TwoAddressInstructionPass.cpp revision a86bfc1071f7e05631e0af81e2c6249f552c9ec5
1//===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the TwoAddress instruction pass which is used
11// by most register allocators. Two-Address instructions are rewritten
12// from:
13//
14//     A = B op C
15//
16// to:
17//
18//     A = B
19//     A op= C
20//
21// Note that if a register allocator chooses to use this pass, that it
22// has to be capable of handling the non-SSA nature of these rewritten
23// virtual registers.
24//
25// It is also worth noting that the duplicate operand of the two
26// address instruction is removed.
27//
28//===----------------------------------------------------------------------===//
29
30#define DEBUG_TYPE "twoaddrinstr"
31#include "llvm/CodeGen/Passes.h"
32#include "llvm/Function.h"
33#include "llvm/CodeGen/LiveVariables.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineInstr.h"
36#include "llvm/CodeGen/MachineInstrBuilder.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/Analysis/AliasAnalysis.h"
39#include "llvm/MC/MCInstrItineraries.h"
40#include "llvm/Target/TargetRegisterInfo.h"
41#include "llvm/Target/TargetInstrInfo.h"
42#include "llvm/Target/TargetMachine.h"
43#include "llvm/Target/TargetOptions.h"
44#include "llvm/Support/Debug.h"
45#include "llvm/Support/ErrorHandling.h"
46#include "llvm/ADT/BitVector.h"
47#include "llvm/ADT/DenseMap.h"
48#include "llvm/ADT/SmallSet.h"
49#include "llvm/ADT/Statistic.h"
50#include "llvm/ADT/STLExtras.h"
51using namespace llvm;
52
53STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
54STATISTIC(NumCommuted        , "Number of instructions commuted to coalesce");
55STATISTIC(NumAggrCommuted    , "Number of instructions aggressively commuted");
56STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
57STATISTIC(Num3AddrSunk,        "Number of 3-address instructions sunk");
58STATISTIC(NumReMats,           "Number of instructions re-materialized");
59STATISTIC(NumDeletes,          "Number of dead instructions deleted");
60STATISTIC(NumReSchedUps,       "Number of instructions re-scheduled up");
61STATISTIC(NumReSchedDowns,     "Number of instructions re-scheduled down");
62
63namespace {
64  class TwoAddressInstructionPass : public MachineFunctionPass {
65    const TargetInstrInfo *TII;
66    const TargetRegisterInfo *TRI;
67    const InstrItineraryData *InstrItins;
68    MachineRegisterInfo *MRI;
69    LiveVariables *LV;
70    AliasAnalysis *AA;
71    CodeGenOpt::Level OptLevel;
72
73    // DistanceMap - Keep track the distance of a MI from the start of the
74    // current basic block.
75    DenseMap<MachineInstr*, unsigned> DistanceMap;
76
77    // SrcRegMap - A map from virtual registers to physical registers which
78    // are likely targets to be coalesced to due to copies from physical
79    // registers to virtual registers. e.g. v1024 = move r0.
80    DenseMap<unsigned, unsigned> SrcRegMap;
81
82    // DstRegMap - A map from virtual registers to physical registers which
83    // are likely targets to be coalesced to due to copies to physical
84    // registers from virtual registers. e.g. r1 = move v1024.
85    DenseMap<unsigned, unsigned> DstRegMap;
86
87    /// RegSequences - Keep track the list of REG_SEQUENCE instructions seen
88    /// during the initial walk of the machine function.
89    SmallVector<MachineInstr*, 16> RegSequences;
90
91    bool Sink3AddrInstruction(MachineBasicBlock *MBB, MachineInstr *MI,
92                              unsigned Reg,
93                              MachineBasicBlock::iterator OldPos);
94
95    bool isProfitableToReMat(unsigned Reg, const TargetRegisterClass *RC,
96                             MachineInstr *MI, MachineInstr *DefMI,
97                             MachineBasicBlock *MBB, unsigned Loc);
98
99    bool NoUseAfterLastDef(unsigned Reg, MachineBasicBlock *MBB, unsigned Dist,
100                           unsigned &LastDef);
101
102    MachineInstr *FindLastUseInMBB(unsigned Reg, MachineBasicBlock *MBB,
103                                   unsigned Dist);
104
105    bool isProfitableToCommute(unsigned regB, unsigned regC,
106                               MachineInstr *MI, MachineBasicBlock *MBB,
107                               unsigned Dist);
108
109    bool CommuteInstruction(MachineBasicBlock::iterator &mi,
110                            MachineFunction::iterator &mbbi,
111                            unsigned RegB, unsigned RegC, unsigned Dist);
112
113    bool isProfitableToConv3Addr(unsigned RegA, unsigned RegB);
114
115    bool ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
116                            MachineBasicBlock::iterator &nmi,
117                            MachineFunction::iterator &mbbi,
118                            unsigned RegA, unsigned RegB, unsigned Dist);
119
120    typedef std::pair<std::pair<unsigned, bool>, MachineInstr*> NewKill;
121    bool canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills,
122                               SmallVector<NewKill, 4> &NewKills,
123                               MachineBasicBlock *MBB, unsigned Dist);
124    bool DeleteUnusedInstr(MachineBasicBlock::iterator &mi,
125                           MachineBasicBlock::iterator &nmi,
126                           MachineFunction::iterator &mbbi, unsigned Dist);
127
128    bool isDefTooClose(unsigned Reg, unsigned Dist,
129                       MachineInstr *MI, MachineBasicBlock *MBB);
130
131    bool RescheduleMIBelowKill(MachineBasicBlock *MBB,
132                               MachineBasicBlock::iterator &mi,
133                               MachineBasicBlock::iterator &nmi,
134                               unsigned Reg);
135    bool RescheduleKillAboveMI(MachineBasicBlock *MBB,
136                               MachineBasicBlock::iterator &mi,
137                               MachineBasicBlock::iterator &nmi,
138                               unsigned Reg);
139
140    bool TryInstructionTransform(MachineBasicBlock::iterator &mi,
141                                 MachineBasicBlock::iterator &nmi,
142                                 MachineFunction::iterator &mbbi,
143                                 unsigned SrcIdx, unsigned DstIdx,
144                                 unsigned Dist,
145                                 SmallPtrSet<MachineInstr*, 8> &Processed);
146
147    void ScanUses(unsigned DstReg, MachineBasicBlock *MBB,
148                  SmallPtrSet<MachineInstr*, 8> &Processed);
149
150    void ProcessCopy(MachineInstr *MI, MachineBasicBlock *MBB,
151                     SmallPtrSet<MachineInstr*, 8> &Processed);
152
153    void CoalesceExtSubRegs(SmallVector<unsigned,4> &Srcs, unsigned DstReg);
154
155    /// EliminateRegSequences - Eliminate REG_SEQUENCE instructions as part
156    /// of the de-ssa process. This replaces sources of REG_SEQUENCE as
157    /// sub-register references of the register defined by REG_SEQUENCE.
158    bool EliminateRegSequences();
159
160  public:
161    static char ID; // Pass identification, replacement for typeid
162    TwoAddressInstructionPass() : MachineFunctionPass(ID) {
163      initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry());
164    }
165
166    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
167      AU.setPreservesCFG();
168      AU.addRequired<AliasAnalysis>();
169      AU.addPreserved<LiveVariables>();
170      AU.addPreservedID(MachineLoopInfoID);
171      AU.addPreservedID(MachineDominatorsID);
172      AU.addPreservedID(PHIEliminationID);
173      MachineFunctionPass::getAnalysisUsage(AU);
174    }
175
176    /// runOnMachineFunction - Pass entry point.
177    bool runOnMachineFunction(MachineFunction&);
178  };
179}
180
181char TwoAddressInstructionPass::ID = 0;
182INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, "twoaddressinstruction",
183                "Two-Address instruction pass", false, false)
184INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
185INITIALIZE_PASS_END(TwoAddressInstructionPass, "twoaddressinstruction",
186                "Two-Address instruction pass", false, false)
187
188char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID;
189
190/// Sink3AddrInstruction - A two-address instruction has been converted to a
191/// three-address instruction to avoid clobbering a register. Try to sink it
192/// past the instruction that would kill the above mentioned register to reduce
193/// register pressure.
194bool TwoAddressInstructionPass::Sink3AddrInstruction(MachineBasicBlock *MBB,
195                                           MachineInstr *MI, unsigned SavedReg,
196                                           MachineBasicBlock::iterator OldPos) {
197  // FIXME: Shouldn't we be trying to do this before we three-addressify the
198  // instruction?  After this transformation is done, we no longer need
199  // the instruction to be in three-address form.
200
201  // Check if it's safe to move this instruction.
202  bool SeenStore = true; // Be conservative.
203  if (!MI->isSafeToMove(TII, AA, SeenStore))
204    return false;
205
206  unsigned DefReg = 0;
207  SmallSet<unsigned, 4> UseRegs;
208
209  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
210    const MachineOperand &MO = MI->getOperand(i);
211    if (!MO.isReg())
212      continue;
213    unsigned MOReg = MO.getReg();
214    if (!MOReg)
215      continue;
216    if (MO.isUse() && MOReg != SavedReg)
217      UseRegs.insert(MO.getReg());
218    if (!MO.isDef())
219      continue;
220    if (MO.isImplicit())
221      // Don't try to move it if it implicitly defines a register.
222      return false;
223    if (DefReg)
224      // For now, don't move any instructions that define multiple registers.
225      return false;
226    DefReg = MO.getReg();
227  }
228
229  // Find the instruction that kills SavedReg.
230  MachineInstr *KillMI = NULL;
231  for (MachineRegisterInfo::use_nodbg_iterator
232         UI = MRI->use_nodbg_begin(SavedReg),
233         UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
234    MachineOperand &UseMO = UI.getOperand();
235    if (!UseMO.isKill())
236      continue;
237    KillMI = UseMO.getParent();
238    break;
239  }
240
241  // If we find the instruction that kills SavedReg, and it is in an
242  // appropriate location, we can try to sink the current instruction
243  // past it.
244  if (!KillMI || KillMI->getParent() != MBB || KillMI == MI ||
245      KillMI->getDesc().isTerminator())
246    return false;
247
248  // If any of the definitions are used by another instruction between the
249  // position and the kill use, then it's not safe to sink it.
250  //
251  // FIXME: This can be sped up if there is an easy way to query whether an
252  // instruction is before or after another instruction. Then we can use
253  // MachineRegisterInfo def / use instead.
254  MachineOperand *KillMO = NULL;
255  MachineBasicBlock::iterator KillPos = KillMI;
256  ++KillPos;
257
258  unsigned NumVisited = 0;
259  for (MachineBasicBlock::iterator I = llvm::next(OldPos); I != KillPos; ++I) {
260    MachineInstr *OtherMI = I;
261    // DBG_VALUE cannot be counted against the limit.
262    if (OtherMI->isDebugValue())
263      continue;
264    if (NumVisited > 30)  // FIXME: Arbitrary limit to reduce compile time cost.
265      return false;
266    ++NumVisited;
267    for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
268      MachineOperand &MO = OtherMI->getOperand(i);
269      if (!MO.isReg())
270        continue;
271      unsigned MOReg = MO.getReg();
272      if (!MOReg)
273        continue;
274      if (DefReg == MOReg)
275        return false;
276
277      if (MO.isKill()) {
278        if (OtherMI == KillMI && MOReg == SavedReg)
279          // Save the operand that kills the register. We want to unset the kill
280          // marker if we can sink MI past it.
281          KillMO = &MO;
282        else if (UseRegs.count(MOReg))
283          // One of the uses is killed before the destination.
284          return false;
285      }
286    }
287  }
288
289  // Update kill and LV information.
290  KillMO->setIsKill(false);
291  KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
292  KillMO->setIsKill(true);
293
294  if (LV)
295    LV->replaceKillInstruction(SavedReg, KillMI, MI);
296
297  // Move instruction to its destination.
298  MBB->remove(MI);
299  MBB->insert(KillPos, MI);
300
301  ++Num3AddrSunk;
302  return true;
303}
304
305/// isTwoAddrUse - Return true if the specified MI is using the specified
306/// register as a two-address operand.
307static bool isTwoAddrUse(MachineInstr *UseMI, unsigned Reg) {
308  const MCInstrDesc &MCID = UseMI->getDesc();
309  for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) {
310    MachineOperand &MO = UseMI->getOperand(i);
311    if (MO.isReg() && MO.getReg() == Reg &&
312        (MO.isDef() || UseMI->isRegTiedToDefOperand(i)))
313      // Earlier use is a two-address one.
314      return true;
315  }
316  return false;
317}
318
319/// isProfitableToReMat - Return true if the heuristics determines it is likely
320/// to be profitable to re-materialize the definition of Reg rather than copy
321/// the register.
322bool
323TwoAddressInstructionPass::isProfitableToReMat(unsigned Reg,
324                                         const TargetRegisterClass *RC,
325                                         MachineInstr *MI, MachineInstr *DefMI,
326                                         MachineBasicBlock *MBB, unsigned Loc) {
327  bool OtherUse = false;
328  for (MachineRegisterInfo::use_nodbg_iterator UI = MRI->use_nodbg_begin(Reg),
329         UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
330    MachineOperand &UseMO = UI.getOperand();
331    MachineInstr *UseMI = UseMO.getParent();
332    MachineBasicBlock *UseMBB = UseMI->getParent();
333    if (UseMBB == MBB) {
334      DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
335      if (DI != DistanceMap.end() && DI->second == Loc)
336        continue;  // Current use.
337      OtherUse = true;
338      // There is at least one other use in the MBB that will clobber the
339      // register.
340      if (isTwoAddrUse(UseMI, Reg))
341        return true;
342    }
343  }
344
345  // If other uses in MBB are not two-address uses, then don't remat.
346  if (OtherUse)
347    return false;
348
349  // No other uses in the same block, remat if it's defined in the same
350  // block so it does not unnecessarily extend the live range.
351  return MBB == DefMI->getParent();
352}
353
354/// NoUseAfterLastDef - Return true if there are no intervening uses between the
355/// last instruction in the MBB that defines the specified register and the
356/// two-address instruction which is being processed. It also returns the last
357/// def location by reference
358bool TwoAddressInstructionPass::NoUseAfterLastDef(unsigned Reg,
359                                           MachineBasicBlock *MBB, unsigned Dist,
360                                           unsigned &LastDef) {
361  LastDef = 0;
362  unsigned LastUse = Dist;
363  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
364         E = MRI->reg_end(); I != E; ++I) {
365    MachineOperand &MO = I.getOperand();
366    MachineInstr *MI = MO.getParent();
367    if (MI->getParent() != MBB || MI->isDebugValue())
368      continue;
369    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
370    if (DI == DistanceMap.end())
371      continue;
372    if (MO.isUse() && DI->second < LastUse)
373      LastUse = DI->second;
374    if (MO.isDef() && DI->second > LastDef)
375      LastDef = DI->second;
376  }
377
378  return !(LastUse > LastDef && LastUse < Dist);
379}
380
381MachineInstr *TwoAddressInstructionPass::FindLastUseInMBB(unsigned Reg,
382                                                         MachineBasicBlock *MBB,
383                                                         unsigned Dist) {
384  unsigned LastUseDist = 0;
385  MachineInstr *LastUse = 0;
386  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
387         E = MRI->reg_end(); I != E; ++I) {
388    MachineOperand &MO = I.getOperand();
389    MachineInstr *MI = MO.getParent();
390    if (MI->getParent() != MBB || MI->isDebugValue())
391      continue;
392    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
393    if (DI == DistanceMap.end())
394      continue;
395    if (DI->second >= Dist)
396      continue;
397
398    if (MO.isUse() && DI->second > LastUseDist) {
399      LastUse = DI->first;
400      LastUseDist = DI->second;
401    }
402  }
403  return LastUse;
404}
405
406/// isCopyToReg - Return true if the specified MI is a copy instruction or
407/// a extract_subreg instruction. It also returns the source and destination
408/// registers and whether they are physical registers by reference.
409static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII,
410                        unsigned &SrcReg, unsigned &DstReg,
411                        bool &IsSrcPhys, bool &IsDstPhys) {
412  SrcReg = 0;
413  DstReg = 0;
414  if (MI.isCopy()) {
415    DstReg = MI.getOperand(0).getReg();
416    SrcReg = MI.getOperand(1).getReg();
417  } else if (MI.isInsertSubreg() || MI.isSubregToReg()) {
418    DstReg = MI.getOperand(0).getReg();
419    SrcReg = MI.getOperand(2).getReg();
420  } else
421    return false;
422
423  IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
424  IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
425  return true;
426}
427
428/// isKilled - Test if the given register value, which is used by the given
429/// instruction, is killed by the given instruction. This looks through
430/// coalescable copies to see if the original value is potentially not killed.
431///
432/// For example, in this code:
433///
434///   %reg1034 = copy %reg1024
435///   %reg1035 = copy %reg1025<kill>
436///   %reg1036 = add %reg1034<kill>, %reg1035<kill>
437///
438/// %reg1034 is not considered to be killed, since it is copied from a
439/// register which is not killed. Treating it as not killed lets the
440/// normal heuristics commute the (two-address) add, which lets
441/// coalescing eliminate the extra copy.
442///
443static bool isKilled(MachineInstr &MI, unsigned Reg,
444                     const MachineRegisterInfo *MRI,
445                     const TargetInstrInfo *TII) {
446  MachineInstr *DefMI = &MI;
447  for (;;) {
448    if (!DefMI->killsRegister(Reg))
449      return false;
450    if (TargetRegisterInfo::isPhysicalRegister(Reg))
451      return true;
452    MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg);
453    // If there are multiple defs, we can't do a simple analysis, so just
454    // go with what the kill flag says.
455    if (llvm::next(Begin) != MRI->def_end())
456      return true;
457    DefMI = &*Begin;
458    bool IsSrcPhys, IsDstPhys;
459    unsigned SrcReg,  DstReg;
460    // If the def is something other than a copy, then it isn't going to
461    // be coalesced, so follow the kill flag.
462    if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
463      return true;
464    Reg = SrcReg;
465  }
466}
467
468/// isTwoAddrUse - Return true if the specified MI uses the specified register
469/// as a two-address use. If so, return the destination register by reference.
470static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) {
471  const MCInstrDesc &MCID = MI.getDesc();
472  unsigned NumOps = MI.isInlineAsm()
473    ? MI.getNumOperands() : MCID.getNumOperands();
474  for (unsigned i = 0; i != NumOps; ++i) {
475    const MachineOperand &MO = MI.getOperand(i);
476    if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
477      continue;
478    unsigned ti;
479    if (MI.isRegTiedToDefOperand(i, &ti)) {
480      DstReg = MI.getOperand(ti).getReg();
481      return true;
482    }
483  }
484  return false;
485}
486
487/// findLocalKill - Look for an instruction below MI in the MBB that kills the
488/// specified register. Returns null if there are any other Reg use between the
489/// instructions.
490static
491MachineInstr *findLocalKill(unsigned Reg, MachineBasicBlock *MBB,
492                            MachineInstr *MI, MachineRegisterInfo *MRI,
493                            DenseMap<MachineInstr*, unsigned> &DistanceMap) {
494  MachineInstr *KillMI = 0;
495  for (MachineRegisterInfo::use_nodbg_iterator
496         UI = MRI->use_nodbg_begin(Reg),
497         UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
498    MachineInstr *UseMI = &*UI;
499    if (UseMI == MI || UseMI->getParent() != MBB)
500      continue;
501    if (DistanceMap.count(UseMI))
502      continue;
503    if (!UI.getOperand().isKill())
504      return 0;
505    if (KillMI)
506      return 0;  // -O0 kill markers cannot be trusted?
507    KillMI = UseMI;
508  }
509
510  return KillMI;
511}
512
513/// findOnlyInterestingUse - Given a register, if has a single in-basic block
514/// use, return the use instruction if it's a copy or a two-address use.
515static
516MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB,
517                                     MachineRegisterInfo *MRI,
518                                     const TargetInstrInfo *TII,
519                                     bool &IsCopy,
520                                     unsigned &DstReg, bool &IsDstPhys) {
521  if (!MRI->hasOneNonDBGUse(Reg))
522    // None or more than one use.
523    return 0;
524  MachineInstr &UseMI = *MRI->use_nodbg_begin(Reg);
525  if (UseMI.getParent() != MBB)
526    return 0;
527  unsigned SrcReg;
528  bool IsSrcPhys;
529  if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
530    IsCopy = true;
531    return &UseMI;
532  }
533  IsDstPhys = false;
534  if (isTwoAddrUse(UseMI, Reg, DstReg)) {
535    IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
536    return &UseMI;
537  }
538  return 0;
539}
540
541/// getMappedReg - Return the physical register the specified virtual register
542/// might be mapped to.
543static unsigned
544getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) {
545  while (TargetRegisterInfo::isVirtualRegister(Reg))  {
546    DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg);
547    if (SI == RegMap.end())
548      return 0;
549    Reg = SI->second;
550  }
551  if (TargetRegisterInfo::isPhysicalRegister(Reg))
552    return Reg;
553  return 0;
554}
555
556/// regsAreCompatible - Return true if the two registers are equal or aliased.
557///
558static bool
559regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) {
560  if (RegA == RegB)
561    return true;
562  if (!RegA || !RegB)
563    return false;
564  return TRI->regsOverlap(RegA, RegB);
565}
566
567
568/// isProfitableToReMat - Return true if it's potentially profitable to commute
569/// the two-address instruction that's being processed.
570bool
571TwoAddressInstructionPass::isProfitableToCommute(unsigned regB, unsigned regC,
572                                       MachineInstr *MI, MachineBasicBlock *MBB,
573                                       unsigned Dist) {
574  if (OptLevel == CodeGenOpt::None)
575    return false;
576
577  // Determine if it's profitable to commute this two address instruction. In
578  // general, we want no uses between this instruction and the definition of
579  // the two-address register.
580  // e.g.
581  // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
582  // %reg1029<def> = MOV8rr %reg1028
583  // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
584  // insert => %reg1030<def> = MOV8rr %reg1028
585  // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
586  // In this case, it might not be possible to coalesce the second MOV8rr
587  // instruction if the first one is coalesced. So it would be profitable to
588  // commute it:
589  // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
590  // %reg1029<def> = MOV8rr %reg1028
591  // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
592  // insert => %reg1030<def> = MOV8rr %reg1029
593  // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead>
594
595  if (!MI->killsRegister(regC))
596    return false;
597
598  // Ok, we have something like:
599  // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
600  // let's see if it's worth commuting it.
601
602  // Look for situations like this:
603  // %reg1024<def> = MOV r1
604  // %reg1025<def> = MOV r0
605  // %reg1026<def> = ADD %reg1024, %reg1025
606  // r0            = MOV %reg1026
607  // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
608  unsigned FromRegB = getMappedReg(regB, SrcRegMap);
609  unsigned FromRegC = getMappedReg(regC, SrcRegMap);
610  unsigned ToRegB = getMappedReg(regB, DstRegMap);
611  unsigned ToRegC = getMappedReg(regC, DstRegMap);
612  if ((FromRegB && ToRegB && !regsAreCompatible(FromRegB, ToRegB, TRI)) &&
613      ((!FromRegC && !ToRegC) ||
614       regsAreCompatible(FromRegB, ToRegC, TRI) ||
615       regsAreCompatible(FromRegC, ToRegB, TRI)))
616    return true;
617
618  // If there is a use of regC between its last def (could be livein) and this
619  // instruction, then bail.
620  unsigned LastDefC = 0;
621  if (!NoUseAfterLastDef(regC, MBB, Dist, LastDefC))
622    return false;
623
624  // If there is a use of regB between its last def (could be livein) and this
625  // instruction, then go ahead and make this transformation.
626  unsigned LastDefB = 0;
627  if (!NoUseAfterLastDef(regB, MBB, Dist, LastDefB))
628    return true;
629
630  // Since there are no intervening uses for both registers, then commute
631  // if the def of regC is closer. Its live interval is shorter.
632  return LastDefB && LastDefC && LastDefC > LastDefB;
633}
634
635/// CommuteInstruction - Commute a two-address instruction and update the basic
636/// block, distance map, and live variables if needed. Return true if it is
637/// successful.
638bool
639TwoAddressInstructionPass::CommuteInstruction(MachineBasicBlock::iterator &mi,
640                               MachineFunction::iterator &mbbi,
641                               unsigned RegB, unsigned RegC, unsigned Dist) {
642  MachineInstr *MI = mi;
643  DEBUG(dbgs() << "2addr: COMMUTING  : " << *MI);
644  MachineInstr *NewMI = TII->commuteInstruction(MI);
645
646  if (NewMI == 0) {
647    DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n");
648    return false;
649  }
650
651  DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI);
652  // If the instruction changed to commute it, update livevar.
653  if (NewMI != MI) {
654    if (LV)
655      // Update live variables
656      LV->replaceKillInstruction(RegC, MI, NewMI);
657
658    mbbi->insert(mi, NewMI);           // Insert the new inst
659    mbbi->erase(mi);                   // Nuke the old inst.
660    mi = NewMI;
661    DistanceMap.insert(std::make_pair(NewMI, Dist));
662  }
663
664  // Update source register map.
665  unsigned FromRegC = getMappedReg(RegC, SrcRegMap);
666  if (FromRegC) {
667    unsigned RegA = MI->getOperand(0).getReg();
668    SrcRegMap[RegA] = FromRegC;
669  }
670
671  return true;
672}
673
674/// isProfitableToConv3Addr - Return true if it is profitable to convert the
675/// given 2-address instruction to a 3-address one.
676bool
677TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA,unsigned RegB){
678  // Look for situations like this:
679  // %reg1024<def> = MOV r1
680  // %reg1025<def> = MOV r0
681  // %reg1026<def> = ADD %reg1024, %reg1025
682  // r2            = MOV %reg1026
683  // Turn ADD into a 3-address instruction to avoid a copy.
684  unsigned FromRegB = getMappedReg(RegB, SrcRegMap);
685  if (!FromRegB)
686    return false;
687  unsigned ToRegA = getMappedReg(RegA, DstRegMap);
688  return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI));
689}
690
691/// ConvertInstTo3Addr - Convert the specified two-address instruction into a
692/// three address one. Return true if this transformation was successful.
693bool
694TwoAddressInstructionPass::ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
695                                              MachineBasicBlock::iterator &nmi,
696                                              MachineFunction::iterator &mbbi,
697                                              unsigned RegA, unsigned RegB,
698                                              unsigned Dist) {
699  MachineInstr *NewMI = TII->convertToThreeAddress(mbbi, mi, LV);
700  if (NewMI) {
701    DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi);
702    DEBUG(dbgs() << "2addr:         TO 3-ADDR: " << *NewMI);
703    bool Sunk = false;
704
705    if (NewMI->findRegisterUseOperand(RegB, false, TRI))
706      // FIXME: Temporary workaround. If the new instruction doesn't
707      // uses RegB, convertToThreeAddress must have created more
708      // then one instruction.
709      Sunk = Sink3AddrInstruction(mbbi, NewMI, RegB, mi);
710
711    mbbi->erase(mi); // Nuke the old inst.
712
713    if (!Sunk) {
714      DistanceMap.insert(std::make_pair(NewMI, Dist));
715      mi = NewMI;
716      nmi = llvm::next(mi);
717    }
718
719    // Update source and destination register maps.
720    SrcRegMap.erase(RegA);
721    DstRegMap.erase(RegB);
722    return true;
723  }
724
725  return false;
726}
727
728/// ScanUses - Scan forward recursively for only uses, update maps if the use
729/// is a copy or a two-address instruction.
730void
731TwoAddressInstructionPass::ScanUses(unsigned DstReg, MachineBasicBlock *MBB,
732                                    SmallPtrSet<MachineInstr*, 8> &Processed) {
733  SmallVector<unsigned, 4> VirtRegPairs;
734  bool IsDstPhys;
735  bool IsCopy = false;
736  unsigned NewReg = 0;
737  unsigned Reg = DstReg;
738  while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy,
739                                                      NewReg, IsDstPhys)) {
740    if (IsCopy && !Processed.insert(UseMI))
741      break;
742
743    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
744    if (DI != DistanceMap.end())
745      // Earlier in the same MBB.Reached via a back edge.
746      break;
747
748    if (IsDstPhys) {
749      VirtRegPairs.push_back(NewReg);
750      break;
751    }
752    bool isNew = SrcRegMap.insert(std::make_pair(NewReg, Reg)).second;
753    if (!isNew)
754      assert(SrcRegMap[NewReg] == Reg && "Can't map to two src registers!");
755    VirtRegPairs.push_back(NewReg);
756    Reg = NewReg;
757  }
758
759  if (!VirtRegPairs.empty()) {
760    unsigned ToReg = VirtRegPairs.back();
761    VirtRegPairs.pop_back();
762    while (!VirtRegPairs.empty()) {
763      unsigned FromReg = VirtRegPairs.back();
764      VirtRegPairs.pop_back();
765      bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
766      if (!isNew)
767        assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!");
768      ToReg = FromReg;
769    }
770    bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second;
771    if (!isNew)
772      assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!");
773  }
774}
775
776/// ProcessCopy - If the specified instruction is not yet processed, process it
777/// if it's a copy. For a copy instruction, we find the physical registers the
778/// source and destination registers might be mapped to. These are kept in
779/// point-to maps used to determine future optimizations. e.g.
780/// v1024 = mov r0
781/// v1025 = mov r1
782/// v1026 = add v1024, v1025
783/// r1    = mov r1026
784/// If 'add' is a two-address instruction, v1024, v1026 are both potentially
785/// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
786/// potentially joined with r1 on the output side. It's worthwhile to commute
787/// 'add' to eliminate a copy.
788void TwoAddressInstructionPass::ProcessCopy(MachineInstr *MI,
789                                     MachineBasicBlock *MBB,
790                                     SmallPtrSet<MachineInstr*, 8> &Processed) {
791  if (Processed.count(MI))
792    return;
793
794  bool IsSrcPhys, IsDstPhys;
795  unsigned SrcReg, DstReg;
796  if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
797    return;
798
799  if (IsDstPhys && !IsSrcPhys)
800    DstRegMap.insert(std::make_pair(SrcReg, DstReg));
801  else if (!IsDstPhys && IsSrcPhys) {
802    bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
803    if (!isNew)
804      assert(SrcRegMap[DstReg] == SrcReg &&
805             "Can't map to two src physical registers!");
806
807    ScanUses(DstReg, MBB, Processed);
808  }
809
810  Processed.insert(MI);
811  return;
812}
813
814/// isSafeToDelete - If the specified instruction does not produce any side
815/// effects and all of its defs are dead, then it's safe to delete.
816static bool isSafeToDelete(MachineInstr *MI,
817                           const TargetInstrInfo *TII,
818                           SmallVector<unsigned, 4> &Kills) {
819  const MCInstrDesc &MCID = MI->getDesc();
820  if (MCID.mayStore() || MCID.isCall())
821    return false;
822  if (MCID.isTerminator() || MI->hasUnmodeledSideEffects())
823    return false;
824
825  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
826    MachineOperand &MO = MI->getOperand(i);
827    if (!MO.isReg())
828      continue;
829    if (MO.isDef() && !MO.isDead())
830      return false;
831    if (MO.isUse() && MO.isKill())
832      Kills.push_back(MO.getReg());
833  }
834  return true;
835}
836
837/// canUpdateDeletedKills - Check if all the registers listed in Kills are
838/// killed by instructions in MBB preceding the current instruction at
839/// position Dist.  If so, return true and record information about the
840/// preceding kills in NewKills.
841bool TwoAddressInstructionPass::
842canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills,
843                      SmallVector<NewKill, 4> &NewKills,
844                      MachineBasicBlock *MBB, unsigned Dist) {
845  while (!Kills.empty()) {
846    unsigned Kill = Kills.back();
847    Kills.pop_back();
848    if (TargetRegisterInfo::isPhysicalRegister(Kill))
849      return false;
850
851    MachineInstr *LastKill = FindLastUseInMBB(Kill, MBB, Dist);
852    if (!LastKill)
853      return false;
854
855    bool isModRef = LastKill->definesRegister(Kill);
856    NewKills.push_back(std::make_pair(std::make_pair(Kill, isModRef),
857                                      LastKill));
858  }
859  return true;
860}
861
862/// DeleteUnusedInstr - If an instruction with a tied register operand can
863/// be safely deleted, just delete it.
864bool
865TwoAddressInstructionPass::DeleteUnusedInstr(MachineBasicBlock::iterator &mi,
866                                             MachineBasicBlock::iterator &nmi,
867                                             MachineFunction::iterator &mbbi,
868                                             unsigned Dist) {
869  // Check if the instruction has no side effects and if all its defs are dead.
870  SmallVector<unsigned, 4> Kills;
871  if (!isSafeToDelete(mi, TII, Kills))
872    return false;
873
874  // If this instruction kills some virtual registers, we need to
875  // update the kill information. If it's not possible to do so,
876  // then bail out.
877  SmallVector<NewKill, 4> NewKills;
878  if (!canUpdateDeletedKills(Kills, NewKills, &*mbbi, Dist))
879    return false;
880
881  if (LV) {
882    while (!NewKills.empty()) {
883      MachineInstr *NewKill = NewKills.back().second;
884      unsigned Kill = NewKills.back().first.first;
885      bool isDead = NewKills.back().first.second;
886      NewKills.pop_back();
887      if (LV->removeVirtualRegisterKilled(Kill, mi)) {
888        if (isDead)
889          LV->addVirtualRegisterDead(Kill, NewKill);
890        else
891          LV->addVirtualRegisterKilled(Kill, NewKill);
892      }
893    }
894  }
895
896  mbbi->erase(mi); // Nuke the old inst.
897  mi = nmi;
898  return true;
899}
900
901/// RescheduleMIBelowKill - If there is one more local instruction that reads
902/// 'Reg' and it kills 'Reg, consider moving the instruction below the kill
903/// instruction in order to eliminate the need for the copy.
904bool
905TwoAddressInstructionPass::RescheduleMIBelowKill(MachineBasicBlock *MBB,
906                                     MachineBasicBlock::iterator &mi,
907                                     MachineBasicBlock::iterator &nmi,
908                                     unsigned Reg) {
909  MachineInstr *MI = &*mi;
910  DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
911  if (DI == DistanceMap.end())
912    // Must be created from unfolded load. Don't waste time trying this.
913    return false;
914
915  MachineInstr *KillMI = findLocalKill(Reg, MBB, mi, MRI, DistanceMap);
916  if (!KillMI || KillMI->isCopy() || KillMI->isCopyLike())
917    // Don't mess with copies, they may be coalesced later.
918    return false;
919
920  const MCInstrDesc &MCID = KillMI->getDesc();
921  if (MCID.hasUnmodeledSideEffects() || MCID.isCall() || MCID.isBranch() ||
922      MCID.isTerminator())
923    // Don't move pass calls, etc.
924    return false;
925
926  unsigned DstReg;
927  if (isTwoAddrUse(*KillMI, Reg, DstReg))
928    return false;
929
930  bool SeenStore = true;
931  if (!MI->isSafeToMove(TII, AA, SeenStore))
932    return false;
933
934  if (TII->getInstrLatency(InstrItins, MI) > 1)
935    // FIXME: Needs more sophisticated heuristics.
936    return false;
937
938  SmallSet<unsigned, 2> Uses;
939  SmallSet<unsigned, 2> Kills;
940  SmallSet<unsigned, 2> Defs;
941  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
942    const MachineOperand &MO = MI->getOperand(i);
943    if (!MO.isReg())
944      continue;
945    unsigned MOReg = MO.getReg();
946    if (!MOReg)
947      continue;
948    if (MO.isDef())
949      Defs.insert(MOReg);
950    else {
951      Uses.insert(MOReg);
952      if (MO.isKill() && MOReg != Reg)
953        Kills.insert(MOReg);
954    }
955  }
956
957  // Move the copies connected to MI down as well.
958  MachineBasicBlock::iterator From = MI;
959  MachineBasicBlock::iterator To = llvm::next(From);
960  while (To->isCopy() && Defs.count(To->getOperand(1).getReg())) {
961    Defs.insert(To->getOperand(0).getReg());
962    ++To;
963  }
964
965  // Check if the reschedule will not break depedencies.
966  unsigned NumVisited = 0;
967  MachineBasicBlock::iterator KillPos = KillMI;
968  ++KillPos;
969  for (MachineBasicBlock::iterator I = To; I != KillPos; ++I) {
970    MachineInstr *OtherMI = I;
971    // DBG_VALUE cannot be counted against the limit.
972    if (OtherMI->isDebugValue())
973      continue;
974    if (NumVisited > 10)  // FIXME: Arbitrary limit to reduce compile time cost.
975      return false;
976    ++NumVisited;
977    const MCInstrDesc &OMCID = OtherMI->getDesc();
978    if (OMCID.hasUnmodeledSideEffects() || OMCID.isCall() || OMCID.isBranch() ||
979        OMCID.isTerminator())
980      // Don't move pass calls, etc.
981      return false;
982    for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
983      const MachineOperand &MO = OtherMI->getOperand(i);
984      if (!MO.isReg())
985        continue;
986      unsigned MOReg = MO.getReg();
987      if (!MOReg)
988        continue;
989      if (MO.isDef()) {
990        if (Uses.count(MOReg))
991          // Physical register use would be clobbered.
992          return false;
993        if (!MO.isDead() && Defs.count(MOReg))
994          // May clobber a physical register def.
995          // FIXME: This may be too conservative. It's ok if the instruction
996          // is sunken completely below the use.
997          return false;
998      } else {
999        if (Defs.count(MOReg))
1000          return false;
1001        if (MOReg != Reg &&
1002            ((MO.isKill() && Uses.count(MOReg)) || Kills.count(MOReg)))
1003          // Don't want to extend other live ranges and update kills.
1004          return false;
1005      }
1006    }
1007  }
1008
1009  // Move debug info as well.
1010  while (From != MBB->begin() && llvm::prior(From)->isDebugValue())
1011    --From;
1012
1013  // Copies following MI may have been moved as well.
1014  nmi = To;
1015  MBB->splice(KillPos, MBB, From, To);
1016  DistanceMap.erase(DI);
1017
1018  if (LV) {
1019    // Update live variables
1020    LV->removeVirtualRegisterKilled(Reg, KillMI);
1021    LV->addVirtualRegisterKilled(Reg, MI);
1022  } else {
1023    for (unsigned i = 0, e = KillMI->getNumOperands(); i != e; ++i) {
1024      MachineOperand &MO = KillMI->getOperand(i);
1025      if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
1026        continue;
1027      MO.setIsKill(false);
1028    }
1029    MI->addRegisterKilled(Reg, 0);
1030  }
1031
1032  return true;
1033}
1034
1035/// isDefTooClose - Return true if the re-scheduling will put the given
1036/// instruction too close to the defs of its register dependencies.
1037bool TwoAddressInstructionPass::isDefTooClose(unsigned Reg, unsigned Dist,
1038                                              MachineInstr *MI,
1039                                              MachineBasicBlock *MBB) {
1040  for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(Reg),
1041         DE = MRI->def_end(); DI != DE; ++DI) {
1042    MachineInstr *DefMI = &*DI;
1043    if (DefMI->getParent() != MBB || DefMI->isCopy() || DefMI->isCopyLike())
1044      continue;
1045    if (DefMI == MI)
1046      return true; // MI is defining something KillMI uses
1047    DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(DefMI);
1048    if (DDI == DistanceMap.end())
1049      return true;  // Below MI
1050    unsigned DefDist = DDI->second;
1051    assert(Dist > DefDist && "Visited def already?");
1052    if (TII->getInstrLatency(InstrItins, DefMI) > (int)(Dist - DefDist))
1053      return true;
1054  }
1055  return false;
1056}
1057
1058/// RescheduleKillAboveMI - If there is one more local instruction that reads
1059/// 'Reg' and it kills 'Reg, consider moving the kill instruction above the
1060/// current two-address instruction in order to eliminate the need for the
1061/// copy.
1062bool
1063TwoAddressInstructionPass::RescheduleKillAboveMI(MachineBasicBlock *MBB,
1064                                     MachineBasicBlock::iterator &mi,
1065                                     MachineBasicBlock::iterator &nmi,
1066                                     unsigned Reg) {
1067  MachineInstr *MI = &*mi;
1068  DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
1069  if (DI == DistanceMap.end())
1070    // Must be created from unfolded load. Don't waste time trying this.
1071    return false;
1072
1073  MachineInstr *KillMI = findLocalKill(Reg, MBB, mi, MRI, DistanceMap);
1074  if (!KillMI || KillMI->isCopy() || KillMI->isCopyLike())
1075    // Don't mess with copies, they may be coalesced later.
1076    return false;
1077
1078  unsigned DstReg;
1079  if (isTwoAddrUse(*KillMI, Reg, DstReg))
1080    return false;
1081
1082  bool SeenStore = true;
1083  if (!KillMI->isSafeToMove(TII, AA, SeenStore))
1084    return false;
1085
1086  SmallSet<unsigned, 2> Uses;
1087  SmallSet<unsigned, 2> Kills;
1088  SmallSet<unsigned, 2> Defs;
1089  SmallSet<unsigned, 2> LiveDefs;
1090  for (unsigned i = 0, e = KillMI->getNumOperands(); i != e; ++i) {
1091    const MachineOperand &MO = KillMI->getOperand(i);
1092    if (!MO.isReg())
1093      continue;
1094    unsigned MOReg = MO.getReg();
1095    if (MO.isUse()) {
1096      if (!MOReg)
1097        continue;
1098      if (isDefTooClose(MOReg, DI->second, MI, MBB))
1099        return false;
1100      Uses.insert(MOReg);
1101      if (MO.isKill() && MOReg != Reg)
1102        Kills.insert(MOReg);
1103    } else if (TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1104      Defs.insert(MOReg);
1105      if (!MO.isDead())
1106        LiveDefs.insert(MOReg);
1107    }
1108  }
1109
1110  // Check if the reschedule will not break depedencies.
1111  unsigned NumVisited = 0;
1112  MachineBasicBlock::iterator KillPos = KillMI;
1113  for (MachineBasicBlock::iterator I = mi; I != KillPos; ++I) {
1114    MachineInstr *OtherMI = I;
1115    // DBG_VALUE cannot be counted against the limit.
1116    if (OtherMI->isDebugValue())
1117      continue;
1118    if (NumVisited > 10)  // FIXME: Arbitrary limit to reduce compile time cost.
1119      return false;
1120    ++NumVisited;
1121    const MCInstrDesc &MCID = OtherMI->getDesc();
1122    if (MCID.hasUnmodeledSideEffects() || MCID.isCall() || MCID.isBranch() ||
1123        MCID.isTerminator())
1124      // Don't move pass calls, etc.
1125      return false;
1126    SmallVector<unsigned, 2> OtherDefs;
1127    for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
1128      const MachineOperand &MO = OtherMI->getOperand(i);
1129      if (!MO.isReg())
1130        continue;
1131      unsigned MOReg = MO.getReg();
1132      if (!MOReg)
1133        continue;
1134      if (MO.isUse()) {
1135        if (Defs.count(MOReg))
1136          // Moving KillMI can clobber the physical register if the def has
1137          // not been seen.
1138          return false;
1139        if (Kills.count(MOReg))
1140          // Don't want to extend other live ranges and update kills.
1141          return false;
1142      } else {
1143        OtherDefs.push_back(MOReg);
1144      }
1145    }
1146
1147    for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) {
1148      unsigned MOReg = OtherDefs[i];
1149      if (Uses.count(MOReg))
1150        return false;
1151      if (TargetRegisterInfo::isPhysicalRegister(MOReg) &&
1152          LiveDefs.count(MOReg))
1153        return false;
1154      // Physical register def is seen.
1155      Defs.erase(MOReg);
1156    }
1157  }
1158
1159  // Move the old kill above MI, don't forget to move debug info as well.
1160  MachineBasicBlock::iterator InsertPos = mi;
1161  while (InsertPos != MBB->begin() && llvm::prior(InsertPos)->isDebugValue())
1162    --InsertPos;
1163  MachineBasicBlock::iterator From = KillMI;
1164  MachineBasicBlock::iterator To = llvm::next(From);
1165  while (llvm::prior(From)->isDebugValue())
1166    --From;
1167  MBB->splice(InsertPos, MBB, From, To);
1168
1169  nmi = llvm::prior(InsertPos); // Backtrack so we process the moved instr.
1170  DistanceMap.erase(DI);
1171
1172  if (LV) {
1173    // Update live variables
1174    LV->removeVirtualRegisterKilled(Reg, KillMI);
1175    LV->addVirtualRegisterKilled(Reg, MI);
1176  } else {
1177    for (unsigned i = 0, e = KillMI->getNumOperands(); i != e; ++i) {
1178      MachineOperand &MO = KillMI->getOperand(i);
1179      if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
1180        continue;
1181      MO.setIsKill(false);
1182    }
1183    MI->addRegisterKilled(Reg, 0);
1184  }
1185  return true;
1186}
1187
1188/// TryInstructionTransform - For the case where an instruction has a single
1189/// pair of tied register operands, attempt some transformations that may
1190/// either eliminate the tied operands or improve the opportunities for
1191/// coalescing away the register copy.  Returns true if the tied operands
1192/// are eliminated altogether.
1193bool TwoAddressInstructionPass::
1194TryInstructionTransform(MachineBasicBlock::iterator &mi,
1195                        MachineBasicBlock::iterator &nmi,
1196                        MachineFunction::iterator &mbbi,
1197                        unsigned SrcIdx, unsigned DstIdx, unsigned Dist,
1198                        SmallPtrSet<MachineInstr*, 8> &Processed) {
1199  if (OptLevel == CodeGenOpt::None)
1200    return false;
1201
1202  MachineInstr &MI = *mi;
1203  const MCInstrDesc &MCID = MI.getDesc();
1204  unsigned regA = MI.getOperand(DstIdx).getReg();
1205  unsigned regB = MI.getOperand(SrcIdx).getReg();
1206
1207  assert(TargetRegisterInfo::isVirtualRegister(regB) &&
1208         "cannot make instruction into two-address form");
1209
1210  // If regA is dead and the instruction can be deleted, just delete
1211  // it so it doesn't clobber regB.
1212  bool regBKilled = isKilled(MI, regB, MRI, TII);
1213  if (!regBKilled && MI.getOperand(DstIdx).isDead() &&
1214      DeleteUnusedInstr(mi, nmi, mbbi, Dist)) {
1215    ++NumDeletes;
1216    return true; // Done with this instruction.
1217  }
1218
1219  // Check if it is profitable to commute the operands.
1220  unsigned SrcOp1, SrcOp2;
1221  unsigned regC = 0;
1222  unsigned regCIdx = ~0U;
1223  bool TryCommute = false;
1224  bool AggressiveCommute = false;
1225  if (MCID.isCommutable() && MI.getNumOperands() >= 3 &&
1226      TII->findCommutedOpIndices(&MI, SrcOp1, SrcOp2)) {
1227    if (SrcIdx == SrcOp1)
1228      regCIdx = SrcOp2;
1229    else if (SrcIdx == SrcOp2)
1230      regCIdx = SrcOp1;
1231
1232    if (regCIdx != ~0U) {
1233      regC = MI.getOperand(regCIdx).getReg();
1234      if (!regBKilled && isKilled(MI, regC, MRI, TII))
1235        // If C dies but B does not, swap the B and C operands.
1236        // This makes the live ranges of A and C joinable.
1237        TryCommute = true;
1238      else if (isProfitableToCommute(regB, regC, &MI, mbbi, Dist)) {
1239        TryCommute = true;
1240        AggressiveCommute = true;
1241      }
1242    }
1243  }
1244
1245  // If it's profitable to commute, try to do so.
1246  if (TryCommute && CommuteInstruction(mi, mbbi, regB, regC, Dist)) {
1247    ++NumCommuted;
1248    if (AggressiveCommute)
1249      ++NumAggrCommuted;
1250    return false;
1251  }
1252
1253  // If there is one more use of regB later in the same MBB, consider
1254  // re-schedule this MI below it.
1255  if (RescheduleMIBelowKill(mbbi, mi, nmi, regB)) {
1256    ++NumReSchedDowns;
1257    return true;
1258  }
1259
1260  if (TargetRegisterInfo::isVirtualRegister(regA))
1261    ScanUses(regA, &*mbbi, Processed);
1262
1263  if (MCID.isConvertibleTo3Addr()) {
1264    // This instruction is potentially convertible to a true
1265    // three-address instruction.  Check if it is profitable.
1266    if (!regBKilled || isProfitableToConv3Addr(regA, regB)) {
1267      // Try to convert it.
1268      if (ConvertInstTo3Addr(mi, nmi, mbbi, regA, regB, Dist)) {
1269        ++NumConvertedTo3Addr;
1270        return true; // Done with this instruction.
1271      }
1272    }
1273  }
1274
1275  // If there is one more use of regB later in the same MBB, consider
1276  // re-schedule it before this MI if it's legal.
1277  if (RescheduleKillAboveMI(mbbi, mi, nmi, regB)) {
1278    ++NumReSchedUps;
1279    return true;
1280  }
1281
1282  // If this is an instruction with a load folded into it, try unfolding
1283  // the load, e.g. avoid this:
1284  //   movq %rdx, %rcx
1285  //   addq (%rax), %rcx
1286  // in favor of this:
1287  //   movq (%rax), %rcx
1288  //   addq %rdx, %rcx
1289  // because it's preferable to schedule a load than a register copy.
1290  if (MCID.mayLoad() && !regBKilled) {
1291    // Determine if a load can be unfolded.
1292    unsigned LoadRegIndex;
1293    unsigned NewOpc =
1294      TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
1295                                      /*UnfoldLoad=*/true,
1296                                      /*UnfoldStore=*/false,
1297                                      &LoadRegIndex);
1298    if (NewOpc != 0) {
1299      const MCInstrDesc &UnfoldMCID = TII->get(NewOpc);
1300      if (UnfoldMCID.getNumDefs() == 1) {
1301        MachineFunction &MF = *mbbi->getParent();
1302
1303        // Unfold the load.
1304        DEBUG(dbgs() << "2addr:   UNFOLDING: " << MI);
1305        const TargetRegisterClass *RC =
1306          TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI);
1307        unsigned Reg = MRI->createVirtualRegister(RC);
1308        SmallVector<MachineInstr *, 2> NewMIs;
1309        if (!TII->unfoldMemoryOperand(MF, &MI, Reg,
1310                                      /*UnfoldLoad=*/true,/*UnfoldStore=*/false,
1311                                      NewMIs)) {
1312          DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1313          return false;
1314        }
1315        assert(NewMIs.size() == 2 &&
1316               "Unfolded a load into multiple instructions!");
1317        // The load was previously folded, so this is the only use.
1318        NewMIs[1]->addRegisterKilled(Reg, TRI);
1319
1320        // Tentatively insert the instructions into the block so that they
1321        // look "normal" to the transformation logic.
1322        mbbi->insert(mi, NewMIs[0]);
1323        mbbi->insert(mi, NewMIs[1]);
1324
1325        DEBUG(dbgs() << "2addr:    NEW LOAD: " << *NewMIs[0]
1326                     << "2addr:    NEW INST: " << *NewMIs[1]);
1327
1328        // Transform the instruction, now that it no longer has a load.
1329        unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA);
1330        unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB);
1331        MachineBasicBlock::iterator NewMI = NewMIs[1];
1332        bool TransformSuccess =
1333          TryInstructionTransform(NewMI, mi, mbbi,
1334                                  NewSrcIdx, NewDstIdx, Dist, Processed);
1335        if (TransformSuccess ||
1336            NewMIs[1]->getOperand(NewSrcIdx).isKill()) {
1337          // Success, or at least we made an improvement. Keep the unfolded
1338          // instructions and discard the original.
1339          if (LV) {
1340            for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1341              MachineOperand &MO = MI.getOperand(i);
1342              if (MO.isReg() &&
1343                  TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
1344                if (MO.isUse()) {
1345                  if (MO.isKill()) {
1346                    if (NewMIs[0]->killsRegister(MO.getReg()))
1347                      LV->replaceKillInstruction(MO.getReg(), &MI, NewMIs[0]);
1348                    else {
1349                      assert(NewMIs[1]->killsRegister(MO.getReg()) &&
1350                             "Kill missing after load unfold!");
1351                      LV->replaceKillInstruction(MO.getReg(), &MI, NewMIs[1]);
1352                    }
1353                  }
1354                } else if (LV->removeVirtualRegisterDead(MO.getReg(), &MI)) {
1355                  if (NewMIs[1]->registerDefIsDead(MO.getReg()))
1356                    LV->addVirtualRegisterDead(MO.getReg(), NewMIs[1]);
1357                  else {
1358                    assert(NewMIs[0]->registerDefIsDead(MO.getReg()) &&
1359                           "Dead flag missing after load unfold!");
1360                    LV->addVirtualRegisterDead(MO.getReg(), NewMIs[0]);
1361                  }
1362                }
1363              }
1364            }
1365            LV->addVirtualRegisterKilled(Reg, NewMIs[1]);
1366          }
1367          MI.eraseFromParent();
1368          mi = NewMIs[1];
1369          if (TransformSuccess)
1370            return true;
1371        } else {
1372          // Transforming didn't eliminate the tie and didn't lead to an
1373          // improvement. Clean up the unfolded instructions and keep the
1374          // original.
1375          DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1376          NewMIs[0]->eraseFromParent();
1377          NewMIs[1]->eraseFromParent();
1378        }
1379      }
1380    }
1381  }
1382
1383  return false;
1384}
1385
1386/// runOnMachineFunction - Reduce two-address instructions to two operands.
1387///
1388bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
1389  DEBUG(dbgs() << "Machine Function\n");
1390  const TargetMachine &TM = MF.getTarget();
1391  MRI = &MF.getRegInfo();
1392  TII = TM.getInstrInfo();
1393  TRI = TM.getRegisterInfo();
1394  InstrItins = TM.getInstrItineraryData();
1395  LV = getAnalysisIfAvailable<LiveVariables>();
1396  AA = &getAnalysis<AliasAnalysis>();
1397  OptLevel = TM.getOptLevel();
1398
1399  bool MadeChange = false;
1400
1401  DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
1402  DEBUG(dbgs() << "********** Function: "
1403        << MF.getFunction()->getName() << '\n');
1404
1405  // This pass takes the function out of SSA form.
1406  MRI->leaveSSA();
1407
1408  // ReMatRegs - Keep track of the registers whose def's are remat'ed.
1409  BitVector ReMatRegs(MRI->getNumVirtRegs());
1410
1411  typedef DenseMap<unsigned, SmallVector<std::pair<unsigned, unsigned>, 4> >
1412    TiedOperandMap;
1413  TiedOperandMap TiedOperands(4);
1414
1415  SmallPtrSet<MachineInstr*, 8> Processed;
1416  for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end();
1417       mbbi != mbbe; ++mbbi) {
1418    unsigned Dist = 0;
1419    DistanceMap.clear();
1420    SrcRegMap.clear();
1421    DstRegMap.clear();
1422    Processed.clear();
1423    for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end();
1424         mi != me; ) {
1425      MachineBasicBlock::iterator nmi = llvm::next(mi);
1426      if (mi->isDebugValue()) {
1427        mi = nmi;
1428        continue;
1429      }
1430
1431      // Remember REG_SEQUENCE instructions, we'll deal with them later.
1432      if (mi->isRegSequence())
1433        RegSequences.push_back(&*mi);
1434
1435      const MCInstrDesc &MCID = mi->getDesc();
1436      bool FirstTied = true;
1437
1438      DistanceMap.insert(std::make_pair(mi, ++Dist));
1439
1440      ProcessCopy(&*mi, &*mbbi, Processed);
1441
1442      // First scan through all the tied register uses in this instruction
1443      // and record a list of pairs of tied operands for each register.
1444      unsigned NumOps = mi->isInlineAsm()
1445        ? mi->getNumOperands() : MCID.getNumOperands();
1446      for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) {
1447        unsigned DstIdx = 0;
1448        if (!mi->isRegTiedToDefOperand(SrcIdx, &DstIdx))
1449          continue;
1450
1451        if (FirstTied) {
1452          FirstTied = false;
1453          ++NumTwoAddressInstrs;
1454          DEBUG(dbgs() << '\t' << *mi);
1455        }
1456
1457        assert(mi->getOperand(SrcIdx).isReg() &&
1458               mi->getOperand(SrcIdx).getReg() &&
1459               mi->getOperand(SrcIdx).isUse() &&
1460               "two address instruction invalid");
1461
1462        unsigned regB = mi->getOperand(SrcIdx).getReg();
1463        TiedOperands[regB].push_back(std::make_pair(SrcIdx, DstIdx));
1464      }
1465
1466      // Now iterate over the information collected above.
1467      for (TiedOperandMap::iterator OI = TiedOperands.begin(),
1468             OE = TiedOperands.end(); OI != OE; ++OI) {
1469        SmallVector<std::pair<unsigned, unsigned>, 4> &TiedPairs = OI->second;
1470
1471        // If the instruction has a single pair of tied operands, try some
1472        // transformations that may either eliminate the tied operands or
1473        // improve the opportunities for coalescing away the register copy.
1474        if (TiedOperands.size() == 1 && TiedPairs.size() == 1) {
1475          unsigned SrcIdx = TiedPairs[0].first;
1476          unsigned DstIdx = TiedPairs[0].second;
1477
1478          // If the registers are already equal, nothing needs to be done.
1479          if (mi->getOperand(SrcIdx).getReg() ==
1480              mi->getOperand(DstIdx).getReg())
1481            break; // Done with this instruction.
1482
1483          if (TryInstructionTransform(mi, nmi, mbbi, SrcIdx, DstIdx, Dist,
1484                                      Processed))
1485            break; // The tied operands have been eliminated.
1486        }
1487
1488        bool IsEarlyClobber = false;
1489        bool RemovedKillFlag = false;
1490        bool AllUsesCopied = true;
1491        unsigned LastCopiedReg = 0;
1492        unsigned regB = OI->first;
1493        for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
1494          unsigned SrcIdx = TiedPairs[tpi].first;
1495          unsigned DstIdx = TiedPairs[tpi].second;
1496
1497          const MachineOperand &DstMO = mi->getOperand(DstIdx);
1498          unsigned regA = DstMO.getReg();
1499          IsEarlyClobber |= DstMO.isEarlyClobber();
1500
1501          // Grab regB from the instruction because it may have changed if the
1502          // instruction was commuted.
1503          regB = mi->getOperand(SrcIdx).getReg();
1504
1505          if (regA == regB) {
1506            // The register is tied to multiple destinations (or else we would
1507            // not have continued this far), but this use of the register
1508            // already matches the tied destination.  Leave it.
1509            AllUsesCopied = false;
1510            continue;
1511          }
1512          LastCopiedReg = regA;
1513
1514          assert(TargetRegisterInfo::isVirtualRegister(regB) &&
1515                 "cannot make instruction into two-address form");
1516
1517#ifndef NDEBUG
1518          // First, verify that we don't have a use of "a" in the instruction
1519          // (a = b + a for example) because our transformation will not
1520          // work. This should never occur because we are in SSA form.
1521          for (unsigned i = 0; i != mi->getNumOperands(); ++i)
1522            assert(i == DstIdx ||
1523                   !mi->getOperand(i).isReg() ||
1524                   mi->getOperand(i).getReg() != regA);
1525#endif
1526
1527          // Emit a copy or rematerialize the definition.
1528          const TargetRegisterClass *rc = MRI->getRegClass(regB);
1529          MachineInstr *DefMI = MRI->getVRegDef(regB);
1530          // If it's safe and profitable, remat the definition instead of
1531          // copying it.
1532          if (DefMI &&
1533              DefMI->getDesc().isAsCheapAsAMove() &&
1534              DefMI->isSafeToReMat(TII, AA, regB) &&
1535              isProfitableToReMat(regB, rc, mi, DefMI, mbbi, Dist)){
1536            DEBUG(dbgs() << "2addr: REMATTING : " << *DefMI << "\n");
1537            unsigned regASubIdx = mi->getOperand(DstIdx).getSubReg();
1538            TII->reMaterialize(*mbbi, mi, regA, regASubIdx, DefMI, *TRI);
1539            ReMatRegs.set(TargetRegisterInfo::virtReg2Index(regB));
1540            ++NumReMats;
1541          } else {
1542            BuildMI(*mbbi, mi, mi->getDebugLoc(), TII->get(TargetOpcode::COPY),
1543                    regA).addReg(regB);
1544          }
1545
1546          MachineBasicBlock::iterator prevMI = prior(mi);
1547          // Update DistanceMap.
1548          DistanceMap.insert(std::make_pair(prevMI, Dist));
1549          DistanceMap[mi] = ++Dist;
1550
1551          DEBUG(dbgs() << "\t\tprepend:\t" << *prevMI);
1552
1553          MachineOperand &MO = mi->getOperand(SrcIdx);
1554          assert(MO.isReg() && MO.getReg() == regB && MO.isUse() &&
1555                 "inconsistent operand info for 2-reg pass");
1556          if (MO.isKill()) {
1557            MO.setIsKill(false);
1558            RemovedKillFlag = true;
1559          }
1560          MO.setReg(regA);
1561        }
1562
1563        if (AllUsesCopied) {
1564          if (!IsEarlyClobber) {
1565            // Replace other (un-tied) uses of regB with LastCopiedReg.
1566            for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
1567              MachineOperand &MO = mi->getOperand(i);
1568              if (MO.isReg() && MO.getReg() == regB && MO.isUse()) {
1569                if (MO.isKill()) {
1570                  MO.setIsKill(false);
1571                  RemovedKillFlag = true;
1572                }
1573                MO.setReg(LastCopiedReg);
1574              }
1575            }
1576          }
1577
1578          // Update live variables for regB.
1579          if (RemovedKillFlag && LV && LV->getVarInfo(regB).removeKill(mi))
1580            LV->addVirtualRegisterKilled(regB, prior(mi));
1581
1582        } else if (RemovedKillFlag) {
1583          // Some tied uses of regB matched their destination registers, so
1584          // regB is still used in this instruction, but a kill flag was
1585          // removed from a different tied use of regB, so now we need to add
1586          // a kill flag to one of the remaining uses of regB.
1587          for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
1588            MachineOperand &MO = mi->getOperand(i);
1589            if (MO.isReg() && MO.getReg() == regB && MO.isUse()) {
1590              MO.setIsKill(true);
1591              break;
1592            }
1593          }
1594        }
1595
1596        // Schedule the source copy / remat inserted to form two-address
1597        // instruction. FIXME: Does it matter the distance map may not be
1598        // accurate after it's scheduled?
1599        TII->scheduleTwoAddrSource(prior(mi), mi, *TRI);
1600
1601        MadeChange = true;
1602
1603        DEBUG(dbgs() << "\t\trewrite to:\t" << *mi);
1604      }
1605
1606      // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form.
1607      if (mi->isInsertSubreg()) {
1608        // From %reg = INSERT_SUBREG %reg, %subreg, subidx
1609        // To   %reg:subidx = COPY %subreg
1610        unsigned SubIdx = mi->getOperand(3).getImm();
1611        mi->RemoveOperand(3);
1612        assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx");
1613        mi->getOperand(0).setSubReg(SubIdx);
1614        mi->RemoveOperand(1);
1615        mi->setDesc(TII->get(TargetOpcode::COPY));
1616        DEBUG(dbgs() << "\t\tconvert to:\t" << *mi);
1617      }
1618
1619      // Clear TiedOperands here instead of at the top of the loop
1620      // since most instructions do not have tied operands.
1621      TiedOperands.clear();
1622      mi = nmi;
1623    }
1624  }
1625
1626  // Some remat'ed instructions are dead.
1627  for (int i = ReMatRegs.find_first(); i != -1; i = ReMatRegs.find_next(i)) {
1628    unsigned VReg = TargetRegisterInfo::index2VirtReg(i);
1629    if (MRI->use_nodbg_empty(VReg)) {
1630      MachineInstr *DefMI = MRI->getVRegDef(VReg);
1631      DefMI->eraseFromParent();
1632    }
1633  }
1634
1635  // Eliminate REG_SEQUENCE instructions. Their whole purpose was to preseve
1636  // SSA form. It's now safe to de-SSA.
1637  MadeChange |= EliminateRegSequences();
1638
1639  return MadeChange;
1640}
1641
1642static void UpdateRegSequenceSrcs(unsigned SrcReg,
1643                                  unsigned DstReg, unsigned SubIdx,
1644                                  MachineRegisterInfo *MRI,
1645                                  const TargetRegisterInfo &TRI) {
1646  for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(SrcReg),
1647         RE = MRI->reg_end(); RI != RE; ) {
1648    MachineOperand &MO = RI.getOperand();
1649    ++RI;
1650    MO.substVirtReg(DstReg, SubIdx, TRI);
1651  }
1652}
1653
1654/// CoalesceExtSubRegs - If a number of sources of the REG_SEQUENCE are
1655/// EXTRACT_SUBREG from the same register and to the same virtual register
1656/// with different sub-register indices, attempt to combine the
1657/// EXTRACT_SUBREGs and pre-coalesce them. e.g.
1658/// %reg1026<def> = VLDMQ %reg1025<kill>, 260, pred:14, pred:%reg0
1659/// %reg1029:6<def> = EXTRACT_SUBREG %reg1026, 6
1660/// %reg1029:5<def> = EXTRACT_SUBREG %reg1026<kill>, 5
1661/// Since D subregs 5, 6 can combine to a Q register, we can coalesce
1662/// reg1026 to reg1029.
1663void
1664TwoAddressInstructionPass::CoalesceExtSubRegs(SmallVector<unsigned,4> &Srcs,
1665                                              unsigned DstReg) {
1666  SmallSet<unsigned, 4> Seen;
1667  for (unsigned i = 0, e = Srcs.size(); i != e; ++i) {
1668    unsigned SrcReg = Srcs[i];
1669    if (!Seen.insert(SrcReg))
1670      continue;
1671
1672    // Check that the instructions are all in the same basic block.
1673    MachineInstr *SrcDefMI = MRI->getVRegDef(SrcReg);
1674    MachineInstr *DstDefMI = MRI->getVRegDef(DstReg);
1675    if (SrcDefMI->getParent() != DstDefMI->getParent())
1676      continue;
1677
1678    // If there are no other uses than copies which feed into
1679    // the reg_sequence, then we might be able to coalesce them.
1680    bool CanCoalesce = true;
1681    SmallVector<unsigned, 4> SrcSubIndices, DstSubIndices;
1682    for (MachineRegisterInfo::use_nodbg_iterator
1683           UI = MRI->use_nodbg_begin(SrcReg),
1684           UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
1685      MachineInstr *UseMI = &*UI;
1686      if (!UseMI->isCopy() || UseMI->getOperand(0).getReg() != DstReg) {
1687        CanCoalesce = false;
1688        break;
1689      }
1690      SrcSubIndices.push_back(UseMI->getOperand(1).getSubReg());
1691      DstSubIndices.push_back(UseMI->getOperand(0).getSubReg());
1692    }
1693
1694    if (!CanCoalesce || SrcSubIndices.size() < 2)
1695      continue;
1696
1697    // Check that the source subregisters can be combined.
1698    std::sort(SrcSubIndices.begin(), SrcSubIndices.end());
1699    unsigned NewSrcSubIdx = 0;
1700    if (!TRI->canCombineSubRegIndices(MRI->getRegClass(SrcReg), SrcSubIndices,
1701                                      NewSrcSubIdx))
1702      continue;
1703
1704    // Check that the destination subregisters can also be combined.
1705    std::sort(DstSubIndices.begin(), DstSubIndices.end());
1706    unsigned NewDstSubIdx = 0;
1707    if (!TRI->canCombineSubRegIndices(MRI->getRegClass(DstReg), DstSubIndices,
1708                                      NewDstSubIdx))
1709      continue;
1710
1711    // If neither source nor destination can be combined to the full register,
1712    // just give up.  This could be improved if it ever matters.
1713    if (NewSrcSubIdx != 0 && NewDstSubIdx != 0)
1714      continue;
1715
1716    // Now that we know that all the uses are extract_subregs and that those
1717    // subregs can somehow be combined, scan all the extract_subregs again to
1718    // make sure the subregs are in the right order and can be composed.
1719    MachineInstr *SomeMI = 0;
1720    CanCoalesce = true;
1721    for (MachineRegisterInfo::use_nodbg_iterator
1722           UI = MRI->use_nodbg_begin(SrcReg),
1723           UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
1724      MachineInstr *UseMI = &*UI;
1725      assert(UseMI->isCopy());
1726      unsigned DstSubIdx = UseMI->getOperand(0).getSubReg();
1727      unsigned SrcSubIdx = UseMI->getOperand(1).getSubReg();
1728      assert(DstSubIdx != 0 && "missing subreg from RegSequence elimination");
1729      if ((NewDstSubIdx == 0 &&
1730           TRI->composeSubRegIndices(NewSrcSubIdx, DstSubIdx) != SrcSubIdx) ||
1731          (NewSrcSubIdx == 0 &&
1732           TRI->composeSubRegIndices(NewDstSubIdx, SrcSubIdx) != DstSubIdx)) {
1733        CanCoalesce = false;
1734        break;
1735      }
1736      // Keep track of one of the uses.
1737      SomeMI = UseMI;
1738    }
1739    if (!CanCoalesce)
1740      continue;
1741
1742    // Insert a copy to replace the original.
1743    MachineInstr *CopyMI = BuildMI(*SomeMI->getParent(), SomeMI,
1744                                   SomeMI->getDebugLoc(),
1745                                   TII->get(TargetOpcode::COPY))
1746      .addReg(DstReg, RegState::Define, NewDstSubIdx)
1747      .addReg(SrcReg, 0, NewSrcSubIdx);
1748
1749    // Remove all the old extract instructions.
1750    for (MachineRegisterInfo::use_nodbg_iterator
1751           UI = MRI->use_nodbg_begin(SrcReg),
1752           UE = MRI->use_nodbg_end(); UI != UE; ) {
1753      MachineInstr *UseMI = &*UI;
1754      ++UI;
1755      if (UseMI == CopyMI)
1756        continue;
1757      assert(UseMI->isCopy());
1758      // Move any kills to the new copy or extract instruction.
1759      if (UseMI->getOperand(1).isKill()) {
1760        CopyMI->getOperand(1).setIsKill();
1761        if (LV)
1762          // Update live variables
1763          LV->replaceKillInstruction(SrcReg, UseMI, &*CopyMI);
1764      }
1765      UseMI->eraseFromParent();
1766    }
1767  }
1768}
1769
1770static bool HasOtherRegSequenceUses(unsigned Reg, MachineInstr *RegSeq,
1771                                    MachineRegisterInfo *MRI) {
1772  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg),
1773         UE = MRI->use_end(); UI != UE; ++UI) {
1774    MachineInstr *UseMI = &*UI;
1775    if (UseMI != RegSeq && UseMI->isRegSequence())
1776      return true;
1777  }
1778  return false;
1779}
1780
1781/// EliminateRegSequences - Eliminate REG_SEQUENCE instructions as part
1782/// of the de-ssa process. This replaces sources of REG_SEQUENCE as
1783/// sub-register references of the register defined by REG_SEQUENCE. e.g.
1784///
1785/// %reg1029<def>, %reg1030<def> = VLD1q16 %reg1024<kill>, ...
1786/// %reg1031<def> = REG_SEQUENCE %reg1029<kill>, 5, %reg1030<kill>, 6
1787/// =>
1788/// %reg1031:5<def>, %reg1031:6<def> = VLD1q16 %reg1024<kill>, ...
1789bool TwoAddressInstructionPass::EliminateRegSequences() {
1790  if (RegSequences.empty())
1791    return false;
1792
1793  for (unsigned i = 0, e = RegSequences.size(); i != e; ++i) {
1794    MachineInstr *MI = RegSequences[i];
1795    unsigned DstReg = MI->getOperand(0).getReg();
1796    if (MI->getOperand(0).getSubReg() ||
1797        TargetRegisterInfo::isPhysicalRegister(DstReg) ||
1798        !(MI->getNumOperands() & 1)) {
1799      DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI);
1800      llvm_unreachable(0);
1801    }
1802
1803    bool IsImpDef = true;
1804    SmallVector<unsigned, 4> RealSrcs;
1805    SmallSet<unsigned, 4> Seen;
1806    for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) {
1807      unsigned SrcReg = MI->getOperand(i).getReg();
1808      unsigned SubIdx = MI->getOperand(i+1).getImm();
1809      if (MI->getOperand(i).getSubReg() ||
1810          TargetRegisterInfo::isPhysicalRegister(SrcReg)) {
1811        DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI);
1812        llvm_unreachable(0);
1813      }
1814
1815      MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
1816      if (DefMI->isImplicitDef()) {
1817        DefMI->eraseFromParent();
1818        continue;
1819      }
1820      IsImpDef = false;
1821
1822      // Remember COPY sources. These might be candidate for coalescing.
1823      if (DefMI->isCopy() && DefMI->getOperand(1).getSubReg())
1824        RealSrcs.push_back(DefMI->getOperand(1).getReg());
1825
1826      bool isKill = MI->getOperand(i).isKill();
1827      if (!Seen.insert(SrcReg) || MI->getParent() != DefMI->getParent() ||
1828          !isKill || HasOtherRegSequenceUses(SrcReg, MI, MRI) ||
1829          !TRI->getMatchingSuperRegClass(MRI->getRegClass(DstReg),
1830                                         MRI->getRegClass(SrcReg), SubIdx)) {
1831        // REG_SEQUENCE cannot have duplicated operands, add a copy.
1832        // Also add an copy if the source is live-in the block. We don't want
1833        // to end up with a partial-redef of a livein, e.g.
1834        // BB0:
1835        // reg1051:10<def> =
1836        // ...
1837        // BB1:
1838        // ... = reg1051:10
1839        // BB2:
1840        // reg1051:9<def> =
1841        // LiveIntervalAnalysis won't like it.
1842        //
1843        // If the REG_SEQUENCE doesn't kill its source, keeping live variables
1844        // correctly up to date becomes very difficult. Insert a copy.
1845
1846        // Defer any kill flag to the last operand using SrcReg. Otherwise, we
1847        // might insert a COPY that uses SrcReg after is was killed.
1848        if (isKill)
1849          for (unsigned j = i + 2; j < e; j += 2)
1850            if (MI->getOperand(j).getReg() == SrcReg) {
1851              MI->getOperand(j).setIsKill();
1852              isKill = false;
1853              break;
1854            }
1855
1856        MachineBasicBlock::iterator InsertLoc = MI;
1857        MachineInstr *CopyMI = BuildMI(*MI->getParent(), InsertLoc,
1858                                MI->getDebugLoc(), TII->get(TargetOpcode::COPY))
1859            .addReg(DstReg, RegState::Define, SubIdx)
1860            .addReg(SrcReg, getKillRegState(isKill));
1861        MI->getOperand(i).setReg(0);
1862        if (LV && isKill)
1863          LV->replaceKillInstruction(SrcReg, MI, CopyMI);
1864        DEBUG(dbgs() << "Inserted: " << *CopyMI);
1865      }
1866    }
1867
1868    for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) {
1869      unsigned SrcReg = MI->getOperand(i).getReg();
1870      if (!SrcReg) continue;
1871      unsigned SubIdx = MI->getOperand(i+1).getImm();
1872      UpdateRegSequenceSrcs(SrcReg, DstReg, SubIdx, MRI, *TRI);
1873    }
1874
1875    if (IsImpDef) {
1876      DEBUG(dbgs() << "Turned: " << *MI << " into an IMPLICIT_DEF");
1877      MI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
1878      for (int j = MI->getNumOperands() - 1, ee = 0; j > ee; --j)
1879        MI->RemoveOperand(j);
1880    } else {
1881      DEBUG(dbgs() << "Eliminated: " << *MI);
1882      MI->eraseFromParent();
1883    }
1884
1885    // Try coalescing some EXTRACT_SUBREG instructions. This can create
1886    // INSERT_SUBREG instructions that must have <undef> flags added by
1887    // LiveIntervalAnalysis, so only run it when LiveVariables is available.
1888    if (LV)
1889      CoalesceExtSubRegs(RealSrcs, DstReg);
1890  }
1891
1892  RegSequences.clear();
1893  return true;
1894}
1895