AsmWriter.cpp revision 1b0c54f1c5dd61e56cb7cbc435fcb3319cff628f
1//===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This library implements the functionality defined in llvm/Assembly/Writer.h
11//
12// Note that these routines must be extremely tolerant of various errors in the
13// LLVM code, because it can be used for debugging transformations.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/Assembly/Writer.h"
18#include "llvm/ADT/DenseMap.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/SmallString.h"
21#include "llvm/ADT/StringExtras.h"
22#include "llvm/Assembly/AssemblyAnnotationWriter.h"
23#include "llvm/Assembly/PrintModulePass.h"
24#include "llvm/DebugInfo.h"
25#include "llvm/IR/CallingConv.h"
26#include "llvm/IR/Constants.h"
27#include "llvm/IR/DerivedTypes.h"
28#include "llvm/IR/InlineAsm.h"
29#include "llvm/IR/IntrinsicInst.h"
30#include "llvm/IR/LLVMContext.h"
31#include "llvm/IR/Module.h"
32#include "llvm/IR/Operator.h"
33#include "llvm/IR/TypeFinder.h"
34#include "llvm/IR/ValueSymbolTable.h"
35#include "llvm/Support/CFG.h"
36#include "llvm/Support/Debug.h"
37#include "llvm/Support/Dwarf.h"
38#include "llvm/Support/ErrorHandling.h"
39#include "llvm/Support/FormattedStream.h"
40#include "llvm/Support/MathExtras.h"
41#include <algorithm>
42#include <cctype>
43using namespace llvm;
44
45// Make virtual table appear in this compilation unit.
46AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
47
48//===----------------------------------------------------------------------===//
49// Helper Functions
50//===----------------------------------------------------------------------===//
51
52static const Module *getModuleFromVal(const Value *V) {
53  if (const Argument *MA = dyn_cast<Argument>(V))
54    return MA->getParent() ? MA->getParent()->getParent() : 0;
55
56  if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
57    return BB->getParent() ? BB->getParent()->getParent() : 0;
58
59  if (const Instruction *I = dyn_cast<Instruction>(V)) {
60    const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
61    return M ? M->getParent() : 0;
62  }
63
64  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
65    return GV->getParent();
66  return 0;
67}
68
69static void PrintCallingConv(unsigned cc, raw_ostream &Out)
70{
71  switch (cc) {
72    case CallingConv::Fast:         Out << "fastcc"; break;
73    case CallingConv::Cold:         Out << "coldcc"; break;
74    case CallingConv::X86_StdCall:  Out << "x86_stdcallcc"; break;
75    case CallingConv::X86_FastCall: Out << "x86_fastcallcc"; break;
76    case CallingConv::X86_ThisCall: Out << "x86_thiscallcc"; break;
77    case CallingConv::Intel_OCL_BI: Out << "intel_ocl_bicc"; break;
78    case CallingConv::ARM_APCS:     Out << "arm_apcscc"; break;
79    case CallingConv::ARM_AAPCS:    Out << "arm_aapcscc"; break;
80    case CallingConv::ARM_AAPCS_VFP:Out << "arm_aapcs_vfpcc"; break;
81    case CallingConv::MSP430_INTR:  Out << "msp430_intrcc"; break;
82    case CallingConv::PTX_Kernel:   Out << "ptx_kernel"; break;
83    case CallingConv::PTX_Device:   Out << "ptx_device"; break;
84    default:                        Out << "cc" << cc; break;
85  }
86}
87
88// PrintEscapedString - Print each character of the specified string, escaping
89// it if it is not printable or if it is an escape char.
90static void PrintEscapedString(StringRef Name, raw_ostream &Out) {
91  for (unsigned i = 0, e = Name.size(); i != e; ++i) {
92    unsigned char C = Name[i];
93    if (isprint(C) && C != '\\' && C != '"')
94      Out << C;
95    else
96      Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
97  }
98}
99
100enum PrefixType {
101  GlobalPrefix,
102  LabelPrefix,
103  LocalPrefix,
104  NoPrefix
105};
106
107/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
108/// prefixed with % (if the string only contains simple characters) or is
109/// surrounded with ""'s (if it has special chars in it).  Print it out.
110static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) {
111  assert(!Name.empty() && "Cannot get empty name!");
112  switch (Prefix) {
113  case NoPrefix: break;
114  case GlobalPrefix: OS << '@'; break;
115  case LabelPrefix:  break;
116  case LocalPrefix:  OS << '%'; break;
117  }
118
119  // Scan the name to see if it needs quotes first.
120  bool NeedsQuotes = isdigit(Name[0]);
121  if (!NeedsQuotes) {
122    for (unsigned i = 0, e = Name.size(); i != e; ++i) {
123      // By making this unsigned, the value passed in to isalnum will always be
124      // in the range 0-255.  This is important when building with MSVC because
125      // its implementation will assert.  This situation can arise when dealing
126      // with UTF-8 multibyte characters.
127      unsigned char C = Name[i];
128      if (!isalnum(C) && C != '-' && C != '.' && C != '_') {
129        NeedsQuotes = true;
130        break;
131      }
132    }
133  }
134
135  // If we didn't need any quotes, just write out the name in one blast.
136  if (!NeedsQuotes) {
137    OS << Name;
138    return;
139  }
140
141  // Okay, we need quotes.  Output the quotes and escape any scary characters as
142  // needed.
143  OS << '"';
144  PrintEscapedString(Name, OS);
145  OS << '"';
146}
147
148/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
149/// prefixed with % (if the string only contains simple characters) or is
150/// surrounded with ""'s (if it has special chars in it).  Print it out.
151static void PrintLLVMName(raw_ostream &OS, const Value *V) {
152  PrintLLVMName(OS, V->getName(),
153                isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
154}
155
156//===----------------------------------------------------------------------===//
157// TypePrinting Class: Type printing machinery
158//===----------------------------------------------------------------------===//
159
160/// TypePrinting - Type printing machinery.
161namespace {
162class TypePrinting {
163  TypePrinting(const TypePrinting &) LLVM_DELETED_FUNCTION;
164  void operator=(const TypePrinting&) LLVM_DELETED_FUNCTION;
165public:
166
167  /// NamedTypes - The named types that are used by the current module.
168  TypeFinder NamedTypes;
169
170  /// NumberedTypes - The numbered types, along with their value.
171  DenseMap<StructType*, unsigned> NumberedTypes;
172
173
174  TypePrinting() {}
175  ~TypePrinting() {}
176
177  void incorporateTypes(const Module &M);
178
179  void print(Type *Ty, raw_ostream &OS);
180
181  void printStructBody(StructType *Ty, raw_ostream &OS);
182};
183} // end anonymous namespace.
184
185
186void TypePrinting::incorporateTypes(const Module &M) {
187  NamedTypes.run(M, false);
188
189  // The list of struct types we got back includes all the struct types, split
190  // the unnamed ones out to a numbering and remove the anonymous structs.
191  unsigned NextNumber = 0;
192
193  std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E;
194  for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) {
195    StructType *STy = *I;
196
197    // Ignore anonymous types.
198    if (STy->isLiteral())
199      continue;
200
201    if (STy->getName().empty())
202      NumberedTypes[STy] = NextNumber++;
203    else
204      *NextToUse++ = STy;
205  }
206
207  NamedTypes.erase(NextToUse, NamedTypes.end());
208}
209
210
211/// CalcTypeName - Write the specified type to the specified raw_ostream, making
212/// use of type names or up references to shorten the type name where possible.
213void TypePrinting::print(Type *Ty, raw_ostream &OS) {
214  switch (Ty->getTypeID()) {
215  case Type::VoidTyID:      OS << "void"; break;
216  case Type::HalfTyID:      OS << "half"; break;
217  case Type::FloatTyID:     OS << "float"; break;
218  case Type::DoubleTyID:    OS << "double"; break;
219  case Type::X86_FP80TyID:  OS << "x86_fp80"; break;
220  case Type::FP128TyID:     OS << "fp128"; break;
221  case Type::PPC_FP128TyID: OS << "ppc_fp128"; break;
222  case Type::LabelTyID:     OS << "label"; break;
223  case Type::MetadataTyID:  OS << "metadata"; break;
224  case Type::X86_MMXTyID:   OS << "x86_mmx"; break;
225  case Type::IntegerTyID:
226    OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
227    return;
228
229  case Type::FunctionTyID: {
230    FunctionType *FTy = cast<FunctionType>(Ty);
231    print(FTy->getReturnType(), OS);
232    OS << " (";
233    for (FunctionType::param_iterator I = FTy->param_begin(),
234         E = FTy->param_end(); I != E; ++I) {
235      if (I != FTy->param_begin())
236        OS << ", ";
237      print(*I, OS);
238    }
239    if (FTy->isVarArg()) {
240      if (FTy->getNumParams()) OS << ", ";
241      OS << "...";
242    }
243    OS << ')';
244    return;
245  }
246  case Type::StructTyID: {
247    StructType *STy = cast<StructType>(Ty);
248
249    if (STy->isLiteral())
250      return printStructBody(STy, OS);
251
252    if (!STy->getName().empty())
253      return PrintLLVMName(OS, STy->getName(), LocalPrefix);
254
255    DenseMap<StructType*, unsigned>::iterator I = NumberedTypes.find(STy);
256    if (I != NumberedTypes.end())
257      OS << '%' << I->second;
258    else  // Not enumerated, print the hex address.
259      OS << "%\"type " << STy << '\"';
260    return;
261  }
262  case Type::PointerTyID: {
263    PointerType *PTy = cast<PointerType>(Ty);
264    print(PTy->getElementType(), OS);
265    if (unsigned AddressSpace = PTy->getAddressSpace())
266      OS << " addrspace(" << AddressSpace << ')';
267    OS << '*';
268    return;
269  }
270  case Type::ArrayTyID: {
271    ArrayType *ATy = cast<ArrayType>(Ty);
272    OS << '[' << ATy->getNumElements() << " x ";
273    print(ATy->getElementType(), OS);
274    OS << ']';
275    return;
276  }
277  case Type::VectorTyID: {
278    VectorType *PTy = cast<VectorType>(Ty);
279    OS << "<" << PTy->getNumElements() << " x ";
280    print(PTy->getElementType(), OS);
281    OS << '>';
282    return;
283  }
284  default:
285    OS << "<unrecognized-type>";
286    return;
287  }
288}
289
290void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
291  if (STy->isOpaque()) {
292    OS << "opaque";
293    return;
294  }
295
296  if (STy->isPacked())
297    OS << '<';
298
299  if (STy->getNumElements() == 0) {
300    OS << "{}";
301  } else {
302    StructType::element_iterator I = STy->element_begin();
303    OS << "{ ";
304    print(*I++, OS);
305    for (StructType::element_iterator E = STy->element_end(); I != E; ++I) {
306      OS << ", ";
307      print(*I, OS);
308    }
309
310    OS << " }";
311  }
312  if (STy->isPacked())
313    OS << '>';
314}
315
316
317
318//===----------------------------------------------------------------------===//
319// SlotTracker Class: Enumerate slot numbers for unnamed values
320//===----------------------------------------------------------------------===//
321
322namespace {
323
324/// This class provides computation of slot numbers for LLVM Assembly writing.
325///
326class SlotTracker {
327public:
328  /// ValueMap - A mapping of Values to slot numbers.
329  typedef DenseMap<const Value*, unsigned> ValueMap;
330
331private:
332  /// TheModule - The module for which we are holding slot numbers.
333  const Module* TheModule;
334
335  /// TheFunction - The function for which we are holding slot numbers.
336  const Function* TheFunction;
337  bool FunctionProcessed;
338
339  /// mMap - The slot map for the module level data.
340  ValueMap mMap;
341  unsigned mNext;
342
343  /// fMap - The slot map for the function level data.
344  ValueMap fMap;
345  unsigned fNext;
346
347  /// mdnMap - Map for MDNodes.
348  DenseMap<const MDNode*, unsigned> mdnMap;
349  unsigned mdnNext;
350public:
351  /// Construct from a module
352  explicit SlotTracker(const Module *M);
353  /// Construct from a function, starting out in incorp state.
354  explicit SlotTracker(const Function *F);
355
356  /// Return the slot number of the specified value in it's type
357  /// plane.  If something is not in the SlotTracker, return -1.
358  int getLocalSlot(const Value *V);
359  int getGlobalSlot(const GlobalValue *V);
360  int getMetadataSlot(const MDNode *N);
361
362  /// If you'd like to deal with a function instead of just a module, use
363  /// this method to get its data into the SlotTracker.
364  void incorporateFunction(const Function *F) {
365    TheFunction = F;
366    FunctionProcessed = false;
367  }
368
369  /// After calling incorporateFunction, use this method to remove the
370  /// most recently incorporated function from the SlotTracker. This
371  /// will reset the state of the machine back to just the module contents.
372  void purgeFunction();
373
374  /// MDNode map iterators.
375  typedef DenseMap<const MDNode*, unsigned>::iterator mdn_iterator;
376  mdn_iterator mdn_begin() { return mdnMap.begin(); }
377  mdn_iterator mdn_end() { return mdnMap.end(); }
378  unsigned mdn_size() const { return mdnMap.size(); }
379  bool mdn_empty() const { return mdnMap.empty(); }
380
381  /// This function does the actual initialization.
382  inline void initialize();
383
384  // Implementation Details
385private:
386  /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
387  void CreateModuleSlot(const GlobalValue *V);
388
389  /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
390  void CreateMetadataSlot(const MDNode *N);
391
392  /// CreateFunctionSlot - Insert the specified Value* into the slot table.
393  void CreateFunctionSlot(const Value *V);
394
395  /// Add all of the module level global variables (and their initializers)
396  /// and function declarations, but not the contents of those functions.
397  void processModule();
398
399  /// Add all of the functions arguments, basic blocks, and instructions.
400  void processFunction();
401
402  SlotTracker(const SlotTracker &) LLVM_DELETED_FUNCTION;
403  void operator=(const SlotTracker &) LLVM_DELETED_FUNCTION;
404};
405
406}  // end anonymous namespace
407
408
409static SlotTracker *createSlotTracker(const Value *V) {
410  if (const Argument *FA = dyn_cast<Argument>(V))
411    return new SlotTracker(FA->getParent());
412
413  if (const Instruction *I = dyn_cast<Instruction>(V))
414    if (I->getParent())
415      return new SlotTracker(I->getParent()->getParent());
416
417  if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
418    return new SlotTracker(BB->getParent());
419
420  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
421    return new SlotTracker(GV->getParent());
422
423  if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
424    return new SlotTracker(GA->getParent());
425
426  if (const Function *Func = dyn_cast<Function>(V))
427    return new SlotTracker(Func);
428
429  if (const MDNode *MD = dyn_cast<MDNode>(V)) {
430    if (!MD->isFunctionLocal())
431      return new SlotTracker(MD->getFunction());
432
433    return new SlotTracker((Function *)0);
434  }
435
436  return 0;
437}
438
439#if 0
440#define ST_DEBUG(X) dbgs() << X
441#else
442#define ST_DEBUG(X)
443#endif
444
445// Module level constructor. Causes the contents of the Module (sans functions)
446// to be added to the slot table.
447SlotTracker::SlotTracker(const Module *M)
448  : TheModule(M), TheFunction(0), FunctionProcessed(false),
449    mNext(0), fNext(0),  mdnNext(0) {
450}
451
452// Function level constructor. Causes the contents of the Module and the one
453// function provided to be added to the slot table.
454SlotTracker::SlotTracker(const Function *F)
455  : TheModule(F ? F->getParent() : 0), TheFunction(F), FunctionProcessed(false),
456    mNext(0), fNext(0), mdnNext(0) {
457}
458
459inline void SlotTracker::initialize() {
460  if (TheModule) {
461    processModule();
462    TheModule = 0; ///< Prevent re-processing next time we're called.
463  }
464
465  if (TheFunction && !FunctionProcessed)
466    processFunction();
467}
468
469// Iterate through all the global variables, functions, and global
470// variable initializers and create slots for them.
471void SlotTracker::processModule() {
472  ST_DEBUG("begin processModule!\n");
473
474  // Add all of the unnamed global variables to the value table.
475  for (Module::const_global_iterator I = TheModule->global_begin(),
476         E = TheModule->global_end(); I != E; ++I) {
477    if (!I->hasName())
478      CreateModuleSlot(I);
479  }
480
481  // Add metadata used by named metadata.
482  for (Module::const_named_metadata_iterator
483         I = TheModule->named_metadata_begin(),
484         E = TheModule->named_metadata_end(); I != E; ++I) {
485    const NamedMDNode *NMD = I;
486    for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
487      CreateMetadataSlot(NMD->getOperand(i));
488  }
489
490  // Add all the unnamed functions to the table.
491  for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
492       I != E; ++I)
493    if (!I->hasName())
494      CreateModuleSlot(I);
495
496  ST_DEBUG("end processModule!\n");
497}
498
499// Process the arguments, basic blocks, and instructions  of a function.
500void SlotTracker::processFunction() {
501  ST_DEBUG("begin processFunction!\n");
502  fNext = 0;
503
504  // Add all the function arguments with no names.
505  for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
506      AE = TheFunction->arg_end(); AI != AE; ++AI)
507    if (!AI->hasName())
508      CreateFunctionSlot(AI);
509
510  ST_DEBUG("Inserting Instructions:\n");
511
512  SmallVector<std::pair<unsigned, MDNode*>, 4> MDForInst;
513
514  // Add all of the basic blocks and instructions with no names.
515  for (Function::const_iterator BB = TheFunction->begin(),
516       E = TheFunction->end(); BB != E; ++BB) {
517    if (!BB->hasName())
518      CreateFunctionSlot(BB);
519
520    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E;
521         ++I) {
522      if (!I->getType()->isVoidTy() && !I->hasName())
523        CreateFunctionSlot(I);
524
525      // Intrinsics can directly use metadata.  We allow direct calls to any
526      // llvm.foo function here, because the target may not be linked into the
527      // optimizer.
528      if (const CallInst *CI = dyn_cast<CallInst>(I)) {
529        if (Function *F = CI->getCalledFunction())
530          if (F->getName().startswith("llvm."))
531            for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
532              if (MDNode *N = dyn_cast_or_null<MDNode>(I->getOperand(i)))
533                CreateMetadataSlot(N);
534      }
535
536      // Process metadata attached with this instruction.
537      I->getAllMetadata(MDForInst);
538      for (unsigned i = 0, e = MDForInst.size(); i != e; ++i)
539        CreateMetadataSlot(MDForInst[i].second);
540      MDForInst.clear();
541    }
542  }
543
544  FunctionProcessed = true;
545
546  ST_DEBUG("end processFunction!\n");
547}
548
549/// Clean up after incorporating a function. This is the only way to get out of
550/// the function incorporation state that affects get*Slot/Create*Slot. Function
551/// incorporation state is indicated by TheFunction != 0.
552void SlotTracker::purgeFunction() {
553  ST_DEBUG("begin purgeFunction!\n");
554  fMap.clear(); // Simply discard the function level map
555  TheFunction = 0;
556  FunctionProcessed = false;
557  ST_DEBUG("end purgeFunction!\n");
558}
559
560/// getGlobalSlot - Get the slot number of a global value.
561int SlotTracker::getGlobalSlot(const GlobalValue *V) {
562  // Check for uninitialized state and do lazy initialization.
563  initialize();
564
565  // Find the value in the module map
566  ValueMap::iterator MI = mMap.find(V);
567  return MI == mMap.end() ? -1 : (int)MI->second;
568}
569
570/// getMetadataSlot - Get the slot number of a MDNode.
571int SlotTracker::getMetadataSlot(const MDNode *N) {
572  // Check for uninitialized state and do lazy initialization.
573  initialize();
574
575  // Find the MDNode in the module map
576  mdn_iterator MI = mdnMap.find(N);
577  return MI == mdnMap.end() ? -1 : (int)MI->second;
578}
579
580
581/// getLocalSlot - Get the slot number for a value that is local to a function.
582int SlotTracker::getLocalSlot(const Value *V) {
583  assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
584
585  // Check for uninitialized state and do lazy initialization.
586  initialize();
587
588  ValueMap::iterator FI = fMap.find(V);
589  return FI == fMap.end() ? -1 : (int)FI->second;
590}
591
592
593/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
594void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
595  assert(V && "Can't insert a null Value into SlotTracker!");
596  assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
597  assert(!V->hasName() && "Doesn't need a slot!");
598
599  unsigned DestSlot = mNext++;
600  mMap[V] = DestSlot;
601
602  ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
603           DestSlot << " [");
604  // G = Global, F = Function, A = Alias, o = other
605  ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
606            (isa<Function>(V) ? 'F' :
607             (isa<GlobalAlias>(V) ? 'A' : 'o'))) << "]\n");
608}
609
610/// CreateSlot - Create a new slot for the specified value if it has no name.
611void SlotTracker::CreateFunctionSlot(const Value *V) {
612  assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
613
614  unsigned DestSlot = fNext++;
615  fMap[V] = DestSlot;
616
617  // G = Global, F = Function, o = other
618  ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
619           DestSlot << " [o]\n");
620}
621
622/// CreateModuleSlot - Insert the specified MDNode* into the slot table.
623void SlotTracker::CreateMetadataSlot(const MDNode *N) {
624  assert(N && "Can't insert a null Value into SlotTracker!");
625
626  // Don't insert if N is a function-local metadata, these are always printed
627  // inline.
628  if (!N->isFunctionLocal()) {
629    mdn_iterator I = mdnMap.find(N);
630    if (I != mdnMap.end())
631      return;
632
633    unsigned DestSlot = mdnNext++;
634    mdnMap[N] = DestSlot;
635  }
636
637  // Recursively add any MDNodes referenced by operands.
638  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
639    if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
640      CreateMetadataSlot(Op);
641}
642
643//===----------------------------------------------------------------------===//
644// AsmWriter Implementation
645//===----------------------------------------------------------------------===//
646
647static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
648                                   TypePrinting *TypePrinter,
649                                   SlotTracker *Machine,
650                                   const Module *Context);
651
652
653
654static const char *getPredicateText(unsigned predicate) {
655  const char * pred = "unknown";
656  switch (predicate) {
657  case FCmpInst::FCMP_FALSE: pred = "false"; break;
658  case FCmpInst::FCMP_OEQ:   pred = "oeq"; break;
659  case FCmpInst::FCMP_OGT:   pred = "ogt"; break;
660  case FCmpInst::FCMP_OGE:   pred = "oge"; break;
661  case FCmpInst::FCMP_OLT:   pred = "olt"; break;
662  case FCmpInst::FCMP_OLE:   pred = "ole"; break;
663  case FCmpInst::FCMP_ONE:   pred = "one"; break;
664  case FCmpInst::FCMP_ORD:   pred = "ord"; break;
665  case FCmpInst::FCMP_UNO:   pred = "uno"; break;
666  case FCmpInst::FCMP_UEQ:   pred = "ueq"; break;
667  case FCmpInst::FCMP_UGT:   pred = "ugt"; break;
668  case FCmpInst::FCMP_UGE:   pred = "uge"; break;
669  case FCmpInst::FCMP_ULT:   pred = "ult"; break;
670  case FCmpInst::FCMP_ULE:   pred = "ule"; break;
671  case FCmpInst::FCMP_UNE:   pred = "une"; break;
672  case FCmpInst::FCMP_TRUE:  pred = "true"; break;
673  case ICmpInst::ICMP_EQ:    pred = "eq"; break;
674  case ICmpInst::ICMP_NE:    pred = "ne"; break;
675  case ICmpInst::ICMP_SGT:   pred = "sgt"; break;
676  case ICmpInst::ICMP_SGE:   pred = "sge"; break;
677  case ICmpInst::ICMP_SLT:   pred = "slt"; break;
678  case ICmpInst::ICMP_SLE:   pred = "sle"; break;
679  case ICmpInst::ICMP_UGT:   pred = "ugt"; break;
680  case ICmpInst::ICMP_UGE:   pred = "uge"; break;
681  case ICmpInst::ICMP_ULT:   pred = "ult"; break;
682  case ICmpInst::ICMP_ULE:   pred = "ule"; break;
683  }
684  return pred;
685}
686
687static void writeAtomicRMWOperation(raw_ostream &Out,
688                                    AtomicRMWInst::BinOp Op) {
689  switch (Op) {
690  default: Out << " <unknown operation " << Op << ">"; break;
691  case AtomicRMWInst::Xchg: Out << " xchg"; break;
692  case AtomicRMWInst::Add:  Out << " add"; break;
693  case AtomicRMWInst::Sub:  Out << " sub"; break;
694  case AtomicRMWInst::And:  Out << " and"; break;
695  case AtomicRMWInst::Nand: Out << " nand"; break;
696  case AtomicRMWInst::Or:   Out << " or"; break;
697  case AtomicRMWInst::Xor:  Out << " xor"; break;
698  case AtomicRMWInst::Max:  Out << " max"; break;
699  case AtomicRMWInst::Min:  Out << " min"; break;
700  case AtomicRMWInst::UMax: Out << " umax"; break;
701  case AtomicRMWInst::UMin: Out << " umin"; break;
702  }
703}
704
705static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
706  if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U)) {
707    // Unsafe algebra implies all the others, no need to write them all out
708    if (FPO->hasUnsafeAlgebra())
709      Out << " fast";
710    else {
711      if (FPO->hasNoNaNs())
712        Out << " nnan";
713      if (FPO->hasNoInfs())
714        Out << " ninf";
715      if (FPO->hasNoSignedZeros())
716        Out << " nsz";
717      if (FPO->hasAllowReciprocal())
718        Out << " arcp";
719    }
720  }
721
722  if (const OverflowingBinaryOperator *OBO =
723        dyn_cast<OverflowingBinaryOperator>(U)) {
724    if (OBO->hasNoUnsignedWrap())
725      Out << " nuw";
726    if (OBO->hasNoSignedWrap())
727      Out << " nsw";
728  } else if (const PossiblyExactOperator *Div =
729               dyn_cast<PossiblyExactOperator>(U)) {
730    if (Div->isExact())
731      Out << " exact";
732  } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
733    if (GEP->isInBounds())
734      Out << " inbounds";
735  }
736}
737
738static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
739                                  TypePrinting &TypePrinter,
740                                  SlotTracker *Machine,
741                                  const Module *Context) {
742  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
743    if (CI->getType()->isIntegerTy(1)) {
744      Out << (CI->getZExtValue() ? "true" : "false");
745      return;
746    }
747    Out << CI->getValue();
748    return;
749  }
750
751  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
752    if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle ||
753        &CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble) {
754      // We would like to output the FP constant value in exponential notation,
755      // but we cannot do this if doing so will lose precision.  Check here to
756      // make sure that we only output it in exponential format if we can parse
757      // the value back and get the same value.
758      //
759      bool ignored;
760      bool isHalf = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEhalf;
761      bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble;
762      bool isInf = CFP->getValueAPF().isInfinity();
763      bool isNaN = CFP->getValueAPF().isNaN();
764      if (!isHalf && !isInf && !isNaN) {
765        double Val = isDouble ? CFP->getValueAPF().convertToDouble() :
766                                CFP->getValueAPF().convertToFloat();
767        SmallString<128> StrVal;
768        raw_svector_ostream(StrVal) << Val;
769
770        // Check to make sure that the stringized number is not some string like
771        // "Inf" or NaN, that atof will accept, but the lexer will not.  Check
772        // that the string matches the "[-+]?[0-9]" regex.
773        //
774        if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
775            ((StrVal[0] == '-' || StrVal[0] == '+') &&
776             (StrVal[1] >= '0' && StrVal[1] <= '9'))) {
777          // Reparse stringized version!
778          if (APFloat(APFloat::IEEEdouble, StrVal).convertToDouble() == Val) {
779            Out << StrVal.str();
780            return;
781          }
782        }
783      }
784      // Otherwise we could not reparse it to exactly the same value, so we must
785      // output the string in hexadecimal format!  Note that loading and storing
786      // floating point types changes the bits of NaNs on some hosts, notably
787      // x86, so we must not use these types.
788      assert(sizeof(double) == sizeof(uint64_t) &&
789             "assuming that double is 64 bits!");
790      char Buffer[40];
791      APFloat apf = CFP->getValueAPF();
792      // Halves and floats are represented in ASCII IR as double, convert.
793      if (!isDouble)
794        apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
795                          &ignored);
796      Out << "0x" <<
797              utohex_buffer(uint64_t(apf.bitcastToAPInt().getZExtValue()),
798                            Buffer+40);
799      return;
800    }
801
802    // Either half, or some form of long double.
803    // These appear as a magic letter identifying the type, then a
804    // fixed number of hex digits.
805    Out << "0x";
806    // Bit position, in the current word, of the next nibble to print.
807    int shiftcount;
808
809    if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) {
810      Out << 'K';
811      // api needed to prevent premature destruction
812      APInt api = CFP->getValueAPF().bitcastToAPInt();
813      const uint64_t* p = api.getRawData();
814      uint64_t word = p[1];
815      shiftcount = 12;
816      int width = api.getBitWidth();
817      for (int j=0; j<width; j+=4, shiftcount-=4) {
818        unsigned int nibble = (word>>shiftcount) & 15;
819        if (nibble < 10)
820          Out << (unsigned char)(nibble + '0');
821        else
822          Out << (unsigned char)(nibble - 10 + 'A');
823        if (shiftcount == 0 && j+4 < width) {
824          word = *p;
825          shiftcount = 64;
826          if (width-j-4 < 64)
827            shiftcount = width-j-4;
828        }
829      }
830      return;
831    } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad) {
832      shiftcount = 60;
833      Out << 'L';
834    } else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble) {
835      shiftcount = 60;
836      Out << 'M';
837    } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEhalf) {
838      shiftcount = 12;
839      Out << 'H';
840    } else
841      llvm_unreachable("Unsupported floating point type");
842    // api needed to prevent premature destruction
843    APInt api = CFP->getValueAPF().bitcastToAPInt();
844    const uint64_t* p = api.getRawData();
845    uint64_t word = *p;
846    int width = api.getBitWidth();
847    for (int j=0; j<width; j+=4, shiftcount-=4) {
848      unsigned int nibble = (word>>shiftcount) & 15;
849      if (nibble < 10)
850        Out << (unsigned char)(nibble + '0');
851      else
852        Out << (unsigned char)(nibble - 10 + 'A');
853      if (shiftcount == 0 && j+4 < width) {
854        word = *(++p);
855        shiftcount = 64;
856        if (width-j-4 < 64)
857          shiftcount = width-j-4;
858      }
859    }
860    return;
861  }
862
863  if (isa<ConstantAggregateZero>(CV)) {
864    Out << "zeroinitializer";
865    return;
866  }
867
868  if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
869    Out << "blockaddress(";
870    WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine,
871                           Context);
872    Out << ", ";
873    WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine,
874                           Context);
875    Out << ")";
876    return;
877  }
878
879  if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
880    Type *ETy = CA->getType()->getElementType();
881    Out << '[';
882    TypePrinter.print(ETy, Out);
883    Out << ' ';
884    WriteAsOperandInternal(Out, CA->getOperand(0),
885                           &TypePrinter, Machine,
886                           Context);
887    for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
888      Out << ", ";
889      TypePrinter.print(ETy, Out);
890      Out << ' ';
891      WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine,
892                             Context);
893    }
894    Out << ']';
895    return;
896  }
897
898  if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) {
899    // As a special case, print the array as a string if it is an array of
900    // i8 with ConstantInt values.
901    if (CA->isString()) {
902      Out << "c\"";
903      PrintEscapedString(CA->getAsString(), Out);
904      Out << '"';
905      return;
906    }
907
908    Type *ETy = CA->getType()->getElementType();
909    Out << '[';
910    TypePrinter.print(ETy, Out);
911    Out << ' ';
912    WriteAsOperandInternal(Out, CA->getElementAsConstant(0),
913                           &TypePrinter, Machine,
914                           Context);
915    for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) {
916      Out << ", ";
917      TypePrinter.print(ETy, Out);
918      Out << ' ';
919      WriteAsOperandInternal(Out, CA->getElementAsConstant(i), &TypePrinter,
920                             Machine, Context);
921    }
922    Out << ']';
923    return;
924  }
925
926
927  if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
928    if (CS->getType()->isPacked())
929      Out << '<';
930    Out << '{';
931    unsigned N = CS->getNumOperands();
932    if (N) {
933      Out << ' ';
934      TypePrinter.print(CS->getOperand(0)->getType(), Out);
935      Out << ' ';
936
937      WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine,
938                             Context);
939
940      for (unsigned i = 1; i < N; i++) {
941        Out << ", ";
942        TypePrinter.print(CS->getOperand(i)->getType(), Out);
943        Out << ' ';
944
945        WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine,
946                               Context);
947      }
948      Out << ' ';
949    }
950
951    Out << '}';
952    if (CS->getType()->isPacked())
953      Out << '>';
954    return;
955  }
956
957  if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) {
958    Type *ETy = CV->getType()->getVectorElementType();
959    Out << '<';
960    TypePrinter.print(ETy, Out);
961    Out << ' ';
962    WriteAsOperandInternal(Out, CV->getAggregateElement(0U), &TypePrinter,
963                           Machine, Context);
964    for (unsigned i = 1, e = CV->getType()->getVectorNumElements(); i != e;++i){
965      Out << ", ";
966      TypePrinter.print(ETy, Out);
967      Out << ' ';
968      WriteAsOperandInternal(Out, CV->getAggregateElement(i), &TypePrinter,
969                             Machine, Context);
970    }
971    Out << '>';
972    return;
973  }
974
975  if (isa<ConstantPointerNull>(CV)) {
976    Out << "null";
977    return;
978  }
979
980  if (isa<UndefValue>(CV)) {
981    Out << "undef";
982    return;
983  }
984
985  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
986    Out << CE->getOpcodeName();
987    WriteOptimizationInfo(Out, CE);
988    if (CE->isCompare())
989      Out << ' ' << getPredicateText(CE->getPredicate());
990    Out << " (";
991
992    for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
993      TypePrinter.print((*OI)->getType(), Out);
994      Out << ' ';
995      WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context);
996      if (OI+1 != CE->op_end())
997        Out << ", ";
998    }
999
1000    if (CE->hasIndices()) {
1001      ArrayRef<unsigned> Indices = CE->getIndices();
1002      for (unsigned i = 0, e = Indices.size(); i != e; ++i)
1003        Out << ", " << Indices[i];
1004    }
1005
1006    if (CE->isCast()) {
1007      Out << " to ";
1008      TypePrinter.print(CE->getType(), Out);
1009    }
1010
1011    Out << ')';
1012    return;
1013  }
1014
1015  Out << "<placeholder or erroneous Constant>";
1016}
1017
1018static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
1019                                    TypePrinting *TypePrinter,
1020                                    SlotTracker *Machine,
1021                                    const Module *Context) {
1022  Out << "!{";
1023  for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
1024    const Value *V = Node->getOperand(mi);
1025    if (V == 0)
1026      Out << "null";
1027    else {
1028      TypePrinter->print(V->getType(), Out);
1029      Out << ' ';
1030      WriteAsOperandInternal(Out, Node->getOperand(mi),
1031                             TypePrinter, Machine, Context);
1032    }
1033    if (mi + 1 != me)
1034      Out << ", ";
1035  }
1036
1037  Out << "}";
1038}
1039
1040
1041/// WriteAsOperand - Write the name of the specified value out to the specified
1042/// ostream.  This can be useful when you just want to print int %reg126, not
1043/// the whole instruction that generated it.
1044///
1045static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
1046                                   TypePrinting *TypePrinter,
1047                                   SlotTracker *Machine,
1048                                   const Module *Context) {
1049  if (V->hasName()) {
1050    PrintLLVMName(Out, V);
1051    return;
1052  }
1053
1054  const Constant *CV = dyn_cast<Constant>(V);
1055  if (CV && !isa<GlobalValue>(CV)) {
1056    assert(TypePrinter && "Constants require TypePrinting!");
1057    WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context);
1058    return;
1059  }
1060
1061  if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1062    Out << "asm ";
1063    if (IA->hasSideEffects())
1064      Out << "sideeffect ";
1065    if (IA->isAlignStack())
1066      Out << "alignstack ";
1067    // We don't emit the AD_ATT dialect as it's the assumed default.
1068    if (IA->getDialect() == InlineAsm::AD_Intel)
1069      Out << "inteldialect ";
1070    Out << '"';
1071    PrintEscapedString(IA->getAsmString(), Out);
1072    Out << "\", \"";
1073    PrintEscapedString(IA->getConstraintString(), Out);
1074    Out << '"';
1075    return;
1076  }
1077
1078  if (const MDNode *N = dyn_cast<MDNode>(V)) {
1079    if (N->isFunctionLocal()) {
1080      // Print metadata inline, not via slot reference number.
1081      WriteMDNodeBodyInternal(Out, N, TypePrinter, Machine, Context);
1082      return;
1083    }
1084
1085    if (!Machine) {
1086      if (N->isFunctionLocal())
1087        Machine = new SlotTracker(N->getFunction());
1088      else
1089        Machine = new SlotTracker(Context);
1090    }
1091    int Slot = Machine->getMetadataSlot(N);
1092    if (Slot == -1)
1093      Out << "<badref>";
1094    else
1095      Out << '!' << Slot;
1096    return;
1097  }
1098
1099  if (const MDString *MDS = dyn_cast<MDString>(V)) {
1100    Out << "!\"";
1101    PrintEscapedString(MDS->getString(), Out);
1102    Out << '"';
1103    return;
1104  }
1105
1106  if (V->getValueID() == Value::PseudoSourceValueVal ||
1107      V->getValueID() == Value::FixedStackPseudoSourceValueVal) {
1108    V->print(Out);
1109    return;
1110  }
1111
1112  char Prefix = '%';
1113  int Slot;
1114  // If we have a SlotTracker, use it.
1115  if (Machine) {
1116    if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1117      Slot = Machine->getGlobalSlot(GV);
1118      Prefix = '@';
1119    } else {
1120      Slot = Machine->getLocalSlot(V);
1121
1122      // If the local value didn't succeed, then we may be referring to a value
1123      // from a different function.  Translate it, as this can happen when using
1124      // address of blocks.
1125      if (Slot == -1)
1126        if ((Machine = createSlotTracker(V))) {
1127          Slot = Machine->getLocalSlot(V);
1128          delete Machine;
1129        }
1130    }
1131  } else if ((Machine = createSlotTracker(V))) {
1132    // Otherwise, create one to get the # and then destroy it.
1133    if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1134      Slot = Machine->getGlobalSlot(GV);
1135      Prefix = '@';
1136    } else {
1137      Slot = Machine->getLocalSlot(V);
1138    }
1139    delete Machine;
1140    Machine = 0;
1141  } else {
1142    Slot = -1;
1143  }
1144
1145  if (Slot != -1)
1146    Out << Prefix << Slot;
1147  else
1148    Out << "<badref>";
1149}
1150
1151void llvm::WriteAsOperand(raw_ostream &Out, const Value *V,
1152                          bool PrintType, const Module *Context) {
1153
1154  // Fast path: Don't construct and populate a TypePrinting object if we
1155  // won't be needing any types printed.
1156  if (!PrintType &&
1157      ((!isa<Constant>(V) && !isa<MDNode>(V)) ||
1158       V->hasName() || isa<GlobalValue>(V))) {
1159    WriteAsOperandInternal(Out, V, 0, 0, Context);
1160    return;
1161  }
1162
1163  if (Context == 0) Context = getModuleFromVal(V);
1164
1165  TypePrinting TypePrinter;
1166  if (Context)
1167    TypePrinter.incorporateTypes(*Context);
1168  if (PrintType) {
1169    TypePrinter.print(V->getType(), Out);
1170    Out << ' ';
1171  }
1172
1173  WriteAsOperandInternal(Out, V, &TypePrinter, 0, Context);
1174}
1175
1176namespace {
1177
1178class AssemblyWriter {
1179  formatted_raw_ostream &Out;
1180  SlotTracker &Machine;
1181  const Module *TheModule;
1182  TypePrinting TypePrinter;
1183  AssemblyAnnotationWriter *AnnotationWriter;
1184
1185public:
1186  inline AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
1187                        const Module *M,
1188                        AssemblyAnnotationWriter *AAW)
1189    : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW) {
1190    if (M)
1191      TypePrinter.incorporateTypes(*M);
1192  }
1193
1194  void printMDNodeBody(const MDNode *MD);
1195  void printNamedMDNode(const NamedMDNode *NMD);
1196
1197  void printModule(const Module *M);
1198
1199  void writeOperand(const Value *Op, bool PrintType);
1200  void writeParamOperand(const Value *Operand, AttributeSet Attrs,unsigned Idx);
1201  void writeAtomic(AtomicOrdering Ordering, SynchronizationScope SynchScope);
1202
1203  void writeAllMDNodes();
1204
1205  void printTypeIdentities();
1206  void printGlobal(const GlobalVariable *GV);
1207  void printAlias(const GlobalAlias *GV);
1208  void printFunction(const Function *F);
1209  void printArgument(const Argument *FA, AttributeSet Attrs, unsigned Idx);
1210  void printBasicBlock(const BasicBlock *BB);
1211  void printInstruction(const Instruction &I);
1212
1213private:
1214  // printInfoComment - Print a little comment after the instruction indicating
1215  // which slot it occupies.
1216  void printInfoComment(const Value &V);
1217};
1218}  // end of anonymous namespace
1219
1220void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
1221  if (Operand == 0) {
1222    Out << "<null operand!>";
1223    return;
1224  }
1225  if (PrintType) {
1226    TypePrinter.print(Operand->getType(), Out);
1227    Out << ' ';
1228  }
1229  WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
1230}
1231
1232void AssemblyWriter::writeAtomic(AtomicOrdering Ordering,
1233                                 SynchronizationScope SynchScope) {
1234  if (Ordering == NotAtomic)
1235    return;
1236
1237  switch (SynchScope) {
1238  case SingleThread: Out << " singlethread"; break;
1239  case CrossThread: break;
1240  }
1241
1242  switch (Ordering) {
1243  default: Out << " <bad ordering " << int(Ordering) << ">"; break;
1244  case Unordered: Out << " unordered"; break;
1245  case Monotonic: Out << " monotonic"; break;
1246  case Acquire: Out << " acquire"; break;
1247  case Release: Out << " release"; break;
1248  case AcquireRelease: Out << " acq_rel"; break;
1249  case SequentiallyConsistent: Out << " seq_cst"; break;
1250  }
1251}
1252
1253void AssemblyWriter::writeParamOperand(const Value *Operand,
1254                                       AttributeSet Attrs, unsigned Idx) {
1255  if (Operand == 0) {
1256    Out << "<null operand!>";
1257    return;
1258  }
1259
1260  // Print the type
1261  TypePrinter.print(Operand->getType(), Out);
1262  // Print parameter attributes list
1263  if (Attrs.hasAttributes(Idx))
1264    Out << ' ' << Attrs.getAsString(Idx);
1265  Out << ' ';
1266  // Print the operand
1267  WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
1268}
1269
1270void AssemblyWriter::printModule(const Module *M) {
1271  if (!M->getModuleIdentifier().empty() &&
1272      // Don't print the ID if it will start a new line (which would
1273      // require a comment char before it).
1274      M->getModuleIdentifier().find('\n') == std::string::npos)
1275    Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
1276
1277  if (!M->getDataLayout().empty())
1278    Out << "target datalayout = \"" << M->getDataLayout() << "\"\n";
1279  if (!M->getTargetTriple().empty())
1280    Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
1281
1282  if (!M->getModuleInlineAsm().empty()) {
1283    // Split the string into lines, to make it easier to read the .ll file.
1284    std::string Asm = M->getModuleInlineAsm();
1285    size_t CurPos = 0;
1286    size_t NewLine = Asm.find_first_of('\n', CurPos);
1287    Out << '\n';
1288    while (NewLine != std::string::npos) {
1289      // We found a newline, print the portion of the asm string from the
1290      // last newline up to this newline.
1291      Out << "module asm \"";
1292      PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
1293                         Out);
1294      Out << "\"\n";
1295      CurPos = NewLine+1;
1296      NewLine = Asm.find_first_of('\n', CurPos);
1297    }
1298    std::string rest(Asm.begin()+CurPos, Asm.end());
1299    if (!rest.empty()) {
1300      Out << "module asm \"";
1301      PrintEscapedString(rest, Out);
1302      Out << "\"\n";
1303    }
1304  }
1305
1306  printTypeIdentities();
1307
1308  // Output all globals.
1309  if (!M->global_empty()) Out << '\n';
1310  for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
1311       I != E; ++I) {
1312    printGlobal(I); Out << '\n';
1313  }
1314
1315  // Output all aliases.
1316  if (!M->alias_empty()) Out << "\n";
1317  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
1318       I != E; ++I)
1319    printAlias(I);
1320
1321  // Output all of the functions.
1322  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1323    printFunction(I);
1324
1325  // Output named metadata.
1326  if (!M->named_metadata_empty()) Out << '\n';
1327
1328  for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
1329       E = M->named_metadata_end(); I != E; ++I)
1330    printNamedMDNode(I);
1331
1332  // Output metadata.
1333  if (!Machine.mdn_empty()) {
1334    Out << '\n';
1335    writeAllMDNodes();
1336  }
1337}
1338
1339void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
1340  Out << '!';
1341  StringRef Name = NMD->getName();
1342  if (Name.empty()) {
1343    Out << "<empty name> ";
1344  } else {
1345    if (isalpha(Name[0]) || Name[0] == '-' || Name[0] == '$' ||
1346        Name[0] == '.' || Name[0] == '_')
1347      Out << Name[0];
1348    else
1349      Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F);
1350    for (unsigned i = 1, e = Name.size(); i != e; ++i) {
1351      unsigned char C = Name[i];
1352      if (isalnum(C) || C == '-' || C == '$' || C == '.' || C == '_')
1353        Out << C;
1354      else
1355        Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
1356    }
1357  }
1358  Out << " = !{";
1359  for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
1360    if (i) Out << ", ";
1361    int Slot = Machine.getMetadataSlot(NMD->getOperand(i));
1362    if (Slot == -1)
1363      Out << "<badref>";
1364    else
1365      Out << '!' << Slot;
1366  }
1367  Out << "}\n";
1368}
1369
1370
1371static void PrintLinkage(GlobalValue::LinkageTypes LT,
1372                         formatted_raw_ostream &Out) {
1373  switch (LT) {
1374  case GlobalValue::ExternalLinkage: break;
1375  case GlobalValue::PrivateLinkage:       Out << "private ";        break;
1376  case GlobalValue::LinkerPrivateLinkage: Out << "linker_private "; break;
1377  case GlobalValue::LinkerPrivateWeakLinkage:
1378    Out << "linker_private_weak ";
1379    break;
1380  case GlobalValue::InternalLinkage:      Out << "internal ";       break;
1381  case GlobalValue::LinkOnceAnyLinkage:   Out << "linkonce ";       break;
1382  case GlobalValue::LinkOnceODRLinkage:   Out << "linkonce_odr ";   break;
1383  case GlobalValue::LinkOnceODRAutoHideLinkage:
1384    Out << "linkonce_odr_auto_hide ";
1385    break;
1386  case GlobalValue::WeakAnyLinkage:       Out << "weak ";           break;
1387  case GlobalValue::WeakODRLinkage:       Out << "weak_odr ";       break;
1388  case GlobalValue::CommonLinkage:        Out << "common ";         break;
1389  case GlobalValue::AppendingLinkage:     Out << "appending ";      break;
1390  case GlobalValue::DLLImportLinkage:     Out << "dllimport ";      break;
1391  case GlobalValue::DLLExportLinkage:     Out << "dllexport ";      break;
1392  case GlobalValue::ExternalWeakLinkage:  Out << "extern_weak ";    break;
1393  case GlobalValue::AvailableExternallyLinkage:
1394    Out << "available_externally ";
1395    break;
1396  }
1397}
1398
1399
1400static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
1401                            formatted_raw_ostream &Out) {
1402  switch (Vis) {
1403  case GlobalValue::DefaultVisibility: break;
1404  case GlobalValue::HiddenVisibility:    Out << "hidden "; break;
1405  case GlobalValue::ProtectedVisibility: Out << "protected "; break;
1406  }
1407}
1408
1409static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,
1410                                  formatted_raw_ostream &Out) {
1411  switch (TLM) {
1412    case GlobalVariable::NotThreadLocal:
1413      break;
1414    case GlobalVariable::GeneralDynamicTLSModel:
1415      Out << "thread_local ";
1416      break;
1417    case GlobalVariable::LocalDynamicTLSModel:
1418      Out << "thread_local(localdynamic) ";
1419      break;
1420    case GlobalVariable::InitialExecTLSModel:
1421      Out << "thread_local(initialexec) ";
1422      break;
1423    case GlobalVariable::LocalExecTLSModel:
1424      Out << "thread_local(localexec) ";
1425      break;
1426  }
1427}
1428
1429void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
1430  if (GV->isMaterializable())
1431    Out << "; Materializable\n";
1432
1433  WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent());
1434  Out << " = ";
1435
1436  if (!GV->hasInitializer() && GV->hasExternalLinkage())
1437    Out << "external ";
1438
1439  PrintLinkage(GV->getLinkage(), Out);
1440  PrintVisibility(GV->getVisibility(), Out);
1441  PrintThreadLocalModel(GV->getThreadLocalMode(), Out);
1442
1443  if (unsigned AddressSpace = GV->getType()->getAddressSpace())
1444    Out << "addrspace(" << AddressSpace << ") ";
1445  if (GV->hasUnnamedAddr()) Out << "unnamed_addr ";
1446  Out << (GV->isConstant() ? "constant " : "global ");
1447  TypePrinter.print(GV->getType()->getElementType(), Out);
1448
1449  if (GV->hasInitializer()) {
1450    Out << ' ';
1451    writeOperand(GV->getInitializer(), false);
1452  }
1453
1454  if (GV->hasSection()) {
1455    Out << ", section \"";
1456    PrintEscapedString(GV->getSection(), Out);
1457    Out << '"';
1458  }
1459  if (GV->getAlignment())
1460    Out << ", align " << GV->getAlignment();
1461
1462  printInfoComment(*GV);
1463}
1464
1465void AssemblyWriter::printAlias(const GlobalAlias *GA) {
1466  if (GA->isMaterializable())
1467    Out << "; Materializable\n";
1468
1469  // Don't crash when dumping partially built GA
1470  if (!GA->hasName())
1471    Out << "<<nameless>> = ";
1472  else {
1473    PrintLLVMName(Out, GA);
1474    Out << " = ";
1475  }
1476  PrintVisibility(GA->getVisibility(), Out);
1477
1478  Out << "alias ";
1479
1480  PrintLinkage(GA->getLinkage(), Out);
1481
1482  const Constant *Aliasee = GA->getAliasee();
1483
1484  if (Aliasee == 0) {
1485    TypePrinter.print(GA->getType(), Out);
1486    Out << " <<NULL ALIASEE>>";
1487  } else {
1488    writeOperand(Aliasee, !isa<ConstantExpr>(Aliasee));
1489  }
1490
1491  printInfoComment(*GA);
1492  Out << '\n';
1493}
1494
1495void AssemblyWriter::printTypeIdentities() {
1496  if (TypePrinter.NumberedTypes.empty() &&
1497      TypePrinter.NamedTypes.empty())
1498    return;
1499
1500  Out << '\n';
1501
1502  // We know all the numbers that each type is used and we know that it is a
1503  // dense assignment.  Convert the map to an index table.
1504  std::vector<StructType*> NumberedTypes(TypePrinter.NumberedTypes.size());
1505  for (DenseMap<StructType*, unsigned>::iterator I =
1506       TypePrinter.NumberedTypes.begin(), E = TypePrinter.NumberedTypes.end();
1507       I != E; ++I) {
1508    assert(I->second < NumberedTypes.size() && "Didn't get a dense numbering?");
1509    NumberedTypes[I->second] = I->first;
1510  }
1511
1512  // Emit all numbered types.
1513  for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) {
1514    Out << '%' << i << " = type ";
1515
1516    // Make sure we print out at least one level of the type structure, so
1517    // that we do not get %2 = type %2
1518    TypePrinter.printStructBody(NumberedTypes[i], Out);
1519    Out << '\n';
1520  }
1521
1522  for (unsigned i = 0, e = TypePrinter.NamedTypes.size(); i != e; ++i) {
1523    PrintLLVMName(Out, TypePrinter.NamedTypes[i]->getName(), LocalPrefix);
1524    Out << " = type ";
1525
1526    // Make sure we print out at least one level of the type structure, so
1527    // that we do not get %FILE = type %FILE
1528    TypePrinter.printStructBody(TypePrinter.NamedTypes[i], Out);
1529    Out << '\n';
1530  }
1531}
1532
1533/// printFunction - Print all aspects of a function.
1534///
1535void AssemblyWriter::printFunction(const Function *F) {
1536  // Print out the return type and name.
1537  Out << '\n';
1538
1539  if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
1540
1541  if (F->isMaterializable())
1542    Out << "; Materializable\n";
1543
1544  if (F->isDeclaration())
1545    Out << "declare ";
1546  else
1547    Out << "define ";
1548
1549  PrintLinkage(F->getLinkage(), Out);
1550  PrintVisibility(F->getVisibility(), Out);
1551
1552  // Print the calling convention.
1553  if (F->getCallingConv() != CallingConv::C) {
1554    PrintCallingConv(F->getCallingConv(), Out);
1555    Out << " ";
1556  }
1557
1558  FunctionType *FT = F->getFunctionType();
1559  const AttributeSet &Attrs = F->getAttributes();
1560  if (Attrs.hasAttributes(AttributeSet::ReturnIndex))
1561    Out <<  Attrs.getAsString(AttributeSet::ReturnIndex) << ' ';
1562  TypePrinter.print(F->getReturnType(), Out);
1563  Out << ' ';
1564  WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent());
1565  Out << '(';
1566  Machine.incorporateFunction(F);
1567
1568  // Loop over the arguments, printing them...
1569
1570  unsigned Idx = 1;
1571  if (!F->isDeclaration()) {
1572    // If this isn't a declaration, print the argument names as well.
1573    for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
1574         I != E; ++I) {
1575      // Insert commas as we go... the first arg doesn't get a comma
1576      if (I != F->arg_begin()) Out << ", ";
1577      printArgument(I, Attrs, Idx);
1578      Idx++;
1579    }
1580  } else {
1581    // Otherwise, print the types from the function type.
1582    for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1583      // Insert commas as we go... the first arg doesn't get a comma
1584      if (i) Out << ", ";
1585
1586      // Output type...
1587      TypePrinter.print(FT->getParamType(i), Out);
1588
1589      if (Attrs.hasAttributes(i+1))
1590        Out << ' ' << Attrs.getAsString(i+1);
1591    }
1592  }
1593
1594  // Finish printing arguments...
1595  if (FT->isVarArg()) {
1596    if (FT->getNumParams()) Out << ", ";
1597    Out << "...";  // Output varargs portion of signature!
1598  }
1599  Out << ')';
1600  if (F->hasUnnamedAddr())
1601    Out << " unnamed_addr";
1602  if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
1603    Out << ' ' << Attrs.getAsString(AttributeSet::FunctionIndex);
1604  if (F->hasSection()) {
1605    Out << " section \"";
1606    PrintEscapedString(F->getSection(), Out);
1607    Out << '"';
1608  }
1609  if (F->getAlignment())
1610    Out << " align " << F->getAlignment();
1611  if (F->hasGC())
1612    Out << " gc \"" << F->getGC() << '"';
1613  if (F->isDeclaration()) {
1614    Out << '\n';
1615  } else {
1616    Out << " {";
1617    // Output all of the function's basic blocks.
1618    for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
1619      printBasicBlock(I);
1620
1621    Out << "}\n";
1622  }
1623
1624  Machine.purgeFunction();
1625}
1626
1627/// printArgument - This member is called for every argument that is passed into
1628/// the function.  Simply print it out
1629///
1630void AssemblyWriter::printArgument(const Argument *Arg,
1631                                   AttributeSet Attrs, unsigned Idx) {
1632  // Output type...
1633  TypePrinter.print(Arg->getType(), Out);
1634
1635  // Output parameter attributes list
1636  if (Attrs.hasAttributes(Idx))
1637    Out << ' ' << Attrs.getAsString(Idx);
1638
1639  // Output name, if available...
1640  if (Arg->hasName()) {
1641    Out << ' ';
1642    PrintLLVMName(Out, Arg);
1643  }
1644}
1645
1646/// printBasicBlock - This member is called for each basic block in a method.
1647///
1648void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
1649  if (BB->hasName()) {              // Print out the label if it exists...
1650    Out << "\n";
1651    PrintLLVMName(Out, BB->getName(), LabelPrefix);
1652    Out << ':';
1653  } else if (!BB->use_empty()) {      // Don't print block # of no uses...
1654    Out << "\n; <label>:";
1655    int Slot = Machine.getLocalSlot(BB);
1656    if (Slot != -1)
1657      Out << Slot;
1658    else
1659      Out << "<badref>";
1660  }
1661
1662  if (BB->getParent() == 0) {
1663    Out.PadToColumn(50);
1664    Out << "; Error: Block without parent!";
1665  } else if (BB != &BB->getParent()->getEntryBlock()) {  // Not the entry block?
1666    // Output predecessors for the block.
1667    Out.PadToColumn(50);
1668    Out << ";";
1669    const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
1670
1671    if (PI == PE) {
1672      Out << " No predecessors!";
1673    } else {
1674      Out << " preds = ";
1675      writeOperand(*PI, false);
1676      for (++PI; PI != PE; ++PI) {
1677        Out << ", ";
1678        writeOperand(*PI, false);
1679      }
1680    }
1681  }
1682
1683  Out << "\n";
1684
1685  if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
1686
1687  // Output all of the instructions in the basic block...
1688  for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1689    printInstruction(*I);
1690    Out << '\n';
1691  }
1692
1693  if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
1694}
1695
1696/// printInfoComment - Print a little comment after the instruction indicating
1697/// which slot it occupies.
1698///
1699void AssemblyWriter::printInfoComment(const Value &V) {
1700  if (AnnotationWriter) {
1701    AnnotationWriter->printInfoComment(V, Out);
1702    return;
1703  }
1704}
1705
1706// This member is called for each Instruction in a function..
1707void AssemblyWriter::printInstruction(const Instruction &I) {
1708  if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
1709
1710  // Print out indentation for an instruction.
1711  Out << "  ";
1712
1713  // Print out name if it exists...
1714  if (I.hasName()) {
1715    PrintLLVMName(Out, &I);
1716    Out << " = ";
1717  } else if (!I.getType()->isVoidTy()) {
1718    // Print out the def slot taken.
1719    int SlotNum = Machine.getLocalSlot(&I);
1720    if (SlotNum == -1)
1721      Out << "<badref> = ";
1722    else
1723      Out << '%' << SlotNum << " = ";
1724  }
1725
1726  if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall())
1727    Out << "tail ";
1728
1729  // Print out the opcode...
1730  Out << I.getOpcodeName();
1731
1732  // If this is an atomic load or store, print out the atomic marker.
1733  if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isAtomic()) ||
1734      (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic()))
1735    Out << " atomic";
1736
1737  // If this is a volatile operation, print out the volatile marker.
1738  if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
1739      (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) ||
1740      (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) ||
1741      (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile()))
1742    Out << " volatile";
1743
1744  // Print out optimization information.
1745  WriteOptimizationInfo(Out, &I);
1746
1747  // Print out the compare instruction predicates
1748  if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
1749    Out << ' ' << getPredicateText(CI->getPredicate());
1750
1751  // Print out the atomicrmw operation
1752  if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I))
1753    writeAtomicRMWOperation(Out, RMWI->getOperation());
1754
1755  // Print out the type of the operands...
1756  const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
1757
1758  // Special case conditional branches to swizzle the condition out to the front
1759  if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
1760    BranchInst &BI(cast<BranchInst>(I));
1761    Out << ' ';
1762    writeOperand(BI.getCondition(), true);
1763    Out << ", ";
1764    writeOperand(BI.getSuccessor(0), true);
1765    Out << ", ";
1766    writeOperand(BI.getSuccessor(1), true);
1767
1768  } else if (isa<SwitchInst>(I)) {
1769    SwitchInst& SI(cast<SwitchInst>(I));
1770    // Special case switch instruction to get formatting nice and correct.
1771    Out << ' ';
1772    writeOperand(SI.getCondition(), true);
1773    Out << ", ";
1774    writeOperand(SI.getDefaultDest(), true);
1775    Out << " [";
1776    for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end();
1777         i != e; ++i) {
1778      Out << "\n    ";
1779      writeOperand(i.getCaseValue(), true);
1780      Out << ", ";
1781      writeOperand(i.getCaseSuccessor(), true);
1782    }
1783    Out << "\n  ]";
1784  } else if (isa<IndirectBrInst>(I)) {
1785    // Special case indirectbr instruction to get formatting nice and correct.
1786    Out << ' ';
1787    writeOperand(Operand, true);
1788    Out << ", [";
1789
1790    for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
1791      if (i != 1)
1792        Out << ", ";
1793      writeOperand(I.getOperand(i), true);
1794    }
1795    Out << ']';
1796  } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
1797    Out << ' ';
1798    TypePrinter.print(I.getType(), Out);
1799    Out << ' ';
1800
1801    for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
1802      if (op) Out << ", ";
1803      Out << "[ ";
1804      writeOperand(PN->getIncomingValue(op), false); Out << ", ";
1805      writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
1806    }
1807  } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
1808    Out << ' ';
1809    writeOperand(I.getOperand(0), true);
1810    for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1811      Out << ", " << *i;
1812  } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
1813    Out << ' ';
1814    writeOperand(I.getOperand(0), true); Out << ", ";
1815    writeOperand(I.getOperand(1), true);
1816    for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1817      Out << ", " << *i;
1818  } else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) {
1819    Out << ' ';
1820    TypePrinter.print(I.getType(), Out);
1821    Out << " personality ";
1822    writeOperand(I.getOperand(0), true); Out << '\n';
1823
1824    if (LPI->isCleanup())
1825      Out << "          cleanup";
1826
1827    for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
1828      if (i != 0 || LPI->isCleanup()) Out << "\n";
1829      if (LPI->isCatch(i))
1830        Out << "          catch ";
1831      else
1832        Out << "          filter ";
1833
1834      writeOperand(LPI->getClause(i), true);
1835    }
1836  } else if (isa<ReturnInst>(I) && !Operand) {
1837    Out << " void";
1838  } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
1839    // Print the calling convention being used.
1840    if (CI->getCallingConv() != CallingConv::C) {
1841      Out << " ";
1842      PrintCallingConv(CI->getCallingConv(), Out);
1843    }
1844
1845    Operand = CI->getCalledValue();
1846    PointerType *PTy = cast<PointerType>(Operand->getType());
1847    FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1848    Type *RetTy = FTy->getReturnType();
1849    const AttributeSet &PAL = CI->getAttributes();
1850
1851    if (PAL.hasAttributes(AttributeSet::ReturnIndex))
1852      Out << ' ' << PAL.getAsString(AttributeSet::ReturnIndex);
1853
1854    // If possible, print out the short form of the call instruction.  We can
1855    // only do this if the first argument is a pointer to a nonvararg function,
1856    // and if the return type is not a pointer to a function.
1857    //
1858    Out << ' ';
1859    if (!FTy->isVarArg() &&
1860        (!RetTy->isPointerTy() ||
1861         !cast<PointerType>(RetTy)->getElementType()->isFunctionTy())) {
1862      TypePrinter.print(RetTy, Out);
1863      Out << ' ';
1864      writeOperand(Operand, false);
1865    } else {
1866      writeOperand(Operand, true);
1867    }
1868    Out << '(';
1869    for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) {
1870      if (op > 0)
1871        Out << ", ";
1872      writeParamOperand(CI->getArgOperand(op), PAL, op + 1);
1873    }
1874    Out << ')';
1875    if (PAL.hasAttributes(AttributeSet::FunctionIndex))
1876      Out << ' ' << PAL.getAsString(AttributeSet::FunctionIndex);
1877  } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
1878    Operand = II->getCalledValue();
1879    PointerType *PTy = cast<PointerType>(Operand->getType());
1880    FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1881    Type *RetTy = FTy->getReturnType();
1882    const AttributeSet &PAL = II->getAttributes();
1883
1884    // Print the calling convention being used.
1885    if (II->getCallingConv() != CallingConv::C) {
1886      Out << " ";
1887      PrintCallingConv(II->getCallingConv(), Out);
1888    }
1889
1890    if (PAL.hasAttributes(AttributeSet::ReturnIndex))
1891      Out << ' ' << PAL.getAsString(AttributeSet::ReturnIndex);
1892
1893    // If possible, print out the short form of the invoke instruction. We can
1894    // only do this if the first argument is a pointer to a nonvararg function,
1895    // and if the return type is not a pointer to a function.
1896    //
1897    Out << ' ';
1898    if (!FTy->isVarArg() &&
1899        (!RetTy->isPointerTy() ||
1900         !cast<PointerType>(RetTy)->getElementType()->isFunctionTy())) {
1901      TypePrinter.print(RetTy, Out);
1902      Out << ' ';
1903      writeOperand(Operand, false);
1904    } else {
1905      writeOperand(Operand, true);
1906    }
1907    Out << '(';
1908    for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) {
1909      if (op)
1910        Out << ", ";
1911      writeParamOperand(II->getArgOperand(op), PAL, op + 1);
1912    }
1913
1914    Out << ')';
1915    if (PAL.hasAttributes(AttributeSet::FunctionIndex))
1916      Out << ' ' << PAL.getAsString(AttributeSet::FunctionIndex);
1917
1918    Out << "\n          to ";
1919    writeOperand(II->getNormalDest(), true);
1920    Out << " unwind ";
1921    writeOperand(II->getUnwindDest(), true);
1922
1923  } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
1924    Out << ' ';
1925    TypePrinter.print(AI->getType()->getElementType(), Out);
1926    if (!AI->getArraySize() || AI->isArrayAllocation()) {
1927      Out << ", ";
1928      writeOperand(AI->getArraySize(), true);
1929    }
1930    if (AI->getAlignment()) {
1931      Out << ", align " << AI->getAlignment();
1932    }
1933  } else if (isa<CastInst>(I)) {
1934    if (Operand) {
1935      Out << ' ';
1936      writeOperand(Operand, true);   // Work with broken code
1937    }
1938    Out << " to ";
1939    TypePrinter.print(I.getType(), Out);
1940  } else if (isa<VAArgInst>(I)) {
1941    if (Operand) {
1942      Out << ' ';
1943      writeOperand(Operand, true);   // Work with broken code
1944    }
1945    Out << ", ";
1946    TypePrinter.print(I.getType(), Out);
1947  } else if (Operand) {   // Print the normal way.
1948
1949    // PrintAllTypes - Instructions who have operands of all the same type
1950    // omit the type from all but the first operand.  If the instruction has
1951    // different type operands (for example br), then they are all printed.
1952    bool PrintAllTypes = false;
1953    Type *TheType = Operand->getType();
1954
1955    // Select, Store and ShuffleVector always print all types.
1956    if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
1957        || isa<ReturnInst>(I)) {
1958      PrintAllTypes = true;
1959    } else {
1960      for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
1961        Operand = I.getOperand(i);
1962        // note that Operand shouldn't be null, but the test helps make dump()
1963        // more tolerant of malformed IR
1964        if (Operand && Operand->getType() != TheType) {
1965          PrintAllTypes = true;    // We have differing types!  Print them all!
1966          break;
1967        }
1968      }
1969    }
1970
1971    if (!PrintAllTypes) {
1972      Out << ' ';
1973      TypePrinter.print(TheType, Out);
1974    }
1975
1976    Out << ' ';
1977    for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
1978      if (i) Out << ", ";
1979      writeOperand(I.getOperand(i), PrintAllTypes);
1980    }
1981  }
1982
1983  // Print atomic ordering/alignment for memory operations
1984  if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
1985    if (LI->isAtomic())
1986      writeAtomic(LI->getOrdering(), LI->getSynchScope());
1987    if (LI->getAlignment())
1988      Out << ", align " << LI->getAlignment();
1989  } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
1990    if (SI->isAtomic())
1991      writeAtomic(SI->getOrdering(), SI->getSynchScope());
1992    if (SI->getAlignment())
1993      Out << ", align " << SI->getAlignment();
1994  } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) {
1995    writeAtomic(CXI->getOrdering(), CXI->getSynchScope());
1996  } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) {
1997    writeAtomic(RMWI->getOrdering(), RMWI->getSynchScope());
1998  } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) {
1999    writeAtomic(FI->getOrdering(), FI->getSynchScope());
2000  }
2001
2002  // Print Metadata info.
2003  SmallVector<std::pair<unsigned, MDNode*>, 4> InstMD;
2004  I.getAllMetadata(InstMD);
2005  if (!InstMD.empty()) {
2006    SmallVector<StringRef, 8> MDNames;
2007    I.getType()->getContext().getMDKindNames(MDNames);
2008    for (unsigned i = 0, e = InstMD.size(); i != e; ++i) {
2009      unsigned Kind = InstMD[i].first;
2010       if (Kind < MDNames.size()) {
2011         Out << ", !" << MDNames[Kind];
2012      } else {
2013        Out << ", !<unknown kind #" << Kind << ">";
2014      }
2015      Out << ' ';
2016      WriteAsOperandInternal(Out, InstMD[i].second, &TypePrinter, &Machine,
2017                             TheModule);
2018    }
2019  }
2020  printInfoComment(I);
2021}
2022
2023static void WriteMDNodeComment(const MDNode *Node,
2024                               formatted_raw_ostream &Out) {
2025  if (Node->getNumOperands() < 1)
2026    return;
2027
2028  Value *Op = Node->getOperand(0);
2029  if (!Op || !isa<ConstantInt>(Op) || cast<ConstantInt>(Op)->getBitWidth() < 32)
2030    return;
2031
2032  DIDescriptor Desc(Node);
2033  if (Desc.getVersion() < LLVMDebugVersion11)
2034    return;
2035
2036  unsigned Tag = Desc.getTag();
2037  Out.PadToColumn(50);
2038  if (dwarf::TagString(Tag)) {
2039    Out << "; ";
2040    Desc.print(Out);
2041  } else if (Tag == dwarf::DW_TAG_user_base) {
2042    Out << "; [ DW_TAG_user_base ]";
2043  }
2044}
2045
2046void AssemblyWriter::writeAllMDNodes() {
2047  SmallVector<const MDNode *, 16> Nodes;
2048  Nodes.resize(Machine.mdn_size());
2049  for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end();
2050       I != E; ++I)
2051    Nodes[I->second] = cast<MDNode>(I->first);
2052
2053  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
2054    Out << '!' << i << " = metadata ";
2055    printMDNodeBody(Nodes[i]);
2056  }
2057}
2058
2059void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
2060  WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule);
2061  WriteMDNodeComment(Node, Out);
2062  Out << "\n";
2063}
2064
2065//===----------------------------------------------------------------------===//
2066//                       External Interface declarations
2067//===----------------------------------------------------------------------===//
2068
2069void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
2070  SlotTracker SlotTable(this);
2071  formatted_raw_ostream OS(ROS);
2072  AssemblyWriter W(OS, SlotTable, this, AAW);
2073  W.printModule(this);
2074}
2075
2076void NamedMDNode::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
2077  SlotTracker SlotTable(getParent());
2078  formatted_raw_ostream OS(ROS);
2079  AssemblyWriter W(OS, SlotTable, getParent(), AAW);
2080  W.printNamedMDNode(this);
2081}
2082
2083void Type::print(raw_ostream &OS) const {
2084  if (this == 0) {
2085    OS << "<null Type>";
2086    return;
2087  }
2088  TypePrinting TP;
2089  TP.print(const_cast<Type*>(this), OS);
2090
2091  // If the type is a named struct type, print the body as well.
2092  if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this)))
2093    if (!STy->isLiteral()) {
2094      OS << " = type ";
2095      TP.printStructBody(STy, OS);
2096    }
2097}
2098
2099void Value::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
2100  if (this == 0) {
2101    ROS << "printing a <null> value\n";
2102    return;
2103  }
2104  formatted_raw_ostream OS(ROS);
2105  if (const Instruction *I = dyn_cast<Instruction>(this)) {
2106    const Function *F = I->getParent() ? I->getParent()->getParent() : 0;
2107    SlotTracker SlotTable(F);
2108    AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), AAW);
2109    W.printInstruction(*I);
2110  } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
2111    SlotTracker SlotTable(BB->getParent());
2112    AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), AAW);
2113    W.printBasicBlock(BB);
2114  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
2115    SlotTracker SlotTable(GV->getParent());
2116    AssemblyWriter W(OS, SlotTable, GV->getParent(), AAW);
2117    if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
2118      W.printGlobal(V);
2119    else if (const Function *F = dyn_cast<Function>(GV))
2120      W.printFunction(F);
2121    else
2122      W.printAlias(cast<GlobalAlias>(GV));
2123  } else if (const MDNode *N = dyn_cast<MDNode>(this)) {
2124    const Function *F = N->getFunction();
2125    SlotTracker SlotTable(F);
2126    AssemblyWriter W(OS, SlotTable, F ? F->getParent() : 0, AAW);
2127    W.printMDNodeBody(N);
2128  } else if (const Constant *C = dyn_cast<Constant>(this)) {
2129    TypePrinting TypePrinter;
2130    TypePrinter.print(C->getType(), OS);
2131    OS << ' ';
2132    WriteConstantInternal(OS, C, TypePrinter, 0, 0);
2133  } else if (isa<InlineAsm>(this) || isa<MDString>(this) ||
2134             isa<Argument>(this)) {
2135    WriteAsOperand(OS, this, true, 0);
2136  } else {
2137    // Otherwise we don't know what it is. Call the virtual function to
2138    // allow a subclass to print itself.
2139    printCustom(OS);
2140  }
2141}
2142
2143// Value::printCustom - subclasses should override this to implement printing.
2144void Value::printCustom(raw_ostream &OS) const {
2145  llvm_unreachable("Unknown value to print out!");
2146}
2147
2148// Value::dump - allow easy printing of Values from the debugger.
2149void Value::dump() const { print(dbgs()); dbgs() << '\n'; }
2150
2151// Type::dump - allow easy printing of Types from the debugger.
2152void Type::dump() const { print(dbgs()); }
2153
2154// Module::dump() - Allow printing of Modules from the debugger.
2155void Module::dump() const { print(dbgs(), 0); }
2156
2157// NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger.
2158void NamedMDNode::dump() const { print(dbgs(), 0); }
2159