AsmWriter.cpp revision 29fce9ad39636d38f43add5d7c23e83d9d1cc249
1//===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This library implements the functionality defined in llvm/Assembly/Writer.h
11//
12// Note that these routines must be extremely tolerant of various errors in the
13// LLVM code, because it can be used for debugging transformations.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/Assembly/Writer.h"
18#include "llvm/ADT/DenseMap.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/SmallString.h"
21#include "llvm/ADT/StringExtras.h"
22#include "llvm/Assembly/AssemblyAnnotationWriter.h"
23#include "llvm/Assembly/PrintModulePass.h"
24#include "llvm/DebugInfo.h"
25#include "llvm/IR/CallingConv.h"
26#include "llvm/IR/Constants.h"
27#include "llvm/IR/DerivedTypes.h"
28#include "llvm/IR/InlineAsm.h"
29#include "llvm/IR/IntrinsicInst.h"
30#include "llvm/IR/LLVMContext.h"
31#include "llvm/IR/Module.h"
32#include "llvm/IR/Operator.h"
33#include "llvm/IR/TypeFinder.h"
34#include "llvm/IR/ValueSymbolTable.h"
35#include "llvm/Support/CFG.h"
36#include "llvm/Support/Debug.h"
37#include "llvm/Support/Dwarf.h"
38#include "llvm/Support/ErrorHandling.h"
39#include "llvm/Support/FormattedStream.h"
40#include "llvm/Support/MathExtras.h"
41#include <algorithm>
42#include <cctype>
43using namespace llvm;
44
45// Make virtual table appear in this compilation unit.
46AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
47
48//===----------------------------------------------------------------------===//
49// Helper Functions
50//===----------------------------------------------------------------------===//
51
52static const Module *getModuleFromVal(const Value *V) {
53  if (const Argument *MA = dyn_cast<Argument>(V))
54    return MA->getParent() ? MA->getParent()->getParent() : 0;
55
56  if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
57    return BB->getParent() ? BB->getParent()->getParent() : 0;
58
59  if (const Instruction *I = dyn_cast<Instruction>(V)) {
60    const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
61    return M ? M->getParent() : 0;
62  }
63
64  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
65    return GV->getParent();
66  return 0;
67}
68
69static void PrintCallingConv(unsigned cc, raw_ostream &Out) {
70  switch (cc) {
71  default:                         Out << "cc" << cc; break;
72  case CallingConv::Fast:          Out << "fastcc"; break;
73  case CallingConv::Cold:          Out << "coldcc"; break;
74  case CallingConv::X86_StdCall:   Out << "x86_stdcallcc"; break;
75  case CallingConv::X86_FastCall:  Out << "x86_fastcallcc"; break;
76  case CallingConv::X86_ThisCall:  Out << "x86_thiscallcc"; break;
77  case CallingConv::Intel_OCL_BI:  Out << "intel_ocl_bicc"; break;
78  case CallingConv::ARM_APCS:      Out << "arm_apcscc"; break;
79  case CallingConv::ARM_AAPCS:     Out << "arm_aapcscc"; break;
80  case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break;
81  case CallingConv::MSP430_INTR:   Out << "msp430_intrcc"; break;
82  case CallingConv::PTX_Kernel:    Out << "ptx_kernel"; break;
83  case CallingConv::PTX_Device:    Out << "ptx_device"; break;
84  }
85}
86
87// PrintEscapedString - Print each character of the specified string, escaping
88// it if it is not printable or if it is an escape char.
89static void PrintEscapedString(StringRef Name, raw_ostream &Out) {
90  for (unsigned i = 0, e = Name.size(); i != e; ++i) {
91    unsigned char C = Name[i];
92    if (isprint(C) && C != '\\' && C != '"')
93      Out << C;
94    else
95      Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
96  }
97}
98
99enum PrefixType {
100  GlobalPrefix,
101  LabelPrefix,
102  LocalPrefix,
103  NoPrefix
104};
105
106/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
107/// prefixed with % (if the string only contains simple characters) or is
108/// surrounded with ""'s (if it has special chars in it).  Print it out.
109static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) {
110  assert(!Name.empty() && "Cannot get empty name!");
111  switch (Prefix) {
112  case NoPrefix: break;
113  case GlobalPrefix: OS << '@'; break;
114  case LabelPrefix:  break;
115  case LocalPrefix:  OS << '%'; break;
116  }
117
118  // Scan the name to see if it needs quotes first.
119  bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0]));
120  if (!NeedsQuotes) {
121    for (unsigned i = 0, e = Name.size(); i != e; ++i) {
122      // By making this unsigned, the value passed in to isalnum will always be
123      // in the range 0-255.  This is important when building with MSVC because
124      // its implementation will assert.  This situation can arise when dealing
125      // with UTF-8 multibyte characters.
126      unsigned char C = Name[i];
127      if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' &&
128          C != '_') {
129        NeedsQuotes = true;
130        break;
131      }
132    }
133  }
134
135  // If we didn't need any quotes, just write out the name in one blast.
136  if (!NeedsQuotes) {
137    OS << Name;
138    return;
139  }
140
141  // Okay, we need quotes.  Output the quotes and escape any scary characters as
142  // needed.
143  OS << '"';
144  PrintEscapedString(Name, OS);
145  OS << '"';
146}
147
148/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
149/// prefixed with % (if the string only contains simple characters) or is
150/// surrounded with ""'s (if it has special chars in it).  Print it out.
151static void PrintLLVMName(raw_ostream &OS, const Value *V) {
152  PrintLLVMName(OS, V->getName(),
153                isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
154}
155
156//===----------------------------------------------------------------------===//
157// TypePrinting Class: Type printing machinery
158//===----------------------------------------------------------------------===//
159
160/// TypePrinting - Type printing machinery.
161namespace {
162class TypePrinting {
163  TypePrinting(const TypePrinting &) LLVM_DELETED_FUNCTION;
164  void operator=(const TypePrinting&) LLVM_DELETED_FUNCTION;
165public:
166
167  /// NamedTypes - The named types that are used by the current module.
168  TypeFinder NamedTypes;
169
170  /// NumberedTypes - The numbered types, along with their value.
171  DenseMap<StructType*, unsigned> NumberedTypes;
172
173
174  TypePrinting() {}
175  ~TypePrinting() {}
176
177  void incorporateTypes(const Module &M);
178
179  void print(Type *Ty, raw_ostream &OS);
180
181  void printStructBody(StructType *Ty, raw_ostream &OS);
182};
183} // end anonymous namespace.
184
185
186void TypePrinting::incorporateTypes(const Module &M) {
187  NamedTypes.run(M, false);
188
189  // The list of struct types we got back includes all the struct types, split
190  // the unnamed ones out to a numbering and remove the anonymous structs.
191  unsigned NextNumber = 0;
192
193  std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E;
194  for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) {
195    StructType *STy = *I;
196
197    // Ignore anonymous types.
198    if (STy->isLiteral())
199      continue;
200
201    if (STy->getName().empty())
202      NumberedTypes[STy] = NextNumber++;
203    else
204      *NextToUse++ = STy;
205  }
206
207  NamedTypes.erase(NextToUse, NamedTypes.end());
208}
209
210
211/// CalcTypeName - Write the specified type to the specified raw_ostream, making
212/// use of type names or up references to shorten the type name where possible.
213void TypePrinting::print(Type *Ty, raw_ostream &OS) {
214  switch (Ty->getTypeID()) {
215  case Type::VoidTyID:      OS << "void"; break;
216  case Type::HalfTyID:      OS << "half"; break;
217  case Type::FloatTyID:     OS << "float"; break;
218  case Type::DoubleTyID:    OS << "double"; break;
219  case Type::X86_FP80TyID:  OS << "x86_fp80"; break;
220  case Type::FP128TyID:     OS << "fp128"; break;
221  case Type::PPC_FP128TyID: OS << "ppc_fp128"; break;
222  case Type::LabelTyID:     OS << "label"; break;
223  case Type::MetadataTyID:  OS << "metadata"; break;
224  case Type::X86_MMXTyID:   OS << "x86_mmx"; break;
225  case Type::IntegerTyID:
226    OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
227    return;
228
229  case Type::FunctionTyID: {
230    FunctionType *FTy = cast<FunctionType>(Ty);
231    print(FTy->getReturnType(), OS);
232    OS << " (";
233    for (FunctionType::param_iterator I = FTy->param_begin(),
234         E = FTy->param_end(); I != E; ++I) {
235      if (I != FTy->param_begin())
236        OS << ", ";
237      print(*I, OS);
238    }
239    if (FTy->isVarArg()) {
240      if (FTy->getNumParams()) OS << ", ";
241      OS << "...";
242    }
243    OS << ')';
244    return;
245  }
246  case Type::StructTyID: {
247    StructType *STy = cast<StructType>(Ty);
248
249    if (STy->isLiteral())
250      return printStructBody(STy, OS);
251
252    if (!STy->getName().empty())
253      return PrintLLVMName(OS, STy->getName(), LocalPrefix);
254
255    DenseMap<StructType*, unsigned>::iterator I = NumberedTypes.find(STy);
256    if (I != NumberedTypes.end())
257      OS << '%' << I->second;
258    else  // Not enumerated, print the hex address.
259      OS << "%\"type " << STy << '\"';
260    return;
261  }
262  case Type::PointerTyID: {
263    PointerType *PTy = cast<PointerType>(Ty);
264    print(PTy->getElementType(), OS);
265    if (unsigned AddressSpace = PTy->getAddressSpace())
266      OS << " addrspace(" << AddressSpace << ')';
267    OS << '*';
268    return;
269  }
270  case Type::ArrayTyID: {
271    ArrayType *ATy = cast<ArrayType>(Ty);
272    OS << '[' << ATy->getNumElements() << " x ";
273    print(ATy->getElementType(), OS);
274    OS << ']';
275    return;
276  }
277  case Type::VectorTyID: {
278    VectorType *PTy = cast<VectorType>(Ty);
279    OS << "<" << PTy->getNumElements() << " x ";
280    print(PTy->getElementType(), OS);
281    OS << '>';
282    return;
283  }
284  default:
285    OS << "<unrecognized-type>";
286    return;
287  }
288}
289
290void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
291  if (STy->isOpaque()) {
292    OS << "opaque";
293    return;
294  }
295
296  if (STy->isPacked())
297    OS << '<';
298
299  if (STy->getNumElements() == 0) {
300    OS << "{}";
301  } else {
302    StructType::element_iterator I = STy->element_begin();
303    OS << "{ ";
304    print(*I++, OS);
305    for (StructType::element_iterator E = STy->element_end(); I != E; ++I) {
306      OS << ", ";
307      print(*I, OS);
308    }
309
310    OS << " }";
311  }
312  if (STy->isPacked())
313    OS << '>';
314}
315
316
317
318//===----------------------------------------------------------------------===//
319// SlotTracker Class: Enumerate slot numbers for unnamed values
320//===----------------------------------------------------------------------===//
321
322namespace {
323
324/// This class provides computation of slot numbers for LLVM Assembly writing.
325///
326class SlotTracker {
327public:
328  /// ValueMap - A mapping of Values to slot numbers.
329  typedef DenseMap<const Value*, unsigned> ValueMap;
330
331private:
332  /// TheModule - The module for which we are holding slot numbers.
333  const Module* TheModule;
334
335  /// TheFunction - The function for which we are holding slot numbers.
336  const Function* TheFunction;
337  bool FunctionProcessed;
338
339  /// mMap - The slot map for the module level data.
340  ValueMap mMap;
341  unsigned mNext;
342
343  /// fMap - The slot map for the function level data.
344  ValueMap fMap;
345  unsigned fNext;
346
347  /// mdnMap - Map for MDNodes.
348  DenseMap<const MDNode*, unsigned> mdnMap;
349  unsigned mdnNext;
350
351  /// asMap - The slot map for attribute sets.
352  DenseMap<AttributeSet, unsigned> asMap;
353  unsigned asNext;
354public:
355  /// Construct from a module
356  explicit SlotTracker(const Module *M);
357  /// Construct from a function, starting out in incorp state.
358  explicit SlotTracker(const Function *F);
359
360  /// Return the slot number of the specified value in it's type
361  /// plane.  If something is not in the SlotTracker, return -1.
362  int getLocalSlot(const Value *V);
363  int getGlobalSlot(const GlobalValue *V);
364  int getMetadataSlot(const MDNode *N);
365  int getAttributeGroupSlot(AttributeSet AS);
366
367  /// If you'd like to deal with a function instead of just a module, use
368  /// this method to get its data into the SlotTracker.
369  void incorporateFunction(const Function *F) {
370    TheFunction = F;
371    FunctionProcessed = false;
372  }
373
374  /// After calling incorporateFunction, use this method to remove the
375  /// most recently incorporated function from the SlotTracker. This
376  /// will reset the state of the machine back to just the module contents.
377  void purgeFunction();
378
379  /// MDNode map iterators.
380  typedef DenseMap<const MDNode*, unsigned>::iterator mdn_iterator;
381  mdn_iterator mdn_begin() { return mdnMap.begin(); }
382  mdn_iterator mdn_end() { return mdnMap.end(); }
383  unsigned mdn_size() const { return mdnMap.size(); }
384  bool mdn_empty() const { return mdnMap.empty(); }
385
386  /// AttributeSet map iterators.
387  typedef DenseMap<AttributeSet, unsigned>::iterator as_iterator;
388  as_iterator as_begin()   { return asMap.begin(); }
389  as_iterator as_end()     { return asMap.end(); }
390  unsigned as_size() const { return asMap.size(); }
391  bool as_empty() const    { return asMap.empty(); }
392
393  /// This function does the actual initialization.
394  inline void initialize();
395
396  // Implementation Details
397private:
398  /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
399  void CreateModuleSlot(const GlobalValue *V);
400
401  /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
402  void CreateMetadataSlot(const MDNode *N);
403
404  /// CreateFunctionSlot - Insert the specified Value* into the slot table.
405  void CreateFunctionSlot(const Value *V);
406
407  /// \brief Insert the specified AttributeSet into the slot table.
408  void CreateAttributeSetSlot(AttributeSet AS);
409
410  /// Add all of the module level global variables (and their initializers)
411  /// and function declarations, but not the contents of those functions.
412  void processModule();
413
414  /// Add all of the functions arguments, basic blocks, and instructions.
415  void processFunction();
416
417  SlotTracker(const SlotTracker &) LLVM_DELETED_FUNCTION;
418  void operator=(const SlotTracker &) LLVM_DELETED_FUNCTION;
419};
420
421}  // end anonymous namespace
422
423
424static SlotTracker *createSlotTracker(const Value *V) {
425  if (const Argument *FA = dyn_cast<Argument>(V))
426    return new SlotTracker(FA->getParent());
427
428  if (const Instruction *I = dyn_cast<Instruction>(V))
429    if (I->getParent())
430      return new SlotTracker(I->getParent()->getParent());
431
432  if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
433    return new SlotTracker(BB->getParent());
434
435  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
436    return new SlotTracker(GV->getParent());
437
438  if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
439    return new SlotTracker(GA->getParent());
440
441  if (const Function *Func = dyn_cast<Function>(V))
442    return new SlotTracker(Func);
443
444  if (const MDNode *MD = dyn_cast<MDNode>(V)) {
445    if (!MD->isFunctionLocal())
446      return new SlotTracker(MD->getFunction());
447
448    return new SlotTracker((Function *)0);
449  }
450
451  return 0;
452}
453
454#if 0
455#define ST_DEBUG(X) dbgs() << X
456#else
457#define ST_DEBUG(X)
458#endif
459
460// Module level constructor. Causes the contents of the Module (sans functions)
461// to be added to the slot table.
462SlotTracker::SlotTracker(const Module *M)
463  : TheModule(M), TheFunction(0), FunctionProcessed(false),
464    mNext(0), fNext(0),  mdnNext(0), asNext(0) {
465}
466
467// Function level constructor. Causes the contents of the Module and the one
468// function provided to be added to the slot table.
469SlotTracker::SlotTracker(const Function *F)
470  : TheModule(F ? F->getParent() : 0), TheFunction(F), FunctionProcessed(false),
471    mNext(0), fNext(0), mdnNext(0), asNext(0) {
472}
473
474inline void SlotTracker::initialize() {
475  if (TheModule) {
476    processModule();
477    TheModule = 0; ///< Prevent re-processing next time we're called.
478  }
479
480  if (TheFunction && !FunctionProcessed)
481    processFunction();
482}
483
484// Iterate through all the global variables, functions, and global
485// variable initializers and create slots for them.
486void SlotTracker::processModule() {
487  ST_DEBUG("begin processModule!\n");
488
489  // Add all of the unnamed global variables to the value table.
490  for (Module::const_global_iterator I = TheModule->global_begin(),
491         E = TheModule->global_end(); I != E; ++I) {
492    if (!I->hasName())
493      CreateModuleSlot(I);
494  }
495
496  // Add metadata used by named metadata.
497  for (Module::const_named_metadata_iterator
498         I = TheModule->named_metadata_begin(),
499         E = TheModule->named_metadata_end(); I != E; ++I) {
500    const NamedMDNode *NMD = I;
501    for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
502      CreateMetadataSlot(NMD->getOperand(i));
503  }
504
505  for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
506       I != E; ++I) {
507    if (!I->hasName())
508      // Add all the unnamed functions to the table.
509      CreateModuleSlot(I);
510
511    // Add all the function attributes to the table.
512    // FIXME: Add attributes of other objects?
513    AttributeSet FnAttrs = I->getAttributes().getFnAttributes();
514    if (FnAttrs.hasAttributes(AttributeSet::FunctionIndex))
515      CreateAttributeSetSlot(FnAttrs);
516  }
517
518  ST_DEBUG("end processModule!\n");
519}
520
521// Process the arguments, basic blocks, and instructions  of a function.
522void SlotTracker::processFunction() {
523  ST_DEBUG("begin processFunction!\n");
524  fNext = 0;
525
526  // Add all the function arguments with no names.
527  for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
528      AE = TheFunction->arg_end(); AI != AE; ++AI)
529    if (!AI->hasName())
530      CreateFunctionSlot(AI);
531
532  ST_DEBUG("Inserting Instructions:\n");
533
534  SmallVector<std::pair<unsigned, MDNode*>, 4> MDForInst;
535
536  // Add all of the basic blocks and instructions with no names.
537  for (Function::const_iterator BB = TheFunction->begin(),
538       E = TheFunction->end(); BB != E; ++BB) {
539    if (!BB->hasName())
540      CreateFunctionSlot(BB);
541
542    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E;
543         ++I) {
544      if (!I->getType()->isVoidTy() && !I->hasName())
545        CreateFunctionSlot(I);
546
547      // Intrinsics can directly use metadata.  We allow direct calls to any
548      // llvm.foo function here, because the target may not be linked into the
549      // optimizer.
550      if (const CallInst *CI = dyn_cast<CallInst>(I)) {
551        if (Function *F = CI->getCalledFunction())
552          if (F->getName().startswith("llvm."))
553            for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
554              if (MDNode *N = dyn_cast_or_null<MDNode>(I->getOperand(i)))
555                CreateMetadataSlot(N);
556
557        // Add all the call attributes to the table.
558        AttributeSet Attrs = CI->getAttributes().getFnAttributes();
559        if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
560          CreateAttributeSetSlot(Attrs);
561      } else if (const InvokeInst *II = dyn_cast<InvokeInst>(I)) {
562        // Add all the call attributes to the table.
563        AttributeSet Attrs = II->getAttributes().getFnAttributes();
564        if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
565          CreateAttributeSetSlot(Attrs);
566      }
567
568      // Process metadata attached with this instruction.
569      I->getAllMetadata(MDForInst);
570      for (unsigned i = 0, e = MDForInst.size(); i != e; ++i)
571        CreateMetadataSlot(MDForInst[i].second);
572      MDForInst.clear();
573    }
574  }
575
576  FunctionProcessed = true;
577
578  ST_DEBUG("end processFunction!\n");
579}
580
581/// Clean up after incorporating a function. This is the only way to get out of
582/// the function incorporation state that affects get*Slot/Create*Slot. Function
583/// incorporation state is indicated by TheFunction != 0.
584void SlotTracker::purgeFunction() {
585  ST_DEBUG("begin purgeFunction!\n");
586  fMap.clear(); // Simply discard the function level map
587  TheFunction = 0;
588  FunctionProcessed = false;
589  ST_DEBUG("end purgeFunction!\n");
590}
591
592/// getGlobalSlot - Get the slot number of a global value.
593int SlotTracker::getGlobalSlot(const GlobalValue *V) {
594  // Check for uninitialized state and do lazy initialization.
595  initialize();
596
597  // Find the value in the module map
598  ValueMap::iterator MI = mMap.find(V);
599  return MI == mMap.end() ? -1 : (int)MI->second;
600}
601
602/// getMetadataSlot - Get the slot number of a MDNode.
603int SlotTracker::getMetadataSlot(const MDNode *N) {
604  // Check for uninitialized state and do lazy initialization.
605  initialize();
606
607  // Find the MDNode in the module map
608  mdn_iterator MI = mdnMap.find(N);
609  return MI == mdnMap.end() ? -1 : (int)MI->second;
610}
611
612
613/// getLocalSlot - Get the slot number for a value that is local to a function.
614int SlotTracker::getLocalSlot(const Value *V) {
615  assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
616
617  // Check for uninitialized state and do lazy initialization.
618  initialize();
619
620  ValueMap::iterator FI = fMap.find(V);
621  return FI == fMap.end() ? -1 : (int)FI->second;
622}
623
624int SlotTracker::getAttributeGroupSlot(AttributeSet AS) {
625  // Check for uninitialized state and do lazy initialization.
626  initialize();
627
628  // Find the AttributeSet in the module map.
629  as_iterator AI = asMap.find(AS);
630  return AI == asMap.end() ? -1 : (int)AI->second;
631}
632
633/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
634void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
635  assert(V && "Can't insert a null Value into SlotTracker!");
636  assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
637  assert(!V->hasName() && "Doesn't need a slot!");
638
639  unsigned DestSlot = mNext++;
640  mMap[V] = DestSlot;
641
642  ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
643           DestSlot << " [");
644  // G = Global, F = Function, A = Alias, o = other
645  ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
646            (isa<Function>(V) ? 'F' :
647             (isa<GlobalAlias>(V) ? 'A' : 'o'))) << "]\n");
648}
649
650/// CreateSlot - Create a new slot for the specified value if it has no name.
651void SlotTracker::CreateFunctionSlot(const Value *V) {
652  assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
653
654  unsigned DestSlot = fNext++;
655  fMap[V] = DestSlot;
656
657  // G = Global, F = Function, o = other
658  ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
659           DestSlot << " [o]\n");
660}
661
662/// CreateModuleSlot - Insert the specified MDNode* into the slot table.
663void SlotTracker::CreateMetadataSlot(const MDNode *N) {
664  assert(N && "Can't insert a null Value into SlotTracker!");
665
666  // Don't insert if N is a function-local metadata, these are always printed
667  // inline.
668  if (!N->isFunctionLocal()) {
669    mdn_iterator I = mdnMap.find(N);
670    if (I != mdnMap.end())
671      return;
672
673    unsigned DestSlot = mdnNext++;
674    mdnMap[N] = DestSlot;
675  }
676
677  // Recursively add any MDNodes referenced by operands.
678  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
679    if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
680      CreateMetadataSlot(Op);
681}
682
683void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) {
684  assert(AS.hasAttributes(AttributeSet::FunctionIndex) &&
685         "Doesn't need a slot!");
686
687  as_iterator I = asMap.find(AS);
688  if (I != asMap.end())
689    return;
690
691  unsigned DestSlot = asNext++;
692  asMap[AS] = DestSlot;
693}
694
695//===----------------------------------------------------------------------===//
696// AsmWriter Implementation
697//===----------------------------------------------------------------------===//
698
699static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
700                                   TypePrinting *TypePrinter,
701                                   SlotTracker *Machine,
702                                   const Module *Context);
703
704
705
706static const char *getPredicateText(unsigned predicate) {
707  const char * pred = "unknown";
708  switch (predicate) {
709  case FCmpInst::FCMP_FALSE: pred = "false"; break;
710  case FCmpInst::FCMP_OEQ:   pred = "oeq"; break;
711  case FCmpInst::FCMP_OGT:   pred = "ogt"; break;
712  case FCmpInst::FCMP_OGE:   pred = "oge"; break;
713  case FCmpInst::FCMP_OLT:   pred = "olt"; break;
714  case FCmpInst::FCMP_OLE:   pred = "ole"; break;
715  case FCmpInst::FCMP_ONE:   pred = "one"; break;
716  case FCmpInst::FCMP_ORD:   pred = "ord"; break;
717  case FCmpInst::FCMP_UNO:   pred = "uno"; break;
718  case FCmpInst::FCMP_UEQ:   pred = "ueq"; break;
719  case FCmpInst::FCMP_UGT:   pred = "ugt"; break;
720  case FCmpInst::FCMP_UGE:   pred = "uge"; break;
721  case FCmpInst::FCMP_ULT:   pred = "ult"; break;
722  case FCmpInst::FCMP_ULE:   pred = "ule"; break;
723  case FCmpInst::FCMP_UNE:   pred = "une"; break;
724  case FCmpInst::FCMP_TRUE:  pred = "true"; break;
725  case ICmpInst::ICMP_EQ:    pred = "eq"; break;
726  case ICmpInst::ICMP_NE:    pred = "ne"; break;
727  case ICmpInst::ICMP_SGT:   pred = "sgt"; break;
728  case ICmpInst::ICMP_SGE:   pred = "sge"; break;
729  case ICmpInst::ICMP_SLT:   pred = "slt"; break;
730  case ICmpInst::ICMP_SLE:   pred = "sle"; break;
731  case ICmpInst::ICMP_UGT:   pred = "ugt"; break;
732  case ICmpInst::ICMP_UGE:   pred = "uge"; break;
733  case ICmpInst::ICMP_ULT:   pred = "ult"; break;
734  case ICmpInst::ICMP_ULE:   pred = "ule"; break;
735  }
736  return pred;
737}
738
739static void writeAtomicRMWOperation(raw_ostream &Out,
740                                    AtomicRMWInst::BinOp Op) {
741  switch (Op) {
742  default: Out << " <unknown operation " << Op << ">"; break;
743  case AtomicRMWInst::Xchg: Out << " xchg"; break;
744  case AtomicRMWInst::Add:  Out << " add"; break;
745  case AtomicRMWInst::Sub:  Out << " sub"; break;
746  case AtomicRMWInst::And:  Out << " and"; break;
747  case AtomicRMWInst::Nand: Out << " nand"; break;
748  case AtomicRMWInst::Or:   Out << " or"; break;
749  case AtomicRMWInst::Xor:  Out << " xor"; break;
750  case AtomicRMWInst::Max:  Out << " max"; break;
751  case AtomicRMWInst::Min:  Out << " min"; break;
752  case AtomicRMWInst::UMax: Out << " umax"; break;
753  case AtomicRMWInst::UMin: Out << " umin"; break;
754  }
755}
756
757static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
758  if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U)) {
759    // Unsafe algebra implies all the others, no need to write them all out
760    if (FPO->hasUnsafeAlgebra())
761      Out << " fast";
762    else {
763      if (FPO->hasNoNaNs())
764        Out << " nnan";
765      if (FPO->hasNoInfs())
766        Out << " ninf";
767      if (FPO->hasNoSignedZeros())
768        Out << " nsz";
769      if (FPO->hasAllowReciprocal())
770        Out << " arcp";
771    }
772  }
773
774  if (const OverflowingBinaryOperator *OBO =
775        dyn_cast<OverflowingBinaryOperator>(U)) {
776    if (OBO->hasNoUnsignedWrap())
777      Out << " nuw";
778    if (OBO->hasNoSignedWrap())
779      Out << " nsw";
780  } else if (const PossiblyExactOperator *Div =
781               dyn_cast<PossiblyExactOperator>(U)) {
782    if (Div->isExact())
783      Out << " exact";
784  } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
785    if (GEP->isInBounds())
786      Out << " inbounds";
787  }
788}
789
790static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
791                                  TypePrinting &TypePrinter,
792                                  SlotTracker *Machine,
793                                  const Module *Context) {
794  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
795    if (CI->getType()->isIntegerTy(1)) {
796      Out << (CI->getZExtValue() ? "true" : "false");
797      return;
798    }
799    Out << CI->getValue();
800    return;
801  }
802
803  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
804    if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle ||
805        &CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble) {
806      // We would like to output the FP constant value in exponential notation,
807      // but we cannot do this if doing so will lose precision.  Check here to
808      // make sure that we only output it in exponential format if we can parse
809      // the value back and get the same value.
810      //
811      bool ignored;
812      bool isHalf = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEhalf;
813      bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble;
814      bool isInf = CFP->getValueAPF().isInfinity();
815      bool isNaN = CFP->getValueAPF().isNaN();
816      if (!isHalf && !isInf && !isNaN) {
817        double Val = isDouble ? CFP->getValueAPF().convertToDouble() :
818                                CFP->getValueAPF().convertToFloat();
819        SmallString<128> StrVal;
820        raw_svector_ostream(StrVal) << Val;
821
822        // Check to make sure that the stringized number is not some string like
823        // "Inf" or NaN, that atof will accept, but the lexer will not.  Check
824        // that the string matches the "[-+]?[0-9]" regex.
825        //
826        if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
827            ((StrVal[0] == '-' || StrVal[0] == '+') &&
828             (StrVal[1] >= '0' && StrVal[1] <= '9'))) {
829          // Reparse stringized version!
830          if (APFloat(APFloat::IEEEdouble, StrVal).convertToDouble() == Val) {
831            Out << StrVal.str();
832            return;
833          }
834        }
835      }
836      // Otherwise we could not reparse it to exactly the same value, so we must
837      // output the string in hexadecimal format!  Note that loading and storing
838      // floating point types changes the bits of NaNs on some hosts, notably
839      // x86, so we must not use these types.
840      assert(sizeof(double) == sizeof(uint64_t) &&
841             "assuming that double is 64 bits!");
842      char Buffer[40];
843      APFloat apf = CFP->getValueAPF();
844      // Halves and floats are represented in ASCII IR as double, convert.
845      if (!isDouble)
846        apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
847                          &ignored);
848      Out << "0x" <<
849              utohex_buffer(uint64_t(apf.bitcastToAPInt().getZExtValue()),
850                            Buffer+40);
851      return;
852    }
853
854    // Either half, or some form of long double.
855    // These appear as a magic letter identifying the type, then a
856    // fixed number of hex digits.
857    Out << "0x";
858    // Bit position, in the current word, of the next nibble to print.
859    int shiftcount;
860
861    if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) {
862      Out << 'K';
863      // api needed to prevent premature destruction
864      APInt api = CFP->getValueAPF().bitcastToAPInt();
865      const uint64_t* p = api.getRawData();
866      uint64_t word = p[1];
867      shiftcount = 12;
868      int width = api.getBitWidth();
869      for (int j=0; j<width; j+=4, shiftcount-=4) {
870        unsigned int nibble = (word>>shiftcount) & 15;
871        if (nibble < 10)
872          Out << (unsigned char)(nibble + '0');
873        else
874          Out << (unsigned char)(nibble - 10 + 'A');
875        if (shiftcount == 0 && j+4 < width) {
876          word = *p;
877          shiftcount = 64;
878          if (width-j-4 < 64)
879            shiftcount = width-j-4;
880        }
881      }
882      return;
883    } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad) {
884      shiftcount = 60;
885      Out << 'L';
886    } else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble) {
887      shiftcount = 60;
888      Out << 'M';
889    } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEhalf) {
890      shiftcount = 12;
891      Out << 'H';
892    } else
893      llvm_unreachable("Unsupported floating point type");
894    // api needed to prevent premature destruction
895    APInt api = CFP->getValueAPF().bitcastToAPInt();
896    const uint64_t* p = api.getRawData();
897    uint64_t word = *p;
898    int width = api.getBitWidth();
899    for (int j=0; j<width; j+=4, shiftcount-=4) {
900      unsigned int nibble = (word>>shiftcount) & 15;
901      if (nibble < 10)
902        Out << (unsigned char)(nibble + '0');
903      else
904        Out << (unsigned char)(nibble - 10 + 'A');
905      if (shiftcount == 0 && j+4 < width) {
906        word = *(++p);
907        shiftcount = 64;
908        if (width-j-4 < 64)
909          shiftcount = width-j-4;
910      }
911    }
912    return;
913  }
914
915  if (isa<ConstantAggregateZero>(CV)) {
916    Out << "zeroinitializer";
917    return;
918  }
919
920  if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
921    Out << "blockaddress(";
922    WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine,
923                           Context);
924    Out << ", ";
925    WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine,
926                           Context);
927    Out << ")";
928    return;
929  }
930
931  if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
932    Type *ETy = CA->getType()->getElementType();
933    Out << '[';
934    TypePrinter.print(ETy, Out);
935    Out << ' ';
936    WriteAsOperandInternal(Out, CA->getOperand(0),
937                           &TypePrinter, Machine,
938                           Context);
939    for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
940      Out << ", ";
941      TypePrinter.print(ETy, Out);
942      Out << ' ';
943      WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine,
944                             Context);
945    }
946    Out << ']';
947    return;
948  }
949
950  if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) {
951    // As a special case, print the array as a string if it is an array of
952    // i8 with ConstantInt values.
953    if (CA->isString()) {
954      Out << "c\"";
955      PrintEscapedString(CA->getAsString(), Out);
956      Out << '"';
957      return;
958    }
959
960    Type *ETy = CA->getType()->getElementType();
961    Out << '[';
962    TypePrinter.print(ETy, Out);
963    Out << ' ';
964    WriteAsOperandInternal(Out, CA->getElementAsConstant(0),
965                           &TypePrinter, Machine,
966                           Context);
967    for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) {
968      Out << ", ";
969      TypePrinter.print(ETy, Out);
970      Out << ' ';
971      WriteAsOperandInternal(Out, CA->getElementAsConstant(i), &TypePrinter,
972                             Machine, Context);
973    }
974    Out << ']';
975    return;
976  }
977
978
979  if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
980    if (CS->getType()->isPacked())
981      Out << '<';
982    Out << '{';
983    unsigned N = CS->getNumOperands();
984    if (N) {
985      Out << ' ';
986      TypePrinter.print(CS->getOperand(0)->getType(), Out);
987      Out << ' ';
988
989      WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine,
990                             Context);
991
992      for (unsigned i = 1; i < N; i++) {
993        Out << ", ";
994        TypePrinter.print(CS->getOperand(i)->getType(), Out);
995        Out << ' ';
996
997        WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine,
998                               Context);
999      }
1000      Out << ' ';
1001    }
1002
1003    Out << '}';
1004    if (CS->getType()->isPacked())
1005      Out << '>';
1006    return;
1007  }
1008
1009  if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) {
1010    Type *ETy = CV->getType()->getVectorElementType();
1011    Out << '<';
1012    TypePrinter.print(ETy, Out);
1013    Out << ' ';
1014    WriteAsOperandInternal(Out, CV->getAggregateElement(0U), &TypePrinter,
1015                           Machine, Context);
1016    for (unsigned i = 1, e = CV->getType()->getVectorNumElements(); i != e;++i){
1017      Out << ", ";
1018      TypePrinter.print(ETy, Out);
1019      Out << ' ';
1020      WriteAsOperandInternal(Out, CV->getAggregateElement(i), &TypePrinter,
1021                             Machine, Context);
1022    }
1023    Out << '>';
1024    return;
1025  }
1026
1027  if (isa<ConstantPointerNull>(CV)) {
1028    Out << "null";
1029    return;
1030  }
1031
1032  if (isa<UndefValue>(CV)) {
1033    Out << "undef";
1034    return;
1035  }
1036
1037  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1038    Out << CE->getOpcodeName();
1039    WriteOptimizationInfo(Out, CE);
1040    if (CE->isCompare())
1041      Out << ' ' << getPredicateText(CE->getPredicate());
1042    Out << " (";
1043
1044    for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
1045      TypePrinter.print((*OI)->getType(), Out);
1046      Out << ' ';
1047      WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context);
1048      if (OI+1 != CE->op_end())
1049        Out << ", ";
1050    }
1051
1052    if (CE->hasIndices()) {
1053      ArrayRef<unsigned> Indices = CE->getIndices();
1054      for (unsigned i = 0, e = Indices.size(); i != e; ++i)
1055        Out << ", " << Indices[i];
1056    }
1057
1058    if (CE->isCast()) {
1059      Out << " to ";
1060      TypePrinter.print(CE->getType(), Out);
1061    }
1062
1063    Out << ')';
1064    return;
1065  }
1066
1067  Out << "<placeholder or erroneous Constant>";
1068}
1069
1070static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
1071                                    TypePrinting *TypePrinter,
1072                                    SlotTracker *Machine,
1073                                    const Module *Context) {
1074  Out << "!{";
1075  for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
1076    const Value *V = Node->getOperand(mi);
1077    if (V == 0)
1078      Out << "null";
1079    else {
1080      TypePrinter->print(V->getType(), Out);
1081      Out << ' ';
1082      WriteAsOperandInternal(Out, Node->getOperand(mi),
1083                             TypePrinter, Machine, Context);
1084    }
1085    if (mi + 1 != me)
1086      Out << ", ";
1087  }
1088
1089  Out << "}";
1090}
1091
1092
1093/// WriteAsOperand - Write the name of the specified value out to the specified
1094/// ostream.  This can be useful when you just want to print int %reg126, not
1095/// the whole instruction that generated it.
1096///
1097static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
1098                                   TypePrinting *TypePrinter,
1099                                   SlotTracker *Machine,
1100                                   const Module *Context) {
1101  if (V->hasName()) {
1102    PrintLLVMName(Out, V);
1103    return;
1104  }
1105
1106  const Constant *CV = dyn_cast<Constant>(V);
1107  if (CV && !isa<GlobalValue>(CV)) {
1108    assert(TypePrinter && "Constants require TypePrinting!");
1109    WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context);
1110    return;
1111  }
1112
1113  if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1114    Out << "asm ";
1115    if (IA->hasSideEffects())
1116      Out << "sideeffect ";
1117    if (IA->isAlignStack())
1118      Out << "alignstack ";
1119    // We don't emit the AD_ATT dialect as it's the assumed default.
1120    if (IA->getDialect() == InlineAsm::AD_Intel)
1121      Out << "inteldialect ";
1122    Out << '"';
1123    PrintEscapedString(IA->getAsmString(), Out);
1124    Out << "\", \"";
1125    PrintEscapedString(IA->getConstraintString(), Out);
1126    Out << '"';
1127    return;
1128  }
1129
1130  if (const MDNode *N = dyn_cast<MDNode>(V)) {
1131    if (N->isFunctionLocal()) {
1132      // Print metadata inline, not via slot reference number.
1133      WriteMDNodeBodyInternal(Out, N, TypePrinter, Machine, Context);
1134      return;
1135    }
1136
1137    if (!Machine) {
1138      if (N->isFunctionLocal())
1139        Machine = new SlotTracker(N->getFunction());
1140      else
1141        Machine = new SlotTracker(Context);
1142    }
1143    int Slot = Machine->getMetadataSlot(N);
1144    if (Slot == -1)
1145      Out << "<badref>";
1146    else
1147      Out << '!' << Slot;
1148    return;
1149  }
1150
1151  if (const MDString *MDS = dyn_cast<MDString>(V)) {
1152    Out << "!\"";
1153    PrintEscapedString(MDS->getString(), Out);
1154    Out << '"';
1155    return;
1156  }
1157
1158  if (V->getValueID() == Value::PseudoSourceValueVal ||
1159      V->getValueID() == Value::FixedStackPseudoSourceValueVal) {
1160    V->print(Out);
1161    return;
1162  }
1163
1164  char Prefix = '%';
1165  int Slot;
1166  // If we have a SlotTracker, use it.
1167  if (Machine) {
1168    if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1169      Slot = Machine->getGlobalSlot(GV);
1170      Prefix = '@';
1171    } else {
1172      Slot = Machine->getLocalSlot(V);
1173
1174      // If the local value didn't succeed, then we may be referring to a value
1175      // from a different function.  Translate it, as this can happen when using
1176      // address of blocks.
1177      if (Slot == -1)
1178        if ((Machine = createSlotTracker(V))) {
1179          Slot = Machine->getLocalSlot(V);
1180          delete Machine;
1181        }
1182    }
1183  } else if ((Machine = createSlotTracker(V))) {
1184    // Otherwise, create one to get the # and then destroy it.
1185    if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1186      Slot = Machine->getGlobalSlot(GV);
1187      Prefix = '@';
1188    } else {
1189      Slot = Machine->getLocalSlot(V);
1190    }
1191    delete Machine;
1192    Machine = 0;
1193  } else {
1194    Slot = -1;
1195  }
1196
1197  if (Slot != -1)
1198    Out << Prefix << Slot;
1199  else
1200    Out << "<badref>";
1201}
1202
1203void llvm::WriteAsOperand(raw_ostream &Out, const Value *V,
1204                          bool PrintType, const Module *Context) {
1205
1206  // Fast path: Don't construct and populate a TypePrinting object if we
1207  // won't be needing any types printed.
1208  if (!PrintType &&
1209      ((!isa<Constant>(V) && !isa<MDNode>(V)) ||
1210       V->hasName() || isa<GlobalValue>(V))) {
1211    WriteAsOperandInternal(Out, V, 0, 0, Context);
1212    return;
1213  }
1214
1215  if (Context == 0) Context = getModuleFromVal(V);
1216
1217  TypePrinting TypePrinter;
1218  if (Context)
1219    TypePrinter.incorporateTypes(*Context);
1220  if (PrintType) {
1221    TypePrinter.print(V->getType(), Out);
1222    Out << ' ';
1223  }
1224
1225  WriteAsOperandInternal(Out, V, &TypePrinter, 0, Context);
1226}
1227
1228namespace {
1229
1230class AssemblyWriter {
1231  formatted_raw_ostream &Out;
1232  SlotTracker &Machine;
1233  const Module *TheModule;
1234  TypePrinting TypePrinter;
1235  AssemblyAnnotationWriter *AnnotationWriter;
1236
1237public:
1238  inline AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
1239                        const Module *M,
1240                        AssemblyAnnotationWriter *AAW)
1241    : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW) {
1242    if (M)
1243      TypePrinter.incorporateTypes(*M);
1244  }
1245
1246  void printMDNodeBody(const MDNode *MD);
1247  void printNamedMDNode(const NamedMDNode *NMD);
1248
1249  void printModule(const Module *M);
1250
1251  void writeOperand(const Value *Op, bool PrintType);
1252  void writeParamOperand(const Value *Operand, AttributeSet Attrs,unsigned Idx);
1253  void writeAtomic(AtomicOrdering Ordering, SynchronizationScope SynchScope);
1254
1255  void writeAllMDNodes();
1256  void writeAllAttributeGroups();
1257
1258  void printTypeIdentities();
1259  void printGlobal(const GlobalVariable *GV);
1260  void printAlias(const GlobalAlias *GV);
1261  void printFunction(const Function *F);
1262  void printArgument(const Argument *FA, AttributeSet Attrs, unsigned Idx);
1263  void printBasicBlock(const BasicBlock *BB);
1264  void printInstruction(const Instruction &I);
1265
1266private:
1267  // printInfoComment - Print a little comment after the instruction indicating
1268  // which slot it occupies.
1269  void printInfoComment(const Value &V);
1270};
1271}  // end of anonymous namespace
1272
1273void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
1274  if (Operand == 0) {
1275    Out << "<null operand!>";
1276    return;
1277  }
1278  if (PrintType) {
1279    TypePrinter.print(Operand->getType(), Out);
1280    Out << ' ';
1281  }
1282  WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
1283}
1284
1285void AssemblyWriter::writeAtomic(AtomicOrdering Ordering,
1286                                 SynchronizationScope SynchScope) {
1287  if (Ordering == NotAtomic)
1288    return;
1289
1290  switch (SynchScope) {
1291  case SingleThread: Out << " singlethread"; break;
1292  case CrossThread: break;
1293  }
1294
1295  switch (Ordering) {
1296  default: Out << " <bad ordering " << int(Ordering) << ">"; break;
1297  case Unordered: Out << " unordered"; break;
1298  case Monotonic: Out << " monotonic"; break;
1299  case Acquire: Out << " acquire"; break;
1300  case Release: Out << " release"; break;
1301  case AcquireRelease: Out << " acq_rel"; break;
1302  case SequentiallyConsistent: Out << " seq_cst"; break;
1303  }
1304}
1305
1306void AssemblyWriter::writeParamOperand(const Value *Operand,
1307                                       AttributeSet Attrs, unsigned Idx) {
1308  if (Operand == 0) {
1309    Out << "<null operand!>";
1310    return;
1311  }
1312
1313  // Print the type
1314  TypePrinter.print(Operand->getType(), Out);
1315  // Print parameter attributes list
1316  if (Attrs.hasAttributes(Idx))
1317    Out << ' ' << Attrs.getAsString(Idx);
1318  Out << ' ';
1319  // Print the operand
1320  WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
1321}
1322
1323void AssemblyWriter::printModule(const Module *M) {
1324  Machine.initialize();
1325
1326  if (!M->getModuleIdentifier().empty() &&
1327      // Don't print the ID if it will start a new line (which would
1328      // require a comment char before it).
1329      M->getModuleIdentifier().find('\n') == std::string::npos)
1330    Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
1331
1332  if (!M->getDataLayout().empty())
1333    Out << "target datalayout = \"" << M->getDataLayout() << "\"\n";
1334  if (!M->getTargetTriple().empty())
1335    Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
1336
1337  if (!M->getModuleInlineAsm().empty()) {
1338    // Split the string into lines, to make it easier to read the .ll file.
1339    std::string Asm = M->getModuleInlineAsm();
1340    size_t CurPos = 0;
1341    size_t NewLine = Asm.find_first_of('\n', CurPos);
1342    Out << '\n';
1343    while (NewLine != std::string::npos) {
1344      // We found a newline, print the portion of the asm string from the
1345      // last newline up to this newline.
1346      Out << "module asm \"";
1347      PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
1348                         Out);
1349      Out << "\"\n";
1350      CurPos = NewLine+1;
1351      NewLine = Asm.find_first_of('\n', CurPos);
1352    }
1353    std::string rest(Asm.begin()+CurPos, Asm.end());
1354    if (!rest.empty()) {
1355      Out << "module asm \"";
1356      PrintEscapedString(rest, Out);
1357      Out << "\"\n";
1358    }
1359  }
1360
1361  printTypeIdentities();
1362
1363  // Output all globals.
1364  if (!M->global_empty()) Out << '\n';
1365  for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
1366       I != E; ++I) {
1367    printGlobal(I); Out << '\n';
1368  }
1369
1370  // Output all aliases.
1371  if (!M->alias_empty()) Out << "\n";
1372  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
1373       I != E; ++I)
1374    printAlias(I);
1375
1376  // Output all of the functions.
1377  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1378    printFunction(I);
1379
1380  // Output all attribute groups.
1381  if (!Machine.as_empty()) {
1382    Out << '\n';
1383    writeAllAttributeGroups();
1384  }
1385
1386  // Output named metadata.
1387  if (!M->named_metadata_empty()) Out << '\n';
1388
1389  for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
1390       E = M->named_metadata_end(); I != E; ++I)
1391    printNamedMDNode(I);
1392
1393  // Output metadata.
1394  if (!Machine.mdn_empty()) {
1395    Out << '\n';
1396    writeAllMDNodes();
1397  }
1398}
1399
1400void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
1401  Out << '!';
1402  StringRef Name = NMD->getName();
1403  if (Name.empty()) {
1404    Out << "<empty name> ";
1405  } else {
1406    if (isalpha(static_cast<unsigned char>(Name[0])) ||
1407        Name[0] == '-' || Name[0] == '$' ||
1408        Name[0] == '.' || Name[0] == '_')
1409      Out << Name[0];
1410    else
1411      Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F);
1412    for (unsigned i = 1, e = Name.size(); i != e; ++i) {
1413      unsigned char C = Name[i];
1414      if (isalnum(static_cast<unsigned char>(C)) || C == '-' || C == '$' ||
1415          C == '.' || C == '_')
1416        Out << C;
1417      else
1418        Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
1419    }
1420  }
1421  Out << " = !{";
1422  for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
1423    if (i) Out << ", ";
1424    int Slot = Machine.getMetadataSlot(NMD->getOperand(i));
1425    if (Slot == -1)
1426      Out << "<badref>";
1427    else
1428      Out << '!' << Slot;
1429  }
1430  Out << "}\n";
1431}
1432
1433
1434static void PrintLinkage(GlobalValue::LinkageTypes LT,
1435                         formatted_raw_ostream &Out) {
1436  switch (LT) {
1437  case GlobalValue::ExternalLinkage: break;
1438  case GlobalValue::PrivateLinkage:       Out << "private ";        break;
1439  case GlobalValue::LinkerPrivateLinkage: Out << "linker_private "; break;
1440  case GlobalValue::LinkerPrivateWeakLinkage:
1441    Out << "linker_private_weak ";
1442    break;
1443  case GlobalValue::InternalLinkage:      Out << "internal ";       break;
1444  case GlobalValue::LinkOnceAnyLinkage:   Out << "linkonce ";       break;
1445  case GlobalValue::LinkOnceODRLinkage:   Out << "linkonce_odr ";   break;
1446  case GlobalValue::LinkOnceODRAutoHideLinkage:
1447    Out << "linkonce_odr_auto_hide ";
1448    break;
1449  case GlobalValue::WeakAnyLinkage:       Out << "weak ";           break;
1450  case GlobalValue::WeakODRLinkage:       Out << "weak_odr ";       break;
1451  case GlobalValue::CommonLinkage:        Out << "common ";         break;
1452  case GlobalValue::AppendingLinkage:     Out << "appending ";      break;
1453  case GlobalValue::DLLImportLinkage:     Out << "dllimport ";      break;
1454  case GlobalValue::DLLExportLinkage:     Out << "dllexport ";      break;
1455  case GlobalValue::ExternalWeakLinkage:  Out << "extern_weak ";    break;
1456  case GlobalValue::AvailableExternallyLinkage:
1457    Out << "available_externally ";
1458    break;
1459  }
1460}
1461
1462
1463static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
1464                            formatted_raw_ostream &Out) {
1465  switch (Vis) {
1466  case GlobalValue::DefaultVisibility: break;
1467  case GlobalValue::HiddenVisibility:    Out << "hidden "; break;
1468  case GlobalValue::ProtectedVisibility: Out << "protected "; break;
1469  }
1470}
1471
1472static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,
1473                                  formatted_raw_ostream &Out) {
1474  switch (TLM) {
1475    case GlobalVariable::NotThreadLocal:
1476      break;
1477    case GlobalVariable::GeneralDynamicTLSModel:
1478      Out << "thread_local ";
1479      break;
1480    case GlobalVariable::LocalDynamicTLSModel:
1481      Out << "thread_local(localdynamic) ";
1482      break;
1483    case GlobalVariable::InitialExecTLSModel:
1484      Out << "thread_local(initialexec) ";
1485      break;
1486    case GlobalVariable::LocalExecTLSModel:
1487      Out << "thread_local(localexec) ";
1488      break;
1489  }
1490}
1491
1492void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
1493  if (GV->isMaterializable())
1494    Out << "; Materializable\n";
1495
1496  WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent());
1497  Out << " = ";
1498
1499  if (!GV->hasInitializer() && GV->hasExternalLinkage())
1500    Out << "external ";
1501
1502  PrintLinkage(GV->getLinkage(), Out);
1503  PrintVisibility(GV->getVisibility(), Out);
1504  PrintThreadLocalModel(GV->getThreadLocalMode(), Out);
1505
1506  if (unsigned AddressSpace = GV->getType()->getAddressSpace())
1507    Out << "addrspace(" << AddressSpace << ") ";
1508  if (GV->hasUnnamedAddr()) Out << "unnamed_addr ";
1509  if (GV->isExternallyInitialized()) Out << "externally_initialized ";
1510  Out << (GV->isConstant() ? "constant " : "global ");
1511  TypePrinter.print(GV->getType()->getElementType(), Out);
1512
1513  if (GV->hasInitializer()) {
1514    Out << ' ';
1515    writeOperand(GV->getInitializer(), false);
1516  }
1517
1518  if (GV->hasSection()) {
1519    Out << ", section \"";
1520    PrintEscapedString(GV->getSection(), Out);
1521    Out << '"';
1522  }
1523  if (GV->getAlignment())
1524    Out << ", align " << GV->getAlignment();
1525
1526  printInfoComment(*GV);
1527}
1528
1529void AssemblyWriter::printAlias(const GlobalAlias *GA) {
1530  if (GA->isMaterializable())
1531    Out << "; Materializable\n";
1532
1533  // Don't crash when dumping partially built GA
1534  if (!GA->hasName())
1535    Out << "<<nameless>> = ";
1536  else {
1537    PrintLLVMName(Out, GA);
1538    Out << " = ";
1539  }
1540  PrintVisibility(GA->getVisibility(), Out);
1541
1542  Out << "alias ";
1543
1544  PrintLinkage(GA->getLinkage(), Out);
1545
1546  const Constant *Aliasee = GA->getAliasee();
1547
1548  if (Aliasee == 0) {
1549    TypePrinter.print(GA->getType(), Out);
1550    Out << " <<NULL ALIASEE>>";
1551  } else {
1552    writeOperand(Aliasee, !isa<ConstantExpr>(Aliasee));
1553  }
1554
1555  printInfoComment(*GA);
1556  Out << '\n';
1557}
1558
1559void AssemblyWriter::printTypeIdentities() {
1560  if (TypePrinter.NumberedTypes.empty() &&
1561      TypePrinter.NamedTypes.empty())
1562    return;
1563
1564  Out << '\n';
1565
1566  // We know all the numbers that each type is used and we know that it is a
1567  // dense assignment.  Convert the map to an index table.
1568  std::vector<StructType*> NumberedTypes(TypePrinter.NumberedTypes.size());
1569  for (DenseMap<StructType*, unsigned>::iterator I =
1570       TypePrinter.NumberedTypes.begin(), E = TypePrinter.NumberedTypes.end();
1571       I != E; ++I) {
1572    assert(I->second < NumberedTypes.size() && "Didn't get a dense numbering?");
1573    NumberedTypes[I->second] = I->first;
1574  }
1575
1576  // Emit all numbered types.
1577  for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) {
1578    Out << '%' << i << " = type ";
1579
1580    // Make sure we print out at least one level of the type structure, so
1581    // that we do not get %2 = type %2
1582    TypePrinter.printStructBody(NumberedTypes[i], Out);
1583    Out << '\n';
1584  }
1585
1586  for (unsigned i = 0, e = TypePrinter.NamedTypes.size(); i != e; ++i) {
1587    PrintLLVMName(Out, TypePrinter.NamedTypes[i]->getName(), LocalPrefix);
1588    Out << " = type ";
1589
1590    // Make sure we print out at least one level of the type structure, so
1591    // that we do not get %FILE = type %FILE
1592    TypePrinter.printStructBody(TypePrinter.NamedTypes[i], Out);
1593    Out << '\n';
1594  }
1595}
1596
1597/// printFunction - Print all aspects of a function.
1598///
1599void AssemblyWriter::printFunction(const Function *F) {
1600  // Print out the return type and name.
1601  Out << '\n';
1602
1603  if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
1604
1605  if (F->isMaterializable())
1606    Out << "; Materializable\n";
1607
1608  const AttributeSet &Attrs = F->getAttributes();
1609  if (Attrs.hasAttributes(AttributeSet::FunctionIndex)) {
1610    AttributeSet AS = Attrs.getFnAttributes();
1611    std::string AttrStr;
1612
1613    unsigned Idx = 0;
1614    for (unsigned E = AS.getNumSlots(); Idx != E; ++Idx)
1615      if (AS.getSlotIndex(Idx) == AttributeSet::FunctionIndex)
1616        break;
1617
1618    for (AttributeSet::iterator I = AS.begin(Idx), E = AS.end(Idx);
1619         I != E; ++I) {
1620      Attribute Attr = *I;
1621      if (!Attr.isStringAttribute()) {
1622        if (!AttrStr.empty()) AttrStr += ' ';
1623        AttrStr += Attr.getAsString();
1624      }
1625    }
1626
1627    if (!AttrStr.empty())
1628      Out << "; Function Attrs: " << AttrStr << '\n';
1629  }
1630
1631  if (F->isDeclaration())
1632    Out << "declare ";
1633  else
1634    Out << "define ";
1635
1636  PrintLinkage(F->getLinkage(), Out);
1637  PrintVisibility(F->getVisibility(), Out);
1638
1639  // Print the calling convention.
1640  if (F->getCallingConv() != CallingConv::C) {
1641    PrintCallingConv(F->getCallingConv(), Out);
1642    Out << " ";
1643  }
1644
1645  FunctionType *FT = F->getFunctionType();
1646  if (Attrs.hasAttributes(AttributeSet::ReturnIndex))
1647    Out <<  Attrs.getAsString(AttributeSet::ReturnIndex) << ' ';
1648  TypePrinter.print(F->getReturnType(), Out);
1649  Out << ' ';
1650  WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent());
1651  Out << '(';
1652  Machine.incorporateFunction(F);
1653
1654  // Loop over the arguments, printing them...
1655
1656  unsigned Idx = 1;
1657  if (!F->isDeclaration()) {
1658    // If this isn't a declaration, print the argument names as well.
1659    for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
1660         I != E; ++I) {
1661      // Insert commas as we go... the first arg doesn't get a comma
1662      if (I != F->arg_begin()) Out << ", ";
1663      printArgument(I, Attrs, Idx);
1664      Idx++;
1665    }
1666  } else {
1667    // Otherwise, print the types from the function type.
1668    for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1669      // Insert commas as we go... the first arg doesn't get a comma
1670      if (i) Out << ", ";
1671
1672      // Output type...
1673      TypePrinter.print(FT->getParamType(i), Out);
1674
1675      if (Attrs.hasAttributes(i+1))
1676        Out << ' ' << Attrs.getAsString(i+1);
1677    }
1678  }
1679
1680  // Finish printing arguments...
1681  if (FT->isVarArg()) {
1682    if (FT->getNumParams()) Out << ", ";
1683    Out << "...";  // Output varargs portion of signature!
1684  }
1685  Out << ')';
1686  if (F->hasUnnamedAddr())
1687    Out << " unnamed_addr";
1688  if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
1689    Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttributes());
1690  if (F->hasSection()) {
1691    Out << " section \"";
1692    PrintEscapedString(F->getSection(), Out);
1693    Out << '"';
1694  }
1695  if (F->getAlignment())
1696    Out << " align " << F->getAlignment();
1697  if (F->hasGC())
1698    Out << " gc \"" << F->getGC() << '"';
1699  if (F->isDeclaration()) {
1700    Out << '\n';
1701  } else {
1702    Out << " {";
1703    // Output all of the function's basic blocks.
1704    for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
1705      printBasicBlock(I);
1706
1707    Out << "}\n";
1708  }
1709
1710  Machine.purgeFunction();
1711}
1712
1713/// printArgument - This member is called for every argument that is passed into
1714/// the function.  Simply print it out
1715///
1716void AssemblyWriter::printArgument(const Argument *Arg,
1717                                   AttributeSet Attrs, unsigned Idx) {
1718  // Output type...
1719  TypePrinter.print(Arg->getType(), Out);
1720
1721  // Output parameter attributes list
1722  if (Attrs.hasAttributes(Idx))
1723    Out << ' ' << Attrs.getAsString(Idx);
1724
1725  // Output name, if available...
1726  if (Arg->hasName()) {
1727    Out << ' ';
1728    PrintLLVMName(Out, Arg);
1729  }
1730}
1731
1732/// printBasicBlock - This member is called for each basic block in a method.
1733///
1734void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
1735  if (BB->hasName()) {              // Print out the label if it exists...
1736    Out << "\n";
1737    PrintLLVMName(Out, BB->getName(), LabelPrefix);
1738    Out << ':';
1739  } else if (!BB->use_empty()) {      // Don't print block # of no uses...
1740    Out << "\n; <label>:";
1741    int Slot = Machine.getLocalSlot(BB);
1742    if (Slot != -1)
1743      Out << Slot;
1744    else
1745      Out << "<badref>";
1746  }
1747
1748  if (BB->getParent() == 0) {
1749    Out.PadToColumn(50);
1750    Out << "; Error: Block without parent!";
1751  } else if (BB != &BB->getParent()->getEntryBlock()) {  // Not the entry block?
1752    // Output predecessors for the block.
1753    Out.PadToColumn(50);
1754    Out << ";";
1755    const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
1756
1757    if (PI == PE) {
1758      Out << " No predecessors!";
1759    } else {
1760      Out << " preds = ";
1761      writeOperand(*PI, false);
1762      for (++PI; PI != PE; ++PI) {
1763        Out << ", ";
1764        writeOperand(*PI, false);
1765      }
1766    }
1767  }
1768
1769  Out << "\n";
1770
1771  if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
1772
1773  // Output all of the instructions in the basic block...
1774  for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1775    printInstruction(*I);
1776    Out << '\n';
1777  }
1778
1779  if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
1780}
1781
1782/// printInfoComment - Print a little comment after the instruction indicating
1783/// which slot it occupies.
1784///
1785void AssemblyWriter::printInfoComment(const Value &V) {
1786  if (AnnotationWriter)
1787    AnnotationWriter->printInfoComment(V, Out);
1788}
1789
1790// This member is called for each Instruction in a function..
1791void AssemblyWriter::printInstruction(const Instruction &I) {
1792  if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
1793
1794  // Print out indentation for an instruction.
1795  Out << "  ";
1796
1797  // Print out name if it exists...
1798  if (I.hasName()) {
1799    PrintLLVMName(Out, &I);
1800    Out << " = ";
1801  } else if (!I.getType()->isVoidTy()) {
1802    // Print out the def slot taken.
1803    int SlotNum = Machine.getLocalSlot(&I);
1804    if (SlotNum == -1)
1805      Out << "<badref> = ";
1806    else
1807      Out << '%' << SlotNum << " = ";
1808  }
1809
1810  if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall())
1811    Out << "tail ";
1812
1813  // Print out the opcode...
1814  Out << I.getOpcodeName();
1815
1816  // If this is an atomic load or store, print out the atomic marker.
1817  if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isAtomic()) ||
1818      (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic()))
1819    Out << " atomic";
1820
1821  // If this is a volatile operation, print out the volatile marker.
1822  if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
1823      (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) ||
1824      (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) ||
1825      (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile()))
1826    Out << " volatile";
1827
1828  // Print out optimization information.
1829  WriteOptimizationInfo(Out, &I);
1830
1831  // Print out the compare instruction predicates
1832  if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
1833    Out << ' ' << getPredicateText(CI->getPredicate());
1834
1835  // Print out the atomicrmw operation
1836  if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I))
1837    writeAtomicRMWOperation(Out, RMWI->getOperation());
1838
1839  // Print out the type of the operands...
1840  const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
1841
1842  // Special case conditional branches to swizzle the condition out to the front
1843  if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
1844    const BranchInst &BI(cast<BranchInst>(I));
1845    Out << ' ';
1846    writeOperand(BI.getCondition(), true);
1847    Out << ", ";
1848    writeOperand(BI.getSuccessor(0), true);
1849    Out << ", ";
1850    writeOperand(BI.getSuccessor(1), true);
1851
1852  } else if (isa<SwitchInst>(I)) {
1853    const SwitchInst& SI(cast<SwitchInst>(I));
1854    // Special case switch instruction to get formatting nice and correct.
1855    Out << ' ';
1856    writeOperand(SI.getCondition(), true);
1857    Out << ", ";
1858    writeOperand(SI.getDefaultDest(), true);
1859    Out << " [";
1860    for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
1861         i != e; ++i) {
1862      Out << "\n    ";
1863      writeOperand(i.getCaseValue(), true);
1864      Out << ", ";
1865      writeOperand(i.getCaseSuccessor(), true);
1866    }
1867    Out << "\n  ]";
1868  } else if (isa<IndirectBrInst>(I)) {
1869    // Special case indirectbr instruction to get formatting nice and correct.
1870    Out << ' ';
1871    writeOperand(Operand, true);
1872    Out << ", [";
1873
1874    for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
1875      if (i != 1)
1876        Out << ", ";
1877      writeOperand(I.getOperand(i), true);
1878    }
1879    Out << ']';
1880  } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
1881    Out << ' ';
1882    TypePrinter.print(I.getType(), Out);
1883    Out << ' ';
1884
1885    for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
1886      if (op) Out << ", ";
1887      Out << "[ ";
1888      writeOperand(PN->getIncomingValue(op), false); Out << ", ";
1889      writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
1890    }
1891  } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
1892    Out << ' ';
1893    writeOperand(I.getOperand(0), true);
1894    for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1895      Out << ", " << *i;
1896  } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
1897    Out << ' ';
1898    writeOperand(I.getOperand(0), true); Out << ", ";
1899    writeOperand(I.getOperand(1), true);
1900    for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1901      Out << ", " << *i;
1902  } else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) {
1903    Out << ' ';
1904    TypePrinter.print(I.getType(), Out);
1905    Out << " personality ";
1906    writeOperand(I.getOperand(0), true); Out << '\n';
1907
1908    if (LPI->isCleanup())
1909      Out << "          cleanup";
1910
1911    for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
1912      if (i != 0 || LPI->isCleanup()) Out << "\n";
1913      if (LPI->isCatch(i))
1914        Out << "          catch ";
1915      else
1916        Out << "          filter ";
1917
1918      writeOperand(LPI->getClause(i), true);
1919    }
1920  } else if (isa<ReturnInst>(I) && !Operand) {
1921    Out << " void";
1922  } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
1923    // Print the calling convention being used.
1924    if (CI->getCallingConv() != CallingConv::C) {
1925      Out << " ";
1926      PrintCallingConv(CI->getCallingConv(), Out);
1927    }
1928
1929    Operand = CI->getCalledValue();
1930    PointerType *PTy = cast<PointerType>(Operand->getType());
1931    FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1932    Type *RetTy = FTy->getReturnType();
1933    const AttributeSet &PAL = CI->getAttributes();
1934
1935    if (PAL.hasAttributes(AttributeSet::ReturnIndex))
1936      Out << ' ' << PAL.getAsString(AttributeSet::ReturnIndex);
1937
1938    // If possible, print out the short form of the call instruction.  We can
1939    // only do this if the first argument is a pointer to a nonvararg function,
1940    // and if the return type is not a pointer to a function.
1941    //
1942    Out << ' ';
1943    if (!FTy->isVarArg() &&
1944        (!RetTy->isPointerTy() ||
1945         !cast<PointerType>(RetTy)->getElementType()->isFunctionTy())) {
1946      TypePrinter.print(RetTy, Out);
1947      Out << ' ';
1948      writeOperand(Operand, false);
1949    } else {
1950      writeOperand(Operand, true);
1951    }
1952    Out << '(';
1953    for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) {
1954      if (op > 0)
1955        Out << ", ";
1956      writeParamOperand(CI->getArgOperand(op), PAL, op + 1);
1957    }
1958    Out << ')';
1959    if (PAL.hasAttributes(AttributeSet::FunctionIndex))
1960      Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
1961  } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
1962    Operand = II->getCalledValue();
1963    PointerType *PTy = cast<PointerType>(Operand->getType());
1964    FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1965    Type *RetTy = FTy->getReturnType();
1966    const AttributeSet &PAL = II->getAttributes();
1967
1968    // Print the calling convention being used.
1969    if (II->getCallingConv() != CallingConv::C) {
1970      Out << " ";
1971      PrintCallingConv(II->getCallingConv(), Out);
1972    }
1973
1974    if (PAL.hasAttributes(AttributeSet::ReturnIndex))
1975      Out << ' ' << PAL.getAsString(AttributeSet::ReturnIndex);
1976
1977    // If possible, print out the short form of the invoke instruction. We can
1978    // only do this if the first argument is a pointer to a nonvararg function,
1979    // and if the return type is not a pointer to a function.
1980    //
1981    Out << ' ';
1982    if (!FTy->isVarArg() &&
1983        (!RetTy->isPointerTy() ||
1984         !cast<PointerType>(RetTy)->getElementType()->isFunctionTy())) {
1985      TypePrinter.print(RetTy, Out);
1986      Out << ' ';
1987      writeOperand(Operand, false);
1988    } else {
1989      writeOperand(Operand, true);
1990    }
1991    Out << '(';
1992    for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) {
1993      if (op)
1994        Out << ", ";
1995      writeParamOperand(II->getArgOperand(op), PAL, op + 1);
1996    }
1997
1998    Out << ')';
1999    if (PAL.hasAttributes(AttributeSet::FunctionIndex))
2000      Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
2001
2002    Out << "\n          to ";
2003    writeOperand(II->getNormalDest(), true);
2004    Out << " unwind ";
2005    writeOperand(II->getUnwindDest(), true);
2006
2007  } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
2008    Out << ' ';
2009    TypePrinter.print(AI->getAllocatedType(), Out);
2010    if (!AI->getArraySize() || AI->isArrayAllocation()) {
2011      Out << ", ";
2012      writeOperand(AI->getArraySize(), true);
2013    }
2014    if (AI->getAlignment()) {
2015      Out << ", align " << AI->getAlignment();
2016    }
2017  } else if (isa<CastInst>(I)) {
2018    if (Operand) {
2019      Out << ' ';
2020      writeOperand(Operand, true);   // Work with broken code
2021    }
2022    Out << " to ";
2023    TypePrinter.print(I.getType(), Out);
2024  } else if (isa<VAArgInst>(I)) {
2025    if (Operand) {
2026      Out << ' ';
2027      writeOperand(Operand, true);   // Work with broken code
2028    }
2029    Out << ", ";
2030    TypePrinter.print(I.getType(), Out);
2031  } else if (Operand) {   // Print the normal way.
2032
2033    // PrintAllTypes - Instructions who have operands of all the same type
2034    // omit the type from all but the first operand.  If the instruction has
2035    // different type operands (for example br), then they are all printed.
2036    bool PrintAllTypes = false;
2037    Type *TheType = Operand->getType();
2038
2039    // Select, Store and ShuffleVector always print all types.
2040    if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
2041        || isa<ReturnInst>(I)) {
2042      PrintAllTypes = true;
2043    } else {
2044      for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
2045        Operand = I.getOperand(i);
2046        // note that Operand shouldn't be null, but the test helps make dump()
2047        // more tolerant of malformed IR
2048        if (Operand && Operand->getType() != TheType) {
2049          PrintAllTypes = true;    // We have differing types!  Print them all!
2050          break;
2051        }
2052      }
2053    }
2054
2055    if (!PrintAllTypes) {
2056      Out << ' ';
2057      TypePrinter.print(TheType, Out);
2058    }
2059
2060    Out << ' ';
2061    for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
2062      if (i) Out << ", ";
2063      writeOperand(I.getOperand(i), PrintAllTypes);
2064    }
2065  }
2066
2067  // Print atomic ordering/alignment for memory operations
2068  if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
2069    if (LI->isAtomic())
2070      writeAtomic(LI->getOrdering(), LI->getSynchScope());
2071    if (LI->getAlignment())
2072      Out << ", align " << LI->getAlignment();
2073  } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
2074    if (SI->isAtomic())
2075      writeAtomic(SI->getOrdering(), SI->getSynchScope());
2076    if (SI->getAlignment())
2077      Out << ", align " << SI->getAlignment();
2078  } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) {
2079    writeAtomic(CXI->getOrdering(), CXI->getSynchScope());
2080  } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) {
2081    writeAtomic(RMWI->getOrdering(), RMWI->getSynchScope());
2082  } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) {
2083    writeAtomic(FI->getOrdering(), FI->getSynchScope());
2084  }
2085
2086  // Print Metadata info.
2087  SmallVector<std::pair<unsigned, MDNode*>, 4> InstMD;
2088  I.getAllMetadata(InstMD);
2089  if (!InstMD.empty()) {
2090    SmallVector<StringRef, 8> MDNames;
2091    I.getType()->getContext().getMDKindNames(MDNames);
2092    for (unsigned i = 0, e = InstMD.size(); i != e; ++i) {
2093      unsigned Kind = InstMD[i].first;
2094       if (Kind < MDNames.size()) {
2095         Out << ", !" << MDNames[Kind];
2096      } else {
2097        Out << ", !<unknown kind #" << Kind << ">";
2098      }
2099      Out << ' ';
2100      WriteAsOperandInternal(Out, InstMD[i].second, &TypePrinter, &Machine,
2101                             TheModule);
2102    }
2103  }
2104  printInfoComment(I);
2105}
2106
2107static void WriteMDNodeComment(const MDNode *Node,
2108                               formatted_raw_ostream &Out) {
2109  if (Node->getNumOperands() < 1)
2110    return;
2111
2112  Value *Op = Node->getOperand(0);
2113  if (!Op || !isa<ConstantInt>(Op) || cast<ConstantInt>(Op)->getBitWidth() < 32)
2114    return;
2115
2116  DIDescriptor Desc(Node);
2117  if (!Desc.Verify())
2118    return;
2119
2120  unsigned Tag = Desc.getTag();
2121  Out.PadToColumn(50);
2122  if (dwarf::TagString(Tag)) {
2123    Out << "; ";
2124    Desc.print(Out);
2125  } else if (Tag == dwarf::DW_TAG_user_base) {
2126    Out << "; [ DW_TAG_user_base ]";
2127  }
2128}
2129
2130void AssemblyWriter::writeAllMDNodes() {
2131  SmallVector<const MDNode *, 16> Nodes;
2132  Nodes.resize(Machine.mdn_size());
2133  for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end();
2134       I != E; ++I)
2135    Nodes[I->second] = cast<MDNode>(I->first);
2136
2137  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
2138    Out << '!' << i << " = metadata ";
2139    printMDNodeBody(Nodes[i]);
2140  }
2141}
2142
2143void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
2144  WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule);
2145  WriteMDNodeComment(Node, Out);
2146  Out << "\n";
2147}
2148
2149void AssemblyWriter::writeAllAttributeGroups() {
2150  std::vector<std::pair<AttributeSet, unsigned> > asVec;
2151  asVec.resize(Machine.as_size());
2152
2153  for (SlotTracker::as_iterator I = Machine.as_begin(), E = Machine.as_end();
2154       I != E; ++I)
2155    asVec[I->second] = *I;
2156
2157  for (std::vector<std::pair<AttributeSet, unsigned> >::iterator
2158         I = asVec.begin(), E = asVec.end(); I != E; ++I)
2159    Out << "attributes #" << I->second << " = { "
2160        << I->first.getAsString(AttributeSet::FunctionIndex, true) << " }\n";
2161}
2162
2163//===----------------------------------------------------------------------===//
2164//                       External Interface declarations
2165//===----------------------------------------------------------------------===//
2166
2167void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
2168  SlotTracker SlotTable(this);
2169  formatted_raw_ostream OS(ROS);
2170  AssemblyWriter W(OS, SlotTable, this, AAW);
2171  W.printModule(this);
2172}
2173
2174void NamedMDNode::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
2175  SlotTracker SlotTable(getParent());
2176  formatted_raw_ostream OS(ROS);
2177  AssemblyWriter W(OS, SlotTable, getParent(), AAW);
2178  W.printNamedMDNode(this);
2179}
2180
2181void Type::print(raw_ostream &OS) const {
2182  if (this == 0) {
2183    OS << "<null Type>";
2184    return;
2185  }
2186  TypePrinting TP;
2187  TP.print(const_cast<Type*>(this), OS);
2188
2189  // If the type is a named struct type, print the body as well.
2190  if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this)))
2191    if (!STy->isLiteral()) {
2192      OS << " = type ";
2193      TP.printStructBody(STy, OS);
2194    }
2195}
2196
2197void Value::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
2198  if (this == 0) {
2199    ROS << "printing a <null> value\n";
2200    return;
2201  }
2202  formatted_raw_ostream OS(ROS);
2203  if (const Instruction *I = dyn_cast<Instruction>(this)) {
2204    const Function *F = I->getParent() ? I->getParent()->getParent() : 0;
2205    SlotTracker SlotTable(F);
2206    AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), AAW);
2207    W.printInstruction(*I);
2208  } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
2209    SlotTracker SlotTable(BB->getParent());
2210    AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), AAW);
2211    W.printBasicBlock(BB);
2212  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
2213    SlotTracker SlotTable(GV->getParent());
2214    AssemblyWriter W(OS, SlotTable, GV->getParent(), AAW);
2215    if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
2216      W.printGlobal(V);
2217    else if (const Function *F = dyn_cast<Function>(GV))
2218      W.printFunction(F);
2219    else
2220      W.printAlias(cast<GlobalAlias>(GV));
2221  } else if (const MDNode *N = dyn_cast<MDNode>(this)) {
2222    const Function *F = N->getFunction();
2223    SlotTracker SlotTable(F);
2224    AssemblyWriter W(OS, SlotTable, F ? F->getParent() : 0, AAW);
2225    W.printMDNodeBody(N);
2226  } else if (const Constant *C = dyn_cast<Constant>(this)) {
2227    TypePrinting TypePrinter;
2228    TypePrinter.print(C->getType(), OS);
2229    OS << ' ';
2230    WriteConstantInternal(OS, C, TypePrinter, 0, 0);
2231  } else if (isa<InlineAsm>(this) || isa<MDString>(this) ||
2232             isa<Argument>(this)) {
2233    WriteAsOperand(OS, this, true, 0);
2234  } else {
2235    // Otherwise we don't know what it is. Call the virtual function to
2236    // allow a subclass to print itself.
2237    printCustom(OS);
2238  }
2239}
2240
2241// Value::printCustom - subclasses should override this to implement printing.
2242void Value::printCustom(raw_ostream &OS) const {
2243  llvm_unreachable("Unknown value to print out!");
2244}
2245
2246// Value::dump - allow easy printing of Values from the debugger.
2247void Value::dump() const { print(dbgs()); dbgs() << '\n'; }
2248
2249// Type::dump - allow easy printing of Types from the debugger.
2250void Type::dump() const { print(dbgs()); }
2251
2252// Module::dump() - Allow printing of Modules from the debugger.
2253void Module::dump() const { print(dbgs(), 0); }
2254
2255// NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger.
2256void NamedMDNode::dump() const { print(dbgs(), 0); }
2257