TwoAddressInstructionPass.cpp revision 15993f83a419950f06d2879d6701530ae6449317
1//===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the TwoAddress instruction pass which is used
11// by most register allocators. Two-Address instructions are rewritten
12// from:
13//
14//     A = B op C
15//
16// to:
17//
18//     A = B
19//     A op= C
20//
21// Note that if a register allocator chooses to use this pass, that it
22// has to be capable of handling the non-SSA nature of these rewritten
23// virtual registers.
24//
25// It is also worth noting that the duplicate operand of the two
26// address instruction is removed.
27//
28//===----------------------------------------------------------------------===//
29
30#define DEBUG_TYPE "twoaddrinstr"
31#include "llvm/CodeGen/Passes.h"
32#include "llvm/Function.h"
33#include "llvm/CodeGen/LiveVariables.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineInstr.h"
36#include "llvm/CodeGen/MachineInstrBuilder.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/Analysis/AliasAnalysis.h"
39#include "llvm/Target/TargetRegisterInfo.h"
40#include "llvm/Target/TargetInstrInfo.h"
41#include "llvm/Target/TargetMachine.h"
42#include "llvm/Target/TargetOptions.h"
43#include "llvm/Support/Debug.h"
44#include "llvm/Support/ErrorHandling.h"
45#include "llvm/ADT/BitVector.h"
46#include "llvm/ADT/DenseMap.h"
47#include "llvm/ADT/SmallSet.h"
48#include "llvm/ADT/Statistic.h"
49#include "llvm/ADT/STLExtras.h"
50using namespace llvm;
51
52STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
53STATISTIC(NumCommuted        , "Number of instructions commuted to coalesce");
54STATISTIC(NumAggrCommuted    , "Number of instructions aggressively commuted");
55STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
56STATISTIC(Num3AddrSunk,        "Number of 3-address instructions sunk");
57STATISTIC(NumReMats,           "Number of instructions re-materialized");
58STATISTIC(NumDeletes,          "Number of dead instructions deleted");
59
60namespace {
61  class TwoAddressInstructionPass : public MachineFunctionPass {
62    const TargetInstrInfo *TII;
63    const TargetRegisterInfo *TRI;
64    MachineRegisterInfo *MRI;
65    LiveVariables *LV;
66    AliasAnalysis *AA;
67
68    // DistanceMap - Keep track the distance of a MI from the start of the
69    // current basic block.
70    DenseMap<MachineInstr*, unsigned> DistanceMap;
71
72    // SrcRegMap - A map from virtual registers to physical registers which
73    // are likely targets to be coalesced to due to copies from physical
74    // registers to virtual registers. e.g. v1024 = move r0.
75    DenseMap<unsigned, unsigned> SrcRegMap;
76
77    // DstRegMap - A map from virtual registers to physical registers which
78    // are likely targets to be coalesced to due to copies to physical
79    // registers from virtual registers. e.g. r1 = move v1024.
80    DenseMap<unsigned, unsigned> DstRegMap;
81
82    /// RegSequences - Keep track the list of REG_SEQUENCE instructions seen
83    /// during the initial walk of the machine function.
84    SmallVector<MachineInstr*, 16> RegSequences;
85
86    bool Sink3AddrInstruction(MachineBasicBlock *MBB, MachineInstr *MI,
87                              unsigned Reg,
88                              MachineBasicBlock::iterator OldPos);
89
90    bool isProfitableToReMat(unsigned Reg, const TargetRegisterClass *RC,
91                             MachineInstr *MI, MachineInstr *DefMI,
92                             MachineBasicBlock *MBB, unsigned Loc);
93
94    bool NoUseAfterLastDef(unsigned Reg, MachineBasicBlock *MBB, unsigned Dist,
95                           unsigned &LastDef);
96
97    MachineInstr *FindLastUseInMBB(unsigned Reg, MachineBasicBlock *MBB,
98                                   unsigned Dist);
99
100    bool isProfitableToCommute(unsigned regB, unsigned regC,
101                               MachineInstr *MI, MachineBasicBlock *MBB,
102                               unsigned Dist);
103
104    bool CommuteInstruction(MachineBasicBlock::iterator &mi,
105                            MachineFunction::iterator &mbbi,
106                            unsigned RegB, unsigned RegC, unsigned Dist);
107
108    bool isProfitableToConv3Addr(unsigned RegA, unsigned RegB);
109
110    bool ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
111                            MachineBasicBlock::iterator &nmi,
112                            MachineFunction::iterator &mbbi,
113                            unsigned RegA, unsigned RegB, unsigned Dist);
114
115    typedef std::pair<std::pair<unsigned, bool>, MachineInstr*> NewKill;
116    bool canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills,
117                               SmallVector<NewKill, 4> &NewKills,
118                               MachineBasicBlock *MBB, unsigned Dist);
119    bool DeleteUnusedInstr(MachineBasicBlock::iterator &mi,
120                           MachineBasicBlock::iterator &nmi,
121                           MachineFunction::iterator &mbbi, unsigned Dist);
122
123    bool TryInstructionTransform(MachineBasicBlock::iterator &mi,
124                                 MachineBasicBlock::iterator &nmi,
125                                 MachineFunction::iterator &mbbi,
126                                 unsigned SrcIdx, unsigned DstIdx,
127                                 unsigned Dist,
128                                 SmallPtrSet<MachineInstr*, 8> &Processed);
129
130    void ScanUses(unsigned DstReg, MachineBasicBlock *MBB,
131                  SmallPtrSet<MachineInstr*, 8> &Processed);
132
133    void ProcessCopy(MachineInstr *MI, MachineBasicBlock *MBB,
134                     SmallPtrSet<MachineInstr*, 8> &Processed);
135
136    void CoalesceExtSubRegs(SmallVector<unsigned,4> &Srcs, unsigned DstReg);
137
138    /// EliminateRegSequences - Eliminate REG_SEQUENCE instructions as part
139    /// of the de-ssa process. This replaces sources of REG_SEQUENCE as
140    /// sub-register references of the register defined by REG_SEQUENCE.
141    bool EliminateRegSequences();
142
143  public:
144    static char ID; // Pass identification, replacement for typeid
145    TwoAddressInstructionPass() : MachineFunctionPass(ID) {
146      initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry());
147    }
148
149    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
150      AU.setPreservesCFG();
151      AU.addRequired<AliasAnalysis>();
152      AU.addPreserved<LiveVariables>();
153      AU.addPreservedID(MachineLoopInfoID);
154      AU.addPreservedID(MachineDominatorsID);
155      AU.addPreservedID(PHIEliminationID);
156      MachineFunctionPass::getAnalysisUsage(AU);
157    }
158
159    /// runOnMachineFunction - Pass entry point.
160    bool runOnMachineFunction(MachineFunction&);
161  };
162}
163
164char TwoAddressInstructionPass::ID = 0;
165INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, "twoaddressinstruction",
166                "Two-Address instruction pass", false, false)
167INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
168INITIALIZE_PASS_END(TwoAddressInstructionPass, "twoaddressinstruction",
169                "Two-Address instruction pass", false, false)
170
171char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID;
172
173/// Sink3AddrInstruction - A two-address instruction has been converted to a
174/// three-address instruction to avoid clobbering a register. Try to sink it
175/// past the instruction that would kill the above mentioned register to reduce
176/// register pressure.
177bool TwoAddressInstructionPass::Sink3AddrInstruction(MachineBasicBlock *MBB,
178                                           MachineInstr *MI, unsigned SavedReg,
179                                           MachineBasicBlock::iterator OldPos) {
180  // Check if it's safe to move this instruction.
181  bool SeenStore = true; // Be conservative.
182  if (!MI->isSafeToMove(TII, AA, SeenStore))
183    return false;
184
185  unsigned DefReg = 0;
186  SmallSet<unsigned, 4> UseRegs;
187
188  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
189    const MachineOperand &MO = MI->getOperand(i);
190    if (!MO.isReg())
191      continue;
192    unsigned MOReg = MO.getReg();
193    if (!MOReg)
194      continue;
195    if (MO.isUse() && MOReg != SavedReg)
196      UseRegs.insert(MO.getReg());
197    if (!MO.isDef())
198      continue;
199    if (MO.isImplicit())
200      // Don't try to move it if it implicitly defines a register.
201      return false;
202    if (DefReg)
203      // For now, don't move any instructions that define multiple registers.
204      return false;
205    DefReg = MO.getReg();
206  }
207
208  // Find the instruction that kills SavedReg.
209  MachineInstr *KillMI = NULL;
210  for (MachineRegisterInfo::use_nodbg_iterator
211         UI = MRI->use_nodbg_begin(SavedReg),
212         UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
213    MachineOperand &UseMO = UI.getOperand();
214    if (!UseMO.isKill())
215      continue;
216    KillMI = UseMO.getParent();
217    break;
218  }
219
220  if (!KillMI || KillMI->getParent() != MBB || KillMI == MI)
221    return false;
222
223  // If any of the definitions are used by another instruction between the
224  // position and the kill use, then it's not safe to sink it.
225  //
226  // FIXME: This can be sped up if there is an easy way to query whether an
227  // instruction is before or after another instruction. Then we can use
228  // MachineRegisterInfo def / use instead.
229  MachineOperand *KillMO = NULL;
230  MachineBasicBlock::iterator KillPos = KillMI;
231  ++KillPos;
232
233  unsigned NumVisited = 0;
234  for (MachineBasicBlock::iterator I = llvm::next(OldPos); I != KillPos; ++I) {
235    MachineInstr *OtherMI = I;
236    // DBG_VALUE cannot be counted against the limit.
237    if (OtherMI->isDebugValue())
238      continue;
239    if (NumVisited > 30)  // FIXME: Arbitrary limit to reduce compile time cost.
240      return false;
241    ++NumVisited;
242    for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
243      MachineOperand &MO = OtherMI->getOperand(i);
244      if (!MO.isReg())
245        continue;
246      unsigned MOReg = MO.getReg();
247      if (!MOReg)
248        continue;
249      if (DefReg == MOReg)
250        return false;
251
252      if (MO.isKill()) {
253        if (OtherMI == KillMI && MOReg == SavedReg)
254          // Save the operand that kills the register. We want to unset the kill
255          // marker if we can sink MI past it.
256          KillMO = &MO;
257        else if (UseRegs.count(MOReg))
258          // One of the uses is killed before the destination.
259          return false;
260      }
261    }
262  }
263
264  // Update kill and LV information.
265  KillMO->setIsKill(false);
266  KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
267  KillMO->setIsKill(true);
268
269  if (LV)
270    LV->replaceKillInstruction(SavedReg, KillMI, MI);
271
272  // Move instruction to its destination.
273  MBB->remove(MI);
274  MBB->insert(KillPos, MI);
275
276  ++Num3AddrSunk;
277  return true;
278}
279
280/// isTwoAddrUse - Return true if the specified MI is using the specified
281/// register as a two-address operand.
282static bool isTwoAddrUse(MachineInstr *UseMI, unsigned Reg) {
283  const TargetInstrDesc &TID = UseMI->getDesc();
284  for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) {
285    MachineOperand &MO = UseMI->getOperand(i);
286    if (MO.isReg() && MO.getReg() == Reg &&
287        (MO.isDef() || UseMI->isRegTiedToDefOperand(i)))
288      // Earlier use is a two-address one.
289      return true;
290  }
291  return false;
292}
293
294/// isProfitableToReMat - Return true if the heuristics determines it is likely
295/// to be profitable to re-materialize the definition of Reg rather than copy
296/// the register.
297bool
298TwoAddressInstructionPass::isProfitableToReMat(unsigned Reg,
299                                         const TargetRegisterClass *RC,
300                                         MachineInstr *MI, MachineInstr *DefMI,
301                                         MachineBasicBlock *MBB, unsigned Loc) {
302  bool OtherUse = false;
303  for (MachineRegisterInfo::use_nodbg_iterator UI = MRI->use_nodbg_begin(Reg),
304         UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
305    MachineOperand &UseMO = UI.getOperand();
306    MachineInstr *UseMI = UseMO.getParent();
307    MachineBasicBlock *UseMBB = UseMI->getParent();
308    if (UseMBB == MBB) {
309      DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
310      if (DI != DistanceMap.end() && DI->second == Loc)
311        continue;  // Current use.
312      OtherUse = true;
313      // There is at least one other use in the MBB that will clobber the
314      // register.
315      if (isTwoAddrUse(UseMI, Reg))
316        return true;
317    }
318  }
319
320  // If other uses in MBB are not two-address uses, then don't remat.
321  if (OtherUse)
322    return false;
323
324  // No other uses in the same block, remat if it's defined in the same
325  // block so it does not unnecessarily extend the live range.
326  return MBB == DefMI->getParent();
327}
328
329/// NoUseAfterLastDef - Return true if there are no intervening uses between the
330/// last instruction in the MBB that defines the specified register and the
331/// two-address instruction which is being processed. It also returns the last
332/// def location by reference
333bool TwoAddressInstructionPass::NoUseAfterLastDef(unsigned Reg,
334                                           MachineBasicBlock *MBB, unsigned Dist,
335                                           unsigned &LastDef) {
336  LastDef = 0;
337  unsigned LastUse = Dist;
338  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
339         E = MRI->reg_end(); I != E; ++I) {
340    MachineOperand &MO = I.getOperand();
341    MachineInstr *MI = MO.getParent();
342    if (MI->getParent() != MBB || MI->isDebugValue())
343      continue;
344    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
345    if (DI == DistanceMap.end())
346      continue;
347    if (MO.isUse() && DI->second < LastUse)
348      LastUse = DI->second;
349    if (MO.isDef() && DI->second > LastDef)
350      LastDef = DI->second;
351  }
352
353  return !(LastUse > LastDef && LastUse < Dist);
354}
355
356MachineInstr *TwoAddressInstructionPass::FindLastUseInMBB(unsigned Reg,
357                                                         MachineBasicBlock *MBB,
358                                                         unsigned Dist) {
359  unsigned LastUseDist = 0;
360  MachineInstr *LastUse = 0;
361  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
362         E = MRI->reg_end(); I != E; ++I) {
363    MachineOperand &MO = I.getOperand();
364    MachineInstr *MI = MO.getParent();
365    if (MI->getParent() != MBB || MI->isDebugValue())
366      continue;
367    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
368    if (DI == DistanceMap.end())
369      continue;
370    if (DI->second >= Dist)
371      continue;
372
373    if (MO.isUse() && DI->second > LastUseDist) {
374      LastUse = DI->first;
375      LastUseDist = DI->second;
376    }
377  }
378  return LastUse;
379}
380
381/// isCopyToReg - Return true if the specified MI is a copy instruction or
382/// a extract_subreg instruction. It also returns the source and destination
383/// registers and whether they are physical registers by reference.
384static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII,
385                        unsigned &SrcReg, unsigned &DstReg,
386                        bool &IsSrcPhys, bool &IsDstPhys) {
387  SrcReg = 0;
388  DstReg = 0;
389  if (MI.isCopy()) {
390    DstReg = MI.getOperand(0).getReg();
391    SrcReg = MI.getOperand(1).getReg();
392  } else if (MI.isInsertSubreg() || MI.isSubregToReg()) {
393    DstReg = MI.getOperand(0).getReg();
394    SrcReg = MI.getOperand(2).getReg();
395  } else
396    return false;
397
398  IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
399  IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
400  return true;
401}
402
403/// isKilled - Test if the given register value, which is used by the given
404/// instruction, is killed by the given instruction. This looks through
405/// coalescable copies to see if the original value is potentially not killed.
406///
407/// For example, in this code:
408///
409///   %reg1034 = copy %reg1024
410///   %reg1035 = copy %reg1025<kill>
411///   %reg1036 = add %reg1034<kill>, %reg1035<kill>
412///
413/// %reg1034 is not considered to be killed, since it is copied from a
414/// register which is not killed. Treating it as not killed lets the
415/// normal heuristics commute the (two-address) add, which lets
416/// coalescing eliminate the extra copy.
417///
418static bool isKilled(MachineInstr &MI, unsigned Reg,
419                     const MachineRegisterInfo *MRI,
420                     const TargetInstrInfo *TII) {
421  MachineInstr *DefMI = &MI;
422  for (;;) {
423    if (!DefMI->killsRegister(Reg))
424      return false;
425    if (TargetRegisterInfo::isPhysicalRegister(Reg))
426      return true;
427    MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg);
428    // If there are multiple defs, we can't do a simple analysis, so just
429    // go with what the kill flag says.
430    if (llvm::next(Begin) != MRI->def_end())
431      return true;
432    DefMI = &*Begin;
433    bool IsSrcPhys, IsDstPhys;
434    unsigned SrcReg,  DstReg;
435    // If the def is something other than a copy, then it isn't going to
436    // be coalesced, so follow the kill flag.
437    if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
438      return true;
439    Reg = SrcReg;
440  }
441}
442
443/// isTwoAddrUse - Return true if the specified MI uses the specified register
444/// as a two-address use. If so, return the destination register by reference.
445static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) {
446  const TargetInstrDesc &TID = MI.getDesc();
447  unsigned NumOps = MI.isInlineAsm() ? MI.getNumOperands():TID.getNumOperands();
448  for (unsigned i = 0; i != NumOps; ++i) {
449    const MachineOperand &MO = MI.getOperand(i);
450    if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
451      continue;
452    unsigned ti;
453    if (MI.isRegTiedToDefOperand(i, &ti)) {
454      DstReg = MI.getOperand(ti).getReg();
455      return true;
456    }
457  }
458  return false;
459}
460
461/// findOnlyInterestingUse - Given a register, if has a single in-basic block
462/// use, return the use instruction if it's a copy or a two-address use.
463static
464MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB,
465                                     MachineRegisterInfo *MRI,
466                                     const TargetInstrInfo *TII,
467                                     bool &IsCopy,
468                                     unsigned &DstReg, bool &IsDstPhys) {
469  if (!MRI->hasOneNonDBGUse(Reg))
470    // None or more than one use.
471    return 0;
472  MachineInstr &UseMI = *MRI->use_nodbg_begin(Reg);
473  if (UseMI.getParent() != MBB)
474    return 0;
475  unsigned SrcReg;
476  bool IsSrcPhys;
477  if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
478    IsCopy = true;
479    return &UseMI;
480  }
481  IsDstPhys = false;
482  if (isTwoAddrUse(UseMI, Reg, DstReg)) {
483    IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
484    return &UseMI;
485  }
486  return 0;
487}
488
489/// getMappedReg - Return the physical register the specified virtual register
490/// might be mapped to.
491static unsigned
492getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) {
493  while (TargetRegisterInfo::isVirtualRegister(Reg))  {
494    DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg);
495    if (SI == RegMap.end())
496      return 0;
497    Reg = SI->second;
498  }
499  if (TargetRegisterInfo::isPhysicalRegister(Reg))
500    return Reg;
501  return 0;
502}
503
504/// regsAreCompatible - Return true if the two registers are equal or aliased.
505///
506static bool
507regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) {
508  if (RegA == RegB)
509    return true;
510  if (!RegA || !RegB)
511    return false;
512  return TRI->regsOverlap(RegA, RegB);
513}
514
515
516/// isProfitableToReMat - Return true if it's potentially profitable to commute
517/// the two-address instruction that's being processed.
518bool
519TwoAddressInstructionPass::isProfitableToCommute(unsigned regB, unsigned regC,
520                                       MachineInstr *MI, MachineBasicBlock *MBB,
521                                       unsigned Dist) {
522  // Determine if it's profitable to commute this two address instruction. In
523  // general, we want no uses between this instruction and the definition of
524  // the two-address register.
525  // e.g.
526  // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
527  // %reg1029<def> = MOV8rr %reg1028
528  // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
529  // insert => %reg1030<def> = MOV8rr %reg1028
530  // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
531  // In this case, it might not be possible to coalesce the second MOV8rr
532  // instruction if the first one is coalesced. So it would be profitable to
533  // commute it:
534  // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
535  // %reg1029<def> = MOV8rr %reg1028
536  // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
537  // insert => %reg1030<def> = MOV8rr %reg1029
538  // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead>
539
540  if (!MI->killsRegister(regC))
541    return false;
542
543  // Ok, we have something like:
544  // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
545  // let's see if it's worth commuting it.
546
547  // Look for situations like this:
548  // %reg1024<def> = MOV r1
549  // %reg1025<def> = MOV r0
550  // %reg1026<def> = ADD %reg1024, %reg1025
551  // r0            = MOV %reg1026
552  // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
553  unsigned FromRegB = getMappedReg(regB, SrcRegMap);
554  unsigned FromRegC = getMappedReg(regC, SrcRegMap);
555  unsigned ToRegB = getMappedReg(regB, DstRegMap);
556  unsigned ToRegC = getMappedReg(regC, DstRegMap);
557  if ((FromRegB && ToRegB && !regsAreCompatible(FromRegB, ToRegB, TRI)) &&
558      ((!FromRegC && !ToRegC) ||
559       regsAreCompatible(FromRegB, ToRegC, TRI) ||
560       regsAreCompatible(FromRegC, ToRegB, TRI)))
561    return true;
562
563  // If there is a use of regC between its last def (could be livein) and this
564  // instruction, then bail.
565  unsigned LastDefC = 0;
566  if (!NoUseAfterLastDef(regC, MBB, Dist, LastDefC))
567    return false;
568
569  // If there is a use of regB between its last def (could be livein) and this
570  // instruction, then go ahead and make this transformation.
571  unsigned LastDefB = 0;
572  if (!NoUseAfterLastDef(regB, MBB, Dist, LastDefB))
573    return true;
574
575  // Since there are no intervening uses for both registers, then commute
576  // if the def of regC is closer. Its live interval is shorter.
577  return LastDefB && LastDefC && LastDefC > LastDefB;
578}
579
580/// CommuteInstruction - Commute a two-address instruction and update the basic
581/// block, distance map, and live variables if needed. Return true if it is
582/// successful.
583bool
584TwoAddressInstructionPass::CommuteInstruction(MachineBasicBlock::iterator &mi,
585                               MachineFunction::iterator &mbbi,
586                               unsigned RegB, unsigned RegC, unsigned Dist) {
587  MachineInstr *MI = mi;
588  DEBUG(dbgs() << "2addr: COMMUTING  : " << *MI);
589  MachineInstr *NewMI = TII->commuteInstruction(MI);
590
591  if (NewMI == 0) {
592    DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n");
593    return false;
594  }
595
596  DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI);
597  // If the instruction changed to commute it, update livevar.
598  if (NewMI != MI) {
599    if (LV)
600      // Update live variables
601      LV->replaceKillInstruction(RegC, MI, NewMI);
602
603    mbbi->insert(mi, NewMI);           // Insert the new inst
604    mbbi->erase(mi);                   // Nuke the old inst.
605    mi = NewMI;
606    DistanceMap.insert(std::make_pair(NewMI, Dist));
607  }
608
609  // Update source register map.
610  unsigned FromRegC = getMappedReg(RegC, SrcRegMap);
611  if (FromRegC) {
612    unsigned RegA = MI->getOperand(0).getReg();
613    SrcRegMap[RegA] = FromRegC;
614  }
615
616  return true;
617}
618
619/// isProfitableToConv3Addr - Return true if it is profitable to convert the
620/// given 2-address instruction to a 3-address one.
621bool
622TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA,unsigned RegB){
623  // Look for situations like this:
624  // %reg1024<def> = MOV r1
625  // %reg1025<def> = MOV r0
626  // %reg1026<def> = ADD %reg1024, %reg1025
627  // r2            = MOV %reg1026
628  // Turn ADD into a 3-address instruction to avoid a copy.
629  unsigned FromRegB = getMappedReg(RegB, SrcRegMap);
630  if (!FromRegB)
631    return false;
632  unsigned ToRegA = getMappedReg(RegA, DstRegMap);
633  return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI));
634}
635
636/// ConvertInstTo3Addr - Convert the specified two-address instruction into a
637/// three address one. Return true if this transformation was successful.
638bool
639TwoAddressInstructionPass::ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
640                                              MachineBasicBlock::iterator &nmi,
641                                              MachineFunction::iterator &mbbi,
642                                              unsigned RegA, unsigned RegB,
643                                              unsigned Dist) {
644  MachineInstr *NewMI = TII->convertToThreeAddress(mbbi, mi, LV);
645  if (NewMI) {
646    DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi);
647    DEBUG(dbgs() << "2addr:         TO 3-ADDR: " << *NewMI);
648    bool Sunk = false;
649
650    if (NewMI->findRegisterUseOperand(RegB, false, TRI))
651      // FIXME: Temporary workaround. If the new instruction doesn't
652      // uses RegB, convertToThreeAddress must have created more
653      // then one instruction.
654      Sunk = Sink3AddrInstruction(mbbi, NewMI, RegB, mi);
655
656    mbbi->erase(mi); // Nuke the old inst.
657
658    if (!Sunk) {
659      DistanceMap.insert(std::make_pair(NewMI, Dist));
660      mi = NewMI;
661      nmi = llvm::next(mi);
662    }
663
664    // Update source and destination register maps.
665    SrcRegMap.erase(RegA);
666    DstRegMap.erase(RegB);
667    return true;
668  }
669
670  return false;
671}
672
673/// ScanUses - Scan forward recursively for only uses, update maps if the use
674/// is a copy or a two-address instruction.
675void
676TwoAddressInstructionPass::ScanUses(unsigned DstReg, MachineBasicBlock *MBB,
677                                    SmallPtrSet<MachineInstr*, 8> &Processed) {
678  SmallVector<unsigned, 4> VirtRegPairs;
679  bool IsDstPhys;
680  bool IsCopy = false;
681  unsigned NewReg = 0;
682  unsigned Reg = DstReg;
683  while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy,
684                                                      NewReg, IsDstPhys)) {
685    if (IsCopy && !Processed.insert(UseMI))
686      break;
687
688    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
689    if (DI != DistanceMap.end())
690      // Earlier in the same MBB.Reached via a back edge.
691      break;
692
693    if (IsDstPhys) {
694      VirtRegPairs.push_back(NewReg);
695      break;
696    }
697    bool isNew = SrcRegMap.insert(std::make_pair(NewReg, Reg)).second;
698    if (!isNew)
699      assert(SrcRegMap[NewReg] == Reg && "Can't map to two src registers!");
700    VirtRegPairs.push_back(NewReg);
701    Reg = NewReg;
702  }
703
704  if (!VirtRegPairs.empty()) {
705    unsigned ToReg = VirtRegPairs.back();
706    VirtRegPairs.pop_back();
707    while (!VirtRegPairs.empty()) {
708      unsigned FromReg = VirtRegPairs.back();
709      VirtRegPairs.pop_back();
710      bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
711      if (!isNew)
712        assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!");
713      ToReg = FromReg;
714    }
715    bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second;
716    if (!isNew)
717      assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!");
718  }
719}
720
721/// ProcessCopy - If the specified instruction is not yet processed, process it
722/// if it's a copy. For a copy instruction, we find the physical registers the
723/// source and destination registers might be mapped to. These are kept in
724/// point-to maps used to determine future optimizations. e.g.
725/// v1024 = mov r0
726/// v1025 = mov r1
727/// v1026 = add v1024, v1025
728/// r1    = mov r1026
729/// If 'add' is a two-address instruction, v1024, v1026 are both potentially
730/// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
731/// potentially joined with r1 on the output side. It's worthwhile to commute
732/// 'add' to eliminate a copy.
733void TwoAddressInstructionPass::ProcessCopy(MachineInstr *MI,
734                                     MachineBasicBlock *MBB,
735                                     SmallPtrSet<MachineInstr*, 8> &Processed) {
736  if (Processed.count(MI))
737    return;
738
739  bool IsSrcPhys, IsDstPhys;
740  unsigned SrcReg, DstReg;
741  if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
742    return;
743
744  if (IsDstPhys && !IsSrcPhys)
745    DstRegMap.insert(std::make_pair(SrcReg, DstReg));
746  else if (!IsDstPhys && IsSrcPhys) {
747    bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
748    if (!isNew)
749      assert(SrcRegMap[DstReg] == SrcReg &&
750             "Can't map to two src physical registers!");
751
752    ScanUses(DstReg, MBB, Processed);
753  }
754
755  Processed.insert(MI);
756  return;
757}
758
759/// isSafeToDelete - If the specified instruction does not produce any side
760/// effects and all of its defs are dead, then it's safe to delete.
761static bool isSafeToDelete(MachineInstr *MI,
762                           const TargetInstrInfo *TII,
763                           SmallVector<unsigned, 4> &Kills) {
764  const TargetInstrDesc &TID = MI->getDesc();
765  if (TID.mayStore() || TID.isCall())
766    return false;
767  if (TID.isTerminator() || MI->hasUnmodeledSideEffects())
768    return false;
769
770  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
771    MachineOperand &MO = MI->getOperand(i);
772    if (!MO.isReg())
773      continue;
774    if (MO.isDef() && !MO.isDead())
775      return false;
776    if (MO.isUse() && MO.isKill())
777      Kills.push_back(MO.getReg());
778  }
779  return true;
780}
781
782/// canUpdateDeletedKills - Check if all the registers listed in Kills are
783/// killed by instructions in MBB preceding the current instruction at
784/// position Dist.  If so, return true and record information about the
785/// preceding kills in NewKills.
786bool TwoAddressInstructionPass::
787canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills,
788                      SmallVector<NewKill, 4> &NewKills,
789                      MachineBasicBlock *MBB, unsigned Dist) {
790  while (!Kills.empty()) {
791    unsigned Kill = Kills.back();
792    Kills.pop_back();
793    if (TargetRegisterInfo::isPhysicalRegister(Kill))
794      return false;
795
796    MachineInstr *LastKill = FindLastUseInMBB(Kill, MBB, Dist);
797    if (!LastKill)
798      return false;
799
800    bool isModRef = LastKill->definesRegister(Kill);
801    NewKills.push_back(std::make_pair(std::make_pair(Kill, isModRef),
802                                      LastKill));
803  }
804  return true;
805}
806
807/// DeleteUnusedInstr - If an instruction with a tied register operand can
808/// be safely deleted, just delete it.
809bool
810TwoAddressInstructionPass::DeleteUnusedInstr(MachineBasicBlock::iterator &mi,
811                                             MachineBasicBlock::iterator &nmi,
812                                             MachineFunction::iterator &mbbi,
813                                             unsigned Dist) {
814  // Check if the instruction has no side effects and if all its defs are dead.
815  SmallVector<unsigned, 4> Kills;
816  if (!isSafeToDelete(mi, TII, Kills))
817    return false;
818
819  // If this instruction kills some virtual registers, we need to
820  // update the kill information. If it's not possible to do so,
821  // then bail out.
822  SmallVector<NewKill, 4> NewKills;
823  if (!canUpdateDeletedKills(Kills, NewKills, &*mbbi, Dist))
824    return false;
825
826  if (LV) {
827    while (!NewKills.empty()) {
828      MachineInstr *NewKill = NewKills.back().second;
829      unsigned Kill = NewKills.back().first.first;
830      bool isDead = NewKills.back().first.second;
831      NewKills.pop_back();
832      if (LV->removeVirtualRegisterKilled(Kill, mi)) {
833        if (isDead)
834          LV->addVirtualRegisterDead(Kill, NewKill);
835        else
836          LV->addVirtualRegisterKilled(Kill, NewKill);
837      }
838    }
839  }
840
841  mbbi->erase(mi); // Nuke the old inst.
842  mi = nmi;
843  return true;
844}
845
846/// TryInstructionTransform - For the case where an instruction has a single
847/// pair of tied register operands, attempt some transformations that may
848/// either eliminate the tied operands or improve the opportunities for
849/// coalescing away the register copy.  Returns true if the tied operands
850/// are eliminated altogether.
851bool TwoAddressInstructionPass::
852TryInstructionTransform(MachineBasicBlock::iterator &mi,
853                        MachineBasicBlock::iterator &nmi,
854                        MachineFunction::iterator &mbbi,
855                        unsigned SrcIdx, unsigned DstIdx, unsigned Dist,
856                        SmallPtrSet<MachineInstr*, 8> &Processed) {
857  const TargetInstrDesc &TID = mi->getDesc();
858  unsigned regA = mi->getOperand(DstIdx).getReg();
859  unsigned regB = mi->getOperand(SrcIdx).getReg();
860
861  assert(TargetRegisterInfo::isVirtualRegister(regB) &&
862         "cannot make instruction into two-address form");
863
864  // If regA is dead and the instruction can be deleted, just delete
865  // it so it doesn't clobber regB.
866  bool regBKilled = isKilled(*mi, regB, MRI, TII);
867  if (!regBKilled && mi->getOperand(DstIdx).isDead() &&
868      DeleteUnusedInstr(mi, nmi, mbbi, Dist)) {
869    ++NumDeletes;
870    return true; // Done with this instruction.
871  }
872
873  // Check if it is profitable to commute the operands.
874  unsigned SrcOp1, SrcOp2;
875  unsigned regC = 0;
876  unsigned regCIdx = ~0U;
877  bool TryCommute = false;
878  bool AggressiveCommute = false;
879  if (TID.isCommutable() && mi->getNumOperands() >= 3 &&
880      TII->findCommutedOpIndices(mi, SrcOp1, SrcOp2)) {
881    if (SrcIdx == SrcOp1)
882      regCIdx = SrcOp2;
883    else if (SrcIdx == SrcOp2)
884      regCIdx = SrcOp1;
885
886    if (regCIdx != ~0U) {
887      regC = mi->getOperand(regCIdx).getReg();
888      if (!regBKilled && isKilled(*mi, regC, MRI, TII))
889        // If C dies but B does not, swap the B and C operands.
890        // This makes the live ranges of A and C joinable.
891        TryCommute = true;
892      else if (isProfitableToCommute(regB, regC, mi, mbbi, Dist)) {
893        TryCommute = true;
894        AggressiveCommute = true;
895      }
896    }
897  }
898
899  // If it's profitable to commute, try to do so.
900  if (TryCommute && CommuteInstruction(mi, mbbi, regB, regC, Dist)) {
901    ++NumCommuted;
902    if (AggressiveCommute)
903      ++NumAggrCommuted;
904    return false;
905  }
906
907  if (TargetRegisterInfo::isVirtualRegister(regA))
908    ScanUses(regA, &*mbbi, Processed);
909
910  if (TID.isConvertibleTo3Addr()) {
911    // This instruction is potentially convertible to a true
912    // three-address instruction.  Check if it is profitable.
913    if (!regBKilled || isProfitableToConv3Addr(regA, regB)) {
914      // Try to convert it.
915      if (ConvertInstTo3Addr(mi, nmi, mbbi, regA, regB, Dist)) {
916        ++NumConvertedTo3Addr;
917        return true; // Done with this instruction.
918      }
919    }
920  }
921
922  // If this is an instruction with a load folded into it, try unfolding
923  // the load, e.g. avoid this:
924  //   movq %rdx, %rcx
925  //   addq (%rax), %rcx
926  // in favor of this:
927  //   movq (%rax), %rcx
928  //   addq %rdx, %rcx
929  // because it's preferable to schedule a load than a register copy.
930  if (TID.mayLoad() && !regBKilled) {
931    // Determine if a load can be unfolded.
932    unsigned LoadRegIndex;
933    unsigned NewOpc =
934      TII->getOpcodeAfterMemoryUnfold(mi->getOpcode(),
935                                      /*UnfoldLoad=*/true,
936                                      /*UnfoldStore=*/false,
937                                      &LoadRegIndex);
938    if (NewOpc != 0) {
939      const TargetInstrDesc &UnfoldTID = TII->get(NewOpc);
940      if (UnfoldTID.getNumDefs() == 1) {
941        MachineFunction &MF = *mbbi->getParent();
942
943        // Unfold the load.
944        DEBUG(dbgs() << "2addr:   UNFOLDING: " << *mi);
945        const TargetRegisterClass *RC =
946          TII->getRegClass(UnfoldTID, LoadRegIndex, TRI);
947        unsigned Reg = MRI->createVirtualRegister(RC);
948        SmallVector<MachineInstr *, 2> NewMIs;
949        if (!TII->unfoldMemoryOperand(MF, mi, Reg,
950                                      /*UnfoldLoad=*/true,/*UnfoldStore=*/false,
951                                      NewMIs)) {
952          DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
953          return false;
954        }
955        assert(NewMIs.size() == 2 &&
956               "Unfolded a load into multiple instructions!");
957        // The load was previously folded, so this is the only use.
958        NewMIs[1]->addRegisterKilled(Reg, TRI);
959
960        // Tentatively insert the instructions into the block so that they
961        // look "normal" to the transformation logic.
962        mbbi->insert(mi, NewMIs[0]);
963        mbbi->insert(mi, NewMIs[1]);
964
965        DEBUG(dbgs() << "2addr:    NEW LOAD: " << *NewMIs[0]
966                     << "2addr:    NEW INST: " << *NewMIs[1]);
967
968        // Transform the instruction, now that it no longer has a load.
969        unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA);
970        unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB);
971        MachineBasicBlock::iterator NewMI = NewMIs[1];
972        bool TransformSuccess =
973          TryInstructionTransform(NewMI, mi, mbbi,
974                                  NewSrcIdx, NewDstIdx, Dist, Processed);
975        if (TransformSuccess ||
976            NewMIs[1]->getOperand(NewSrcIdx).isKill()) {
977          // Success, or at least we made an improvement. Keep the unfolded
978          // instructions and discard the original.
979          if (LV) {
980            for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
981              MachineOperand &MO = mi->getOperand(i);
982              if (MO.isReg() &&
983                  TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
984                if (MO.isUse()) {
985                  if (MO.isKill()) {
986                    if (NewMIs[0]->killsRegister(MO.getReg()))
987                      LV->replaceKillInstruction(MO.getReg(), mi, NewMIs[0]);
988                    else {
989                      assert(NewMIs[1]->killsRegister(MO.getReg()) &&
990                             "Kill missing after load unfold!");
991                      LV->replaceKillInstruction(MO.getReg(), mi, NewMIs[1]);
992                    }
993                  }
994                } else if (LV->removeVirtualRegisterDead(MO.getReg(), mi)) {
995                  if (NewMIs[1]->registerDefIsDead(MO.getReg()))
996                    LV->addVirtualRegisterDead(MO.getReg(), NewMIs[1]);
997                  else {
998                    assert(NewMIs[0]->registerDefIsDead(MO.getReg()) &&
999                           "Dead flag missing after load unfold!");
1000                    LV->addVirtualRegisterDead(MO.getReg(), NewMIs[0]);
1001                  }
1002                }
1003              }
1004            }
1005            LV->addVirtualRegisterKilled(Reg, NewMIs[1]);
1006          }
1007          mi->eraseFromParent();
1008          mi = NewMIs[1];
1009          if (TransformSuccess)
1010            return true;
1011        } else {
1012          // Transforming didn't eliminate the tie and didn't lead to an
1013          // improvement. Clean up the unfolded instructions and keep the
1014          // original.
1015          DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1016          NewMIs[0]->eraseFromParent();
1017          NewMIs[1]->eraseFromParent();
1018        }
1019      }
1020    }
1021  }
1022
1023  return false;
1024}
1025
1026/// runOnMachineFunction - Reduce two-address instructions to two operands.
1027///
1028bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
1029  DEBUG(dbgs() << "Machine Function\n");
1030  const TargetMachine &TM = MF.getTarget();
1031  MRI = &MF.getRegInfo();
1032  TII = TM.getInstrInfo();
1033  TRI = TM.getRegisterInfo();
1034  LV = getAnalysisIfAvailable<LiveVariables>();
1035  AA = &getAnalysis<AliasAnalysis>();
1036
1037  bool MadeChange = false;
1038
1039  DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
1040  DEBUG(dbgs() << "********** Function: "
1041        << MF.getFunction()->getName() << '\n');
1042
1043  // ReMatRegs - Keep track of the registers whose def's are remat'ed.
1044  BitVector ReMatRegs(MRI->getNumVirtRegs());
1045
1046  typedef DenseMap<unsigned, SmallVector<std::pair<unsigned, unsigned>, 4> >
1047    TiedOperandMap;
1048  TiedOperandMap TiedOperands(4);
1049
1050  SmallPtrSet<MachineInstr*, 8> Processed;
1051  for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end();
1052       mbbi != mbbe; ++mbbi) {
1053    unsigned Dist = 0;
1054    DistanceMap.clear();
1055    SrcRegMap.clear();
1056    DstRegMap.clear();
1057    Processed.clear();
1058    for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end();
1059         mi != me; ) {
1060      MachineBasicBlock::iterator nmi = llvm::next(mi);
1061      if (mi->isDebugValue()) {
1062        mi = nmi;
1063        continue;
1064      }
1065
1066      // Remember REG_SEQUENCE instructions, we'll deal with them later.
1067      if (mi->isRegSequence())
1068        RegSequences.push_back(&*mi);
1069
1070      const TargetInstrDesc &TID = mi->getDesc();
1071      bool FirstTied = true;
1072
1073      DistanceMap.insert(std::make_pair(mi, ++Dist));
1074
1075      ProcessCopy(&*mi, &*mbbi, Processed);
1076
1077      // First scan through all the tied register uses in this instruction
1078      // and record a list of pairs of tied operands for each register.
1079      unsigned NumOps = mi->isInlineAsm()
1080        ? mi->getNumOperands() : TID.getNumOperands();
1081      for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) {
1082        unsigned DstIdx = 0;
1083        if (!mi->isRegTiedToDefOperand(SrcIdx, &DstIdx))
1084          continue;
1085
1086        if (FirstTied) {
1087          FirstTied = false;
1088          ++NumTwoAddressInstrs;
1089          DEBUG(dbgs() << '\t' << *mi);
1090        }
1091
1092        assert(mi->getOperand(SrcIdx).isReg() &&
1093               mi->getOperand(SrcIdx).getReg() &&
1094               mi->getOperand(SrcIdx).isUse() &&
1095               "two address instruction invalid");
1096
1097        unsigned regB = mi->getOperand(SrcIdx).getReg();
1098        TiedOperands[regB].push_back(std::make_pair(SrcIdx, DstIdx));
1099      }
1100
1101      // Now iterate over the information collected above.
1102      for (TiedOperandMap::iterator OI = TiedOperands.begin(),
1103             OE = TiedOperands.end(); OI != OE; ++OI) {
1104        SmallVector<std::pair<unsigned, unsigned>, 4> &TiedPairs = OI->second;
1105
1106        // If the instruction has a single pair of tied operands, try some
1107        // transformations that may either eliminate the tied operands or
1108        // improve the opportunities for coalescing away the register copy.
1109        if (TiedOperands.size() == 1 && TiedPairs.size() == 1) {
1110          unsigned SrcIdx = TiedPairs[0].first;
1111          unsigned DstIdx = TiedPairs[0].second;
1112
1113          // If the registers are already equal, nothing needs to be done.
1114          if (mi->getOperand(SrcIdx).getReg() ==
1115              mi->getOperand(DstIdx).getReg())
1116            break; // Done with this instruction.
1117
1118          if (TryInstructionTransform(mi, nmi, mbbi, SrcIdx, DstIdx, Dist,
1119                                      Processed))
1120            break; // The tied operands have been eliminated.
1121        }
1122
1123        bool IsEarlyClobber = false;
1124        bool RemovedKillFlag = false;
1125        bool AllUsesCopied = true;
1126        unsigned LastCopiedReg = 0;
1127        unsigned regB = OI->first;
1128        for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
1129          unsigned SrcIdx = TiedPairs[tpi].first;
1130          unsigned DstIdx = TiedPairs[tpi].second;
1131
1132          const MachineOperand &DstMO = mi->getOperand(DstIdx);
1133          unsigned regA = DstMO.getReg();
1134          IsEarlyClobber |= DstMO.isEarlyClobber();
1135
1136          // Grab regB from the instruction because it may have changed if the
1137          // instruction was commuted.
1138          regB = mi->getOperand(SrcIdx).getReg();
1139
1140          if (regA == regB) {
1141            // The register is tied to multiple destinations (or else we would
1142            // not have continued this far), but this use of the register
1143            // already matches the tied destination.  Leave it.
1144            AllUsesCopied = false;
1145            continue;
1146          }
1147          LastCopiedReg = regA;
1148
1149          assert(TargetRegisterInfo::isVirtualRegister(regB) &&
1150                 "cannot make instruction into two-address form");
1151
1152#ifndef NDEBUG
1153          // First, verify that we don't have a use of "a" in the instruction
1154          // (a = b + a for example) because our transformation will not
1155          // work. This should never occur because we are in SSA form.
1156          for (unsigned i = 0; i != mi->getNumOperands(); ++i)
1157            assert(i == DstIdx ||
1158                   !mi->getOperand(i).isReg() ||
1159                   mi->getOperand(i).getReg() != regA);
1160#endif
1161
1162          // Emit a copy or rematerialize the definition.
1163          const TargetRegisterClass *rc = MRI->getRegClass(regB);
1164          MachineInstr *DefMI = MRI->getVRegDef(regB);
1165          // If it's safe and profitable, remat the definition instead of
1166          // copying it.
1167          if (DefMI &&
1168              DefMI->getDesc().isAsCheapAsAMove() &&
1169              DefMI->isSafeToReMat(TII, AA, regB) &&
1170              isProfitableToReMat(regB, rc, mi, DefMI, mbbi, Dist)){
1171            DEBUG(dbgs() << "2addr: REMATTING : " << *DefMI << "\n");
1172            unsigned regASubIdx = mi->getOperand(DstIdx).getSubReg();
1173            TII->reMaterialize(*mbbi, mi, regA, regASubIdx, DefMI, *TRI);
1174            ReMatRegs.set(TargetRegisterInfo::virtReg2Index(regB));
1175            ++NumReMats;
1176          } else {
1177            BuildMI(*mbbi, mi, mi->getDebugLoc(), TII->get(TargetOpcode::COPY),
1178                    regA).addReg(regB);
1179          }
1180
1181          MachineBasicBlock::iterator prevMI = prior(mi);
1182          // Update DistanceMap.
1183          DistanceMap.insert(std::make_pair(prevMI, Dist));
1184          DistanceMap[mi] = ++Dist;
1185
1186          DEBUG(dbgs() << "\t\tprepend:\t" << *prevMI);
1187
1188          MachineOperand &MO = mi->getOperand(SrcIdx);
1189          assert(MO.isReg() && MO.getReg() == regB && MO.isUse() &&
1190                 "inconsistent operand info for 2-reg pass");
1191          if (MO.isKill()) {
1192            MO.setIsKill(false);
1193            RemovedKillFlag = true;
1194          }
1195          MO.setReg(regA);
1196        }
1197
1198        if (AllUsesCopied) {
1199          if (!IsEarlyClobber) {
1200            // Replace other (un-tied) uses of regB with LastCopiedReg.
1201            for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
1202              MachineOperand &MO = mi->getOperand(i);
1203              if (MO.isReg() && MO.getReg() == regB && MO.isUse()) {
1204                if (MO.isKill()) {
1205                  MO.setIsKill(false);
1206                  RemovedKillFlag = true;
1207                }
1208                MO.setReg(LastCopiedReg);
1209              }
1210            }
1211          }
1212
1213          // Update live variables for regB.
1214          if (RemovedKillFlag && LV && LV->getVarInfo(regB).removeKill(mi))
1215            LV->addVirtualRegisterKilled(regB, prior(mi));
1216
1217        } else if (RemovedKillFlag) {
1218          // Some tied uses of regB matched their destination registers, so
1219          // regB is still used in this instruction, but a kill flag was
1220          // removed from a different tied use of regB, so now we need to add
1221          // a kill flag to one of the remaining uses of regB.
1222          for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
1223            MachineOperand &MO = mi->getOperand(i);
1224            if (MO.isReg() && MO.getReg() == regB && MO.isUse()) {
1225              MO.setIsKill(true);
1226              break;
1227            }
1228          }
1229        }
1230
1231        // Schedule the source copy / remat inserted to form two-address
1232        // instruction. FIXME: Does it matter the distance map may not be
1233        // accurate after it's scheduled?
1234        TII->scheduleTwoAddrSource(prior(mi), mi, *TRI);
1235
1236        MadeChange = true;
1237
1238        DEBUG(dbgs() << "\t\trewrite to:\t" << *mi);
1239      }
1240
1241      // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form.
1242      if (mi->isInsertSubreg()) {
1243        // From %reg = INSERT_SUBREG %reg, %subreg, subidx
1244        // To   %reg:subidx = COPY %subreg
1245        unsigned SubIdx = mi->getOperand(3).getImm();
1246        mi->RemoveOperand(3);
1247        assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx");
1248        mi->getOperand(0).setSubReg(SubIdx);
1249        mi->RemoveOperand(1);
1250        mi->setDesc(TII->get(TargetOpcode::COPY));
1251        DEBUG(dbgs() << "\t\tconvert to:\t" << *mi);
1252      }
1253
1254      // Clear TiedOperands here instead of at the top of the loop
1255      // since most instructions do not have tied operands.
1256      TiedOperands.clear();
1257      mi = nmi;
1258    }
1259  }
1260
1261  // Some remat'ed instructions are dead.
1262  for (int i = ReMatRegs.find_first(); i != -1; i = ReMatRegs.find_next(i)) {
1263    unsigned VReg = TargetRegisterInfo::index2VirtReg(i);
1264    if (MRI->use_nodbg_empty(VReg)) {
1265      MachineInstr *DefMI = MRI->getVRegDef(VReg);
1266      DefMI->eraseFromParent();
1267    }
1268  }
1269
1270  // Eliminate REG_SEQUENCE instructions. Their whole purpose was to preseve
1271  // SSA form. It's now safe to de-SSA.
1272  MadeChange |= EliminateRegSequences();
1273
1274  return MadeChange;
1275}
1276
1277static void UpdateRegSequenceSrcs(unsigned SrcReg,
1278                                  unsigned DstReg, unsigned SubIdx,
1279                                  MachineRegisterInfo *MRI,
1280                                  const TargetRegisterInfo &TRI) {
1281  for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(SrcReg),
1282         RE = MRI->reg_end(); RI != RE; ) {
1283    MachineOperand &MO = RI.getOperand();
1284    ++RI;
1285    MO.substVirtReg(DstReg, SubIdx, TRI);
1286  }
1287}
1288
1289/// CoalesceExtSubRegs - If a number of sources of the REG_SEQUENCE are
1290/// EXTRACT_SUBREG from the same register and to the same virtual register
1291/// with different sub-register indices, attempt to combine the
1292/// EXTRACT_SUBREGs and pre-coalesce them. e.g.
1293/// %reg1026<def> = VLDMQ %reg1025<kill>, 260, pred:14, pred:%reg0
1294/// %reg1029:6<def> = EXTRACT_SUBREG %reg1026, 6
1295/// %reg1029:5<def> = EXTRACT_SUBREG %reg1026<kill>, 5
1296/// Since D subregs 5, 6 can combine to a Q register, we can coalesce
1297/// reg1026 to reg1029.
1298void
1299TwoAddressInstructionPass::CoalesceExtSubRegs(SmallVector<unsigned,4> &Srcs,
1300                                              unsigned DstReg) {
1301  SmallSet<unsigned, 4> Seen;
1302  for (unsigned i = 0, e = Srcs.size(); i != e; ++i) {
1303    unsigned SrcReg = Srcs[i];
1304    if (!Seen.insert(SrcReg))
1305      continue;
1306
1307    // Check that the instructions are all in the same basic block.
1308    MachineInstr *SrcDefMI = MRI->getVRegDef(SrcReg);
1309    MachineInstr *DstDefMI = MRI->getVRegDef(DstReg);
1310    if (SrcDefMI->getParent() != DstDefMI->getParent())
1311      continue;
1312
1313    // If there are no other uses than copies which feed into
1314    // the reg_sequence, then we might be able to coalesce them.
1315    bool CanCoalesce = true;
1316    SmallVector<unsigned, 4> SrcSubIndices, DstSubIndices;
1317    for (MachineRegisterInfo::use_nodbg_iterator
1318           UI = MRI->use_nodbg_begin(SrcReg),
1319           UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
1320      MachineInstr *UseMI = &*UI;
1321      if (!UseMI->isCopy() || UseMI->getOperand(0).getReg() != DstReg) {
1322        CanCoalesce = false;
1323        break;
1324      }
1325      SrcSubIndices.push_back(UseMI->getOperand(1).getSubReg());
1326      DstSubIndices.push_back(UseMI->getOperand(0).getSubReg());
1327    }
1328
1329    if (!CanCoalesce || SrcSubIndices.size() < 2)
1330      continue;
1331
1332    // Check that the source subregisters can be combined.
1333    std::sort(SrcSubIndices.begin(), SrcSubIndices.end());
1334    unsigned NewSrcSubIdx = 0;
1335    if (!TRI->canCombineSubRegIndices(MRI->getRegClass(SrcReg), SrcSubIndices,
1336                                      NewSrcSubIdx))
1337      continue;
1338
1339    // Check that the destination subregisters can also be combined.
1340    std::sort(DstSubIndices.begin(), DstSubIndices.end());
1341    unsigned NewDstSubIdx = 0;
1342    if (!TRI->canCombineSubRegIndices(MRI->getRegClass(DstReg), DstSubIndices,
1343                                      NewDstSubIdx))
1344      continue;
1345
1346    // If neither source nor destination can be combined to the full register,
1347    // just give up.  This could be improved if it ever matters.
1348    if (NewSrcSubIdx != 0 && NewDstSubIdx != 0)
1349      continue;
1350
1351    // Now that we know that all the uses are extract_subregs and that those
1352    // subregs can somehow be combined, scan all the extract_subregs again to
1353    // make sure the subregs are in the right order and can be composed.
1354    MachineInstr *SomeMI = 0;
1355    CanCoalesce = true;
1356    for (MachineRegisterInfo::use_nodbg_iterator
1357           UI = MRI->use_nodbg_begin(SrcReg),
1358           UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
1359      MachineInstr *UseMI = &*UI;
1360      assert(UseMI->isCopy());
1361      unsigned DstSubIdx = UseMI->getOperand(0).getSubReg();
1362      unsigned SrcSubIdx = UseMI->getOperand(1).getSubReg();
1363      assert(DstSubIdx != 0 && "missing subreg from RegSequence elimination");
1364      if ((NewDstSubIdx == 0 &&
1365           TRI->composeSubRegIndices(NewSrcSubIdx, DstSubIdx) != SrcSubIdx) ||
1366          (NewSrcSubIdx == 0 &&
1367           TRI->composeSubRegIndices(NewDstSubIdx, SrcSubIdx) != DstSubIdx)) {
1368        CanCoalesce = false;
1369        break;
1370      }
1371      // Keep track of one of the uses.
1372      SomeMI = UseMI;
1373    }
1374    if (!CanCoalesce)
1375      continue;
1376
1377    // Insert a copy to replace the original.
1378    MachineInstr *CopyMI = BuildMI(*SomeMI->getParent(), SomeMI,
1379                                   SomeMI->getDebugLoc(),
1380                                   TII->get(TargetOpcode::COPY))
1381      .addReg(DstReg, RegState::Define, NewDstSubIdx)
1382      .addReg(SrcReg, 0, NewSrcSubIdx);
1383
1384    // Remove all the old extract instructions.
1385    for (MachineRegisterInfo::use_nodbg_iterator
1386           UI = MRI->use_nodbg_begin(SrcReg),
1387           UE = MRI->use_nodbg_end(); UI != UE; ) {
1388      MachineInstr *UseMI = &*UI;
1389      ++UI;
1390      if (UseMI == CopyMI)
1391        continue;
1392      assert(UseMI->isCopy());
1393      // Move any kills to the new copy or extract instruction.
1394      if (UseMI->getOperand(1).isKill()) {
1395        CopyMI->getOperand(1).setIsKill();
1396        if (LV)
1397          // Update live variables
1398          LV->replaceKillInstruction(SrcReg, UseMI, &*CopyMI);
1399      }
1400      UseMI->eraseFromParent();
1401    }
1402  }
1403}
1404
1405static bool HasOtherRegSequenceUses(unsigned Reg, MachineInstr *RegSeq,
1406                                    MachineRegisterInfo *MRI) {
1407  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg),
1408         UE = MRI->use_end(); UI != UE; ++UI) {
1409    MachineInstr *UseMI = &*UI;
1410    if (UseMI != RegSeq && UseMI->isRegSequence())
1411      return true;
1412  }
1413  return false;
1414}
1415
1416/// EliminateRegSequences - Eliminate REG_SEQUENCE instructions as part
1417/// of the de-ssa process. This replaces sources of REG_SEQUENCE as
1418/// sub-register references of the register defined by REG_SEQUENCE. e.g.
1419///
1420/// %reg1029<def>, %reg1030<def> = VLD1q16 %reg1024<kill>, ...
1421/// %reg1031<def> = REG_SEQUENCE %reg1029<kill>, 5, %reg1030<kill>, 6
1422/// =>
1423/// %reg1031:5<def>, %reg1031:6<def> = VLD1q16 %reg1024<kill>, ...
1424bool TwoAddressInstructionPass::EliminateRegSequences() {
1425  if (RegSequences.empty())
1426    return false;
1427
1428  for (unsigned i = 0, e = RegSequences.size(); i != e; ++i) {
1429    MachineInstr *MI = RegSequences[i];
1430    unsigned DstReg = MI->getOperand(0).getReg();
1431    if (MI->getOperand(0).getSubReg() ||
1432        TargetRegisterInfo::isPhysicalRegister(DstReg) ||
1433        !(MI->getNumOperands() & 1)) {
1434      DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI);
1435      llvm_unreachable(0);
1436    }
1437
1438    bool IsImpDef = true;
1439    SmallVector<unsigned, 4> RealSrcs;
1440    SmallSet<unsigned, 4> Seen;
1441    for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) {
1442      unsigned SrcReg = MI->getOperand(i).getReg();
1443      unsigned SubIdx = MI->getOperand(i+1).getImm();
1444      if (MI->getOperand(i).getSubReg() ||
1445          TargetRegisterInfo::isPhysicalRegister(SrcReg)) {
1446        DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI);
1447        llvm_unreachable(0);
1448      }
1449
1450      MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
1451      if (DefMI->isImplicitDef()) {
1452        DefMI->eraseFromParent();
1453        continue;
1454      }
1455      IsImpDef = false;
1456
1457      // Remember COPY sources. These might be candidate for coalescing.
1458      if (DefMI->isCopy() && DefMI->getOperand(1).getSubReg())
1459        RealSrcs.push_back(DefMI->getOperand(1).getReg());
1460
1461      bool isKill = MI->getOperand(i).isKill();
1462      if (!Seen.insert(SrcReg) || MI->getParent() != DefMI->getParent() ||
1463          !isKill || HasOtherRegSequenceUses(SrcReg, MI, MRI) ||
1464          !TRI->getMatchingSuperRegClass(MRI->getRegClass(DstReg),
1465                                         MRI->getRegClass(SrcReg), SubIdx)) {
1466        // REG_SEQUENCE cannot have duplicated operands, add a copy.
1467        // Also add an copy if the source is live-in the block. We don't want
1468        // to end up with a partial-redef of a livein, e.g.
1469        // BB0:
1470        // reg1051:10<def> =
1471        // ...
1472        // BB1:
1473        // ... = reg1051:10
1474        // BB2:
1475        // reg1051:9<def> =
1476        // LiveIntervalAnalysis won't like it.
1477        //
1478        // If the REG_SEQUENCE doesn't kill its source, keeping live variables
1479        // correctly up to date becomes very difficult. Insert a copy.
1480
1481        // Defer any kill flag to the last operand using SrcReg. Otherwise, we
1482        // might insert a COPY that uses SrcReg after is was killed.
1483        if (isKill)
1484          for (unsigned j = i + 2; j < e; j += 2)
1485            if (MI->getOperand(j).getReg() == SrcReg) {
1486              MI->getOperand(j).setIsKill();
1487              isKill = false;
1488              break;
1489            }
1490
1491        MachineBasicBlock::iterator InsertLoc = MI;
1492        MachineInstr *CopyMI = BuildMI(*MI->getParent(), InsertLoc,
1493                                MI->getDebugLoc(), TII->get(TargetOpcode::COPY))
1494            .addReg(DstReg, RegState::Define, SubIdx)
1495            .addReg(SrcReg, getKillRegState(isKill));
1496        MI->getOperand(i).setReg(0);
1497        if (LV && isKill)
1498          LV->replaceKillInstruction(SrcReg, MI, CopyMI);
1499        DEBUG(dbgs() << "Inserted: " << *CopyMI);
1500      }
1501    }
1502
1503    for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) {
1504      unsigned SrcReg = MI->getOperand(i).getReg();
1505      if (!SrcReg) continue;
1506      unsigned SubIdx = MI->getOperand(i+1).getImm();
1507      UpdateRegSequenceSrcs(SrcReg, DstReg, SubIdx, MRI, *TRI);
1508    }
1509
1510    if (IsImpDef) {
1511      DEBUG(dbgs() << "Turned: " << *MI << " into an IMPLICIT_DEF");
1512      MI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
1513      for (int j = MI->getNumOperands() - 1, ee = 0; j > ee; --j)
1514        MI->RemoveOperand(j);
1515    } else {
1516      DEBUG(dbgs() << "Eliminated: " << *MI);
1517      MI->eraseFromParent();
1518    }
1519
1520    // Try coalescing some EXTRACT_SUBREG instructions. This can create
1521    // INSERT_SUBREG instructions that must have <undef> flags added by
1522    // LiveIntervalAnalysis, so only run it when LiveVariables is available.
1523    if (LV)
1524      CoalesceExtSubRegs(RealSrcs, DstReg);
1525  }
1526
1527  RegSequences.clear();
1528  return true;
1529}
1530