpVT = LHS.getValueType();
1629  ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1630  switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1631  default: assert(0 && "Unknown condition code action!");
1632  case TargetLowering::Legal:
1633    // Nothing to do.
1634    break;
1635  case TargetLowering::Expand: {
1636    ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1637    unsigned Opc = 0;
1638    switch (CCCode) {
1639    default: assert(0 && "Don't know how to expand this condition!"); abort();
1640    case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1641    case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1642    case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1643    case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1644    case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1645    case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1646    case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1647    case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1648    case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1649    case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1650    case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1651    case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1652    // FIXME: Implement more expansions.
1653    }
1654
1655    SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1656    SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
1657    LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1658    RHS = SDValue();
1659    CC  = SDValue();
1660    break;
1661  }
1662  }
1663}
1664
1665/// EmitStackConvert - Emit a store/load combination to the stack.  This stores
1666/// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
1667/// a load from the stack slot to DestVT, extending it if needed.
1668/// The resultant code need not be legal.
1669SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
1670                                               MVT SlotVT,
1671                                               MVT DestVT,
1672                                               DebugLoc dl) {
1673  // Create the stack frame object.
1674  unsigned SrcAlign =
1675    TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType().
1676                                              getTypeForMVT());
1677  SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1678
1679  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1680  int SPFI = StackPtrFI->getIndex();
1681  const Value *SV = PseudoSourceValue::getFixedStack(SPFI);
1682
1683  unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
1684  unsigned SlotSize = SlotVT.getSizeInBits();
1685  unsigned DestSize = DestVT.getSizeInBits();
1686  unsigned DestAlign =
1687    TLI.getTargetData()->getPrefTypeAlignment(DestVT.getTypeForMVT());
1688
1689  // Emit a store to the stack slot.  Use a truncstore if the input value is
1690  // later than DestVT.
1691  SDValue Store;
1692
1693  if (SrcSize > SlotSize)
1694    Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1695                              SV, 0, SlotVT, false, SrcAlign);
1696  else {
1697    assert(SrcSize == SlotSize && "Invalid store");
1698    Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1699                         SV, 0, false, SrcAlign);
1700  }
1701
1702  // Result is a load from the stack slot.
1703  if (SlotSize == DestSize)
1704    return DAG.getLoad(DestVT, dl, Store, FIPtr, SV, 0, false, DestAlign);
1705
1706  assert(SlotSize < DestSize && "Unknown extension!");
1707  return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, SV, 0, SlotVT,
1708                        false, DestAlign);
1709}
1710
1711SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1712  DebugLoc dl = Node->getDebugLoc();
1713  // Create a vector sized/aligned stack slot, store the value to element #0,
1714  // then load the whole vector back out.
1715  SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1716
1717  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1718  int SPFI = StackPtrFI->getIndex();
1719
1720  SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0),
1721                                 StackPtr,
1722                                 PseudoSourceValue::getFixedStack(SPFI), 0,
1723                                 Node->getValueType(0).getVectorElementType());
1724  return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr,
1725                     PseudoSourceValue::getFixedStack(SPFI), 0);
1726}
1727
1728
1729/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
1730/// support the operation, but do support the resultant vector type.
1731SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1732  unsigned NumElems = Node->getNumOperands();
1733  SDValue SplatValue = Node->getOperand(0);
1734  DebugLoc dl = Node->getDebugLoc();
1735  MVT VT = Node->getValueType(0);
1736  MVT OpVT = SplatValue.getValueType();
1737  MVT EltVT = VT.getVectorElementType();
1738
1739  // If the only non-undef value is the low element, turn this into a
1740  // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
1741  bool isOnlyLowElement = true;
1742
1743  // FIXME: it would be far nicer to change this into map<SDValue,uint64_t>
1744  // and use a bitmask instead of a list of elements.
1745  // FIXME: this doesn't treat <0, u, 0, u> for example, as a splat.
1746  std::map<SDValue, std::vector<unsigned> > Values;
1747  Values[SplatValue].push_back(0);
1748  bool isConstant = true;
1749  if (!isa<ConstantFPSDNode>(SplatValue) && !isa<ConstantSDNode>(SplatValue) &&
1750      SplatValue.getOpcode() != ISD::UNDEF)
1751    isConstant = false;
1752
1753  for (unsigned i = 1; i < NumElems; ++i) {
1754    SDValue V = Node->getOperand(i);
1755    Values[V].push_back(i);
1756    if (V.getOpcode() != ISD::UNDEF)
1757      isOnlyLowElement = false;
1758    if (SplatValue != V)
1759      SplatValue = SDValue(0, 0);
1760
1761    // If this isn't a constant element or an undef, we can't use a constant
1762    // pool load.
1763    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V) &&
1764        V.getOpcode() != ISD::UNDEF)
1765      isConstant = false;
1766  }
1767
1768  if (isOnlyLowElement) {
1769    // If the low element is an undef too, then this whole things is an undef.
1770    if (Node->getOperand(0).getOpcode() == ISD::UNDEF)
1771      return DAG.getUNDEF(VT);
1772    // Otherwise, turn this into a scalar_to_vector node.
1773    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1774  }
1775
1776  // If all elements are constants, create a load from the constant pool.
1777  if (isConstant) {
1778    std::vector<Constant*> CV;
1779    for (unsigned i = 0, e = NumElems; i != e; ++i) {
1780      if (ConstantFPSDNode *V =
1781          dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1782        CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1783      } else if (ConstantSDNode *V =
1784                 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1785        CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1786      } else {
1787        assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
1788        const Type *OpNTy = OpVT.getTypeForMVT();
1789        CV.push_back(UndefValue::get(OpNTy));
1790      }
1791    }
1792    Constant *CP = ConstantVector::get(CV);
1793    SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
1794    unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
1795    return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
1796                       PseudoSourceValue::getConstantPool(), 0,
1797                       false, Alignment);
1798  }
1799
1800  if (SplatValue.getNode()) {   // Splat of one value?
1801    // Build the shuffle constant vector: <0, 0, 0, 0>
1802    SmallVector<int, 8> ZeroVec(NumElems, 0);
1803
1804    // If the target supports VECTOR_SHUFFLE and this shuffle mask, use it.
1805    if (TLI.isShuffleMaskLegal(ZeroVec, Node->getValueType(0))) {
1806      // Get the splatted value into the low element of a vector register.
1807      SDValue LowValVec =
1808        DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, SplatValue);
1809
1810      // Return shuffle(LowValVec, undef, <0,0,0,0>)
1811      return DAG.getVectorShuffle(VT, dl, LowValVec, DAG.getUNDEF(VT),
1812                                  &ZeroVec[0]);
1813    }
1814  }
1815
1816  // If there are only two unique elements, we may be able to turn this into a
1817  // vector shuffle.
1818  if (Values.size() == 2) {
1819    // Get the two values in deterministic order.
1820    SDValue Val1 = Node->getOperand(1);
1821    SDValue Val2;
1822    std::map<SDValue, std::vector<unsigned> >::iterator MI = Values.begin();
1823    if (MI->first != Val1)
1824      Val2 = MI->first;
1825    else
1826      Val2 = (++MI)->first;
1827
1828    // If Val1 is an undef, make sure it ends up as Val2, to ensure that our
1829    // vector shuffle has the undef vector on the RHS.
1830    if (Val1.getOpcode() == ISD::UNDEF)
1831      std::swap(Val1, Val2);
1832
1833    // Build the shuffle constant vector: e.g. <0, 4, 0, 4>
1834    SmallVector<int, 8> ShuffleMask(NumElems, -1);
1835
1836    // Set elements of the shuffle mask for Val1.
1837    std::vector<unsigned> &Val1Elts = Values[Val1];
1838    for (unsigned i = 0, e = Val1Elts.size(); i != e; ++i)
1839      ShuffleMask[Val1Elts[i]] = 0;
1840
1841    // Set elements of the shuffle mask for Val2.
1842    std::vector<unsigned> &Val2Elts = Values[Val2];
1843    for (unsigned i = 0, e = Val2Elts.size(); i != e; ++i)
1844      if (Val2.getOpcode() != ISD::UNDEF)
1845        ShuffleMask[Val2Elts[i]] = NumElems;
1846
1847    // If the target supports SCALAR_TO_VECTOR and this shuffle mask, use it.
1848    if (TLI.isOperationLegalOrCustom(ISD::SCALAR_TO_VECTOR, VT) &&
1849        TLI.isShuffleMaskLegal(ShuffleMask, VT)) {
1850      Val1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Val1);
1851      Val2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Val2);
1852      return DAG.getVectorShuffle(VT, dl, Val1, Val2, &ShuffleMask[0]);
1853    }
1854  }
1855
1856  // Otherwise, we can't handle this case efficiently.  Allocate a sufficiently
1857  // aligned object on the stack, store each element into it, then load
1858  // the result as a vector.
1859  // Create the stack frame object.
1860  SDValue FIPtr = DAG.CreateStackTemporary(VT);
1861  int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1862  const Value *SV = PseudoSourceValue::getFixedStack(FI);
1863
1864  // Emit a store of each element to the stack slot.
1865  SmallVector<SDValue, 8> Stores;
1866  unsigned TypeByteSize = OpVT.getSizeInBits() / 8;
1867  // Store (in the right endianness) the elements to memory.
1868  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1869    // Ignore undef elements.
1870    if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1871
1872    unsigned Offset = TypeByteSize*i;
1873
1874    SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType());
1875    Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
1876
1877    Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i),
1878                                  Idx, SV, Offset));
1879  }
1880
1881  SDValue StoreChain;
1882  if (!Stores.empty())    // Not all undef elements?
1883    StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1884                             &Stores[0], Stores.size());
1885  else
1886    StoreChain = DAG.getEntryNode();
1887
1888  // Result is a load from the stack slot.
1889  return DAG.getLoad(VT, dl, StoreChain, FIPtr, SV, 0);
1890}
1891
1892// ExpandLibCall - Expand a node into a call to a libcall.  If the result value
1893// does not fit into a register, return the lo part and set the hi part to the
1894// by-reg argument.  If it does fit into a single register, return the result
1895// and leave the Hi part unset.
1896SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
1897                                            bool isSigned) {
1898  assert(!IsLegalizingCall && "Cannot overlap legalization of calls!");
1899  // The input chain to this libcall is the entry node of the function.
1900  // Legalizing the call will automatically add the previous call to the
1901  // dependence.
1902  SDValue InChain = DAG.getEntryNode();
1903
1904  TargetLowering::ArgListTy Args;
1905  TargetLowering::ArgListEntry Entry;
1906  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1907    MVT ArgVT = Node->getOperand(i).getValueType();
1908    const Type *ArgTy = ArgVT.getTypeForMVT();
1909    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
1910    Entry.isSExt = isSigned;
1911    Entry.isZExt = !isSigned;
1912    Args.push_back(Entry);
1913  }
1914  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1915                                         TLI.getPointerTy());
1916
1917  // Splice the libcall in wherever FindInputOutputChains tells us to.
1918  const Type *RetTy = Node->getValueType(0).getTypeForMVT();
1919  std::pair<SDValue, SDValue> CallInfo =
1920    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
1921                    CallingConv::C, false, Callee, Args, DAG,
1922                    Node->getDebugLoc());
1923
1924  // Legalize the call sequence, starting with the chain.  This will advance
1925  // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
1926  // was added by LowerCallTo (guaranteeing proper serialization of calls).
1927  LegalizeOp(CallInfo.second);
1928  return CallInfo.first;
1929}
1930
1931SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
1932                                              RTLIB::Libcall Call_F32,
1933                                              RTLIB::Libcall Call_F64,
1934                                              RTLIB::Libcall Call_F80,
1935                                              RTLIB::Libcall Call_PPCF128) {
1936  RTLIB::Libcall LC;
1937  switch (Node->getValueType(0).getSimpleVT()) {
1938  default: assert(0 && "Unexpected request for libcall!");
1939  case MVT::f32: LC = Call_F32; break;
1940  case MVT::f64: LC = Call_F64; break;
1941  case MVT::f80: LC = Call_F80; break;
1942  case MVT::ppcf128: LC = Call_PPCF128; break;
1943  }
1944  return ExpandLibCall(LC, Node, false);
1945}
1946
1947SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
1948                                               RTLIB::Libcall Call_I16,
1949                                               RTLIB::Libcall Call_I32,
1950                                               RTLIB::Libcall Call_I64,
1951                                               RTLIB::Libcall Call_I128) {
1952  RTLIB::Libcall LC;
1953  switch (Node->getValueType(0).getSimpleVT()) {
1954  default: assert(0 && "Unexpected request for libcall!");
1955  case MVT::i16: LC = Call_I16; break;
1956  case MVT::i32: LC = Call_I32; break;
1957  case MVT::i64: LC = Call_I64; break;
1958  case MVT::i128: LC = Call_I128; break;
1959  }
1960  return ExpandLibCall(LC, Node, isSigned);
1961}
1962
1963/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
1964/// INT_TO_FP operation of the specified operand when the target requests that
1965/// we expand it.  At this point, we know that the result and operand types are
1966/// legal for the target.
1967SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
1968                                                   SDValue Op0,
1969                                                   MVT DestVT,
1970                                                   DebugLoc dl) {
1971  if (Op0.getValueType() == MVT::i32) {
1972    // simple 32-bit [signed|unsigned] integer to float/double expansion
1973
1974    // Get the stack frame index of a 8 byte buffer.
1975    SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
1976
1977    // word offset constant for Hi/Lo address computation
1978    SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy());
1979    // set up Hi and Lo (into buffer) address based on endian
1980    SDValue Hi = StackSlot;
1981    SDValue Lo = DAG.getNode(ISD::ADD, dl,
1982                             TLI.getPointerTy(), StackSlot, WordOff);
1983    if (TLI.isLittleEndian())
1984      std::swap(Hi, Lo);
1985
1986    // if signed map to unsigned space
1987    SDValue Op0Mapped;
1988    if (isSigned) {
1989      // constant used to invert sign bit (signed to unsigned mapping)
1990      SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32);
1991      Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
1992    } else {
1993      Op0Mapped = Op0;
1994    }
1995    // store the lo of the constructed double - based on integer input
1996    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
1997                                  Op0Mapped, Lo, NULL, 0);
1998    // initial hi portion of constructed double
1999    SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
2000    // store the hi of the constructed double - biased exponent
2001    SDValue Store2=DAG.getStore(Store1, dl, InitialHi, Hi, NULL, 0);
2002    // load the constructed double
2003    SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot, NULL, 0);
2004    // FP constant to bias correct the final result
2005    SDValue Bias = DAG.getConstantFP(isSigned ?
2006                                     BitsToDouble(0x4330000080000000ULL) :
2007                                     BitsToDouble(0x4330000000000000ULL),
2008                                     MVT::f64);
2009    // subtract the bias
2010    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2011    // final result
2012    SDValue Result;
2013    // handle final rounding
2014    if (DestVT == MVT::f64) {
2015      // do nothing
2016      Result = Sub;
2017    } else if (DestVT.bitsLT(MVT::f64)) {
2018      Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
2019                           DAG.getIntPtrConstant(0));
2020    } else if (DestVT.bitsGT(MVT::f64)) {
2021      Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
2022    }
2023    return Result;
2024  }
2025  assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2026  SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2027
2028  SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()),
2029                                 Op0, DAG.getConstant(0, Op0.getValueType()),
2030                                 ISD::SETLT);
2031  SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
2032  SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(),
2033                                    SignSet, Four, Zero);
2034
2035  // If the sign bit of the integer is set, the large number will be treated
2036  // as a negative number.  To counteract this, the dynamic code adds an
2037  // offset depending on the data type.
2038  uint64_t FF;
2039  switch (Op0.getValueType().getSimpleVT()) {
2040  default: assert(0 && "Unsupported integer type!");
2041  case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
2042  case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
2043  case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
2044  case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
2045  }
2046  if (TLI.isLittleEndian()) FF <<= 32;
2047  Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF);
2048
2049  SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
2050  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2051  CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset);
2052  Alignment = std::min(Alignment, 4u);
2053  SDValue FudgeInReg;
2054  if (DestVT == MVT::f32)
2055    FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2056                             PseudoSourceValue::getConstantPool(), 0,
2057                             false, Alignment);
2058  else {
2059    FudgeInReg =
2060      LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT,
2061                                DAG.getEntryNode(), CPIdx,
2062                                PseudoSourceValue::getConstantPool(), 0,
2063                                MVT::f32, false, Alignment));
2064  }
2065
2066  return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2067}
2068
2069/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
2070/// *INT_TO_FP operation of the specified operand when the target requests that
2071/// we promote it.  At this point, we know that the result and operand types are
2072/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2073/// operation that takes a larger input.
2074SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
2075                                                    MVT DestVT,
2076                                                    bool isSigned,
2077                                                    DebugLoc dl) {
2078  // First step, figure out the appropriate *INT_TO_FP operation to use.
2079  MVT NewInTy = LegalOp.getValueType();
2080
2081  unsigned OpToUse = 0;
2082
2083  // Scan for the appropriate larger type to use.
2084  while (1) {
2085    NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT()+1);
2086    assert(NewInTy.isInteger() && "Ran out of possibilities!");
2087
2088    // If the target supports SINT_TO_FP of this type, use it.
2089    if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2090      OpToUse = ISD::SINT_TO_FP;
2091      break;
2092    }
2093    if (isSigned) continue;
2094
2095    // If the target supports UINT_TO_FP of this type, use it.
2096    if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2097      OpToUse = ISD::UINT_TO_FP;
2098      break;
2099    }
2100
2101    // Otherwise, try a larger type.
2102  }
2103
2104  // Okay, we found the operation and type to use.  Zero extend our input to the
2105  // desired type then run the operation on it.
2106  return DAG.getNode(OpToUse, dl, DestVT,
2107                     DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2108                                 dl, NewInTy, LegalOp));
2109}
2110
2111/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
2112/// FP_TO_*INT operation of the specified operand when the target requests that
2113/// we promote it.  At this point, we know that the result and operand types are
2114/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2115/// operation that returns a larger result.
2116SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
2117                                                    MVT DestVT,
2118                                                    bool isSigned,
2119                                                    DebugLoc dl) {
2120  // First step, figure out the appropriate FP_TO*INT operation to use.
2121  MVT NewOutTy = DestVT;
2122
2123  unsigned OpToUse = 0;
2124
2125  // Scan for the appropriate larger type to use.
2126  while (1) {
2127    NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT()+1);
2128    assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2129
2130    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2131      OpToUse = ISD::FP_TO_SINT;
2132      break;
2133    }
2134
2135    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
2136      OpToUse = ISD::FP_TO_UINT;
2137      break;
2138    }
2139
2140    // Otherwise, try a larger type.
2141  }
2142
2143
2144  // Okay, we found the operation and type to use.
2145  SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2146
2147  // Truncate the result of the extended FP_TO_*INT operation to the desired
2148  // size.
2149  return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2150}
2151
2152/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
2153///
2154SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) {
2155  MVT VT = Op.getValueType();
2156  MVT SHVT = TLI.getShiftAmountTy();
2157  SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2158  switch (VT.getSimpleVT()) {
2159  default: assert(0 && "Unhandled Expand type in BSWAP!"); abort();
2160  case MVT::i16:
2161    Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2162    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2163    return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2164  case MVT::i32:
2165    Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2166    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2167    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2168    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2169    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
2170    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT));
2171    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2172    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2173    return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2174  case MVT::i64:
2175    Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT));
2176    Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT));
2177    Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2178    Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2179    Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2180    Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2181    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT));
2182    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT));
2183    Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
2184    Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
2185    Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
2186    Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
2187    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
2188    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
2189    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2190    Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2191    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2192    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2193    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2194    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2195    return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2196  }
2197}
2198
2199/// ExpandBitCount - Expand the specified bitcount instruction into operations.
2200///
2201SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
2202                                             DebugLoc dl) {
2203  switch (Opc) {
2204  default: assert(0 && "Cannot expand this yet!");
2205  case ISD::CTPOP: {
2206    static const uint64_t mask[6] = {
2207      0x5555555555555555ULL, 0x3333333333333333ULL,
2208      0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL,
2209      0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL
2210    };
2211    MVT VT = Op.getValueType();
2212    MVT ShVT = TLI.getShiftAmountTy();
2213    unsigned len = VT.getSizeInBits();
2214    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2215      //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8])
2216      unsigned EltSize = VT.isVector() ?
2217        VT.getVectorElementType().getSizeInBits() : len;
2218      SDValue Tmp2 = DAG.getConstant(APInt(EltSize, mask[i]), VT);
2219      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2220      Op = DAG.getNode(ISD::ADD, dl, VT,
2221                       DAG.getNode(ISD::AND, dl, VT, Op, Tmp2),
2222                       DAG.getNode(ISD::AND, dl, VT,
2223                                   DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3),
2224                                   Tmp2));
2225    }
2226    return Op;
2227  }
2228  case ISD::CTLZ: {
2229    // for now, we do this:
2230    // x = x | (x >> 1);
2231    // x = x | (x >> 2);
2232    // ...
2233    // x = x | (x >>16);
2234    // x = x | (x >>32); // for 64-bit input
2235    // return popcount(~x);
2236    //
2237    // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
2238    MVT VT = Op.getValueType();
2239    MVT ShVT = TLI.getShiftAmountTy();
2240    unsigned len = VT.getSizeInBits();
2241    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2242      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2243      Op = DAG.getNode(ISD::OR, dl, VT, Op,
2244                       DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
2245    }
2246    Op = DAG.getNOT(dl, Op, VT);
2247    return DAG.getNode(ISD::CTPOP, dl, VT, Op);
2248  }
2249  case ISD::CTTZ: {
2250    // for now, we use: { return popcount(~x & (x - 1)); }
2251    // unless the target has ctlz but not ctpop, in which case we use:
2252    // { return 32 - nlz(~x & (x-1)); }
2253    // see also http://www.hackersdelight.org/HDcode/ntz.cc
2254    MVT VT = Op.getValueType();
2255    SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
2256                               DAG.getNOT(dl, Op, VT),
2257                               DAG.getNode(ISD::SUB, dl, VT, Op,
2258                                           DAG.getConstant(1, VT)));
2259    // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
2260    if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
2261        TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
2262      return DAG.getNode(ISD::SUB, dl, VT,
2263                         DAG.getConstant(VT.getSizeInBits(), VT),
2264                         DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
2265    return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
2266  }
2267  }
2268}
2269
2270void SelectionDAGLegalize::ExpandNode(SDNode *Node,
2271                                      SmallVectorImpl<SDValue> &Results) {
2272  DebugLoc dl = Node->getDebugLoc();
2273  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2274  switch (Node->getOpcode()) {
2275  case ISD::CTPOP:
2276  case ISD::CTLZ:
2277  case ISD::CTTZ:
2278    Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
2279    Results.push_back(Tmp1);
2280    break;
2281  case ISD::BSWAP:
2282    Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2283    break;
2284  case ISD::FRAMEADDR:
2285  case ISD::RETURNADDR:
2286  case ISD::FRAME_TO_ARGS_OFFSET:
2287    Results.push_back(DAG.getConstant(0, Node->getValueType(0)));
2288    break;
2289  case ISD::FLT_ROUNDS_:
2290    Results.push_back(DAG.getConstant(1, Node->getValueType(0)));
2291    break;
2292  case ISD::EH_RETURN:
2293  case ISD::DECLARE:
2294  case ISD::DBG_LABEL:
2295  case ISD::EH_LABEL:
2296  case ISD::PREFETCH:
2297  case ISD::MEMBARRIER:
2298  case ISD::VAEND:
2299    Results.push_back(Node->getOperand(0));
2300    break;
2301  case ISD::DBG_STOPPOINT:
2302    Results.push_back(ExpandDBG_STOPPOINT(Node));
2303    break;
2304  case ISD::DYNAMIC_STACKALLOC:
2305    ExpandDYNAMIC_STACKALLOC(Node, Results);
2306    break;
2307  case ISD::MERGE_VALUES:
2308    for (unsigned i = 0; i < Node->getNumValues(); i++)
2309      Results.push_back(Node->getOperand(i));
2310    break;
2311  case ISD::UNDEF: {
2312    MVT VT = Node->getValueType(0);
2313    if (VT.isInteger())
2314      Results.push_back(DAG.getConstant(0, VT));
2315    else if (VT.isFloatingPoint())
2316      Results.push_back(DAG.getConstantFP(0, VT));
2317    else
2318      assert(0 && "Unknown value type!");
2319    break;
2320  }
2321  case ISD::TRAP: {
2322    // If this operation is not supported, lower it to 'abort()' call
2323    TargetLowering::ArgListTy Args;
2324    std::pair<SDValue, SDValue> CallResult =
2325      TLI.LowerCallTo(Node->getOperand(0), Type::VoidTy,
2326                      false, false, false, false, CallingConv::C, false,
2327                      DAG.getExternalSymbol("abort", TLI.getPointerTy()),
2328                      Args, DAG, dl);
2329    Results.push_back(CallResult.second);
2330    break;
2331  }
2332  case ISD::FP_ROUND:
2333  case ISD::BIT_CONVERT:
2334    Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
2335                            Node->getValueType(0), dl);
2336    Results.push_back(Tmp1);
2337    break;
2338  case ISD::FP_EXTEND:
2339    Tmp1 = EmitStackConvert(Node->getOperand(0),
2340                            Node->getOperand(0).getValueType(),
2341                            Node->getValueType(0), dl);
2342    Results.push_back(Tmp1);
2343    break;
2344  case ISD::SIGN_EXTEND_INREG: {
2345    // NOTE: we could fall back on load/store here too for targets without
2346    // SAR.  However, it is doubtful that any exist.
2347    MVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2348    unsigned BitsDiff = Node->getValueType(0).getSizeInBits() -
2349                        ExtraVT.getSizeInBits();
2350    SDValue ShiftCst = DAG.getConstant(BitsDiff, TLI.getShiftAmountTy());
2351    Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
2352                       Node->getOperand(0), ShiftCst);
2353    Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
2354    Results.push_back(Tmp1);
2355    break;
2356  }
2357  case ISD::FP_ROUND_INREG: {
2358    // The only way we can lower this is to turn it into a TRUNCSTORE,
2359    // EXTLOAD pair, targetting a temporary location (a stack slot).
2360
2361    // NOTE: there is a choice here between constantly creating new stack
2362    // slots and always reusing the same one.  We currently always create
2363    // new ones, as reuse may inhibit scheduling.
2364    MVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2365    Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
2366                            Node->getValueType(0), dl);
2367    Results.push_back(Tmp1);
2368    break;
2369  }
2370  case ISD::SINT_TO_FP:
2371  case ISD::UINT_TO_FP:
2372    Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
2373                                Node->getOperand(0), Node->getValueType(0), dl);
2374    Results.push_back(Tmp1);
2375    break;
2376  case ISD::FP_TO_UINT: {
2377    SDValue True, False;
2378    MVT VT =  Node->getOperand(0).getValueType();
2379    MVT NVT = Node->getValueType(0);
2380    const uint64_t zero[] = {0, 0};
2381    APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
2382    APInt x = APInt::getSignBit(NVT.getSizeInBits());
2383    (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
2384    Tmp1 = DAG.getConstantFP(apf, VT);
2385    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT),
2386                        Node->getOperand(0),
2387                        Tmp1, ISD::SETLT);
2388    True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
2389    False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
2390                        DAG.getNode(ISD::FSUB, dl, VT,
2391                                    Node->getOperand(0), Tmp1));
2392    False = DAG.getNode(ISD::XOR, dl, NVT, False,
2393                        DAG.getConstant(x, NVT));
2394    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False);
2395    Results.push_back(Tmp1);
2396    break;
2397  }
2398  case ISD::VAARG: {
2399    const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2400    MVT VT = Node->getValueType(0);
2401    Tmp1 = Node->getOperand(0);
2402    Tmp2 = Node->getOperand(1);
2403    SDValue VAList = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2, V, 0);
2404    // Increment the pointer, VAList, to the next vaarg
2405    Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2406                       DAG.getConstant(TLI.getTargetData()->
2407                                       getTypeAllocSize(VT.getTypeForMVT()),
2408                                       TLI.getPointerTy()));
2409    // Store the incremented VAList to the legalized pointer
2410    Tmp3 = DAG.getStore(VAList.getValue(1), dl, Tmp3, Tmp2, V, 0);
2411    // Load the actual argument out of the pointer VAList
2412    Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, NULL, 0));
2413    Results.push_back(Results[0].getValue(1));
2414    break;
2415  }
2416  case ISD::VACOPY: {
2417    // This defaults to loading a pointer from the input and storing it to the
2418    // output, returning the chain.
2419    const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2420    const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2421    Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0),
2422                       Node->getOperand(2), VS, 0);
2423    Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), VD, 0);
2424    Results.push_back(Tmp1);
2425    break;
2426  }
2427  case ISD::EXTRACT_VECTOR_ELT:
2428    if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
2429      // This must be an access of the only element.  Return it.
2430      Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, Node->getValueType(0),
2431                         Node->getOperand(0));
2432    else
2433      Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
2434    Results.push_back(Tmp1);
2435    break;
2436  case ISD::EXTRACT_SUBVECTOR:
2437    Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
2438    break;
2439  case ISD::CONCAT_VECTORS: {
2440    // Use extract/insert/build vector for now. We might try to be
2441    // more clever later.
2442    SmallVector<SDValue, 8> Ops;
2443    unsigned NumOperands = Node->getNumOperands();
2444    for (unsigned i=0; i < NumOperands; ++i) {
2445      SDValue SubOp = Node->getOperand(i);
2446      MVT VVT = SubOp.getNode()->getValueType(0);
2447      MVT EltVT = VVT.getVectorElementType();
2448      unsigned NumSubElem = VVT.getVectorNumElements();
2449      for (unsigned j=0; j < NumSubElem; ++j) {
2450        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, SubOp,
2451                                  DAG.getIntPtrConstant(j)));
2452      }
2453    }
2454    Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, Node->getValueType(0),
2455                       &Ops[0], Ops.size());
2456    Results.push_back(Tmp1);
2457    break;
2458  }
2459  case ISD::SCALAR_TO_VECTOR:
2460    Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
2461    break;
2462  case ISD::INSERT_VECTOR_ELT:
2463    Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
2464                                              Node->getOperand(1),
2465                                              Node->getOperand(2), dl));
2466    break;
2467  case ISD::VECTOR_SHUFFLE: {
2468    SmallVector<int, 8> Mask;
2469    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
2470
2471    MVT VT = Node->getValueType(0);
2472    MVT EltVT = VT.getVectorElementType();
2473    unsigned NumElems = VT.getVectorNumElements();
2474    SmallVector<SDValue, 8> Ops;
2475    for (unsigned i = 0; i != NumElems; ++i) {
2476      if (Mask[i] < 0) {
2477        Ops.push_back(DAG.getUNDEF(EltVT));
2478        continue;
2479      }
2480      unsigned Idx = Mask[i];
2481      if (Idx < NumElems)
2482        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2483                                  Node->getOperand(0),
2484                                  DAG.getIntPtrConstant(Idx)));
2485      else
2486        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2487                                  Node->getOperand(1),
2488                                  DAG.getIntPtrConstant(Idx - NumElems)));
2489    }
2490    Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size());
2491    Results.push_back(Tmp1);
2492    break;
2493  }
2494  case ISD::EXTRACT_ELEMENT: {
2495    MVT OpTy = Node->getOperand(0).getValueType();
2496    if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
2497      // 1 -> Hi
2498      Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
2499                         DAG.getConstant(OpTy.getSizeInBits()/2,
2500                                         TLI.getShiftAmountTy()));
2501      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
2502    } else {
2503      // 0 -> Lo
2504      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
2505                         Node->getOperand(0));
2506    }
2507    Results.push_back(Tmp1);
2508    break;
2509  }
2510  case ISD::STACKSAVE:
2511    // Expand to CopyFromReg if the target set
2512    // StackPointerRegisterToSaveRestore.
2513    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2514      Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
2515                                           Node->getValueType(0)));
2516      Results.push_back(Results[0].getValue(1));
2517    } else {
2518      Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
2519      Results.push_back(Node->getOperand(0));
2520    }
2521    break;
2522  case ISD::STACKRESTORE:
2523    // Expand to CopyToReg if the target set
2524    // StackPointerRegisterToSaveRestore.
2525    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2526      Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
2527                                         Node->getOperand(1)));
2528    } else {
2529      Results.push_back(Node->getOperand(0));
2530    }
2531    break;
2532  case ISD::FCOPYSIGN:
2533    Results.push_back(ExpandFCOPYSIGN(Node));
2534    break;
2535  case ISD::FNEG:
2536    // Expand Y = FNEG(X) ->  Y = SUB -0.0, X
2537    Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0));
2538    Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
2539                       Node->getOperand(0));
2540    Results.push_back(Tmp1);
2541    break;
2542  case ISD::FABS: {
2543    // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
2544    MVT VT = Node->getValueType(0);
2545    Tmp1 = Node->getOperand(0);
2546    Tmp2 = DAG.getConstantFP(0.0, VT);
2547    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
2548                        Tmp1, Tmp2, ISD::SETUGT);
2549    Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1);
2550    Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3);
2551    Results.push_back(Tmp1);
2552    break;
2553  }
2554  case ISD::FSQRT:
2555    Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
2556                                      RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128));
2557    break;
2558  case ISD::FSIN:
2559    Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
2560                                      RTLIB::SIN_F80, RTLIB::SIN_PPCF128));
2561    break;
2562  case ISD::FCOS:
2563    Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
2564                                      RTLIB::COS_F80, RTLIB::COS_PPCF128));
2565    break;
2566  case ISD::FLOG:
2567    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
2568                                      RTLIB::LOG_F80, RTLIB::LOG_PPCF128));
2569    break;
2570  case ISD::FLOG2:
2571    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
2572                                      RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128));
2573    break;
2574  case ISD::FLOG10:
2575    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
2576                                      RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128));
2577    break;
2578  case ISD::FEXP:
2579    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
2580                                      RTLIB::EXP_F80, RTLIB::EXP_PPCF128));
2581    break;
2582  case ISD::FEXP2:
2583    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
2584                                      RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128));
2585    break;
2586  case ISD::FTRUNC:
2587    Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
2588                                      RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128));
2589    break;
2590  case ISD::FFLOOR:
2591    Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
2592                                      RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128));
2593    break;
2594  case ISD::FCEIL:
2595    Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
2596                                      RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128));
2597    break;
2598  case ISD::FRINT:
2599    Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
2600                                      RTLIB::RINT_F80, RTLIB::RINT_PPCF128));
2601    break;
2602  case ISD::FNEARBYINT:
2603    Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
2604                                      RTLIB::NEARBYINT_F64,
2605                                      RTLIB::NEARBYINT_F80,
2606                                      RTLIB::NEARBYINT_PPCF128));
2607    break;
2608  case ISD::FPOWI:
2609    Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
2610                                      RTLIB::POWI_F80, RTLIB::POWI_PPCF128));
2611    break;
2612  case ISD::FPOW:
2613    Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
2614                                      RTLIB::POW_F80, RTLIB::POW_PPCF128));
2615    break;
2616  case ISD::FDIV:
2617    Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
2618                                      RTLIB::DIV_F80, RTLIB::DIV_PPCF128));
2619    break;
2620  case ISD::FREM:
2621    Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
2622                                      RTLIB::REM_F80, RTLIB::REM_PPCF128));
2623    break;
2624  case ISD::ConstantFP: {
2625    ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
2626    // Check to see if this FP immediate is already legal.
2627    bool isLegal = false;
2628    for (TargetLowering::legal_fpimm_iterator I = TLI.legal_fpimm_begin(),
2629            E = TLI.legal_fpimm_end(); I != E; ++I) {
2630      if (CFP->isExactlyValue(*I)) {
2631        isLegal = true;
2632        break;
2633      }
2634    }
2635    // If this is a legal constant, turn it into a TargetConstantFP node.
2636    if (isLegal)
2637      Results.push_back(SDValue(Node, 0));
2638    else
2639      Results.push_back(ExpandConstantFP(CFP, true, DAG, TLI));
2640    break;
2641  }
2642  case ISD::EHSELECTION: {
2643    unsigned Reg = TLI.getExceptionSelectorRegister();
2644    assert(Reg && "Can't expand to unknown register!");
2645    Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg,
2646                                         Node->getValueType(0)));
2647    Results.push_back(Results[0].getValue(1));
2648    break;
2649  }
2650  case ISD::EXCEPTIONADDR: {
2651    unsigned Reg = TLI.getExceptionAddressRegister();
2652    assert(Reg && "Can't expand to unknown register!");
2653    Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg,
2654                                         Node->getValueType(0)));
2655    Results.push_back(Results[0].getValue(1));
2656    break;
2657  }
2658  case ISD::SUB: {
2659    MVT VT = Node->getValueType(0);
2660    assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
2661           TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
2662           "Don't know how to expand this subtraction!");
2663    Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
2664               DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT));
2665    Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp2, DAG.getConstant(1, VT));
2666    Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
2667    break;
2668  }
2669  case ISD::UREM:
2670  case ISD::SREM: {
2671    MVT VT = Node->getValueType(0);
2672    SDVTList VTs = DAG.getVTList(VT, VT);
2673    bool isSigned = Node->getOpcode() == ISD::SREM;
2674    unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
2675    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2676    Tmp2 = Node->getOperand(0);
2677    Tmp3 = Node->getOperand(1);
2678    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
2679      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
2680    } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
2681      // X % Y -> X-X/Y*Y
2682      Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
2683      Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
2684      Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
2685    } else if (isSigned) {
2686      Tmp1 = ExpandIntLibCall(Node, true, RTLIB::SREM_I16, RTLIB::SREM_I32,
2687                              RTLIB::SREM_I64, RTLIB::SREM_I128);
2688    } else {
2689      Tmp1 = ExpandIntLibCall(Node, false, RTLIB::UREM_I16, RTLIB::UREM_I32,
2690                              RTLIB::UREM_I64, RTLIB::UREM_I128);
2691    }
2692    Results.push_back(Tmp1);
2693    break;
2694  }
2695  case ISD::UDIV:
2696  case ISD::SDIV: {
2697    bool isSigned = Node->getOpcode() == ISD::SDIV;
2698    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2699    MVT VT = Node->getValueType(0);
2700    SDVTList VTs = DAG.getVTList(VT, VT);
2701    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT))
2702      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
2703                         Node->getOperand(1));
2704    else if (isSigned)
2705      Tmp1 = ExpandIntLibCall(Node, true, RTLIB::SDIV_I16, RTLIB::SDIV_I32,
2706                              RTLIB::SDIV_I64, RTLIB::SDIV_I128);
2707    else
2708      Tmp1 = ExpandIntLibCall(Node, false, RTLIB::UDIV_I16, RTLIB::UDIV_I32,
2709                              RTLIB::UDIV_I64, RTLIB::UDIV_I128);
2710    Results.push_back(Tmp1);
2711    break;
2712  }
2713  case ISD::MULHU:
2714  case ISD::MULHS: {
2715    unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
2716                                                              ISD::SMUL_LOHI;
2717    MVT VT = Node->getValueType(0);
2718    SDVTList VTs = DAG.getVTList(VT, VT);
2719    assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
2720           "If this wasn't legal, it shouldn't have been created!");
2721    Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
2722                       Node->getOperand(1));
2723    Results.push_back(Tmp1.getValue(1));
2724    break;
2725  }
2726  case ISD::MUL: {
2727    MVT VT = Node->getValueType(0);
2728    SDVTList VTs = DAG.getVTList(VT, VT);
2729    // See if multiply or divide can be lowered using two-result operations.
2730    // We just need the low half of the multiply; try both the signed
2731    // and unsigned forms. If the target supports both SMUL_LOHI and
2732    // UMUL_LOHI, form a preference by checking which forms of plain
2733    // MULH it supports.
2734    bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
2735    bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
2736    bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
2737    bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
2738    unsigned OpToUse = 0;
2739    if (HasSMUL_LOHI && !HasMULHS) {
2740      OpToUse = ISD::SMUL_LOHI;
2741    } else if (HasUMUL_LOHI && !HasMULHU) {
2742      OpToUse = ISD::UMUL_LOHI;
2743    } else if (HasSMUL_LOHI) {
2744      OpToUse = ISD::SMUL_LOHI;
2745    } else if (HasUMUL_LOHI) {
2746      OpToUse = ISD::UMUL_LOHI;
2747    }
2748    if (OpToUse) {
2749      Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
2750                                    Node->getOperand(1)));
2751      break;
2752    }
2753    Tmp1 = ExpandIntLibCall(Node, false, RTLIB::MUL_I16, RTLIB::MUL_I32,
2754                            RTLIB::MUL_I64, RTLIB::MUL_I128);
2755    Results.push_back(Tmp1);
2756    break;
2757  }
2758  case ISD::SADDO:
2759  case ISD::SSUBO: {
2760    SDValue LHS = Node->getOperand(0);
2761    SDValue RHS = Node->getOperand(1);
2762    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
2763                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2764                              LHS, RHS);
2765    Results.push_back(Sum);
2766    MVT OType = Node->getValueType(1);
2767
2768    SDValue Zero = DAG.getConstant(0, LHS.getValueType());
2769
2770    //   LHSSign -> LHS >= 0
2771    //   RHSSign -> RHS >= 0
2772    //   SumSign -> Sum >= 0
2773    //
2774    //   Add:
2775    //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
2776    //   Sub:
2777    //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
2778    //
2779    SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
2780    SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
2781    SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
2782                                      Node->getOpcode() == ISD::SADDO ?
2783                                      ISD::SETEQ : ISD::SETNE);
2784
2785    SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
2786    SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
2787
2788    SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
2789    Results.push_back(Cmp);
2790    break;
2791  }
2792  case ISD::UADDO:
2793  case ISD::USUBO: {
2794    SDValue LHS = Node->getOperand(0);
2795    SDValue RHS = Node->getOperand(1);
2796    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
2797                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2798                              LHS, RHS);
2799    Results.push_back(Sum);
2800    Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS,
2801                                   Node->getOpcode () == ISD::UADDO ?
2802                                   ISD::SETULT : ISD::SETUGT));
2803    break;
2804  }
2805  case ISD::BUILD_PAIR: {
2806    MVT PairTy = Node->getValueType(0);
2807    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
2808    Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
2809    Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
2810                       DAG.getConstant(PairTy.getSizeInBits()/2,
2811                                       TLI.getShiftAmountTy()));
2812    Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
2813    break;
2814  }
2815  case ISD::SELECT:
2816    Tmp1 = Node->getOperand(0);
2817    Tmp2 = Node->getOperand(1);
2818    Tmp3 = Node->getOperand(2);
2819    if (Tmp1.getOpcode() == ISD::SETCC) {
2820      Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
2821                             Tmp2, Tmp3,
2822                             cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
2823    } else {
2824      Tmp1 = DAG.getSelectCC(dl, Tmp1,
2825                             DAG.getConstant(0, Tmp1.getValueType()),
2826                             Tmp2, Tmp3, ISD::SETNE);
2827    }
2828    Results.push_back(Tmp1);
2829    break;
2830  case ISD::BR_JT: {
2831    SDValue Chain = Node->getOperand(0);
2832    SDValue Table = Node->getOperand(1);
2833    SDValue Index = Node->getOperand(2);
2834
2835    MVT PTy = TLI.getPointerTy();
2836    MachineFunction &MF = DAG.getMachineFunction();
2837    unsigned EntrySize = MF.getJumpTableInfo()->getEntrySize();
2838    Index= DAG.getNode(ISD::MUL, dl, PTy,
2839                        Index, DAG.getConstant(EntrySize, PTy));
2840    SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
2841
2842    MVT MemVT = MVT::getIntegerVT(EntrySize * 8);
2843    SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr,
2844                                PseudoSourceValue::getJumpTable(), 0, MemVT);
2845    Addr = LD;
2846    if (TLI.getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2847      // For PIC, the sequence is:
2848      // BRIND(load(Jumptable + index) + RelocBase)
2849      // RelocBase can be JumpTable, GOT or some sort of global base.
2850      Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
2851                          TLI.getPICJumpTableRelocBase(Table, DAG));
2852    }
2853    Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
2854    Results.push_back(Tmp1);
2855    break;
2856  }
2857  case ISD::BRCOND:
2858    // Expand brcond's setcc into its constituent parts and create a BR_CC
2859    // Node.
2860    Tmp1 = Node->getOperand(0);
2861    Tmp2 = Node->getOperand(1);
2862    if (Tmp2.getOpcode() == ISD::SETCC) {
2863      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
2864                         Tmp1, Tmp2.getOperand(2),
2865                         Tmp2.getOperand(0), Tmp2.getOperand(1),
2866                         Node->getOperand(2));
2867    } else {
2868      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
2869                         DAG.getCondCode(ISD::SETNE), Tmp2,
2870                         DAG.getConstant(0, Tmp2.getValueType()),
2871                         Node->getOperand(2));
2872    }
2873    Results.push_back(Tmp1);
2874    break;
2875  case ISD::SETCC: {
2876    Tmp1 = Node->getOperand(0);
2877    Tmp2 = Node->getOperand(1);
2878    Tmp3 = Node->getOperand(2);
2879    LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl);
2880
2881    // If we expanded the SETCC into an AND/OR, return the new node
2882    if (Tmp2.getNode() == 0) {
2883      Results.push_back(Tmp1);
2884      break;
2885    }
2886
2887    // Otherwise, SETCC for the given comparison type must be completely
2888    // illegal; expand it into a SELECT_CC.
2889    MVT VT = Node->getValueType(0);
2890    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
2891                       DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3);
2892    Results.push_back(Tmp1);
2893    break;
2894  }
2895  case ISD::SELECT_CC: {
2896    Tmp1 = Node->getOperand(0);   // LHS
2897    Tmp2 = Node->getOperand(1);   // RHS
2898    Tmp3 = Node->getOperand(2);   // True
2899    Tmp4 = Node->getOperand(3);   // False
2900    SDValue CC = Node->getOperand(4);
2901
2902    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()),
2903                          Tmp1, Tmp2, CC, dl);
2904
2905    assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!");
2906    Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
2907    CC = DAG.getCondCode(ISD::SETNE);
2908    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2,
2909                       Tmp3, Tmp4, CC);
2910    Results.push_back(Tmp1);
2911    break;
2912  }
2913  case ISD::BR_CC: {
2914    Tmp1 = Node->getOperand(0);              // Chain
2915    Tmp2 = Node->getOperand(2);              // LHS
2916    Tmp3 = Node->getOperand(3);              // RHS
2917    Tmp4 = Node->getOperand(1);              // CC
2918
2919    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()),
2920                          Tmp2, Tmp3, Tmp4, dl);
2921    LastCALLSEQ_END = DAG.getEntryNode();
2922
2923    assert(!Tmp2.getNode() && "Can't legalize BR_CC with legal condition!");
2924    Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2,
2925                       Tmp3, Node->getOperand(4));
2926    Results.push_back(Tmp1);
2927    break;
2928  }
2929  case ISD::GLOBAL_OFFSET_TABLE:
2930  case ISD::GlobalAddress:
2931  case ISD::GlobalTLSAddress:
2932  case ISD::ExternalSymbol:
2933  case ISD::ConstantPool:
2934  case ISD::JumpTable:
2935  case ISD::INTRINSIC_W_CHAIN:
2936  case ISD::INTRINSIC_WO_CHAIN:
2937  case ISD::INTRINSIC_VOID:
2938    // FIXME: Custom lowering for these operations shouldn't return null!
2939    for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
2940      Results.push_back(SDValue(Node, i));
2941    break;
2942  }
2943}
2944void SelectionDAGLegalize::PromoteNode(SDNode *Node,
2945                                       SmallVectorImpl<SDValue> &Results) {
2946  MVT OVT = Node->getValueType(0);
2947  if (Node->getOpcode() == ISD::UINT_TO_FP ||
2948      Node->getOpcode() == ISD::SINT_TO_FP) {
2949    OVT = Node->getOperand(0).getValueType();
2950  }
2951  MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
2952  DebugLoc dl = Node->getDebugLoc();
2953  SDValue Tmp1, Tmp2, Tmp3;
2954  switch (Node->getOpcode()) {
2955  case ISD::CTTZ:
2956  case ISD::CTLZ:
2957  case ISD::CTPOP:
2958    // Zero extend the argument.
2959    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
2960    // Perform the larger operation.
2961    Tmp1 = DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Tmp1);
2962    if (Node->getOpcode() == ISD::CTTZ) {
2963      //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT)
2964      Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
2965                          Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT),
2966                          ISD::SETEQ);
2967      Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2,
2968                          DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1);
2969    } else if (Node->getOpcode() == ISD::CTLZ) {
2970      // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
2971      Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
2972                          DAG.getConstant(NVT.getSizeInBits() -
2973                                          OVT.getSizeInBits(), NVT));
2974    }
2975    Results.push_back(Tmp1);
2976    break;
2977  case ISD::BSWAP: {
2978    unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
2979    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Tmp1);
2980    Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
2981    Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
2982                          DAG.getConstant(DiffBits, TLI.getShiftAmountTy()));
2983    Results.push_back(Tmp1);
2984    break;
2985  }
2986  case ISD::FP_TO_UINT:
2987  case ISD::FP_TO_SINT:
2988    Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
2989                                 Node->getOpcode() == ISD::FP_TO_SINT, dl);
2990    Results.push_back(Tmp1);
2991    break;
2992  case ISD::UINT_TO_FP:
2993  case ISD::SINT_TO_FP:
2994    Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
2995                                 Node->getOpcode() == ISD::SINT_TO_FP, dl);
2996    Results.push_back(Tmp1);
2997    break;
2998  case ISD::AND:
2999  case ISD::OR:
3000  case ISD::XOR:
3001    assert(OVT.isVector() && "Don't know how to promote scalar logic ops");
3002    // Bit convert each of the values to the new type.
3003    Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0));
3004    Tmp2 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(1));
3005    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3006    // Bit convert the result back the original type.
3007    Results.push_back(DAG.getNode(ISD::BIT_CONVERT, dl, OVT, Tmp1));
3008    break;
3009  case ISD::SELECT:
3010    unsigned ExtOp, TruncOp;
3011    if (Node->getValueType(0).isVector()) {
3012      ExtOp   = ISD::BIT_CONVERT;
3013      TruncOp = ISD::BIT_CONVERT;
3014    } else if (Node->getValueType(0).isInteger()) {
3015      ExtOp   = ISD::ANY_EXTEND;
3016      TruncOp = ISD::TRUNCATE;
3017    } else {
3018      ExtOp   = ISD::FP_EXTEND;
3019      TruncOp = ISD::FP_ROUND;
3020    }
3021    Tmp1 = Node->getOperand(0);
3022    // Promote each of the values to the new type.
3023    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3024    Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
3025    // Perform the larger operation, then round down.
3026    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3);
3027    if (TruncOp != ISD::FP_ROUND)
3028      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
3029    else
3030      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
3031                         DAG.getIntPtrConstant(0));
3032    Results.push_back(Tmp1);
3033    break;
3034  case ISD::VECTOR_SHUFFLE: {
3035    SmallVector<int, 8> Mask;
3036    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
3037
3038    // Cast the two input vectors.
3039    Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0));
3040    Tmp2 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(1));
3041
3042    // Convert the shuffle mask to the right # elements.
3043    Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
3044    Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, OVT, Tmp1);
3045    Results.push_back(Tmp1);
3046    break;
3047  }
3048  case ISD::SETCC: {
3049    // First step, figure out the appropriate operation to use.
3050    // Allow SETCC to not be supported for all legal data types
3051    // Mostly this targets FP
3052    MVT NewInTy = Node->getOperand(0).getValueType();
3053    MVT OldVT = NewInTy; OldVT = OldVT;
3054
3055    // Scan for the appropriate larger type to use.
3056    while (1) {
3057      NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT()+1);
3058
3059      assert(NewInTy.isInteger() == OldVT.isInteger() &&
3060              "Fell off of the edge of the integer world");
3061      assert(NewInTy.isFloatingPoint() == OldVT.isFloatingPoint() &&
3062              "Fell off of the edge of the floating point world");
3063
3064      // If the target supports SETCC of this type, use it.
3065      if (TLI.isOperationLegalOrCustom(ISD::SETCC, NewInTy))
3066        break;
3067    }
3068    if (NewInTy.isInteger())
3069      assert(0 && "Cannot promote Legal Integer SETCC yet");
3070    else {
3071      Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NewInTy, Tmp1);
3072      Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NewInTy, Tmp2);
3073    }
3074    Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3075                                  Tmp1, Tmp2, Node->getOperand(2)));
3076    break;
3077  }
3078  }
3079}
3080
3081// SelectionDAG::Legalize - This is the entry point for the file.
3082//
3083void SelectionDAG::Legalize(bool TypesNeedLegalizing,
3084                            CodeGenOpt::Level OptLevel) {
3085  /// run - This is the main entry point to this class.
3086  ///
3087  SelectionDAGLegalize(*this, OptLevel).LegalizeDAG();
3088}
3089
3090