LegalizeDAG.cpp revision e96507c73111d88743a15db6d6329f4fbdde7dec
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SelectionDAG::Legalize method.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/CodeGen/MachineFunction.h"
16#include "llvm/CodeGen/MachineFrameInfo.h"
17#include "llvm/CodeGen/MachineJumpTableInfo.h"
18#include "llvm/CodeGen/MachineModuleInfo.h"
19#include "llvm/CodeGen/DwarfWriter.h"
20#include "llvm/Analysis/DebugInfo.h"
21#include "llvm/CodeGen/PseudoSourceValue.h"
22#include "llvm/Target/TargetFrameInfo.h"
23#include "llvm/Target/TargetLowering.h"
24#include "llvm/Target/TargetData.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/Target/TargetOptions.h"
27#include "llvm/Target/TargetSubtarget.h"
28#include "llvm/CallingConv.h"
29#include "llvm/Constants.h"
30#include "llvm/DerivedTypes.h"
31#include "llvm/Function.h"
32#include "llvm/GlobalVariable.h"
33#include "llvm/LLVMContext.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/Support/Compiler.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/MathExtras.h"
38#include "llvm/ADT/DenseMap.h"
39#include "llvm/ADT/SmallVector.h"
40#include "llvm/ADT/SmallPtrSet.h"
41#include <map>
42using namespace llvm;
43
44//===----------------------------------------------------------------------===//
45/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
46/// hacks on it until the target machine can handle it.  This involves
47/// eliminating value sizes the machine cannot handle (promoting small sizes to
48/// large sizes or splitting up large values into small values) as well as
49/// eliminating operations the machine cannot handle.
50///
51/// This code also does a small amount of optimization and recognition of idioms
52/// as part of its processing.  For example, if a target does not support a
53/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
54/// will attempt merge setcc and brc instructions into brcc's.
55///
56namespace {
57class VISIBILITY_HIDDEN SelectionDAGLegalize {
58  TargetLowering &TLI;
59  SelectionDAG &DAG;
60  CodeGenOpt::Level OptLevel;
61
62  // Libcall insertion helpers.
63
64  /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been
65  /// legalized.  We use this to ensure that calls are properly serialized
66  /// against each other, including inserted libcalls.
67  SDValue LastCALLSEQ_END;
68
69  /// IsLegalizingCall - This member is used *only* for purposes of providing
70  /// helpful assertions that a libcall isn't created while another call is
71  /// being legalized (which could lead to non-serialized call sequences).
72  bool IsLegalizingCall;
73
74  enum LegalizeAction {
75    Legal,      // The target natively supports this operation.
76    Promote,    // This operation should be executed in a larger type.
77    Expand      // Try to expand this to other ops, otherwise use a libcall.
78  };
79
80  /// ValueTypeActions - This is a bitvector that contains two bits for each
81  /// value type, where the two bits correspond to the LegalizeAction enum.
82  /// This can be queried with "getTypeAction(VT)".
83  TargetLowering::ValueTypeActionImpl ValueTypeActions;
84
85  /// LegalizedNodes - For nodes that are of legal width, and that have more
86  /// than one use, this map indicates what regularized operand to use.  This
87  /// allows us to avoid legalizing the same thing more than once.
88  DenseMap<SDValue, SDValue> LegalizedNodes;
89
90  void AddLegalizedOperand(SDValue From, SDValue To) {
91    LegalizedNodes.insert(std::make_pair(From, To));
92    // If someone requests legalization of the new node, return itself.
93    if (From != To)
94      LegalizedNodes.insert(std::make_pair(To, To));
95  }
96
97public:
98  SelectionDAGLegalize(SelectionDAG &DAG, CodeGenOpt::Level ol);
99
100  /// getTypeAction - Return how we should legalize values of this type, either
101  /// it is already legal or we need to expand it into multiple registers of
102  /// smaller integer type, or we need to promote it to a larger type.
103  LegalizeAction getTypeAction(EVT VT) const {
104    return
105        (LegalizeAction)ValueTypeActions.getTypeAction(*DAG.getContext(), VT);
106  }
107
108  /// isTypeLegal - Return true if this type is legal on this target.
109  ///
110  bool isTypeLegal(EVT VT) const {
111    return getTypeAction(VT) == Legal;
112  }
113
114  void LegalizeDAG();
115
116private:
117  /// LegalizeOp - We know that the specified value has a legal type.
118  /// Recursively ensure that the operands have legal types, then return the
119  /// result.
120  SDValue LegalizeOp(SDValue O);
121
122  SDValue OptimizeFloatStore(StoreSDNode *ST);
123
124  /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
125  /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
126  /// is necessary to spill the vector being inserted into to memory, perform
127  /// the insert there, and then read the result back.
128  SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
129                                         SDValue Idx, DebugLoc dl);
130  SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
131                                  SDValue Idx, DebugLoc dl);
132
133  /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
134  /// performs the same shuffe in terms of order or result bytes, but on a type
135  /// whose vector element type is narrower than the original shuffle type.
136  /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
137  SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl,
138                                     SDValue N1, SDValue N2,
139                                     SmallVectorImpl<int> &Mask) const;
140
141  bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
142                                    SmallPtrSet<SDNode*, 32> &NodesLeadingTo);
143
144  void LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
145                             DebugLoc dl);
146
147  SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
148  SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
149                          RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
150                          RTLIB::Libcall Call_PPCF128);
151  SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, RTLIB::Libcall Call_I16,
152                           RTLIB::Libcall Call_I32, RTLIB::Libcall Call_I64,
153                           RTLIB::Libcall Call_I128);
154
155  SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, DebugLoc dl);
156  SDValue ExpandBUILD_VECTOR(SDNode *Node);
157  SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
158  SDValue ExpandDBG_STOPPOINT(SDNode *Node);
159  void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
160                                SmallVectorImpl<SDValue> &Results);
161  SDValue ExpandFCOPYSIGN(SDNode *Node);
162  SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT,
163                               DebugLoc dl);
164  SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned,
165                                DebugLoc dl);
166  SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned,
167                                DebugLoc dl);
168
169  SDValue ExpandBSWAP(SDValue Op, DebugLoc dl);
170  SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl);
171
172  SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
173  SDValue ExpandVectorBuildThroughStack(SDNode* Node);
174
175  void ExpandNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
176  void PromoteNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
177};
178}
179
180/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
181/// performs the same shuffe in terms of order or result bytes, but on a type
182/// whose vector element type is narrower than the original shuffle type.
183/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
184SDValue
185SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT,  DebugLoc dl,
186                                                 SDValue N1, SDValue N2,
187                                             SmallVectorImpl<int> &Mask) const {
188  EVT EltVT = NVT.getVectorElementType();
189  unsigned NumMaskElts = VT.getVectorNumElements();
190  unsigned NumDestElts = NVT.getVectorNumElements();
191  unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
192
193  assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
194
195  if (NumEltsGrowth == 1)
196    return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
197
198  SmallVector<int, 8> NewMask;
199  for (unsigned i = 0; i != NumMaskElts; ++i) {
200    int Idx = Mask[i];
201    for (unsigned j = 0; j != NumEltsGrowth; ++j) {
202      if (Idx < 0)
203        NewMask.push_back(-1);
204      else
205        NewMask.push_back(Idx * NumEltsGrowth + j);
206    }
207  }
208  assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
209  assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
210  return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
211}
212
213SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag,
214                                           CodeGenOpt::Level ol)
215  : TLI(dag.getTargetLoweringInfo()), DAG(dag), OptLevel(ol),
216    ValueTypeActions(TLI.getValueTypeActions()) {
217  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
218         "Too many value types for ValueTypeActions to hold!");
219}
220
221void SelectionDAGLegalize::LegalizeDAG() {
222  LastCALLSEQ_END = DAG.getEntryNode();
223  IsLegalizingCall = false;
224
225  // The legalize process is inherently a bottom-up recursive process (users
226  // legalize their uses before themselves).  Given infinite stack space, we
227  // could just start legalizing on the root and traverse the whole graph.  In
228  // practice however, this causes us to run out of stack space on large basic
229  // blocks.  To avoid this problem, compute an ordering of the nodes where each
230  // node is only legalized after all of its operands are legalized.
231  DAG.AssignTopologicalOrder();
232  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
233       E = prior(DAG.allnodes_end()); I != next(E); ++I)
234    LegalizeOp(SDValue(I, 0));
235
236  // Finally, it's possible the root changed.  Get the new root.
237  SDValue OldRoot = DAG.getRoot();
238  assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
239  DAG.setRoot(LegalizedNodes[OldRoot]);
240
241  LegalizedNodes.clear();
242
243  // Remove dead nodes now.
244  DAG.RemoveDeadNodes();
245}
246
247
248/// FindCallEndFromCallStart - Given a chained node that is part of a call
249/// sequence, find the CALLSEQ_END node that terminates the call sequence.
250static SDNode *FindCallEndFromCallStart(SDNode *Node) {
251  if (Node->getOpcode() == ISD::CALLSEQ_END)
252    return Node;
253  if (Node->use_empty())
254    return 0;   // No CallSeqEnd
255
256  // The chain is usually at the end.
257  SDValue TheChain(Node, Node->getNumValues()-1);
258  if (TheChain.getValueType() != MVT::Other) {
259    // Sometimes it's at the beginning.
260    TheChain = SDValue(Node, 0);
261    if (TheChain.getValueType() != MVT::Other) {
262      // Otherwise, hunt for it.
263      for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i)
264        if (Node->getValueType(i) == MVT::Other) {
265          TheChain = SDValue(Node, i);
266          break;
267        }
268
269      // Otherwise, we walked into a node without a chain.
270      if (TheChain.getValueType() != MVT::Other)
271        return 0;
272    }
273  }
274
275  for (SDNode::use_iterator UI = Node->use_begin(),
276       E = Node->use_end(); UI != E; ++UI) {
277
278    // Make sure to only follow users of our token chain.
279    SDNode *User = *UI;
280    for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
281      if (User->getOperand(i) == TheChain)
282        if (SDNode *Result = FindCallEndFromCallStart(User))
283          return Result;
284  }
285  return 0;
286}
287
288/// FindCallStartFromCallEnd - Given a chained node that is part of a call
289/// sequence, find the CALLSEQ_START node that initiates the call sequence.
290static SDNode *FindCallStartFromCallEnd(SDNode *Node) {
291  assert(Node && "Didn't find callseq_start for a call??");
292  if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
293
294  assert(Node->getOperand(0).getValueType() == MVT::Other &&
295         "Node doesn't have a token chain argument!");
296  return FindCallStartFromCallEnd(Node->getOperand(0).getNode());
297}
298
299/// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to
300/// see if any uses can reach Dest.  If no dest operands can get to dest,
301/// legalize them, legalize ourself, and return false, otherwise, return true.
302///
303/// Keep track of the nodes we fine that actually do lead to Dest in
304/// NodesLeadingTo.  This avoids retraversing them exponential number of times.
305///
306bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
307                                     SmallPtrSet<SDNode*, 32> &NodesLeadingTo) {
308  if (N == Dest) return true;  // N certainly leads to Dest :)
309
310  // If we've already processed this node and it does lead to Dest, there is no
311  // need to reprocess it.
312  if (NodesLeadingTo.count(N)) return true;
313
314  // If the first result of this node has been already legalized, then it cannot
315  // reach N.
316  if (LegalizedNodes.count(SDValue(N, 0))) return false;
317
318  // Okay, this node has not already been legalized.  Check and legalize all
319  // operands.  If none lead to Dest, then we can legalize this node.
320  bool OperandsLeadToDest = false;
321  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
322    OperandsLeadToDest |=     // If an operand leads to Dest, so do we.
323      LegalizeAllNodesNotLeadingTo(N->getOperand(i).getNode(), Dest, NodesLeadingTo);
324
325  if (OperandsLeadToDest) {
326    NodesLeadingTo.insert(N);
327    return true;
328  }
329
330  // Okay, this node looks safe, legalize it and return false.
331  LegalizeOp(SDValue(N, 0));
332  return false;
333}
334
335/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
336/// a load from the constant pool.
337static SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP,
338                                SelectionDAG &DAG, const TargetLowering &TLI) {
339  bool Extend = false;
340  DebugLoc dl = CFP->getDebugLoc();
341
342  // If a FP immediate is precise when represented as a float and if the
343  // target can do an extending load from float to double, we put it into
344  // the constant pool as a float, even if it's is statically typed as a
345  // double.  This shrinks FP constants and canonicalizes them for targets where
346  // an FP extending load is the same cost as a normal load (such as on the x87
347  // fp stack or PPC FP unit).
348  EVT VT = CFP->getValueType(0);
349  ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
350  if (!UseCP) {
351    assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
352    return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(),
353                           (VT == MVT::f64) ? MVT::i64 : MVT::i32);
354  }
355
356  EVT OrigVT = VT;
357  EVT SVT = VT;
358  while (SVT != MVT::f32) {
359    SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
360    if (CFP->isValueValidForType(SVT, CFP->getValueAPF()) &&
361        // Only do this if the target has a native EXTLOAD instruction from
362        // smaller type.
363        TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
364        TLI.ShouldShrinkFPConstant(OrigVT)) {
365      const Type *SType = SVT.getTypeForEVT(*DAG.getContext());
366      LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
367      VT = SVT;
368      Extend = true;
369    }
370  }
371
372  SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
373  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
374  if (Extend)
375    return DAG.getExtLoad(ISD::EXTLOAD, dl,
376                          OrigVT, DAG.getEntryNode(),
377                          CPIdx, PseudoSourceValue::getConstantPool(),
378                          0, VT, false, Alignment);
379  return DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
380                     PseudoSourceValue::getConstantPool(), 0, false, Alignment);
381}
382
383/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
384static
385SDValue ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
386                             const TargetLowering &TLI) {
387  SDValue Chain = ST->getChain();
388  SDValue Ptr = ST->getBasePtr();
389  SDValue Val = ST->getValue();
390  EVT VT = Val.getValueType();
391  int Alignment = ST->getAlignment();
392  int SVOffset = ST->getSrcValueOffset();
393  DebugLoc dl = ST->getDebugLoc();
394  if (ST->getMemoryVT().isFloatingPoint() ||
395      ST->getMemoryVT().isVector()) {
396    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
397    if (TLI.isTypeLegal(intVT)) {
398      // Expand to a bitconvert of the value to the integer type of the
399      // same size, then a (misaligned) int store.
400      // FIXME: Does not handle truncating floating point stores!
401      SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, intVT, Val);
402      return DAG.getStore(Chain, dl, Result, Ptr, ST->getSrcValue(),
403                          SVOffset, ST->isVolatile(), Alignment);
404    } else {
405      // Do a (aligned) store to a stack slot, then copy from the stack slot
406      // to the final destination using (unaligned) integer loads and stores.
407      EVT StoredVT = ST->getMemoryVT();
408      EVT RegVT =
409        TLI.getRegisterType(*DAG.getContext(), EVT::getIntegerVT(*DAG.getContext(), StoredVT.getSizeInBits()));
410      unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
411      unsigned RegBytes = RegVT.getSizeInBits() / 8;
412      unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
413
414      // Make sure the stack slot is also aligned for the register type.
415      SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
416
417      // Perform the original store, only redirected to the stack slot.
418      SDValue Store = DAG.getTruncStore(Chain, dl,
419                                        Val, StackPtr, NULL, 0, StoredVT);
420      SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
421      SmallVector<SDValue, 8> Stores;
422      unsigned Offset = 0;
423
424      // Do all but one copies using the full register width.
425      for (unsigned i = 1; i < NumRegs; i++) {
426        // Load one integer register's worth from the stack slot.
427        SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr, NULL, 0);
428        // Store it to the final location.  Remember the store.
429        Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
430                                      ST->getSrcValue(), SVOffset + Offset,
431                                      ST->isVolatile(),
432                                      MinAlign(ST->getAlignment(), Offset)));
433        // Increment the pointers.
434        Offset += RegBytes;
435        StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
436                               Increment);
437        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
438      }
439
440      // The last store may be partial.  Do a truncating store.  On big-endian
441      // machines this requires an extending load from the stack slot to ensure
442      // that the bits are in the right place.
443      EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
444
445      // Load from the stack slot.
446      SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
447                                    NULL, 0, MemVT);
448
449      Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
450                                         ST->getSrcValue(), SVOffset + Offset,
451                                         MemVT, ST->isVolatile(),
452                                         MinAlign(ST->getAlignment(), Offset)));
453      // The order of the stores doesn't matter - say it with a TokenFactor.
454      return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
455                         Stores.size());
456    }
457  }
458  assert(ST->getMemoryVT().isInteger() &&
459         !ST->getMemoryVT().isVector() &&
460         "Unaligned store of unknown type.");
461  // Get the half-size VT
462  EVT NewStoredVT =
463    (MVT::SimpleValueType)(ST->getMemoryVT().getSimpleVT().SimpleTy - 1);
464  int NumBits = NewStoredVT.getSizeInBits();
465  int IncrementSize = NumBits / 8;
466
467  // Divide the stored value in two parts.
468  SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
469  SDValue Lo = Val;
470  SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
471
472  // Store the two parts
473  SDValue Store1, Store2;
474  Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
475                             ST->getSrcValue(), SVOffset, NewStoredVT,
476                             ST->isVolatile(), Alignment);
477  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
478                    DAG.getConstant(IncrementSize, TLI.getPointerTy()));
479  Alignment = MinAlign(Alignment, IncrementSize);
480  Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
481                             ST->getSrcValue(), SVOffset + IncrementSize,
482                             NewStoredVT, ST->isVolatile(), Alignment);
483
484  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
485}
486
487/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
488static
489SDValue ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
490                            const TargetLowering &TLI) {
491  int SVOffset = LD->getSrcValueOffset();
492  SDValue Chain = LD->getChain();
493  SDValue Ptr = LD->getBasePtr();
494  EVT VT = LD->getValueType(0);
495  EVT LoadedVT = LD->getMemoryVT();
496  DebugLoc dl = LD->getDebugLoc();
497  if (VT.isFloatingPoint() || VT.isVector()) {
498    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
499    if (TLI.isTypeLegal(intVT)) {
500      // Expand to a (misaligned) integer load of the same size,
501      // then bitconvert to floating point or vector.
502      SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getSrcValue(),
503                                    SVOffset, LD->isVolatile(),
504                                    LD->getAlignment());
505      SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, LoadedVT, newLoad);
506      if (VT.isFloatingPoint() && LoadedVT != VT)
507        Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result);
508
509      SDValue Ops[] = { Result, Chain };
510      return DAG.getMergeValues(Ops, 2, dl);
511    } else {
512      // Copy the value to a (aligned) stack slot using (unaligned) integer
513      // loads and stores, then do a (aligned) load from the stack slot.
514      EVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT);
515      unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
516      unsigned RegBytes = RegVT.getSizeInBits() / 8;
517      unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
518
519      // Make sure the stack slot is also aligned for the register type.
520      SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
521
522      SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
523      SmallVector<SDValue, 8> Stores;
524      SDValue StackPtr = StackBase;
525      unsigned Offset = 0;
526
527      // Do all but one copies using the full register width.
528      for (unsigned i = 1; i < NumRegs; i++) {
529        // Load one integer register's worth from the original location.
530        SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr, LD->getSrcValue(),
531                                   SVOffset + Offset, LD->isVolatile(),
532                                   MinAlign(LD->getAlignment(), Offset));
533        // Follow the load with a store to the stack slot.  Remember the store.
534        Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
535                                      NULL, 0));
536        // Increment the pointers.
537        Offset += RegBytes;
538        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
539        StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
540                               Increment);
541      }
542
543      // The last copy may be partial.  Do an extending load.
544      EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 8 * (LoadedBytes - Offset));
545      SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
546                                    LD->getSrcValue(), SVOffset + Offset,
547                                    MemVT, LD->isVolatile(),
548                                    MinAlign(LD->getAlignment(), Offset));
549      // Follow the load with a store to the stack slot.  Remember the store.
550      // On big-endian machines this requires a truncating store to ensure
551      // that the bits end up in the right place.
552      Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
553                                         NULL, 0, MemVT));
554
555      // The order of the stores doesn't matter - say it with a TokenFactor.
556      SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
557                               Stores.size());
558
559      // Finally, perform the original load only redirected to the stack slot.
560      Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
561                            NULL, 0, LoadedVT);
562
563      // Callers expect a MERGE_VALUES node.
564      SDValue Ops[] = { Load, TF };
565      return DAG.getMergeValues(Ops, 2, dl);
566    }
567  }
568  assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
569         "Unaligned load of unsupported type.");
570
571  // Compute the new VT that is half the size of the old one.  This is an
572  // integer MVT.
573  unsigned NumBits = LoadedVT.getSizeInBits();
574  EVT NewLoadedVT;
575  NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
576  NumBits >>= 1;
577
578  unsigned Alignment = LD->getAlignment();
579  unsigned IncrementSize = NumBits / 8;
580  ISD::LoadExtType HiExtType = LD->getExtensionType();
581
582  // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
583  if (HiExtType == ISD::NON_EXTLOAD)
584    HiExtType = ISD::ZEXTLOAD;
585
586  // Load the value in two parts
587  SDValue Lo, Hi;
588  if (TLI.isLittleEndian()) {
589    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(),
590                        SVOffset, NewLoadedVT, LD->isVolatile(), Alignment);
591    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
592                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
593    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(),
594                        SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
595                        MinAlign(Alignment, IncrementSize));
596  } else {
597    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(),
598                        SVOffset, NewLoadedVT, LD->isVolatile(), Alignment);
599    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
600                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
601    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(),
602                        SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
603                        MinAlign(Alignment, IncrementSize));
604  }
605
606  // aggregate the two parts
607  SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
608  SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
609  Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
610
611  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
612                             Hi.getValue(1));
613
614  SDValue Ops[] = { Result, TF };
615  return DAG.getMergeValues(Ops, 2, dl);
616}
617
618/// PerformInsertVectorEltInMemory - Some target cannot handle a variable
619/// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
620/// is necessary to spill the vector being inserted into to memory, perform
621/// the insert there, and then read the result back.
622SDValue SelectionDAGLegalize::
623PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
624                               DebugLoc dl) {
625  SDValue Tmp1 = Vec;
626  SDValue Tmp2 = Val;
627  SDValue Tmp3 = Idx;
628
629  // If the target doesn't support this, we have to spill the input vector
630  // to a temporary stack slot, update the element, then reload it.  This is
631  // badness.  We could also load the value into a vector register (either
632  // with a "move to register" or "extload into register" instruction, then
633  // permute it into place, if the idx is a constant and if the idx is
634  // supported by the target.
635  EVT VT    = Tmp1.getValueType();
636  EVT EltVT = VT.getVectorElementType();
637  EVT IdxVT = Tmp3.getValueType();
638  EVT PtrVT = TLI.getPointerTy();
639  SDValue StackPtr = DAG.CreateStackTemporary(VT);
640
641  int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
642
643  // Store the vector.
644  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr,
645                            PseudoSourceValue::getFixedStack(SPFI), 0);
646
647  // Truncate or zero extend offset to target pointer type.
648  unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
649  Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3);
650  // Add the offset to the index.
651  unsigned EltSize = EltVT.getSizeInBits()/8;
652  Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
653  SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
654  // Store the scalar value.
655  Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2,
656                         PseudoSourceValue::getFixedStack(SPFI), 0, EltVT);
657  // Load the updated vector.
658  return DAG.getLoad(VT, dl, Ch, StackPtr,
659                     PseudoSourceValue::getFixedStack(SPFI), 0);
660}
661
662
663SDValue SelectionDAGLegalize::
664ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) {
665  if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
666    // SCALAR_TO_VECTOR requires that the type of the value being inserted
667    // match the element type of the vector being created, except for
668    // integers in which case the inserted value can be over width.
669    EVT EltVT = Vec.getValueType().getVectorElementType();
670    if (Val.getValueType() == EltVT ||
671        (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
672      SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
673                                  Vec.getValueType(), Val);
674
675      unsigned NumElts = Vec.getValueType().getVectorNumElements();
676      // We generate a shuffle of InVec and ScVec, so the shuffle mask
677      // should be 0,1,2,3,4,5... with the appropriate element replaced with
678      // elt 0 of the RHS.
679      SmallVector<int, 8> ShufOps;
680      for (unsigned i = 0; i != NumElts; ++i)
681        ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
682
683      return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
684                                  &ShufOps[0]);
685    }
686  }
687  return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
688}
689
690SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
691  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
692  // FIXME: We shouldn't do this for TargetConstantFP's.
693  // FIXME: move this to the DAG Combiner!  Note that we can't regress due
694  // to phase ordering between legalized code and the dag combiner.  This
695  // probably means that we need to integrate dag combiner and legalizer
696  // together.
697  // We generally can't do this one for long doubles.
698  SDValue Tmp1 = ST->getChain();
699  SDValue Tmp2 = ST->getBasePtr();
700  SDValue Tmp3;
701  int SVOffset = ST->getSrcValueOffset();
702  unsigned Alignment = ST->getAlignment();
703  bool isVolatile = ST->isVolatile();
704  DebugLoc dl = ST->getDebugLoc();
705  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
706    if (CFP->getValueType(0) == MVT::f32 &&
707        getTypeAction(MVT::i32) == Legal) {
708      Tmp3 = DAG.getConstant(CFP->getValueAPF().
709                                      bitcastToAPInt().zextOrTrunc(32),
710                              MVT::i32);
711      return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
712                          SVOffset, isVolatile, Alignment);
713    } else if (CFP->getValueType(0) == MVT::f64) {
714      // If this target supports 64-bit registers, do a single 64-bit store.
715      if (getTypeAction(MVT::i64) == Legal) {
716        Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
717                                  zextOrTrunc(64), MVT::i64);
718        return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
719                            SVOffset, isVolatile, Alignment);
720      } else if (getTypeAction(MVT::i32) == Legal && !ST->isVolatile()) {
721        // Otherwise, if the target supports 32-bit registers, use 2 32-bit
722        // stores.  If the target supports neither 32- nor 64-bits, this
723        // xform is certainly not worth it.
724        const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt();
725        SDValue Lo = DAG.getConstant(APInt(IntVal).trunc(32), MVT::i32);
726        SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32);
727        if (TLI.isBigEndian()) std::swap(Lo, Hi);
728
729        Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getSrcValue(),
730                          SVOffset, isVolatile, Alignment);
731        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
732                            DAG.getIntPtrConstant(4));
733        Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(), SVOffset+4,
734                          isVolatile, MinAlign(Alignment, 4U));
735
736        return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
737      }
738    }
739  }
740  return SDValue();
741}
742
743/// LegalizeOp - We know that the specified value has a legal type, and
744/// that its operands are legal.  Now ensure that the operation itself
745/// is legal, recursively ensuring that the operands' operations remain
746/// legal.
747SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
748  if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
749    return Op;
750
751  SDNode *Node = Op.getNode();
752  DebugLoc dl = Node->getDebugLoc();
753
754  for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
755    assert(getTypeAction(Node->getValueType(i)) == Legal &&
756           "Unexpected illegal type!");
757
758  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
759    assert((isTypeLegal(Node->getOperand(i).getValueType()) ||
760            Node->getOperand(i).getOpcode() == ISD::TargetConstant) &&
761           "Unexpected illegal type!");
762
763  // Note that LegalizeOp may be reentered even from single-use nodes, which
764  // means that we always must cache transformed nodes.
765  DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
766  if (I != LegalizedNodes.end()) return I->second;
767
768  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
769  SDValue Result = Op;
770  bool isCustom = false;
771
772  // Figure out the correct action; the way to query this varies by opcode
773  TargetLowering::LegalizeAction Action;
774  bool SimpleFinishLegalizing = true;
775  switch (Node->getOpcode()) {
776  case ISD::INTRINSIC_W_CHAIN:
777  case ISD::INTRINSIC_WO_CHAIN:
778  case ISD::INTRINSIC_VOID:
779  case ISD::VAARG:
780  case ISD::STACKSAVE:
781    Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
782    break;
783  case ISD::SINT_TO_FP:
784  case ISD::UINT_TO_FP:
785  case ISD::EXTRACT_VECTOR_ELT:
786    Action = TLI.getOperationAction(Node->getOpcode(),
787                                    Node->getOperand(0).getValueType());
788    break;
789  case ISD::FP_ROUND_INREG:
790  case ISD::SIGN_EXTEND_INREG: {
791    EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
792    Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
793    break;
794  }
795  case ISD::SELECT_CC:
796  case ISD::SETCC:
797  case ISD::BR_CC: {
798    unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
799                         Node->getOpcode() == ISD::SETCC ? 2 : 1;
800    unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
801    EVT OpVT = Node->getOperand(CompareOperand).getValueType();
802    ISD::CondCode CCCode =
803        cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
804    Action = TLI.getCondCodeAction(CCCode, OpVT);
805    if (Action == TargetLowering::Legal) {
806      if (Node->getOpcode() == ISD::SELECT_CC)
807        Action = TLI.getOperationAction(Node->getOpcode(),
808                                        Node->getValueType(0));
809      else
810        Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
811    }
812    break;
813  }
814  case ISD::LOAD:
815  case ISD::STORE:
816    // FIXME: Model these properly.  LOAD and STORE are complicated, and
817    // STORE expects the unlegalized operand in some cases.
818    SimpleFinishLegalizing = false;
819    break;
820  case ISD::CALLSEQ_START:
821  case ISD::CALLSEQ_END:
822    // FIXME: This shouldn't be necessary.  These nodes have special properties
823    // dealing with the recursive nature of legalization.  Removing this
824    // special case should be done as part of making LegalizeDAG non-recursive.
825    SimpleFinishLegalizing = false;
826    break;
827  case ISD::EXTRACT_ELEMENT:
828  case ISD::FLT_ROUNDS_:
829  case ISD::SADDO:
830  case ISD::SSUBO:
831  case ISD::UADDO:
832  case ISD::USUBO:
833  case ISD::SMULO:
834  case ISD::UMULO:
835  case ISD::FPOWI:
836  case ISD::MERGE_VALUES:
837  case ISD::EH_RETURN:
838  case ISD::FRAME_TO_ARGS_OFFSET:
839    // These operations lie about being legal: when they claim to be legal,
840    // they should actually be expanded.
841    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
842    if (Action == TargetLowering::Legal)
843      Action = TargetLowering::Expand;
844    break;
845  case ISD::TRAMPOLINE:
846  case ISD::FRAMEADDR:
847  case ISD::RETURNADDR:
848    // These operations lie about being legal: when they claim to be legal,
849    // they should actually be custom-lowered.
850    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
851    if (Action == TargetLowering::Legal)
852      Action = TargetLowering::Custom;
853    break;
854  case ISD::BUILD_VECTOR:
855    // A weird case: legalization for BUILD_VECTOR never legalizes the
856    // operands!
857    // FIXME: This really sucks... changing it isn't semantically incorrect,
858    // but it massively pessimizes the code for floating-point BUILD_VECTORs
859    // because ConstantFP operands get legalized into constant pool loads
860    // before the BUILD_VECTOR code can see them.  It doesn't usually bite,
861    // though, because BUILD_VECTORS usually get lowered into other nodes
862    // which get legalized properly.
863    SimpleFinishLegalizing = false;
864    break;
865  default:
866    if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
867      Action = TargetLowering::Legal;
868    } else {
869      Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
870    }
871    break;
872  }
873
874  if (SimpleFinishLegalizing) {
875    SmallVector<SDValue, 8> Ops, ResultVals;
876    for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
877      Ops.push_back(LegalizeOp(Node->getOperand(i)));
878    switch (Node->getOpcode()) {
879    default: break;
880    case ISD::BR:
881    case ISD::BRIND:
882    case ISD::BR_JT:
883    case ISD::BR_CC:
884    case ISD::BRCOND:
885      // Branches tweak the chain to include LastCALLSEQ_END
886      Ops[0] = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ops[0],
887                            LastCALLSEQ_END);
888      Ops[0] = LegalizeOp(Ops[0]);
889      LastCALLSEQ_END = DAG.getEntryNode();
890      break;
891    case ISD::SHL:
892    case ISD::SRL:
893    case ISD::SRA:
894    case ISD::ROTL:
895    case ISD::ROTR:
896      // Legalizing shifts/rotates requires adjusting the shift amount
897      // to the appropriate width.
898      if (!Ops[1].getValueType().isVector())
899        Ops[1] = LegalizeOp(DAG.getShiftAmountOperand(Ops[1]));
900      break;
901    }
902
903    Result = DAG.UpdateNodeOperands(Result.getValue(0), Ops.data(),
904                                    Ops.size());
905    switch (Action) {
906    case TargetLowering::Legal:
907      for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
908        ResultVals.push_back(Result.getValue(i));
909      break;
910    case TargetLowering::Custom:
911      // FIXME: The handling for custom lowering with multiple results is
912      // a complete mess.
913      Tmp1 = TLI.LowerOperation(Result, DAG);
914      if (Tmp1.getNode()) {
915        for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
916          if (e == 1)
917            ResultVals.push_back(Tmp1);
918          else
919            ResultVals.push_back(Tmp1.getValue(i));
920        }
921        break;
922      }
923
924      // FALL THROUGH
925    case TargetLowering::Expand:
926      ExpandNode(Result.getNode(), ResultVals);
927      break;
928    case TargetLowering::Promote:
929      PromoteNode(Result.getNode(), ResultVals);
930      break;
931    }
932    if (!ResultVals.empty()) {
933      for (unsigned i = 0, e = ResultVals.size(); i != e; ++i) {
934        if (ResultVals[i] != SDValue(Node, i))
935          ResultVals[i] = LegalizeOp(ResultVals[i]);
936        AddLegalizedOperand(SDValue(Node, i), ResultVals[i]);
937      }
938      return ResultVals[Op.getResNo()];
939    }
940  }
941
942  switch (Node->getOpcode()) {
943  default:
944#ifndef NDEBUG
945    cerr << "NODE: "; Node->dump(&DAG); cerr << "\n";
946#endif
947    llvm_unreachable("Do not know how to legalize this operator!");
948
949  case ISD::BUILD_VECTOR:
950    switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) {
951    default: llvm_unreachable("This action is not supported yet!");
952    case TargetLowering::Custom:
953      Tmp3 = TLI.LowerOperation(Result, DAG);
954      if (Tmp3.getNode()) {
955        Result = Tmp3;
956        break;
957      }
958      // FALLTHROUGH
959    case TargetLowering::Expand:
960      Result = ExpandBUILD_VECTOR(Result.getNode());
961      break;
962    }
963    break;
964  case ISD::CALLSEQ_START: {
965    SDNode *CallEnd = FindCallEndFromCallStart(Node);
966
967    // Recursively Legalize all of the inputs of the call end that do not lead
968    // to this call start.  This ensures that any libcalls that need be inserted
969    // are inserted *before* the CALLSEQ_START.
970    {SmallPtrSet<SDNode*, 32> NodesLeadingTo;
971    for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i)
972      LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).getNode(), Node,
973                                   NodesLeadingTo);
974    }
975
976    // Now that we legalized all of the inputs (which may have inserted
977    // libcalls) create the new CALLSEQ_START node.
978    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
979
980    // Merge in the last call, to ensure that this call start after the last
981    // call ended.
982    if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) {
983      Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
984                         Tmp1, LastCALLSEQ_END);
985      Tmp1 = LegalizeOp(Tmp1);
986    }
987
988    // Do not try to legalize the target-specific arguments (#1+).
989    if (Tmp1 != Node->getOperand(0)) {
990      SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
991      Ops[0] = Tmp1;
992      Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
993    }
994
995    // Remember that the CALLSEQ_START is legalized.
996    AddLegalizedOperand(Op.getValue(0), Result);
997    if (Node->getNumValues() == 2)    // If this has a flag result, remember it.
998      AddLegalizedOperand(Op.getValue(1), Result.getValue(1));
999
1000    // Now that the callseq_start and all of the non-call nodes above this call
1001    // sequence have been legalized, legalize the call itself.  During this
1002    // process, no libcalls can/will be inserted, guaranteeing that no calls
1003    // can overlap.
1004    assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!");
1005    // Note that we are selecting this call!
1006    LastCALLSEQ_END = SDValue(CallEnd, 0);
1007    IsLegalizingCall = true;
1008
1009    // Legalize the call, starting from the CALLSEQ_END.
1010    LegalizeOp(LastCALLSEQ_END);
1011    assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!");
1012    return Result;
1013  }
1014  case ISD::CALLSEQ_END:
1015    // If the CALLSEQ_START node hasn't been legalized first, legalize it.  This
1016    // will cause this node to be legalized as well as handling libcalls right.
1017    if (LastCALLSEQ_END.getNode() != Node) {
1018      LegalizeOp(SDValue(FindCallStartFromCallEnd(Node), 0));
1019      DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
1020      assert(I != LegalizedNodes.end() &&
1021             "Legalizing the call start should have legalized this node!");
1022      return I->second;
1023    }
1024
1025    // Otherwise, the call start has been legalized and everything is going
1026    // according to plan.  Just legalize ourselves normally here.
1027    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1028    // Do not try to legalize the target-specific arguments (#1+), except for
1029    // an optional flag input.
1030    if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Flag){
1031      if (Tmp1 != Node->getOperand(0)) {
1032        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1033        Ops[0] = Tmp1;
1034        Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1035      }
1036    } else {
1037      Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1));
1038      if (Tmp1 != Node->getOperand(0) ||
1039          Tmp2 != Node->getOperand(Node->getNumOperands()-1)) {
1040        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1041        Ops[0] = Tmp1;
1042        Ops.back() = Tmp2;
1043        Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1044      }
1045    }
1046    assert(IsLegalizingCall && "Call sequence imbalance between start/end?");
1047    // This finishes up call legalization.
1048    IsLegalizingCall = false;
1049
1050    // If the CALLSEQ_END node has a flag, remember that we legalized it.
1051    AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0));
1052    if (Node->getNumValues() == 2)
1053      AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1));
1054    return Result.getValue(Op.getResNo());
1055  case ISD::LOAD: {
1056    LoadSDNode *LD = cast<LoadSDNode>(Node);
1057    Tmp1 = LegalizeOp(LD->getChain());   // Legalize the chain.
1058    Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer.
1059
1060    ISD::LoadExtType ExtType = LD->getExtensionType();
1061    if (ExtType == ISD::NON_EXTLOAD) {
1062      EVT VT = Node->getValueType(0);
1063      Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset());
1064      Tmp3 = Result.getValue(0);
1065      Tmp4 = Result.getValue(1);
1066
1067      switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
1068      default: llvm_unreachable("This action is not supported yet!");
1069      case TargetLowering::Legal:
1070        // If this is an unaligned load and the target doesn't support it,
1071        // expand it.
1072        if (!TLI.allowsUnalignedMemoryAccesses()) {
1073          const Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1074          unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1075          if (LD->getAlignment() < ABIAlignment){
1076            Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
1077                                         DAG, TLI);
1078            Tmp3 = Result.getOperand(0);
1079            Tmp4 = Result.getOperand(1);
1080            Tmp3 = LegalizeOp(Tmp3);
1081            Tmp4 = LegalizeOp(Tmp4);
1082          }
1083        }
1084        break;
1085      case TargetLowering::Custom:
1086        Tmp1 = TLI.LowerOperation(Tmp3, DAG);
1087        if (Tmp1.getNode()) {
1088          Tmp3 = LegalizeOp(Tmp1);
1089          Tmp4 = LegalizeOp(Tmp1.getValue(1));
1090        }
1091        break;
1092      case TargetLowering::Promote: {
1093        // Only promote a load of vector type to another.
1094        assert(VT.isVector() && "Cannot promote this load!");
1095        // Change base type to a different vector type.
1096        EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
1097
1098        Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
1099                           LD->getSrcValueOffset(),
1100                           LD->isVolatile(), LD->getAlignment());
1101        Tmp3 = LegalizeOp(DAG.getNode(ISD::BIT_CONVERT, dl, VT, Tmp1));
1102        Tmp4 = LegalizeOp(Tmp1.getValue(1));
1103        break;
1104      }
1105      }
1106      // Since loads produce two values, make sure to remember that we
1107      // legalized both of them.
1108      AddLegalizedOperand(SDValue(Node, 0), Tmp3);
1109      AddLegalizedOperand(SDValue(Node, 1), Tmp4);
1110      return Op.getResNo() ? Tmp4 : Tmp3;
1111    } else {
1112      EVT SrcVT = LD->getMemoryVT();
1113      unsigned SrcWidth = SrcVT.getSizeInBits();
1114      int SVOffset = LD->getSrcValueOffset();
1115      unsigned Alignment = LD->getAlignment();
1116      bool isVolatile = LD->isVolatile();
1117
1118      if (SrcWidth != SrcVT.getStoreSizeInBits() &&
1119          // Some targets pretend to have an i1 loading operation, and actually
1120          // load an i8.  This trick is correct for ZEXTLOAD because the top 7
1121          // bits are guaranteed to be zero; it helps the optimizers understand
1122          // that these bits are zero.  It is also useful for EXTLOAD, since it
1123          // tells the optimizers that those bits are undefined.  It would be
1124          // nice to have an effective generic way of getting these benefits...
1125          // Until such a way is found, don't insist on promoting i1 here.
1126          (SrcVT != MVT::i1 ||
1127           TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
1128        // Promote to a byte-sized load if not loading an integral number of
1129        // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
1130        unsigned NewWidth = SrcVT.getStoreSizeInBits();
1131        EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
1132        SDValue Ch;
1133
1134        // The extra bits are guaranteed to be zero, since we stored them that
1135        // way.  A zext load from NVT thus automatically gives zext from SrcVT.
1136
1137        ISD::LoadExtType NewExtType =
1138          ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
1139
1140        Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
1141                                Tmp1, Tmp2, LD->getSrcValue(), SVOffset,
1142                                NVT, isVolatile, Alignment);
1143
1144        Ch = Result.getValue(1); // The chain.
1145
1146        if (ExtType == ISD::SEXTLOAD)
1147          // Having the top bits zero doesn't help when sign extending.
1148          Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1149                               Result.getValueType(),
1150                               Result, DAG.getValueType(SrcVT));
1151        else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
1152          // All the top bits are guaranteed to be zero - inform the optimizers.
1153          Result = DAG.getNode(ISD::AssertZext, dl,
1154                               Result.getValueType(), Result,
1155                               DAG.getValueType(SrcVT));
1156
1157        Tmp1 = LegalizeOp(Result);
1158        Tmp2 = LegalizeOp(Ch);
1159      } else if (SrcWidth & (SrcWidth - 1)) {
1160        // If not loading a power-of-2 number of bits, expand as two loads.
1161        assert(SrcVT.isExtended() && !SrcVT.isVector() &&
1162               "Unsupported extload!");
1163        unsigned RoundWidth = 1 << Log2_32(SrcWidth);
1164        assert(RoundWidth < SrcWidth);
1165        unsigned ExtraWidth = SrcWidth - RoundWidth;
1166        assert(ExtraWidth < RoundWidth);
1167        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1168               "Load size not an integral number of bytes!");
1169        EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1170        EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1171        SDValue Lo, Hi, Ch;
1172        unsigned IncrementSize;
1173
1174        if (TLI.isLittleEndian()) {
1175          // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
1176          // Load the bottom RoundWidth bits.
1177          Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl,
1178                              Node->getValueType(0), Tmp1, Tmp2,
1179                              LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
1180                              Alignment);
1181
1182          // Load the remaining ExtraWidth bits.
1183          IncrementSize = RoundWidth / 8;
1184          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1185                             DAG.getIntPtrConstant(IncrementSize));
1186          Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1187                              LD->getSrcValue(), SVOffset + IncrementSize,
1188                              ExtraVT, isVolatile,
1189                              MinAlign(Alignment, IncrementSize));
1190
1191          // Build a factor node to remember that this load is independent of the
1192          // other one.
1193          Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1194                           Hi.getValue(1));
1195
1196          // Move the top bits to the right place.
1197          Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1198                           DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1199
1200          // Join the hi and lo parts.
1201          Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1202        } else {
1203          // Big endian - avoid unaligned loads.
1204          // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
1205          // Load the top RoundWidth bits.
1206          Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1207                              LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
1208                              Alignment);
1209
1210          // Load the remaining ExtraWidth bits.
1211          IncrementSize = RoundWidth / 8;
1212          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1213                             DAG.getIntPtrConstant(IncrementSize));
1214          Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl,
1215                              Node->getValueType(0), Tmp1, Tmp2,
1216                              LD->getSrcValue(), SVOffset + IncrementSize,
1217                              ExtraVT, isVolatile,
1218                              MinAlign(Alignment, IncrementSize));
1219
1220          // Build a factor node to remember that this load is independent of the
1221          // other one.
1222          Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1223                           Hi.getValue(1));
1224
1225          // Move the top bits to the right place.
1226          Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1227                           DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1228
1229          // Join the hi and lo parts.
1230          Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1231        }
1232
1233        Tmp1 = LegalizeOp(Result);
1234        Tmp2 = LegalizeOp(Ch);
1235      } else {
1236        switch (TLI.getLoadExtAction(ExtType, SrcVT)) {
1237        default: llvm_unreachable("This action is not supported yet!");
1238        case TargetLowering::Custom:
1239          isCustom = true;
1240          // FALLTHROUGH
1241        case TargetLowering::Legal:
1242          Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset());
1243          Tmp1 = Result.getValue(0);
1244          Tmp2 = Result.getValue(1);
1245
1246          if (isCustom) {
1247            Tmp3 = TLI.LowerOperation(Result, DAG);
1248            if (Tmp3.getNode()) {
1249              Tmp1 = LegalizeOp(Tmp3);
1250              Tmp2 = LegalizeOp(Tmp3.getValue(1));
1251            }
1252          } else {
1253            // If this is an unaligned load and the target doesn't support it,
1254            // expand it.
1255            if (!TLI.allowsUnalignedMemoryAccesses()) {
1256              const Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1257              unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1258              if (LD->getAlignment() < ABIAlignment){
1259                Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
1260                                             DAG, TLI);
1261                Tmp1 = Result.getOperand(0);
1262                Tmp2 = Result.getOperand(1);
1263                Tmp1 = LegalizeOp(Tmp1);
1264                Tmp2 = LegalizeOp(Tmp2);
1265              }
1266            }
1267          }
1268          break;
1269        case TargetLowering::Expand:
1270          // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND
1271          if (SrcVT == MVT::f32 && Node->getValueType(0) == MVT::f64) {
1272            SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
1273                                         LD->getSrcValueOffset(),
1274                                         LD->isVolatile(), LD->getAlignment());
1275            Result = DAG.getNode(ISD::FP_EXTEND, dl,
1276                                 Node->getValueType(0), Load);
1277            Tmp1 = LegalizeOp(Result);  // Relegalize new nodes.
1278            Tmp2 = LegalizeOp(Load.getValue(1));
1279            break;
1280          }
1281          assert(ExtType != ISD::EXTLOAD &&"EXTLOAD should always be supported!");
1282          // Turn the unsupported load into an EXTLOAD followed by an explicit
1283          // zero/sign extend inreg.
1284          Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0),
1285                                  Tmp1, Tmp2, LD->getSrcValue(),
1286                                  LD->getSrcValueOffset(), SrcVT,
1287                                  LD->isVolatile(), LD->getAlignment());
1288          SDValue ValRes;
1289          if (ExtType == ISD::SEXTLOAD)
1290            ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1291                                 Result.getValueType(),
1292                                 Result, DAG.getValueType(SrcVT));
1293          else
1294            ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT);
1295          Tmp1 = LegalizeOp(ValRes);  // Relegalize new nodes.
1296          Tmp2 = LegalizeOp(Result.getValue(1));  // Relegalize new nodes.
1297          break;
1298        }
1299      }
1300
1301      // Since loads produce two values, make sure to remember that we legalized
1302      // both of them.
1303      AddLegalizedOperand(SDValue(Node, 0), Tmp1);
1304      AddLegalizedOperand(SDValue(Node, 1), Tmp2);
1305      return Op.getResNo() ? Tmp2 : Tmp1;
1306    }
1307  }
1308  case ISD::STORE: {
1309    StoreSDNode *ST = cast<StoreSDNode>(Node);
1310    Tmp1 = LegalizeOp(ST->getChain());    // Legalize the chain.
1311    Tmp2 = LegalizeOp(ST->getBasePtr());  // Legalize the pointer.
1312    int SVOffset = ST->getSrcValueOffset();
1313    unsigned Alignment = ST->getAlignment();
1314    bool isVolatile = ST->isVolatile();
1315
1316    if (!ST->isTruncatingStore()) {
1317      if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
1318        Result = SDValue(OptStore, 0);
1319        break;
1320      }
1321
1322      {
1323        Tmp3 = LegalizeOp(ST->getValue());
1324        Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2,
1325                                        ST->getOffset());
1326
1327        EVT VT = Tmp3.getValueType();
1328        switch (TLI.getOperationAction(ISD::STORE, VT)) {
1329        default: llvm_unreachable("This action is not supported yet!");
1330        case TargetLowering::Legal:
1331          // If this is an unaligned store and the target doesn't support it,
1332          // expand it.
1333          if (!TLI.allowsUnalignedMemoryAccesses()) {
1334            const Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1335            unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1336            if (ST->getAlignment() < ABIAlignment)
1337              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()),
1338                                            DAG, TLI);
1339          }
1340          break;
1341        case TargetLowering::Custom:
1342          Tmp1 = TLI.LowerOperation(Result, DAG);
1343          if (Tmp1.getNode()) Result = Tmp1;
1344          break;
1345        case TargetLowering::Promote:
1346          assert(VT.isVector() && "Unknown legal promote case!");
1347          Tmp3 = DAG.getNode(ISD::BIT_CONVERT, dl,
1348                             TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3);
1349          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2,
1350                                ST->getSrcValue(), SVOffset, isVolatile,
1351                                Alignment);
1352          break;
1353        }
1354        break;
1355      }
1356    } else {
1357      Tmp3 = LegalizeOp(ST->getValue());
1358
1359      EVT StVT = ST->getMemoryVT();
1360      unsigned StWidth = StVT.getSizeInBits();
1361
1362      if (StWidth != StVT.getStoreSizeInBits()) {
1363        // Promote to a byte-sized store with upper bits zero if not
1364        // storing an integral number of bytes.  For example, promote
1365        // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
1366        EVT NVT = EVT::getIntegerVT(*DAG.getContext(), StVT.getStoreSizeInBits());
1367        Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT);
1368        Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1369                                   SVOffset, NVT, isVolatile, Alignment);
1370      } else if (StWidth & (StWidth - 1)) {
1371        // If not storing a power-of-2 number of bits, expand as two stores.
1372        assert(StVT.isExtended() && !StVT.isVector() &&
1373               "Unsupported truncstore!");
1374        unsigned RoundWidth = 1 << Log2_32(StWidth);
1375        assert(RoundWidth < StWidth);
1376        unsigned ExtraWidth = StWidth - RoundWidth;
1377        assert(ExtraWidth < RoundWidth);
1378        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1379               "Store size not an integral number of bytes!");
1380        EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1381        EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1382        SDValue Lo, Hi;
1383        unsigned IncrementSize;
1384
1385        if (TLI.isLittleEndian()) {
1386          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
1387          // Store the bottom RoundWidth bits.
1388          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1389                                 SVOffset, RoundVT,
1390                                 isVolatile, Alignment);
1391
1392          // Store the remaining ExtraWidth bits.
1393          IncrementSize = RoundWidth / 8;
1394          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1395                             DAG.getIntPtrConstant(IncrementSize));
1396          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1397                           DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1398          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
1399                                 SVOffset + IncrementSize, ExtraVT, isVolatile,
1400                                 MinAlign(Alignment, IncrementSize));
1401        } else {
1402          // Big endian - avoid unaligned stores.
1403          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
1404          // Store the top RoundWidth bits.
1405          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1406                           DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1407          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
1408                                 SVOffset, RoundVT, isVolatile, Alignment);
1409
1410          // Store the remaining ExtraWidth bits.
1411          IncrementSize = RoundWidth / 8;
1412          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1413                             DAG.getIntPtrConstant(IncrementSize));
1414          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1415                                 SVOffset + IncrementSize, ExtraVT, isVolatile,
1416                                 MinAlign(Alignment, IncrementSize));
1417        }
1418
1419        // The order of the stores doesn't matter.
1420        Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
1421      } else {
1422        if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() ||
1423            Tmp2 != ST->getBasePtr())
1424          Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2,
1425                                          ST->getOffset());
1426
1427        switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
1428        default: llvm_unreachable("This action is not supported yet!");
1429        case TargetLowering::Legal:
1430          // If this is an unaligned store and the target doesn't support it,
1431          // expand it.
1432          if (!TLI.allowsUnalignedMemoryAccesses()) {
1433            const Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1434            unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1435            if (ST->getAlignment() < ABIAlignment)
1436              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()),
1437                                            DAG, TLI);
1438          }
1439          break;
1440        case TargetLowering::Custom:
1441          Result = TLI.LowerOperation(Result, DAG);
1442          break;
1443        case Expand:
1444          // TRUNCSTORE:i16 i32 -> STORE i16
1445          assert(isTypeLegal(StVT) && "Do not know how to expand this store!");
1446          Tmp3 = DAG.getNode(ISD::TRUNCATE, dl, StVT, Tmp3);
1447          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1448                                SVOffset, isVolatile, Alignment);
1449          break;
1450        }
1451      }
1452    }
1453    break;
1454  }
1455  }
1456  assert(Result.getValueType() == Op.getValueType() &&
1457         "Bad legalization!");
1458
1459  // Make sure that the generated code is itself legal.
1460  if (Result != Op)
1461    Result = LegalizeOp(Result);
1462
1463  // Note that LegalizeOp may be reentered even from single-use nodes, which
1464  // means that we always must cache transformed nodes.
1465  AddLegalizedOperand(Op, Result);
1466  return Result;
1467}
1468
1469SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1470  SDValue Vec = Op.getOperand(0);
1471  SDValue Idx = Op.getOperand(1);
1472  DebugLoc dl = Op.getDebugLoc();
1473  // Store the value to a temporary stack slot, then LOAD the returned part.
1474  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1475  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, NULL, 0);
1476
1477  // Add the offset to the index.
1478  unsigned EltSize =
1479      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1480  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1481                    DAG.getConstant(EltSize, Idx.getValueType()));
1482
1483  if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1484    Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1485  else
1486    Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1487
1488  StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
1489
1490  if (Op.getValueType().isVector())
1491    return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, NULL, 0);
1492  else
1493    return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
1494                          NULL, 0, Vec.getValueType().getVectorElementType());
1495}
1496
1497SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1498  // We can't handle this case efficiently.  Allocate a sufficiently
1499  // aligned object on the stack, store each element into it, then load
1500  // the result as a vector.
1501  // Create the stack frame object.
1502  EVT VT = Node->getValueType(0);
1503  EVT OpVT = Node->getOperand(0).getValueType();
1504  DebugLoc dl = Node->getDebugLoc();
1505  SDValue FIPtr = DAG.CreateStackTemporary(VT);
1506  int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1507  const Value *SV = PseudoSourceValue::getFixedStack(FI);
1508
1509  // Emit a store of each element to the stack slot.
1510  SmallVector<SDValue, 8> Stores;
1511  unsigned TypeByteSize = OpVT.getSizeInBits() / 8;
1512  // Store (in the right endianness) the elements to memory.
1513  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1514    // Ignore undef elements.
1515    if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1516
1517    unsigned Offset = TypeByteSize*i;
1518
1519    SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType());
1520    Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
1521
1522    Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i),
1523                                  Idx, SV, Offset));
1524  }
1525
1526  SDValue StoreChain;
1527  if (!Stores.empty())    // Not all undef elements?
1528    StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1529                             &Stores[0], Stores.size());
1530  else
1531    StoreChain = DAG.getEntryNode();
1532
1533  // Result is a load from the stack slot.
1534  return DAG.getLoad(VT, dl, StoreChain, FIPtr, SV, 0);
1535}
1536
1537SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) {
1538  DebugLoc dl = Node->getDebugLoc();
1539  SDValue Tmp1 = Node->getOperand(0);
1540  SDValue Tmp2 = Node->getOperand(1);
1541  assert((Tmp2.getValueType() == MVT::f32 ||
1542          Tmp2.getValueType() == MVT::f64) &&
1543          "Ugly special-cased code!");
1544  // Get the sign bit of the RHS.
1545  SDValue SignBit;
1546  EVT IVT = Tmp2.getValueType() == MVT::f64 ? MVT::i64 : MVT::i32;
1547  if (isTypeLegal(IVT)) {
1548    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, IVT, Tmp2);
1549  } else {
1550    assert(isTypeLegal(TLI.getPointerTy()) &&
1551            (TLI.getPointerTy() == MVT::i32 ||
1552            TLI.getPointerTy() == MVT::i64) &&
1553            "Legal type for load?!");
1554    SDValue StackPtr = DAG.CreateStackTemporary(Tmp2.getValueType());
1555    SDValue StorePtr = StackPtr, LoadPtr = StackPtr;
1556    SDValue Ch =
1557        DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StorePtr, NULL, 0);
1558    if (Tmp2.getValueType() == MVT::f64 && TLI.isLittleEndian())
1559      LoadPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(),
1560                            LoadPtr, DAG.getIntPtrConstant(4));
1561    SignBit = DAG.getExtLoad(ISD::SEXTLOAD, dl, TLI.getPointerTy(),
1562                              Ch, LoadPtr, NULL, 0, MVT::i32);
1563  }
1564  SignBit =
1565      DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()),
1566                    SignBit, DAG.getConstant(0, SignBit.getValueType()),
1567                    ISD::SETLT);
1568  // Get the absolute value of the result.
1569  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1);
1570  // Select between the nabs and abs value based on the sign bit of
1571  // the input.
1572  return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit,
1573                     DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal),
1574                     AbsVal);
1575}
1576
1577SDValue SelectionDAGLegalize::ExpandDBG_STOPPOINT(SDNode* Node) {
1578  DebugLoc dl = Node->getDebugLoc();
1579  DwarfWriter *DW = DAG.getDwarfWriter();
1580  bool useDEBUG_LOC = TLI.isOperationLegalOrCustom(ISD::DEBUG_LOC,
1581                                                    MVT::Other);
1582  bool useLABEL = TLI.isOperationLegalOrCustom(ISD::DBG_LABEL, MVT::Other);
1583
1584  const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(Node);
1585  GlobalVariable *CU_GV = cast<GlobalVariable>(DSP->getCompileUnit());
1586  if (DW && (useDEBUG_LOC || useLABEL) && !CU_GV->isDeclaration()) {
1587    DICompileUnit CU(cast<GlobalVariable>(DSP->getCompileUnit()));
1588
1589    unsigned Line = DSP->getLine();
1590    unsigned Col = DSP->getColumn();
1591
1592    if (OptLevel == CodeGenOpt::None) {
1593      // A bit self-referential to have DebugLoc on Debug_Loc nodes, but it
1594      // won't hurt anything.
1595      if (useDEBUG_LOC) {
1596        return DAG.getNode(ISD::DEBUG_LOC, dl, MVT::Other, Node->getOperand(0),
1597                           DAG.getConstant(Line, MVT::i32),
1598                           DAG.getConstant(Col, MVT::i32),
1599                           DAG.getSrcValue(CU.getGV()));
1600      } else {
1601        unsigned ID = DW->RecordSourceLine(Line, Col, CU);
1602        return DAG.getLabel(ISD::DBG_LABEL, dl, Node->getOperand(0), ID);
1603      }
1604    }
1605  }
1606  return Node->getOperand(0);
1607}
1608
1609void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1610                                           SmallVectorImpl<SDValue> &Results) {
1611  unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1612  assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1613          " not tell us which reg is the stack pointer!");
1614  DebugLoc dl = Node->getDebugLoc();
1615  EVT VT = Node->getValueType(0);
1616  SDValue Tmp1 = SDValue(Node, 0);
1617  SDValue Tmp2 = SDValue(Node, 1);
1618  SDValue Tmp3 = Node->getOperand(2);
1619  SDValue Chain = Tmp1.getOperand(0);
1620
1621  // Chain the dynamic stack allocation so that it doesn't modify the stack
1622  // pointer when other instructions are using the stack.
1623  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
1624
1625  SDValue Size  = Tmp2.getOperand(1);
1626  SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1627  Chain = SP.getValue(1);
1628  unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1629  unsigned StackAlign =
1630    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
1631  if (Align > StackAlign)
1632    SP = DAG.getNode(ISD::AND, dl, VT, SP,
1633                      DAG.getConstant(-(uint64_t)Align, VT));
1634  Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size);       // Value
1635  Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain
1636
1637  Tmp2 = DAG.getCALLSEQ_END(Chain,  DAG.getIntPtrConstant(0, true),
1638                            DAG.getIntPtrConstant(0, true), SDValue());
1639
1640  Results.push_back(Tmp1);
1641  Results.push_back(Tmp2);
1642}
1643
1644/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
1645/// condition code CC on the current target. This routine assumes LHS and rHS
1646/// have already been legalized by LegalizeSetCCOperands. It expands SETCC with
1647/// illegal condition code into AND / OR of multiple SETCC values.
1648void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT,
1649                                                 SDValue &LHS, SDValue &RHS,
1650                                                 SDValue &CC,
1651                                                 DebugLoc dl) {
1652  EVT OpVT = LHS.getValueType();
1653  ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1654  switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1655  default: llvm_unreachable("Unknown condition code action!");
1656  case TargetLowering::Legal:
1657    // Nothing to do.
1658    break;
1659  case TargetLowering::Expand: {
1660    ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1661    unsigned Opc = 0;
1662    switch (CCCode) {
1663    default: llvm_unreachable("Don't know how to expand this condition!");
1664    case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1665    case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1666    case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1667    case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1668    case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1669    case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1670    case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1671    case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1672    case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1673    case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1674    case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1675    case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1676    // FIXME: Implement more expansions.
1677    }
1678
1679    SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1680    SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
1681    LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1682    RHS = SDValue();
1683    CC  = SDValue();
1684    break;
1685  }
1686  }
1687}
1688
1689/// EmitStackConvert - Emit a store/load combination to the stack.  This stores
1690/// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
1691/// a load from the stack slot to DestVT, extending it if needed.
1692/// The resultant code need not be legal.
1693SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
1694                                               EVT SlotVT,
1695                                               EVT DestVT,
1696                                               DebugLoc dl) {
1697  // Create the stack frame object.
1698  unsigned SrcAlign =
1699    TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType().
1700                                              getTypeForEVT(*DAG.getContext()));
1701  SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1702
1703  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1704  int SPFI = StackPtrFI->getIndex();
1705  const Value *SV = PseudoSourceValue::getFixedStack(SPFI);
1706
1707  unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
1708  unsigned SlotSize = SlotVT.getSizeInBits();
1709  unsigned DestSize = DestVT.getSizeInBits();
1710  unsigned DestAlign =
1711    TLI.getTargetData()->getPrefTypeAlignment(DestVT.getTypeForEVT(*DAG.getContext()));
1712
1713  // Emit a store to the stack slot.  Use a truncstore if the input value is
1714  // later than DestVT.
1715  SDValue Store;
1716
1717  if (SrcSize > SlotSize)
1718    Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1719                              SV, 0, SlotVT, false, SrcAlign);
1720  else {
1721    assert(SrcSize == SlotSize && "Invalid store");
1722    Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1723                         SV, 0, false, SrcAlign);
1724  }
1725
1726  // Result is a load from the stack slot.
1727  if (SlotSize == DestSize)
1728    return DAG.getLoad(DestVT, dl, Store, FIPtr, SV, 0, false, DestAlign);
1729
1730  assert(SlotSize < DestSize && "Unknown extension!");
1731  return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, SV, 0, SlotVT,
1732                        false, DestAlign);
1733}
1734
1735SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1736  DebugLoc dl = Node->getDebugLoc();
1737  // Create a vector sized/aligned stack slot, store the value to element #0,
1738  // then load the whole vector back out.
1739  SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1740
1741  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1742  int SPFI = StackPtrFI->getIndex();
1743
1744  SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0),
1745                                 StackPtr,
1746                                 PseudoSourceValue::getFixedStack(SPFI), 0,
1747                                 Node->getValueType(0).getVectorElementType());
1748  return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr,
1749                     PseudoSourceValue::getFixedStack(SPFI), 0);
1750}
1751
1752
1753/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
1754/// support the operation, but do support the resultant vector type.
1755SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1756  unsigned NumElems = Node->getNumOperands();
1757  SDValue Value1, Value2;
1758  DebugLoc dl = Node->getDebugLoc();
1759  EVT VT = Node->getValueType(0);
1760  EVT OpVT = Node->getOperand(0).getValueType();
1761  EVT EltVT = VT.getVectorElementType();
1762
1763  // If the only non-undef value is the low element, turn this into a
1764  // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
1765  bool isOnlyLowElement = true;
1766  bool MoreThanTwoValues = false;
1767  bool isConstant = true;
1768  for (unsigned i = 0; i < NumElems; ++i) {
1769    SDValue V = Node->getOperand(i);
1770    if (V.getOpcode() == ISD::UNDEF)
1771      continue;
1772    if (i > 0)
1773      isOnlyLowElement = false;
1774    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1775      isConstant = false;
1776
1777    if (!Value1.getNode()) {
1778      Value1 = V;
1779    } else if (!Value2.getNode()) {
1780      if (V != Value1)
1781        Value2 = V;
1782    } else if (V != Value1 && V != Value2) {
1783      MoreThanTwoValues = true;
1784    }
1785  }
1786
1787  if (!Value1.getNode())
1788    return DAG.getUNDEF(VT);
1789
1790  if (isOnlyLowElement)
1791    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1792
1793  // If all elements are constants, create a load from the constant pool.
1794  if (isConstant) {
1795    std::vector<Constant*> CV;
1796    for (unsigned i = 0, e = NumElems; i != e; ++i) {
1797      if (ConstantFPSDNode *V =
1798          dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1799        CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1800      } else if (ConstantSDNode *V =
1801                 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1802        CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1803      } else {
1804        assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
1805        const Type *OpNTy = OpVT.getTypeForEVT(*DAG.getContext());
1806        CV.push_back(UndefValue::get(OpNTy));
1807      }
1808    }
1809    Constant *CP = ConstantVector::get(CV);
1810    SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
1811    unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
1812    return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
1813                       PseudoSourceValue::getConstantPool(), 0,
1814                       false, Alignment);
1815  }
1816
1817  if (!MoreThanTwoValues) {
1818    SmallVector<int, 8> ShuffleVec(NumElems, -1);
1819    for (unsigned i = 0; i < NumElems; ++i) {
1820      SDValue V = Node->getOperand(i);
1821      if (V.getOpcode() == ISD::UNDEF)
1822        continue;
1823      ShuffleVec[i] = V == Value1 ? 0 : NumElems;
1824    }
1825    if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
1826      // Get the splatted value into the low element of a vector register.
1827      SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
1828      SDValue Vec2;
1829      if (Value2.getNode())
1830        Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
1831      else
1832        Vec2 = DAG.getUNDEF(VT);
1833
1834      // Return shuffle(LowValVec, undef, <0,0,0,0>)
1835      return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
1836    }
1837  }
1838
1839  // Otherwise, we can't handle this case efficiently.
1840  return ExpandVectorBuildThroughStack(Node);
1841}
1842
1843// ExpandLibCall - Expand a node into a call to a libcall.  If the result value
1844// does not fit into a register, return the lo part and set the hi part to the
1845// by-reg argument.  If it does fit into a single register, return the result
1846// and leave the Hi part unset.
1847SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
1848                                            bool isSigned) {
1849  assert(!IsLegalizingCall && "Cannot overlap legalization of calls!");
1850  // The input chain to this libcall is the entry node of the function.
1851  // Legalizing the call will automatically add the previous call to the
1852  // dependence.
1853  SDValue InChain = DAG.getEntryNode();
1854
1855  TargetLowering::ArgListTy Args;
1856  TargetLowering::ArgListEntry Entry;
1857  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1858    EVT ArgVT = Node->getOperand(i).getValueType();
1859    const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1860    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
1861    Entry.isSExt = isSigned;
1862    Entry.isZExt = !isSigned;
1863    Args.push_back(Entry);
1864  }
1865  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1866                                         TLI.getPointerTy());
1867
1868  // Splice the libcall in wherever FindInputOutputChains tells us to.
1869  const Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1870  std::pair<SDValue, SDValue> CallInfo =
1871    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
1872                    0, TLI.getLibcallCallingConv(LC), false,
1873                    /*isReturnValueUsed=*/true,
1874                    Callee, Args, DAG,
1875                    Node->getDebugLoc());
1876
1877  // Legalize the call sequence, starting with the chain.  This will advance
1878  // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
1879  // was added by LowerCallTo (guaranteeing proper serialization of calls).
1880  LegalizeOp(CallInfo.second);
1881  return CallInfo.first;
1882}
1883
1884SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
1885                                              RTLIB::Libcall Call_F32,
1886                                              RTLIB::Libcall Call_F64,
1887                                              RTLIB::Libcall Call_F80,
1888                                              RTLIB::Libcall Call_PPCF128) {
1889  RTLIB::Libcall LC;
1890  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1891  default: llvm_unreachable("Unexpected request for libcall!");
1892  case MVT::f32: LC = Call_F32; break;
1893  case MVT::f64: LC = Call_F64; break;
1894  case MVT::f80: LC = Call_F80; break;
1895  case MVT::ppcf128: LC = Call_PPCF128; break;
1896  }
1897  return ExpandLibCall(LC, Node, false);
1898}
1899
1900SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
1901                                               RTLIB::Libcall Call_I16,
1902                                               RTLIB::Libcall Call_I32,
1903                                               RTLIB::Libcall Call_I64,
1904                                               RTLIB::Libcall Call_I128) {
1905  RTLIB::Libcall LC;
1906  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1907  default: llvm_unreachable("Unexpected request for libcall!");
1908  case MVT::i16: LC = Call_I16; break;
1909  case MVT::i32: LC = Call_I32; break;
1910  case MVT::i64: LC = Call_I64; break;
1911  case MVT::i128: LC = Call_I128; break;
1912  }
1913  return ExpandLibCall(LC, Node, isSigned);
1914}
1915
1916/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
1917/// INT_TO_FP operation of the specified operand when the target requests that
1918/// we expand it.  At this point, we know that the result and operand types are
1919/// legal for the target.
1920SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
1921                                                   SDValue Op0,
1922                                                   EVT DestVT,
1923                                                   DebugLoc dl) {
1924  if (Op0.getValueType() == MVT::i32) {
1925    // simple 32-bit [signed|unsigned] integer to float/double expansion
1926
1927    // Get the stack frame index of a 8 byte buffer.
1928    SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
1929
1930    // word offset constant for Hi/Lo address computation
1931    SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy());
1932    // set up Hi and Lo (into buffer) address based on endian
1933    SDValue Hi = StackSlot;
1934    SDValue Lo = DAG.getNode(ISD::ADD, dl,
1935                             TLI.getPointerTy(), StackSlot, WordOff);
1936    if (TLI.isLittleEndian())
1937      std::swap(Hi, Lo);
1938
1939    // if signed map to unsigned space
1940    SDValue Op0Mapped;
1941    if (isSigned) {
1942      // constant used to invert sign bit (signed to unsigned mapping)
1943      SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32);
1944      Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
1945    } else {
1946      Op0Mapped = Op0;
1947    }
1948    // store the lo of the constructed double - based on integer input
1949    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
1950                                  Op0Mapped, Lo, NULL, 0);
1951    // initial hi portion of constructed double
1952    SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
1953    // store the hi of the constructed double - biased exponent
1954    SDValue Store2=DAG.getStore(Store1, dl, InitialHi, Hi, NULL, 0);
1955    // load the constructed double
1956    SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot, NULL, 0);
1957    // FP constant to bias correct the final result
1958    SDValue Bias = DAG.getConstantFP(isSigned ?
1959                                     BitsToDouble(0x4330000080000000ULL) :
1960                                     BitsToDouble(0x4330000000000000ULL),
1961                                     MVT::f64);
1962    // subtract the bias
1963    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
1964    // final result
1965    SDValue Result;
1966    // handle final rounding
1967    if (DestVT == MVT::f64) {
1968      // do nothing
1969      Result = Sub;
1970    } else if (DestVT.bitsLT(MVT::f64)) {
1971      Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
1972                           DAG.getIntPtrConstant(0));
1973    } else if (DestVT.bitsGT(MVT::f64)) {
1974      Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
1975    }
1976    return Result;
1977  }
1978  assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
1979  SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
1980
1981  SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()),
1982                                 Op0, DAG.getConstant(0, Op0.getValueType()),
1983                                 ISD::SETLT);
1984  SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
1985  SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(),
1986                                    SignSet, Four, Zero);
1987
1988  // If the sign bit of the integer is set, the large number will be treated
1989  // as a negative number.  To counteract this, the dynamic code adds an
1990  // offset depending on the data type.
1991  uint64_t FF;
1992  switch (Op0.getValueType().getSimpleVT().SimpleTy) {
1993  default: llvm_unreachable("Unsupported integer type!");
1994  case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
1995  case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
1996  case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
1997  case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
1998  }
1999  if (TLI.isLittleEndian()) FF <<= 32;
2000  Constant *FudgeFactor = ConstantInt::get(
2001                                       Type::getInt64Ty(*DAG.getContext()), FF);
2002
2003  SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
2004  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2005  CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset);
2006  Alignment = std::min(Alignment, 4u);
2007  SDValue FudgeInReg;
2008  if (DestVT == MVT::f32)
2009    FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2010                             PseudoSourceValue::getConstantPool(), 0,
2011                             false, Alignment);
2012  else {
2013    FudgeInReg =
2014      LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT,
2015                                DAG.getEntryNode(), CPIdx,
2016                                PseudoSourceValue::getConstantPool(), 0,
2017                                MVT::f32, false, Alignment));
2018  }
2019
2020  return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2021}
2022
2023/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
2024/// *INT_TO_FP operation of the specified operand when the target requests that
2025/// we promote it.  At this point, we know that the result and operand types are
2026/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2027/// operation that takes a larger input.
2028SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
2029                                                    EVT DestVT,
2030                                                    bool isSigned,
2031                                                    DebugLoc dl) {
2032  // First step, figure out the appropriate *INT_TO_FP operation to use.
2033  EVT NewInTy = LegalOp.getValueType();
2034
2035  unsigned OpToUse = 0;
2036
2037  // Scan for the appropriate larger type to use.
2038  while (1) {
2039    NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2040    assert(NewInTy.isInteger() && "Ran out of possibilities!");
2041
2042    // If the target supports SINT_TO_FP of this type, use it.
2043    if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2044      OpToUse = ISD::SINT_TO_FP;
2045      break;
2046    }
2047    if (isSigned) continue;
2048
2049    // If the target supports UINT_TO_FP of this type, use it.
2050    if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2051      OpToUse = ISD::UINT_TO_FP;
2052      break;
2053    }
2054
2055    // Otherwise, try a larger type.
2056  }
2057
2058  // Okay, we found the operation and type to use.  Zero extend our input to the
2059  // desired type then run the operation on it.
2060  return DAG.getNode(OpToUse, dl, DestVT,
2061                     DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2062                                 dl, NewInTy, LegalOp));
2063}
2064
2065/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
2066/// FP_TO_*INT operation of the specified operand when the target requests that
2067/// we promote it.  At this point, we know that the result and operand types are
2068/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2069/// operation that returns a larger result.
2070SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
2071                                                    EVT DestVT,
2072                                                    bool isSigned,
2073                                                    DebugLoc dl) {
2074  // First step, figure out the appropriate FP_TO*INT operation to use.
2075  EVT NewOutTy = DestVT;
2076
2077  unsigned OpToUse = 0;
2078
2079  // Scan for the appropriate larger type to use.
2080  while (1) {
2081    NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2082    assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2083
2084    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2085      OpToUse = ISD::FP_TO_SINT;
2086      break;
2087    }
2088
2089    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
2090      OpToUse = ISD::FP_TO_UINT;
2091      break;
2092    }
2093
2094    // Otherwise, try a larger type.
2095  }
2096
2097
2098  // Okay, we found the operation and type to use.
2099  SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2100
2101  // Truncate the result of the extended FP_TO_*INT operation to the desired
2102  // size.
2103  return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2104}
2105
2106/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
2107///
2108SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) {
2109  EVT VT = Op.getValueType();
2110  EVT SHVT = TLI.getShiftAmountTy();
2111  SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2112  switch (VT.getSimpleVT().SimpleTy) {
2113  default: llvm_unreachable("Unhandled Expand type in BSWAP!");
2114  case MVT::i16:
2115    Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2116    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2117    return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2118  case MVT::i32:
2119    Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2120    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2121    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2122    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2123    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
2124    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT));
2125    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2126    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2127    return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2128  case MVT::i64:
2129    Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT));
2130    Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT));
2131    Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2132    Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2133    Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2134    Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2135    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT));
2136    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT));
2137    Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
2138    Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
2139    Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
2140    Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
2141    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
2142    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
2143    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2144    Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2145    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2146    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2147    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2148    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2149    return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2150  }
2151}
2152
2153/// ExpandBitCount - Expand the specified bitcount instruction into operations.
2154///
2155SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
2156                                             DebugLoc dl) {
2157  switch (Opc) {
2158  default: llvm_unreachable("Cannot expand this yet!");
2159  case ISD::CTPOP: {
2160    static const uint64_t mask[6] = {
2161      0x5555555555555555ULL, 0x3333333333333333ULL,
2162      0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL,
2163      0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL
2164    };
2165    EVT VT = Op.getValueType();
2166    EVT ShVT = TLI.getShiftAmountTy();
2167    unsigned len = VT.getSizeInBits();
2168    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2169      //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8])
2170      unsigned EltSize = VT.isVector() ?
2171        VT.getVectorElementType().getSizeInBits() : len;
2172      SDValue Tmp2 = DAG.getConstant(APInt(EltSize, mask[i]), VT);
2173      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2174      Op = DAG.getNode(ISD::ADD, dl, VT,
2175                       DAG.getNode(ISD::AND, dl, VT, Op, Tmp2),
2176                       DAG.getNode(ISD::AND, dl, VT,
2177                                   DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3),
2178                                   Tmp2));
2179    }
2180    return Op;
2181  }
2182  case ISD::CTLZ: {
2183    // for now, we do this:
2184    // x = x | (x >> 1);
2185    // x = x | (x >> 2);
2186    // ...
2187    // x = x | (x >>16);
2188    // x = x | (x >>32); // for 64-bit input
2189    // return popcount(~x);
2190    //
2191    // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
2192    EVT VT = Op.getValueType();
2193    EVT ShVT = TLI.getShiftAmountTy();
2194    unsigned len = VT.getSizeInBits();
2195    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2196      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2197      Op = DAG.getNode(ISD::OR, dl, VT, Op,
2198                       DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
2199    }
2200    Op = DAG.getNOT(dl, Op, VT);
2201    return DAG.getNode(ISD::CTPOP, dl, VT, Op);
2202  }
2203  case ISD::CTTZ: {
2204    // for now, we use: { return popcount(~x & (x - 1)); }
2205    // unless the target has ctlz but not ctpop, in which case we use:
2206    // { return 32 - nlz(~x & (x-1)); }
2207    // see also http://www.hackersdelight.org/HDcode/ntz.cc
2208    EVT VT = Op.getValueType();
2209    SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
2210                               DAG.getNOT(dl, Op, VT),
2211                               DAG.getNode(ISD::SUB, dl, VT, Op,
2212                                           DAG.getConstant(1, VT)));
2213    // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
2214    if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
2215        TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
2216      return DAG.getNode(ISD::SUB, dl, VT,
2217                         DAG.getConstant(VT.getSizeInBits(), VT),
2218                         DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
2219    return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
2220  }
2221  }
2222}
2223
2224void SelectionDAGLegalize::ExpandNode(SDNode *Node,
2225                                      SmallVectorImpl<SDValue> &Results) {
2226  DebugLoc dl = Node->getDebugLoc();
2227  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2228  switch (Node->getOpcode()) {
2229  case ISD::CTPOP:
2230  case ISD::CTLZ:
2231  case ISD::CTTZ:
2232    Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
2233    Results.push_back(Tmp1);
2234    break;
2235  case ISD::BSWAP:
2236    Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2237    break;
2238  case ISD::FRAMEADDR:
2239  case ISD::RETURNADDR:
2240  case ISD::FRAME_TO_ARGS_OFFSET:
2241    Results.push_back(DAG.getConstant(0, Node->getValueType(0)));
2242    break;
2243  case ISD::FLT_ROUNDS_:
2244    Results.push_back(DAG.getConstant(1, Node->getValueType(0)));
2245    break;
2246  case ISD::EH_RETURN:
2247  case ISD::DECLARE:
2248  case ISD::DBG_LABEL:
2249  case ISD::EH_LABEL:
2250  case ISD::PREFETCH:
2251  case ISD::MEMBARRIER:
2252  case ISD::VAEND:
2253    Results.push_back(Node->getOperand(0));
2254    break;
2255  case ISD::DBG_STOPPOINT:
2256    Results.push_back(ExpandDBG_STOPPOINT(Node));
2257    break;
2258  case ISD::DYNAMIC_STACKALLOC:
2259    ExpandDYNAMIC_STACKALLOC(Node, Results);
2260    break;
2261  case ISD::MERGE_VALUES:
2262    for (unsigned i = 0; i < Node->getNumValues(); i++)
2263      Results.push_back(Node->getOperand(i));
2264    break;
2265  case ISD::UNDEF: {
2266    EVT VT = Node->getValueType(0);
2267    if (VT.isInteger())
2268      Results.push_back(DAG.getConstant(0, VT));
2269    else if (VT.isFloatingPoint())
2270      Results.push_back(DAG.getConstantFP(0, VT));
2271    else
2272      llvm_unreachable("Unknown value type!");
2273    break;
2274  }
2275  case ISD::TRAP: {
2276    // If this operation is not supported, lower it to 'abort()' call
2277    TargetLowering::ArgListTy Args;
2278    std::pair<SDValue, SDValue> CallResult =
2279      TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()),
2280                      false, false, false, false, 0, CallingConv::C, false,
2281                      /*isReturnValueUsed=*/true,
2282                      DAG.getExternalSymbol("abort", TLI.getPointerTy()),
2283                      Args, DAG, dl);
2284    Results.push_back(CallResult.second);
2285    break;
2286  }
2287  case ISD::FP_ROUND:
2288  case ISD::BIT_CONVERT:
2289    Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
2290                            Node->getValueType(0), dl);
2291    Results.push_back(Tmp1);
2292    break;
2293  case ISD::FP_EXTEND:
2294    Tmp1 = EmitStackConvert(Node->getOperand(0),
2295                            Node->getOperand(0).getValueType(),
2296                            Node->getValueType(0), dl);
2297    Results.push_back(Tmp1);
2298    break;
2299  case ISD::SIGN_EXTEND_INREG: {
2300    // NOTE: we could fall back on load/store here too for targets without
2301    // SAR.  However, it is doubtful that any exist.
2302    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2303    unsigned BitsDiff = Node->getValueType(0).getSizeInBits() -
2304                        ExtraVT.getSizeInBits();
2305    SDValue ShiftCst = DAG.getConstant(BitsDiff, TLI.getShiftAmountTy());
2306    Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
2307                       Node->getOperand(0), ShiftCst);
2308    Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
2309    Results.push_back(Tmp1);
2310    break;
2311  }
2312  case ISD::FP_ROUND_INREG: {
2313    // The only way we can lower this is to turn it into a TRUNCSTORE,
2314    // EXTLOAD pair, targetting a temporary location (a stack slot).
2315
2316    // NOTE: there is a choice here between constantly creating new stack
2317    // slots and always reusing the same one.  We currently always create
2318    // new ones, as reuse may inhibit scheduling.
2319    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2320    Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
2321                            Node->getValueType(0), dl);
2322    Results.push_back(Tmp1);
2323    break;
2324  }
2325  case ISD::SINT_TO_FP:
2326  case ISD::UINT_TO_FP:
2327    Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
2328                                Node->getOperand(0), Node->getValueType(0), dl);
2329    Results.push_back(Tmp1);
2330    break;
2331  case ISD::FP_TO_UINT: {
2332    SDValue True, False;
2333    EVT VT =  Node->getOperand(0).getValueType();
2334    EVT NVT = Node->getValueType(0);
2335    const uint64_t zero[] = {0, 0};
2336    APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
2337    APInt x = APInt::getSignBit(NVT.getSizeInBits());
2338    (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
2339    Tmp1 = DAG.getConstantFP(apf, VT);
2340    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT),
2341                        Node->getOperand(0),
2342                        Tmp1, ISD::SETLT);
2343    True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
2344    False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
2345                        DAG.getNode(ISD::FSUB, dl, VT,
2346                                    Node->getOperand(0), Tmp1));
2347    False = DAG.getNode(ISD::XOR, dl, NVT, False,
2348                        DAG.getConstant(x, NVT));
2349    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False);
2350    Results.push_back(Tmp1);
2351    break;
2352  }
2353  case ISD::VAARG: {
2354    const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2355    EVT VT = Node->getValueType(0);
2356    Tmp1 = Node->getOperand(0);
2357    Tmp2 = Node->getOperand(1);
2358    SDValue VAList = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2, V, 0);
2359    // Increment the pointer, VAList, to the next vaarg
2360    Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2361                       DAG.getConstant(TLI.getTargetData()->
2362                                       getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())),
2363                                       TLI.getPointerTy()));
2364    // Store the incremented VAList to the legalized pointer
2365    Tmp3 = DAG.getStore(VAList.getValue(1), dl, Tmp3, Tmp2, V, 0);
2366    // Load the actual argument out of the pointer VAList
2367    Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, NULL, 0));
2368    Results.push_back(Results[0].getValue(1));
2369    break;
2370  }
2371  case ISD::VACOPY: {
2372    // This defaults to loading a pointer from the input and storing it to the
2373    // output, returning the chain.
2374    const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2375    const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2376    Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0),
2377                       Node->getOperand(2), VS, 0);
2378    Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), VD, 0);
2379    Results.push_back(Tmp1);
2380    break;
2381  }
2382  case ISD::EXTRACT_VECTOR_ELT:
2383    if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
2384      // This must be an access of the only element.  Return it.
2385      Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, Node->getValueType(0),
2386                         Node->getOperand(0));
2387    else
2388      Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
2389    Results.push_back(Tmp1);
2390    break;
2391  case ISD::EXTRACT_SUBVECTOR:
2392    Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
2393    break;
2394  case ISD::CONCAT_VECTORS: {
2395    Results.push_back(ExpandVectorBuildThroughStack(Node));
2396    break;
2397  }
2398  case ISD::SCALAR_TO_VECTOR:
2399    Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
2400    break;
2401  case ISD::INSERT_VECTOR_ELT:
2402    Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
2403                                              Node->getOperand(1),
2404                                              Node->getOperand(2), dl));
2405    break;
2406  case ISD::VECTOR_SHUFFLE: {
2407    SmallVector<int, 8> Mask;
2408    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
2409
2410    EVT VT = Node->getValueType(0);
2411    EVT EltVT = VT.getVectorElementType();
2412    unsigned NumElems = VT.getVectorNumElements();
2413    SmallVector<SDValue, 8> Ops;
2414    for (unsigned i = 0; i != NumElems; ++i) {
2415      if (Mask[i] < 0) {
2416        Ops.push_back(DAG.getUNDEF(EltVT));
2417        continue;
2418      }
2419      unsigned Idx = Mask[i];
2420      if (Idx < NumElems)
2421        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2422                                  Node->getOperand(0),
2423                                  DAG.getIntPtrConstant(Idx)));
2424      else
2425        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2426                                  Node->getOperand(1),
2427                                  DAG.getIntPtrConstant(Idx - NumElems)));
2428    }
2429    Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size());
2430    Results.push_back(Tmp1);
2431    break;
2432  }
2433  case ISD::EXTRACT_ELEMENT: {
2434    EVT OpTy = Node->getOperand(0).getValueType();
2435    if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
2436      // 1 -> Hi
2437      Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
2438                         DAG.getConstant(OpTy.getSizeInBits()/2,
2439                                         TLI.getShiftAmountTy()));
2440      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
2441    } else {
2442      // 0 -> Lo
2443      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
2444                         Node->getOperand(0));
2445    }
2446    Results.push_back(Tmp1);
2447    break;
2448  }
2449  case ISD::STACKSAVE:
2450    // Expand to CopyFromReg if the target set
2451    // StackPointerRegisterToSaveRestore.
2452    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2453      Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
2454                                           Node->getValueType(0)));
2455      Results.push_back(Results[0].getValue(1));
2456    } else {
2457      Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
2458      Results.push_back(Node->getOperand(0));
2459    }
2460    break;
2461  case ISD::STACKRESTORE:
2462    // Expand to CopyToReg if the target set
2463    // StackPointerRegisterToSaveRestore.
2464    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2465      Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
2466                                         Node->getOperand(1)));
2467    } else {
2468      Results.push_back(Node->getOperand(0));
2469    }
2470    break;
2471  case ISD::FCOPYSIGN:
2472    Results.push_back(ExpandFCOPYSIGN(Node));
2473    break;
2474  case ISD::FNEG:
2475    // Expand Y = FNEG(X) ->  Y = SUB -0.0, X
2476    Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0));
2477    Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
2478                       Node->getOperand(0));
2479    Results.push_back(Tmp1);
2480    break;
2481  case ISD::FABS: {
2482    // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
2483    EVT VT = Node->getValueType(0);
2484    Tmp1 = Node->getOperand(0);
2485    Tmp2 = DAG.getConstantFP(0.0, VT);
2486    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
2487                        Tmp1, Tmp2, ISD::SETUGT);
2488    Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1);
2489    Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3);
2490    Results.push_back(Tmp1);
2491    break;
2492  }
2493  case ISD::FSQRT:
2494    Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
2495                                      RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128));
2496    break;
2497  case ISD::FSIN:
2498    Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
2499                                      RTLIB::SIN_F80, RTLIB::SIN_PPCF128));
2500    break;
2501  case ISD::FCOS:
2502    Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
2503                                      RTLIB::COS_F80, RTLIB::COS_PPCF128));
2504    break;
2505  case ISD::FLOG:
2506    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
2507                                      RTLIB::LOG_F80, RTLIB::LOG_PPCF128));
2508    break;
2509  case ISD::FLOG2:
2510    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
2511                                      RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128));
2512    break;
2513  case ISD::FLOG10:
2514    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
2515                                      RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128));
2516    break;
2517  case ISD::FEXP:
2518    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
2519                                      RTLIB::EXP_F80, RTLIB::EXP_PPCF128));
2520    break;
2521  case ISD::FEXP2:
2522    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
2523                                      RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128));
2524    break;
2525  case ISD::FTRUNC:
2526    Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
2527                                      RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128));
2528    break;
2529  case ISD::FFLOOR:
2530    Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
2531                                      RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128));
2532    break;
2533  case ISD::FCEIL:
2534    Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
2535                                      RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128));
2536    break;
2537  case ISD::FRINT:
2538    Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
2539                                      RTLIB::RINT_F80, RTLIB::RINT_PPCF128));
2540    break;
2541  case ISD::FNEARBYINT:
2542    Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
2543                                      RTLIB::NEARBYINT_F64,
2544                                      RTLIB::NEARBYINT_F80,
2545                                      RTLIB::NEARBYINT_PPCF128));
2546    break;
2547  case ISD::FPOWI:
2548    Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
2549                                      RTLIB::POWI_F80, RTLIB::POWI_PPCF128));
2550    break;
2551  case ISD::FPOW:
2552    Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
2553                                      RTLIB::POW_F80, RTLIB::POW_PPCF128));
2554    break;
2555  case ISD::FDIV:
2556    Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
2557                                      RTLIB::DIV_F80, RTLIB::DIV_PPCF128));
2558    break;
2559  case ISD::FREM:
2560    Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
2561                                      RTLIB::REM_F80, RTLIB::REM_PPCF128));
2562    break;
2563  case ISD::ConstantFP: {
2564    ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
2565    // Check to see if this FP immediate is already legal.
2566    bool isLegal = false;
2567    for (TargetLowering::legal_fpimm_iterator I = TLI.legal_fpimm_begin(),
2568            E = TLI.legal_fpimm_end(); I != E; ++I) {
2569      if (CFP->isExactlyValue(*I)) {
2570        isLegal = true;
2571        break;
2572      }
2573    }
2574    // If this is a legal constant, turn it into a TargetConstantFP node.
2575    if (isLegal)
2576      Results.push_back(SDValue(Node, 0));
2577    else
2578      Results.push_back(ExpandConstantFP(CFP, true, DAG, TLI));
2579    break;
2580  }
2581  case ISD::EHSELECTION: {
2582    unsigned Reg = TLI.getExceptionSelectorRegister();
2583    assert(Reg && "Can't expand to unknown register!");
2584    Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg,
2585                                         Node->getValueType(0)));
2586    Results.push_back(Results[0].getValue(1));
2587    break;
2588  }
2589  case ISD::EXCEPTIONADDR: {
2590    unsigned Reg = TLI.getExceptionAddressRegister();
2591    assert(Reg && "Can't expand to unknown register!");
2592    Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg,
2593                                         Node->getValueType(0)));
2594    Results.push_back(Results[0].getValue(1));
2595    break;
2596  }
2597  case ISD::SUB: {
2598    EVT VT = Node->getValueType(0);
2599    assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
2600           TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
2601           "Don't know how to expand this subtraction!");
2602    Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
2603               DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT));
2604    Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp2, DAG.getConstant(1, VT));
2605    Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
2606    break;
2607  }
2608  case ISD::UREM:
2609  case ISD::SREM: {
2610    EVT VT = Node->getValueType(0);
2611    SDVTList VTs = DAG.getVTList(VT, VT);
2612    bool isSigned = Node->getOpcode() == ISD::SREM;
2613    unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
2614    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2615    Tmp2 = Node->getOperand(0);
2616    Tmp3 = Node->getOperand(1);
2617    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
2618      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
2619    } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
2620      // X % Y -> X-X/Y*Y
2621      Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
2622      Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
2623      Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
2624    } else if (isSigned) {
2625      Tmp1 = ExpandIntLibCall(Node, true, RTLIB::SREM_I16, RTLIB::SREM_I32,
2626                              RTLIB::SREM_I64, RTLIB::SREM_I128);
2627    } else {
2628      Tmp1 = ExpandIntLibCall(Node, false, RTLIB::UREM_I16, RTLIB::UREM_I32,
2629                              RTLIB::UREM_I64, RTLIB::UREM_I128);
2630    }
2631    Results.push_back(Tmp1);
2632    break;
2633  }
2634  case ISD::UDIV:
2635  case ISD::SDIV: {
2636    bool isSigned = Node->getOpcode() == ISD::SDIV;
2637    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2638    EVT VT = Node->getValueType(0);
2639    SDVTList VTs = DAG.getVTList(VT, VT);
2640    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT))
2641      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
2642                         Node->getOperand(1));
2643    else if (isSigned)
2644      Tmp1 = ExpandIntLibCall(Node, true, RTLIB::SDIV_I16, RTLIB::SDIV_I32,
2645                              RTLIB::SDIV_I64, RTLIB::SDIV_I128);
2646    else
2647      Tmp1 = ExpandIntLibCall(Node, false, RTLIB::UDIV_I16, RTLIB::UDIV_I32,
2648                              RTLIB::UDIV_I64, RTLIB::UDIV_I128);
2649    Results.push_back(Tmp1);
2650    break;
2651  }
2652  case ISD::MULHU:
2653  case ISD::MULHS: {
2654    unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
2655                                                              ISD::SMUL_LOHI;
2656    EVT VT = Node->getValueType(0);
2657    SDVTList VTs = DAG.getVTList(VT, VT);
2658    assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
2659           "If this wasn't legal, it shouldn't have been created!");
2660    Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
2661                       Node->getOperand(1));
2662    Results.push_back(Tmp1.getValue(1));
2663    break;
2664  }
2665  case ISD::MUL: {
2666    EVT VT = Node->getValueType(0);
2667    SDVTList VTs = DAG.getVTList(VT, VT);
2668    // See if multiply or divide can be lowered using two-result operations.
2669    // We just need the low half of the multiply; try both the signed
2670    // and unsigned forms. If the target supports both SMUL_LOHI and
2671    // UMUL_LOHI, form a preference by checking which forms of plain
2672    // MULH it supports.
2673    bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
2674    bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
2675    bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
2676    bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
2677    unsigned OpToUse = 0;
2678    if (HasSMUL_LOHI && !HasMULHS) {
2679      OpToUse = ISD::SMUL_LOHI;
2680    } else if (HasUMUL_LOHI && !HasMULHU) {
2681      OpToUse = ISD::UMUL_LOHI;
2682    } else if (HasSMUL_LOHI) {
2683      OpToUse = ISD::SMUL_LOHI;
2684    } else if (HasUMUL_LOHI) {
2685      OpToUse = ISD::UMUL_LOHI;
2686    }
2687    if (OpToUse) {
2688      Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
2689                                    Node->getOperand(1)));
2690      break;
2691    }
2692    Tmp1 = ExpandIntLibCall(Node, false, RTLIB::MUL_I16, RTLIB::MUL_I32,
2693                            RTLIB::MUL_I64, RTLIB::MUL_I128);
2694    Results.push_back(Tmp1);
2695    break;
2696  }
2697  case ISD::SADDO:
2698  case ISD::SSUBO: {
2699    SDValue LHS = Node->getOperand(0);
2700    SDValue RHS = Node->getOperand(1);
2701    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
2702                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2703                              LHS, RHS);
2704    Results.push_back(Sum);
2705    EVT OType = Node->getValueType(1);
2706
2707    SDValue Zero = DAG.getConstant(0, LHS.getValueType());
2708
2709    //   LHSSign -> LHS >= 0
2710    //   RHSSign -> RHS >= 0
2711    //   SumSign -> Sum >= 0
2712    //
2713    //   Add:
2714    //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
2715    //   Sub:
2716    //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
2717    //
2718    SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
2719    SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
2720    SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
2721                                      Node->getOpcode() == ISD::SADDO ?
2722                                      ISD::SETEQ : ISD::SETNE);
2723
2724    SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
2725    SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
2726
2727    SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
2728    Results.push_back(Cmp);
2729    break;
2730  }
2731  case ISD::UADDO:
2732  case ISD::USUBO: {
2733    SDValue LHS = Node->getOperand(0);
2734    SDValue RHS = Node->getOperand(1);
2735    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
2736                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2737                              LHS, RHS);
2738    Results.push_back(Sum);
2739    Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS,
2740                                   Node->getOpcode () == ISD::UADDO ?
2741                                   ISD::SETULT : ISD::SETUGT));
2742    break;
2743  }
2744  case ISD::UMULO:
2745  case ISD::SMULO: {
2746    EVT VT = Node->getValueType(0);
2747    SDValue LHS = Node->getOperand(0);
2748    SDValue RHS = Node->getOperand(1);
2749    SDValue BottomHalf;
2750    SDValue TopHalf;
2751    static unsigned Ops[2][3] =
2752        { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
2753          { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
2754    bool isSigned = Node->getOpcode() == ISD::SMULO;
2755    if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
2756      BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
2757      TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
2758    } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
2759      BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
2760                               RHS);
2761      TopHalf = BottomHalf.getValue(1);
2762    } else if (TLI.isTypeLegal(EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2))) {
2763      EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
2764      LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
2765      RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
2766      Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
2767      BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
2768                               DAG.getIntPtrConstant(0));
2769      TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
2770                            DAG.getIntPtrConstant(1));
2771    } else {
2772      // FIXME: We should be able to fall back to a libcall with an illegal
2773      // type in some cases cases.
2774      // Also, we can fall back to a division in some cases, but that's a big
2775      // performance hit in the general case.
2776      llvm_unreachable("Don't know how to expand this operation yet!");
2777    }
2778    if (isSigned) {
2779      Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1, TLI.getShiftAmountTy());
2780      Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1);
2781      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1,
2782                             ISD::SETNE);
2783    } else {
2784      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf,
2785                             DAG.getConstant(0, VT), ISD::SETNE);
2786    }
2787    Results.push_back(BottomHalf);
2788    Results.push_back(TopHalf);
2789    break;
2790  }
2791  case ISD::BUILD_PAIR: {
2792    EVT PairTy = Node->getValueType(0);
2793    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
2794    Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
2795    Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
2796                       DAG.getConstant(PairTy.getSizeInBits()/2,
2797                                       TLI.getShiftAmountTy()));
2798    Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
2799    break;
2800  }
2801  case ISD::SELECT:
2802    Tmp1 = Node->getOperand(0);
2803    Tmp2 = Node->getOperand(1);
2804    Tmp3 = Node->getOperand(2);
2805    if (Tmp1.getOpcode() == ISD::SETCC) {
2806      Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
2807                             Tmp2, Tmp3,
2808                             cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
2809    } else {
2810      Tmp1 = DAG.getSelectCC(dl, Tmp1,
2811                             DAG.getConstant(0, Tmp1.getValueType()),
2812                             Tmp2, Tmp3, ISD::SETNE);
2813    }
2814    Results.push_back(Tmp1);
2815    break;
2816  case ISD::BR_JT: {
2817    SDValue Chain = Node->getOperand(0);
2818    SDValue Table = Node->getOperand(1);
2819    SDValue Index = Node->getOperand(2);
2820
2821    EVT PTy = TLI.getPointerTy();
2822    MachineFunction &MF = DAG.getMachineFunction();
2823    unsigned EntrySize = MF.getJumpTableInfo()->getEntrySize();
2824    Index= DAG.getNode(ISD::MUL, dl, PTy,
2825                        Index, DAG.getConstant(EntrySize, PTy));
2826    SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
2827
2828    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
2829    SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr,
2830                                PseudoSourceValue::getJumpTable(), 0, MemVT);
2831    Addr = LD;
2832    if (TLI.getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2833      // For PIC, the sequence is:
2834      // BRIND(load(Jumptable + index) + RelocBase)
2835      // RelocBase can be JumpTable, GOT or some sort of global base.
2836      Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
2837                          TLI.getPICJumpTableRelocBase(Table, DAG));
2838    }
2839    Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
2840    Results.push_back(Tmp1);
2841    break;
2842  }
2843  case ISD::BRCOND:
2844    // Expand brcond's setcc into its constituent parts and create a BR_CC
2845    // Node.
2846    Tmp1 = Node->getOperand(0);
2847    Tmp2 = Node->getOperand(1);
2848    if (Tmp2.getOpcode() == ISD::SETCC) {
2849      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
2850                         Tmp1, Tmp2.getOperand(2),
2851                         Tmp2.getOperand(0), Tmp2.getOperand(1),
2852                         Node->getOperand(2));
2853    } else {
2854      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
2855                         DAG.getCondCode(ISD::SETNE), Tmp2,
2856                         DAG.getConstant(0, Tmp2.getValueType()),
2857                         Node->getOperand(2));
2858    }
2859    Results.push_back(Tmp1);
2860    break;
2861  case ISD::SETCC: {
2862    Tmp1 = Node->getOperand(0);
2863    Tmp2 = Node->getOperand(1);
2864    Tmp3 = Node->getOperand(2);
2865    LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl);
2866
2867    // If we expanded the SETCC into an AND/OR, return the new node
2868    if (Tmp2.getNode() == 0) {
2869      Results.push_back(Tmp1);
2870      break;
2871    }
2872
2873    // Otherwise, SETCC for the given comparison type must be completely
2874    // illegal; expand it into a SELECT_CC.
2875    EVT VT = Node->getValueType(0);
2876    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
2877                       DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3);
2878    Results.push_back(Tmp1);
2879    break;
2880  }
2881  case ISD::SELECT_CC: {
2882    Tmp1 = Node->getOperand(0);   // LHS
2883    Tmp2 = Node->getOperand(1);   // RHS
2884    Tmp3 = Node->getOperand(2);   // True
2885    Tmp4 = Node->getOperand(3);   // False
2886    SDValue CC = Node->getOperand(4);
2887
2888    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()),
2889                          Tmp1, Tmp2, CC, dl);
2890
2891    assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!");
2892    Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
2893    CC = DAG.getCondCode(ISD::SETNE);
2894    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2,
2895                       Tmp3, Tmp4, CC);
2896    Results.push_back(Tmp1);
2897    break;
2898  }
2899  case ISD::BR_CC: {
2900    Tmp1 = Node->getOperand(0);              // Chain
2901    Tmp2 = Node->getOperand(2);              // LHS
2902    Tmp3 = Node->getOperand(3);              // RHS
2903    Tmp4 = Node->getOperand(1);              // CC
2904
2905    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()),
2906                          Tmp2, Tmp3, Tmp4, dl);
2907    LastCALLSEQ_END = DAG.getEntryNode();
2908
2909    assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!");
2910    Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
2911    Tmp4 = DAG.getCondCode(ISD::SETNE);
2912    Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2,
2913                       Tmp3, Node->getOperand(4));
2914    Results.push_back(Tmp1);
2915    break;
2916  }
2917  case ISD::GLOBAL_OFFSET_TABLE:
2918  case ISD::GlobalAddress:
2919  case ISD::GlobalTLSAddress:
2920  case ISD::ExternalSymbol:
2921  case ISD::ConstantPool:
2922  case ISD::JumpTable:
2923  case ISD::INTRINSIC_W_CHAIN:
2924  case ISD::INTRINSIC_WO_CHAIN:
2925  case ISD::INTRINSIC_VOID:
2926    // FIXME: Custom lowering for these operations shouldn't return null!
2927    for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
2928      Results.push_back(SDValue(Node, i));
2929    break;
2930  }
2931}
2932void SelectionDAGLegalize::PromoteNode(SDNode *Node,
2933                                       SmallVectorImpl<SDValue> &Results) {
2934  EVT OVT = Node->getValueType(0);
2935  if (Node->getOpcode() == ISD::UINT_TO_FP ||
2936      Node->getOpcode() == ISD::SINT_TO_FP ||
2937      Node->getOpcode() == ISD::SETCC) {
2938    OVT = Node->getOperand(0).getValueType();
2939  }
2940  EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
2941  DebugLoc dl = Node->getDebugLoc();
2942  SDValue Tmp1, Tmp2, Tmp3;
2943  switch (Node->getOpcode()) {
2944  case ISD::CTTZ:
2945  case ISD::CTLZ:
2946  case ISD::CTPOP:
2947    // Zero extend the argument.
2948    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
2949    // Perform the larger operation.
2950    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
2951    if (Node->getOpcode() == ISD::CTTZ) {
2952      //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT)
2953      Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT),
2954                          Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT),
2955                          ISD::SETEQ);
2956      Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2,
2957                          DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1);
2958    } else if (Node->getOpcode() == ISD::CTLZ) {
2959      // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
2960      Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
2961                          DAG.getConstant(NVT.getSizeInBits() -
2962                                          OVT.getSizeInBits(), NVT));
2963    }
2964    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
2965    break;
2966  case ISD::BSWAP: {
2967    unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
2968    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Tmp1);
2969    Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
2970    Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
2971                          DAG.getConstant(DiffBits, TLI.getShiftAmountTy()));
2972    Results.push_back(Tmp1);
2973    break;
2974  }
2975  case ISD::FP_TO_UINT:
2976  case ISD::FP_TO_SINT:
2977    Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
2978                                 Node->getOpcode() == ISD::FP_TO_SINT, dl);
2979    Results.push_back(Tmp1);
2980    break;
2981  case ISD::UINT_TO_FP:
2982  case ISD::SINT_TO_FP:
2983    Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
2984                                 Node->getOpcode() == ISD::SINT_TO_FP, dl);
2985    Results.push_back(Tmp1);
2986    break;
2987  case ISD::AND:
2988  case ISD::OR:
2989  case ISD::XOR: {
2990    unsigned ExtOp, TruncOp;
2991    if (OVT.isVector()) {
2992      ExtOp   = ISD::BIT_CONVERT;
2993      TruncOp = ISD::BIT_CONVERT;
2994    } else if (OVT.isInteger()) {
2995      ExtOp   = ISD::ANY_EXTEND;
2996      TruncOp = ISD::TRUNCATE;
2997    } else {
2998      llvm_report_error("Cannot promote logic operation");
2999    }
3000    // Promote each of the values to the new type.
3001    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3002    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3003    // Perform the larger operation, then convert back
3004    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3005    Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
3006    break;
3007  }
3008  case ISD::SELECT: {
3009    unsigned ExtOp, TruncOp;
3010    if (Node->getValueType(0).isVector()) {
3011      ExtOp   = ISD::BIT_CONVERT;
3012      TruncOp = ISD::BIT_CONVERT;
3013    } else if (Node->getValueType(0).isInteger()) {
3014      ExtOp   = ISD::ANY_EXTEND;
3015      TruncOp = ISD::TRUNCATE;
3016    } else {
3017      ExtOp   = ISD::FP_EXTEND;
3018      TruncOp = ISD::FP_ROUND;
3019    }
3020    Tmp1 = Node->getOperand(0);
3021    // Promote each of the values to the new type.
3022    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3023    Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
3024    // Perform the larger operation, then round down.
3025    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3);
3026    if (TruncOp != ISD::FP_ROUND)
3027      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
3028    else
3029      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
3030                         DAG.getIntPtrConstant(0));
3031    Results.push_back(Tmp1);
3032    break;
3033  }
3034  case ISD::VECTOR_SHUFFLE: {
3035    SmallVector<int, 8> Mask;
3036    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
3037
3038    // Cast the two input vectors.
3039    Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0));
3040    Tmp2 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(1));
3041
3042    // Convert the shuffle mask to the right # elements.
3043    Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
3044    Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, OVT, Tmp1);
3045    Results.push_back(Tmp1);
3046    break;
3047  }
3048  case ISD::SETCC: {
3049    unsigned ExtOp = ISD::FP_EXTEND;
3050    if (NVT.isInteger()) {
3051      ISD::CondCode CCCode =
3052        cast<CondCodeSDNode>(Node->getOperand(2))->get();
3053      ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3054    }
3055    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3056    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3057    Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3058                                  Tmp1, Tmp2, Node->getOperand(2)));
3059    break;
3060  }
3061  }
3062}
3063
3064// SelectionDAG::Legalize - This is the entry point for the file.
3065//
3066void SelectionDAG::Legalize(bool TypesNeedLegalizing,
3067                            CodeGenOpt::Level OptLevel) {
3068  /// run - This is the main entry point to this class.
3069  ///
3070  SelectionDAGLegalize(*this, OptLevel).LegalizeDAG();
3071}
3072
3073