LegalizeDAG.cpp revision ec52aaa12f57896fc806e849fa21a61603050ac4
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SelectionDAG::Legalize method.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Analysis/DebugInfo.h"
15#include "llvm/CodeGen/Analysis.h"
16#include "llvm/CodeGen/MachineFunction.h"
17#include "llvm/CodeGen/MachineJumpTableInfo.h"
18#include "llvm/CodeGen/SelectionDAG.h"
19#include "llvm/Target/TargetFrameLowering.h"
20#include "llvm/Target/TargetLowering.h"
21#include "llvm/Target/TargetData.h"
22#include "llvm/Target/TargetMachine.h"
23#include "llvm/CallingConv.h"
24#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/LLVMContext.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/Support/ErrorHandling.h"
29#include "llvm/Support/MathExtras.h"
30#include "llvm/Support/raw_ostream.h"
31#include "llvm/ADT/DenseMap.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/SmallPtrSet.h"
34using namespace llvm;
35
36//===----------------------------------------------------------------------===//
37/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
38/// hacks on it until the target machine can handle it.  This involves
39/// eliminating value sizes the machine cannot handle (promoting small sizes to
40/// large sizes or splitting up large values into small values) as well as
41/// eliminating operations the machine cannot handle.
42///
43/// This code also does a small amount of optimization and recognition of idioms
44/// as part of its processing.  For example, if a target does not support a
45/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
46/// will attempt merge setcc and brc instructions into brcc's.
47///
48namespace {
49class SelectionDAGLegalize : public SelectionDAG::DAGUpdateListener {
50  const TargetMachine &TM;
51  const TargetLowering &TLI;
52  SelectionDAG &DAG;
53
54  /// LegalizePosition - The iterator for walking through the node list.
55  SelectionDAG::allnodes_iterator LegalizePosition;
56
57  /// LegalizedNodes - The set of nodes which have already been legalized.
58  SmallPtrSet<SDNode *, 16> LegalizedNodes;
59
60  // Libcall insertion helpers.
61
62public:
63  explicit SelectionDAGLegalize(SelectionDAG &DAG);
64
65  void LegalizeDAG();
66
67private:
68  /// LegalizeOp - Legalizes the given operation.
69  void LegalizeOp(SDNode *Node);
70
71  SDValue OptimizeFloatStore(StoreSDNode *ST);
72
73  /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
74  /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
75  /// is necessary to spill the vector being inserted into to memory, perform
76  /// the insert there, and then read the result back.
77  SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
78                                         SDValue Idx, DebugLoc dl);
79  SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
80                                  SDValue Idx, DebugLoc dl);
81
82  /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
83  /// performs the same shuffe in terms of order or result bytes, but on a type
84  /// whose vector element type is narrower than the original shuffle type.
85  /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
86  SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl,
87                                     SDValue N1, SDValue N2,
88                                     ArrayRef<int> Mask) const;
89
90  void LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
91                             DebugLoc dl);
92
93  SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
94  SDValue ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, const SDValue *Ops,
95                        unsigned NumOps, bool isSigned, DebugLoc dl);
96
97  std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC,
98                                                 SDNode *Node, bool isSigned);
99  SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
100                          RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
101                          RTLIB::Libcall Call_PPCF128);
102  SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
103                           RTLIB::Libcall Call_I8,
104                           RTLIB::Libcall Call_I16,
105                           RTLIB::Libcall Call_I32,
106                           RTLIB::Libcall Call_I64,
107                           RTLIB::Libcall Call_I128);
108  void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
109
110  SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, DebugLoc dl);
111  SDValue ExpandBUILD_VECTOR(SDNode *Node);
112  SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
113  void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
114                                SmallVectorImpl<SDValue> &Results);
115  SDValue ExpandFCOPYSIGN(SDNode *Node);
116  SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT,
117                               DebugLoc dl);
118  SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned,
119                                DebugLoc dl);
120  SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned,
121                                DebugLoc dl);
122
123  SDValue ExpandBSWAP(SDValue Op, DebugLoc dl);
124  SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl);
125
126  SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
127  SDValue ExpandInsertToVectorThroughStack(SDValue Op);
128  SDValue ExpandVectorBuildThroughStack(SDNode* Node);
129
130  SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP);
131
132  std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node);
133
134  void ExpandNode(SDNode *Node);
135  void PromoteNode(SDNode *Node);
136
137  void ForgetNode(SDNode *N) {
138    LegalizedNodes.erase(N);
139    if (LegalizePosition == SelectionDAG::allnodes_iterator(N))
140      ++LegalizePosition;
141  }
142
143public:
144  // DAGUpdateListener implementation.
145  virtual void NodeDeleted(SDNode *N, SDNode *E) {
146    ForgetNode(N);
147  }
148  virtual void NodeUpdated(SDNode *N) {}
149
150  // Node replacement helpers
151  void ReplacedNode(SDNode *N) {
152    if (N->use_empty()) {
153      DAG.RemoveDeadNode(N, this);
154    } else {
155      ForgetNode(N);
156    }
157  }
158  void ReplaceNode(SDNode *Old, SDNode *New) {
159    DAG.ReplaceAllUsesWith(Old, New, this);
160    ReplacedNode(Old);
161  }
162  void ReplaceNode(SDValue Old, SDValue New) {
163    DAG.ReplaceAllUsesWith(Old, New, this);
164    ReplacedNode(Old.getNode());
165  }
166  void ReplaceNode(SDNode *Old, const SDValue *New) {
167    DAG.ReplaceAllUsesWith(Old, New, this);
168    ReplacedNode(Old);
169  }
170};
171}
172
173/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
174/// performs the same shuffe in terms of order or result bytes, but on a type
175/// whose vector element type is narrower than the original shuffle type.
176/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
177SDValue
178SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT,  DebugLoc dl,
179                                                 SDValue N1, SDValue N2,
180                                                 ArrayRef<int> Mask) const {
181  unsigned NumMaskElts = VT.getVectorNumElements();
182  unsigned NumDestElts = NVT.getVectorNumElements();
183  unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
184
185  assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
186
187  if (NumEltsGrowth == 1)
188    return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
189
190  SmallVector<int, 8> NewMask;
191  for (unsigned i = 0; i != NumMaskElts; ++i) {
192    int Idx = Mask[i];
193    for (unsigned j = 0; j != NumEltsGrowth; ++j) {
194      if (Idx < 0)
195        NewMask.push_back(-1);
196      else
197        NewMask.push_back(Idx * NumEltsGrowth + j);
198    }
199  }
200  assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
201  assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
202  return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
203}
204
205SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag)
206  : TM(dag.getTarget()), TLI(dag.getTargetLoweringInfo()),
207    DAG(dag) {
208}
209
210void SelectionDAGLegalize::LegalizeDAG() {
211  DAG.AssignTopologicalOrder();
212
213  // Visit all the nodes. We start in topological order, so that we see
214  // nodes with their original operands intact. Legalization can produce
215  // new nodes which may themselves need to be legalized. Iterate until all
216  // nodes have been legalized.
217  for (;;) {
218    bool AnyLegalized = false;
219    for (LegalizePosition = DAG.allnodes_end();
220         LegalizePosition != DAG.allnodes_begin(); ) {
221      --LegalizePosition;
222
223      SDNode *N = LegalizePosition;
224      if (LegalizedNodes.insert(N)) {
225        AnyLegalized = true;
226        LegalizeOp(N);
227      }
228    }
229    if (!AnyLegalized)
230      break;
231
232  }
233
234  // Remove dead nodes now.
235  DAG.RemoveDeadNodes();
236}
237
238/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
239/// a load from the constant pool.
240SDValue
241SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) {
242  bool Extend = false;
243  DebugLoc dl = CFP->getDebugLoc();
244
245  // If a FP immediate is precise when represented as a float and if the
246  // target can do an extending load from float to double, we put it into
247  // the constant pool as a float, even if it's is statically typed as a
248  // double.  This shrinks FP constants and canonicalizes them for targets where
249  // an FP extending load is the same cost as a normal load (such as on the x87
250  // fp stack or PPC FP unit).
251  EVT VT = CFP->getValueType(0);
252  ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
253  if (!UseCP) {
254    assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
255    return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(),
256                           (VT == MVT::f64) ? MVT::i64 : MVT::i32);
257  }
258
259  EVT OrigVT = VT;
260  EVT SVT = VT;
261  while (SVT != MVT::f32) {
262    SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
263    if (ConstantFPSDNode::isValueValidForType(SVT, CFP->getValueAPF()) &&
264        // Only do this if the target has a native EXTLOAD instruction from
265        // smaller type.
266        TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
267        TLI.ShouldShrinkFPConstant(OrigVT)) {
268      Type *SType = SVT.getTypeForEVT(*DAG.getContext());
269      LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
270      VT = SVT;
271      Extend = true;
272    }
273  }
274
275  SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
276  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
277  if (Extend) {
278    SDValue Result =
279      DAG.getExtLoad(ISD::EXTLOAD, dl, OrigVT,
280                     DAG.getEntryNode(),
281                     CPIdx, MachinePointerInfo::getConstantPool(),
282                     VT, false, false, Alignment);
283    return Result;
284  }
285  SDValue Result =
286    DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
287                MachinePointerInfo::getConstantPool(), false, false, false,
288                Alignment);
289  return Result;
290}
291
292/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
293static void ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
294                                 const TargetLowering &TLI,
295                                 SelectionDAGLegalize *DAGLegalize) {
296  assert(ST->getAddressingMode() == ISD::UNINDEXED &&
297         "unaligned indexed stores not implemented!");
298  SDValue Chain = ST->getChain();
299  SDValue Ptr = ST->getBasePtr();
300  SDValue Val = ST->getValue();
301  EVT VT = Val.getValueType();
302  int Alignment = ST->getAlignment();
303  DebugLoc dl = ST->getDebugLoc();
304  if (ST->getMemoryVT().isFloatingPoint() ||
305      ST->getMemoryVT().isVector()) {
306    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
307    if (TLI.isTypeLegal(intVT)) {
308      // Expand to a bitconvert of the value to the integer type of the
309      // same size, then a (misaligned) int store.
310      // FIXME: Does not handle truncating floating point stores!
311      SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
312      Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
313                           ST->isVolatile(), ST->isNonTemporal(), Alignment);
314      DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
315      return;
316    }
317    // Do a (aligned) store to a stack slot, then copy from the stack slot
318    // to the final destination using (unaligned) integer loads and stores.
319    EVT StoredVT = ST->getMemoryVT();
320    EVT RegVT =
321      TLI.getRegisterType(*DAG.getContext(),
322                          EVT::getIntegerVT(*DAG.getContext(),
323                                            StoredVT.getSizeInBits()));
324    unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
325    unsigned RegBytes = RegVT.getSizeInBits() / 8;
326    unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
327
328    // Make sure the stack slot is also aligned for the register type.
329    SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
330
331    // Perform the original store, only redirected to the stack slot.
332    SDValue Store = DAG.getTruncStore(Chain, dl,
333                                      Val, StackPtr, MachinePointerInfo(),
334                                      StoredVT, false, false, 0);
335    SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
336    SmallVector<SDValue, 8> Stores;
337    unsigned Offset = 0;
338
339    // Do all but one copies using the full register width.
340    for (unsigned i = 1; i < NumRegs; i++) {
341      // Load one integer register's worth from the stack slot.
342      SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr,
343                                 MachinePointerInfo(),
344                                 false, false, false, 0);
345      // Store it to the final location.  Remember the store.
346      Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
347                                  ST->getPointerInfo().getWithOffset(Offset),
348                                    ST->isVolatile(), ST->isNonTemporal(),
349                                    MinAlign(ST->getAlignment(), Offset)));
350      // Increment the pointers.
351      Offset += RegBytes;
352      StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
353                             Increment);
354      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
355    }
356
357    // The last store may be partial.  Do a truncating store.  On big-endian
358    // machines this requires an extending load from the stack slot to ensure
359    // that the bits are in the right place.
360    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
361                                  8 * (StoredBytes - Offset));
362
363    // Load from the stack slot.
364    SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
365                                  MachinePointerInfo(),
366                                  MemVT, false, false, 0);
367
368    Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
369                                       ST->getPointerInfo()
370                                         .getWithOffset(Offset),
371                                       MemVT, ST->isVolatile(),
372                                       ST->isNonTemporal(),
373                                       MinAlign(ST->getAlignment(), Offset)));
374    // The order of the stores doesn't matter - say it with a TokenFactor.
375    SDValue Result =
376      DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
377                  Stores.size());
378    DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
379    return;
380  }
381  assert(ST->getMemoryVT().isInteger() &&
382         !ST->getMemoryVT().isVector() &&
383         "Unaligned store of unknown type.");
384  // Get the half-size VT
385  EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
386  int NumBits = NewStoredVT.getSizeInBits();
387  int IncrementSize = NumBits / 8;
388
389  // Divide the stored value in two parts.
390  SDValue ShiftAmount = DAG.getConstant(NumBits,
391                                      TLI.getShiftAmountTy(Val.getValueType()));
392  SDValue Lo = Val;
393  SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
394
395  // Store the two parts
396  SDValue Store1, Store2;
397  Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
398                             ST->getPointerInfo(), NewStoredVT,
399                             ST->isVolatile(), ST->isNonTemporal(), Alignment);
400  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
401                    DAG.getConstant(IncrementSize, TLI.getPointerTy()));
402  Alignment = MinAlign(Alignment, IncrementSize);
403  Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
404                             ST->getPointerInfo().getWithOffset(IncrementSize),
405                             NewStoredVT, ST->isVolatile(), ST->isNonTemporal(),
406                             Alignment);
407
408  SDValue Result =
409    DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
410  DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
411}
412
413/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
414static void
415ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
416                    const TargetLowering &TLI,
417                    SDValue &ValResult, SDValue &ChainResult) {
418  assert(LD->getAddressingMode() == ISD::UNINDEXED &&
419         "unaligned indexed loads not implemented!");
420  SDValue Chain = LD->getChain();
421  SDValue Ptr = LD->getBasePtr();
422  EVT VT = LD->getValueType(0);
423  EVT LoadedVT = LD->getMemoryVT();
424  DebugLoc dl = LD->getDebugLoc();
425  if (VT.isFloatingPoint() || VT.isVector()) {
426    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
427    if (TLI.isTypeLegal(intVT)) {
428      // Expand to a (misaligned) integer load of the same size,
429      // then bitconvert to floating point or vector.
430      SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getPointerInfo(),
431                                    LD->isVolatile(),
432                                    LD->isNonTemporal(),
433                                    LD->isInvariant(), LD->getAlignment());
434      SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
435      if (VT.isFloatingPoint() && LoadedVT != VT)
436        Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result);
437
438      ValResult = Result;
439      ChainResult = Chain;
440      return;
441    }
442
443    // Copy the value to a (aligned) stack slot using (unaligned) integer
444    // loads and stores, then do a (aligned) load from the stack slot.
445    EVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT);
446    unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
447    unsigned RegBytes = RegVT.getSizeInBits() / 8;
448    unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
449
450    // Make sure the stack slot is also aligned for the register type.
451    SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
452
453    SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
454    SmallVector<SDValue, 8> Stores;
455    SDValue StackPtr = StackBase;
456    unsigned Offset = 0;
457
458    // Do all but one copies using the full register width.
459    for (unsigned i = 1; i < NumRegs; i++) {
460      // Load one integer register's worth from the original location.
461      SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr,
462                                 LD->getPointerInfo().getWithOffset(Offset),
463                                 LD->isVolatile(), LD->isNonTemporal(),
464                                 LD->isInvariant(),
465                                 MinAlign(LD->getAlignment(), Offset));
466      // Follow the load with a store to the stack slot.  Remember the store.
467      Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
468                                    MachinePointerInfo(), false, false, 0));
469      // Increment the pointers.
470      Offset += RegBytes;
471      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
472      StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
473                             Increment);
474    }
475
476    // The last copy may be partial.  Do an extending load.
477    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
478                                  8 * (LoadedBytes - Offset));
479    SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
480                                  LD->getPointerInfo().getWithOffset(Offset),
481                                  MemVT, LD->isVolatile(),
482                                  LD->isNonTemporal(),
483                                  MinAlign(LD->getAlignment(), Offset));
484    // Follow the load with a store to the stack slot.  Remember the store.
485    // On big-endian machines this requires a truncating store to ensure
486    // that the bits end up in the right place.
487    Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
488                                       MachinePointerInfo(), MemVT,
489                                       false, false, 0));
490
491    // The order of the stores doesn't matter - say it with a TokenFactor.
492    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
493                             Stores.size());
494
495    // Finally, perform the original load only redirected to the stack slot.
496    Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
497                          MachinePointerInfo(), LoadedVT, false, false, 0);
498
499    // Callers expect a MERGE_VALUES node.
500    ValResult = Load;
501    ChainResult = TF;
502    return;
503  }
504  assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
505         "Unaligned load of unsupported type.");
506
507  // Compute the new VT that is half the size of the old one.  This is an
508  // integer MVT.
509  unsigned NumBits = LoadedVT.getSizeInBits();
510  EVT NewLoadedVT;
511  NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
512  NumBits >>= 1;
513
514  unsigned Alignment = LD->getAlignment();
515  unsigned IncrementSize = NumBits / 8;
516  ISD::LoadExtType HiExtType = LD->getExtensionType();
517
518  // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
519  if (HiExtType == ISD::NON_EXTLOAD)
520    HiExtType = ISD::ZEXTLOAD;
521
522  // Load the value in two parts
523  SDValue Lo, Hi;
524  if (TLI.isLittleEndian()) {
525    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
526                        NewLoadedVT, LD->isVolatile(),
527                        LD->isNonTemporal(), Alignment);
528    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
529                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
530    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
531                        LD->getPointerInfo().getWithOffset(IncrementSize),
532                        NewLoadedVT, LD->isVolatile(),
533                        LD->isNonTemporal(), MinAlign(Alignment,IncrementSize));
534  } else {
535    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
536                        NewLoadedVT, LD->isVolatile(),
537                        LD->isNonTemporal(), Alignment);
538    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
539                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
540    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
541                        LD->getPointerInfo().getWithOffset(IncrementSize),
542                        NewLoadedVT, LD->isVolatile(),
543                        LD->isNonTemporal(), MinAlign(Alignment,IncrementSize));
544  }
545
546  // aggregate the two parts
547  SDValue ShiftAmount = DAG.getConstant(NumBits,
548                                       TLI.getShiftAmountTy(Hi.getValueType()));
549  SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
550  Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
551
552  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
553                             Hi.getValue(1));
554
555  ValResult = Result;
556  ChainResult = TF;
557}
558
559/// PerformInsertVectorEltInMemory - Some target cannot handle a variable
560/// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
561/// is necessary to spill the vector being inserted into to memory, perform
562/// the insert there, and then read the result back.
563SDValue SelectionDAGLegalize::
564PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
565                               DebugLoc dl) {
566  SDValue Tmp1 = Vec;
567  SDValue Tmp2 = Val;
568  SDValue Tmp3 = Idx;
569
570  // If the target doesn't support this, we have to spill the input vector
571  // to a temporary stack slot, update the element, then reload it.  This is
572  // badness.  We could also load the value into a vector register (either
573  // with a "move to register" or "extload into register" instruction, then
574  // permute it into place, if the idx is a constant and if the idx is
575  // supported by the target.
576  EVT VT    = Tmp1.getValueType();
577  EVT EltVT = VT.getVectorElementType();
578  EVT IdxVT = Tmp3.getValueType();
579  EVT PtrVT = TLI.getPointerTy();
580  SDValue StackPtr = DAG.CreateStackTemporary(VT);
581
582  int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
583
584  // Store the vector.
585  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr,
586                            MachinePointerInfo::getFixedStack(SPFI),
587                            false, false, 0);
588
589  // Truncate or zero extend offset to target pointer type.
590  unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
591  Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3);
592  // Add the offset to the index.
593  unsigned EltSize = EltVT.getSizeInBits()/8;
594  Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
595  SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
596  // Store the scalar value.
597  Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT,
598                         false, false, 0);
599  // Load the updated vector.
600  return DAG.getLoad(VT, dl, Ch, StackPtr,
601                     MachinePointerInfo::getFixedStack(SPFI), false, false,
602                     false, 0);
603}
604
605
606SDValue SelectionDAGLegalize::
607ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) {
608  if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
609    // SCALAR_TO_VECTOR requires that the type of the value being inserted
610    // match the element type of the vector being created, except for
611    // integers in which case the inserted value can be over width.
612    EVT EltVT = Vec.getValueType().getVectorElementType();
613    if (Val.getValueType() == EltVT ||
614        (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
615      SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
616                                  Vec.getValueType(), Val);
617
618      unsigned NumElts = Vec.getValueType().getVectorNumElements();
619      // We generate a shuffle of InVec and ScVec, so the shuffle mask
620      // should be 0,1,2,3,4,5... with the appropriate element replaced with
621      // elt 0 of the RHS.
622      SmallVector<int, 8> ShufOps;
623      for (unsigned i = 0; i != NumElts; ++i)
624        ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
625
626      return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
627                                  &ShufOps[0]);
628    }
629  }
630  return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
631}
632
633SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
634  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
635  // FIXME: We shouldn't do this for TargetConstantFP's.
636  // FIXME: move this to the DAG Combiner!  Note that we can't regress due
637  // to phase ordering between legalized code and the dag combiner.  This
638  // probably means that we need to integrate dag combiner and legalizer
639  // together.
640  // We generally can't do this one for long doubles.
641  SDValue Tmp1 = ST->getChain();
642  SDValue Tmp2 = ST->getBasePtr();
643  SDValue Tmp3;
644  unsigned Alignment = ST->getAlignment();
645  bool isVolatile = ST->isVolatile();
646  bool isNonTemporal = ST->isNonTemporal();
647  DebugLoc dl = ST->getDebugLoc();
648  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
649    if (CFP->getValueType(0) == MVT::f32 &&
650        TLI.isTypeLegal(MVT::i32)) {
651      Tmp3 = DAG.getConstant(CFP->getValueAPF().
652                                      bitcastToAPInt().zextOrTrunc(32),
653                              MVT::i32);
654      return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
655                          isVolatile, isNonTemporal, Alignment);
656    }
657
658    if (CFP->getValueType(0) == MVT::f64) {
659      // If this target supports 64-bit registers, do a single 64-bit store.
660      if (TLI.isTypeLegal(MVT::i64)) {
661        Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
662                                  zextOrTrunc(64), MVT::i64);
663        return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
664                            isVolatile, isNonTemporal, Alignment);
665      }
666
667      if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) {
668        // Otherwise, if the target supports 32-bit registers, use 2 32-bit
669        // stores.  If the target supports neither 32- nor 64-bits, this
670        // xform is certainly not worth it.
671        const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt();
672        SDValue Lo = DAG.getConstant(IntVal.trunc(32), MVT::i32);
673        SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32);
674        if (TLI.isBigEndian()) std::swap(Lo, Hi);
675
676        Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getPointerInfo(), isVolatile,
677                          isNonTemporal, Alignment);
678        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
679                            DAG.getIntPtrConstant(4));
680        Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2,
681                          ST->getPointerInfo().getWithOffset(4),
682                          isVolatile, isNonTemporal, MinAlign(Alignment, 4U));
683
684        return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
685      }
686    }
687  }
688  return SDValue(0, 0);
689}
690
691/// LegalizeOp - Return a legal replacement for the given operation, with
692/// all legal operands.
693void SelectionDAGLegalize::LegalizeOp(SDNode *Node) {
694  if (Node->getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
695    return;
696
697  DebugLoc dl = Node->getDebugLoc();
698
699  for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
700    assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) ==
701             TargetLowering::TypeLegal &&
702           "Unexpected illegal type!");
703
704  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
705    assert((TLI.getTypeAction(*DAG.getContext(),
706                              Node->getOperand(i).getValueType()) ==
707              TargetLowering::TypeLegal ||
708            Node->getOperand(i).getOpcode() == ISD::TargetConstant) &&
709           "Unexpected illegal type!");
710
711  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
712  bool isCustom = false;
713
714  // Figure out the correct action; the way to query this varies by opcode
715  TargetLowering::LegalizeAction Action = TargetLowering::Legal;
716  bool SimpleFinishLegalizing = true;
717  switch (Node->getOpcode()) {
718  case ISD::INTRINSIC_W_CHAIN:
719  case ISD::INTRINSIC_WO_CHAIN:
720  case ISD::INTRINSIC_VOID:
721  case ISD::VAARG:
722  case ISD::STACKSAVE:
723    Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
724    break;
725  case ISD::SINT_TO_FP:
726  case ISD::UINT_TO_FP:
727  case ISD::EXTRACT_VECTOR_ELT:
728    Action = TLI.getOperationAction(Node->getOpcode(),
729                                    Node->getOperand(0).getValueType());
730    break;
731  case ISD::FP_ROUND_INREG:
732  case ISD::SIGN_EXTEND_INREG: {
733    EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
734    Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
735    break;
736  }
737  case ISD::ATOMIC_STORE: {
738    Action = TLI.getOperationAction(Node->getOpcode(),
739                                    Node->getOperand(2).getValueType());
740    break;
741  }
742  case ISD::SELECT_CC:
743  case ISD::SETCC:
744  case ISD::BR_CC: {
745    unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
746                         Node->getOpcode() == ISD::SETCC ? 2 : 1;
747    unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
748    EVT OpVT = Node->getOperand(CompareOperand).getValueType();
749    ISD::CondCode CCCode =
750        cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
751    Action = TLI.getCondCodeAction(CCCode, OpVT);
752    if (Action == TargetLowering::Legal) {
753      if (Node->getOpcode() == ISD::SELECT_CC)
754        Action = TLI.getOperationAction(Node->getOpcode(),
755                                        Node->getValueType(0));
756      else
757        Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
758    }
759    break;
760  }
761  case ISD::LOAD:
762  case ISD::STORE:
763    // FIXME: Model these properly.  LOAD and STORE are complicated, and
764    // STORE expects the unlegalized operand in some cases.
765    SimpleFinishLegalizing = false;
766    break;
767  case ISD::CALLSEQ_START:
768  case ISD::CALLSEQ_END:
769    // FIXME: This shouldn't be necessary.  These nodes have special properties
770    // dealing with the recursive nature of legalization.  Removing this
771    // special case should be done as part of making LegalizeDAG non-recursive.
772    SimpleFinishLegalizing = false;
773    break;
774  case ISD::EXTRACT_ELEMENT:
775  case ISD::FLT_ROUNDS_:
776  case ISD::SADDO:
777  case ISD::SSUBO:
778  case ISD::UADDO:
779  case ISD::USUBO:
780  case ISD::SMULO:
781  case ISD::UMULO:
782  case ISD::FPOWI:
783  case ISD::MERGE_VALUES:
784  case ISD::EH_RETURN:
785  case ISD::FRAME_TO_ARGS_OFFSET:
786  case ISD::EH_SJLJ_SETJMP:
787  case ISD::EH_SJLJ_LONGJMP:
788    // These operations lie about being legal: when they claim to be legal,
789    // they should actually be expanded.
790    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
791    if (Action == TargetLowering::Legal)
792      Action = TargetLowering::Expand;
793    break;
794  case ISD::INIT_TRAMPOLINE:
795  case ISD::ADJUST_TRAMPOLINE:
796  case ISD::FRAMEADDR:
797  case ISD::RETURNADDR:
798    // These operations lie about being legal: when they claim to be legal,
799    // they should actually be custom-lowered.
800    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
801    if (Action == TargetLowering::Legal)
802      Action = TargetLowering::Custom;
803    break;
804  default:
805    if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
806      Action = TargetLowering::Legal;
807    } else {
808      Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
809    }
810    break;
811  }
812
813  if (SimpleFinishLegalizing) {
814    SmallVector<SDValue, 8> Ops;
815    for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
816      Ops.push_back(Node->getOperand(i));
817    switch (Node->getOpcode()) {
818    default: break;
819    case ISD::SHL:
820    case ISD::SRL:
821    case ISD::SRA:
822    case ISD::ROTL:
823    case ISD::ROTR:
824      // Legalizing shifts/rotates requires adjusting the shift amount
825      // to the appropriate width.
826      if (!Ops[1].getValueType().isVector()) {
827        SDValue SAO = DAG.getShiftAmountOperand(Ops[0].getValueType(), Ops[1]);
828        HandleSDNode Handle(SAO);
829        LegalizeOp(SAO.getNode());
830        Ops[1] = Handle.getValue();
831      }
832      break;
833    case ISD::SRL_PARTS:
834    case ISD::SRA_PARTS:
835    case ISD::SHL_PARTS:
836      // Legalizing shifts/rotates requires adjusting the shift amount
837      // to the appropriate width.
838      if (!Ops[2].getValueType().isVector()) {
839        SDValue SAO = DAG.getShiftAmountOperand(Ops[0].getValueType(), Ops[2]);
840        HandleSDNode Handle(SAO);
841        LegalizeOp(SAO.getNode());
842        Ops[2] = Handle.getValue();
843      }
844      break;
845    }
846
847    SDNode *NewNode = DAG.UpdateNodeOperands(Node, Ops.data(), Ops.size());
848    if (NewNode != Node) {
849      DAG.ReplaceAllUsesWith(Node, NewNode, this);
850      for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
851        DAG.TransferDbgValues(SDValue(Node, i), SDValue(NewNode, i));
852      ReplacedNode(Node);
853      Node = NewNode;
854    }
855    switch (Action) {
856    case TargetLowering::Legal:
857      return;
858    case TargetLowering::Custom:
859      // FIXME: The handling for custom lowering with multiple results is
860      // a complete mess.
861      Tmp1 = TLI.LowerOperation(SDValue(Node, 0), DAG);
862      if (Tmp1.getNode()) {
863        SmallVector<SDValue, 8> ResultVals;
864        for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
865          if (e == 1)
866            ResultVals.push_back(Tmp1);
867          else
868            ResultVals.push_back(Tmp1.getValue(i));
869        }
870        if (Tmp1.getNode() != Node || Tmp1.getResNo() != 0) {
871          DAG.ReplaceAllUsesWith(Node, ResultVals.data(), this);
872          for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
873            DAG.TransferDbgValues(SDValue(Node, i), ResultVals[i]);
874          ReplacedNode(Node);
875        }
876        return;
877      }
878
879      // FALL THROUGH
880    case TargetLowering::Expand:
881      ExpandNode(Node);
882      return;
883    case TargetLowering::Promote:
884      PromoteNode(Node);
885      return;
886    }
887  }
888
889  switch (Node->getOpcode()) {
890  default:
891#ifndef NDEBUG
892    dbgs() << "NODE: ";
893    Node->dump( &DAG);
894    dbgs() << "\n";
895#endif
896    llvm_unreachable("Do not know how to legalize this operator!");
897
898  case ISD::CALLSEQ_START:
899  case ISD::CALLSEQ_END:
900    break;
901  case ISD::LOAD: {
902    LoadSDNode *LD = cast<LoadSDNode>(Node);
903    Tmp1 = LD->getChain();   // Legalize the chain.
904    Tmp2 = LD->getBasePtr(); // Legalize the base pointer.
905
906    ISD::LoadExtType ExtType = LD->getExtensionType();
907    if (ExtType == ISD::NON_EXTLOAD) {
908      EVT VT = Node->getValueType(0);
909      Tmp3 = SDValue(Node, 0);
910      Tmp4 = SDValue(Node, 1);
911
912      switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
913      default: llvm_unreachable("This action is not supported yet!");
914      case TargetLowering::Legal:
915        // If this is an unaligned load and the target doesn't support it,
916        // expand it.
917        if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
918          Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
919          unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
920          if (LD->getAlignment() < ABIAlignment){
921            ExpandUnalignedLoad(cast<LoadSDNode>(Node),
922                                DAG, TLI, Tmp3, Tmp4);
923          }
924        }
925        break;
926      case TargetLowering::Custom:
927        Tmp1 = TLI.LowerOperation(Tmp3, DAG);
928        if (Tmp1.getNode()) {
929          Tmp3 = Tmp1;
930          Tmp4 = Tmp1.getValue(1);
931        }
932        break;
933      case TargetLowering::Promote: {
934        // Only promote a load of vector type to another.
935        assert(VT.isVector() && "Cannot promote this load!");
936        // Change base type to a different vector type.
937        EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
938
939        Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getPointerInfo(),
940                           LD->isVolatile(), LD->isNonTemporal(),
941                           LD->isInvariant(), LD->getAlignment());
942        Tmp3 = DAG.getNode(ISD::BITCAST, dl, VT, Tmp1);
943        Tmp4 = Tmp1.getValue(1);
944        break;
945      }
946      }
947      if (Tmp4.getNode() != Node) {
948        assert(Tmp3.getNode() != Node && "Load must be completely replaced");
949        DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp3);
950        DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Tmp4);
951        ReplacedNode(Node);
952      }
953      return;
954    }
955
956    EVT SrcVT = LD->getMemoryVT();
957    unsigned SrcWidth = SrcVT.getSizeInBits();
958    unsigned Alignment = LD->getAlignment();
959    bool isVolatile = LD->isVolatile();
960    bool isNonTemporal = LD->isNonTemporal();
961
962    if (SrcWidth != SrcVT.getStoreSizeInBits() &&
963        // Some targets pretend to have an i1 loading operation, and actually
964        // load an i8.  This trick is correct for ZEXTLOAD because the top 7
965        // bits are guaranteed to be zero; it helps the optimizers understand
966        // that these bits are zero.  It is also useful for EXTLOAD, since it
967        // tells the optimizers that those bits are undefined.  It would be
968        // nice to have an effective generic way of getting these benefits...
969        // Until such a way is found, don't insist on promoting i1 here.
970        (SrcVT != MVT::i1 ||
971         TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
972      // Promote to a byte-sized load if not loading an integral number of
973      // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
974      unsigned NewWidth = SrcVT.getStoreSizeInBits();
975      EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
976      SDValue Ch;
977
978      // The extra bits are guaranteed to be zero, since we stored them that
979      // way.  A zext load from NVT thus automatically gives zext from SrcVT.
980
981      ISD::LoadExtType NewExtType =
982        ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
983
984      SDValue Result =
985        DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
986                       Tmp1, Tmp2, LD->getPointerInfo(),
987                       NVT, isVolatile, isNonTemporal, Alignment);
988
989      Ch = Result.getValue(1); // The chain.
990
991      if (ExtType == ISD::SEXTLOAD)
992        // Having the top bits zero doesn't help when sign extending.
993        Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
994                             Result.getValueType(),
995                             Result, DAG.getValueType(SrcVT));
996      else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
997        // All the top bits are guaranteed to be zero - inform the optimizers.
998        Result = DAG.getNode(ISD::AssertZext, dl,
999                             Result.getValueType(), Result,
1000                             DAG.getValueType(SrcVT));
1001
1002      Tmp1 = Result;
1003      Tmp2 = Ch;
1004    } else if (SrcWidth & (SrcWidth - 1)) {
1005      // If not loading a power-of-2 number of bits, expand as two loads.
1006      assert(!SrcVT.isVector() && "Unsupported extload!");
1007      unsigned RoundWidth = 1 << Log2_32(SrcWidth);
1008      assert(RoundWidth < SrcWidth);
1009      unsigned ExtraWidth = SrcWidth - RoundWidth;
1010      assert(ExtraWidth < RoundWidth);
1011      assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1012             "Load size not an integral number of bytes!");
1013      EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1014      EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1015      SDValue Lo, Hi, Ch;
1016      unsigned IncrementSize;
1017
1018      if (TLI.isLittleEndian()) {
1019        // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
1020        // Load the bottom RoundWidth bits.
1021        Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0),
1022                            Tmp1, Tmp2,
1023                            LD->getPointerInfo(), RoundVT, isVolatile,
1024                            isNonTemporal, Alignment);
1025
1026        // Load the remaining ExtraWidth bits.
1027        IncrementSize = RoundWidth / 8;
1028        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1029                           DAG.getIntPtrConstant(IncrementSize));
1030        Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1031                            LD->getPointerInfo().getWithOffset(IncrementSize),
1032                            ExtraVT, isVolatile, isNonTemporal,
1033                            MinAlign(Alignment, IncrementSize));
1034
1035        // Build a factor node to remember that this load is independent of
1036        // the other one.
1037        Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1038                         Hi.getValue(1));
1039
1040        // Move the top bits to the right place.
1041        Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1042                         DAG.getConstant(RoundWidth,
1043                                      TLI.getShiftAmountTy(Hi.getValueType())));
1044
1045        // Join the hi and lo parts.
1046        Tmp1 = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1047      } else {
1048        // Big endian - avoid unaligned loads.
1049        // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
1050        // Load the top RoundWidth bits.
1051        Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1052                            LD->getPointerInfo(), RoundVT, isVolatile,
1053                            isNonTemporal, Alignment);
1054
1055        // Load the remaining ExtraWidth bits.
1056        IncrementSize = RoundWidth / 8;
1057        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1058                           DAG.getIntPtrConstant(IncrementSize));
1059        Lo = DAG.getExtLoad(ISD::ZEXTLOAD,
1060                            dl, Node->getValueType(0), Tmp1, Tmp2,
1061                            LD->getPointerInfo().getWithOffset(IncrementSize),
1062                            ExtraVT, isVolatile, isNonTemporal,
1063                            MinAlign(Alignment, IncrementSize));
1064
1065        // Build a factor node to remember that this load is independent of
1066        // the other one.
1067        Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1068                         Hi.getValue(1));
1069
1070        // Move the top bits to the right place.
1071        Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1072                         DAG.getConstant(ExtraWidth,
1073                                      TLI.getShiftAmountTy(Hi.getValueType())));
1074
1075        // Join the hi and lo parts.
1076        Tmp1 = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1077      }
1078
1079      Tmp2 = Ch;
1080    } else {
1081      switch (TLI.getLoadExtAction(ExtType, SrcVT)) {
1082      default: llvm_unreachable("This action is not supported yet!");
1083      case TargetLowering::Custom:
1084        isCustom = true;
1085        // FALLTHROUGH
1086      case TargetLowering::Legal:
1087        Tmp1 = SDValue(Node, 0);
1088        Tmp2 = SDValue(Node, 1);
1089
1090        if (isCustom) {
1091          Tmp3 = TLI.LowerOperation(SDValue(Node, 0), DAG);
1092          if (Tmp3.getNode()) {
1093            Tmp1 = Tmp3;
1094            Tmp2 = Tmp3.getValue(1);
1095          }
1096        } else {
1097          // If this is an unaligned load and the target doesn't support it,
1098          // expand it.
1099          if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1100            Type *Ty =
1101              LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1102            unsigned ABIAlignment =
1103              TLI.getTargetData()->getABITypeAlignment(Ty);
1104            if (LD->getAlignment() < ABIAlignment){
1105              ExpandUnalignedLoad(cast<LoadSDNode>(Node),
1106                                  DAG, TLI, Tmp1, Tmp2);
1107            }
1108          }
1109        }
1110        break;
1111      case TargetLowering::Expand:
1112        if (!TLI.isLoadExtLegal(ISD::EXTLOAD, SrcVT) && TLI.isTypeLegal(SrcVT)) {
1113          SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2,
1114                                     LD->getPointerInfo(),
1115                                     LD->isVolatile(), LD->isNonTemporal(),
1116                                     LD->isInvariant(), LD->getAlignment());
1117          unsigned ExtendOp;
1118          switch (ExtType) {
1119          case ISD::EXTLOAD:
1120            ExtendOp = (SrcVT.isFloatingPoint() ?
1121                        ISD::FP_EXTEND : ISD::ANY_EXTEND);
1122            break;
1123          case ISD::SEXTLOAD: ExtendOp = ISD::SIGN_EXTEND; break;
1124          case ISD::ZEXTLOAD: ExtendOp = ISD::ZERO_EXTEND; break;
1125          default: llvm_unreachable("Unexpected extend load type!");
1126          }
1127          Tmp1 = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load);
1128          Tmp2 = Load.getValue(1);
1129          break;
1130        }
1131
1132        assert(!SrcVT.isVector() &&
1133               "Vector Loads are handled in LegalizeVectorOps");
1134
1135        // FIXME: This does not work for vectors on most targets.  Sign- and
1136        // zero-extend operations are currently folded into extending loads,
1137        // whether they are legal or not, and then we end up here without any
1138        // support for legalizing them.
1139        assert(ExtType != ISD::EXTLOAD &&
1140               "EXTLOAD should always be supported!");
1141        // Turn the unsupported load into an EXTLOAD followed by an explicit
1142        // zero/sign extend inreg.
1143        SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0),
1144                                        Tmp1, Tmp2, LD->getPointerInfo(), SrcVT,
1145                                        LD->isVolatile(), LD->isNonTemporal(),
1146                                        LD->getAlignment());
1147        SDValue ValRes;
1148        if (ExtType == ISD::SEXTLOAD)
1149          ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1150                               Result.getValueType(),
1151                               Result, DAG.getValueType(SrcVT));
1152        else
1153          ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType());
1154        Tmp1 = ValRes;
1155        Tmp2 = Result.getValue(1);
1156        break;
1157      }
1158    }
1159
1160    // Since loads produce two values, make sure to remember that we legalized
1161    // both of them.
1162    if (Tmp2.getNode() != Node) {
1163      assert(Tmp1.getNode() != Node && "Load must be completely replaced");
1164      DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp1);
1165      DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Tmp2);
1166      ReplacedNode(Node);
1167    }
1168    break;
1169  }
1170  case ISD::STORE: {
1171    StoreSDNode *ST = cast<StoreSDNode>(Node);
1172    Tmp1 = ST->getChain();
1173    Tmp2 = ST->getBasePtr();
1174    unsigned Alignment = ST->getAlignment();
1175    bool isVolatile = ST->isVolatile();
1176    bool isNonTemporal = ST->isNonTemporal();
1177
1178    if (!ST->isTruncatingStore()) {
1179      if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
1180        ReplaceNode(ST, OptStore);
1181        break;
1182      }
1183
1184      {
1185        Tmp3 = ST->getValue();
1186        EVT VT = Tmp3.getValueType();
1187        switch (TLI.getOperationAction(ISD::STORE, VT)) {
1188        default: llvm_unreachable("This action is not supported yet!");
1189        case TargetLowering::Legal:
1190          // If this is an unaligned store and the target doesn't support it,
1191          // expand it.
1192          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1193            Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1194            unsigned ABIAlignment= TLI.getTargetData()->getABITypeAlignment(Ty);
1195            if (ST->getAlignment() < ABIAlignment)
1196              ExpandUnalignedStore(cast<StoreSDNode>(Node),
1197                                   DAG, TLI, this);
1198          }
1199          break;
1200        case TargetLowering::Custom:
1201          Tmp1 = TLI.LowerOperation(SDValue(Node, 0), DAG);
1202          if (Tmp1.getNode())
1203            ReplaceNode(SDValue(Node, 0), Tmp1);
1204          break;
1205        case TargetLowering::Promote: {
1206          assert(VT.isVector() && "Unknown legal promote case!");
1207          Tmp3 = DAG.getNode(ISD::BITCAST, dl,
1208                             TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3);
1209          SDValue Result =
1210            DAG.getStore(Tmp1, dl, Tmp3, Tmp2,
1211                         ST->getPointerInfo(), isVolatile,
1212                         isNonTemporal, Alignment);
1213          ReplaceNode(SDValue(Node, 0), Result);
1214          break;
1215        }
1216        }
1217        break;
1218      }
1219    } else {
1220      Tmp3 = ST->getValue();
1221
1222      EVT StVT = ST->getMemoryVT();
1223      unsigned StWidth = StVT.getSizeInBits();
1224
1225      if (StWidth != StVT.getStoreSizeInBits()) {
1226        // Promote to a byte-sized store with upper bits zero if not
1227        // storing an integral number of bytes.  For example, promote
1228        // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
1229        EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
1230                                    StVT.getStoreSizeInBits());
1231        Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT);
1232        SDValue Result =
1233          DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
1234                            NVT, isVolatile, isNonTemporal, Alignment);
1235        ReplaceNode(SDValue(Node, 0), Result);
1236      } else if (StWidth & (StWidth - 1)) {
1237        // If not storing a power-of-2 number of bits, expand as two stores.
1238        assert(!StVT.isVector() && "Unsupported truncstore!");
1239        unsigned RoundWidth = 1 << Log2_32(StWidth);
1240        assert(RoundWidth < StWidth);
1241        unsigned ExtraWidth = StWidth - RoundWidth;
1242        assert(ExtraWidth < RoundWidth);
1243        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1244               "Store size not an integral number of bytes!");
1245        EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1246        EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1247        SDValue Lo, Hi;
1248        unsigned IncrementSize;
1249
1250        if (TLI.isLittleEndian()) {
1251          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
1252          // Store the bottom RoundWidth bits.
1253          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
1254                                 RoundVT,
1255                                 isVolatile, isNonTemporal, Alignment);
1256
1257          // Store the remaining ExtraWidth bits.
1258          IncrementSize = RoundWidth / 8;
1259          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1260                             DAG.getIntPtrConstant(IncrementSize));
1261          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1262                           DAG.getConstant(RoundWidth,
1263                                    TLI.getShiftAmountTy(Tmp3.getValueType())));
1264          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2,
1265                             ST->getPointerInfo().getWithOffset(IncrementSize),
1266                                 ExtraVT, isVolatile, isNonTemporal,
1267                                 MinAlign(Alignment, IncrementSize));
1268        } else {
1269          // Big endian - avoid unaligned stores.
1270          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
1271          // Store the top RoundWidth bits.
1272          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1273                           DAG.getConstant(ExtraWidth,
1274                                    TLI.getShiftAmountTy(Tmp3.getValueType())));
1275          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getPointerInfo(),
1276                                 RoundVT, isVolatile, isNonTemporal, Alignment);
1277
1278          // Store the remaining ExtraWidth bits.
1279          IncrementSize = RoundWidth / 8;
1280          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1281                             DAG.getIntPtrConstant(IncrementSize));
1282          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2,
1283                              ST->getPointerInfo().getWithOffset(IncrementSize),
1284                                 ExtraVT, isVolatile, isNonTemporal,
1285                                 MinAlign(Alignment, IncrementSize));
1286        }
1287
1288        // The order of the stores doesn't matter.
1289        SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
1290        ReplaceNode(SDValue(Node, 0), Result);
1291      } else {
1292        switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
1293        default: llvm_unreachable("This action is not supported yet!");
1294        case TargetLowering::Legal:
1295          // If this is an unaligned store and the target doesn't support it,
1296          // expand it.
1297          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1298            Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1299            unsigned ABIAlignment= TLI.getTargetData()->getABITypeAlignment(Ty);
1300            if (ST->getAlignment() < ABIAlignment)
1301              ExpandUnalignedStore(cast<StoreSDNode>(Node), DAG, TLI, this);
1302          }
1303          break;
1304        case TargetLowering::Custom:
1305          ReplaceNode(SDValue(Node, 0),
1306                      TLI.LowerOperation(SDValue(Node, 0), DAG));
1307          break;
1308        case TargetLowering::Expand:
1309          assert(!StVT.isVector() &&
1310                 "Vector Stores are handled in LegalizeVectorOps");
1311
1312          // TRUNCSTORE:i16 i32 -> STORE i16
1313          assert(TLI.isTypeLegal(StVT) && "Do not know how to expand this store!");
1314          Tmp3 = DAG.getNode(ISD::TRUNCATE, dl, StVT, Tmp3);
1315          SDValue Result =
1316            DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
1317                         isVolatile, isNonTemporal, Alignment);
1318          ReplaceNode(SDValue(Node, 0), Result);
1319          break;
1320        }
1321      }
1322    }
1323    break;
1324  }
1325  }
1326}
1327
1328SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1329  SDValue Vec = Op.getOperand(0);
1330  SDValue Idx = Op.getOperand(1);
1331  DebugLoc dl = Op.getDebugLoc();
1332  // Store the value to a temporary stack slot, then LOAD the returned part.
1333  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1334  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
1335                            MachinePointerInfo(), false, false, 0);
1336
1337  // Add the offset to the index.
1338  unsigned EltSize =
1339      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1340  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1341                    DAG.getConstant(EltSize, Idx.getValueType()));
1342
1343  if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1344    Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1345  else
1346    Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1347
1348  StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
1349
1350  if (Op.getValueType().isVector())
1351    return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr,MachinePointerInfo(),
1352                       false, false, false, 0);
1353  return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
1354                        MachinePointerInfo(),
1355                        Vec.getValueType().getVectorElementType(),
1356                        false, false, 0);
1357}
1358
1359SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) {
1360  assert(Op.getValueType().isVector() && "Non-vector insert subvector!");
1361
1362  SDValue Vec  = Op.getOperand(0);
1363  SDValue Part = Op.getOperand(1);
1364  SDValue Idx  = Op.getOperand(2);
1365  DebugLoc dl  = Op.getDebugLoc();
1366
1367  // Store the value to a temporary stack slot, then LOAD the returned part.
1368
1369  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1370  int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1371  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI);
1372
1373  // First store the whole vector.
1374  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo,
1375                            false, false, 0);
1376
1377  // Then store the inserted part.
1378
1379  // Add the offset to the index.
1380  unsigned EltSize =
1381      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1382
1383  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1384                    DAG.getConstant(EltSize, Idx.getValueType()));
1385
1386  if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1387    Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1388  else
1389    Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1390
1391  SDValue SubStackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx,
1392                                    StackPtr);
1393
1394  // Store the subvector.
1395  Ch = DAG.getStore(DAG.getEntryNode(), dl, Part, SubStackPtr,
1396                    MachinePointerInfo(), false, false, 0);
1397
1398  // Finally, load the updated vector.
1399  return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo,
1400                     false, false, false, 0);
1401}
1402
1403SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1404  // We can't handle this case efficiently.  Allocate a sufficiently
1405  // aligned object on the stack, store each element into it, then load
1406  // the result as a vector.
1407  // Create the stack frame object.
1408  EVT VT = Node->getValueType(0);
1409  EVT EltVT = VT.getVectorElementType();
1410  DebugLoc dl = Node->getDebugLoc();
1411  SDValue FIPtr = DAG.CreateStackTemporary(VT);
1412  int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1413  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI);
1414
1415  // Emit a store of each element to the stack slot.
1416  SmallVector<SDValue, 8> Stores;
1417  unsigned TypeByteSize = EltVT.getSizeInBits() / 8;
1418  // Store (in the right endianness) the elements to memory.
1419  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1420    // Ignore undef elements.
1421    if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1422
1423    unsigned Offset = TypeByteSize*i;
1424
1425    SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType());
1426    Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
1427
1428    // If the destination vector element type is narrower than the source
1429    // element type, only store the bits necessary.
1430    if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) {
1431      Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
1432                                         Node->getOperand(i), Idx,
1433                                         PtrInfo.getWithOffset(Offset),
1434                                         EltVT, false, false, 0));
1435    } else
1436      Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl,
1437                                    Node->getOperand(i), Idx,
1438                                    PtrInfo.getWithOffset(Offset),
1439                                    false, false, 0));
1440  }
1441
1442  SDValue StoreChain;
1443  if (!Stores.empty())    // Not all undef elements?
1444    StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1445                             &Stores[0], Stores.size());
1446  else
1447    StoreChain = DAG.getEntryNode();
1448
1449  // Result is a load from the stack slot.
1450  return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo,
1451                     false, false, false, 0);
1452}
1453
1454SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) {
1455  DebugLoc dl = Node->getDebugLoc();
1456  SDValue Tmp1 = Node->getOperand(0);
1457  SDValue Tmp2 = Node->getOperand(1);
1458
1459  // Get the sign bit of the RHS.  First obtain a value that has the same
1460  // sign as the sign bit, i.e. negative if and only if the sign bit is 1.
1461  SDValue SignBit;
1462  EVT FloatVT = Tmp2.getValueType();
1463  EVT IVT = EVT::getIntegerVT(*DAG.getContext(), FloatVT.getSizeInBits());
1464  if (TLI.isTypeLegal(IVT)) {
1465    // Convert to an integer with the same sign bit.
1466    SignBit = DAG.getNode(ISD::BITCAST, dl, IVT, Tmp2);
1467  } else {
1468    // Store the float to memory, then load the sign part out as an integer.
1469    MVT LoadTy = TLI.getPointerTy();
1470    // First create a temporary that is aligned for both the load and store.
1471    SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
1472    // Then store the float to it.
1473    SDValue Ch =
1474      DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StackPtr, MachinePointerInfo(),
1475                   false, false, 0);
1476    if (TLI.isBigEndian()) {
1477      assert(FloatVT.isByteSized() && "Unsupported floating point type!");
1478      // Load out a legal integer with the same sign bit as the float.
1479      SignBit = DAG.getLoad(LoadTy, dl, Ch, StackPtr, MachinePointerInfo(),
1480                            false, false, false, 0);
1481    } else { // Little endian
1482      SDValue LoadPtr = StackPtr;
1483      // The float may be wider than the integer we are going to load.  Advance
1484      // the pointer so that the loaded integer will contain the sign bit.
1485      unsigned Strides = (FloatVT.getSizeInBits()-1)/LoadTy.getSizeInBits();
1486      unsigned ByteOffset = (Strides * LoadTy.getSizeInBits()) / 8;
1487      LoadPtr = DAG.getNode(ISD::ADD, dl, LoadPtr.getValueType(),
1488                            LoadPtr, DAG.getIntPtrConstant(ByteOffset));
1489      // Load a legal integer containing the sign bit.
1490      SignBit = DAG.getLoad(LoadTy, dl, Ch, LoadPtr, MachinePointerInfo(),
1491                            false, false, false, 0);
1492      // Move the sign bit to the top bit of the loaded integer.
1493      unsigned BitShift = LoadTy.getSizeInBits() -
1494        (FloatVT.getSizeInBits() - 8 * ByteOffset);
1495      assert(BitShift < LoadTy.getSizeInBits() && "Pointer advanced wrong?");
1496      if (BitShift)
1497        SignBit = DAG.getNode(ISD::SHL, dl, LoadTy, SignBit,
1498                              DAG.getConstant(BitShift,
1499                                 TLI.getShiftAmountTy(SignBit.getValueType())));
1500    }
1501  }
1502  // Now get the sign bit proper, by seeing whether the value is negative.
1503  SignBit = DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()),
1504                         SignBit, DAG.getConstant(0, SignBit.getValueType()),
1505                         ISD::SETLT);
1506  // Get the absolute value of the result.
1507  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1);
1508  // Select between the nabs and abs value based on the sign bit of
1509  // the input.
1510  return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit,
1511                     DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal),
1512                     AbsVal);
1513}
1514
1515void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1516                                           SmallVectorImpl<SDValue> &Results) {
1517  unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1518  assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1519          " not tell us which reg is the stack pointer!");
1520  DebugLoc dl = Node->getDebugLoc();
1521  EVT VT = Node->getValueType(0);
1522  SDValue Tmp1 = SDValue(Node, 0);
1523  SDValue Tmp2 = SDValue(Node, 1);
1524  SDValue Tmp3 = Node->getOperand(2);
1525  SDValue Chain = Tmp1.getOperand(0);
1526
1527  // Chain the dynamic stack allocation so that it doesn't modify the stack
1528  // pointer when other instructions are using the stack.
1529  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
1530
1531  SDValue Size  = Tmp2.getOperand(1);
1532  SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1533  Chain = SP.getValue(1);
1534  unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1535  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
1536  if (Align > StackAlign)
1537    SP = DAG.getNode(ISD::AND, dl, VT, SP,
1538                      DAG.getConstant(-(uint64_t)Align, VT));
1539  Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size);       // Value
1540  Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain
1541
1542  Tmp2 = DAG.getCALLSEQ_END(Chain,  DAG.getIntPtrConstant(0, true),
1543                            DAG.getIntPtrConstant(0, true), SDValue());
1544
1545  Results.push_back(Tmp1);
1546  Results.push_back(Tmp2);
1547}
1548
1549/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
1550/// condition code CC on the current target. This routine expands SETCC with
1551/// illegal condition code into AND / OR of multiple SETCC values.
1552void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT,
1553                                                 SDValue &LHS, SDValue &RHS,
1554                                                 SDValue &CC,
1555                                                 DebugLoc dl) {
1556  EVT OpVT = LHS.getValueType();
1557  ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1558  switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1559  default: llvm_unreachable("Unknown condition code action!");
1560  case TargetLowering::Legal:
1561    // Nothing to do.
1562    break;
1563  case TargetLowering::Expand: {
1564    ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1565    unsigned Opc = 0;
1566    switch (CCCode) {
1567    default: llvm_unreachable("Don't know how to expand this condition!");
1568    case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1569    case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1570    case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1571    case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1572    case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1573    case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1574    case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1575    case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1576    case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1577    case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1578    case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1579    case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1580    // FIXME: Implement more expansions.
1581    }
1582
1583    SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1584    SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
1585    LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1586    RHS = SDValue();
1587    CC  = SDValue();
1588    break;
1589  }
1590  }
1591}
1592
1593/// EmitStackConvert - Emit a store/load combination to the stack.  This stores
1594/// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
1595/// a load from the stack slot to DestVT, extending it if needed.
1596/// The resultant code need not be legal.
1597SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
1598                                               EVT SlotVT,
1599                                               EVT DestVT,
1600                                               DebugLoc dl) {
1601  // Create the stack frame object.
1602  unsigned SrcAlign =
1603    TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType().
1604                                              getTypeForEVT(*DAG.getContext()));
1605  SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1606
1607  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1608  int SPFI = StackPtrFI->getIndex();
1609  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(SPFI);
1610
1611  unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
1612  unsigned SlotSize = SlotVT.getSizeInBits();
1613  unsigned DestSize = DestVT.getSizeInBits();
1614  Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
1615  unsigned DestAlign = TLI.getTargetData()->getPrefTypeAlignment(DestType);
1616
1617  // Emit a store to the stack slot.  Use a truncstore if the input value is
1618  // later than DestVT.
1619  SDValue Store;
1620
1621  if (SrcSize > SlotSize)
1622    Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1623                              PtrInfo, SlotVT, false, false, SrcAlign);
1624  else {
1625    assert(SrcSize == SlotSize && "Invalid store");
1626    Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1627                         PtrInfo, false, false, SrcAlign);
1628  }
1629
1630  // Result is a load from the stack slot.
1631  if (SlotSize == DestSize)
1632    return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo,
1633                       false, false, false, DestAlign);
1634
1635  assert(SlotSize < DestSize && "Unknown extension!");
1636  return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr,
1637                        PtrInfo, SlotVT, false, false, DestAlign);
1638}
1639
1640SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1641  DebugLoc dl = Node->getDebugLoc();
1642  // Create a vector sized/aligned stack slot, store the value to element #0,
1643  // then load the whole vector back out.
1644  SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1645
1646  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1647  int SPFI = StackPtrFI->getIndex();
1648
1649  SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0),
1650                                 StackPtr,
1651                                 MachinePointerInfo::getFixedStack(SPFI),
1652                                 Node->getValueType(0).getVectorElementType(),
1653                                 false, false, 0);
1654  return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr,
1655                     MachinePointerInfo::getFixedStack(SPFI),
1656                     false, false, false, 0);
1657}
1658
1659
1660/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
1661/// support the operation, but do support the resultant vector type.
1662SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1663  unsigned NumElems = Node->getNumOperands();
1664  SDValue Value1, Value2;
1665  DebugLoc dl = Node->getDebugLoc();
1666  EVT VT = Node->getValueType(0);
1667  EVT OpVT = Node->getOperand(0).getValueType();
1668  EVT EltVT = VT.getVectorElementType();
1669
1670  // If the only non-undef value is the low element, turn this into a
1671  // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
1672  bool isOnlyLowElement = true;
1673  bool MoreThanTwoValues = false;
1674  bool isConstant = true;
1675  for (unsigned i = 0; i < NumElems; ++i) {
1676    SDValue V = Node->getOperand(i);
1677    if (V.getOpcode() == ISD::UNDEF)
1678      continue;
1679    if (i > 0)
1680      isOnlyLowElement = false;
1681    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1682      isConstant = false;
1683
1684    if (!Value1.getNode()) {
1685      Value1 = V;
1686    } else if (!Value2.getNode()) {
1687      if (V != Value1)
1688        Value2 = V;
1689    } else if (V != Value1 && V != Value2) {
1690      MoreThanTwoValues = true;
1691    }
1692  }
1693
1694  if (!Value1.getNode())
1695    return DAG.getUNDEF(VT);
1696
1697  if (isOnlyLowElement)
1698    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1699
1700  // If all elements are constants, create a load from the constant pool.
1701  if (isConstant) {
1702    SmallVector<Constant*, 16> CV;
1703    for (unsigned i = 0, e = NumElems; i != e; ++i) {
1704      if (ConstantFPSDNode *V =
1705          dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1706        CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1707      } else if (ConstantSDNode *V =
1708                 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1709        if (OpVT==EltVT)
1710          CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1711        else {
1712          // If OpVT and EltVT don't match, EltVT is not legal and the
1713          // element values have been promoted/truncated earlier.  Undo this;
1714          // we don't want a v16i8 to become a v16i32 for example.
1715          const ConstantInt *CI = V->getConstantIntValue();
1716          CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
1717                                        CI->getZExtValue()));
1718        }
1719      } else {
1720        assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
1721        Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
1722        CV.push_back(UndefValue::get(OpNTy));
1723      }
1724    }
1725    Constant *CP = ConstantVector::get(CV);
1726    SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
1727    unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
1728    return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
1729                       MachinePointerInfo::getConstantPool(),
1730                       false, false, false, Alignment);
1731  }
1732
1733  if (!MoreThanTwoValues) {
1734    SmallVector<int, 8> ShuffleVec(NumElems, -1);
1735    for (unsigned i = 0; i < NumElems; ++i) {
1736      SDValue V = Node->getOperand(i);
1737      if (V.getOpcode() == ISD::UNDEF)
1738        continue;
1739      ShuffleVec[i] = V == Value1 ? 0 : NumElems;
1740    }
1741    if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
1742      // Get the splatted value into the low element of a vector register.
1743      SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
1744      SDValue Vec2;
1745      if (Value2.getNode())
1746        Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
1747      else
1748        Vec2 = DAG.getUNDEF(VT);
1749
1750      // Return shuffle(LowValVec, undef, <0,0,0,0>)
1751      return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
1752    }
1753  }
1754
1755  // Otherwise, we can't handle this case efficiently.
1756  return ExpandVectorBuildThroughStack(Node);
1757}
1758
1759// ExpandLibCall - Expand a node into a call to a libcall.  If the result value
1760// does not fit into a register, return the lo part and set the hi part to the
1761// by-reg argument.  If it does fit into a single register, return the result
1762// and leave the Hi part unset.
1763SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
1764                                            bool isSigned) {
1765  // The input chain to this libcall is the entry node of the function.
1766  // Legalizing the call will automatically add the previous call to the
1767  // dependence.
1768  SDValue InChain = DAG.getEntryNode();
1769
1770  TargetLowering::ArgListTy Args;
1771  TargetLowering::ArgListEntry Entry;
1772  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1773    EVT ArgVT = Node->getOperand(i).getValueType();
1774    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1775    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
1776    Entry.isSExt = isSigned;
1777    Entry.isZExt = !isSigned;
1778    Args.push_back(Entry);
1779  }
1780  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1781                                         TLI.getPointerTy());
1782
1783  Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1784
1785  // isTailCall may be true since the callee does not reference caller stack
1786  // frame. Check if it's in the right position.
1787  bool isTailCall = isInTailCallPosition(DAG, Node, TLI);
1788  std::pair<SDValue, SDValue> CallInfo =
1789    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
1790                    0, TLI.getLibcallCallingConv(LC), isTailCall,
1791                    /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
1792                    Callee, Args, DAG, Node->getDebugLoc());
1793
1794  if (!CallInfo.second.getNode())
1795    // It's a tailcall, return the chain (which is the DAG root).
1796    return DAG.getRoot();
1797
1798  return CallInfo.first;
1799}
1800
1801/// ExpandLibCall - Generate a libcall taking the given operands as arguments
1802/// and returning a result of type RetVT.
1803SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, EVT RetVT,
1804                                            const SDValue *Ops, unsigned NumOps,
1805                                            bool isSigned, DebugLoc dl) {
1806  TargetLowering::ArgListTy Args;
1807  Args.reserve(NumOps);
1808
1809  TargetLowering::ArgListEntry Entry;
1810  for (unsigned i = 0; i != NumOps; ++i) {
1811    Entry.Node = Ops[i];
1812    Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
1813    Entry.isSExt = isSigned;
1814    Entry.isZExt = !isSigned;
1815    Args.push_back(Entry);
1816  }
1817  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1818                                         TLI.getPointerTy());
1819
1820  Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
1821  std::pair<SDValue,SDValue> CallInfo =
1822  TLI.LowerCallTo(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false,
1823                  false, 0, TLI.getLibcallCallingConv(LC), false,
1824                  /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
1825                  Callee, Args, DAG, dl);
1826
1827  return CallInfo.first;
1828}
1829
1830// ExpandChainLibCall - Expand a node into a call to a libcall. Similar to
1831// ExpandLibCall except that the first operand is the in-chain.
1832std::pair<SDValue, SDValue>
1833SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC,
1834                                         SDNode *Node,
1835                                         bool isSigned) {
1836  SDValue InChain = Node->getOperand(0);
1837
1838  TargetLowering::ArgListTy Args;
1839  TargetLowering::ArgListEntry Entry;
1840  for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) {
1841    EVT ArgVT = Node->getOperand(i).getValueType();
1842    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1843    Entry.Node = Node->getOperand(i);
1844    Entry.Ty = ArgTy;
1845    Entry.isSExt = isSigned;
1846    Entry.isZExt = !isSigned;
1847    Args.push_back(Entry);
1848  }
1849  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1850                                         TLI.getPointerTy());
1851
1852  Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1853  std::pair<SDValue, SDValue> CallInfo =
1854    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
1855                    0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false,
1856                    /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
1857                    Callee, Args, DAG, Node->getDebugLoc());
1858
1859  return CallInfo;
1860}
1861
1862SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
1863                                              RTLIB::Libcall Call_F32,
1864                                              RTLIB::Libcall Call_F64,
1865                                              RTLIB::Libcall Call_F80,
1866                                              RTLIB::Libcall Call_PPCF128) {
1867  RTLIB::Libcall LC;
1868  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1869  default: llvm_unreachable("Unexpected request for libcall!");
1870  case MVT::f32: LC = Call_F32; break;
1871  case MVT::f64: LC = Call_F64; break;
1872  case MVT::f80: LC = Call_F80; break;
1873  case MVT::ppcf128: LC = Call_PPCF128; break;
1874  }
1875  return ExpandLibCall(LC, Node, false);
1876}
1877
1878SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
1879                                               RTLIB::Libcall Call_I8,
1880                                               RTLIB::Libcall Call_I16,
1881                                               RTLIB::Libcall Call_I32,
1882                                               RTLIB::Libcall Call_I64,
1883                                               RTLIB::Libcall Call_I128) {
1884  RTLIB::Libcall LC;
1885  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1886  default: llvm_unreachable("Unexpected request for libcall!");
1887  case MVT::i8:   LC = Call_I8; break;
1888  case MVT::i16:  LC = Call_I16; break;
1889  case MVT::i32:  LC = Call_I32; break;
1890  case MVT::i64:  LC = Call_I64; break;
1891  case MVT::i128: LC = Call_I128; break;
1892  }
1893  return ExpandLibCall(LC, Node, isSigned);
1894}
1895
1896/// isDivRemLibcallAvailable - Return true if divmod libcall is available.
1897static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned,
1898                                     const TargetLowering &TLI) {
1899  RTLIB::Libcall LC;
1900  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1901  default: llvm_unreachable("Unexpected request for libcall!");
1902  case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
1903  case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
1904  case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
1905  case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
1906  case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
1907  }
1908
1909  return TLI.getLibcallName(LC) != 0;
1910}
1911
1912/// UseDivRem - Only issue divrem libcall if both quotient and remainder are
1913/// needed.
1914static bool UseDivRem(SDNode *Node, bool isSigned, bool isDIV) {
1915  unsigned OtherOpcode = 0;
1916  if (isSigned)
1917    OtherOpcode = isDIV ? ISD::SREM : ISD::SDIV;
1918  else
1919    OtherOpcode = isDIV ? ISD::UREM : ISD::UDIV;
1920
1921  SDValue Op0 = Node->getOperand(0);
1922  SDValue Op1 = Node->getOperand(1);
1923  for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
1924         UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
1925    SDNode *User = *UI;
1926    if (User == Node)
1927      continue;
1928    if (User->getOpcode() == OtherOpcode &&
1929        User->getOperand(0) == Op0 &&
1930        User->getOperand(1) == Op1)
1931      return true;
1932  }
1933  return false;
1934}
1935
1936/// ExpandDivRemLibCall - Issue libcalls to __{u}divmod to compute div / rem
1937/// pairs.
1938void
1939SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node,
1940                                          SmallVectorImpl<SDValue> &Results) {
1941  unsigned Opcode = Node->getOpcode();
1942  bool isSigned = Opcode == ISD::SDIVREM;
1943
1944  RTLIB::Libcall LC;
1945  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1946  default: llvm_unreachable("Unexpected request for libcall!");
1947  case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
1948  case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
1949  case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
1950  case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
1951  case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
1952  }
1953
1954  // The input chain to this libcall is the entry node of the function.
1955  // Legalizing the call will automatically add the previous call to the
1956  // dependence.
1957  SDValue InChain = DAG.getEntryNode();
1958
1959  EVT RetVT = Node->getValueType(0);
1960  Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
1961
1962  TargetLowering::ArgListTy Args;
1963  TargetLowering::ArgListEntry Entry;
1964  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1965    EVT ArgVT = Node->getOperand(i).getValueType();
1966    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1967    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
1968    Entry.isSExt = isSigned;
1969    Entry.isZExt = !isSigned;
1970    Args.push_back(Entry);
1971  }
1972
1973  // Also pass the return address of the remainder.
1974  SDValue FIPtr = DAG.CreateStackTemporary(RetVT);
1975  Entry.Node = FIPtr;
1976  Entry.Ty = RetTy->getPointerTo();
1977  Entry.isSExt = isSigned;
1978  Entry.isZExt = !isSigned;
1979  Args.push_back(Entry);
1980
1981  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1982                                         TLI.getPointerTy());
1983
1984  DebugLoc dl = Node->getDebugLoc();
1985  std::pair<SDValue, SDValue> CallInfo =
1986    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
1987                    0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false,
1988                    /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
1989                    Callee, Args, DAG, dl);
1990
1991  // Remainder is loaded back from the stack frame.
1992  SDValue Rem = DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr,
1993                            MachinePointerInfo(), false, false, false, 0);
1994  Results.push_back(CallInfo.first);
1995  Results.push_back(Rem);
1996}
1997
1998/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
1999/// INT_TO_FP operation of the specified operand when the target requests that
2000/// we expand it.  At this point, we know that the result and operand types are
2001/// legal for the target.
2002SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
2003                                                   SDValue Op0,
2004                                                   EVT DestVT,
2005                                                   DebugLoc dl) {
2006  if (Op0.getValueType() == MVT::i32) {
2007    // simple 32-bit [signed|unsigned] integer to float/double expansion
2008
2009    // Get the stack frame index of a 8 byte buffer.
2010    SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
2011
2012    // word offset constant for Hi/Lo address computation
2013    SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy());
2014    // set up Hi and Lo (into buffer) address based on endian
2015    SDValue Hi = StackSlot;
2016    SDValue Lo = DAG.getNode(ISD::ADD, dl,
2017                             TLI.getPointerTy(), StackSlot, WordOff);
2018    if (TLI.isLittleEndian())
2019      std::swap(Hi, Lo);
2020
2021    // if signed map to unsigned space
2022    SDValue Op0Mapped;
2023    if (isSigned) {
2024      // constant used to invert sign bit (signed to unsigned mapping)
2025      SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32);
2026      Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
2027    } else {
2028      Op0Mapped = Op0;
2029    }
2030    // store the lo of the constructed double - based on integer input
2031    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
2032                                  Op0Mapped, Lo, MachinePointerInfo(),
2033                                  false, false, 0);
2034    // initial hi portion of constructed double
2035    SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
2036    // store the hi of the constructed double - biased exponent
2037    SDValue Store2 = DAG.getStore(Store1, dl, InitialHi, Hi,
2038                                  MachinePointerInfo(),
2039                                  false, false, 0);
2040    // load the constructed double
2041    SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot,
2042                               MachinePointerInfo(), false, false, false, 0);
2043    // FP constant to bias correct the final result
2044    SDValue Bias = DAG.getConstantFP(isSigned ?
2045                                     BitsToDouble(0x4330000080000000ULL) :
2046                                     BitsToDouble(0x4330000000000000ULL),
2047                                     MVT::f64);
2048    // subtract the bias
2049    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2050    // final result
2051    SDValue Result;
2052    // handle final rounding
2053    if (DestVT == MVT::f64) {
2054      // do nothing
2055      Result = Sub;
2056    } else if (DestVT.bitsLT(MVT::f64)) {
2057      Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
2058                           DAG.getIntPtrConstant(0));
2059    } else if (DestVT.bitsGT(MVT::f64)) {
2060      Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
2061    }
2062    return Result;
2063  }
2064  assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2065  // Code below here assumes !isSigned without checking again.
2066
2067  // Implementation of unsigned i64 to f64 following the algorithm in
2068  // __floatundidf in compiler_rt. This implementation has the advantage
2069  // of performing rounding correctly, both in the default rounding mode
2070  // and in all alternate rounding modes.
2071  // TODO: Generalize this for use with other types.
2072  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) {
2073    SDValue TwoP52 =
2074      DAG.getConstant(UINT64_C(0x4330000000000000), MVT::i64);
2075    SDValue TwoP84PlusTwoP52 =
2076      DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), MVT::f64);
2077    SDValue TwoP84 =
2078      DAG.getConstant(UINT64_C(0x4530000000000000), MVT::i64);
2079
2080    SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32);
2081    SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0,
2082                             DAG.getConstant(32, MVT::i64));
2083    SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52);
2084    SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84);
2085    SDValue LoFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, LoOr);
2086    SDValue HiFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, HiOr);
2087    SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt,
2088                                TwoP84PlusTwoP52);
2089    return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub);
2090  }
2091
2092  // Implementation of unsigned i64 to f32.
2093  // TODO: Generalize this for use with other types.
2094  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) {
2095    // For unsigned conversions, convert them to signed conversions using the
2096    // algorithm from the x86_64 __floatundidf in compiler_rt.
2097    if (!isSigned) {
2098      SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Op0);
2099
2100      SDValue ShiftConst =
2101          DAG.getConstant(1, TLI.getShiftAmountTy(Op0.getValueType()));
2102      SDValue Shr = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, ShiftConst);
2103      SDValue AndConst = DAG.getConstant(1, MVT::i64);
2104      SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, AndConst);
2105      SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, Shr);
2106
2107      SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Or);
2108      SDValue Slow = DAG.getNode(ISD::FADD, dl, MVT::f32, SignCvt, SignCvt);
2109
2110      // TODO: This really should be implemented using a branch rather than a
2111      // select.  We happen to get lucky and machinesink does the right
2112      // thing most of the time.  This would be a good candidate for a
2113      //pseudo-op, or, even better, for whole-function isel.
2114      SDValue SignBitTest = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2115        Op0, DAG.getConstant(0, MVT::i64), ISD::SETLT);
2116      return DAG.getNode(ISD::SELECT, dl, MVT::f32, SignBitTest, Slow, Fast);
2117    }
2118
2119    // Otherwise, implement the fully general conversion.
2120
2121    SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2122         DAG.getConstant(UINT64_C(0xfffffffffffff800), MVT::i64));
2123    SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And,
2124         DAG.getConstant(UINT64_C(0x800), MVT::i64));
2125    SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2126         DAG.getConstant(UINT64_C(0x7ff), MVT::i64));
2127    SDValue Ne = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2128                   And2, DAG.getConstant(UINT64_C(0), MVT::i64), ISD::SETNE);
2129    SDValue Sel = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ne, Or, Op0);
2130    SDValue Ge = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2131                   Op0, DAG.getConstant(UINT64_C(0x0020000000000000), MVT::i64),
2132                   ISD::SETUGE);
2133    SDValue Sel2 = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ge, Sel, Op0);
2134    EVT SHVT = TLI.getShiftAmountTy(Sel2.getValueType());
2135
2136    SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2,
2137                             DAG.getConstant(32, SHVT));
2138    SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh);
2139    SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc);
2140    SDValue TwoP32 =
2141      DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), MVT::f64);
2142    SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt);
2143    SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2);
2144    SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo);
2145    SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2);
2146    return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd,
2147                       DAG.getIntPtrConstant(0));
2148  }
2149
2150  SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2151
2152  SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()),
2153                                 Op0, DAG.getConstant(0, Op0.getValueType()),
2154                                 ISD::SETLT);
2155  SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
2156  SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(),
2157                                    SignSet, Four, Zero);
2158
2159  // If the sign bit of the integer is set, the large number will be treated
2160  // as a negative number.  To counteract this, the dynamic code adds an
2161  // offset depending on the data type.
2162  uint64_t FF;
2163  switch (Op0.getValueType().getSimpleVT().SimpleTy) {
2164  default: llvm_unreachable("Unsupported integer type!");
2165  case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
2166  case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
2167  case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
2168  case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
2169  }
2170  if (TLI.isLittleEndian()) FF <<= 32;
2171  Constant *FudgeFactor = ConstantInt::get(
2172                                       Type::getInt64Ty(*DAG.getContext()), FF);
2173
2174  SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
2175  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2176  CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset);
2177  Alignment = std::min(Alignment, 4u);
2178  SDValue FudgeInReg;
2179  if (DestVT == MVT::f32)
2180    FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2181                             MachinePointerInfo::getConstantPool(),
2182                             false, false, false, Alignment);
2183  else {
2184    SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT,
2185                                  DAG.getEntryNode(), CPIdx,
2186                                  MachinePointerInfo::getConstantPool(),
2187                                  MVT::f32, false, false, Alignment);
2188    HandleSDNode Handle(Load);
2189    LegalizeOp(Load.getNode());
2190    FudgeInReg = Handle.getValue();
2191  }
2192
2193  return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2194}
2195
2196/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
2197/// *INT_TO_FP operation of the specified operand when the target requests that
2198/// we promote it.  At this point, we know that the result and operand types are
2199/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2200/// operation that takes a larger input.
2201SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
2202                                                    EVT DestVT,
2203                                                    bool isSigned,
2204                                                    DebugLoc dl) {
2205  // First step, figure out the appropriate *INT_TO_FP operation to use.
2206  EVT NewInTy = LegalOp.getValueType();
2207
2208  unsigned OpToUse = 0;
2209
2210  // Scan for the appropriate larger type to use.
2211  while (1) {
2212    NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2213    assert(NewInTy.isInteger() && "Ran out of possibilities!");
2214
2215    // If the target supports SINT_TO_FP of this type, use it.
2216    if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2217      OpToUse = ISD::SINT_TO_FP;
2218      break;
2219    }
2220    if (isSigned) continue;
2221
2222    // If the target supports UINT_TO_FP of this type, use it.
2223    if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2224      OpToUse = ISD::UINT_TO_FP;
2225      break;
2226    }
2227
2228    // Otherwise, try a larger type.
2229  }
2230
2231  // Okay, we found the operation and type to use.  Zero extend our input to the
2232  // desired type then run the operation on it.
2233  return DAG.getNode(OpToUse, dl, DestVT,
2234                     DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2235                                 dl, NewInTy, LegalOp));
2236}
2237
2238/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
2239/// FP_TO_*INT operation of the specified operand when the target requests that
2240/// we promote it.  At this point, we know that the result and operand types are
2241/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2242/// operation that returns a larger result.
2243SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
2244                                                    EVT DestVT,
2245                                                    bool isSigned,
2246                                                    DebugLoc dl) {
2247  // First step, figure out the appropriate FP_TO*INT operation to use.
2248  EVT NewOutTy = DestVT;
2249
2250  unsigned OpToUse = 0;
2251
2252  // Scan for the appropriate larger type to use.
2253  while (1) {
2254    NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2255    assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2256
2257    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2258      OpToUse = ISD::FP_TO_SINT;
2259      break;
2260    }
2261
2262    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
2263      OpToUse = ISD::FP_TO_UINT;
2264      break;
2265    }
2266
2267    // Otherwise, try a larger type.
2268  }
2269
2270
2271  // Okay, we found the operation and type to use.
2272  SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2273
2274  // Truncate the result of the extended FP_TO_*INT operation to the desired
2275  // size.
2276  return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2277}
2278
2279/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
2280///
2281SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) {
2282  EVT VT = Op.getValueType();
2283  EVT SHVT = TLI.getShiftAmountTy(VT);
2284  SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2285  switch (VT.getSimpleVT().SimpleTy) {
2286  default: llvm_unreachable("Unhandled Expand type in BSWAP!");
2287  case MVT::i16:
2288    Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2289    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2290    return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2291  case MVT::i32:
2292    Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2293    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2294    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2295    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2296    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
2297    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT));
2298    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2299    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2300    return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2301  case MVT::i64:
2302    Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT));
2303    Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT));
2304    Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2305    Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2306    Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2307    Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2308    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT));
2309    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT));
2310    Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
2311    Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
2312    Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
2313    Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
2314    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
2315    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
2316    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2317    Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2318    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2319    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2320    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2321    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2322    return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2323  }
2324}
2325
2326/// SplatByte - Distribute ByteVal over NumBits bits.
2327// FIXME: Move this helper to a common place.
2328static APInt SplatByte(unsigned NumBits, uint8_t ByteVal) {
2329  APInt Val = APInt(NumBits, ByteVal);
2330  unsigned Shift = 8;
2331  for (unsigned i = NumBits; i > 8; i >>= 1) {
2332    Val = (Val << Shift) | Val;
2333    Shift <<= 1;
2334  }
2335  return Val;
2336}
2337
2338/// ExpandBitCount - Expand the specified bitcount instruction into operations.
2339///
2340SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
2341                                             DebugLoc dl) {
2342  switch (Opc) {
2343  default: llvm_unreachable("Cannot expand this yet!");
2344  case ISD::CTPOP: {
2345    EVT VT = Op.getValueType();
2346    EVT ShVT = TLI.getShiftAmountTy(VT);
2347    unsigned Len = VT.getSizeInBits();
2348
2349    assert(VT.isInteger() && Len <= 128 && Len % 8 == 0 &&
2350           "CTPOP not implemented for this type.");
2351
2352    // This is the "best" algorithm from
2353    // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
2354
2355    SDValue Mask55 = DAG.getConstant(SplatByte(Len, 0x55), VT);
2356    SDValue Mask33 = DAG.getConstant(SplatByte(Len, 0x33), VT);
2357    SDValue Mask0F = DAG.getConstant(SplatByte(Len, 0x0F), VT);
2358    SDValue Mask01 = DAG.getConstant(SplatByte(Len, 0x01), VT);
2359
2360    // v = v - ((v >> 1) & 0x55555555...)
2361    Op = DAG.getNode(ISD::SUB, dl, VT, Op,
2362                     DAG.getNode(ISD::AND, dl, VT,
2363                                 DAG.getNode(ISD::SRL, dl, VT, Op,
2364                                             DAG.getConstant(1, ShVT)),
2365                                 Mask55));
2366    // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
2367    Op = DAG.getNode(ISD::ADD, dl, VT,
2368                     DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
2369                     DAG.getNode(ISD::AND, dl, VT,
2370                                 DAG.getNode(ISD::SRL, dl, VT, Op,
2371                                             DAG.getConstant(2, ShVT)),
2372                                 Mask33));
2373    // v = (v + (v >> 4)) & 0x0F0F0F0F...
2374    Op = DAG.getNode(ISD::AND, dl, VT,
2375                     DAG.getNode(ISD::ADD, dl, VT, Op,
2376                                 DAG.getNode(ISD::SRL, dl, VT, Op,
2377                                             DAG.getConstant(4, ShVT))),
2378                     Mask0F);
2379    // v = (v * 0x01010101...) >> (Len - 8)
2380    Op = DAG.getNode(ISD::SRL, dl, VT,
2381                     DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
2382                     DAG.getConstant(Len - 8, ShVT));
2383
2384    return Op;
2385  }
2386  case ISD::CTLZ_ZERO_UNDEF:
2387    // This trivially expands to CTLZ.
2388    return DAG.getNode(ISD::CTLZ, dl, Op.getValueType(), Op);
2389  case ISD::CTLZ: {
2390    // for now, we do this:
2391    // x = x | (x >> 1);
2392    // x = x | (x >> 2);
2393    // ...
2394    // x = x | (x >>16);
2395    // x = x | (x >>32); // for 64-bit input
2396    // return popcount(~x);
2397    //
2398    // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
2399    EVT VT = Op.getValueType();
2400    EVT ShVT = TLI.getShiftAmountTy(VT);
2401    unsigned len = VT.getSizeInBits();
2402    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2403      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2404      Op = DAG.getNode(ISD::OR, dl, VT, Op,
2405                       DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
2406    }
2407    Op = DAG.getNOT(dl, Op, VT);
2408    return DAG.getNode(ISD::CTPOP, dl, VT, Op);
2409  }
2410  case ISD::CTTZ_ZERO_UNDEF:
2411    // This trivially expands to CTTZ.
2412    return DAG.getNode(ISD::CTTZ, dl, Op.getValueType(), Op);
2413  case ISD::CTTZ: {
2414    // for now, we use: { return popcount(~x & (x - 1)); }
2415    // unless the target has ctlz but not ctpop, in which case we use:
2416    // { return 32 - nlz(~x & (x-1)); }
2417    // see also http://www.hackersdelight.org/HDcode/ntz.cc
2418    EVT VT = Op.getValueType();
2419    SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
2420                               DAG.getNOT(dl, Op, VT),
2421                               DAG.getNode(ISD::SUB, dl, VT, Op,
2422                                           DAG.getConstant(1, VT)));
2423    // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
2424    if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
2425        TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
2426      return DAG.getNode(ISD::SUB, dl, VT,
2427                         DAG.getConstant(VT.getSizeInBits(), VT),
2428                         DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
2429    return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
2430  }
2431  }
2432}
2433
2434std::pair <SDValue, SDValue> SelectionDAGLegalize::ExpandAtomic(SDNode *Node) {
2435  unsigned Opc = Node->getOpcode();
2436  MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
2437  RTLIB::Libcall LC;
2438
2439  switch (Opc) {
2440  default:
2441    llvm_unreachable("Unhandled atomic intrinsic Expand!");
2442  case ISD::ATOMIC_SWAP:
2443    switch (VT.SimpleTy) {
2444    default: llvm_unreachable("Unexpected value type for atomic!");
2445    case MVT::i8:  LC = RTLIB::SYNC_LOCK_TEST_AND_SET_1; break;
2446    case MVT::i16: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_2; break;
2447    case MVT::i32: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_4; break;
2448    case MVT::i64: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_8; break;
2449    }
2450    break;
2451  case ISD::ATOMIC_CMP_SWAP:
2452    switch (VT.SimpleTy) {
2453    default: llvm_unreachable("Unexpected value type for atomic!");
2454    case MVT::i8:  LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1; break;
2455    case MVT::i16: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2; break;
2456    case MVT::i32: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4; break;
2457    case MVT::i64: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8; break;
2458    }
2459    break;
2460  case ISD::ATOMIC_LOAD_ADD:
2461    switch (VT.SimpleTy) {
2462    default: llvm_unreachable("Unexpected value type for atomic!");
2463    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_ADD_1; break;
2464    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_ADD_2; break;
2465    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_ADD_4; break;
2466    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_ADD_8; break;
2467    }
2468    break;
2469  case ISD::ATOMIC_LOAD_SUB:
2470    switch (VT.SimpleTy) {
2471    default: llvm_unreachable("Unexpected value type for atomic!");
2472    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_SUB_1; break;
2473    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_SUB_2; break;
2474    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_SUB_4; break;
2475    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_SUB_8; break;
2476    }
2477    break;
2478  case ISD::ATOMIC_LOAD_AND:
2479    switch (VT.SimpleTy) {
2480    default: llvm_unreachable("Unexpected value type for atomic!");
2481    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_AND_1; break;
2482    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_AND_2; break;
2483    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_AND_4; break;
2484    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_AND_8; break;
2485    }
2486    break;
2487  case ISD::ATOMIC_LOAD_OR:
2488    switch (VT.SimpleTy) {
2489    default: llvm_unreachable("Unexpected value type for atomic!");
2490    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_OR_1; break;
2491    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_OR_2; break;
2492    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_OR_4; break;
2493    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_OR_8; break;
2494    }
2495    break;
2496  case ISD::ATOMIC_LOAD_XOR:
2497    switch (VT.SimpleTy) {
2498    default: llvm_unreachable("Unexpected value type for atomic!");
2499    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_XOR_1; break;
2500    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_XOR_2; break;
2501    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_XOR_4; break;
2502    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_XOR_8; break;
2503    }
2504    break;
2505  case ISD::ATOMIC_LOAD_NAND:
2506    switch (VT.SimpleTy) {
2507    default: llvm_unreachable("Unexpected value type for atomic!");
2508    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_NAND_1; break;
2509    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_NAND_2; break;
2510    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_NAND_4; break;
2511    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_NAND_8; break;
2512    }
2513    break;
2514  }
2515
2516  return ExpandChainLibCall(LC, Node, false);
2517}
2518
2519void SelectionDAGLegalize::ExpandNode(SDNode *Node) {
2520  SmallVector<SDValue, 8> Results;
2521  DebugLoc dl = Node->getDebugLoc();
2522  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2523  switch (Node->getOpcode()) {
2524  case ISD::CTPOP:
2525  case ISD::CTLZ:
2526  case ISD::CTLZ_ZERO_UNDEF:
2527  case ISD::CTTZ:
2528  case ISD::CTTZ_ZERO_UNDEF:
2529    Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
2530    Results.push_back(Tmp1);
2531    break;
2532  case ISD::BSWAP:
2533    Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2534    break;
2535  case ISD::FRAMEADDR:
2536  case ISD::RETURNADDR:
2537  case ISD::FRAME_TO_ARGS_OFFSET:
2538    Results.push_back(DAG.getConstant(0, Node->getValueType(0)));
2539    break;
2540  case ISD::FLT_ROUNDS_:
2541    Results.push_back(DAG.getConstant(1, Node->getValueType(0)));
2542    break;
2543  case ISD::EH_RETURN:
2544  case ISD::EH_LABEL:
2545  case ISD::PREFETCH:
2546  case ISD::VAEND:
2547  case ISD::EH_SJLJ_LONGJMP:
2548    // If the target didn't expand these, there's nothing to do, so just
2549    // preserve the chain and be done.
2550    Results.push_back(Node->getOperand(0));
2551    break;
2552  case ISD::EH_SJLJ_SETJMP:
2553    // If the target didn't expand this, just return 'zero' and preserve the
2554    // chain.
2555    Results.push_back(DAG.getConstant(0, MVT::i32));
2556    Results.push_back(Node->getOperand(0));
2557    break;
2558  case ISD::ATOMIC_FENCE:
2559  case ISD::MEMBARRIER: {
2560    // If the target didn't lower this, lower it to '__sync_synchronize()' call
2561    // FIXME: handle "fence singlethread" more efficiently.
2562    TargetLowering::ArgListTy Args;
2563    std::pair<SDValue, SDValue> CallResult =
2564      TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()),
2565                      false, false, false, false, 0, CallingConv::C,
2566                      /*isTailCall=*/false,
2567                      /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
2568                      DAG.getExternalSymbol("__sync_synchronize",
2569                                            TLI.getPointerTy()),
2570                      Args, DAG, dl);
2571    Results.push_back(CallResult.second);
2572    break;
2573  }
2574  case ISD::ATOMIC_LOAD: {
2575    // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP.
2576    SDValue Zero = DAG.getConstant(0, Node->getValueType(0));
2577    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
2578                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
2579                                 Node->getOperand(0),
2580                                 Node->getOperand(1), Zero, Zero,
2581                                 cast<AtomicSDNode>(Node)->getMemOperand(),
2582                                 cast<AtomicSDNode>(Node)->getOrdering(),
2583                                 cast<AtomicSDNode>(Node)->getSynchScope());
2584    Results.push_back(Swap.getValue(0));
2585    Results.push_back(Swap.getValue(1));
2586    break;
2587  }
2588  case ISD::ATOMIC_STORE: {
2589    // There is no libcall for atomic store; fake it with ATOMIC_SWAP.
2590    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
2591                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
2592                                 Node->getOperand(0),
2593                                 Node->getOperand(1), Node->getOperand(2),
2594                                 cast<AtomicSDNode>(Node)->getMemOperand(),
2595                                 cast<AtomicSDNode>(Node)->getOrdering(),
2596                                 cast<AtomicSDNode>(Node)->getSynchScope());
2597    Results.push_back(Swap.getValue(1));
2598    break;
2599  }
2600  // By default, atomic intrinsics are marked Legal and lowered. Targets
2601  // which don't support them directly, however, may want libcalls, in which
2602  // case they mark them Expand, and we get here.
2603  case ISD::ATOMIC_SWAP:
2604  case ISD::ATOMIC_LOAD_ADD:
2605  case ISD::ATOMIC_LOAD_SUB:
2606  case ISD::ATOMIC_LOAD_AND:
2607  case ISD::ATOMIC_LOAD_OR:
2608  case ISD::ATOMIC_LOAD_XOR:
2609  case ISD::ATOMIC_LOAD_NAND:
2610  case ISD::ATOMIC_LOAD_MIN:
2611  case ISD::ATOMIC_LOAD_MAX:
2612  case ISD::ATOMIC_LOAD_UMIN:
2613  case ISD::ATOMIC_LOAD_UMAX:
2614  case ISD::ATOMIC_CMP_SWAP: {
2615    std::pair<SDValue, SDValue> Tmp = ExpandAtomic(Node);
2616    Results.push_back(Tmp.first);
2617    Results.push_back(Tmp.second);
2618    break;
2619  }
2620  case ISD::DYNAMIC_STACKALLOC:
2621    ExpandDYNAMIC_STACKALLOC(Node, Results);
2622    break;
2623  case ISD::MERGE_VALUES:
2624    for (unsigned i = 0; i < Node->getNumValues(); i++)
2625      Results.push_back(Node->getOperand(i));
2626    break;
2627  case ISD::UNDEF: {
2628    EVT VT = Node->getValueType(0);
2629    if (VT.isInteger())
2630      Results.push_back(DAG.getConstant(0, VT));
2631    else {
2632      assert(VT.isFloatingPoint() && "Unknown value type!");
2633      Results.push_back(DAG.getConstantFP(0, VT));
2634    }
2635    break;
2636  }
2637  case ISD::TRAP: {
2638    // If this operation is not supported, lower it to 'abort()' call
2639    TargetLowering::ArgListTy Args;
2640    std::pair<SDValue, SDValue> CallResult =
2641      TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()),
2642                      false, false, false, false, 0, CallingConv::C,
2643                      /*isTailCall=*/false,
2644                      /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
2645                      DAG.getExternalSymbol("abort", TLI.getPointerTy()),
2646                      Args, DAG, dl);
2647    Results.push_back(CallResult.second);
2648    break;
2649  }
2650  case ISD::FP_ROUND:
2651  case ISD::BITCAST:
2652    Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
2653                            Node->getValueType(0), dl);
2654    Results.push_back(Tmp1);
2655    break;
2656  case ISD::FP_EXTEND:
2657    Tmp1 = EmitStackConvert(Node->getOperand(0),
2658                            Node->getOperand(0).getValueType(),
2659                            Node->getValueType(0), dl);
2660    Results.push_back(Tmp1);
2661    break;
2662  case ISD::SIGN_EXTEND_INREG: {
2663    // NOTE: we could fall back on load/store here too for targets without
2664    // SAR.  However, it is doubtful that any exist.
2665    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2666    EVT VT = Node->getValueType(0);
2667    EVT ShiftAmountTy = TLI.getShiftAmountTy(VT);
2668    if (VT.isVector())
2669      ShiftAmountTy = VT;
2670    unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
2671                        ExtraVT.getScalarType().getSizeInBits();
2672    SDValue ShiftCst = DAG.getConstant(BitsDiff, ShiftAmountTy);
2673    Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
2674                       Node->getOperand(0), ShiftCst);
2675    Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
2676    Results.push_back(Tmp1);
2677    break;
2678  }
2679  case ISD::FP_ROUND_INREG: {
2680    // The only way we can lower this is to turn it into a TRUNCSTORE,
2681    // EXTLOAD pair, targeting a temporary location (a stack slot).
2682
2683    // NOTE: there is a choice here between constantly creating new stack
2684    // slots and always reusing the same one.  We currently always create
2685    // new ones, as reuse may inhibit scheduling.
2686    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2687    Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
2688                            Node->getValueType(0), dl);
2689    Results.push_back(Tmp1);
2690    break;
2691  }
2692  case ISD::SINT_TO_FP:
2693  case ISD::UINT_TO_FP:
2694    Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
2695                                Node->getOperand(0), Node->getValueType(0), dl);
2696    Results.push_back(Tmp1);
2697    break;
2698  case ISD::FP_TO_UINT: {
2699    SDValue True, False;
2700    EVT VT =  Node->getOperand(0).getValueType();
2701    EVT NVT = Node->getValueType(0);
2702    APFloat apf(APInt::getNullValue(VT.getSizeInBits()));
2703    APInt x = APInt::getSignBit(NVT.getSizeInBits());
2704    (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
2705    Tmp1 = DAG.getConstantFP(apf, VT);
2706    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT),
2707                        Node->getOperand(0),
2708                        Tmp1, ISD::SETLT);
2709    True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
2710    False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
2711                        DAG.getNode(ISD::FSUB, dl, VT,
2712                                    Node->getOperand(0), Tmp1));
2713    False = DAG.getNode(ISD::XOR, dl, NVT, False,
2714                        DAG.getConstant(x, NVT));
2715    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False);
2716    Results.push_back(Tmp1);
2717    break;
2718  }
2719  case ISD::VAARG: {
2720    const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2721    EVT VT = Node->getValueType(0);
2722    Tmp1 = Node->getOperand(0);
2723    Tmp2 = Node->getOperand(1);
2724    unsigned Align = Node->getConstantOperandVal(3);
2725
2726    SDValue VAListLoad = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2,
2727                                     MachinePointerInfo(V),
2728                                     false, false, false, 0);
2729    SDValue VAList = VAListLoad;
2730
2731    if (Align > TLI.getMinStackArgumentAlignment()) {
2732      assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
2733
2734      VAList = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2735                           DAG.getConstant(Align - 1,
2736                                           TLI.getPointerTy()));
2737
2738      VAList = DAG.getNode(ISD::AND, dl, TLI.getPointerTy(), VAList,
2739                           DAG.getConstant(-(int64_t)Align,
2740                                           TLI.getPointerTy()));
2741    }
2742
2743    // Increment the pointer, VAList, to the next vaarg
2744    Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2745                       DAG.getConstant(TLI.getTargetData()->
2746                          getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())),
2747                                       TLI.getPointerTy()));
2748    // Store the incremented VAList to the legalized pointer
2749    Tmp3 = DAG.getStore(VAListLoad.getValue(1), dl, Tmp3, Tmp2,
2750                        MachinePointerInfo(V), false, false, 0);
2751    // Load the actual argument out of the pointer VAList
2752    Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, MachinePointerInfo(),
2753                                  false, false, false, 0));
2754    Results.push_back(Results[0].getValue(1));
2755    break;
2756  }
2757  case ISD::VACOPY: {
2758    // This defaults to loading a pointer from the input and storing it to the
2759    // output, returning the chain.
2760    const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2761    const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2762    Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0),
2763                       Node->getOperand(2), MachinePointerInfo(VS),
2764                       false, false, false, 0);
2765    Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2766                        MachinePointerInfo(VD), false, false, 0);
2767    Results.push_back(Tmp1);
2768    break;
2769  }
2770  case ISD::EXTRACT_VECTOR_ELT:
2771    if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
2772      // This must be an access of the only element.  Return it.
2773      Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0),
2774                         Node->getOperand(0));
2775    else
2776      Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
2777    Results.push_back(Tmp1);
2778    break;
2779  case ISD::EXTRACT_SUBVECTOR:
2780    Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
2781    break;
2782  case ISD::INSERT_SUBVECTOR:
2783    Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0)));
2784    break;
2785  case ISD::CONCAT_VECTORS: {
2786    Results.push_back(ExpandVectorBuildThroughStack(Node));
2787    break;
2788  }
2789  case ISD::SCALAR_TO_VECTOR:
2790    Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
2791    break;
2792  case ISD::INSERT_VECTOR_ELT:
2793    Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
2794                                              Node->getOperand(1),
2795                                              Node->getOperand(2), dl));
2796    break;
2797  case ISD::VECTOR_SHUFFLE: {
2798    SmallVector<int, 32> NewMask;
2799    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
2800
2801    EVT VT = Node->getValueType(0);
2802    EVT EltVT = VT.getVectorElementType();
2803    SDValue Op0 = Node->getOperand(0);
2804    SDValue Op1 = Node->getOperand(1);
2805    if (!TLI.isTypeLegal(EltVT)) {
2806
2807      EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT);
2808
2809      // BUILD_VECTOR operands are allowed to be wider than the element type.
2810      // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept it
2811      if (NewEltVT.bitsLT(EltVT)) {
2812
2813        // Convert shuffle node.
2814        // If original node was v4i64 and the new EltVT is i32,
2815        // cast operands to v8i32 and re-build the mask.
2816
2817        // Calculate new VT, the size of the new VT should be equal to original.
2818        EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltVT,
2819                                      VT.getSizeInBits()/NewEltVT.getSizeInBits());
2820        assert(NewVT.bitsEq(VT));
2821
2822        // cast operands to new VT
2823        Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0);
2824        Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1);
2825
2826        // Convert the shuffle mask
2827        unsigned int factor = NewVT.getVectorNumElements()/VT.getVectorNumElements();
2828
2829        // EltVT gets smaller
2830        assert(factor > 0);
2831
2832        for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
2833          if (Mask[i] < 0) {
2834            for (unsigned fi = 0; fi < factor; ++fi)
2835              NewMask.push_back(Mask[i]);
2836          }
2837          else {
2838            for (unsigned fi = 0; fi < factor; ++fi)
2839              NewMask.push_back(Mask[i]*factor+fi);
2840          }
2841        }
2842        Mask = NewMask;
2843        VT = NewVT;
2844      }
2845      EltVT = NewEltVT;
2846    }
2847    unsigned NumElems = VT.getVectorNumElements();
2848    SmallVector<SDValue, 16> Ops;
2849    for (unsigned i = 0; i != NumElems; ++i) {
2850      if (Mask[i] < 0) {
2851        Ops.push_back(DAG.getUNDEF(EltVT));
2852        continue;
2853      }
2854      unsigned Idx = Mask[i];
2855      if (Idx < NumElems)
2856        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2857                                  Op0,
2858                                  DAG.getIntPtrConstant(Idx)));
2859      else
2860        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2861                                  Op1,
2862                                  DAG.getIntPtrConstant(Idx - NumElems)));
2863    }
2864
2865    Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size());
2866    // We may have changed the BUILD_VECTOR type. Cast it back to the Node type.
2867    Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1);
2868    Results.push_back(Tmp1);
2869    break;
2870  }
2871  case ISD::EXTRACT_ELEMENT: {
2872    EVT OpTy = Node->getOperand(0).getValueType();
2873    if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
2874      // 1 -> Hi
2875      Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
2876                         DAG.getConstant(OpTy.getSizeInBits()/2,
2877                    TLI.getShiftAmountTy(Node->getOperand(0).getValueType())));
2878      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
2879    } else {
2880      // 0 -> Lo
2881      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
2882                         Node->getOperand(0));
2883    }
2884    Results.push_back(Tmp1);
2885    break;
2886  }
2887  case ISD::STACKSAVE:
2888    // Expand to CopyFromReg if the target set
2889    // StackPointerRegisterToSaveRestore.
2890    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2891      Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
2892                                           Node->getValueType(0)));
2893      Results.push_back(Results[0].getValue(1));
2894    } else {
2895      Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
2896      Results.push_back(Node->getOperand(0));
2897    }
2898    break;
2899  case ISD::STACKRESTORE:
2900    // Expand to CopyToReg if the target set
2901    // StackPointerRegisterToSaveRestore.
2902    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2903      Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
2904                                         Node->getOperand(1)));
2905    } else {
2906      Results.push_back(Node->getOperand(0));
2907    }
2908    break;
2909  case ISD::FCOPYSIGN:
2910    Results.push_back(ExpandFCOPYSIGN(Node));
2911    break;
2912  case ISD::FNEG:
2913    // Expand Y = FNEG(X) ->  Y = SUB -0.0, X
2914    Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0));
2915    Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
2916                       Node->getOperand(0));
2917    Results.push_back(Tmp1);
2918    break;
2919  case ISD::FABS: {
2920    // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
2921    EVT VT = Node->getValueType(0);
2922    Tmp1 = Node->getOperand(0);
2923    Tmp2 = DAG.getConstantFP(0.0, VT);
2924    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
2925                        Tmp1, Tmp2, ISD::SETUGT);
2926    Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1);
2927    Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3);
2928    Results.push_back(Tmp1);
2929    break;
2930  }
2931  case ISD::FSQRT:
2932    Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
2933                                      RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128));
2934    break;
2935  case ISD::FSIN:
2936    Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
2937                                      RTLIB::SIN_F80, RTLIB::SIN_PPCF128));
2938    break;
2939  case ISD::FCOS:
2940    Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
2941                                      RTLIB::COS_F80, RTLIB::COS_PPCF128));
2942    break;
2943  case ISD::FLOG:
2944    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
2945                                      RTLIB::LOG_F80, RTLIB::LOG_PPCF128));
2946    break;
2947  case ISD::FLOG2:
2948    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
2949                                      RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128));
2950    break;
2951  case ISD::FLOG10:
2952    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
2953                                      RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128));
2954    break;
2955  case ISD::FEXP:
2956    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
2957                                      RTLIB::EXP_F80, RTLIB::EXP_PPCF128));
2958    break;
2959  case ISD::FEXP2:
2960    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
2961                                      RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128));
2962    break;
2963  case ISD::FTRUNC:
2964    Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
2965                                      RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128));
2966    break;
2967  case ISD::FFLOOR:
2968    Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
2969                                      RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128));
2970    break;
2971  case ISD::FCEIL:
2972    Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
2973                                      RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128));
2974    break;
2975  case ISD::FRINT:
2976    Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
2977                                      RTLIB::RINT_F80, RTLIB::RINT_PPCF128));
2978    break;
2979  case ISD::FNEARBYINT:
2980    Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
2981                                      RTLIB::NEARBYINT_F64,
2982                                      RTLIB::NEARBYINT_F80,
2983                                      RTLIB::NEARBYINT_PPCF128));
2984    break;
2985  case ISD::FPOWI:
2986    Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
2987                                      RTLIB::POWI_F80, RTLIB::POWI_PPCF128));
2988    break;
2989  case ISD::FPOW:
2990    Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
2991                                      RTLIB::POW_F80, RTLIB::POW_PPCF128));
2992    break;
2993  case ISD::FDIV:
2994    Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
2995                                      RTLIB::DIV_F80, RTLIB::DIV_PPCF128));
2996    break;
2997  case ISD::FREM:
2998    Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
2999                                      RTLIB::REM_F80, RTLIB::REM_PPCF128));
3000    break;
3001  case ISD::FMA:
3002    Results.push_back(ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64,
3003                                      RTLIB::FMA_F80, RTLIB::FMA_PPCF128));
3004    break;
3005  case ISD::FP16_TO_FP32:
3006    Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
3007    break;
3008  case ISD::FP32_TO_FP16:
3009    Results.push_back(ExpandLibCall(RTLIB::FPROUND_F32_F16, Node, false));
3010    break;
3011  case ISD::ConstantFP: {
3012    ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
3013    // Check to see if this FP immediate is already legal.
3014    // If this is a legal constant, turn it into a TargetConstantFP node.
3015    if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0)))
3016      Results.push_back(ExpandConstantFP(CFP, true));
3017    break;
3018  }
3019  case ISD::EHSELECTION: {
3020    unsigned Reg = TLI.getExceptionSelectorRegister();
3021    assert(Reg && "Can't expand to unknown register!");
3022    Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg,
3023                                         Node->getValueType(0)));
3024    Results.push_back(Results[0].getValue(1));
3025    break;
3026  }
3027  case ISD::EXCEPTIONADDR: {
3028    unsigned Reg = TLI.getExceptionPointerRegister();
3029    assert(Reg && "Can't expand to unknown register!");
3030    Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg,
3031                                         Node->getValueType(0)));
3032    Results.push_back(Results[0].getValue(1));
3033    break;
3034  }
3035  case ISD::SUB: {
3036    EVT VT = Node->getValueType(0);
3037    assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
3038           TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
3039           "Don't know how to expand this subtraction!");
3040    Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
3041               DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT));
3042    Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp2, DAG.getConstant(1, VT));
3043    Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
3044    break;
3045  }
3046  case ISD::UREM:
3047  case ISD::SREM: {
3048    EVT VT = Node->getValueType(0);
3049    SDVTList VTs = DAG.getVTList(VT, VT);
3050    bool isSigned = Node->getOpcode() == ISD::SREM;
3051    unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
3052    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3053    Tmp2 = Node->getOperand(0);
3054    Tmp3 = Node->getOperand(1);
3055    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) ||
3056        (isDivRemLibcallAvailable(Node, isSigned, TLI) &&
3057         UseDivRem(Node, isSigned, false))) {
3058      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
3059    } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
3060      // X % Y -> X-X/Y*Y
3061      Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
3062      Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
3063      Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
3064    } else if (isSigned)
3065      Tmp1 = ExpandIntLibCall(Node, true,
3066                              RTLIB::SREM_I8,
3067                              RTLIB::SREM_I16, RTLIB::SREM_I32,
3068                              RTLIB::SREM_I64, RTLIB::SREM_I128);
3069    else
3070      Tmp1 = ExpandIntLibCall(Node, false,
3071                              RTLIB::UREM_I8,
3072                              RTLIB::UREM_I16, RTLIB::UREM_I32,
3073                              RTLIB::UREM_I64, RTLIB::UREM_I128);
3074    Results.push_back(Tmp1);
3075    break;
3076  }
3077  case ISD::UDIV:
3078  case ISD::SDIV: {
3079    bool isSigned = Node->getOpcode() == ISD::SDIV;
3080    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3081    EVT VT = Node->getValueType(0);
3082    SDVTList VTs = DAG.getVTList(VT, VT);
3083    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) ||
3084        (isDivRemLibcallAvailable(Node, isSigned, TLI) &&
3085         UseDivRem(Node, isSigned, true)))
3086      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
3087                         Node->getOperand(1));
3088    else if (isSigned)
3089      Tmp1 = ExpandIntLibCall(Node, true,
3090                              RTLIB::SDIV_I8,
3091                              RTLIB::SDIV_I16, RTLIB::SDIV_I32,
3092                              RTLIB::SDIV_I64, RTLIB::SDIV_I128);
3093    else
3094      Tmp1 = ExpandIntLibCall(Node, false,
3095                              RTLIB::UDIV_I8,
3096                              RTLIB::UDIV_I16, RTLIB::UDIV_I32,
3097                              RTLIB::UDIV_I64, RTLIB::UDIV_I128);
3098    Results.push_back(Tmp1);
3099    break;
3100  }
3101  case ISD::MULHU:
3102  case ISD::MULHS: {
3103    unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
3104                                                              ISD::SMUL_LOHI;
3105    EVT VT = Node->getValueType(0);
3106    SDVTList VTs = DAG.getVTList(VT, VT);
3107    assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
3108           "If this wasn't legal, it shouldn't have been created!");
3109    Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
3110                       Node->getOperand(1));
3111    Results.push_back(Tmp1.getValue(1));
3112    break;
3113  }
3114  case ISD::SDIVREM:
3115  case ISD::UDIVREM:
3116    // Expand into divrem libcall
3117    ExpandDivRemLibCall(Node, Results);
3118    break;
3119  case ISD::MUL: {
3120    EVT VT = Node->getValueType(0);
3121    SDVTList VTs = DAG.getVTList(VT, VT);
3122    // See if multiply or divide can be lowered using two-result operations.
3123    // We just need the low half of the multiply; try both the signed
3124    // and unsigned forms. If the target supports both SMUL_LOHI and
3125    // UMUL_LOHI, form a preference by checking which forms of plain
3126    // MULH it supports.
3127    bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
3128    bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
3129    bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
3130    bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
3131    unsigned OpToUse = 0;
3132    if (HasSMUL_LOHI && !HasMULHS) {
3133      OpToUse = ISD::SMUL_LOHI;
3134    } else if (HasUMUL_LOHI && !HasMULHU) {
3135      OpToUse = ISD::UMUL_LOHI;
3136    } else if (HasSMUL_LOHI) {
3137      OpToUse = ISD::SMUL_LOHI;
3138    } else if (HasUMUL_LOHI) {
3139      OpToUse = ISD::UMUL_LOHI;
3140    }
3141    if (OpToUse) {
3142      Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
3143                                    Node->getOperand(1)));
3144      break;
3145    }
3146    Tmp1 = ExpandIntLibCall(Node, false,
3147                            RTLIB::MUL_I8,
3148                            RTLIB::MUL_I16, RTLIB::MUL_I32,
3149                            RTLIB::MUL_I64, RTLIB::MUL_I128);
3150    Results.push_back(Tmp1);
3151    break;
3152  }
3153  case ISD::SADDO:
3154  case ISD::SSUBO: {
3155    SDValue LHS = Node->getOperand(0);
3156    SDValue RHS = Node->getOperand(1);
3157    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
3158                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3159                              LHS, RHS);
3160    Results.push_back(Sum);
3161    EVT OType = Node->getValueType(1);
3162
3163    SDValue Zero = DAG.getConstant(0, LHS.getValueType());
3164
3165    //   LHSSign -> LHS >= 0
3166    //   RHSSign -> RHS >= 0
3167    //   SumSign -> Sum >= 0
3168    //
3169    //   Add:
3170    //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
3171    //   Sub:
3172    //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
3173    //
3174    SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
3175    SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
3176    SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
3177                                      Node->getOpcode() == ISD::SADDO ?
3178                                      ISD::SETEQ : ISD::SETNE);
3179
3180    SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
3181    SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
3182
3183    SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
3184    Results.push_back(Cmp);
3185    break;
3186  }
3187  case ISD::UADDO:
3188  case ISD::USUBO: {
3189    SDValue LHS = Node->getOperand(0);
3190    SDValue RHS = Node->getOperand(1);
3191    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
3192                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3193                              LHS, RHS);
3194    Results.push_back(Sum);
3195    Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS,
3196                                   Node->getOpcode () == ISD::UADDO ?
3197                                   ISD::SETULT : ISD::SETUGT));
3198    break;
3199  }
3200  case ISD::UMULO:
3201  case ISD::SMULO: {
3202    EVT VT = Node->getValueType(0);
3203    EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
3204    SDValue LHS = Node->getOperand(0);
3205    SDValue RHS = Node->getOperand(1);
3206    SDValue BottomHalf;
3207    SDValue TopHalf;
3208    static const unsigned Ops[2][3] =
3209        { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
3210          { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
3211    bool isSigned = Node->getOpcode() == ISD::SMULO;
3212    if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
3213      BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
3214      TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
3215    } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
3216      BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
3217                               RHS);
3218      TopHalf = BottomHalf.getValue(1);
3219    } else if (TLI.isTypeLegal(EVT::getIntegerVT(*DAG.getContext(),
3220                                                 VT.getSizeInBits() * 2))) {
3221      LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
3222      RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
3223      Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
3224      BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3225                               DAG.getIntPtrConstant(0));
3226      TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3227                            DAG.getIntPtrConstant(1));
3228    } else {
3229      // We can fall back to a libcall with an illegal type for the MUL if we
3230      // have a libcall big enough.
3231      // Also, we can fall back to a division in some cases, but that's a big
3232      // performance hit in the general case.
3233      RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
3234      if (WideVT == MVT::i16)
3235        LC = RTLIB::MUL_I16;
3236      else if (WideVT == MVT::i32)
3237        LC = RTLIB::MUL_I32;
3238      else if (WideVT == MVT::i64)
3239        LC = RTLIB::MUL_I64;
3240      else if (WideVT == MVT::i128)
3241        LC = RTLIB::MUL_I128;
3242      assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
3243
3244      // The high part is obtained by SRA'ing all but one of the bits of low
3245      // part.
3246      unsigned LoSize = VT.getSizeInBits();
3247      SDValue HiLHS = DAG.getNode(ISD::SRA, dl, VT, RHS,
3248                                DAG.getConstant(LoSize-1, TLI.getPointerTy()));
3249      SDValue HiRHS = DAG.getNode(ISD::SRA, dl, VT, LHS,
3250                                DAG.getConstant(LoSize-1, TLI.getPointerTy()));
3251
3252      // Here we're passing the 2 arguments explicitly as 4 arguments that are
3253      // pre-lowered to the correct types. This all depends upon WideVT not
3254      // being a legal type for the architecture and thus has to be split to
3255      // two arguments.
3256      SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
3257      SDValue Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl);
3258      BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret,
3259                               DAG.getIntPtrConstant(0));
3260      TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret,
3261                            DAG.getIntPtrConstant(1));
3262      // Ret is a node with an illegal type. Because such things are not
3263      // generally permitted during this phase of legalization, delete the
3264      // node. The above EXTRACT_ELEMENT nodes should have been folded.
3265      DAG.DeleteNode(Ret.getNode());
3266    }
3267
3268    if (isSigned) {
3269      Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1,
3270                             TLI.getShiftAmountTy(BottomHalf.getValueType()));
3271      Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1);
3272      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1,
3273                             ISD::SETNE);
3274    } else {
3275      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf,
3276                             DAG.getConstant(0, VT), ISD::SETNE);
3277    }
3278    Results.push_back(BottomHalf);
3279    Results.push_back(TopHalf);
3280    break;
3281  }
3282  case ISD::BUILD_PAIR: {
3283    EVT PairTy = Node->getValueType(0);
3284    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
3285    Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
3286    Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
3287                       DAG.getConstant(PairTy.getSizeInBits()/2,
3288                                       TLI.getShiftAmountTy(PairTy)));
3289    Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
3290    break;
3291  }
3292  case ISD::SELECT:
3293    Tmp1 = Node->getOperand(0);
3294    Tmp2 = Node->getOperand(1);
3295    Tmp3 = Node->getOperand(2);
3296    if (Tmp1.getOpcode() == ISD::SETCC) {
3297      Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
3298                             Tmp2, Tmp3,
3299                             cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
3300    } else {
3301      Tmp1 = DAG.getSelectCC(dl, Tmp1,
3302                             DAG.getConstant(0, Tmp1.getValueType()),
3303                             Tmp2, Tmp3, ISD::SETNE);
3304    }
3305    Results.push_back(Tmp1);
3306    break;
3307  case ISD::BR_JT: {
3308    SDValue Chain = Node->getOperand(0);
3309    SDValue Table = Node->getOperand(1);
3310    SDValue Index = Node->getOperand(2);
3311
3312    EVT PTy = TLI.getPointerTy();
3313
3314    const TargetData &TD = *TLI.getTargetData();
3315    unsigned EntrySize =
3316      DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
3317
3318    Index = DAG.getNode(ISD::MUL, dl, PTy,
3319                        Index, DAG.getConstant(EntrySize, PTy));
3320    SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
3321
3322    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
3323    SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr,
3324                                MachinePointerInfo::getJumpTable(), MemVT,
3325                                false, false, 0);
3326    Addr = LD;
3327    if (TM.getRelocationModel() == Reloc::PIC_) {
3328      // For PIC, the sequence is:
3329      // BRIND(load(Jumptable + index) + RelocBase)
3330      // RelocBase can be JumpTable, GOT or some sort of global base.
3331      Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
3332                          TLI.getPICJumpTableRelocBase(Table, DAG));
3333    }
3334    Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
3335    Results.push_back(Tmp1);
3336    break;
3337  }
3338  case ISD::BRCOND:
3339    // Expand brcond's setcc into its constituent parts and create a BR_CC
3340    // Node.
3341    Tmp1 = Node->getOperand(0);
3342    Tmp2 = Node->getOperand(1);
3343    if (Tmp2.getOpcode() == ISD::SETCC) {
3344      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
3345                         Tmp1, Tmp2.getOperand(2),
3346                         Tmp2.getOperand(0), Tmp2.getOperand(1),
3347                         Node->getOperand(2));
3348    } else {
3349      // We test only the i1 bit.  Skip the AND if UNDEF.
3350      Tmp3 = (Tmp2.getOpcode() == ISD::UNDEF) ? Tmp2 :
3351        DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2,
3352                    DAG.getConstant(1, Tmp2.getValueType()));
3353      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
3354                         DAG.getCondCode(ISD::SETNE), Tmp3,
3355                         DAG.getConstant(0, Tmp3.getValueType()),
3356                         Node->getOperand(2));
3357    }
3358    Results.push_back(Tmp1);
3359    break;
3360  case ISD::SETCC: {
3361    Tmp1 = Node->getOperand(0);
3362    Tmp2 = Node->getOperand(1);
3363    Tmp3 = Node->getOperand(2);
3364    LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl);
3365
3366    // If we expanded the SETCC into an AND/OR, return the new node
3367    if (Tmp2.getNode() == 0) {
3368      Results.push_back(Tmp1);
3369      break;
3370    }
3371
3372    // Otherwise, SETCC for the given comparison type must be completely
3373    // illegal; expand it into a SELECT_CC.
3374    EVT VT = Node->getValueType(0);
3375    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
3376                       DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3);
3377    Results.push_back(Tmp1);
3378    break;
3379  }
3380  case ISD::SELECT_CC: {
3381    Tmp1 = Node->getOperand(0);   // LHS
3382    Tmp2 = Node->getOperand(1);   // RHS
3383    Tmp3 = Node->getOperand(2);   // True
3384    Tmp4 = Node->getOperand(3);   // False
3385    SDValue CC = Node->getOperand(4);
3386
3387    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()),
3388                          Tmp1, Tmp2, CC, dl);
3389
3390    assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!");
3391    Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
3392    CC = DAG.getCondCode(ISD::SETNE);
3393    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2,
3394                       Tmp3, Tmp4, CC);
3395    Results.push_back(Tmp1);
3396    break;
3397  }
3398  case ISD::BR_CC: {
3399    Tmp1 = Node->getOperand(0);              // Chain
3400    Tmp2 = Node->getOperand(2);              // LHS
3401    Tmp3 = Node->getOperand(3);              // RHS
3402    Tmp4 = Node->getOperand(1);              // CC
3403
3404    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()),
3405                          Tmp2, Tmp3, Tmp4, dl);
3406
3407    assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!");
3408    Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
3409    Tmp4 = DAG.getCondCode(ISD::SETNE);
3410    Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2,
3411                       Tmp3, Node->getOperand(4));
3412    Results.push_back(Tmp1);
3413    break;
3414  }
3415  case ISD::BUILD_VECTOR:
3416    Results.push_back(ExpandBUILD_VECTOR(Node));
3417    break;
3418  case ISD::SRA:
3419  case ISD::SRL:
3420  case ISD::SHL: {
3421    // Scalarize vector SRA/SRL/SHL.
3422    EVT VT = Node->getValueType(0);
3423    assert(VT.isVector() && "Unable to legalize non-vector shift");
3424    assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal");
3425    unsigned NumElem = VT.getVectorNumElements();
3426
3427    SmallVector<SDValue, 8> Scalars;
3428    for (unsigned Idx = 0; Idx < NumElem; Idx++) {
3429      SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
3430                               VT.getScalarType(),
3431                               Node->getOperand(0), DAG.getIntPtrConstant(Idx));
3432      SDValue Sh = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
3433                               VT.getScalarType(),
3434                               Node->getOperand(1), DAG.getIntPtrConstant(Idx));
3435      Scalars.push_back(DAG.getNode(Node->getOpcode(), dl,
3436                                    VT.getScalarType(), Ex, Sh));
3437    }
3438    SDValue Result =
3439      DAG.getNode(ISD::BUILD_VECTOR, dl, Node->getValueType(0),
3440                  &Scalars[0], Scalars.size());
3441    ReplaceNode(SDValue(Node, 0), Result);
3442    break;
3443  }
3444  case ISD::GLOBAL_OFFSET_TABLE:
3445  case ISD::GlobalAddress:
3446  case ISD::GlobalTLSAddress:
3447  case ISD::ExternalSymbol:
3448  case ISD::ConstantPool:
3449  case ISD::JumpTable:
3450  case ISD::INTRINSIC_W_CHAIN:
3451  case ISD::INTRINSIC_WO_CHAIN:
3452  case ISD::INTRINSIC_VOID:
3453    // FIXME: Custom lowering for these operations shouldn't return null!
3454    break;
3455  }
3456
3457  // Replace the original node with the legalized result.
3458  if (!Results.empty())
3459    ReplaceNode(Node, Results.data());
3460}
3461
3462void SelectionDAGLegalize::PromoteNode(SDNode *Node) {
3463  SmallVector<SDValue, 8> Results;
3464  EVT OVT = Node->getValueType(0);
3465  if (Node->getOpcode() == ISD::UINT_TO_FP ||
3466      Node->getOpcode() == ISD::SINT_TO_FP ||
3467      Node->getOpcode() == ISD::SETCC) {
3468    OVT = Node->getOperand(0).getValueType();
3469  }
3470  EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
3471  DebugLoc dl = Node->getDebugLoc();
3472  SDValue Tmp1, Tmp2, Tmp3;
3473  switch (Node->getOpcode()) {
3474  case ISD::CTTZ:
3475  case ISD::CTTZ_ZERO_UNDEF:
3476  case ISD::CTLZ:
3477  case ISD::CTLZ_ZERO_UNDEF:
3478  case ISD::CTPOP:
3479    // Zero extend the argument.
3480    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3481    // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is
3482    // already the correct result.
3483    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
3484    if (Node->getOpcode() == ISD::CTTZ) {
3485      // FIXME: This should set a bit in the zero extended value instead.
3486      Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT),
3487                          Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT),
3488                          ISD::SETEQ);
3489      Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2,
3490                          DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1);
3491    } else if (Node->getOpcode() == ISD::CTLZ ||
3492               Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) {
3493      // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
3494      Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
3495                          DAG.getConstant(NVT.getSizeInBits() -
3496                                          OVT.getSizeInBits(), NVT));
3497    }
3498    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
3499    break;
3500  case ISD::BSWAP: {
3501    unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
3502    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3503    Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
3504    Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
3505                          DAG.getConstant(DiffBits, TLI.getShiftAmountTy(NVT)));
3506    Results.push_back(Tmp1);
3507    break;
3508  }
3509  case ISD::FP_TO_UINT:
3510  case ISD::FP_TO_SINT:
3511    Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
3512                                 Node->getOpcode() == ISD::FP_TO_SINT, dl);
3513    Results.push_back(Tmp1);
3514    break;
3515  case ISD::UINT_TO_FP:
3516  case ISD::SINT_TO_FP:
3517    Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
3518                                 Node->getOpcode() == ISD::SINT_TO_FP, dl);
3519    Results.push_back(Tmp1);
3520    break;
3521  case ISD::AND:
3522  case ISD::OR:
3523  case ISD::XOR: {
3524    unsigned ExtOp, TruncOp;
3525    if (OVT.isVector()) {
3526      ExtOp   = ISD::BITCAST;
3527      TruncOp = ISD::BITCAST;
3528    } else {
3529      assert(OVT.isInteger() && "Cannot promote logic operation");
3530      ExtOp   = ISD::ANY_EXTEND;
3531      TruncOp = ISD::TRUNCATE;
3532    }
3533    // Promote each of the values to the new type.
3534    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3535    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3536    // Perform the larger operation, then convert back
3537    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3538    Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
3539    break;
3540  }
3541  case ISD::SELECT: {
3542    unsigned ExtOp, TruncOp;
3543    if (Node->getValueType(0).isVector()) {
3544      ExtOp   = ISD::BITCAST;
3545      TruncOp = ISD::BITCAST;
3546    } else if (Node->getValueType(0).isInteger()) {
3547      ExtOp   = ISD::ANY_EXTEND;
3548      TruncOp = ISD::TRUNCATE;
3549    } else {
3550      ExtOp   = ISD::FP_EXTEND;
3551      TruncOp = ISD::FP_ROUND;
3552    }
3553    Tmp1 = Node->getOperand(0);
3554    // Promote each of the values to the new type.
3555    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3556    Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
3557    // Perform the larger operation, then round down.
3558    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3);
3559    if (TruncOp != ISD::FP_ROUND)
3560      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
3561    else
3562      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
3563                         DAG.getIntPtrConstant(0));
3564    Results.push_back(Tmp1);
3565    break;
3566  }
3567  case ISD::VECTOR_SHUFFLE: {
3568    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
3569
3570    // Cast the two input vectors.
3571    Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0));
3572    Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1));
3573
3574    // Convert the shuffle mask to the right # elements.
3575    Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
3576    Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1);
3577    Results.push_back(Tmp1);
3578    break;
3579  }
3580  case ISD::SETCC: {
3581    unsigned ExtOp = ISD::FP_EXTEND;
3582    if (NVT.isInteger()) {
3583      ISD::CondCode CCCode =
3584        cast<CondCodeSDNode>(Node->getOperand(2))->get();
3585      ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3586    }
3587    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3588    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3589    Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3590                                  Tmp1, Tmp2, Node->getOperand(2)));
3591    break;
3592  }
3593  case ISD::FPOW: {
3594    Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
3595    Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
3596    Tmp3 = DAG.getNode(ISD::FPOW, dl, NVT, Tmp1, Tmp2);
3597    Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
3598                                  Tmp3, DAG.getIntPtrConstant(0)));
3599    break;
3600  }
3601  case ISD::FLOG2:
3602  case ISD::FEXP2:
3603  case ISD::FLOG:
3604  case ISD::FEXP: {
3605    Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
3606    Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
3607    Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
3608                                  Tmp2, DAG.getIntPtrConstant(0)));
3609    break;
3610  }
3611  }
3612
3613  // Replace the original node with the legalized result.
3614  if (!Results.empty())
3615    ReplaceNode(Node, Results.data());
3616}
3617
3618// SelectionDAG::Legalize - This is the entry point for the file.
3619//
3620void SelectionDAG::Legalize() {
3621  /// run - This is the main entry point to this class.
3622  ///
3623  SelectionDAGLegalize(*this).LegalizeDAG();
3624}
3625