TwoAddressInstructionPass.cpp revision ebe69fe11e48d322045d5949c83283927a0d790b
1//===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the TwoAddress instruction pass which is used
11// by most register allocators. Two-Address instructions are rewritten
12// from:
13//
14//     A = B op C
15//
16// to:
17//
18//     A = B
19//     A op= C
20//
21// Note that if a register allocator chooses to use this pass, that it
22// has to be capable of handling the non-SSA nature of these rewritten
23// virtual registers.
24//
25// It is also worth noting that the duplicate operand of the two
26// address instruction is removed.
27//
28//===----------------------------------------------------------------------===//
29
30#include "llvm/CodeGen/Passes.h"
31#include "llvm/ADT/BitVector.h"
32#include "llvm/ADT/DenseMap.h"
33#include "llvm/ADT/STLExtras.h"
34#include "llvm/ADT/SmallSet.h"
35#include "llvm/ADT/Statistic.h"
36#include "llvm/Analysis/AliasAnalysis.h"
37#include "llvm/CodeGen/LiveIntervalAnalysis.h"
38#include "llvm/CodeGen/LiveVariables.h"
39#include "llvm/CodeGen/MachineFunctionPass.h"
40#include "llvm/CodeGen/MachineInstr.h"
41#include "llvm/CodeGen/MachineInstrBuilder.h"
42#include "llvm/CodeGen/MachineRegisterInfo.h"
43#include "llvm/IR/Function.h"
44#include "llvm/MC/MCInstrItineraries.h"
45#include "llvm/Support/CommandLine.h"
46#include "llvm/Support/Debug.h"
47#include "llvm/Support/ErrorHandling.h"
48#include "llvm/Target/TargetInstrInfo.h"
49#include "llvm/Target/TargetMachine.h"
50#include "llvm/Target/TargetRegisterInfo.h"
51#include "llvm/Target/TargetSubtargetInfo.h"
52using namespace llvm;
53
54#define DEBUG_TYPE "twoaddrinstr"
55
56STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
57STATISTIC(NumCommuted        , "Number of instructions commuted to coalesce");
58STATISTIC(NumAggrCommuted    , "Number of instructions aggressively commuted");
59STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
60STATISTIC(Num3AddrSunk,        "Number of 3-address instructions sunk");
61STATISTIC(NumReSchedUps,       "Number of instructions re-scheduled up");
62STATISTIC(NumReSchedDowns,     "Number of instructions re-scheduled down");
63
64// Temporary flag to disable rescheduling.
65static cl::opt<bool>
66EnableRescheduling("twoaddr-reschedule",
67                   cl::desc("Coalesce copies by rescheduling (default=true)"),
68                   cl::init(true), cl::Hidden);
69
70namespace {
71class TwoAddressInstructionPass : public MachineFunctionPass {
72  MachineFunction *MF;
73  const TargetInstrInfo *TII;
74  const TargetRegisterInfo *TRI;
75  const InstrItineraryData *InstrItins;
76  MachineRegisterInfo *MRI;
77  LiveVariables *LV;
78  LiveIntervals *LIS;
79  AliasAnalysis *AA;
80  CodeGenOpt::Level OptLevel;
81
82  // The current basic block being processed.
83  MachineBasicBlock *MBB;
84
85  // DistanceMap - Keep track the distance of a MI from the start of the
86  // current basic block.
87  DenseMap<MachineInstr*, unsigned> DistanceMap;
88
89  // Set of already processed instructions in the current block.
90  SmallPtrSet<MachineInstr*, 8> Processed;
91
92  // SrcRegMap - A map from virtual registers to physical registers which are
93  // likely targets to be coalesced to due to copies from physical registers to
94  // virtual registers. e.g. v1024 = move r0.
95  DenseMap<unsigned, unsigned> SrcRegMap;
96
97  // DstRegMap - A map from virtual registers to physical registers which are
98  // likely targets to be coalesced to due to copies to physical registers from
99  // virtual registers. e.g. r1 = move v1024.
100  DenseMap<unsigned, unsigned> DstRegMap;
101
102  bool sink3AddrInstruction(MachineInstr *MI, unsigned Reg,
103                            MachineBasicBlock::iterator OldPos);
104
105  bool noUseAfterLastDef(unsigned Reg, unsigned Dist, unsigned &LastDef);
106
107  bool isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC,
108                             MachineInstr *MI, unsigned Dist);
109
110  bool commuteInstruction(MachineBasicBlock::iterator &mi,
111                          unsigned RegB, unsigned RegC, unsigned Dist);
112
113  bool isProfitableToConv3Addr(unsigned RegA, unsigned RegB);
114
115  bool convertInstTo3Addr(MachineBasicBlock::iterator &mi,
116                          MachineBasicBlock::iterator &nmi,
117                          unsigned RegA, unsigned RegB, unsigned Dist);
118
119  bool isDefTooClose(unsigned Reg, unsigned Dist, MachineInstr *MI);
120
121  bool rescheduleMIBelowKill(MachineBasicBlock::iterator &mi,
122                             MachineBasicBlock::iterator &nmi,
123                             unsigned Reg);
124  bool rescheduleKillAboveMI(MachineBasicBlock::iterator &mi,
125                             MachineBasicBlock::iterator &nmi,
126                             unsigned Reg);
127
128  bool tryInstructionTransform(MachineBasicBlock::iterator &mi,
129                               MachineBasicBlock::iterator &nmi,
130                               unsigned SrcIdx, unsigned DstIdx,
131                               unsigned Dist, bool shouldOnlyCommute);
132
133  void scanUses(unsigned DstReg);
134
135  void processCopy(MachineInstr *MI);
136
137  typedef SmallVector<std::pair<unsigned, unsigned>, 4> TiedPairList;
138  typedef SmallDenseMap<unsigned, TiedPairList> TiedOperandMap;
139  bool collectTiedOperands(MachineInstr *MI, TiedOperandMap&);
140  void processTiedPairs(MachineInstr *MI, TiedPairList&, unsigned &Dist);
141  void eliminateRegSequence(MachineBasicBlock::iterator&);
142
143public:
144  static char ID; // Pass identification, replacement for typeid
145  TwoAddressInstructionPass() : MachineFunctionPass(ID) {
146    initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry());
147  }
148
149  void getAnalysisUsage(AnalysisUsage &AU) const override {
150    AU.setPreservesCFG();
151    AU.addRequired<AliasAnalysis>();
152    AU.addPreserved<LiveVariables>();
153    AU.addPreserved<SlotIndexes>();
154    AU.addPreserved<LiveIntervals>();
155    AU.addPreservedID(MachineLoopInfoID);
156    AU.addPreservedID(MachineDominatorsID);
157    MachineFunctionPass::getAnalysisUsage(AU);
158  }
159
160  /// runOnMachineFunction - Pass entry point.
161  bool runOnMachineFunction(MachineFunction&) override;
162};
163} // end anonymous namespace
164
165char TwoAddressInstructionPass::ID = 0;
166INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, "twoaddressinstruction",
167                "Two-Address instruction pass", false, false)
168INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
169INITIALIZE_PASS_END(TwoAddressInstructionPass, "twoaddressinstruction",
170                "Two-Address instruction pass", false, false)
171
172char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID;
173
174static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg, LiveIntervals *LIS);
175
176/// sink3AddrInstruction - A two-address instruction has been converted to a
177/// three-address instruction to avoid clobbering a register. Try to sink it
178/// past the instruction that would kill the above mentioned register to reduce
179/// register pressure.
180bool TwoAddressInstructionPass::
181sink3AddrInstruction(MachineInstr *MI, unsigned SavedReg,
182                     MachineBasicBlock::iterator OldPos) {
183  // FIXME: Shouldn't we be trying to do this before we three-addressify the
184  // instruction?  After this transformation is done, we no longer need
185  // the instruction to be in three-address form.
186
187  // Check if it's safe to move this instruction.
188  bool SeenStore = true; // Be conservative.
189  if (!MI->isSafeToMove(TII, AA, SeenStore))
190    return false;
191
192  unsigned DefReg = 0;
193  SmallSet<unsigned, 4> UseRegs;
194
195  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
196    const MachineOperand &MO = MI->getOperand(i);
197    if (!MO.isReg())
198      continue;
199    unsigned MOReg = MO.getReg();
200    if (!MOReg)
201      continue;
202    if (MO.isUse() && MOReg != SavedReg)
203      UseRegs.insert(MO.getReg());
204    if (!MO.isDef())
205      continue;
206    if (MO.isImplicit())
207      // Don't try to move it if it implicitly defines a register.
208      return false;
209    if (DefReg)
210      // For now, don't move any instructions that define multiple registers.
211      return false;
212    DefReg = MO.getReg();
213  }
214
215  // Find the instruction that kills SavedReg.
216  MachineInstr *KillMI = nullptr;
217  if (LIS) {
218    LiveInterval &LI = LIS->getInterval(SavedReg);
219    assert(LI.end() != LI.begin() &&
220           "Reg should not have empty live interval.");
221
222    SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
223    LiveInterval::const_iterator I = LI.find(MBBEndIdx);
224    if (I != LI.end() && I->start < MBBEndIdx)
225      return false;
226
227    --I;
228    KillMI = LIS->getInstructionFromIndex(I->end);
229  }
230  if (!KillMI) {
231    for (MachineRegisterInfo::use_nodbg_iterator
232           UI = MRI->use_nodbg_begin(SavedReg),
233           UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
234      MachineOperand &UseMO = *UI;
235      if (!UseMO.isKill())
236        continue;
237      KillMI = UseMO.getParent();
238      break;
239    }
240  }
241
242  // If we find the instruction that kills SavedReg, and it is in an
243  // appropriate location, we can try to sink the current instruction
244  // past it.
245  if (!KillMI || KillMI->getParent() != MBB || KillMI == MI ||
246      KillMI == OldPos || KillMI->isTerminator())
247    return false;
248
249  // If any of the definitions are used by another instruction between the
250  // position and the kill use, then it's not safe to sink it.
251  //
252  // FIXME: This can be sped up if there is an easy way to query whether an
253  // instruction is before or after another instruction. Then we can use
254  // MachineRegisterInfo def / use instead.
255  MachineOperand *KillMO = nullptr;
256  MachineBasicBlock::iterator KillPos = KillMI;
257  ++KillPos;
258
259  unsigned NumVisited = 0;
260  for (MachineBasicBlock::iterator I = std::next(OldPos); I != KillPos; ++I) {
261    MachineInstr *OtherMI = I;
262    // DBG_VALUE cannot be counted against the limit.
263    if (OtherMI->isDebugValue())
264      continue;
265    if (NumVisited > 30)  // FIXME: Arbitrary limit to reduce compile time cost.
266      return false;
267    ++NumVisited;
268    for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
269      MachineOperand &MO = OtherMI->getOperand(i);
270      if (!MO.isReg())
271        continue;
272      unsigned MOReg = MO.getReg();
273      if (!MOReg)
274        continue;
275      if (DefReg == MOReg)
276        return false;
277
278      if (MO.isKill() || (LIS && isPlainlyKilled(OtherMI, MOReg, LIS))) {
279        if (OtherMI == KillMI && MOReg == SavedReg)
280          // Save the operand that kills the register. We want to unset the kill
281          // marker if we can sink MI past it.
282          KillMO = &MO;
283        else if (UseRegs.count(MOReg))
284          // One of the uses is killed before the destination.
285          return false;
286      }
287    }
288  }
289  assert(KillMO && "Didn't find kill");
290
291  if (!LIS) {
292    // Update kill and LV information.
293    KillMO->setIsKill(false);
294    KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
295    KillMO->setIsKill(true);
296
297    if (LV)
298      LV->replaceKillInstruction(SavedReg, KillMI, MI);
299  }
300
301  // Move instruction to its destination.
302  MBB->remove(MI);
303  MBB->insert(KillPos, MI);
304
305  if (LIS)
306    LIS->handleMove(MI);
307
308  ++Num3AddrSunk;
309  return true;
310}
311
312/// noUseAfterLastDef - Return true if there are no intervening uses between the
313/// last instruction in the MBB that defines the specified register and the
314/// two-address instruction which is being processed. It also returns the last
315/// def location by reference
316bool TwoAddressInstructionPass::noUseAfterLastDef(unsigned Reg, unsigned Dist,
317                                                  unsigned &LastDef) {
318  LastDef = 0;
319  unsigned LastUse = Dist;
320  for (MachineOperand &MO : MRI->reg_operands(Reg)) {
321    MachineInstr *MI = MO.getParent();
322    if (MI->getParent() != MBB || MI->isDebugValue())
323      continue;
324    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
325    if (DI == DistanceMap.end())
326      continue;
327    if (MO.isUse() && DI->second < LastUse)
328      LastUse = DI->second;
329    if (MO.isDef() && DI->second > LastDef)
330      LastDef = DI->second;
331  }
332
333  return !(LastUse > LastDef && LastUse < Dist);
334}
335
336/// isCopyToReg - Return true if the specified MI is a copy instruction or
337/// a extract_subreg instruction. It also returns the source and destination
338/// registers and whether they are physical registers by reference.
339static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII,
340                        unsigned &SrcReg, unsigned &DstReg,
341                        bool &IsSrcPhys, bool &IsDstPhys) {
342  SrcReg = 0;
343  DstReg = 0;
344  if (MI.isCopy()) {
345    DstReg = MI.getOperand(0).getReg();
346    SrcReg = MI.getOperand(1).getReg();
347  } else if (MI.isInsertSubreg() || MI.isSubregToReg()) {
348    DstReg = MI.getOperand(0).getReg();
349    SrcReg = MI.getOperand(2).getReg();
350  } else
351    return false;
352
353  IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
354  IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
355  return true;
356}
357
358/// isPLainlyKilled - Test if the given register value, which is used by the
359// given instruction, is killed by the given instruction.
360static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg,
361                            LiveIntervals *LIS) {
362  if (LIS && TargetRegisterInfo::isVirtualRegister(Reg) &&
363      !LIS->isNotInMIMap(MI)) {
364    // FIXME: Sometimes tryInstructionTransform() will add instructions and
365    // test whether they can be folded before keeping them. In this case it
366    // sets a kill before recursively calling tryInstructionTransform() again.
367    // If there is no interval available, we assume that this instruction is
368    // one of those. A kill flag is manually inserted on the operand so the
369    // check below will handle it.
370    LiveInterval &LI = LIS->getInterval(Reg);
371    // This is to match the kill flag version where undefs don't have kill
372    // flags.
373    if (!LI.hasAtLeastOneValue())
374      return false;
375
376    SlotIndex useIdx = LIS->getInstructionIndex(MI);
377    LiveInterval::const_iterator I = LI.find(useIdx);
378    assert(I != LI.end() && "Reg must be live-in to use.");
379    return !I->end.isBlock() && SlotIndex::isSameInstr(I->end, useIdx);
380  }
381
382  return MI->killsRegister(Reg);
383}
384
385/// isKilled - Test if the given register value, which is used by the given
386/// instruction, is killed by the given instruction. This looks through
387/// coalescable copies to see if the original value is potentially not killed.
388///
389/// For example, in this code:
390///
391///   %reg1034 = copy %reg1024
392///   %reg1035 = copy %reg1025<kill>
393///   %reg1036 = add %reg1034<kill>, %reg1035<kill>
394///
395/// %reg1034 is not considered to be killed, since it is copied from a
396/// register which is not killed. Treating it as not killed lets the
397/// normal heuristics commute the (two-address) add, which lets
398/// coalescing eliminate the extra copy.
399///
400/// If allowFalsePositives is true then likely kills are treated as kills even
401/// if it can't be proven that they are kills.
402static bool isKilled(MachineInstr &MI, unsigned Reg,
403                     const MachineRegisterInfo *MRI,
404                     const TargetInstrInfo *TII,
405                     LiveIntervals *LIS,
406                     bool allowFalsePositives) {
407  MachineInstr *DefMI = &MI;
408  for (;;) {
409    // All uses of physical registers are likely to be kills.
410    if (TargetRegisterInfo::isPhysicalRegister(Reg) &&
411        (allowFalsePositives || MRI->hasOneUse(Reg)))
412      return true;
413    if (!isPlainlyKilled(DefMI, Reg, LIS))
414      return false;
415    if (TargetRegisterInfo::isPhysicalRegister(Reg))
416      return true;
417    MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg);
418    // If there are multiple defs, we can't do a simple analysis, so just
419    // go with what the kill flag says.
420    if (std::next(Begin) != MRI->def_end())
421      return true;
422    DefMI = Begin->getParent();
423    bool IsSrcPhys, IsDstPhys;
424    unsigned SrcReg,  DstReg;
425    // If the def is something other than a copy, then it isn't going to
426    // be coalesced, so follow the kill flag.
427    if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
428      return true;
429    Reg = SrcReg;
430  }
431}
432
433/// isTwoAddrUse - Return true if the specified MI uses the specified register
434/// as a two-address use. If so, return the destination register by reference.
435static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) {
436  for (unsigned i = 0, NumOps = MI.getNumOperands(); i != NumOps; ++i) {
437    const MachineOperand &MO = MI.getOperand(i);
438    if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
439      continue;
440    unsigned ti;
441    if (MI.isRegTiedToDefOperand(i, &ti)) {
442      DstReg = MI.getOperand(ti).getReg();
443      return true;
444    }
445  }
446  return false;
447}
448
449/// findOnlyInterestingUse - Given a register, if has a single in-basic block
450/// use, return the use instruction if it's a copy or a two-address use.
451static
452MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB,
453                                     MachineRegisterInfo *MRI,
454                                     const TargetInstrInfo *TII,
455                                     bool &IsCopy,
456                                     unsigned &DstReg, bool &IsDstPhys) {
457  if (!MRI->hasOneNonDBGUse(Reg))
458    // None or more than one use.
459    return nullptr;
460  MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(Reg);
461  if (UseMI.getParent() != MBB)
462    return nullptr;
463  unsigned SrcReg;
464  bool IsSrcPhys;
465  if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
466    IsCopy = true;
467    return &UseMI;
468  }
469  IsDstPhys = false;
470  if (isTwoAddrUse(UseMI, Reg, DstReg)) {
471    IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
472    return &UseMI;
473  }
474  return nullptr;
475}
476
477/// getMappedReg - Return the physical register the specified virtual register
478/// might be mapped to.
479static unsigned
480getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) {
481  while (TargetRegisterInfo::isVirtualRegister(Reg))  {
482    DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg);
483    if (SI == RegMap.end())
484      return 0;
485    Reg = SI->second;
486  }
487  if (TargetRegisterInfo::isPhysicalRegister(Reg))
488    return Reg;
489  return 0;
490}
491
492/// regsAreCompatible - Return true if the two registers are equal or aliased.
493///
494static bool
495regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) {
496  if (RegA == RegB)
497    return true;
498  if (!RegA || !RegB)
499    return false;
500  return TRI->regsOverlap(RegA, RegB);
501}
502
503
504/// isProfitableToCommute - Return true if it's potentially profitable to commute
505/// the two-address instruction that's being processed.
506bool
507TwoAddressInstructionPass::
508isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC,
509                      MachineInstr *MI, unsigned Dist) {
510  if (OptLevel == CodeGenOpt::None)
511    return false;
512
513  // Determine if it's profitable to commute this two address instruction. In
514  // general, we want no uses between this instruction and the definition of
515  // the two-address register.
516  // e.g.
517  // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
518  // %reg1029<def> = MOV8rr %reg1028
519  // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
520  // insert => %reg1030<def> = MOV8rr %reg1028
521  // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
522  // In this case, it might not be possible to coalesce the second MOV8rr
523  // instruction if the first one is coalesced. So it would be profitable to
524  // commute it:
525  // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
526  // %reg1029<def> = MOV8rr %reg1028
527  // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
528  // insert => %reg1030<def> = MOV8rr %reg1029
529  // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead>
530
531  if (!isPlainlyKilled(MI, regC, LIS))
532    return false;
533
534  // Ok, we have something like:
535  // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
536  // let's see if it's worth commuting it.
537
538  // Look for situations like this:
539  // %reg1024<def> = MOV r1
540  // %reg1025<def> = MOV r0
541  // %reg1026<def> = ADD %reg1024, %reg1025
542  // r0            = MOV %reg1026
543  // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
544  unsigned ToRegA = getMappedReg(regA, DstRegMap);
545  if (ToRegA) {
546    unsigned FromRegB = getMappedReg(regB, SrcRegMap);
547    unsigned FromRegC = getMappedReg(regC, SrcRegMap);
548    bool CompB = FromRegB && regsAreCompatible(FromRegB, ToRegA, TRI);
549    bool CompC = FromRegC && regsAreCompatible(FromRegC, ToRegA, TRI);
550
551    // Compute if any of the following are true:
552    // -RegB is not tied to a register and RegC is compatible with RegA.
553    // -RegB is tied to the wrong physical register, but RegC is.
554    // -RegB is tied to the wrong physical register, and RegC isn't tied.
555    if ((!FromRegB && CompC) || (FromRegB && !CompB && (!FromRegC || CompC)))
556      return true;
557    // Don't compute if any of the following are true:
558    // -RegC is not tied to a register and RegB is compatible with RegA.
559    // -RegC is tied to the wrong physical register, but RegB is.
560    // -RegC is tied to the wrong physical register, and RegB isn't tied.
561    if ((!FromRegC && CompB) || (FromRegC && !CompC && (!FromRegB || CompB)))
562      return false;
563  }
564
565  // If there is a use of regC between its last def (could be livein) and this
566  // instruction, then bail.
567  unsigned LastDefC = 0;
568  if (!noUseAfterLastDef(regC, Dist, LastDefC))
569    return false;
570
571  // If there is a use of regB between its last def (could be livein) and this
572  // instruction, then go ahead and make this transformation.
573  unsigned LastDefB = 0;
574  if (!noUseAfterLastDef(regB, Dist, LastDefB))
575    return true;
576
577  // Since there are no intervening uses for both registers, then commute
578  // if the def of regC is closer. Its live interval is shorter.
579  return LastDefB && LastDefC && LastDefC > LastDefB;
580}
581
582/// commuteInstruction - Commute a two-address instruction and update the basic
583/// block, distance map, and live variables if needed. Return true if it is
584/// successful.
585bool TwoAddressInstructionPass::
586commuteInstruction(MachineBasicBlock::iterator &mi,
587                   unsigned RegB, unsigned RegC, unsigned Dist) {
588  MachineInstr *MI = mi;
589  DEBUG(dbgs() << "2addr: COMMUTING  : " << *MI);
590  MachineInstr *NewMI = TII->commuteInstruction(MI);
591
592  if (NewMI == nullptr) {
593    DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n");
594    return false;
595  }
596
597  DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI);
598  assert(NewMI == MI &&
599         "TargetInstrInfo::commuteInstruction() should not return a new "
600         "instruction unless it was requested.");
601
602  // Update source register map.
603  unsigned FromRegC = getMappedReg(RegC, SrcRegMap);
604  if (FromRegC) {
605    unsigned RegA = MI->getOperand(0).getReg();
606    SrcRegMap[RegA] = FromRegC;
607  }
608
609  return true;
610}
611
612/// isProfitableToConv3Addr - Return true if it is profitable to convert the
613/// given 2-address instruction to a 3-address one.
614bool
615TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA,unsigned RegB){
616  // Look for situations like this:
617  // %reg1024<def> = MOV r1
618  // %reg1025<def> = MOV r0
619  // %reg1026<def> = ADD %reg1024, %reg1025
620  // r2            = MOV %reg1026
621  // Turn ADD into a 3-address instruction to avoid a copy.
622  unsigned FromRegB = getMappedReg(RegB, SrcRegMap);
623  if (!FromRegB)
624    return false;
625  unsigned ToRegA = getMappedReg(RegA, DstRegMap);
626  return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI));
627}
628
629/// convertInstTo3Addr - Convert the specified two-address instruction into a
630/// three address one. Return true if this transformation was successful.
631bool
632TwoAddressInstructionPass::convertInstTo3Addr(MachineBasicBlock::iterator &mi,
633                                              MachineBasicBlock::iterator &nmi,
634                                              unsigned RegA, unsigned RegB,
635                                              unsigned Dist) {
636  // FIXME: Why does convertToThreeAddress() need an iterator reference?
637  MachineFunction::iterator MFI = MBB;
638  MachineInstr *NewMI = TII->convertToThreeAddress(MFI, mi, LV);
639  assert(MBB == MFI && "convertToThreeAddress changed iterator reference");
640  if (!NewMI)
641    return false;
642
643  DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi);
644  DEBUG(dbgs() << "2addr:         TO 3-ADDR: " << *NewMI);
645  bool Sunk = false;
646
647  if (LIS)
648    LIS->ReplaceMachineInstrInMaps(mi, NewMI);
649
650  if (NewMI->findRegisterUseOperand(RegB, false, TRI))
651    // FIXME: Temporary workaround. If the new instruction doesn't
652    // uses RegB, convertToThreeAddress must have created more
653    // then one instruction.
654    Sunk = sink3AddrInstruction(NewMI, RegB, mi);
655
656  MBB->erase(mi); // Nuke the old inst.
657
658  if (!Sunk) {
659    DistanceMap.insert(std::make_pair(NewMI, Dist));
660    mi = NewMI;
661    nmi = std::next(mi);
662  }
663
664  // Update source and destination register maps.
665  SrcRegMap.erase(RegA);
666  DstRegMap.erase(RegB);
667  return true;
668}
669
670/// scanUses - Scan forward recursively for only uses, update maps if the use
671/// is a copy or a two-address instruction.
672void
673TwoAddressInstructionPass::scanUses(unsigned DstReg) {
674  SmallVector<unsigned, 4> VirtRegPairs;
675  bool IsDstPhys;
676  bool IsCopy = false;
677  unsigned NewReg = 0;
678  unsigned Reg = DstReg;
679  while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy,
680                                                      NewReg, IsDstPhys)) {
681    if (IsCopy && !Processed.insert(UseMI).second)
682      break;
683
684    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
685    if (DI != DistanceMap.end())
686      // Earlier in the same MBB.Reached via a back edge.
687      break;
688
689    if (IsDstPhys) {
690      VirtRegPairs.push_back(NewReg);
691      break;
692    }
693    bool isNew = SrcRegMap.insert(std::make_pair(NewReg, Reg)).second;
694    if (!isNew)
695      assert(SrcRegMap[NewReg] == Reg && "Can't map to two src registers!");
696    VirtRegPairs.push_back(NewReg);
697    Reg = NewReg;
698  }
699
700  if (!VirtRegPairs.empty()) {
701    unsigned ToReg = VirtRegPairs.back();
702    VirtRegPairs.pop_back();
703    while (!VirtRegPairs.empty()) {
704      unsigned FromReg = VirtRegPairs.back();
705      VirtRegPairs.pop_back();
706      bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
707      if (!isNew)
708        assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!");
709      ToReg = FromReg;
710    }
711    bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second;
712    if (!isNew)
713      assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!");
714  }
715}
716
717/// processCopy - If the specified instruction is not yet processed, process it
718/// if it's a copy. For a copy instruction, we find the physical registers the
719/// source and destination registers might be mapped to. These are kept in
720/// point-to maps used to determine future optimizations. e.g.
721/// v1024 = mov r0
722/// v1025 = mov r1
723/// v1026 = add v1024, v1025
724/// r1    = mov r1026
725/// If 'add' is a two-address instruction, v1024, v1026 are both potentially
726/// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
727/// potentially joined with r1 on the output side. It's worthwhile to commute
728/// 'add' to eliminate a copy.
729void TwoAddressInstructionPass::processCopy(MachineInstr *MI) {
730  if (Processed.count(MI))
731    return;
732
733  bool IsSrcPhys, IsDstPhys;
734  unsigned SrcReg, DstReg;
735  if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
736    return;
737
738  if (IsDstPhys && !IsSrcPhys)
739    DstRegMap.insert(std::make_pair(SrcReg, DstReg));
740  else if (!IsDstPhys && IsSrcPhys) {
741    bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
742    if (!isNew)
743      assert(SrcRegMap[DstReg] == SrcReg &&
744             "Can't map to two src physical registers!");
745
746    scanUses(DstReg);
747  }
748
749  Processed.insert(MI);
750  return;
751}
752
753/// rescheduleMIBelowKill - If there is one more local instruction that reads
754/// 'Reg' and it kills 'Reg, consider moving the instruction below the kill
755/// instruction in order to eliminate the need for the copy.
756bool TwoAddressInstructionPass::
757rescheduleMIBelowKill(MachineBasicBlock::iterator &mi,
758                      MachineBasicBlock::iterator &nmi,
759                      unsigned Reg) {
760  // Bail immediately if we don't have LV or LIS available. We use them to find
761  // kills efficiently.
762  if (!LV && !LIS)
763    return false;
764
765  MachineInstr *MI = &*mi;
766  DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
767  if (DI == DistanceMap.end())
768    // Must be created from unfolded load. Don't waste time trying this.
769    return false;
770
771  MachineInstr *KillMI = nullptr;
772  if (LIS) {
773    LiveInterval &LI = LIS->getInterval(Reg);
774    assert(LI.end() != LI.begin() &&
775           "Reg should not have empty live interval.");
776
777    SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
778    LiveInterval::const_iterator I = LI.find(MBBEndIdx);
779    if (I != LI.end() && I->start < MBBEndIdx)
780      return false;
781
782    --I;
783    KillMI = LIS->getInstructionFromIndex(I->end);
784  } else {
785    KillMI = LV->getVarInfo(Reg).findKill(MBB);
786  }
787  if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike())
788    // Don't mess with copies, they may be coalesced later.
789    return false;
790
791  if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() ||
792      KillMI->isBranch() || KillMI->isTerminator())
793    // Don't move pass calls, etc.
794    return false;
795
796  unsigned DstReg;
797  if (isTwoAddrUse(*KillMI, Reg, DstReg))
798    return false;
799
800  bool SeenStore = true;
801  if (!MI->isSafeToMove(TII, AA, SeenStore))
802    return false;
803
804  if (TII->getInstrLatency(InstrItins, MI) > 1)
805    // FIXME: Needs more sophisticated heuristics.
806    return false;
807
808  SmallSet<unsigned, 2> Uses;
809  SmallSet<unsigned, 2> Kills;
810  SmallSet<unsigned, 2> Defs;
811  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
812    const MachineOperand &MO = MI->getOperand(i);
813    if (!MO.isReg())
814      continue;
815    unsigned MOReg = MO.getReg();
816    if (!MOReg)
817      continue;
818    if (MO.isDef())
819      Defs.insert(MOReg);
820    else {
821      Uses.insert(MOReg);
822      if (MOReg != Reg && (MO.isKill() ||
823                           (LIS && isPlainlyKilled(MI, MOReg, LIS))))
824        Kills.insert(MOReg);
825    }
826  }
827
828  // Move the copies connected to MI down as well.
829  MachineBasicBlock::iterator Begin = MI;
830  MachineBasicBlock::iterator AfterMI = std::next(Begin);
831
832  MachineBasicBlock::iterator End = AfterMI;
833  while (End->isCopy() && Defs.count(End->getOperand(1).getReg())) {
834    Defs.insert(End->getOperand(0).getReg());
835    ++End;
836  }
837
838  // Check if the reschedule will not break depedencies.
839  unsigned NumVisited = 0;
840  MachineBasicBlock::iterator KillPos = KillMI;
841  ++KillPos;
842  for (MachineBasicBlock::iterator I = End; I != KillPos; ++I) {
843    MachineInstr *OtherMI = I;
844    // DBG_VALUE cannot be counted against the limit.
845    if (OtherMI->isDebugValue())
846      continue;
847    if (NumVisited > 10)  // FIXME: Arbitrary limit to reduce compile time cost.
848      return false;
849    ++NumVisited;
850    if (OtherMI->hasUnmodeledSideEffects() || OtherMI->isCall() ||
851        OtherMI->isBranch() || OtherMI->isTerminator())
852      // Don't move pass calls, etc.
853      return false;
854    for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
855      const MachineOperand &MO = OtherMI->getOperand(i);
856      if (!MO.isReg())
857        continue;
858      unsigned MOReg = MO.getReg();
859      if (!MOReg)
860        continue;
861      if (MO.isDef()) {
862        if (Uses.count(MOReg))
863          // Physical register use would be clobbered.
864          return false;
865        if (!MO.isDead() && Defs.count(MOReg))
866          // May clobber a physical register def.
867          // FIXME: This may be too conservative. It's ok if the instruction
868          // is sunken completely below the use.
869          return false;
870      } else {
871        if (Defs.count(MOReg))
872          return false;
873        bool isKill = MO.isKill() ||
874                      (LIS && isPlainlyKilled(OtherMI, MOReg, LIS));
875        if (MOReg != Reg &&
876            ((isKill && Uses.count(MOReg)) || Kills.count(MOReg)))
877          // Don't want to extend other live ranges and update kills.
878          return false;
879        if (MOReg == Reg && !isKill)
880          // We can't schedule across a use of the register in question.
881          return false;
882        // Ensure that if this is register in question, its the kill we expect.
883        assert((MOReg != Reg || OtherMI == KillMI) &&
884               "Found multiple kills of a register in a basic block");
885      }
886    }
887  }
888
889  // Move debug info as well.
890  while (Begin != MBB->begin() && std::prev(Begin)->isDebugValue())
891    --Begin;
892
893  nmi = End;
894  MachineBasicBlock::iterator InsertPos = KillPos;
895  if (LIS) {
896    // We have to move the copies first so that the MBB is still well-formed
897    // when calling handleMove().
898    for (MachineBasicBlock::iterator MBBI = AfterMI; MBBI != End;) {
899      MachineInstr *CopyMI = MBBI;
900      ++MBBI;
901      MBB->splice(InsertPos, MBB, CopyMI);
902      LIS->handleMove(CopyMI);
903      InsertPos = CopyMI;
904    }
905    End = std::next(MachineBasicBlock::iterator(MI));
906  }
907
908  // Copies following MI may have been moved as well.
909  MBB->splice(InsertPos, MBB, Begin, End);
910  DistanceMap.erase(DI);
911
912  // Update live variables
913  if (LIS) {
914    LIS->handleMove(MI);
915  } else {
916    LV->removeVirtualRegisterKilled(Reg, KillMI);
917    LV->addVirtualRegisterKilled(Reg, MI);
918  }
919
920  DEBUG(dbgs() << "\trescheduled below kill: " << *KillMI);
921  return true;
922}
923
924/// isDefTooClose - Return true if the re-scheduling will put the given
925/// instruction too close to the defs of its register dependencies.
926bool TwoAddressInstructionPass::isDefTooClose(unsigned Reg, unsigned Dist,
927                                              MachineInstr *MI) {
928  for (MachineInstr &DefMI : MRI->def_instructions(Reg)) {
929    if (DefMI.getParent() != MBB || DefMI.isCopy() || DefMI.isCopyLike())
930      continue;
931    if (&DefMI == MI)
932      return true; // MI is defining something KillMI uses
933    DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(&DefMI);
934    if (DDI == DistanceMap.end())
935      return true;  // Below MI
936    unsigned DefDist = DDI->second;
937    assert(Dist > DefDist && "Visited def already?");
938    if (TII->getInstrLatency(InstrItins, &DefMI) > (Dist - DefDist))
939      return true;
940  }
941  return false;
942}
943
944/// rescheduleKillAboveMI - If there is one more local instruction that reads
945/// 'Reg' and it kills 'Reg, consider moving the kill instruction above the
946/// current two-address instruction in order to eliminate the need for the
947/// copy.
948bool TwoAddressInstructionPass::
949rescheduleKillAboveMI(MachineBasicBlock::iterator &mi,
950                      MachineBasicBlock::iterator &nmi,
951                      unsigned Reg) {
952  // Bail immediately if we don't have LV or LIS available. We use them to find
953  // kills efficiently.
954  if (!LV && !LIS)
955    return false;
956
957  MachineInstr *MI = &*mi;
958  DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
959  if (DI == DistanceMap.end())
960    // Must be created from unfolded load. Don't waste time trying this.
961    return false;
962
963  MachineInstr *KillMI = nullptr;
964  if (LIS) {
965    LiveInterval &LI = LIS->getInterval(Reg);
966    assert(LI.end() != LI.begin() &&
967           "Reg should not have empty live interval.");
968
969    SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
970    LiveInterval::const_iterator I = LI.find(MBBEndIdx);
971    if (I != LI.end() && I->start < MBBEndIdx)
972      return false;
973
974    --I;
975    KillMI = LIS->getInstructionFromIndex(I->end);
976  } else {
977    KillMI = LV->getVarInfo(Reg).findKill(MBB);
978  }
979  if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike())
980    // Don't mess with copies, they may be coalesced later.
981    return false;
982
983  unsigned DstReg;
984  if (isTwoAddrUse(*KillMI, Reg, DstReg))
985    return false;
986
987  bool SeenStore = true;
988  if (!KillMI->isSafeToMove(TII, AA, SeenStore))
989    return false;
990
991  SmallSet<unsigned, 2> Uses;
992  SmallSet<unsigned, 2> Kills;
993  SmallSet<unsigned, 2> Defs;
994  SmallSet<unsigned, 2> LiveDefs;
995  for (unsigned i = 0, e = KillMI->getNumOperands(); i != e; ++i) {
996    const MachineOperand &MO = KillMI->getOperand(i);
997    if (!MO.isReg())
998      continue;
999    unsigned MOReg = MO.getReg();
1000    if (MO.isUse()) {
1001      if (!MOReg)
1002        continue;
1003      if (isDefTooClose(MOReg, DI->second, MI))
1004        return false;
1005      bool isKill = MO.isKill() || (LIS && isPlainlyKilled(KillMI, MOReg, LIS));
1006      if (MOReg == Reg && !isKill)
1007        return false;
1008      Uses.insert(MOReg);
1009      if (isKill && MOReg != Reg)
1010        Kills.insert(MOReg);
1011    } else if (TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1012      Defs.insert(MOReg);
1013      if (!MO.isDead())
1014        LiveDefs.insert(MOReg);
1015    }
1016  }
1017
1018  // Check if the reschedule will not break depedencies.
1019  unsigned NumVisited = 0;
1020  MachineBasicBlock::iterator KillPos = KillMI;
1021  for (MachineBasicBlock::iterator I = mi; I != KillPos; ++I) {
1022    MachineInstr *OtherMI = I;
1023    // DBG_VALUE cannot be counted against the limit.
1024    if (OtherMI->isDebugValue())
1025      continue;
1026    if (NumVisited > 10)  // FIXME: Arbitrary limit to reduce compile time cost.
1027      return false;
1028    ++NumVisited;
1029    if (OtherMI->hasUnmodeledSideEffects() || OtherMI->isCall() ||
1030        OtherMI->isBranch() || OtherMI->isTerminator())
1031      // Don't move pass calls, etc.
1032      return false;
1033    SmallVector<unsigned, 2> OtherDefs;
1034    for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
1035      const MachineOperand &MO = OtherMI->getOperand(i);
1036      if (!MO.isReg())
1037        continue;
1038      unsigned MOReg = MO.getReg();
1039      if (!MOReg)
1040        continue;
1041      if (MO.isUse()) {
1042        if (Defs.count(MOReg))
1043          // Moving KillMI can clobber the physical register if the def has
1044          // not been seen.
1045          return false;
1046        if (Kills.count(MOReg))
1047          // Don't want to extend other live ranges and update kills.
1048          return false;
1049        if (OtherMI != MI && MOReg == Reg &&
1050            !(MO.isKill() || (LIS && isPlainlyKilled(OtherMI, MOReg, LIS))))
1051          // We can't schedule across a use of the register in question.
1052          return false;
1053      } else {
1054        OtherDefs.push_back(MOReg);
1055      }
1056    }
1057
1058    for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) {
1059      unsigned MOReg = OtherDefs[i];
1060      if (Uses.count(MOReg))
1061        return false;
1062      if (TargetRegisterInfo::isPhysicalRegister(MOReg) &&
1063          LiveDefs.count(MOReg))
1064        return false;
1065      // Physical register def is seen.
1066      Defs.erase(MOReg);
1067    }
1068  }
1069
1070  // Move the old kill above MI, don't forget to move debug info as well.
1071  MachineBasicBlock::iterator InsertPos = mi;
1072  while (InsertPos != MBB->begin() && std::prev(InsertPos)->isDebugValue())
1073    --InsertPos;
1074  MachineBasicBlock::iterator From = KillMI;
1075  MachineBasicBlock::iterator To = std::next(From);
1076  while (std::prev(From)->isDebugValue())
1077    --From;
1078  MBB->splice(InsertPos, MBB, From, To);
1079
1080  nmi = std::prev(InsertPos); // Backtrack so we process the moved instr.
1081  DistanceMap.erase(DI);
1082
1083  // Update live variables
1084  if (LIS) {
1085    LIS->handleMove(KillMI);
1086  } else {
1087    LV->removeVirtualRegisterKilled(Reg, KillMI);
1088    LV->addVirtualRegisterKilled(Reg, MI);
1089  }
1090
1091  DEBUG(dbgs() << "\trescheduled kill: " << *KillMI);
1092  return true;
1093}
1094
1095/// tryInstructionTransform - For the case where an instruction has a single
1096/// pair of tied register operands, attempt some transformations that may
1097/// either eliminate the tied operands or improve the opportunities for
1098/// coalescing away the register copy.  Returns true if no copy needs to be
1099/// inserted to untie mi's operands (either because they were untied, or
1100/// because mi was rescheduled, and will be visited again later). If the
1101/// shouldOnlyCommute flag is true, only instruction commutation is attempted.
1102bool TwoAddressInstructionPass::
1103tryInstructionTransform(MachineBasicBlock::iterator &mi,
1104                        MachineBasicBlock::iterator &nmi,
1105                        unsigned SrcIdx, unsigned DstIdx,
1106                        unsigned Dist, bool shouldOnlyCommute) {
1107  if (OptLevel == CodeGenOpt::None)
1108    return false;
1109
1110  MachineInstr &MI = *mi;
1111  unsigned regA = MI.getOperand(DstIdx).getReg();
1112  unsigned regB = MI.getOperand(SrcIdx).getReg();
1113
1114  assert(TargetRegisterInfo::isVirtualRegister(regB) &&
1115         "cannot make instruction into two-address form");
1116  bool regBKilled = isKilled(MI, regB, MRI, TII, LIS, true);
1117
1118  if (TargetRegisterInfo::isVirtualRegister(regA))
1119    scanUses(regA);
1120
1121  // Check if it is profitable to commute the operands.
1122  unsigned SrcOp1, SrcOp2;
1123  unsigned regC = 0;
1124  unsigned regCIdx = ~0U;
1125  bool TryCommute = false;
1126  bool AggressiveCommute = false;
1127  if (MI.isCommutable() && MI.getNumOperands() >= 3 &&
1128      TII->findCommutedOpIndices(&MI, SrcOp1, SrcOp2)) {
1129    if (SrcIdx == SrcOp1)
1130      regCIdx = SrcOp2;
1131    else if (SrcIdx == SrcOp2)
1132      regCIdx = SrcOp1;
1133
1134    if (regCIdx != ~0U) {
1135      regC = MI.getOperand(regCIdx).getReg();
1136      if (!regBKilled && isKilled(MI, regC, MRI, TII, LIS, false))
1137        // If C dies but B does not, swap the B and C operands.
1138        // This makes the live ranges of A and C joinable.
1139        TryCommute = true;
1140      else if (isProfitableToCommute(regA, regB, regC, &MI, Dist)) {
1141        TryCommute = true;
1142        AggressiveCommute = true;
1143      }
1144    }
1145  }
1146
1147  // If it's profitable to commute, try to do so.
1148  if (TryCommute && commuteInstruction(mi, regB, regC, Dist)) {
1149    ++NumCommuted;
1150    if (AggressiveCommute)
1151      ++NumAggrCommuted;
1152    return false;
1153  }
1154
1155  if (shouldOnlyCommute)
1156    return false;
1157
1158  // If there is one more use of regB later in the same MBB, consider
1159  // re-schedule this MI below it.
1160  if (EnableRescheduling && rescheduleMIBelowKill(mi, nmi, regB)) {
1161    ++NumReSchedDowns;
1162    return true;
1163  }
1164
1165  if (MI.isConvertibleTo3Addr()) {
1166    // This instruction is potentially convertible to a true
1167    // three-address instruction.  Check if it is profitable.
1168    if (!regBKilled || isProfitableToConv3Addr(regA, regB)) {
1169      // Try to convert it.
1170      if (convertInstTo3Addr(mi, nmi, regA, regB, Dist)) {
1171        ++NumConvertedTo3Addr;
1172        return true; // Done with this instruction.
1173      }
1174    }
1175  }
1176
1177  // If there is one more use of regB later in the same MBB, consider
1178  // re-schedule it before this MI if it's legal.
1179  if (EnableRescheduling && rescheduleKillAboveMI(mi, nmi, regB)) {
1180    ++NumReSchedUps;
1181    return true;
1182  }
1183
1184  // If this is an instruction with a load folded into it, try unfolding
1185  // the load, e.g. avoid this:
1186  //   movq %rdx, %rcx
1187  //   addq (%rax), %rcx
1188  // in favor of this:
1189  //   movq (%rax), %rcx
1190  //   addq %rdx, %rcx
1191  // because it's preferable to schedule a load than a register copy.
1192  if (MI.mayLoad() && !regBKilled) {
1193    // Determine if a load can be unfolded.
1194    unsigned LoadRegIndex;
1195    unsigned NewOpc =
1196      TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
1197                                      /*UnfoldLoad=*/true,
1198                                      /*UnfoldStore=*/false,
1199                                      &LoadRegIndex);
1200    if (NewOpc != 0) {
1201      const MCInstrDesc &UnfoldMCID = TII->get(NewOpc);
1202      if (UnfoldMCID.getNumDefs() == 1) {
1203        // Unfold the load.
1204        DEBUG(dbgs() << "2addr:   UNFOLDING: " << MI);
1205        const TargetRegisterClass *RC =
1206          TRI->getAllocatableClass(
1207            TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI, *MF));
1208        unsigned Reg = MRI->createVirtualRegister(RC);
1209        SmallVector<MachineInstr *, 2> NewMIs;
1210        if (!TII->unfoldMemoryOperand(*MF, &MI, Reg,
1211                                      /*UnfoldLoad=*/true,/*UnfoldStore=*/false,
1212                                      NewMIs)) {
1213          DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1214          return false;
1215        }
1216        assert(NewMIs.size() == 2 &&
1217               "Unfolded a load into multiple instructions!");
1218        // The load was previously folded, so this is the only use.
1219        NewMIs[1]->addRegisterKilled(Reg, TRI);
1220
1221        // Tentatively insert the instructions into the block so that they
1222        // look "normal" to the transformation logic.
1223        MBB->insert(mi, NewMIs[0]);
1224        MBB->insert(mi, NewMIs[1]);
1225
1226        DEBUG(dbgs() << "2addr:    NEW LOAD: " << *NewMIs[0]
1227                     << "2addr:    NEW INST: " << *NewMIs[1]);
1228
1229        // Transform the instruction, now that it no longer has a load.
1230        unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA);
1231        unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB);
1232        MachineBasicBlock::iterator NewMI = NewMIs[1];
1233        bool TransformResult =
1234          tryInstructionTransform(NewMI, mi, NewSrcIdx, NewDstIdx, Dist, true);
1235        (void)TransformResult;
1236        assert(!TransformResult &&
1237               "tryInstructionTransform() should return false.");
1238        if (NewMIs[1]->getOperand(NewSrcIdx).isKill()) {
1239          // Success, or at least we made an improvement. Keep the unfolded
1240          // instructions and discard the original.
1241          if (LV) {
1242            for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1243              MachineOperand &MO = MI.getOperand(i);
1244              if (MO.isReg() &&
1245                  TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
1246                if (MO.isUse()) {
1247                  if (MO.isKill()) {
1248                    if (NewMIs[0]->killsRegister(MO.getReg()))
1249                      LV->replaceKillInstruction(MO.getReg(), &MI, NewMIs[0]);
1250                    else {
1251                      assert(NewMIs[1]->killsRegister(MO.getReg()) &&
1252                             "Kill missing after load unfold!");
1253                      LV->replaceKillInstruction(MO.getReg(), &MI, NewMIs[1]);
1254                    }
1255                  }
1256                } else if (LV->removeVirtualRegisterDead(MO.getReg(), &MI)) {
1257                  if (NewMIs[1]->registerDefIsDead(MO.getReg()))
1258                    LV->addVirtualRegisterDead(MO.getReg(), NewMIs[1]);
1259                  else {
1260                    assert(NewMIs[0]->registerDefIsDead(MO.getReg()) &&
1261                           "Dead flag missing after load unfold!");
1262                    LV->addVirtualRegisterDead(MO.getReg(), NewMIs[0]);
1263                  }
1264                }
1265              }
1266            }
1267            LV->addVirtualRegisterKilled(Reg, NewMIs[1]);
1268          }
1269
1270          SmallVector<unsigned, 4> OrigRegs;
1271          if (LIS) {
1272            for (MachineInstr::const_mop_iterator MOI = MI.operands_begin(),
1273                 MOE = MI.operands_end(); MOI != MOE; ++MOI) {
1274              if (MOI->isReg())
1275                OrigRegs.push_back(MOI->getReg());
1276            }
1277          }
1278
1279          MI.eraseFromParent();
1280
1281          // Update LiveIntervals.
1282          if (LIS) {
1283            MachineBasicBlock::iterator Begin(NewMIs[0]);
1284            MachineBasicBlock::iterator End(NewMIs[1]);
1285            LIS->repairIntervalsInRange(MBB, Begin, End, OrigRegs);
1286          }
1287
1288          mi = NewMIs[1];
1289        } else {
1290          // Transforming didn't eliminate the tie and didn't lead to an
1291          // improvement. Clean up the unfolded instructions and keep the
1292          // original.
1293          DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1294          NewMIs[0]->eraseFromParent();
1295          NewMIs[1]->eraseFromParent();
1296        }
1297      }
1298    }
1299  }
1300
1301  return false;
1302}
1303
1304// Collect tied operands of MI that need to be handled.
1305// Rewrite trivial cases immediately.
1306// Return true if any tied operands where found, including the trivial ones.
1307bool TwoAddressInstructionPass::
1308collectTiedOperands(MachineInstr *MI, TiedOperandMap &TiedOperands) {
1309  const MCInstrDesc &MCID = MI->getDesc();
1310  bool AnyOps = false;
1311  unsigned NumOps = MI->getNumOperands();
1312
1313  for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) {
1314    unsigned DstIdx = 0;
1315    if (!MI->isRegTiedToDefOperand(SrcIdx, &DstIdx))
1316      continue;
1317    AnyOps = true;
1318    MachineOperand &SrcMO = MI->getOperand(SrcIdx);
1319    MachineOperand &DstMO = MI->getOperand(DstIdx);
1320    unsigned SrcReg = SrcMO.getReg();
1321    unsigned DstReg = DstMO.getReg();
1322    // Tied constraint already satisfied?
1323    if (SrcReg == DstReg)
1324      continue;
1325
1326    assert(SrcReg && SrcMO.isUse() && "two address instruction invalid");
1327
1328    // Deal with <undef> uses immediately - simply rewrite the src operand.
1329    if (SrcMO.isUndef() && !DstMO.getSubReg()) {
1330      // Constrain the DstReg register class if required.
1331      if (TargetRegisterInfo::isVirtualRegister(DstReg))
1332        if (const TargetRegisterClass *RC = TII->getRegClass(MCID, SrcIdx,
1333                                                             TRI, *MF))
1334          MRI->constrainRegClass(DstReg, RC);
1335      SrcMO.setReg(DstReg);
1336      SrcMO.setSubReg(0);
1337      DEBUG(dbgs() << "\t\trewrite undef:\t" << *MI);
1338      continue;
1339    }
1340    TiedOperands[SrcReg].push_back(std::make_pair(SrcIdx, DstIdx));
1341  }
1342  return AnyOps;
1343}
1344
1345// Process a list of tied MI operands that all use the same source register.
1346// The tied pairs are of the form (SrcIdx, DstIdx).
1347void
1348TwoAddressInstructionPass::processTiedPairs(MachineInstr *MI,
1349                                            TiedPairList &TiedPairs,
1350                                            unsigned &Dist) {
1351  bool IsEarlyClobber = false;
1352  for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
1353    const MachineOperand &DstMO = MI->getOperand(TiedPairs[tpi].second);
1354    IsEarlyClobber |= DstMO.isEarlyClobber();
1355  }
1356
1357  bool RemovedKillFlag = false;
1358  bool AllUsesCopied = true;
1359  unsigned LastCopiedReg = 0;
1360  SlotIndex LastCopyIdx;
1361  unsigned RegB = 0;
1362  unsigned SubRegB = 0;
1363  for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
1364    unsigned SrcIdx = TiedPairs[tpi].first;
1365    unsigned DstIdx = TiedPairs[tpi].second;
1366
1367    const MachineOperand &DstMO = MI->getOperand(DstIdx);
1368    unsigned RegA = DstMO.getReg();
1369
1370    // Grab RegB from the instruction because it may have changed if the
1371    // instruction was commuted.
1372    RegB = MI->getOperand(SrcIdx).getReg();
1373    SubRegB = MI->getOperand(SrcIdx).getSubReg();
1374
1375    if (RegA == RegB) {
1376      // The register is tied to multiple destinations (or else we would
1377      // not have continued this far), but this use of the register
1378      // already matches the tied destination.  Leave it.
1379      AllUsesCopied = false;
1380      continue;
1381    }
1382    LastCopiedReg = RegA;
1383
1384    assert(TargetRegisterInfo::isVirtualRegister(RegB) &&
1385           "cannot make instruction into two-address form");
1386
1387#ifndef NDEBUG
1388    // First, verify that we don't have a use of "a" in the instruction
1389    // (a = b + a for example) because our transformation will not
1390    // work. This should never occur because we are in SSA form.
1391    for (unsigned i = 0; i != MI->getNumOperands(); ++i)
1392      assert(i == DstIdx ||
1393             !MI->getOperand(i).isReg() ||
1394             MI->getOperand(i).getReg() != RegA);
1395#endif
1396
1397    // Emit a copy.
1398    MachineInstrBuilder MIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1399                                      TII->get(TargetOpcode::COPY), RegA);
1400    // If this operand is folding a truncation, the truncation now moves to the
1401    // copy so that the register classes remain valid for the operands.
1402    MIB.addReg(RegB, 0, SubRegB);
1403    const TargetRegisterClass *RC = MRI->getRegClass(RegB);
1404    if (SubRegB) {
1405      if (TargetRegisterInfo::isVirtualRegister(RegA)) {
1406        assert(TRI->getMatchingSuperRegClass(RC, MRI->getRegClass(RegA),
1407                                             SubRegB) &&
1408               "tied subregister must be a truncation");
1409        // The superreg class will not be used to constrain the subreg class.
1410        RC = nullptr;
1411      }
1412      else {
1413        assert(TRI->getMatchingSuperReg(RegA, SubRegB, MRI->getRegClass(RegB))
1414               && "tied subregister must be a truncation");
1415      }
1416    }
1417
1418    // Update DistanceMap.
1419    MachineBasicBlock::iterator PrevMI = MI;
1420    --PrevMI;
1421    DistanceMap.insert(std::make_pair(PrevMI, Dist));
1422    DistanceMap[MI] = ++Dist;
1423
1424    if (LIS) {
1425      LastCopyIdx = LIS->InsertMachineInstrInMaps(PrevMI).getRegSlot();
1426
1427      if (TargetRegisterInfo::isVirtualRegister(RegA)) {
1428        LiveInterval &LI = LIS->getInterval(RegA);
1429        VNInfo *VNI = LI.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator());
1430        SlotIndex endIdx =
1431          LIS->getInstructionIndex(MI).getRegSlot(IsEarlyClobber);
1432        LI.addSegment(LiveInterval::Segment(LastCopyIdx, endIdx, VNI));
1433      }
1434    }
1435
1436    DEBUG(dbgs() << "\t\tprepend:\t" << *MIB);
1437
1438    MachineOperand &MO = MI->getOperand(SrcIdx);
1439    assert(MO.isReg() && MO.getReg() == RegB && MO.isUse() &&
1440           "inconsistent operand info for 2-reg pass");
1441    if (MO.isKill()) {
1442      MO.setIsKill(false);
1443      RemovedKillFlag = true;
1444    }
1445
1446    // Make sure regA is a legal regclass for the SrcIdx operand.
1447    if (TargetRegisterInfo::isVirtualRegister(RegA) &&
1448        TargetRegisterInfo::isVirtualRegister(RegB))
1449      MRI->constrainRegClass(RegA, RC);
1450    MO.setReg(RegA);
1451    // The getMatchingSuper asserts guarantee that the register class projected
1452    // by SubRegB is compatible with RegA with no subregister. So regardless of
1453    // whether the dest oper writes a subreg, the source oper should not.
1454    MO.setSubReg(0);
1455
1456    // Propagate SrcRegMap.
1457    SrcRegMap[RegA] = RegB;
1458  }
1459
1460
1461  if (AllUsesCopied) {
1462    if (!IsEarlyClobber) {
1463      // Replace other (un-tied) uses of regB with LastCopiedReg.
1464      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1465        MachineOperand &MO = MI->getOperand(i);
1466        if (MO.isReg() && MO.getReg() == RegB && MO.getSubReg() == SubRegB &&
1467            MO.isUse()) {
1468          if (MO.isKill()) {
1469            MO.setIsKill(false);
1470            RemovedKillFlag = true;
1471          }
1472          MO.setReg(LastCopiedReg);
1473          MO.setSubReg(0);
1474        }
1475      }
1476    }
1477
1478    // Update live variables for regB.
1479    if (RemovedKillFlag && LV && LV->getVarInfo(RegB).removeKill(MI)) {
1480      MachineBasicBlock::iterator PrevMI = MI;
1481      --PrevMI;
1482      LV->addVirtualRegisterKilled(RegB, PrevMI);
1483    }
1484
1485    // Update LiveIntervals.
1486    if (LIS) {
1487      LiveInterval &LI = LIS->getInterval(RegB);
1488      SlotIndex MIIdx = LIS->getInstructionIndex(MI);
1489      LiveInterval::const_iterator I = LI.find(MIIdx);
1490      assert(I != LI.end() && "RegB must be live-in to use.");
1491
1492      SlotIndex UseIdx = MIIdx.getRegSlot(IsEarlyClobber);
1493      if (I->end == UseIdx)
1494        LI.removeSegment(LastCopyIdx, UseIdx);
1495    }
1496
1497  } else if (RemovedKillFlag) {
1498    // Some tied uses of regB matched their destination registers, so
1499    // regB is still used in this instruction, but a kill flag was
1500    // removed from a different tied use of regB, so now we need to add
1501    // a kill flag to one of the remaining uses of regB.
1502    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1503      MachineOperand &MO = MI->getOperand(i);
1504      if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) {
1505        MO.setIsKill(true);
1506        break;
1507      }
1508    }
1509  }
1510}
1511
1512/// runOnMachineFunction - Reduce two-address instructions to two operands.
1513///
1514bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &Func) {
1515  MF = &Func;
1516  const TargetMachine &TM = MF->getTarget();
1517  MRI = &MF->getRegInfo();
1518  TII = MF->getSubtarget().getInstrInfo();
1519  TRI = MF->getSubtarget().getRegisterInfo();
1520  InstrItins = MF->getSubtarget().getInstrItineraryData();
1521  LV = getAnalysisIfAvailable<LiveVariables>();
1522  LIS = getAnalysisIfAvailable<LiveIntervals>();
1523  AA = &getAnalysis<AliasAnalysis>();
1524  OptLevel = TM.getOptLevel();
1525
1526  bool MadeChange = false;
1527
1528  DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
1529  DEBUG(dbgs() << "********** Function: "
1530        << MF->getName() << '\n');
1531
1532  // This pass takes the function out of SSA form.
1533  MRI->leaveSSA();
1534
1535  TiedOperandMap TiedOperands;
1536  for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end();
1537       MBBI != MBBE; ++MBBI) {
1538    MBB = MBBI;
1539    unsigned Dist = 0;
1540    DistanceMap.clear();
1541    SrcRegMap.clear();
1542    DstRegMap.clear();
1543    Processed.clear();
1544    for (MachineBasicBlock::iterator mi = MBB->begin(), me = MBB->end();
1545         mi != me; ) {
1546      MachineBasicBlock::iterator nmi = std::next(mi);
1547      if (mi->isDebugValue()) {
1548        mi = nmi;
1549        continue;
1550      }
1551
1552      // Expand REG_SEQUENCE instructions. This will position mi at the first
1553      // expanded instruction.
1554      if (mi->isRegSequence())
1555        eliminateRegSequence(mi);
1556
1557      DistanceMap.insert(std::make_pair(mi, ++Dist));
1558
1559      processCopy(&*mi);
1560
1561      // First scan through all the tied register uses in this instruction
1562      // and record a list of pairs of tied operands for each register.
1563      if (!collectTiedOperands(mi, TiedOperands)) {
1564        mi = nmi;
1565        continue;
1566      }
1567
1568      ++NumTwoAddressInstrs;
1569      MadeChange = true;
1570      DEBUG(dbgs() << '\t' << *mi);
1571
1572      // If the instruction has a single pair of tied operands, try some
1573      // transformations that may either eliminate the tied operands or
1574      // improve the opportunities for coalescing away the register copy.
1575      if (TiedOperands.size() == 1) {
1576        SmallVectorImpl<std::pair<unsigned, unsigned> > &TiedPairs
1577          = TiedOperands.begin()->second;
1578        if (TiedPairs.size() == 1) {
1579          unsigned SrcIdx = TiedPairs[0].first;
1580          unsigned DstIdx = TiedPairs[0].second;
1581          unsigned SrcReg = mi->getOperand(SrcIdx).getReg();
1582          unsigned DstReg = mi->getOperand(DstIdx).getReg();
1583          if (SrcReg != DstReg &&
1584              tryInstructionTransform(mi, nmi, SrcIdx, DstIdx, Dist, false)) {
1585            // The tied operands have been eliminated or shifted further down the
1586            // block to ease elimination. Continue processing with 'nmi'.
1587            TiedOperands.clear();
1588            mi = nmi;
1589            continue;
1590          }
1591        }
1592      }
1593
1594      // Now iterate over the information collected above.
1595      for (TiedOperandMap::iterator OI = TiedOperands.begin(),
1596             OE = TiedOperands.end(); OI != OE; ++OI) {
1597        processTiedPairs(mi, OI->second, Dist);
1598        DEBUG(dbgs() << "\t\trewrite to:\t" << *mi);
1599      }
1600
1601      // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form.
1602      if (mi->isInsertSubreg()) {
1603        // From %reg = INSERT_SUBREG %reg, %subreg, subidx
1604        // To   %reg:subidx = COPY %subreg
1605        unsigned SubIdx = mi->getOperand(3).getImm();
1606        mi->RemoveOperand(3);
1607        assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx");
1608        mi->getOperand(0).setSubReg(SubIdx);
1609        mi->getOperand(0).setIsUndef(mi->getOperand(1).isUndef());
1610        mi->RemoveOperand(1);
1611        mi->setDesc(TII->get(TargetOpcode::COPY));
1612        DEBUG(dbgs() << "\t\tconvert to:\t" << *mi);
1613      }
1614
1615      // Clear TiedOperands here instead of at the top of the loop
1616      // since most instructions do not have tied operands.
1617      TiedOperands.clear();
1618      mi = nmi;
1619    }
1620  }
1621
1622  if (LIS)
1623    MF->verify(this, "After two-address instruction pass");
1624
1625  return MadeChange;
1626}
1627
1628/// Eliminate a REG_SEQUENCE instruction as part of the de-ssa process.
1629///
1630/// The instruction is turned into a sequence of sub-register copies:
1631///
1632///   %dst = REG_SEQUENCE %v1, ssub0, %v2, ssub1
1633///
1634/// Becomes:
1635///
1636///   %dst:ssub0<def,undef> = COPY %v1
1637///   %dst:ssub1<def> = COPY %v2
1638///
1639void TwoAddressInstructionPass::
1640eliminateRegSequence(MachineBasicBlock::iterator &MBBI) {
1641  MachineInstr *MI = MBBI;
1642  unsigned DstReg = MI->getOperand(0).getReg();
1643  if (MI->getOperand(0).getSubReg() ||
1644      TargetRegisterInfo::isPhysicalRegister(DstReg) ||
1645      !(MI->getNumOperands() & 1)) {
1646    DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI);
1647    llvm_unreachable(nullptr);
1648  }
1649
1650  SmallVector<unsigned, 4> OrigRegs;
1651  if (LIS) {
1652    OrigRegs.push_back(MI->getOperand(0).getReg());
1653    for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2)
1654      OrigRegs.push_back(MI->getOperand(i).getReg());
1655  }
1656
1657  bool DefEmitted = false;
1658  for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) {
1659    MachineOperand &UseMO = MI->getOperand(i);
1660    unsigned SrcReg = UseMO.getReg();
1661    unsigned SubIdx = MI->getOperand(i+1).getImm();
1662    // Nothing needs to be inserted for <undef> operands.
1663    if (UseMO.isUndef())
1664      continue;
1665
1666    // Defer any kill flag to the last operand using SrcReg. Otherwise, we
1667    // might insert a COPY that uses SrcReg after is was killed.
1668    bool isKill = UseMO.isKill();
1669    if (isKill)
1670      for (unsigned j = i + 2; j < e; j += 2)
1671        if (MI->getOperand(j).getReg() == SrcReg) {
1672          MI->getOperand(j).setIsKill();
1673          UseMO.setIsKill(false);
1674          isKill = false;
1675          break;
1676        }
1677
1678    // Insert the sub-register copy.
1679    MachineInstr *CopyMI = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1680                                   TII->get(TargetOpcode::COPY))
1681      .addReg(DstReg, RegState::Define, SubIdx)
1682      .addOperand(UseMO);
1683
1684    // The first def needs an <undef> flag because there is no live register
1685    // before it.
1686    if (!DefEmitted) {
1687      CopyMI->getOperand(0).setIsUndef(true);
1688      // Return an iterator pointing to the first inserted instr.
1689      MBBI = CopyMI;
1690    }
1691    DefEmitted = true;
1692
1693    // Update LiveVariables' kill info.
1694    if (LV && isKill && !TargetRegisterInfo::isPhysicalRegister(SrcReg))
1695      LV->replaceKillInstruction(SrcReg, MI, CopyMI);
1696
1697    DEBUG(dbgs() << "Inserted: " << *CopyMI);
1698  }
1699
1700  MachineBasicBlock::iterator EndMBBI =
1701      std::next(MachineBasicBlock::iterator(MI));
1702
1703  if (!DefEmitted) {
1704    DEBUG(dbgs() << "Turned: " << *MI << " into an IMPLICIT_DEF");
1705    MI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
1706    for (int j = MI->getNumOperands() - 1, ee = 0; j > ee; --j)
1707      MI->RemoveOperand(j);
1708  } else {
1709    DEBUG(dbgs() << "Eliminated: " << *MI);
1710    MI->eraseFromParent();
1711  }
1712
1713  // Udpate LiveIntervals.
1714  if (LIS)
1715    LIS->repairIntervalsInRange(MBB, MBBI, EndMBBI, OrigRegs);
1716}
1717