TwoAddressInstructionPass.cpp revision 2bee6a8bb74724263eadd550ee76417d6e6465a9
1//===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the TwoAddress instruction pass which is used
11// by most register allocators. Two-Address instructions are rewritten
12// from:
13//
14//     A = B op C
15//
16// to:
17//
18//     A = B
19//     A op= C
20//
21// Note that if a register allocator chooses to use this pass, that it
22// has to be capable of handling the non-SSA nature of these rewritten
23// virtual registers.
24//
25// It is also worth noting that the duplicate operand of the two
26// address instruction is removed.
27//
28//===----------------------------------------------------------------------===//
29
30#define DEBUG_TYPE "twoaddrinstr"
31#include "llvm/CodeGen/Passes.h"
32#include "llvm/Function.h"
33#include "llvm/CodeGen/LiveVariables.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineInstr.h"
36#include "llvm/CodeGen/MachineInstrBuilder.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/Analysis/AliasAnalysis.h"
39#include "llvm/MC/MCInstrItineraries.h"
40#include "llvm/Target/TargetRegisterInfo.h"
41#include "llvm/Target/TargetInstrInfo.h"
42#include "llvm/Target/TargetMachine.h"
43#include "llvm/Target/TargetOptions.h"
44#include "llvm/Support/Debug.h"
45#include "llvm/Support/ErrorHandling.h"
46#include "llvm/ADT/BitVector.h"
47#include "llvm/ADT/DenseMap.h"
48#include "llvm/ADT/SmallSet.h"
49#include "llvm/ADT/Statistic.h"
50#include "llvm/ADT/STLExtras.h"
51using namespace llvm;
52
53STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
54STATISTIC(NumCommuted        , "Number of instructions commuted to coalesce");
55STATISTIC(NumAggrCommuted    , "Number of instructions aggressively commuted");
56STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
57STATISTIC(Num3AddrSunk,        "Number of 3-address instructions sunk");
58STATISTIC(NumReMats,           "Number of instructions re-materialized");
59STATISTIC(NumDeletes,          "Number of dead instructions deleted");
60STATISTIC(NumReSchedUps,       "Number of instructions re-scheduled up");
61STATISTIC(NumReSchedDowns,     "Number of instructions re-scheduled down");
62
63namespace {
64  class TwoAddressInstructionPass : public MachineFunctionPass {
65    const TargetInstrInfo *TII;
66    const TargetRegisterInfo *TRI;
67    const InstrItineraryData *InstrItins;
68    MachineRegisterInfo *MRI;
69    LiveVariables *LV;
70    AliasAnalysis *AA;
71
72    // DistanceMap - Keep track the distance of a MI from the start of the
73    // current basic block.
74    DenseMap<MachineInstr*, unsigned> DistanceMap;
75
76    // SrcRegMap - A map from virtual registers to physical registers which
77    // are likely targets to be coalesced to due to copies from physical
78    // registers to virtual registers. e.g. v1024 = move r0.
79    DenseMap<unsigned, unsigned> SrcRegMap;
80
81    // DstRegMap - A map from virtual registers to physical registers which
82    // are likely targets to be coalesced to due to copies to physical
83    // registers from virtual registers. e.g. r1 = move v1024.
84    DenseMap<unsigned, unsigned> DstRegMap;
85
86    /// RegSequences - Keep track the list of REG_SEQUENCE instructions seen
87    /// during the initial walk of the machine function.
88    SmallVector<MachineInstr*, 16> RegSequences;
89
90    bool Sink3AddrInstruction(MachineBasicBlock *MBB, MachineInstr *MI,
91                              unsigned Reg,
92                              MachineBasicBlock::iterator OldPos);
93
94    bool isProfitableToReMat(unsigned Reg, const TargetRegisterClass *RC,
95                             MachineInstr *MI, MachineInstr *DefMI,
96                             MachineBasicBlock *MBB, unsigned Loc);
97
98    bool NoUseAfterLastDef(unsigned Reg, MachineBasicBlock *MBB, unsigned Dist,
99                           unsigned &LastDef);
100
101    MachineInstr *FindLastUseInMBB(unsigned Reg, MachineBasicBlock *MBB,
102                                   unsigned Dist);
103
104    bool isProfitableToCommute(unsigned regB, unsigned regC,
105                               MachineInstr *MI, MachineBasicBlock *MBB,
106                               unsigned Dist);
107
108    bool CommuteInstruction(MachineBasicBlock::iterator &mi,
109                            MachineFunction::iterator &mbbi,
110                            unsigned RegB, unsigned RegC, unsigned Dist);
111
112    bool isProfitableToConv3Addr(unsigned RegA, unsigned RegB);
113
114    bool ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
115                            MachineBasicBlock::iterator &nmi,
116                            MachineFunction::iterator &mbbi,
117                            unsigned RegA, unsigned RegB, unsigned Dist);
118
119    typedef std::pair<std::pair<unsigned, bool>, MachineInstr*> NewKill;
120    bool canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills,
121                               SmallVector<NewKill, 4> &NewKills,
122                               MachineBasicBlock *MBB, unsigned Dist);
123    bool DeleteUnusedInstr(MachineBasicBlock::iterator &mi,
124                           MachineBasicBlock::iterator &nmi,
125                           MachineFunction::iterator &mbbi, unsigned Dist);
126
127    bool isDefTooClose(unsigned Reg, unsigned Dist,
128                       MachineInstr *MI, MachineBasicBlock *MBB);
129
130    bool RescheduleMIBelowKill(MachineBasicBlock *MBB,
131                               MachineBasicBlock::iterator &mi,
132                               MachineBasicBlock::iterator &nmi,
133                               unsigned Reg);
134    bool RescheduleKillAboveMI(MachineBasicBlock *MBB,
135                               MachineBasicBlock::iterator &mi,
136                               MachineBasicBlock::iterator &nmi,
137                               unsigned Reg);
138
139    bool TryInstructionTransform(MachineBasicBlock::iterator &mi,
140                                 MachineBasicBlock::iterator &nmi,
141                                 MachineFunction::iterator &mbbi,
142                                 unsigned SrcIdx, unsigned DstIdx,
143                                 unsigned Dist,
144                                 SmallPtrSet<MachineInstr*, 8> &Processed);
145
146    void ScanUses(unsigned DstReg, MachineBasicBlock *MBB,
147                  SmallPtrSet<MachineInstr*, 8> &Processed);
148
149    void ProcessCopy(MachineInstr *MI, MachineBasicBlock *MBB,
150                     SmallPtrSet<MachineInstr*, 8> &Processed);
151
152    void CoalesceExtSubRegs(SmallVector<unsigned,4> &Srcs, unsigned DstReg);
153
154    /// EliminateRegSequences - Eliminate REG_SEQUENCE instructions as part
155    /// of the de-ssa process. This replaces sources of REG_SEQUENCE as
156    /// sub-register references of the register defined by REG_SEQUENCE.
157    bool EliminateRegSequences();
158
159  public:
160    static char ID; // Pass identification, replacement for typeid
161    TwoAddressInstructionPass() : MachineFunctionPass(ID) {
162      initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry());
163    }
164
165    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
166      AU.setPreservesCFG();
167      AU.addRequired<AliasAnalysis>();
168      AU.addPreserved<LiveVariables>();
169      AU.addPreservedID(MachineLoopInfoID);
170      AU.addPreservedID(MachineDominatorsID);
171      AU.addPreservedID(PHIEliminationID);
172      MachineFunctionPass::getAnalysisUsage(AU);
173    }
174
175    /// runOnMachineFunction - Pass entry point.
176    bool runOnMachineFunction(MachineFunction&);
177  };
178}
179
180char TwoAddressInstructionPass::ID = 0;
181INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, "twoaddressinstruction",
182                "Two-Address instruction pass", false, false)
183INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
184INITIALIZE_PASS_END(TwoAddressInstructionPass, "twoaddressinstruction",
185                "Two-Address instruction pass", false, false)
186
187char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID;
188
189/// Sink3AddrInstruction - A two-address instruction has been converted to a
190/// three-address instruction to avoid clobbering a register. Try to sink it
191/// past the instruction that would kill the above mentioned register to reduce
192/// register pressure.
193bool TwoAddressInstructionPass::Sink3AddrInstruction(MachineBasicBlock *MBB,
194                                           MachineInstr *MI, unsigned SavedReg,
195                                           MachineBasicBlock::iterator OldPos) {
196  // FIXME: Shouldn't we be trying to do this before we three-addressify the
197  // instruction?  After this transformation is done, we no longer need
198  // the instruction to be in three-address form.
199
200  // Check if it's safe to move this instruction.
201  bool SeenStore = true; // Be conservative.
202  if (!MI->isSafeToMove(TII, AA, SeenStore))
203    return false;
204
205  unsigned DefReg = 0;
206  SmallSet<unsigned, 4> UseRegs;
207
208  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
209    const MachineOperand &MO = MI->getOperand(i);
210    if (!MO.isReg())
211      continue;
212    unsigned MOReg = MO.getReg();
213    if (!MOReg)
214      continue;
215    if (MO.isUse() && MOReg != SavedReg)
216      UseRegs.insert(MO.getReg());
217    if (!MO.isDef())
218      continue;
219    if (MO.isImplicit())
220      // Don't try to move it if it implicitly defines a register.
221      return false;
222    if (DefReg)
223      // For now, don't move any instructions that define multiple registers.
224      return false;
225    DefReg = MO.getReg();
226  }
227
228  // Find the instruction that kills SavedReg.
229  MachineInstr *KillMI = NULL;
230  for (MachineRegisterInfo::use_nodbg_iterator
231         UI = MRI->use_nodbg_begin(SavedReg),
232         UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
233    MachineOperand &UseMO = UI.getOperand();
234    if (!UseMO.isKill())
235      continue;
236    KillMI = UseMO.getParent();
237    break;
238  }
239
240  // If we find the instruction that kills SavedReg, and it is in an
241  // appropriate location, we can try to sink the current instruction
242  // past it.
243  if (!KillMI || KillMI->getParent() != MBB || KillMI == MI ||
244      KillMI->getDesc().isTerminator())
245    return false;
246
247  // If any of the definitions are used by another instruction between the
248  // position and the kill use, then it's not safe to sink it.
249  //
250  // FIXME: This can be sped up if there is an easy way to query whether an
251  // instruction is before or after another instruction. Then we can use
252  // MachineRegisterInfo def / use instead.
253  MachineOperand *KillMO = NULL;
254  MachineBasicBlock::iterator KillPos = KillMI;
255  ++KillPos;
256
257  unsigned NumVisited = 0;
258  for (MachineBasicBlock::iterator I = llvm::next(OldPos); I != KillPos; ++I) {
259    MachineInstr *OtherMI = I;
260    // DBG_VALUE cannot be counted against the limit.
261    if (OtherMI->isDebugValue())
262      continue;
263    if (NumVisited > 30)  // FIXME: Arbitrary limit to reduce compile time cost.
264      return false;
265    ++NumVisited;
266    for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
267      MachineOperand &MO = OtherMI->getOperand(i);
268      if (!MO.isReg())
269        continue;
270      unsigned MOReg = MO.getReg();
271      if (!MOReg)
272        continue;
273      if (DefReg == MOReg)
274        return false;
275
276      if (MO.isKill()) {
277        if (OtherMI == KillMI && MOReg == SavedReg)
278          // Save the operand that kills the register. We want to unset the kill
279          // marker if we can sink MI past it.
280          KillMO = &MO;
281        else if (UseRegs.count(MOReg))
282          // One of the uses is killed before the destination.
283          return false;
284      }
285    }
286  }
287
288  // Update kill and LV information.
289  KillMO->setIsKill(false);
290  KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
291  KillMO->setIsKill(true);
292
293  if (LV)
294    LV->replaceKillInstruction(SavedReg, KillMI, MI);
295
296  // Move instruction to its destination.
297  MBB->remove(MI);
298  MBB->insert(KillPos, MI);
299
300  ++Num3AddrSunk;
301  return true;
302}
303
304/// isTwoAddrUse - Return true if the specified MI is using the specified
305/// register as a two-address operand.
306static bool isTwoAddrUse(MachineInstr *UseMI, unsigned Reg) {
307  const MCInstrDesc &MCID = UseMI->getDesc();
308  for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) {
309    MachineOperand &MO = UseMI->getOperand(i);
310    if (MO.isReg() && MO.getReg() == Reg &&
311        (MO.isDef() || UseMI->isRegTiedToDefOperand(i)))
312      // Earlier use is a two-address one.
313      return true;
314  }
315  return false;
316}
317
318/// isProfitableToReMat - Return true if the heuristics determines it is likely
319/// to be profitable to re-materialize the definition of Reg rather than copy
320/// the register.
321bool
322TwoAddressInstructionPass::isProfitableToReMat(unsigned Reg,
323                                         const TargetRegisterClass *RC,
324                                         MachineInstr *MI, MachineInstr *DefMI,
325                                         MachineBasicBlock *MBB, unsigned Loc) {
326  bool OtherUse = false;
327  for (MachineRegisterInfo::use_nodbg_iterator UI = MRI->use_nodbg_begin(Reg),
328         UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
329    MachineOperand &UseMO = UI.getOperand();
330    MachineInstr *UseMI = UseMO.getParent();
331    MachineBasicBlock *UseMBB = UseMI->getParent();
332    if (UseMBB == MBB) {
333      DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
334      if (DI != DistanceMap.end() && DI->second == Loc)
335        continue;  // Current use.
336      OtherUse = true;
337      // There is at least one other use in the MBB that will clobber the
338      // register.
339      if (isTwoAddrUse(UseMI, Reg))
340        return true;
341    }
342  }
343
344  // If other uses in MBB are not two-address uses, then don't remat.
345  if (OtherUse)
346    return false;
347
348  // No other uses in the same block, remat if it's defined in the same
349  // block so it does not unnecessarily extend the live range.
350  return MBB == DefMI->getParent();
351}
352
353/// NoUseAfterLastDef - Return true if there are no intervening uses between the
354/// last instruction in the MBB that defines the specified register and the
355/// two-address instruction which is being processed. It also returns the last
356/// def location by reference
357bool TwoAddressInstructionPass::NoUseAfterLastDef(unsigned Reg,
358                                           MachineBasicBlock *MBB, unsigned Dist,
359                                           unsigned &LastDef) {
360  LastDef = 0;
361  unsigned LastUse = Dist;
362  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
363         E = MRI->reg_end(); I != E; ++I) {
364    MachineOperand &MO = I.getOperand();
365    MachineInstr *MI = MO.getParent();
366    if (MI->getParent() != MBB || MI->isDebugValue())
367      continue;
368    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
369    if (DI == DistanceMap.end())
370      continue;
371    if (MO.isUse() && DI->second < LastUse)
372      LastUse = DI->second;
373    if (MO.isDef() && DI->second > LastDef)
374      LastDef = DI->second;
375  }
376
377  return !(LastUse > LastDef && LastUse < Dist);
378}
379
380MachineInstr *TwoAddressInstructionPass::FindLastUseInMBB(unsigned Reg,
381                                                         MachineBasicBlock *MBB,
382                                                         unsigned Dist) {
383  unsigned LastUseDist = 0;
384  MachineInstr *LastUse = 0;
385  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
386         E = MRI->reg_end(); I != E; ++I) {
387    MachineOperand &MO = I.getOperand();
388    MachineInstr *MI = MO.getParent();
389    if (MI->getParent() != MBB || MI->isDebugValue())
390      continue;
391    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
392    if (DI == DistanceMap.end())
393      continue;
394    if (DI->second >= Dist)
395      continue;
396
397    if (MO.isUse() && DI->second > LastUseDist) {
398      LastUse = DI->first;
399      LastUseDist = DI->second;
400    }
401  }
402  return LastUse;
403}
404
405/// isCopyToReg - Return true if the specified MI is a copy instruction or
406/// a extract_subreg instruction. It also returns the source and destination
407/// registers and whether they are physical registers by reference.
408static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII,
409                        unsigned &SrcReg, unsigned &DstReg,
410                        bool &IsSrcPhys, bool &IsDstPhys) {
411  SrcReg = 0;
412  DstReg = 0;
413  if (MI.isCopy()) {
414    DstReg = MI.getOperand(0).getReg();
415    SrcReg = MI.getOperand(1).getReg();
416  } else if (MI.isInsertSubreg() || MI.isSubregToReg()) {
417    DstReg = MI.getOperand(0).getReg();
418    SrcReg = MI.getOperand(2).getReg();
419  } else
420    return false;
421
422  IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
423  IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
424  return true;
425}
426
427/// isKilled - Test if the given register value, which is used by the given
428/// instruction, is killed by the given instruction. This looks through
429/// coalescable copies to see if the original value is potentially not killed.
430///
431/// For example, in this code:
432///
433///   %reg1034 = copy %reg1024
434///   %reg1035 = copy %reg1025<kill>
435///   %reg1036 = add %reg1034<kill>, %reg1035<kill>
436///
437/// %reg1034 is not considered to be killed, since it is copied from a
438/// register which is not killed. Treating it as not killed lets the
439/// normal heuristics commute the (two-address) add, which lets
440/// coalescing eliminate the extra copy.
441///
442static bool isKilled(MachineInstr &MI, unsigned Reg,
443                     const MachineRegisterInfo *MRI,
444                     const TargetInstrInfo *TII) {
445  MachineInstr *DefMI = &MI;
446  for (;;) {
447    if (!DefMI->killsRegister(Reg))
448      return false;
449    if (TargetRegisterInfo::isPhysicalRegister(Reg))
450      return true;
451    MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg);
452    // If there are multiple defs, we can't do a simple analysis, so just
453    // go with what the kill flag says.
454    if (llvm::next(Begin) != MRI->def_end())
455      return true;
456    DefMI = &*Begin;
457    bool IsSrcPhys, IsDstPhys;
458    unsigned SrcReg,  DstReg;
459    // If the def is something other than a copy, then it isn't going to
460    // be coalesced, so follow the kill flag.
461    if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
462      return true;
463    Reg = SrcReg;
464  }
465}
466
467/// isTwoAddrUse - Return true if the specified MI uses the specified register
468/// as a two-address use. If so, return the destination register by reference.
469static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) {
470  const MCInstrDesc &MCID = MI.getDesc();
471  unsigned NumOps = MI.isInlineAsm()
472    ? MI.getNumOperands() : MCID.getNumOperands();
473  for (unsigned i = 0; i != NumOps; ++i) {
474    const MachineOperand &MO = MI.getOperand(i);
475    if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
476      continue;
477    unsigned ti;
478    if (MI.isRegTiedToDefOperand(i, &ti)) {
479      DstReg = MI.getOperand(ti).getReg();
480      return true;
481    }
482  }
483  return false;
484}
485
486/// findLocalKill - Look for an instruction below MI in the MBB that kills the
487/// specified register. Returns null if there are any other Reg use between the
488/// instructions.
489static
490MachineInstr *findLocalKill(unsigned Reg, MachineBasicBlock *MBB,
491                            MachineInstr *MI, MachineRegisterInfo *MRI,
492                            DenseMap<MachineInstr*, unsigned> &DistanceMap) {
493  MachineInstr *KillMI = 0;
494  for (MachineRegisterInfo::use_nodbg_iterator
495         UI = MRI->use_nodbg_begin(Reg),
496         UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
497    MachineInstr *UseMI = &*UI;
498    if (UseMI == MI || UseMI->getParent() != MBB)
499      continue;
500    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
501    if (DI != DistanceMap.end())
502      continue;
503    if (!UI.getOperand().isKill())
504      return 0;
505    if (KillMI)
506      return 0;  // -O0 kill markers cannot be trusted?
507    KillMI = UseMI;
508  }
509
510  return KillMI;
511}
512
513/// findOnlyInterestingUse - Given a register, if has a single in-basic block
514/// use, return the use instruction if it's a copy or a two-address use.
515static
516MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB,
517                                     MachineRegisterInfo *MRI,
518                                     const TargetInstrInfo *TII,
519                                     bool &IsCopy,
520                                     unsigned &DstReg, bool &IsDstPhys) {
521  if (!MRI->hasOneNonDBGUse(Reg))
522    // None or more than one use.
523    return 0;
524  MachineInstr &UseMI = *MRI->use_nodbg_begin(Reg);
525  if (UseMI.getParent() != MBB)
526    return 0;
527  unsigned SrcReg;
528  bool IsSrcPhys;
529  if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
530    IsCopy = true;
531    return &UseMI;
532  }
533  IsDstPhys = false;
534  if (isTwoAddrUse(UseMI, Reg, DstReg)) {
535    IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
536    return &UseMI;
537  }
538  return 0;
539}
540
541/// getMappedReg - Return the physical register the specified virtual register
542/// might be mapped to.
543static unsigned
544getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) {
545  while (TargetRegisterInfo::isVirtualRegister(Reg))  {
546    DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg);
547    if (SI == RegMap.end())
548      return 0;
549    Reg = SI->second;
550  }
551  if (TargetRegisterInfo::isPhysicalRegister(Reg))
552    return Reg;
553  return 0;
554}
555
556/// regsAreCompatible - Return true if the two registers are equal or aliased.
557///
558static bool
559regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) {
560  if (RegA == RegB)
561    return true;
562  if (!RegA || !RegB)
563    return false;
564  return TRI->regsOverlap(RegA, RegB);
565}
566
567
568/// isProfitableToReMat - Return true if it's potentially profitable to commute
569/// the two-address instruction that's being processed.
570bool
571TwoAddressInstructionPass::isProfitableToCommute(unsigned regB, unsigned regC,
572                                       MachineInstr *MI, MachineBasicBlock *MBB,
573                                       unsigned Dist) {
574  // Determine if it's profitable to commute this two address instruction. In
575  // general, we want no uses between this instruction and the definition of
576  // the two-address register.
577  // e.g.
578  // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
579  // %reg1029<def> = MOV8rr %reg1028
580  // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
581  // insert => %reg1030<def> = MOV8rr %reg1028
582  // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
583  // In this case, it might not be possible to coalesce the second MOV8rr
584  // instruction if the first one is coalesced. So it would be profitable to
585  // commute it:
586  // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
587  // %reg1029<def> = MOV8rr %reg1028
588  // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
589  // insert => %reg1030<def> = MOV8rr %reg1029
590  // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead>
591
592  if (!MI->killsRegister(regC))
593    return false;
594
595  // Ok, we have something like:
596  // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
597  // let's see if it's worth commuting it.
598
599  // Look for situations like this:
600  // %reg1024<def> = MOV r1
601  // %reg1025<def> = MOV r0
602  // %reg1026<def> = ADD %reg1024, %reg1025
603  // r0            = MOV %reg1026
604  // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
605  unsigned FromRegB = getMappedReg(regB, SrcRegMap);
606  unsigned FromRegC = getMappedReg(regC, SrcRegMap);
607  unsigned ToRegB = getMappedReg(regB, DstRegMap);
608  unsigned ToRegC = getMappedReg(regC, DstRegMap);
609  if ((FromRegB && ToRegB && !regsAreCompatible(FromRegB, ToRegB, TRI)) &&
610      ((!FromRegC && !ToRegC) ||
611       regsAreCompatible(FromRegB, ToRegC, TRI) ||
612       regsAreCompatible(FromRegC, ToRegB, TRI)))
613    return true;
614
615  // If there is a use of regC between its last def (could be livein) and this
616  // instruction, then bail.
617  unsigned LastDefC = 0;
618  if (!NoUseAfterLastDef(regC, MBB, Dist, LastDefC))
619    return false;
620
621  // If there is a use of regB between its last def (could be livein) and this
622  // instruction, then go ahead and make this transformation.
623  unsigned LastDefB = 0;
624  if (!NoUseAfterLastDef(regB, MBB, Dist, LastDefB))
625    return true;
626
627  // Since there are no intervening uses for both registers, then commute
628  // if the def of regC is closer. Its live interval is shorter.
629  return LastDefB && LastDefC && LastDefC > LastDefB;
630}
631
632/// CommuteInstruction - Commute a two-address instruction and update the basic
633/// block, distance map, and live variables if needed. Return true if it is
634/// successful.
635bool
636TwoAddressInstructionPass::CommuteInstruction(MachineBasicBlock::iterator &mi,
637                               MachineFunction::iterator &mbbi,
638                               unsigned RegB, unsigned RegC, unsigned Dist) {
639  MachineInstr *MI = mi;
640  DEBUG(dbgs() << "2addr: COMMUTING  : " << *MI);
641  MachineInstr *NewMI = TII->commuteInstruction(MI);
642
643  if (NewMI == 0) {
644    DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n");
645    return false;
646  }
647
648  DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI);
649  // If the instruction changed to commute it, update livevar.
650  if (NewMI != MI) {
651    if (LV)
652      // Update live variables
653      LV->replaceKillInstruction(RegC, MI, NewMI);
654
655    mbbi->insert(mi, NewMI);           // Insert the new inst
656    mbbi->erase(mi);                   // Nuke the old inst.
657    mi = NewMI;
658    DistanceMap.insert(std::make_pair(NewMI, Dist));
659  }
660
661  // Update source register map.
662  unsigned FromRegC = getMappedReg(RegC, SrcRegMap);
663  if (FromRegC) {
664    unsigned RegA = MI->getOperand(0).getReg();
665    SrcRegMap[RegA] = FromRegC;
666  }
667
668  return true;
669}
670
671/// isProfitableToConv3Addr - Return true if it is profitable to convert the
672/// given 2-address instruction to a 3-address one.
673bool
674TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA,unsigned RegB){
675  // Look for situations like this:
676  // %reg1024<def> = MOV r1
677  // %reg1025<def> = MOV r0
678  // %reg1026<def> = ADD %reg1024, %reg1025
679  // r2            = MOV %reg1026
680  // Turn ADD into a 3-address instruction to avoid a copy.
681  unsigned FromRegB = getMappedReg(RegB, SrcRegMap);
682  if (!FromRegB)
683    return false;
684  unsigned ToRegA = getMappedReg(RegA, DstRegMap);
685  return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI));
686}
687
688/// ConvertInstTo3Addr - Convert the specified two-address instruction into a
689/// three address one. Return true if this transformation was successful.
690bool
691TwoAddressInstructionPass::ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
692                                              MachineBasicBlock::iterator &nmi,
693                                              MachineFunction::iterator &mbbi,
694                                              unsigned RegA, unsigned RegB,
695                                              unsigned Dist) {
696  MachineInstr *NewMI = TII->convertToThreeAddress(mbbi, mi, LV);
697  if (NewMI) {
698    DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi);
699    DEBUG(dbgs() << "2addr:         TO 3-ADDR: " << *NewMI);
700    bool Sunk = false;
701
702    if (NewMI->findRegisterUseOperand(RegB, false, TRI))
703      // FIXME: Temporary workaround. If the new instruction doesn't
704      // uses RegB, convertToThreeAddress must have created more
705      // then one instruction.
706      Sunk = Sink3AddrInstruction(mbbi, NewMI, RegB, mi);
707
708    mbbi->erase(mi); // Nuke the old inst.
709
710    if (!Sunk) {
711      DistanceMap.insert(std::make_pair(NewMI, Dist));
712      mi = NewMI;
713      nmi = llvm::next(mi);
714    }
715
716    // Update source and destination register maps.
717    SrcRegMap.erase(RegA);
718    DstRegMap.erase(RegB);
719    return true;
720  }
721
722  return false;
723}
724
725/// ScanUses - Scan forward recursively for only uses, update maps if the use
726/// is a copy or a two-address instruction.
727void
728TwoAddressInstructionPass::ScanUses(unsigned DstReg, MachineBasicBlock *MBB,
729                                    SmallPtrSet<MachineInstr*, 8> &Processed) {
730  SmallVector<unsigned, 4> VirtRegPairs;
731  bool IsDstPhys;
732  bool IsCopy = false;
733  unsigned NewReg = 0;
734  unsigned Reg = DstReg;
735  while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy,
736                                                      NewReg, IsDstPhys)) {
737    if (IsCopy && !Processed.insert(UseMI))
738      break;
739
740    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
741    if (DI != DistanceMap.end())
742      // Earlier in the same MBB.Reached via a back edge.
743      break;
744
745    if (IsDstPhys) {
746      VirtRegPairs.push_back(NewReg);
747      break;
748    }
749    bool isNew = SrcRegMap.insert(std::make_pair(NewReg, Reg)).second;
750    if (!isNew)
751      assert(SrcRegMap[NewReg] == Reg && "Can't map to two src registers!");
752    VirtRegPairs.push_back(NewReg);
753    Reg = NewReg;
754  }
755
756  if (!VirtRegPairs.empty()) {
757    unsigned ToReg = VirtRegPairs.back();
758    VirtRegPairs.pop_back();
759    while (!VirtRegPairs.empty()) {
760      unsigned FromReg = VirtRegPairs.back();
761      VirtRegPairs.pop_back();
762      bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
763      if (!isNew)
764        assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!");
765      ToReg = FromReg;
766    }
767    bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second;
768    if (!isNew)
769      assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!");
770  }
771}
772
773/// ProcessCopy - If the specified instruction is not yet processed, process it
774/// if it's a copy. For a copy instruction, we find the physical registers the
775/// source and destination registers might be mapped to. These are kept in
776/// point-to maps used to determine future optimizations. e.g.
777/// v1024 = mov r0
778/// v1025 = mov r1
779/// v1026 = add v1024, v1025
780/// r1    = mov r1026
781/// If 'add' is a two-address instruction, v1024, v1026 are both potentially
782/// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
783/// potentially joined with r1 on the output side. It's worthwhile to commute
784/// 'add' to eliminate a copy.
785void TwoAddressInstructionPass::ProcessCopy(MachineInstr *MI,
786                                     MachineBasicBlock *MBB,
787                                     SmallPtrSet<MachineInstr*, 8> &Processed) {
788  if (Processed.count(MI))
789    return;
790
791  bool IsSrcPhys, IsDstPhys;
792  unsigned SrcReg, DstReg;
793  if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
794    return;
795
796  if (IsDstPhys && !IsSrcPhys)
797    DstRegMap.insert(std::make_pair(SrcReg, DstReg));
798  else if (!IsDstPhys && IsSrcPhys) {
799    bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
800    if (!isNew)
801      assert(SrcRegMap[DstReg] == SrcReg &&
802             "Can't map to two src physical registers!");
803
804    ScanUses(DstReg, MBB, Processed);
805  }
806
807  Processed.insert(MI);
808  return;
809}
810
811/// isSafeToDelete - If the specified instruction does not produce any side
812/// effects and all of its defs are dead, then it's safe to delete.
813static bool isSafeToDelete(MachineInstr *MI,
814                           const TargetInstrInfo *TII,
815                           SmallVector<unsigned, 4> &Kills) {
816  const MCInstrDesc &MCID = MI->getDesc();
817  if (MCID.mayStore() || MCID.isCall())
818    return false;
819  if (MCID.isTerminator() || MI->hasUnmodeledSideEffects())
820    return false;
821
822  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
823    MachineOperand &MO = MI->getOperand(i);
824    if (!MO.isReg())
825      continue;
826    if (MO.isDef() && !MO.isDead())
827      return false;
828    if (MO.isUse() && MO.isKill())
829      Kills.push_back(MO.getReg());
830  }
831  return true;
832}
833
834/// canUpdateDeletedKills - Check if all the registers listed in Kills are
835/// killed by instructions in MBB preceding the current instruction at
836/// position Dist.  If so, return true and record information about the
837/// preceding kills in NewKills.
838bool TwoAddressInstructionPass::
839canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills,
840                      SmallVector<NewKill, 4> &NewKills,
841                      MachineBasicBlock *MBB, unsigned Dist) {
842  while (!Kills.empty()) {
843    unsigned Kill = Kills.back();
844    Kills.pop_back();
845    if (TargetRegisterInfo::isPhysicalRegister(Kill))
846      return false;
847
848    MachineInstr *LastKill = FindLastUseInMBB(Kill, MBB, Dist);
849    if (!LastKill)
850      return false;
851
852    bool isModRef = LastKill->definesRegister(Kill);
853    NewKills.push_back(std::make_pair(std::make_pair(Kill, isModRef),
854                                      LastKill));
855  }
856  return true;
857}
858
859/// DeleteUnusedInstr - If an instruction with a tied register operand can
860/// be safely deleted, just delete it.
861bool
862TwoAddressInstructionPass::DeleteUnusedInstr(MachineBasicBlock::iterator &mi,
863                                             MachineBasicBlock::iterator &nmi,
864                                             MachineFunction::iterator &mbbi,
865                                             unsigned Dist) {
866  // Check if the instruction has no side effects and if all its defs are dead.
867  SmallVector<unsigned, 4> Kills;
868  if (!isSafeToDelete(mi, TII, Kills))
869    return false;
870
871  // If this instruction kills some virtual registers, we need to
872  // update the kill information. If it's not possible to do so,
873  // then bail out.
874  SmallVector<NewKill, 4> NewKills;
875  if (!canUpdateDeletedKills(Kills, NewKills, &*mbbi, Dist))
876    return false;
877
878  if (LV) {
879    while (!NewKills.empty()) {
880      MachineInstr *NewKill = NewKills.back().second;
881      unsigned Kill = NewKills.back().first.first;
882      bool isDead = NewKills.back().first.second;
883      NewKills.pop_back();
884      if (LV->removeVirtualRegisterKilled(Kill, mi)) {
885        if (isDead)
886          LV->addVirtualRegisterDead(Kill, NewKill);
887        else
888          LV->addVirtualRegisterKilled(Kill, NewKill);
889      }
890    }
891  }
892
893  mbbi->erase(mi); // Nuke the old inst.
894  mi = nmi;
895  return true;
896}
897
898/// RescheduleMIBelowKill - If there is one more local instruction that reads
899/// 'Reg' and it kills 'Reg, consider moving the instruction below the kill
900/// instruction in order to eliminate the need for the copy.
901bool
902TwoAddressInstructionPass::RescheduleMIBelowKill(MachineBasicBlock *MBB,
903                                     MachineBasicBlock::iterator &mi,
904                                     MachineBasicBlock::iterator &nmi,
905                                     unsigned Reg) {
906  MachineInstr *MI = &*mi;
907  DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
908  if (DI == DistanceMap.end())
909    // Must be created from unfolded load. Don't waste time trying this.
910    return false;
911
912  MachineInstr *KillMI = findLocalKill(Reg, MBB, mi, MRI, DistanceMap);
913  if (!KillMI || KillMI->isCopy() || KillMI->isCopyLike())
914    // Don't mess with copies, they may be coalesced later.
915    return false;
916
917  const MCInstrDesc &MCID = KillMI->getDesc();
918  if (MCID.hasUnmodeledSideEffects() || MCID.isCall() || MCID.isBranch() ||
919      MCID.isTerminator())
920    // Don't move pass calls, etc.
921    return false;
922
923  unsigned DstReg;
924  if (isTwoAddrUse(*KillMI, Reg, DstReg))
925    return false;
926
927  bool SeenStore = true;
928  if (!MI->isSafeToMove(TII, AA, SeenStore))
929    return false;
930
931  if (TII->getInstrLatency(InstrItins, MI) > 1)
932    // FIXME: Needs more sophisticated heuristics.
933    return false;
934
935  SmallSet<unsigned, 2> Uses;
936  SmallSet<unsigned, 2> Defs;
937  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
938    const MachineOperand &MO = MI->getOperand(i);
939    if (!MO.isReg())
940      continue;
941    unsigned MOReg = MO.getReg();
942    if (!MOReg)
943      continue;
944    if (MO.isDef())
945      Defs.insert(MOReg);
946    else
947      Uses.insert(MOReg);
948  }
949
950  // Move the copies connected to MI down as well.
951  MachineBasicBlock::iterator From = MI;
952  MachineBasicBlock::iterator To = llvm::next(From);
953  while (To->isCopy() && Defs.count(To->getOperand(1).getReg())) {
954    Defs.insert(To->getOperand(0).getReg());
955    ++To;
956  }
957
958  // Check if the reschedule will not break depedencies.
959  unsigned NumVisited = 0;
960  MachineBasicBlock::iterator KillPos = KillMI;
961  ++KillPos;
962  for (MachineBasicBlock::iterator I = To; I != KillPos; ++I) {
963    MachineInstr *OtherMI = I;
964    // DBG_VALUE cannot be counted against the limit.
965    if (OtherMI->isDebugValue())
966      continue;
967    if (NumVisited > 10)  // FIXME: Arbitrary limit to reduce compile time cost.
968      return false;
969    ++NumVisited;
970    const MCInstrDesc &OMCID = OtherMI->getDesc();
971    if (OMCID.hasUnmodeledSideEffects() || OMCID.isCall() || OMCID.isBranch() ||
972        OMCID.isTerminator())
973      // Don't move pass calls, etc.
974      return false;
975    for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
976      const MachineOperand &MO = OtherMI->getOperand(i);
977      if (!MO.isReg())
978        continue;
979      unsigned MOReg = MO.getReg();
980      if (!MOReg)
981        continue;
982      if (MO.isDef()) {
983        if (Uses.count(MOReg))
984          // Physical register use would be clobbered.
985          return false;
986        if (!MO.isDead() && Defs.count(MOReg))
987          // May clobber a physical register def.
988          // FIXME: This may be too conservative. It's ok if the instruction
989          // is sunken completely below the use.
990          return false;
991      } else {
992        if (Defs.count(MOReg))
993          return false;
994        if (MOReg != Reg && MO.isKill() && Uses.count(MOReg))
995          // Don't want to extend other live ranges and update kills.
996          return false;
997      }
998    }
999  }
1000
1001  // Move debug info as well.
1002  while (From != MBB->begin() && llvm::prior(From)->isDebugValue())
1003    --From;
1004
1005  // Copies following MI may have been moved as well.
1006  nmi = To;
1007  MBB->splice(KillPos, MBB, From, To);
1008  DistanceMap.erase(DI);
1009
1010  if (LV) {
1011    // Update live variables
1012    LV->removeVirtualRegisterKilled(Reg, KillMI);
1013    LV->addVirtualRegisterKilled(Reg, MI);
1014  } else {
1015    for (unsigned i = 0, e = KillMI->getNumOperands(); i != e; ++i) {
1016      MachineOperand &MO = KillMI->getOperand(i);
1017      if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
1018        continue;
1019      MO.setIsKill(false);
1020    }
1021    MI->addRegisterKilled(Reg, 0);
1022  }
1023
1024  return true;
1025}
1026
1027/// isDefTooClose - Return true if the re-scheduling will put the given
1028/// instruction too close to the defs of its register dependencies.
1029bool TwoAddressInstructionPass::isDefTooClose(unsigned Reg, unsigned Dist,
1030                                              MachineInstr *MI,
1031                                              MachineBasicBlock *MBB) {
1032  for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(Reg),
1033         DE = MRI->def_end(); DI != DE; ++DI) {
1034    MachineInstr *DefMI = &*DI;
1035    if (DefMI->getParent() != MBB || DefMI->isCopy() || DefMI->isCopyLike())
1036      continue;
1037    if (DefMI == MI)
1038      return true; // MI is defining something KillMI uses
1039    DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(DefMI);
1040    if (DDI == DistanceMap.end())
1041      return true;  // Below MI
1042    unsigned DefDist = DDI->second;
1043    assert(Dist > DefDist && "Visited def already?");
1044    if (TII->getInstrLatency(InstrItins, DefMI) > (int)(Dist - DefDist))
1045      return true;
1046  }
1047  return false;
1048}
1049
1050/// RescheduleKillAboveMI - If there is one more local instruction that reads
1051/// 'Reg' and it kills 'Reg, consider moving the kill instruction above the
1052/// current two-address instruction in order to eliminate the need for the
1053/// copy.
1054bool
1055TwoAddressInstructionPass::RescheduleKillAboveMI(MachineBasicBlock *MBB,
1056                                     MachineBasicBlock::iterator &mi,
1057                                     MachineBasicBlock::iterator &nmi,
1058                                     unsigned Reg) {
1059  MachineInstr *MI = &*mi;
1060  DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
1061  if (DI == DistanceMap.end())
1062    // Must be created from unfolded load. Don't waste time trying this.
1063    return false;
1064
1065  MachineInstr *KillMI = findLocalKill(Reg, MBB, mi, MRI, DistanceMap);
1066  if (!KillMI || KillMI->isCopy() || KillMI->isCopyLike())
1067    // Don't mess with copies, they may be coalesced later.
1068    return false;
1069
1070  unsigned DstReg;
1071  if (isTwoAddrUse(*KillMI, Reg, DstReg))
1072    return false;
1073
1074  bool SeenStore = true;
1075  if (!KillMI->isSafeToMove(TII, AA, SeenStore))
1076    return false;
1077
1078  SmallSet<unsigned, 2> Uses;
1079  SmallSet<unsigned, 2> Kills;
1080  SmallSet<unsigned, 2> Defs;
1081  SmallSet<unsigned, 2> LiveDefs;
1082  for (unsigned i = 0, e = KillMI->getNumOperands(); i != e; ++i) {
1083    const MachineOperand &MO = KillMI->getOperand(i);
1084    if (!MO.isReg())
1085      continue;
1086    unsigned MOReg = MO.getReg();
1087    if (MO.isUse()) {
1088      if (!MOReg)
1089        continue;
1090      if (isDefTooClose(MOReg, DI->second, MI, MBB))
1091        return false;
1092      Uses.insert(MOReg);
1093      if (MO.isKill() && MOReg != Reg)
1094        Kills.insert(MOReg);
1095    } else if (TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1096      Defs.insert(MOReg);
1097      if (!MO.isDead())
1098        LiveDefs.insert(MOReg);
1099    }
1100  }
1101
1102  // Check if the reschedule will not break depedencies.
1103  unsigned NumVisited = 0;
1104  MachineBasicBlock::iterator KillPos = KillMI;
1105  for (MachineBasicBlock::iterator I = mi; I != KillPos; ++I) {
1106    MachineInstr *OtherMI = I;
1107    // DBG_VALUE cannot be counted against the limit.
1108    if (OtherMI->isDebugValue())
1109      continue;
1110    if (NumVisited > 10)  // FIXME: Arbitrary limit to reduce compile time cost.
1111      return false;
1112    ++NumVisited;
1113    const MCInstrDesc &MCID = OtherMI->getDesc();
1114    if (MCID.hasUnmodeledSideEffects() || MCID.isCall() || MCID.isBranch() ||
1115        MCID.isTerminator())
1116      // Don't move pass calls, etc.
1117      return false;
1118    SmallVector<unsigned, 2> OtherDefs;
1119    for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
1120      const MachineOperand &MO = OtherMI->getOperand(i);
1121      if (!MO.isReg())
1122        continue;
1123      unsigned MOReg = MO.getReg();
1124      if (!MOReg)
1125        continue;
1126      if (MO.isUse()) {
1127        if (Defs.count(MOReg))
1128          // Moving KillMI can clobber the physical register if the def has
1129          // not been seen.
1130          return false;
1131        if (Kills.count(MOReg))
1132          // Don't want to extend other live ranges and update kills.
1133          return false;
1134      } else {
1135        OtherDefs.push_back(MOReg);
1136      }
1137    }
1138
1139    for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) {
1140      unsigned MOReg = OtherDefs[i];
1141      if (Uses.count(MOReg))
1142        return false;
1143      if (TargetRegisterInfo::isPhysicalRegister(MOReg) &&
1144          LiveDefs.count(MOReg))
1145        return false;
1146      // Physical register def is seen.
1147      Defs.erase(MOReg);
1148    }
1149  }
1150
1151  // Move the old kill above MI, don't forget to move debug info as well.
1152  MachineBasicBlock::iterator InsertPos = mi;
1153  while (InsertPos != MBB->begin() && llvm::prior(InsertPos)->isDebugValue())
1154    --InsertPos;
1155  MachineBasicBlock::iterator From = KillMI;
1156  MachineBasicBlock::iterator To = llvm::next(From);
1157  while (llvm::prior(From)->isDebugValue())
1158    --From;
1159  MBB->splice(InsertPos, MBB, From, To);
1160
1161  nmi = llvm::prior(InsertPos); // Backtrack so we process the moved instr.
1162  DistanceMap.erase(DI);
1163
1164  if (LV) {
1165    // Update live variables
1166    LV->removeVirtualRegisterKilled(Reg, KillMI);
1167    LV->addVirtualRegisterKilled(Reg, MI);
1168  } else {
1169    for (unsigned i = 0, e = KillMI->getNumOperands(); i != e; ++i) {
1170      MachineOperand &MO = KillMI->getOperand(i);
1171      if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
1172        continue;
1173      MO.setIsKill(false);
1174    }
1175    MI->addRegisterKilled(Reg, 0);
1176  }
1177  return true;
1178}
1179
1180/// TryInstructionTransform - For the case where an instruction has a single
1181/// pair of tied register operands, attempt some transformations that may
1182/// either eliminate the tied operands or improve the opportunities for
1183/// coalescing away the register copy.  Returns true if the tied operands
1184/// are eliminated altogether.
1185bool TwoAddressInstructionPass::
1186TryInstructionTransform(MachineBasicBlock::iterator &mi,
1187                        MachineBasicBlock::iterator &nmi,
1188                        MachineFunction::iterator &mbbi,
1189                        unsigned SrcIdx, unsigned DstIdx, unsigned Dist,
1190                        SmallPtrSet<MachineInstr*, 8> &Processed) {
1191  MachineInstr &MI = *mi;
1192  const MCInstrDesc &MCID = MI.getDesc();
1193  unsigned regA = MI.getOperand(DstIdx).getReg();
1194  unsigned regB = MI.getOperand(SrcIdx).getReg();
1195
1196  assert(TargetRegisterInfo::isVirtualRegister(regB) &&
1197         "cannot make instruction into two-address form");
1198
1199  // If regA is dead and the instruction can be deleted, just delete
1200  // it so it doesn't clobber regB.
1201  bool regBKilled = isKilled(MI, regB, MRI, TII);
1202  if (!regBKilled && MI.getOperand(DstIdx).isDead() &&
1203      DeleteUnusedInstr(mi, nmi, mbbi, Dist)) {
1204    ++NumDeletes;
1205    return true; // Done with this instruction.
1206  }
1207
1208  // Check if it is profitable to commute the operands.
1209  unsigned SrcOp1, SrcOp2;
1210  unsigned regC = 0;
1211  unsigned regCIdx = ~0U;
1212  bool TryCommute = false;
1213  bool AggressiveCommute = false;
1214  if (MCID.isCommutable() && MI.getNumOperands() >= 3 &&
1215      TII->findCommutedOpIndices(&MI, SrcOp1, SrcOp2)) {
1216    if (SrcIdx == SrcOp1)
1217      regCIdx = SrcOp2;
1218    else if (SrcIdx == SrcOp2)
1219      regCIdx = SrcOp1;
1220
1221    if (regCIdx != ~0U) {
1222      regC = MI.getOperand(regCIdx).getReg();
1223      if (!regBKilled && isKilled(MI, regC, MRI, TII))
1224        // If C dies but B does not, swap the B and C operands.
1225        // This makes the live ranges of A and C joinable.
1226        TryCommute = true;
1227      else if (isProfitableToCommute(regB, regC, &MI, mbbi, Dist)) {
1228        TryCommute = true;
1229        AggressiveCommute = true;
1230      }
1231    }
1232  }
1233
1234  // If it's profitable to commute, try to do so.
1235  if (TryCommute && CommuteInstruction(mi, mbbi, regB, regC, Dist)) {
1236    ++NumCommuted;
1237    if (AggressiveCommute)
1238      ++NumAggrCommuted;
1239    return false;
1240  }
1241
1242  // If there is one more use of regB later in the same MBB, consider
1243  // re-schedule this MI below it.
1244  if (RescheduleMIBelowKill(mbbi, mi, nmi, regB)) {
1245    ++NumReSchedDowns;
1246    return true;
1247  }
1248
1249  if (TargetRegisterInfo::isVirtualRegister(regA))
1250    ScanUses(regA, &*mbbi, Processed);
1251
1252  if (MCID.isConvertibleTo3Addr()) {
1253    // This instruction is potentially convertible to a true
1254    // three-address instruction.  Check if it is profitable.
1255    if (!regBKilled || isProfitableToConv3Addr(regA, regB)) {
1256      // Try to convert it.
1257      if (ConvertInstTo3Addr(mi, nmi, mbbi, regA, regB, Dist)) {
1258        ++NumConvertedTo3Addr;
1259        return true; // Done with this instruction.
1260      }
1261    }
1262  }
1263
1264  // If there is one more use of regB later in the same MBB, consider
1265  // re-schedule it before this MI if it's legal.
1266  if (RescheduleKillAboveMI(mbbi, mi, nmi, regB)) {
1267    ++NumReSchedUps;
1268    return true;
1269  }
1270
1271  // If this is an instruction with a load folded into it, try unfolding
1272  // the load, e.g. avoid this:
1273  //   movq %rdx, %rcx
1274  //   addq (%rax), %rcx
1275  // in favor of this:
1276  //   movq (%rax), %rcx
1277  //   addq %rdx, %rcx
1278  // because it's preferable to schedule a load than a register copy.
1279  if (MCID.mayLoad() && !regBKilled) {
1280    // Determine if a load can be unfolded.
1281    unsigned LoadRegIndex;
1282    unsigned NewOpc =
1283      TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
1284                                      /*UnfoldLoad=*/true,
1285                                      /*UnfoldStore=*/false,
1286                                      &LoadRegIndex);
1287    if (NewOpc != 0) {
1288      const MCInstrDesc &UnfoldMCID = TII->get(NewOpc);
1289      if (UnfoldMCID.getNumDefs() == 1) {
1290        MachineFunction &MF = *mbbi->getParent();
1291
1292        // Unfold the load.
1293        DEBUG(dbgs() << "2addr:   UNFOLDING: " << MI);
1294        const TargetRegisterClass *RC =
1295          TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI);
1296        unsigned Reg = MRI->createVirtualRegister(RC);
1297        SmallVector<MachineInstr *, 2> NewMIs;
1298        if (!TII->unfoldMemoryOperand(MF, &MI, Reg,
1299                                      /*UnfoldLoad=*/true,/*UnfoldStore=*/false,
1300                                      NewMIs)) {
1301          DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1302          return false;
1303        }
1304        assert(NewMIs.size() == 2 &&
1305               "Unfolded a load into multiple instructions!");
1306        // The load was previously folded, so this is the only use.
1307        NewMIs[1]->addRegisterKilled(Reg, TRI);
1308
1309        // Tentatively insert the instructions into the block so that they
1310        // look "normal" to the transformation logic.
1311        mbbi->insert(mi, NewMIs[0]);
1312        mbbi->insert(mi, NewMIs[1]);
1313
1314        DEBUG(dbgs() << "2addr:    NEW LOAD: " << *NewMIs[0]
1315                     << "2addr:    NEW INST: " << *NewMIs[1]);
1316
1317        // Transform the instruction, now that it no longer has a load.
1318        unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA);
1319        unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB);
1320        MachineBasicBlock::iterator NewMI = NewMIs[1];
1321        bool TransformSuccess =
1322          TryInstructionTransform(NewMI, mi, mbbi,
1323                                  NewSrcIdx, NewDstIdx, Dist, Processed);
1324        if (TransformSuccess ||
1325            NewMIs[1]->getOperand(NewSrcIdx).isKill()) {
1326          // Success, or at least we made an improvement. Keep the unfolded
1327          // instructions and discard the original.
1328          if (LV) {
1329            for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1330              MachineOperand &MO = MI.getOperand(i);
1331              if (MO.isReg() &&
1332                  TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
1333                if (MO.isUse()) {
1334                  if (MO.isKill()) {
1335                    if (NewMIs[0]->killsRegister(MO.getReg()))
1336                      LV->replaceKillInstruction(MO.getReg(), &MI, NewMIs[0]);
1337                    else {
1338                      assert(NewMIs[1]->killsRegister(MO.getReg()) &&
1339                             "Kill missing after load unfold!");
1340                      LV->replaceKillInstruction(MO.getReg(), &MI, NewMIs[1]);
1341                    }
1342                  }
1343                } else if (LV->removeVirtualRegisterDead(MO.getReg(), &MI)) {
1344                  if (NewMIs[1]->registerDefIsDead(MO.getReg()))
1345                    LV->addVirtualRegisterDead(MO.getReg(), NewMIs[1]);
1346                  else {
1347                    assert(NewMIs[0]->registerDefIsDead(MO.getReg()) &&
1348                           "Dead flag missing after load unfold!");
1349                    LV->addVirtualRegisterDead(MO.getReg(), NewMIs[0]);
1350                  }
1351                }
1352              }
1353            }
1354            LV->addVirtualRegisterKilled(Reg, NewMIs[1]);
1355          }
1356          MI.eraseFromParent();
1357          mi = NewMIs[1];
1358          if (TransformSuccess)
1359            return true;
1360        } else {
1361          // Transforming didn't eliminate the tie and didn't lead to an
1362          // improvement. Clean up the unfolded instructions and keep the
1363          // original.
1364          DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1365          NewMIs[0]->eraseFromParent();
1366          NewMIs[1]->eraseFromParent();
1367        }
1368      }
1369    }
1370  }
1371
1372  return false;
1373}
1374
1375/// runOnMachineFunction - Reduce two-address instructions to two operands.
1376///
1377bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
1378  DEBUG(dbgs() << "Machine Function\n");
1379  const TargetMachine &TM = MF.getTarget();
1380  MRI = &MF.getRegInfo();
1381  TII = TM.getInstrInfo();
1382  TRI = TM.getRegisterInfo();
1383  InstrItins = TM.getInstrItineraryData();
1384  LV = getAnalysisIfAvailable<LiveVariables>();
1385  AA = &getAnalysis<AliasAnalysis>();
1386
1387  bool MadeChange = false;
1388
1389  DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
1390  DEBUG(dbgs() << "********** Function: "
1391        << MF.getFunction()->getName() << '\n');
1392
1393  // This pass takes the function out of SSA form.
1394  MRI->leaveSSA();
1395
1396  // ReMatRegs - Keep track of the registers whose def's are remat'ed.
1397  BitVector ReMatRegs(MRI->getNumVirtRegs());
1398
1399  typedef DenseMap<unsigned, SmallVector<std::pair<unsigned, unsigned>, 4> >
1400    TiedOperandMap;
1401  TiedOperandMap TiedOperands(4);
1402
1403  SmallPtrSet<MachineInstr*, 8> Processed;
1404  for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end();
1405       mbbi != mbbe; ++mbbi) {
1406    unsigned Dist = 0;
1407    DistanceMap.clear();
1408    SrcRegMap.clear();
1409    DstRegMap.clear();
1410    Processed.clear();
1411    for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end();
1412         mi != me; ) {
1413      MachineBasicBlock::iterator nmi = llvm::next(mi);
1414      if (mi->isDebugValue()) {
1415        mi = nmi;
1416        continue;
1417      }
1418
1419      // Remember REG_SEQUENCE instructions, we'll deal with them later.
1420      if (mi->isRegSequence())
1421        RegSequences.push_back(&*mi);
1422
1423      const MCInstrDesc &MCID = mi->getDesc();
1424      bool FirstTied = true;
1425
1426      DistanceMap.insert(std::make_pair(mi, ++Dist));
1427
1428      ProcessCopy(&*mi, &*mbbi, Processed);
1429
1430      // First scan through all the tied register uses in this instruction
1431      // and record a list of pairs of tied operands for each register.
1432      unsigned NumOps = mi->isInlineAsm()
1433        ? mi->getNumOperands() : MCID.getNumOperands();
1434      for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) {
1435        unsigned DstIdx = 0;
1436        if (!mi->isRegTiedToDefOperand(SrcIdx, &DstIdx))
1437          continue;
1438
1439        if (FirstTied) {
1440          FirstTied = false;
1441          ++NumTwoAddressInstrs;
1442          DEBUG(dbgs() << '\t' << *mi);
1443        }
1444
1445        assert(mi->getOperand(SrcIdx).isReg() &&
1446               mi->getOperand(SrcIdx).getReg() &&
1447               mi->getOperand(SrcIdx).isUse() &&
1448               "two address instruction invalid");
1449
1450        unsigned regB = mi->getOperand(SrcIdx).getReg();
1451        TiedOperands[regB].push_back(std::make_pair(SrcIdx, DstIdx));
1452      }
1453
1454      // Now iterate over the information collected above.
1455      for (TiedOperandMap::iterator OI = TiedOperands.begin(),
1456             OE = TiedOperands.end(); OI != OE; ++OI) {
1457        SmallVector<std::pair<unsigned, unsigned>, 4> &TiedPairs = OI->second;
1458
1459        // If the instruction has a single pair of tied operands, try some
1460        // transformations that may either eliminate the tied operands or
1461        // improve the opportunities for coalescing away the register copy.
1462        if (TiedOperands.size() == 1 && TiedPairs.size() == 1) {
1463          unsigned SrcIdx = TiedPairs[0].first;
1464          unsigned DstIdx = TiedPairs[0].second;
1465
1466          // If the registers are already equal, nothing needs to be done.
1467          if (mi->getOperand(SrcIdx).getReg() ==
1468              mi->getOperand(DstIdx).getReg())
1469            break; // Done with this instruction.
1470
1471          if (TryInstructionTransform(mi, nmi, mbbi, SrcIdx, DstIdx, Dist,
1472                                      Processed))
1473            break; // The tied operands have been eliminated.
1474        }
1475
1476        bool IsEarlyClobber = false;
1477        bool RemovedKillFlag = false;
1478        bool AllUsesCopied = true;
1479        unsigned LastCopiedReg = 0;
1480        unsigned regB = OI->first;
1481        for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
1482          unsigned SrcIdx = TiedPairs[tpi].first;
1483          unsigned DstIdx = TiedPairs[tpi].second;
1484
1485          const MachineOperand &DstMO = mi->getOperand(DstIdx);
1486          unsigned regA = DstMO.getReg();
1487          IsEarlyClobber |= DstMO.isEarlyClobber();
1488
1489          // Grab regB from the instruction because it may have changed if the
1490          // instruction was commuted.
1491          regB = mi->getOperand(SrcIdx).getReg();
1492
1493          if (regA == regB) {
1494            // The register is tied to multiple destinations (or else we would
1495            // not have continued this far), but this use of the register
1496            // already matches the tied destination.  Leave it.
1497            AllUsesCopied = false;
1498            continue;
1499          }
1500          LastCopiedReg = regA;
1501
1502          assert(TargetRegisterInfo::isVirtualRegister(regB) &&
1503                 "cannot make instruction into two-address form");
1504
1505#ifndef NDEBUG
1506          // First, verify that we don't have a use of "a" in the instruction
1507          // (a = b + a for example) because our transformation will not
1508          // work. This should never occur because we are in SSA form.
1509          for (unsigned i = 0; i != mi->getNumOperands(); ++i)
1510            assert(i == DstIdx ||
1511                   !mi->getOperand(i).isReg() ||
1512                   mi->getOperand(i).getReg() != regA);
1513#endif
1514
1515          // Emit a copy or rematerialize the definition.
1516          const TargetRegisterClass *rc = MRI->getRegClass(regB);
1517          MachineInstr *DefMI = MRI->getVRegDef(regB);
1518          // If it's safe and profitable, remat the definition instead of
1519          // copying it.
1520          if (DefMI &&
1521              DefMI->getDesc().isAsCheapAsAMove() &&
1522              DefMI->isSafeToReMat(TII, AA, regB) &&
1523              isProfitableToReMat(regB, rc, mi, DefMI, mbbi, Dist)){
1524            DEBUG(dbgs() << "2addr: REMATTING : " << *DefMI << "\n");
1525            unsigned regASubIdx = mi->getOperand(DstIdx).getSubReg();
1526            TII->reMaterialize(*mbbi, mi, regA, regASubIdx, DefMI, *TRI);
1527            ReMatRegs.set(TargetRegisterInfo::virtReg2Index(regB));
1528            ++NumReMats;
1529          } else {
1530            BuildMI(*mbbi, mi, mi->getDebugLoc(), TII->get(TargetOpcode::COPY),
1531                    regA).addReg(regB);
1532          }
1533
1534          MachineBasicBlock::iterator prevMI = prior(mi);
1535          // Update DistanceMap.
1536          DistanceMap.insert(std::make_pair(prevMI, Dist));
1537          DistanceMap[mi] = ++Dist;
1538
1539          DEBUG(dbgs() << "\t\tprepend:\t" << *prevMI);
1540
1541          MachineOperand &MO = mi->getOperand(SrcIdx);
1542          assert(MO.isReg() && MO.getReg() == regB && MO.isUse() &&
1543                 "inconsistent operand info for 2-reg pass");
1544          if (MO.isKill()) {
1545            MO.setIsKill(false);
1546            RemovedKillFlag = true;
1547          }
1548          MO.setReg(regA);
1549        }
1550
1551        if (AllUsesCopied) {
1552          if (!IsEarlyClobber) {
1553            // Replace other (un-tied) uses of regB with LastCopiedReg.
1554            for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
1555              MachineOperand &MO = mi->getOperand(i);
1556              if (MO.isReg() && MO.getReg() == regB && MO.isUse()) {
1557                if (MO.isKill()) {
1558                  MO.setIsKill(false);
1559                  RemovedKillFlag = true;
1560                }
1561                MO.setReg(LastCopiedReg);
1562              }
1563            }
1564          }
1565
1566          // Update live variables for regB.
1567          if (RemovedKillFlag && LV && LV->getVarInfo(regB).removeKill(mi))
1568            LV->addVirtualRegisterKilled(regB, prior(mi));
1569
1570        } else if (RemovedKillFlag) {
1571          // Some tied uses of regB matched their destination registers, so
1572          // regB is still used in this instruction, but a kill flag was
1573          // removed from a different tied use of regB, so now we need to add
1574          // a kill flag to one of the remaining uses of regB.
1575          for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
1576            MachineOperand &MO = mi->getOperand(i);
1577            if (MO.isReg() && MO.getReg() == regB && MO.isUse()) {
1578              MO.setIsKill(true);
1579              break;
1580            }
1581          }
1582        }
1583
1584        // Schedule the source copy / remat inserted to form two-address
1585        // instruction. FIXME: Does it matter the distance map may not be
1586        // accurate after it's scheduled?
1587        TII->scheduleTwoAddrSource(prior(mi), mi, *TRI);
1588
1589        MadeChange = true;
1590
1591        DEBUG(dbgs() << "\t\trewrite to:\t" << *mi);
1592      }
1593
1594      // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form.
1595      if (mi->isInsertSubreg()) {
1596        // From %reg = INSERT_SUBREG %reg, %subreg, subidx
1597        // To   %reg:subidx = COPY %subreg
1598        unsigned SubIdx = mi->getOperand(3).getImm();
1599        mi->RemoveOperand(3);
1600        assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx");
1601        mi->getOperand(0).setSubReg(SubIdx);
1602        mi->RemoveOperand(1);
1603        mi->setDesc(TII->get(TargetOpcode::COPY));
1604        DEBUG(dbgs() << "\t\tconvert to:\t" << *mi);
1605      }
1606
1607      // Clear TiedOperands here instead of at the top of the loop
1608      // since most instructions do not have tied operands.
1609      TiedOperands.clear();
1610      mi = nmi;
1611    }
1612  }
1613
1614  // Some remat'ed instructions are dead.
1615  for (int i = ReMatRegs.find_first(); i != -1; i = ReMatRegs.find_next(i)) {
1616    unsigned VReg = TargetRegisterInfo::index2VirtReg(i);
1617    if (MRI->use_nodbg_empty(VReg)) {
1618      MachineInstr *DefMI = MRI->getVRegDef(VReg);
1619      DefMI->eraseFromParent();
1620    }
1621  }
1622
1623  // Eliminate REG_SEQUENCE instructions. Their whole purpose was to preseve
1624  // SSA form. It's now safe to de-SSA.
1625  MadeChange |= EliminateRegSequences();
1626
1627  return MadeChange;
1628}
1629
1630static void UpdateRegSequenceSrcs(unsigned SrcReg,
1631                                  unsigned DstReg, unsigned SubIdx,
1632                                  MachineRegisterInfo *MRI,
1633                                  const TargetRegisterInfo &TRI) {
1634  for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(SrcReg),
1635         RE = MRI->reg_end(); RI != RE; ) {
1636    MachineOperand &MO = RI.getOperand();
1637    ++RI;
1638    MO.substVirtReg(DstReg, SubIdx, TRI);
1639  }
1640}
1641
1642/// CoalesceExtSubRegs - If a number of sources of the REG_SEQUENCE are
1643/// EXTRACT_SUBREG from the same register and to the same virtual register
1644/// with different sub-register indices, attempt to combine the
1645/// EXTRACT_SUBREGs and pre-coalesce them. e.g.
1646/// %reg1026<def> = VLDMQ %reg1025<kill>, 260, pred:14, pred:%reg0
1647/// %reg1029:6<def> = EXTRACT_SUBREG %reg1026, 6
1648/// %reg1029:5<def> = EXTRACT_SUBREG %reg1026<kill>, 5
1649/// Since D subregs 5, 6 can combine to a Q register, we can coalesce
1650/// reg1026 to reg1029.
1651void
1652TwoAddressInstructionPass::CoalesceExtSubRegs(SmallVector<unsigned,4> &Srcs,
1653                                              unsigned DstReg) {
1654  SmallSet<unsigned, 4> Seen;
1655  for (unsigned i = 0, e = Srcs.size(); i != e; ++i) {
1656    unsigned SrcReg = Srcs[i];
1657    if (!Seen.insert(SrcReg))
1658      continue;
1659
1660    // Check that the instructions are all in the same basic block.
1661    MachineInstr *SrcDefMI = MRI->getVRegDef(SrcReg);
1662    MachineInstr *DstDefMI = MRI->getVRegDef(DstReg);
1663    if (SrcDefMI->getParent() != DstDefMI->getParent())
1664      continue;
1665
1666    // If there are no other uses than copies which feed into
1667    // the reg_sequence, then we might be able to coalesce them.
1668    bool CanCoalesce = true;
1669    SmallVector<unsigned, 4> SrcSubIndices, DstSubIndices;
1670    for (MachineRegisterInfo::use_nodbg_iterator
1671           UI = MRI->use_nodbg_begin(SrcReg),
1672           UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
1673      MachineInstr *UseMI = &*UI;
1674      if (!UseMI->isCopy() || UseMI->getOperand(0).getReg() != DstReg) {
1675        CanCoalesce = false;
1676        break;
1677      }
1678      SrcSubIndices.push_back(UseMI->getOperand(1).getSubReg());
1679      DstSubIndices.push_back(UseMI->getOperand(0).getSubReg());
1680    }
1681
1682    if (!CanCoalesce || SrcSubIndices.size() < 2)
1683      continue;
1684
1685    // Check that the source subregisters can be combined.
1686    std::sort(SrcSubIndices.begin(), SrcSubIndices.end());
1687    unsigned NewSrcSubIdx = 0;
1688    if (!TRI->canCombineSubRegIndices(MRI->getRegClass(SrcReg), SrcSubIndices,
1689                                      NewSrcSubIdx))
1690      continue;
1691
1692    // Check that the destination subregisters can also be combined.
1693    std::sort(DstSubIndices.begin(), DstSubIndices.end());
1694    unsigned NewDstSubIdx = 0;
1695    if (!TRI->canCombineSubRegIndices(MRI->getRegClass(DstReg), DstSubIndices,
1696                                      NewDstSubIdx))
1697      continue;
1698
1699    // If neither source nor destination can be combined to the full register,
1700    // just give up.  This could be improved if it ever matters.
1701    if (NewSrcSubIdx != 0 && NewDstSubIdx != 0)
1702      continue;
1703
1704    // Now that we know that all the uses are extract_subregs and that those
1705    // subregs can somehow be combined, scan all the extract_subregs again to
1706    // make sure the subregs are in the right order and can be composed.
1707    MachineInstr *SomeMI = 0;
1708    CanCoalesce = true;
1709    for (MachineRegisterInfo::use_nodbg_iterator
1710           UI = MRI->use_nodbg_begin(SrcReg),
1711           UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
1712      MachineInstr *UseMI = &*UI;
1713      assert(UseMI->isCopy());
1714      unsigned DstSubIdx = UseMI->getOperand(0).getSubReg();
1715      unsigned SrcSubIdx = UseMI->getOperand(1).getSubReg();
1716      assert(DstSubIdx != 0 && "missing subreg from RegSequence elimination");
1717      if ((NewDstSubIdx == 0 &&
1718           TRI->composeSubRegIndices(NewSrcSubIdx, DstSubIdx) != SrcSubIdx) ||
1719          (NewSrcSubIdx == 0 &&
1720           TRI->composeSubRegIndices(NewDstSubIdx, SrcSubIdx) != DstSubIdx)) {
1721        CanCoalesce = false;
1722        break;
1723      }
1724      // Keep track of one of the uses.
1725      SomeMI = UseMI;
1726    }
1727    if (!CanCoalesce)
1728      continue;
1729
1730    // Insert a copy to replace the original.
1731    MachineInstr *CopyMI = BuildMI(*SomeMI->getParent(), SomeMI,
1732                                   SomeMI->getDebugLoc(),
1733                                   TII->get(TargetOpcode::COPY))
1734      .addReg(DstReg, RegState::Define, NewDstSubIdx)
1735      .addReg(SrcReg, 0, NewSrcSubIdx);
1736
1737    // Remove all the old extract instructions.
1738    for (MachineRegisterInfo::use_nodbg_iterator
1739           UI = MRI->use_nodbg_begin(SrcReg),
1740           UE = MRI->use_nodbg_end(); UI != UE; ) {
1741      MachineInstr *UseMI = &*UI;
1742      ++UI;
1743      if (UseMI == CopyMI)
1744        continue;
1745      assert(UseMI->isCopy());
1746      // Move any kills to the new copy or extract instruction.
1747      if (UseMI->getOperand(1).isKill()) {
1748        CopyMI->getOperand(1).setIsKill();
1749        if (LV)
1750          // Update live variables
1751          LV->replaceKillInstruction(SrcReg, UseMI, &*CopyMI);
1752      }
1753      UseMI->eraseFromParent();
1754    }
1755  }
1756}
1757
1758static bool HasOtherRegSequenceUses(unsigned Reg, MachineInstr *RegSeq,
1759                                    MachineRegisterInfo *MRI) {
1760  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg),
1761         UE = MRI->use_end(); UI != UE; ++UI) {
1762    MachineInstr *UseMI = &*UI;
1763    if (UseMI != RegSeq && UseMI->isRegSequence())
1764      return true;
1765  }
1766  return false;
1767}
1768
1769/// EliminateRegSequences - Eliminate REG_SEQUENCE instructions as part
1770/// of the de-ssa process. This replaces sources of REG_SEQUENCE as
1771/// sub-register references of the register defined by REG_SEQUENCE. e.g.
1772///
1773/// %reg1029<def>, %reg1030<def> = VLD1q16 %reg1024<kill>, ...
1774/// %reg1031<def> = REG_SEQUENCE %reg1029<kill>, 5, %reg1030<kill>, 6
1775/// =>
1776/// %reg1031:5<def>, %reg1031:6<def> = VLD1q16 %reg1024<kill>, ...
1777bool TwoAddressInstructionPass::EliminateRegSequences() {
1778  if (RegSequences.empty())
1779    return false;
1780
1781  for (unsigned i = 0, e = RegSequences.size(); i != e; ++i) {
1782    MachineInstr *MI = RegSequences[i];
1783    unsigned DstReg = MI->getOperand(0).getReg();
1784    if (MI->getOperand(0).getSubReg() ||
1785        TargetRegisterInfo::isPhysicalRegister(DstReg) ||
1786        !(MI->getNumOperands() & 1)) {
1787      DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI);
1788      llvm_unreachable(0);
1789    }
1790
1791    bool IsImpDef = true;
1792    SmallVector<unsigned, 4> RealSrcs;
1793    SmallSet<unsigned, 4> Seen;
1794    for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) {
1795      unsigned SrcReg = MI->getOperand(i).getReg();
1796      unsigned SubIdx = MI->getOperand(i+1).getImm();
1797      if (MI->getOperand(i).getSubReg() ||
1798          TargetRegisterInfo::isPhysicalRegister(SrcReg)) {
1799        DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI);
1800        llvm_unreachable(0);
1801      }
1802
1803      MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
1804      if (DefMI->isImplicitDef()) {
1805        DefMI->eraseFromParent();
1806        continue;
1807      }
1808      IsImpDef = false;
1809
1810      // Remember COPY sources. These might be candidate for coalescing.
1811      if (DefMI->isCopy() && DefMI->getOperand(1).getSubReg())
1812        RealSrcs.push_back(DefMI->getOperand(1).getReg());
1813
1814      bool isKill = MI->getOperand(i).isKill();
1815      if (!Seen.insert(SrcReg) || MI->getParent() != DefMI->getParent() ||
1816          !isKill || HasOtherRegSequenceUses(SrcReg, MI, MRI) ||
1817          !TRI->getMatchingSuperRegClass(MRI->getRegClass(DstReg),
1818                                         MRI->getRegClass(SrcReg), SubIdx)) {
1819        // REG_SEQUENCE cannot have duplicated operands, add a copy.
1820        // Also add an copy if the source is live-in the block. We don't want
1821        // to end up with a partial-redef of a livein, e.g.
1822        // BB0:
1823        // reg1051:10<def> =
1824        // ...
1825        // BB1:
1826        // ... = reg1051:10
1827        // BB2:
1828        // reg1051:9<def> =
1829        // LiveIntervalAnalysis won't like it.
1830        //
1831        // If the REG_SEQUENCE doesn't kill its source, keeping live variables
1832        // correctly up to date becomes very difficult. Insert a copy.
1833
1834        // Defer any kill flag to the last operand using SrcReg. Otherwise, we
1835        // might insert a COPY that uses SrcReg after is was killed.
1836        if (isKill)
1837          for (unsigned j = i + 2; j < e; j += 2)
1838            if (MI->getOperand(j).getReg() == SrcReg) {
1839              MI->getOperand(j).setIsKill();
1840              isKill = false;
1841              break;
1842            }
1843
1844        MachineBasicBlock::iterator InsertLoc = MI;
1845        MachineInstr *CopyMI = BuildMI(*MI->getParent(), InsertLoc,
1846                                MI->getDebugLoc(), TII->get(TargetOpcode::COPY))
1847            .addReg(DstReg, RegState::Define, SubIdx)
1848            .addReg(SrcReg, getKillRegState(isKill));
1849        MI->getOperand(i).setReg(0);
1850        if (LV && isKill)
1851          LV->replaceKillInstruction(SrcReg, MI, CopyMI);
1852        DEBUG(dbgs() << "Inserted: " << *CopyMI);
1853      }
1854    }
1855
1856    for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) {
1857      unsigned SrcReg = MI->getOperand(i).getReg();
1858      if (!SrcReg) continue;
1859      unsigned SubIdx = MI->getOperand(i+1).getImm();
1860      UpdateRegSequenceSrcs(SrcReg, DstReg, SubIdx, MRI, *TRI);
1861    }
1862
1863    if (IsImpDef) {
1864      DEBUG(dbgs() << "Turned: " << *MI << " into an IMPLICIT_DEF");
1865      MI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
1866      for (int j = MI->getNumOperands() - 1, ee = 0; j > ee; --j)
1867        MI->RemoveOperand(j);
1868    } else {
1869      DEBUG(dbgs() << "Eliminated: " << *MI);
1870      MI->eraseFromParent();
1871    }
1872
1873    // Try coalescing some EXTRACT_SUBREG instructions. This can create
1874    // INSERT_SUBREG instructions that must have <undef> flags added by
1875    // LiveIntervalAnalysis, so only run it when LiveVariables is available.
1876    if (LV)
1877      CoalesceExtSubRegs(RealSrcs, DstReg);
1878  }
1879
1880  RegSequences.clear();
1881  return true;
1882}
1883