MipsSEISelLowering.cpp revision dce4a407a24b04eebc6a376f8e62b41aaa7b071f
1//===-- MipsSEISelLowering.cpp - MipsSE DAG Lowering Interface --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Subclass of MipsTargetLowering specialized for mips32/64.
11//
12//===----------------------------------------------------------------------===//
13#include "MipsSEISelLowering.h"
14#include "MipsRegisterInfo.h"
15#include "MipsTargetMachine.h"
16#include "llvm/CodeGen/MachineInstrBuilder.h"
17#include "llvm/CodeGen/MachineRegisterInfo.h"
18#include "llvm/IR/Intrinsics.h"
19#include "llvm/Support/CommandLine.h"
20#include "llvm/Support/Debug.h"
21#include "llvm/Support/raw_ostream.h"
22#include "llvm/Target/TargetInstrInfo.h"
23
24using namespace llvm;
25
26#define DEBUG_TYPE "mips-isel"
27
28static cl::opt<bool>
29EnableMipsTailCalls("enable-mips-tail-calls", cl::Hidden,
30                    cl::desc("MIPS: Enable tail calls."), cl::init(false));
31
32static cl::opt<bool> NoDPLoadStore("mno-ldc1-sdc1", cl::init(false),
33                                   cl::desc("Expand double precision loads and "
34                                            "stores to their single precision "
35                                            "counterparts"));
36
37MipsSETargetLowering::MipsSETargetLowering(MipsTargetMachine &TM)
38  : MipsTargetLowering(TM) {
39  // Set up the register classes
40  addRegisterClass(MVT::i32, &Mips::GPR32RegClass);
41
42  if (isGP64bit())
43    addRegisterClass(MVT::i64, &Mips::GPR64RegClass);
44
45  if (Subtarget->hasDSP() || Subtarget->hasMSA()) {
46    // Expand all truncating stores and extending loads.
47    unsigned FirstVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
48    unsigned LastVT = (unsigned)MVT::LAST_VECTOR_VALUETYPE;
49
50    for (unsigned VT0 = FirstVT; VT0 <= LastVT; ++VT0) {
51      for (unsigned VT1 = FirstVT; VT1 <= LastVT; ++VT1)
52        setTruncStoreAction((MVT::SimpleValueType)VT0,
53                            (MVT::SimpleValueType)VT1, Expand);
54
55      setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT0, Expand);
56      setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT0, Expand);
57      setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT0, Expand);
58    }
59  }
60
61  if (Subtarget->hasDSP()) {
62    MVT::SimpleValueType VecTys[2] = {MVT::v2i16, MVT::v4i8};
63
64    for (unsigned i = 0; i < array_lengthof(VecTys); ++i) {
65      addRegisterClass(VecTys[i], &Mips::DSPRRegClass);
66
67      // Expand all builtin opcodes.
68      for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
69        setOperationAction(Opc, VecTys[i], Expand);
70
71      setOperationAction(ISD::ADD, VecTys[i], Legal);
72      setOperationAction(ISD::SUB, VecTys[i], Legal);
73      setOperationAction(ISD::LOAD, VecTys[i], Legal);
74      setOperationAction(ISD::STORE, VecTys[i], Legal);
75      setOperationAction(ISD::BITCAST, VecTys[i], Legal);
76    }
77
78    setTargetDAGCombine(ISD::SHL);
79    setTargetDAGCombine(ISD::SRA);
80    setTargetDAGCombine(ISD::SRL);
81    setTargetDAGCombine(ISD::SETCC);
82    setTargetDAGCombine(ISD::VSELECT);
83  }
84
85  if (Subtarget->hasDSPR2())
86    setOperationAction(ISD::MUL, MVT::v2i16, Legal);
87
88  if (Subtarget->hasMSA()) {
89    addMSAIntType(MVT::v16i8, &Mips::MSA128BRegClass);
90    addMSAIntType(MVT::v8i16, &Mips::MSA128HRegClass);
91    addMSAIntType(MVT::v4i32, &Mips::MSA128WRegClass);
92    addMSAIntType(MVT::v2i64, &Mips::MSA128DRegClass);
93    addMSAFloatType(MVT::v8f16, &Mips::MSA128HRegClass);
94    addMSAFloatType(MVT::v4f32, &Mips::MSA128WRegClass);
95    addMSAFloatType(MVT::v2f64, &Mips::MSA128DRegClass);
96
97    setTargetDAGCombine(ISD::AND);
98    setTargetDAGCombine(ISD::OR);
99    setTargetDAGCombine(ISD::SRA);
100    setTargetDAGCombine(ISD::VSELECT);
101    setTargetDAGCombine(ISD::XOR);
102  }
103
104  if (!Subtarget->mipsSEUsesSoftFloat()) {
105    addRegisterClass(MVT::f32, &Mips::FGR32RegClass);
106
107    // When dealing with single precision only, use libcalls
108    if (!Subtarget->isSingleFloat()) {
109      if (Subtarget->isFP64bit())
110        addRegisterClass(MVT::f64, &Mips::FGR64RegClass);
111      else
112        addRegisterClass(MVT::f64, &Mips::AFGR64RegClass);
113    }
114  }
115
116  setOperationAction(ISD::SMUL_LOHI,          MVT::i32, Custom);
117  setOperationAction(ISD::UMUL_LOHI,          MVT::i32, Custom);
118  setOperationAction(ISD::MULHS,              MVT::i32, Custom);
119  setOperationAction(ISD::MULHU,              MVT::i32, Custom);
120
121  if (Subtarget->hasCnMips())
122    setOperationAction(ISD::MUL,              MVT::i64, Legal);
123  else if (isGP64bit())
124    setOperationAction(ISD::MUL,              MVT::i64, Custom);
125
126  if (isGP64bit()) {
127    setOperationAction(ISD::MULHS,            MVT::i64, Custom);
128    setOperationAction(ISD::MULHU,            MVT::i64, Custom);
129  }
130
131  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
132  setOperationAction(ISD::INTRINSIC_W_CHAIN,  MVT::i64, Custom);
133
134  setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
135  setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
136  setOperationAction(ISD::SDIVREM, MVT::i64, Custom);
137  setOperationAction(ISD::UDIVREM, MVT::i64, Custom);
138  setOperationAction(ISD::ATOMIC_FENCE,       MVT::Other, Custom);
139  setOperationAction(ISD::LOAD,               MVT::i32, Custom);
140  setOperationAction(ISD::STORE,              MVT::i32, Custom);
141
142  setTargetDAGCombine(ISD::ADDE);
143  setTargetDAGCombine(ISD::SUBE);
144  setTargetDAGCombine(ISD::MUL);
145
146  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
147  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
148  setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
149
150  if (NoDPLoadStore) {
151    setOperationAction(ISD::LOAD, MVT::f64, Custom);
152    setOperationAction(ISD::STORE, MVT::f64, Custom);
153  }
154
155  computeRegisterProperties();
156}
157
158const MipsTargetLowering *
159llvm::createMipsSETargetLowering(MipsTargetMachine &TM) {
160  return new MipsSETargetLowering(TM);
161}
162
163// Enable MSA support for the given integer type and Register class.
164void MipsSETargetLowering::
165addMSAIntType(MVT::SimpleValueType Ty, const TargetRegisterClass *RC) {
166  addRegisterClass(Ty, RC);
167
168  // Expand all builtin opcodes.
169  for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
170    setOperationAction(Opc, Ty, Expand);
171
172  setOperationAction(ISD::BITCAST, Ty, Legal);
173  setOperationAction(ISD::LOAD, Ty, Legal);
174  setOperationAction(ISD::STORE, Ty, Legal);
175  setOperationAction(ISD::EXTRACT_VECTOR_ELT, Ty, Custom);
176  setOperationAction(ISD::INSERT_VECTOR_ELT, Ty, Legal);
177  setOperationAction(ISD::BUILD_VECTOR, Ty, Custom);
178
179  setOperationAction(ISD::ADD, Ty, Legal);
180  setOperationAction(ISD::AND, Ty, Legal);
181  setOperationAction(ISD::CTLZ, Ty, Legal);
182  setOperationAction(ISD::CTPOP, Ty, Legal);
183  setOperationAction(ISD::MUL, Ty, Legal);
184  setOperationAction(ISD::OR, Ty, Legal);
185  setOperationAction(ISD::SDIV, Ty, Legal);
186  setOperationAction(ISD::SREM, Ty, Legal);
187  setOperationAction(ISD::SHL, Ty, Legal);
188  setOperationAction(ISD::SRA, Ty, Legal);
189  setOperationAction(ISD::SRL, Ty, Legal);
190  setOperationAction(ISD::SUB, Ty, Legal);
191  setOperationAction(ISD::UDIV, Ty, Legal);
192  setOperationAction(ISD::UREM, Ty, Legal);
193  setOperationAction(ISD::VECTOR_SHUFFLE, Ty, Custom);
194  setOperationAction(ISD::VSELECT, Ty, Legal);
195  setOperationAction(ISD::XOR, Ty, Legal);
196
197  if (Ty == MVT::v4i32 || Ty == MVT::v2i64) {
198    setOperationAction(ISD::FP_TO_SINT, Ty, Legal);
199    setOperationAction(ISD::FP_TO_UINT, Ty, Legal);
200    setOperationAction(ISD::SINT_TO_FP, Ty, Legal);
201    setOperationAction(ISD::UINT_TO_FP, Ty, Legal);
202  }
203
204  setOperationAction(ISD::SETCC, Ty, Legal);
205  setCondCodeAction(ISD::SETNE, Ty, Expand);
206  setCondCodeAction(ISD::SETGE, Ty, Expand);
207  setCondCodeAction(ISD::SETGT, Ty, Expand);
208  setCondCodeAction(ISD::SETUGE, Ty, Expand);
209  setCondCodeAction(ISD::SETUGT, Ty, Expand);
210}
211
212// Enable MSA support for the given floating-point type and Register class.
213void MipsSETargetLowering::
214addMSAFloatType(MVT::SimpleValueType Ty, const TargetRegisterClass *RC) {
215  addRegisterClass(Ty, RC);
216
217  // Expand all builtin opcodes.
218  for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
219    setOperationAction(Opc, Ty, Expand);
220
221  setOperationAction(ISD::LOAD, Ty, Legal);
222  setOperationAction(ISD::STORE, Ty, Legal);
223  setOperationAction(ISD::BITCAST, Ty, Legal);
224  setOperationAction(ISD::EXTRACT_VECTOR_ELT, Ty, Legal);
225  setOperationAction(ISD::INSERT_VECTOR_ELT, Ty, Legal);
226  setOperationAction(ISD::BUILD_VECTOR, Ty, Custom);
227
228  if (Ty != MVT::v8f16) {
229    setOperationAction(ISD::FABS,  Ty, Legal);
230    setOperationAction(ISD::FADD,  Ty, Legal);
231    setOperationAction(ISD::FDIV,  Ty, Legal);
232    setOperationAction(ISD::FEXP2, Ty, Legal);
233    setOperationAction(ISD::FLOG2, Ty, Legal);
234    setOperationAction(ISD::FMA,   Ty, Legal);
235    setOperationAction(ISD::FMUL,  Ty, Legal);
236    setOperationAction(ISD::FRINT, Ty, Legal);
237    setOperationAction(ISD::FSQRT, Ty, Legal);
238    setOperationAction(ISD::FSUB,  Ty, Legal);
239    setOperationAction(ISD::VSELECT, Ty, Legal);
240
241    setOperationAction(ISD::SETCC, Ty, Legal);
242    setCondCodeAction(ISD::SETOGE, Ty, Expand);
243    setCondCodeAction(ISD::SETOGT, Ty, Expand);
244    setCondCodeAction(ISD::SETUGE, Ty, Expand);
245    setCondCodeAction(ISD::SETUGT, Ty, Expand);
246    setCondCodeAction(ISD::SETGE,  Ty, Expand);
247    setCondCodeAction(ISD::SETGT,  Ty, Expand);
248  }
249}
250
251bool
252MipsSETargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
253                                                    unsigned,
254                                                    bool *Fast) const {
255  MVT::SimpleValueType SVT = VT.getSimpleVT().SimpleTy;
256
257  if (Subtarget->systemSupportsUnalignedAccess()) {
258    // MIPS32r6/MIPS64r6 is required to support unaligned access. It's
259    // implementation defined whether this is handled by hardware, software, or
260    // a hybrid of the two but it's expected that most implementations will
261    // handle the majority of cases in hardware.
262    if (Fast)
263      *Fast = true;
264    return true;
265  }
266
267  switch (SVT) {
268  case MVT::i64:
269  case MVT::i32:
270    if (Fast)
271      *Fast = true;
272    return true;
273  default:
274    return false;
275  }
276}
277
278SDValue MipsSETargetLowering::LowerOperation(SDValue Op,
279                                             SelectionDAG &DAG) const {
280  switch(Op.getOpcode()) {
281  case ISD::LOAD:  return lowerLOAD(Op, DAG);
282  case ISD::STORE: return lowerSTORE(Op, DAG);
283  case ISD::SMUL_LOHI: return lowerMulDiv(Op, MipsISD::Mult, true, true, DAG);
284  case ISD::UMUL_LOHI: return lowerMulDiv(Op, MipsISD::Multu, true, true, DAG);
285  case ISD::MULHS:     return lowerMulDiv(Op, MipsISD::Mult, false, true, DAG);
286  case ISD::MULHU:     return lowerMulDiv(Op, MipsISD::Multu, false, true, DAG);
287  case ISD::MUL:       return lowerMulDiv(Op, MipsISD::Mult, true, false, DAG);
288  case ISD::SDIVREM:   return lowerMulDiv(Op, MipsISD::DivRem, true, true, DAG);
289  case ISD::UDIVREM:   return lowerMulDiv(Op, MipsISD::DivRemU, true, true,
290                                          DAG);
291  case ISD::INTRINSIC_WO_CHAIN: return lowerINTRINSIC_WO_CHAIN(Op, DAG);
292  case ISD::INTRINSIC_W_CHAIN:  return lowerINTRINSIC_W_CHAIN(Op, DAG);
293  case ISD::INTRINSIC_VOID:     return lowerINTRINSIC_VOID(Op, DAG);
294  case ISD::EXTRACT_VECTOR_ELT: return lowerEXTRACT_VECTOR_ELT(Op, DAG);
295  case ISD::BUILD_VECTOR:       return lowerBUILD_VECTOR(Op, DAG);
296  case ISD::VECTOR_SHUFFLE:     return lowerVECTOR_SHUFFLE(Op, DAG);
297  }
298
299  return MipsTargetLowering::LowerOperation(Op, DAG);
300}
301
302// selectMADD -
303// Transforms a subgraph in CurDAG if the following pattern is found:
304//  (addc multLo, Lo0), (adde multHi, Hi0),
305// where,
306//  multHi/Lo: product of multiplication
307//  Lo0: initial value of Lo register
308//  Hi0: initial value of Hi register
309// Return true if pattern matching was successful.
310static bool selectMADD(SDNode *ADDENode, SelectionDAG *CurDAG) {
311  // ADDENode's second operand must be a flag output of an ADDC node in order
312  // for the matching to be successful.
313  SDNode *ADDCNode = ADDENode->getOperand(2).getNode();
314
315  if (ADDCNode->getOpcode() != ISD::ADDC)
316    return false;
317
318  SDValue MultHi = ADDENode->getOperand(0);
319  SDValue MultLo = ADDCNode->getOperand(0);
320  SDNode *MultNode = MultHi.getNode();
321  unsigned MultOpc = MultHi.getOpcode();
322
323  // MultHi and MultLo must be generated by the same node,
324  if (MultLo.getNode() != MultNode)
325    return false;
326
327  // and it must be a multiplication.
328  if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
329    return false;
330
331  // MultLo amd MultHi must be the first and second output of MultNode
332  // respectively.
333  if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
334    return false;
335
336  // Transform this to a MADD only if ADDENode and ADDCNode are the only users
337  // of the values of MultNode, in which case MultNode will be removed in later
338  // phases.
339  // If there exist users other than ADDENode or ADDCNode, this function returns
340  // here, which will result in MultNode being mapped to a single MULT
341  // instruction node rather than a pair of MULT and MADD instructions being
342  // produced.
343  if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
344    return false;
345
346  SDLoc DL(ADDENode);
347
348  // Initialize accumulator.
349  SDValue ACCIn = CurDAG->getNode(MipsISD::MTLOHI, DL, MVT::Untyped,
350                                  ADDCNode->getOperand(1),
351                                  ADDENode->getOperand(1));
352
353  // create MipsMAdd(u) node
354  MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MAddu : MipsISD::MAdd;
355
356  SDValue MAdd = CurDAG->getNode(MultOpc, DL, MVT::Untyped,
357                                 MultNode->getOperand(0),// Factor 0
358                                 MultNode->getOperand(1),// Factor 1
359                                 ACCIn);
360
361  // replace uses of adde and addc here
362  if (!SDValue(ADDCNode, 0).use_empty()) {
363    SDValue LoOut = CurDAG->getNode(MipsISD::MFLO, DL, MVT::i32, MAdd);
364    CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDCNode, 0), LoOut);
365  }
366  if (!SDValue(ADDENode, 0).use_empty()) {
367    SDValue HiOut = CurDAG->getNode(MipsISD::MFHI, DL, MVT::i32, MAdd);
368    CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDENode, 0), HiOut);
369  }
370
371  return true;
372}
373
374// selectMSUB -
375// Transforms a subgraph in CurDAG if the following pattern is found:
376//  (addc Lo0, multLo), (sube Hi0, multHi),
377// where,
378//  multHi/Lo: product of multiplication
379//  Lo0: initial value of Lo register
380//  Hi0: initial value of Hi register
381// Return true if pattern matching was successful.
382static bool selectMSUB(SDNode *SUBENode, SelectionDAG *CurDAG) {
383  // SUBENode's second operand must be a flag output of an SUBC node in order
384  // for the matching to be successful.
385  SDNode *SUBCNode = SUBENode->getOperand(2).getNode();
386
387  if (SUBCNode->getOpcode() != ISD::SUBC)
388    return false;
389
390  SDValue MultHi = SUBENode->getOperand(1);
391  SDValue MultLo = SUBCNode->getOperand(1);
392  SDNode *MultNode = MultHi.getNode();
393  unsigned MultOpc = MultHi.getOpcode();
394
395  // MultHi and MultLo must be generated by the same node,
396  if (MultLo.getNode() != MultNode)
397    return false;
398
399  // and it must be a multiplication.
400  if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
401    return false;
402
403  // MultLo amd MultHi must be the first and second output of MultNode
404  // respectively.
405  if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
406    return false;
407
408  // Transform this to a MSUB only if SUBENode and SUBCNode are the only users
409  // of the values of MultNode, in which case MultNode will be removed in later
410  // phases.
411  // If there exist users other than SUBENode or SUBCNode, this function returns
412  // here, which will result in MultNode being mapped to a single MULT
413  // instruction node rather than a pair of MULT and MSUB instructions being
414  // produced.
415  if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
416    return false;
417
418  SDLoc DL(SUBENode);
419
420  // Initialize accumulator.
421  SDValue ACCIn = CurDAG->getNode(MipsISD::MTLOHI, DL, MVT::Untyped,
422                                  SUBCNode->getOperand(0),
423                                  SUBENode->getOperand(0));
424
425  // create MipsSub(u) node
426  MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MSubu : MipsISD::MSub;
427
428  SDValue MSub = CurDAG->getNode(MultOpc, DL, MVT::Glue,
429                                 MultNode->getOperand(0),// Factor 0
430                                 MultNode->getOperand(1),// Factor 1
431                                 ACCIn);
432
433  // replace uses of sube and subc here
434  if (!SDValue(SUBCNode, 0).use_empty()) {
435    SDValue LoOut = CurDAG->getNode(MipsISD::MFLO, DL, MVT::i32, MSub);
436    CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBCNode, 0), LoOut);
437  }
438  if (!SDValue(SUBENode, 0).use_empty()) {
439    SDValue HiOut = CurDAG->getNode(MipsISD::MFHI, DL, MVT::i32, MSub);
440    CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBENode, 0), HiOut);
441  }
442
443  return true;
444}
445
446static SDValue performADDECombine(SDNode *N, SelectionDAG &DAG,
447                                  TargetLowering::DAGCombinerInfo &DCI,
448                                  const MipsSubtarget *Subtarget) {
449  if (DCI.isBeforeLegalize())
450    return SDValue();
451
452  if (Subtarget->hasMips32() && N->getValueType(0) == MVT::i32 &&
453      selectMADD(N, &DAG))
454    return SDValue(N, 0);
455
456  return SDValue();
457}
458
459// Fold zero extensions into MipsISD::VEXTRACT_[SZ]EXT_ELT
460//
461// Performs the following transformations:
462// - Changes MipsISD::VEXTRACT_[SZ]EXT_ELT to zero extension if its
463//   sign/zero-extension is completely overwritten by the new one performed by
464//   the ISD::AND.
465// - Removes redundant zero extensions performed by an ISD::AND.
466static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
467                                 TargetLowering::DAGCombinerInfo &DCI,
468                                 const MipsSubtarget *Subtarget) {
469  if (!Subtarget->hasMSA())
470    return SDValue();
471
472  SDValue Op0 = N->getOperand(0);
473  SDValue Op1 = N->getOperand(1);
474  unsigned Op0Opcode = Op0->getOpcode();
475
476  // (and (MipsVExtract[SZ]Ext $a, $b, $c), imm:$d)
477  // where $d + 1 == 2^n and n == 32
478  // or    $d + 1 == 2^n and n <= 32 and ZExt
479  // -> (MipsVExtractZExt $a, $b, $c)
480  if (Op0Opcode == MipsISD::VEXTRACT_SEXT_ELT ||
481      Op0Opcode == MipsISD::VEXTRACT_ZEXT_ELT) {
482    ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(Op1);
483
484    if (!Mask)
485      return SDValue();
486
487    int32_t Log2IfPositive = (Mask->getAPIntValue() + 1).exactLogBase2();
488
489    if (Log2IfPositive <= 0)
490      return SDValue(); // Mask+1 is not a power of 2
491
492    SDValue Op0Op2 = Op0->getOperand(2);
493    EVT ExtendTy = cast<VTSDNode>(Op0Op2)->getVT();
494    unsigned ExtendTySize = ExtendTy.getSizeInBits();
495    unsigned Log2 = Log2IfPositive;
496
497    if ((Op0Opcode == MipsISD::VEXTRACT_ZEXT_ELT && Log2 >= ExtendTySize) ||
498        Log2 == ExtendTySize) {
499      SDValue Ops[] = { Op0->getOperand(0), Op0->getOperand(1), Op0Op2 };
500      DAG.MorphNodeTo(Op0.getNode(), MipsISD::VEXTRACT_ZEXT_ELT,
501                      Op0->getVTList(),
502                      makeArrayRef(Ops, Op0->getNumOperands()));
503      return Op0;
504    }
505  }
506
507  return SDValue();
508}
509
510// Determine if the specified node is a constant vector splat.
511//
512// Returns true and sets Imm if:
513// * N is a ISD::BUILD_VECTOR representing a constant splat
514//
515// This function is quite similar to MipsSEDAGToDAGISel::selectVSplat. The
516// differences are that it assumes the MSA has already been checked and the
517// arbitrary requirement for a maximum of 32-bit integers isn't applied (and
518// must not be in order for binsri.d to be selectable).
519static bool isVSplat(SDValue N, APInt &Imm, bool IsLittleEndian) {
520  BuildVectorSDNode *Node = dyn_cast<BuildVectorSDNode>(N.getNode());
521
522  if (!Node)
523    return false;
524
525  APInt SplatValue, SplatUndef;
526  unsigned SplatBitSize;
527  bool HasAnyUndefs;
528
529  if (!Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
530                             8, !IsLittleEndian))
531    return false;
532
533  Imm = SplatValue;
534
535  return true;
536}
537
538// Test whether the given node is an all-ones build_vector.
539static bool isVectorAllOnes(SDValue N) {
540  // Look through bitcasts. Endianness doesn't matter because we are looking
541  // for an all-ones value.
542  if (N->getOpcode() == ISD::BITCAST)
543    N = N->getOperand(0);
544
545  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N);
546
547  if (!BVN)
548    return false;
549
550  APInt SplatValue, SplatUndef;
551  unsigned SplatBitSize;
552  bool HasAnyUndefs;
553
554  // Endianness doesn't matter in this context because we are looking for
555  // an all-ones value.
556  if (BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs))
557    return SplatValue.isAllOnesValue();
558
559  return false;
560}
561
562// Test whether N is the bitwise inverse of OfNode.
563static bool isBitwiseInverse(SDValue N, SDValue OfNode) {
564  if (N->getOpcode() != ISD::XOR)
565    return false;
566
567  if (isVectorAllOnes(N->getOperand(0)))
568    return N->getOperand(1) == OfNode;
569
570  if (isVectorAllOnes(N->getOperand(1)))
571    return N->getOperand(0) == OfNode;
572
573  return false;
574}
575
576// Perform combines where ISD::OR is the root node.
577//
578// Performs the following transformations:
579// - (or (and $a, $mask), (and $b, $inv_mask)) => (vselect $mask, $a, $b)
580//   where $inv_mask is the bitwise inverse of $mask and the 'or' has a 128-bit
581//   vector type.
582static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
583                                TargetLowering::DAGCombinerInfo &DCI,
584                                const MipsSubtarget *Subtarget) {
585  if (!Subtarget->hasMSA())
586    return SDValue();
587
588  EVT Ty = N->getValueType(0);
589
590  if (!Ty.is128BitVector())
591    return SDValue();
592
593  SDValue Op0 = N->getOperand(0);
594  SDValue Op1 = N->getOperand(1);
595
596  if (Op0->getOpcode() == ISD::AND && Op1->getOpcode() == ISD::AND) {
597    SDValue Op0Op0 = Op0->getOperand(0);
598    SDValue Op0Op1 = Op0->getOperand(1);
599    SDValue Op1Op0 = Op1->getOperand(0);
600    SDValue Op1Op1 = Op1->getOperand(1);
601    bool IsLittleEndian = !Subtarget->isLittle();
602
603    SDValue IfSet, IfClr, Cond;
604    bool IsConstantMask = false;
605    APInt Mask, InvMask;
606
607    // If Op0Op0 is an appropriate mask, try to find it's inverse in either
608    // Op1Op0, or Op1Op1. Keep track of the Cond, IfSet, and IfClr nodes, while
609    // looking.
610    // IfClr will be set if we find a valid match.
611    if (isVSplat(Op0Op0, Mask, IsLittleEndian)) {
612      Cond = Op0Op0;
613      IfSet = Op0Op1;
614
615      if (isVSplat(Op1Op0, InvMask, IsLittleEndian) &&
616          Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
617        IfClr = Op1Op1;
618      else if (isVSplat(Op1Op1, InvMask, IsLittleEndian) &&
619               Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
620        IfClr = Op1Op0;
621
622      IsConstantMask = true;
623    }
624
625    // If IfClr is not yet set, and Op0Op1 is an appropriate mask, try the same
626    // thing again using this mask.
627    // IfClr will be set if we find a valid match.
628    if (!IfClr.getNode() && isVSplat(Op0Op1, Mask, IsLittleEndian)) {
629      Cond = Op0Op1;
630      IfSet = Op0Op0;
631
632      if (isVSplat(Op1Op0, InvMask, IsLittleEndian) &&
633          Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
634        IfClr = Op1Op1;
635      else if (isVSplat(Op1Op1, InvMask, IsLittleEndian) &&
636               Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
637        IfClr = Op1Op0;
638
639      IsConstantMask = true;
640    }
641
642    // If IfClr is not yet set, try looking for a non-constant match.
643    // IfClr will be set if we find a valid match amongst the eight
644    // possibilities.
645    if (!IfClr.getNode()) {
646      if (isBitwiseInverse(Op0Op0, Op1Op0)) {
647        Cond = Op1Op0;
648        IfSet = Op1Op1;
649        IfClr = Op0Op1;
650      } else if (isBitwiseInverse(Op0Op1, Op1Op0)) {
651        Cond = Op1Op0;
652        IfSet = Op1Op1;
653        IfClr = Op0Op0;
654      } else if (isBitwiseInverse(Op0Op0, Op1Op1)) {
655        Cond = Op1Op1;
656        IfSet = Op1Op0;
657        IfClr = Op0Op1;
658      } else if (isBitwiseInverse(Op0Op1, Op1Op1)) {
659        Cond = Op1Op1;
660        IfSet = Op1Op0;
661        IfClr = Op0Op0;
662      } else if (isBitwiseInverse(Op1Op0, Op0Op0)) {
663        Cond = Op0Op0;
664        IfSet = Op0Op1;
665        IfClr = Op1Op1;
666      } else if (isBitwiseInverse(Op1Op1, Op0Op0)) {
667        Cond = Op0Op0;
668        IfSet = Op0Op1;
669        IfClr = Op1Op0;
670      } else if (isBitwiseInverse(Op1Op0, Op0Op1)) {
671        Cond = Op0Op1;
672        IfSet = Op0Op0;
673        IfClr = Op1Op1;
674      } else if (isBitwiseInverse(Op1Op1, Op0Op1)) {
675        Cond = Op0Op1;
676        IfSet = Op0Op0;
677        IfClr = Op1Op0;
678      }
679    }
680
681    // At this point, IfClr will be set if we have a valid match.
682    if (!IfClr.getNode())
683      return SDValue();
684
685    assert(Cond.getNode() && IfSet.getNode());
686
687    // Fold degenerate cases.
688    if (IsConstantMask) {
689      if (Mask.isAllOnesValue())
690        return IfSet;
691      else if (Mask == 0)
692        return IfClr;
693    }
694
695    // Transform the DAG into an equivalent VSELECT.
696    return DAG.getNode(ISD::VSELECT, SDLoc(N), Ty, Cond, IfSet, IfClr);
697  }
698
699  return SDValue();
700}
701
702static SDValue performSUBECombine(SDNode *N, SelectionDAG &DAG,
703                                  TargetLowering::DAGCombinerInfo &DCI,
704                                  const MipsSubtarget *Subtarget) {
705  if (DCI.isBeforeLegalize())
706    return SDValue();
707
708  if (Subtarget->hasMips32() && N->getValueType(0) == MVT::i32 &&
709      selectMSUB(N, &DAG))
710    return SDValue(N, 0);
711
712  return SDValue();
713}
714
715static SDValue genConstMult(SDValue X, uint64_t C, SDLoc DL, EVT VT,
716                            EVT ShiftTy, SelectionDAG &DAG) {
717  // Clear the upper (64 - VT.sizeInBits) bits.
718  C &= ((uint64_t)-1) >> (64 - VT.getSizeInBits());
719
720  // Return 0.
721  if (C == 0)
722    return DAG.getConstant(0, VT);
723
724  // Return x.
725  if (C == 1)
726    return X;
727
728  // If c is power of 2, return (shl x, log2(c)).
729  if (isPowerOf2_64(C))
730    return DAG.getNode(ISD::SHL, DL, VT, X,
731                       DAG.getConstant(Log2_64(C), ShiftTy));
732
733  unsigned Log2Ceil = Log2_64_Ceil(C);
734  uint64_t Floor = 1LL << Log2_64(C);
735  uint64_t Ceil = Log2Ceil == 64 ? 0LL : 1LL << Log2Ceil;
736
737  // If |c - floor_c| <= |c - ceil_c|,
738  // where floor_c = pow(2, floor(log2(c))) and ceil_c = pow(2, ceil(log2(c))),
739  // return (add constMult(x, floor_c), constMult(x, c - floor_c)).
740  if (C - Floor <= Ceil - C) {
741    SDValue Op0 = genConstMult(X, Floor, DL, VT, ShiftTy, DAG);
742    SDValue Op1 = genConstMult(X, C - Floor, DL, VT, ShiftTy, DAG);
743    return DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
744  }
745
746  // If |c - floor_c| > |c - ceil_c|,
747  // return (sub constMult(x, ceil_c), constMult(x, ceil_c - c)).
748  SDValue Op0 = genConstMult(X, Ceil, DL, VT, ShiftTy, DAG);
749  SDValue Op1 = genConstMult(X, Ceil - C, DL, VT, ShiftTy, DAG);
750  return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
751}
752
753static SDValue performMULCombine(SDNode *N, SelectionDAG &DAG,
754                                 const TargetLowering::DAGCombinerInfo &DCI,
755                                 const MipsSETargetLowering *TL) {
756  EVT VT = N->getValueType(0);
757
758  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
759    if (!VT.isVector())
760      return genConstMult(N->getOperand(0), C->getZExtValue(), SDLoc(N),
761                          VT, TL->getScalarShiftAmountTy(VT), DAG);
762
763  return SDValue(N, 0);
764}
765
766static SDValue performDSPShiftCombine(unsigned Opc, SDNode *N, EVT Ty,
767                                      SelectionDAG &DAG,
768                                      const MipsSubtarget *Subtarget) {
769  // See if this is a vector splat immediate node.
770  APInt SplatValue, SplatUndef;
771  unsigned SplatBitSize;
772  bool HasAnyUndefs;
773  unsigned EltSize = Ty.getVectorElementType().getSizeInBits();
774  BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
775
776  if (!Subtarget->hasDSP())
777    return SDValue();
778
779  if (!BV ||
780      !BV->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
781                           EltSize, !Subtarget->isLittle()) ||
782      (SplatBitSize != EltSize) ||
783      (SplatValue.getZExtValue() >= EltSize))
784    return SDValue();
785
786  return DAG.getNode(Opc, SDLoc(N), Ty, N->getOperand(0),
787                     DAG.getConstant(SplatValue.getZExtValue(), MVT::i32));
788}
789
790static SDValue performSHLCombine(SDNode *N, SelectionDAG &DAG,
791                                 TargetLowering::DAGCombinerInfo &DCI,
792                                 const MipsSubtarget *Subtarget) {
793  EVT Ty = N->getValueType(0);
794
795  if ((Ty != MVT::v2i16) && (Ty != MVT::v4i8))
796    return SDValue();
797
798  return performDSPShiftCombine(MipsISD::SHLL_DSP, N, Ty, DAG, Subtarget);
799}
800
801// Fold sign-extensions into MipsISD::VEXTRACT_[SZ]EXT_ELT for MSA and fold
802// constant splats into MipsISD::SHRA_DSP for DSPr2.
803//
804// Performs the following transformations:
805// - Changes MipsISD::VEXTRACT_[SZ]EXT_ELT to sign extension if its
806//   sign/zero-extension is completely overwritten by the new one performed by
807//   the ISD::SRA and ISD::SHL nodes.
808// - Removes redundant sign extensions performed by an ISD::SRA and ISD::SHL
809//   sequence.
810//
811// See performDSPShiftCombine for more information about the transformation
812// used for DSPr2.
813static SDValue performSRACombine(SDNode *N, SelectionDAG &DAG,
814                                 TargetLowering::DAGCombinerInfo &DCI,
815                                 const MipsSubtarget *Subtarget) {
816  EVT Ty = N->getValueType(0);
817
818  if (Subtarget->hasMSA()) {
819    SDValue Op0 = N->getOperand(0);
820    SDValue Op1 = N->getOperand(1);
821
822    // (sra (shl (MipsVExtract[SZ]Ext $a, $b, $c), imm:$d), imm:$d)
823    // where $d + sizeof($c) == 32
824    // or    $d + sizeof($c) <= 32 and SExt
825    // -> (MipsVExtractSExt $a, $b, $c)
826    if (Op0->getOpcode() == ISD::SHL && Op1 == Op0->getOperand(1)) {
827      SDValue Op0Op0 = Op0->getOperand(0);
828      ConstantSDNode *ShAmount = dyn_cast<ConstantSDNode>(Op1);
829
830      if (!ShAmount)
831        return SDValue();
832
833      if (Op0Op0->getOpcode() != MipsISD::VEXTRACT_SEXT_ELT &&
834          Op0Op0->getOpcode() != MipsISD::VEXTRACT_ZEXT_ELT)
835        return SDValue();
836
837      EVT ExtendTy = cast<VTSDNode>(Op0Op0->getOperand(2))->getVT();
838      unsigned TotalBits = ShAmount->getZExtValue() + ExtendTy.getSizeInBits();
839
840      if (TotalBits == 32 ||
841          (Op0Op0->getOpcode() == MipsISD::VEXTRACT_SEXT_ELT &&
842           TotalBits <= 32)) {
843        SDValue Ops[] = { Op0Op0->getOperand(0), Op0Op0->getOperand(1),
844                          Op0Op0->getOperand(2) };
845        DAG.MorphNodeTo(Op0Op0.getNode(), MipsISD::VEXTRACT_SEXT_ELT,
846                        Op0Op0->getVTList(),
847                        makeArrayRef(Ops, Op0Op0->getNumOperands()));
848        return Op0Op0;
849      }
850    }
851  }
852
853  if ((Ty != MVT::v2i16) && ((Ty != MVT::v4i8) || !Subtarget->hasDSPR2()))
854    return SDValue();
855
856  return performDSPShiftCombine(MipsISD::SHRA_DSP, N, Ty, DAG, Subtarget);
857}
858
859
860static SDValue performSRLCombine(SDNode *N, SelectionDAG &DAG,
861                                 TargetLowering::DAGCombinerInfo &DCI,
862                                 const MipsSubtarget *Subtarget) {
863  EVT Ty = N->getValueType(0);
864
865  if (((Ty != MVT::v2i16) || !Subtarget->hasDSPR2()) && (Ty != MVT::v4i8))
866    return SDValue();
867
868  return performDSPShiftCombine(MipsISD::SHRL_DSP, N, Ty, DAG, Subtarget);
869}
870
871static bool isLegalDSPCondCode(EVT Ty, ISD::CondCode CC) {
872  bool IsV216 = (Ty == MVT::v2i16);
873
874  switch (CC) {
875  case ISD::SETEQ:
876  case ISD::SETNE:  return true;
877  case ISD::SETLT:
878  case ISD::SETLE:
879  case ISD::SETGT:
880  case ISD::SETGE:  return IsV216;
881  case ISD::SETULT:
882  case ISD::SETULE:
883  case ISD::SETUGT:
884  case ISD::SETUGE: return !IsV216;
885  default:          return false;
886  }
887}
888
889static SDValue performSETCCCombine(SDNode *N, SelectionDAG &DAG) {
890  EVT Ty = N->getValueType(0);
891
892  if ((Ty != MVT::v2i16) && (Ty != MVT::v4i8))
893    return SDValue();
894
895  if (!isLegalDSPCondCode(Ty, cast<CondCodeSDNode>(N->getOperand(2))->get()))
896    return SDValue();
897
898  return DAG.getNode(MipsISD::SETCC_DSP, SDLoc(N), Ty, N->getOperand(0),
899                     N->getOperand(1), N->getOperand(2));
900}
901
902static SDValue performVSELECTCombine(SDNode *N, SelectionDAG &DAG) {
903  EVT Ty = N->getValueType(0);
904
905  if (Ty.is128BitVector() && Ty.isInteger()) {
906    // Try the following combines:
907    //   (vselect (setcc $a, $b, SETLT), $b, $a)) -> (vsmax $a, $b)
908    //   (vselect (setcc $a, $b, SETLE), $b, $a)) -> (vsmax $a, $b)
909    //   (vselect (setcc $a, $b, SETLT), $a, $b)) -> (vsmin $a, $b)
910    //   (vselect (setcc $a, $b, SETLE), $a, $b)) -> (vsmin $a, $b)
911    //   (vselect (setcc $a, $b, SETULT), $b, $a)) -> (vumax $a, $b)
912    //   (vselect (setcc $a, $b, SETULE), $b, $a)) -> (vumax $a, $b)
913    //   (vselect (setcc $a, $b, SETULT), $a, $b)) -> (vumin $a, $b)
914    //   (vselect (setcc $a, $b, SETULE), $a, $b)) -> (vumin $a, $b)
915    // SETGT/SETGE/SETUGT/SETUGE variants of these will show up initially but
916    // will be expanded to equivalent SETLT/SETLE/SETULT/SETULE versions by the
917    // legalizer.
918    SDValue Op0 = N->getOperand(0);
919
920    if (Op0->getOpcode() != ISD::SETCC)
921      return SDValue();
922
923    ISD::CondCode CondCode = cast<CondCodeSDNode>(Op0->getOperand(2))->get();
924    bool Signed;
925
926    if (CondCode == ISD::SETLT  || CondCode == ISD::SETLE)
927      Signed = true;
928    else if (CondCode == ISD::SETULT || CondCode == ISD::SETULE)
929      Signed = false;
930    else
931      return SDValue();
932
933    SDValue Op1 = N->getOperand(1);
934    SDValue Op2 = N->getOperand(2);
935    SDValue Op0Op0 = Op0->getOperand(0);
936    SDValue Op0Op1 = Op0->getOperand(1);
937
938    if (Op1 == Op0Op0 && Op2 == Op0Op1)
939      return DAG.getNode(Signed ? MipsISD::VSMIN : MipsISD::VUMIN, SDLoc(N),
940                         Ty, Op1, Op2);
941    else if (Op1 == Op0Op1 && Op2 == Op0Op0)
942      return DAG.getNode(Signed ? MipsISD::VSMAX : MipsISD::VUMAX, SDLoc(N),
943                         Ty, Op1, Op2);
944  } else if ((Ty == MVT::v2i16) || (Ty == MVT::v4i8)) {
945    SDValue SetCC = N->getOperand(0);
946
947    if (SetCC.getOpcode() != MipsISD::SETCC_DSP)
948      return SDValue();
949
950    return DAG.getNode(MipsISD::SELECT_CC_DSP, SDLoc(N), Ty,
951                       SetCC.getOperand(0), SetCC.getOperand(1),
952                       N->getOperand(1), N->getOperand(2), SetCC.getOperand(2));
953  }
954
955  return SDValue();
956}
957
958static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG,
959                                 const MipsSubtarget *Subtarget) {
960  EVT Ty = N->getValueType(0);
961
962  if (Subtarget->hasMSA() && Ty.is128BitVector() && Ty.isInteger()) {
963    // Try the following combines:
964    //   (xor (or $a, $b), (build_vector allones))
965    //   (xor (or $a, $b), (bitcast (build_vector allones)))
966    SDValue Op0 = N->getOperand(0);
967    SDValue Op1 = N->getOperand(1);
968    SDValue NotOp;
969
970    if (ISD::isBuildVectorAllOnes(Op0.getNode()))
971      NotOp = Op1;
972    else if (ISD::isBuildVectorAllOnes(Op1.getNode()))
973      NotOp = Op0;
974    else
975      return SDValue();
976
977    if (NotOp->getOpcode() == ISD::OR)
978      return DAG.getNode(MipsISD::VNOR, SDLoc(N), Ty, NotOp->getOperand(0),
979                         NotOp->getOperand(1));
980  }
981
982  return SDValue();
983}
984
985SDValue
986MipsSETargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
987  SelectionDAG &DAG = DCI.DAG;
988  SDValue Val;
989
990  switch (N->getOpcode()) {
991  case ISD::ADDE:
992    return performADDECombine(N, DAG, DCI, Subtarget);
993  case ISD::AND:
994    Val = performANDCombine(N, DAG, DCI, Subtarget);
995    break;
996  case ISD::OR:
997    Val = performORCombine(N, DAG, DCI, Subtarget);
998    break;
999  case ISD::SUBE:
1000    return performSUBECombine(N, DAG, DCI, Subtarget);
1001  case ISD::MUL:
1002    return performMULCombine(N, DAG, DCI, this);
1003  case ISD::SHL:
1004    return performSHLCombine(N, DAG, DCI, Subtarget);
1005  case ISD::SRA:
1006    return performSRACombine(N, DAG, DCI, Subtarget);
1007  case ISD::SRL:
1008    return performSRLCombine(N, DAG, DCI, Subtarget);
1009  case ISD::VSELECT:
1010    return performVSELECTCombine(N, DAG);
1011  case ISD::XOR:
1012    Val = performXORCombine(N, DAG, Subtarget);
1013    break;
1014  case ISD::SETCC:
1015    Val = performSETCCCombine(N, DAG);
1016    break;
1017  }
1018
1019  if (Val.getNode()) {
1020    DEBUG(dbgs() << "\nMipsSE DAG Combine:\n";
1021          N->printrWithDepth(dbgs(), &DAG);
1022          dbgs() << "\n=> \n";
1023          Val.getNode()->printrWithDepth(dbgs(), &DAG);
1024          dbgs() << "\n");
1025    return Val;
1026  }
1027
1028  return MipsTargetLowering::PerformDAGCombine(N, DCI);
1029}
1030
1031MachineBasicBlock *
1032MipsSETargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
1033                                                  MachineBasicBlock *BB) const {
1034  switch (MI->getOpcode()) {
1035  default:
1036    return MipsTargetLowering::EmitInstrWithCustomInserter(MI, BB);
1037  case Mips::BPOSGE32_PSEUDO:
1038    return emitBPOSGE32(MI, BB);
1039  case Mips::SNZ_B_PSEUDO:
1040    return emitMSACBranchPseudo(MI, BB, Mips::BNZ_B);
1041  case Mips::SNZ_H_PSEUDO:
1042    return emitMSACBranchPseudo(MI, BB, Mips::BNZ_H);
1043  case Mips::SNZ_W_PSEUDO:
1044    return emitMSACBranchPseudo(MI, BB, Mips::BNZ_W);
1045  case Mips::SNZ_D_PSEUDO:
1046    return emitMSACBranchPseudo(MI, BB, Mips::BNZ_D);
1047  case Mips::SNZ_V_PSEUDO:
1048    return emitMSACBranchPseudo(MI, BB, Mips::BNZ_V);
1049  case Mips::SZ_B_PSEUDO:
1050    return emitMSACBranchPseudo(MI, BB, Mips::BZ_B);
1051  case Mips::SZ_H_PSEUDO:
1052    return emitMSACBranchPseudo(MI, BB, Mips::BZ_H);
1053  case Mips::SZ_W_PSEUDO:
1054    return emitMSACBranchPseudo(MI, BB, Mips::BZ_W);
1055  case Mips::SZ_D_PSEUDO:
1056    return emitMSACBranchPseudo(MI, BB, Mips::BZ_D);
1057  case Mips::SZ_V_PSEUDO:
1058    return emitMSACBranchPseudo(MI, BB, Mips::BZ_V);
1059  case Mips::COPY_FW_PSEUDO:
1060    return emitCOPY_FW(MI, BB);
1061  case Mips::COPY_FD_PSEUDO:
1062    return emitCOPY_FD(MI, BB);
1063  case Mips::INSERT_FW_PSEUDO:
1064    return emitINSERT_FW(MI, BB);
1065  case Mips::INSERT_FD_PSEUDO:
1066    return emitINSERT_FD(MI, BB);
1067  case Mips::INSERT_B_VIDX_PSEUDO:
1068    return emitINSERT_DF_VIDX(MI, BB, 1, false);
1069  case Mips::INSERT_H_VIDX_PSEUDO:
1070    return emitINSERT_DF_VIDX(MI, BB, 2, false);
1071  case Mips::INSERT_W_VIDX_PSEUDO:
1072    return emitINSERT_DF_VIDX(MI, BB, 4, false);
1073  case Mips::INSERT_D_VIDX_PSEUDO:
1074    return emitINSERT_DF_VIDX(MI, BB, 8, false);
1075  case Mips::INSERT_FW_VIDX_PSEUDO:
1076    return emitINSERT_DF_VIDX(MI, BB, 4, true);
1077  case Mips::INSERT_FD_VIDX_PSEUDO:
1078    return emitINSERT_DF_VIDX(MI, BB, 8, true);
1079  case Mips::FILL_FW_PSEUDO:
1080    return emitFILL_FW(MI, BB);
1081  case Mips::FILL_FD_PSEUDO:
1082    return emitFILL_FD(MI, BB);
1083  case Mips::FEXP2_W_1_PSEUDO:
1084    return emitFEXP2_W_1(MI, BB);
1085  case Mips::FEXP2_D_1_PSEUDO:
1086    return emitFEXP2_D_1(MI, BB);
1087  }
1088}
1089
1090bool MipsSETargetLowering::
1091isEligibleForTailCallOptimization(const MipsCC &MipsCCInfo,
1092                                  unsigned NextStackOffset,
1093                                  const MipsFunctionInfo& FI) const {
1094  if (!EnableMipsTailCalls)
1095    return false;
1096
1097  // Return false if either the callee or caller has a byval argument.
1098  if (MipsCCInfo.hasByValArg() || FI.hasByvalArg())
1099    return false;
1100
1101  // Return true if the callee's argument area is no larger than the
1102  // caller's.
1103  return NextStackOffset <= FI.getIncomingArgSize();
1104}
1105
1106void MipsSETargetLowering::
1107getOpndList(SmallVectorImpl<SDValue> &Ops,
1108            std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
1109            bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
1110            CallLoweringInfo &CLI, SDValue Callee, SDValue Chain) const {
1111  Ops.push_back(Callee);
1112  MipsTargetLowering::getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal,
1113                                  InternalLinkage, CLI, Callee, Chain);
1114}
1115
1116SDValue MipsSETargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1117  LoadSDNode &Nd = *cast<LoadSDNode>(Op);
1118
1119  if (Nd.getMemoryVT() != MVT::f64 || !NoDPLoadStore)
1120    return MipsTargetLowering::lowerLOAD(Op, DAG);
1121
1122  // Replace a double precision load with two i32 loads and a buildpair64.
1123  SDLoc DL(Op);
1124  SDValue Ptr = Nd.getBasePtr(), Chain = Nd.getChain();
1125  EVT PtrVT = Ptr.getValueType();
1126
1127  // i32 load from lower address.
1128  SDValue Lo = DAG.getLoad(MVT::i32, DL, Chain, Ptr,
1129                           MachinePointerInfo(), Nd.isVolatile(),
1130                           Nd.isNonTemporal(), Nd.isInvariant(),
1131                           Nd.getAlignment());
1132
1133  // i32 load from higher address.
1134  Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Ptr, DAG.getConstant(4, PtrVT));
1135  SDValue Hi = DAG.getLoad(MVT::i32, DL, Lo.getValue(1), Ptr,
1136                           MachinePointerInfo(), Nd.isVolatile(),
1137                           Nd.isNonTemporal(), Nd.isInvariant(),
1138                           std::min(Nd.getAlignment(), 4U));
1139
1140  if (!Subtarget->isLittle())
1141    std::swap(Lo, Hi);
1142
1143  SDValue BP = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
1144  SDValue Ops[2] = {BP, Hi.getValue(1)};
1145  return DAG.getMergeValues(Ops, DL);
1146}
1147
1148SDValue MipsSETargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
1149  StoreSDNode &Nd = *cast<StoreSDNode>(Op);
1150
1151  if (Nd.getMemoryVT() != MVT::f64 || !NoDPLoadStore)
1152    return MipsTargetLowering::lowerSTORE(Op, DAG);
1153
1154  // Replace a double precision store with two extractelement64s and i32 stores.
1155  SDLoc DL(Op);
1156  SDValue Val = Nd.getValue(), Ptr = Nd.getBasePtr(), Chain = Nd.getChain();
1157  EVT PtrVT = Ptr.getValueType();
1158  SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1159                           Val, DAG.getConstant(0, MVT::i32));
1160  SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1161                           Val, DAG.getConstant(1, MVT::i32));
1162
1163  if (!Subtarget->isLittle())
1164    std::swap(Lo, Hi);
1165
1166  // i32 store to lower address.
1167  Chain = DAG.getStore(Chain, DL, Lo, Ptr, MachinePointerInfo(),
1168                       Nd.isVolatile(), Nd.isNonTemporal(), Nd.getAlignment(),
1169                       Nd.getTBAAInfo());
1170
1171  // i32 store to higher address.
1172  Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Ptr, DAG.getConstant(4, PtrVT));
1173  return DAG.getStore(Chain, DL, Hi, Ptr, MachinePointerInfo(),
1174                      Nd.isVolatile(), Nd.isNonTemporal(),
1175                      std::min(Nd.getAlignment(), 4U), Nd.getTBAAInfo());
1176}
1177
1178SDValue MipsSETargetLowering::lowerMulDiv(SDValue Op, unsigned NewOpc,
1179                                          bool HasLo, bool HasHi,
1180                                          SelectionDAG &DAG) const {
1181  EVT Ty = Op.getOperand(0).getValueType();
1182  SDLoc DL(Op);
1183  SDValue Mult = DAG.getNode(NewOpc, DL, MVT::Untyped,
1184                             Op.getOperand(0), Op.getOperand(1));
1185  SDValue Lo, Hi;
1186
1187  if (HasLo)
1188    Lo = DAG.getNode(MipsISD::MFLO, DL, Ty, Mult);
1189  if (HasHi)
1190    Hi = DAG.getNode(MipsISD::MFHI, DL, Ty, Mult);
1191
1192  if (!HasLo || !HasHi)
1193    return HasLo ? Lo : Hi;
1194
1195  SDValue Vals[] = { Lo, Hi };
1196  return DAG.getMergeValues(Vals, DL);
1197}
1198
1199
1200static SDValue initAccumulator(SDValue In, SDLoc DL, SelectionDAG &DAG) {
1201  SDValue InLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, In,
1202                             DAG.getConstant(0, MVT::i32));
1203  SDValue InHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, In,
1204                             DAG.getConstant(1, MVT::i32));
1205  return DAG.getNode(MipsISD::MTLOHI, DL, MVT::Untyped, InLo, InHi);
1206}
1207
1208static SDValue extractLOHI(SDValue Op, SDLoc DL, SelectionDAG &DAG) {
1209  SDValue Lo = DAG.getNode(MipsISD::MFLO, DL, MVT::i32, Op);
1210  SDValue Hi = DAG.getNode(MipsISD::MFHI, DL, MVT::i32, Op);
1211  return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Lo, Hi);
1212}
1213
1214// This function expands mips intrinsic nodes which have 64-bit input operands
1215// or output values.
1216//
1217// out64 = intrinsic-node in64
1218// =>
1219// lo = copy (extract-element (in64, 0))
1220// hi = copy (extract-element (in64, 1))
1221// mips-specific-node
1222// v0 = copy lo
1223// v1 = copy hi
1224// out64 = merge-values (v0, v1)
1225//
1226static SDValue lowerDSPIntr(SDValue Op, SelectionDAG &DAG, unsigned Opc) {
1227  SDLoc DL(Op);
1228  bool HasChainIn = Op->getOperand(0).getValueType() == MVT::Other;
1229  SmallVector<SDValue, 3> Ops;
1230  unsigned OpNo = 0;
1231
1232  // See if Op has a chain input.
1233  if (HasChainIn)
1234    Ops.push_back(Op->getOperand(OpNo++));
1235
1236  // The next operand is the intrinsic opcode.
1237  assert(Op->getOperand(OpNo).getOpcode() == ISD::TargetConstant);
1238
1239  // See if the next operand has type i64.
1240  SDValue Opnd = Op->getOperand(++OpNo), In64;
1241
1242  if (Opnd.getValueType() == MVT::i64)
1243    In64 = initAccumulator(Opnd, DL, DAG);
1244  else
1245    Ops.push_back(Opnd);
1246
1247  // Push the remaining operands.
1248  for (++OpNo ; OpNo < Op->getNumOperands(); ++OpNo)
1249    Ops.push_back(Op->getOperand(OpNo));
1250
1251  // Add In64 to the end of the list.
1252  if (In64.getNode())
1253    Ops.push_back(In64);
1254
1255  // Scan output.
1256  SmallVector<EVT, 2> ResTys;
1257
1258  for (SDNode::value_iterator I = Op->value_begin(), E = Op->value_end();
1259       I != E; ++I)
1260    ResTys.push_back((*I == MVT::i64) ? MVT::Untyped : *I);
1261
1262  // Create node.
1263  SDValue Val = DAG.getNode(Opc, DL, ResTys, Ops);
1264  SDValue Out = (ResTys[0] == MVT::Untyped) ? extractLOHI(Val, DL, DAG) : Val;
1265
1266  if (!HasChainIn)
1267    return Out;
1268
1269  assert(Val->getValueType(1) == MVT::Other);
1270  SDValue Vals[] = { Out, SDValue(Val.getNode(), 1) };
1271  return DAG.getMergeValues(Vals, DL);
1272}
1273
1274// Lower an MSA copy intrinsic into the specified SelectionDAG node
1275static SDValue lowerMSACopyIntr(SDValue Op, SelectionDAG &DAG, unsigned Opc) {
1276  SDLoc DL(Op);
1277  SDValue Vec = Op->getOperand(1);
1278  SDValue Idx = Op->getOperand(2);
1279  EVT ResTy = Op->getValueType(0);
1280  EVT EltTy = Vec->getValueType(0).getVectorElementType();
1281
1282  SDValue Result = DAG.getNode(Opc, DL, ResTy, Vec, Idx,
1283                               DAG.getValueType(EltTy));
1284
1285  return Result;
1286}
1287
1288static SDValue lowerMSASplatZExt(SDValue Op, unsigned OpNr, SelectionDAG &DAG) {
1289  EVT ResVecTy = Op->getValueType(0);
1290  EVT ViaVecTy = ResVecTy;
1291  SDLoc DL(Op);
1292
1293  // When ResVecTy == MVT::v2i64, LaneA is the upper 32 bits of the lane and
1294  // LaneB is the lower 32-bits. Otherwise LaneA and LaneB are alternating
1295  // lanes.
1296  SDValue LaneA;
1297  SDValue LaneB = Op->getOperand(2);
1298
1299  if (ResVecTy == MVT::v2i64) {
1300    LaneA = DAG.getConstant(0, MVT::i32);
1301    ViaVecTy = MVT::v4i32;
1302  } else
1303    LaneA = LaneB;
1304
1305  SDValue Ops[16] = { LaneA, LaneB, LaneA, LaneB, LaneA, LaneB, LaneA, LaneB,
1306                      LaneA, LaneB, LaneA, LaneB, LaneA, LaneB, LaneA, LaneB };
1307
1308  SDValue Result = DAG.getNode(ISD::BUILD_VECTOR, DL, ViaVecTy,
1309                       makeArrayRef(Ops, ViaVecTy.getVectorNumElements()));
1310
1311  if (ViaVecTy != ResVecTy)
1312    Result = DAG.getNode(ISD::BITCAST, DL, ResVecTy, Result);
1313
1314  return Result;
1315}
1316
1317static SDValue lowerMSASplatImm(SDValue Op, unsigned ImmOp, SelectionDAG &DAG) {
1318  return DAG.getConstant(Op->getConstantOperandVal(ImmOp), Op->getValueType(0));
1319}
1320
1321static SDValue getBuildVectorSplat(EVT VecTy, SDValue SplatValue,
1322                                   bool BigEndian, SelectionDAG &DAG) {
1323  EVT ViaVecTy = VecTy;
1324  SDValue SplatValueA = SplatValue;
1325  SDValue SplatValueB = SplatValue;
1326  SDLoc DL(SplatValue);
1327
1328  if (VecTy == MVT::v2i64) {
1329    // v2i64 BUILD_VECTOR must be performed via v4i32 so split into i32's.
1330    ViaVecTy = MVT::v4i32;
1331
1332    SplatValueA = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, SplatValue);
1333    SplatValueB = DAG.getNode(ISD::SRL, DL, MVT::i64, SplatValue,
1334                              DAG.getConstant(32, MVT::i32));
1335    SplatValueB = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, SplatValueB);
1336  }
1337
1338  // We currently hold the parts in little endian order. Swap them if
1339  // necessary.
1340  if (BigEndian)
1341    std::swap(SplatValueA, SplatValueB);
1342
1343  SDValue Ops[16] = { SplatValueA, SplatValueB, SplatValueA, SplatValueB,
1344                      SplatValueA, SplatValueB, SplatValueA, SplatValueB,
1345                      SplatValueA, SplatValueB, SplatValueA, SplatValueB,
1346                      SplatValueA, SplatValueB, SplatValueA, SplatValueB };
1347
1348  SDValue Result = DAG.getNode(ISD::BUILD_VECTOR, DL, ViaVecTy,
1349                       makeArrayRef(Ops, ViaVecTy.getVectorNumElements()));
1350
1351  if (VecTy != ViaVecTy)
1352    Result = DAG.getNode(ISD::BITCAST, DL, VecTy, Result);
1353
1354  return Result;
1355}
1356
1357static SDValue lowerMSABinaryBitImmIntr(SDValue Op, SelectionDAG &DAG,
1358                                        unsigned Opc, SDValue Imm,
1359                                        bool BigEndian) {
1360  EVT VecTy = Op->getValueType(0);
1361  SDValue Exp2Imm;
1362  SDLoc DL(Op);
1363
1364  // The DAG Combiner can't constant fold bitcasted vectors yet so we must do it
1365  // here for now.
1366  if (VecTy == MVT::v2i64) {
1367    if (ConstantSDNode *CImm = dyn_cast<ConstantSDNode>(Imm)) {
1368      APInt BitImm = APInt(64, 1) << CImm->getAPIntValue();
1369
1370      SDValue BitImmHiOp = DAG.getConstant(BitImm.lshr(32).trunc(32), MVT::i32);
1371      SDValue BitImmLoOp = DAG.getConstant(BitImm.trunc(32), MVT::i32);
1372
1373      if (BigEndian)
1374        std::swap(BitImmLoOp, BitImmHiOp);
1375
1376      Exp2Imm =
1377          DAG.getNode(ISD::BITCAST, DL, MVT::v2i64,
1378                      DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v4i32, BitImmLoOp,
1379                                  BitImmHiOp, BitImmLoOp, BitImmHiOp));
1380    }
1381  }
1382
1383  if (!Exp2Imm.getNode()) {
1384    // We couldnt constant fold, do a vector shift instead
1385
1386    // Extend i32 to i64 if necessary. Sign or zero extend doesn't matter since
1387    // only values 0-63 are valid.
1388    if (VecTy == MVT::v2i64)
1389      Imm = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Imm);
1390
1391    Exp2Imm = getBuildVectorSplat(VecTy, Imm, BigEndian, DAG);
1392
1393    Exp2Imm =
1394        DAG.getNode(ISD::SHL, DL, VecTy, DAG.getConstant(1, VecTy), Exp2Imm);
1395  }
1396
1397  return DAG.getNode(Opc, DL, VecTy, Op->getOperand(1), Exp2Imm);
1398}
1399
1400static SDValue lowerMSABitClear(SDValue Op, SelectionDAG &DAG) {
1401  EVT ResTy = Op->getValueType(0);
1402  SDLoc DL(Op);
1403  SDValue One = DAG.getConstant(1, ResTy);
1404  SDValue Bit = DAG.getNode(ISD::SHL, DL, ResTy, One, Op->getOperand(2));
1405
1406  return DAG.getNode(ISD::AND, DL, ResTy, Op->getOperand(1),
1407                     DAG.getNOT(DL, Bit, ResTy));
1408}
1409
1410static SDValue lowerMSABitClearImm(SDValue Op, SelectionDAG &DAG) {
1411  SDLoc DL(Op);
1412  EVT ResTy = Op->getValueType(0);
1413  APInt BitImm = APInt(ResTy.getVectorElementType().getSizeInBits(), 1)
1414                 << cast<ConstantSDNode>(Op->getOperand(2))->getAPIntValue();
1415  SDValue BitMask = DAG.getConstant(~BitImm, ResTy);
1416
1417  return DAG.getNode(ISD::AND, DL, ResTy, Op->getOperand(1), BitMask);
1418}
1419
1420SDValue MipsSETargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
1421                                                      SelectionDAG &DAG) const {
1422  SDLoc DL(Op);
1423
1424  switch (cast<ConstantSDNode>(Op->getOperand(0))->getZExtValue()) {
1425  default:
1426    return SDValue();
1427  case Intrinsic::mips_shilo:
1428    return lowerDSPIntr(Op, DAG, MipsISD::SHILO);
1429  case Intrinsic::mips_dpau_h_qbl:
1430    return lowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBL);
1431  case Intrinsic::mips_dpau_h_qbr:
1432    return lowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBR);
1433  case Intrinsic::mips_dpsu_h_qbl:
1434    return lowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBL);
1435  case Intrinsic::mips_dpsu_h_qbr:
1436    return lowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBR);
1437  case Intrinsic::mips_dpa_w_ph:
1438    return lowerDSPIntr(Op, DAG, MipsISD::DPA_W_PH);
1439  case Intrinsic::mips_dps_w_ph:
1440    return lowerDSPIntr(Op, DAG, MipsISD::DPS_W_PH);
1441  case Intrinsic::mips_dpax_w_ph:
1442    return lowerDSPIntr(Op, DAG, MipsISD::DPAX_W_PH);
1443  case Intrinsic::mips_dpsx_w_ph:
1444    return lowerDSPIntr(Op, DAG, MipsISD::DPSX_W_PH);
1445  case Intrinsic::mips_mulsa_w_ph:
1446    return lowerDSPIntr(Op, DAG, MipsISD::MULSA_W_PH);
1447  case Intrinsic::mips_mult:
1448    return lowerDSPIntr(Op, DAG, MipsISD::Mult);
1449  case Intrinsic::mips_multu:
1450    return lowerDSPIntr(Op, DAG, MipsISD::Multu);
1451  case Intrinsic::mips_madd:
1452    return lowerDSPIntr(Op, DAG, MipsISD::MAdd);
1453  case Intrinsic::mips_maddu:
1454    return lowerDSPIntr(Op, DAG, MipsISD::MAddu);
1455  case Intrinsic::mips_msub:
1456    return lowerDSPIntr(Op, DAG, MipsISD::MSub);
1457  case Intrinsic::mips_msubu:
1458    return lowerDSPIntr(Op, DAG, MipsISD::MSubu);
1459  case Intrinsic::mips_addv_b:
1460  case Intrinsic::mips_addv_h:
1461  case Intrinsic::mips_addv_w:
1462  case Intrinsic::mips_addv_d:
1463    return DAG.getNode(ISD::ADD, DL, Op->getValueType(0), Op->getOperand(1),
1464                       Op->getOperand(2));
1465  case Intrinsic::mips_addvi_b:
1466  case Intrinsic::mips_addvi_h:
1467  case Intrinsic::mips_addvi_w:
1468  case Intrinsic::mips_addvi_d:
1469    return DAG.getNode(ISD::ADD, DL, Op->getValueType(0), Op->getOperand(1),
1470                       lowerMSASplatImm(Op, 2, DAG));
1471  case Intrinsic::mips_and_v:
1472    return DAG.getNode(ISD::AND, DL, Op->getValueType(0), Op->getOperand(1),
1473                       Op->getOperand(2));
1474  case Intrinsic::mips_andi_b:
1475    return DAG.getNode(ISD::AND, DL, Op->getValueType(0), Op->getOperand(1),
1476                       lowerMSASplatImm(Op, 2, DAG));
1477  case Intrinsic::mips_bclr_b:
1478  case Intrinsic::mips_bclr_h:
1479  case Intrinsic::mips_bclr_w:
1480  case Intrinsic::mips_bclr_d:
1481    return lowerMSABitClear(Op, DAG);
1482  case Intrinsic::mips_bclri_b:
1483  case Intrinsic::mips_bclri_h:
1484  case Intrinsic::mips_bclri_w:
1485  case Intrinsic::mips_bclri_d:
1486    return lowerMSABitClearImm(Op, DAG);
1487  case Intrinsic::mips_binsli_b:
1488  case Intrinsic::mips_binsli_h:
1489  case Intrinsic::mips_binsli_w:
1490  case Intrinsic::mips_binsli_d: {
1491    // binsli_x(IfClear, IfSet, nbits) -> (vselect LBitsMask, IfSet, IfClear)
1492    EVT VecTy = Op->getValueType(0);
1493    EVT EltTy = VecTy.getVectorElementType();
1494    APInt Mask = APInt::getHighBitsSet(EltTy.getSizeInBits(),
1495                                       Op->getConstantOperandVal(3));
1496    return DAG.getNode(ISD::VSELECT, DL, VecTy,
1497                       DAG.getConstant(Mask, VecTy, true), Op->getOperand(2),
1498                       Op->getOperand(1));
1499  }
1500  case Intrinsic::mips_binsri_b:
1501  case Intrinsic::mips_binsri_h:
1502  case Intrinsic::mips_binsri_w:
1503  case Intrinsic::mips_binsri_d: {
1504    // binsri_x(IfClear, IfSet, nbits) -> (vselect RBitsMask, IfSet, IfClear)
1505    EVT VecTy = Op->getValueType(0);
1506    EVT EltTy = VecTy.getVectorElementType();
1507    APInt Mask = APInt::getLowBitsSet(EltTy.getSizeInBits(),
1508                                      Op->getConstantOperandVal(3));
1509    return DAG.getNode(ISD::VSELECT, DL, VecTy,
1510                       DAG.getConstant(Mask, VecTy, true), Op->getOperand(2),
1511                       Op->getOperand(1));
1512  }
1513  case Intrinsic::mips_bmnz_v:
1514    return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), Op->getOperand(3),
1515                       Op->getOperand(2), Op->getOperand(1));
1516  case Intrinsic::mips_bmnzi_b:
1517    return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1518                       lowerMSASplatImm(Op, 3, DAG), Op->getOperand(2),
1519                       Op->getOperand(1));
1520  case Intrinsic::mips_bmz_v:
1521    return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), Op->getOperand(3),
1522                       Op->getOperand(1), Op->getOperand(2));
1523  case Intrinsic::mips_bmzi_b:
1524    return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1525                       lowerMSASplatImm(Op, 3, DAG), Op->getOperand(1),
1526                       Op->getOperand(2));
1527  case Intrinsic::mips_bneg_b:
1528  case Intrinsic::mips_bneg_h:
1529  case Intrinsic::mips_bneg_w:
1530  case Intrinsic::mips_bneg_d: {
1531    EVT VecTy = Op->getValueType(0);
1532    SDValue One = DAG.getConstant(1, VecTy);
1533
1534    return DAG.getNode(ISD::XOR, DL, VecTy, Op->getOperand(1),
1535                       DAG.getNode(ISD::SHL, DL, VecTy, One,
1536                                   Op->getOperand(2)));
1537  }
1538  case Intrinsic::mips_bnegi_b:
1539  case Intrinsic::mips_bnegi_h:
1540  case Intrinsic::mips_bnegi_w:
1541  case Intrinsic::mips_bnegi_d:
1542    return lowerMSABinaryBitImmIntr(Op, DAG, ISD::XOR, Op->getOperand(2),
1543                                    !Subtarget->isLittle());
1544  case Intrinsic::mips_bnz_b:
1545  case Intrinsic::mips_bnz_h:
1546  case Intrinsic::mips_bnz_w:
1547  case Intrinsic::mips_bnz_d:
1548    return DAG.getNode(MipsISD::VALL_NONZERO, DL, Op->getValueType(0),
1549                       Op->getOperand(1));
1550  case Intrinsic::mips_bnz_v:
1551    return DAG.getNode(MipsISD::VANY_NONZERO, DL, Op->getValueType(0),
1552                       Op->getOperand(1));
1553  case Intrinsic::mips_bsel_v:
1554    // bsel_v(Mask, IfClear, IfSet) -> (vselect Mask, IfSet, IfClear)
1555    return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1556                       Op->getOperand(1), Op->getOperand(3),
1557                       Op->getOperand(2));
1558  case Intrinsic::mips_bseli_b:
1559    // bseli_v(Mask, IfClear, IfSet) -> (vselect Mask, IfSet, IfClear)
1560    return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1561                       Op->getOperand(1), lowerMSASplatImm(Op, 3, DAG),
1562                       Op->getOperand(2));
1563  case Intrinsic::mips_bset_b:
1564  case Intrinsic::mips_bset_h:
1565  case Intrinsic::mips_bset_w:
1566  case Intrinsic::mips_bset_d: {
1567    EVT VecTy = Op->getValueType(0);
1568    SDValue One = DAG.getConstant(1, VecTy);
1569
1570    return DAG.getNode(ISD::OR, DL, VecTy, Op->getOperand(1),
1571                       DAG.getNode(ISD::SHL, DL, VecTy, One,
1572                                   Op->getOperand(2)));
1573  }
1574  case Intrinsic::mips_bseti_b:
1575  case Intrinsic::mips_bseti_h:
1576  case Intrinsic::mips_bseti_w:
1577  case Intrinsic::mips_bseti_d:
1578    return lowerMSABinaryBitImmIntr(Op, DAG, ISD::OR, Op->getOperand(2),
1579                                    !Subtarget->isLittle());
1580  case Intrinsic::mips_bz_b:
1581  case Intrinsic::mips_bz_h:
1582  case Intrinsic::mips_bz_w:
1583  case Intrinsic::mips_bz_d:
1584    return DAG.getNode(MipsISD::VALL_ZERO, DL, Op->getValueType(0),
1585                       Op->getOperand(1));
1586  case Intrinsic::mips_bz_v:
1587    return DAG.getNode(MipsISD::VANY_ZERO, DL, Op->getValueType(0),
1588                       Op->getOperand(1));
1589  case Intrinsic::mips_ceq_b:
1590  case Intrinsic::mips_ceq_h:
1591  case Intrinsic::mips_ceq_w:
1592  case Intrinsic::mips_ceq_d:
1593    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1594                        Op->getOperand(2), ISD::SETEQ);
1595  case Intrinsic::mips_ceqi_b:
1596  case Intrinsic::mips_ceqi_h:
1597  case Intrinsic::mips_ceqi_w:
1598  case Intrinsic::mips_ceqi_d:
1599    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1600                        lowerMSASplatImm(Op, 2, DAG), ISD::SETEQ);
1601  case Intrinsic::mips_cle_s_b:
1602  case Intrinsic::mips_cle_s_h:
1603  case Intrinsic::mips_cle_s_w:
1604  case Intrinsic::mips_cle_s_d:
1605    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1606                        Op->getOperand(2), ISD::SETLE);
1607  case Intrinsic::mips_clei_s_b:
1608  case Intrinsic::mips_clei_s_h:
1609  case Intrinsic::mips_clei_s_w:
1610  case Intrinsic::mips_clei_s_d:
1611    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1612                        lowerMSASplatImm(Op, 2, DAG), ISD::SETLE);
1613  case Intrinsic::mips_cle_u_b:
1614  case Intrinsic::mips_cle_u_h:
1615  case Intrinsic::mips_cle_u_w:
1616  case Intrinsic::mips_cle_u_d:
1617    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1618                        Op->getOperand(2), ISD::SETULE);
1619  case Intrinsic::mips_clei_u_b:
1620  case Intrinsic::mips_clei_u_h:
1621  case Intrinsic::mips_clei_u_w:
1622  case Intrinsic::mips_clei_u_d:
1623    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1624                        lowerMSASplatImm(Op, 2, DAG), ISD::SETULE);
1625  case Intrinsic::mips_clt_s_b:
1626  case Intrinsic::mips_clt_s_h:
1627  case Intrinsic::mips_clt_s_w:
1628  case Intrinsic::mips_clt_s_d:
1629    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1630                        Op->getOperand(2), ISD::SETLT);
1631  case Intrinsic::mips_clti_s_b:
1632  case Intrinsic::mips_clti_s_h:
1633  case Intrinsic::mips_clti_s_w:
1634  case Intrinsic::mips_clti_s_d:
1635    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1636                        lowerMSASplatImm(Op, 2, DAG), ISD::SETLT);
1637  case Intrinsic::mips_clt_u_b:
1638  case Intrinsic::mips_clt_u_h:
1639  case Intrinsic::mips_clt_u_w:
1640  case Intrinsic::mips_clt_u_d:
1641    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1642                        Op->getOperand(2), ISD::SETULT);
1643  case Intrinsic::mips_clti_u_b:
1644  case Intrinsic::mips_clti_u_h:
1645  case Intrinsic::mips_clti_u_w:
1646  case Intrinsic::mips_clti_u_d:
1647    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1648                        lowerMSASplatImm(Op, 2, DAG), ISD::SETULT);
1649  case Intrinsic::mips_copy_s_b:
1650  case Intrinsic::mips_copy_s_h:
1651  case Intrinsic::mips_copy_s_w:
1652    return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_SEXT_ELT);
1653  case Intrinsic::mips_copy_s_d:
1654    if (hasMips64())
1655      // Lower directly into VEXTRACT_SEXT_ELT since i64 is legal on Mips64.
1656      return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_SEXT_ELT);
1657    else {
1658      // Lower into the generic EXTRACT_VECTOR_ELT node and let the type
1659      // legalizer and EXTRACT_VECTOR_ELT lowering sort it out.
1660      return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op),
1661                         Op->getValueType(0), Op->getOperand(1),
1662                         Op->getOperand(2));
1663    }
1664  case Intrinsic::mips_copy_u_b:
1665  case Intrinsic::mips_copy_u_h:
1666  case Intrinsic::mips_copy_u_w:
1667    return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_ZEXT_ELT);
1668  case Intrinsic::mips_copy_u_d:
1669    if (hasMips64())
1670      // Lower directly into VEXTRACT_ZEXT_ELT since i64 is legal on Mips64.
1671      return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_ZEXT_ELT);
1672    else {
1673      // Lower into the generic EXTRACT_VECTOR_ELT node and let the type
1674      // legalizer and EXTRACT_VECTOR_ELT lowering sort it out.
1675      // Note: When i64 is illegal, this results in copy_s.w instructions
1676      // instead of copy_u.w instructions. This makes no difference to the
1677      // behaviour since i64 is only illegal when the register file is 32-bit.
1678      return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op),
1679                         Op->getValueType(0), Op->getOperand(1),
1680                         Op->getOperand(2));
1681    }
1682  case Intrinsic::mips_div_s_b:
1683  case Intrinsic::mips_div_s_h:
1684  case Intrinsic::mips_div_s_w:
1685  case Intrinsic::mips_div_s_d:
1686    return DAG.getNode(ISD::SDIV, DL, Op->getValueType(0), Op->getOperand(1),
1687                       Op->getOperand(2));
1688  case Intrinsic::mips_div_u_b:
1689  case Intrinsic::mips_div_u_h:
1690  case Intrinsic::mips_div_u_w:
1691  case Intrinsic::mips_div_u_d:
1692    return DAG.getNode(ISD::UDIV, DL, Op->getValueType(0), Op->getOperand(1),
1693                       Op->getOperand(2));
1694  case Intrinsic::mips_fadd_w:
1695  case Intrinsic::mips_fadd_d:
1696    return DAG.getNode(ISD::FADD, DL, Op->getValueType(0), Op->getOperand(1),
1697                       Op->getOperand(2));
1698  // Don't lower mips_fcaf_[wd] since LLVM folds SETFALSE condcodes away
1699  case Intrinsic::mips_fceq_w:
1700  case Intrinsic::mips_fceq_d:
1701    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1702                        Op->getOperand(2), ISD::SETOEQ);
1703  case Intrinsic::mips_fcle_w:
1704  case Intrinsic::mips_fcle_d:
1705    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1706                        Op->getOperand(2), ISD::SETOLE);
1707  case Intrinsic::mips_fclt_w:
1708  case Intrinsic::mips_fclt_d:
1709    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1710                        Op->getOperand(2), ISD::SETOLT);
1711  case Intrinsic::mips_fcne_w:
1712  case Intrinsic::mips_fcne_d:
1713    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1714                        Op->getOperand(2), ISD::SETONE);
1715  case Intrinsic::mips_fcor_w:
1716  case Intrinsic::mips_fcor_d:
1717    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1718                        Op->getOperand(2), ISD::SETO);
1719  case Intrinsic::mips_fcueq_w:
1720  case Intrinsic::mips_fcueq_d:
1721    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1722                        Op->getOperand(2), ISD::SETUEQ);
1723  case Intrinsic::mips_fcule_w:
1724  case Intrinsic::mips_fcule_d:
1725    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1726                        Op->getOperand(2), ISD::SETULE);
1727  case Intrinsic::mips_fcult_w:
1728  case Intrinsic::mips_fcult_d:
1729    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1730                        Op->getOperand(2), ISD::SETULT);
1731  case Intrinsic::mips_fcun_w:
1732  case Intrinsic::mips_fcun_d:
1733    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1734                        Op->getOperand(2), ISD::SETUO);
1735  case Intrinsic::mips_fcune_w:
1736  case Intrinsic::mips_fcune_d:
1737    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1738                        Op->getOperand(2), ISD::SETUNE);
1739  case Intrinsic::mips_fdiv_w:
1740  case Intrinsic::mips_fdiv_d:
1741    return DAG.getNode(ISD::FDIV, DL, Op->getValueType(0), Op->getOperand(1),
1742                       Op->getOperand(2));
1743  case Intrinsic::mips_ffint_u_w:
1744  case Intrinsic::mips_ffint_u_d:
1745    return DAG.getNode(ISD::UINT_TO_FP, DL, Op->getValueType(0),
1746                       Op->getOperand(1));
1747  case Intrinsic::mips_ffint_s_w:
1748  case Intrinsic::mips_ffint_s_d:
1749    return DAG.getNode(ISD::SINT_TO_FP, DL, Op->getValueType(0),
1750                       Op->getOperand(1));
1751  case Intrinsic::mips_fill_b:
1752  case Intrinsic::mips_fill_h:
1753  case Intrinsic::mips_fill_w:
1754  case Intrinsic::mips_fill_d: {
1755    SmallVector<SDValue, 16> Ops;
1756    EVT ResTy = Op->getValueType(0);
1757
1758    for (unsigned i = 0; i < ResTy.getVectorNumElements(); ++i)
1759      Ops.push_back(Op->getOperand(1));
1760
1761    // If ResTy is v2i64 then the type legalizer will break this node down into
1762    // an equivalent v4i32.
1763    return DAG.getNode(ISD::BUILD_VECTOR, DL, ResTy, Ops);
1764  }
1765  case Intrinsic::mips_fexp2_w:
1766  case Intrinsic::mips_fexp2_d: {
1767    EVT ResTy = Op->getValueType(0);
1768    return DAG.getNode(
1769        ISD::FMUL, SDLoc(Op), ResTy, Op->getOperand(1),
1770        DAG.getNode(ISD::FEXP2, SDLoc(Op), ResTy, Op->getOperand(2)));
1771  }
1772  case Intrinsic::mips_flog2_w:
1773  case Intrinsic::mips_flog2_d:
1774    return DAG.getNode(ISD::FLOG2, DL, Op->getValueType(0), Op->getOperand(1));
1775  case Intrinsic::mips_fmadd_w:
1776  case Intrinsic::mips_fmadd_d:
1777    return DAG.getNode(ISD::FMA, SDLoc(Op), Op->getValueType(0),
1778                       Op->getOperand(1), Op->getOperand(2), Op->getOperand(3));
1779  case Intrinsic::mips_fmul_w:
1780  case Intrinsic::mips_fmul_d:
1781    return DAG.getNode(ISD::FMUL, DL, Op->getValueType(0), Op->getOperand(1),
1782                       Op->getOperand(2));
1783  case Intrinsic::mips_fmsub_w:
1784  case Intrinsic::mips_fmsub_d: {
1785    EVT ResTy = Op->getValueType(0);
1786    return DAG.getNode(ISD::FSUB, SDLoc(Op), ResTy, Op->getOperand(1),
1787                       DAG.getNode(ISD::FMUL, SDLoc(Op), ResTy,
1788                                   Op->getOperand(2), Op->getOperand(3)));
1789  }
1790  case Intrinsic::mips_frint_w:
1791  case Intrinsic::mips_frint_d:
1792    return DAG.getNode(ISD::FRINT, DL, Op->getValueType(0), Op->getOperand(1));
1793  case Intrinsic::mips_fsqrt_w:
1794  case Intrinsic::mips_fsqrt_d:
1795    return DAG.getNode(ISD::FSQRT, DL, Op->getValueType(0), Op->getOperand(1));
1796  case Intrinsic::mips_fsub_w:
1797  case Intrinsic::mips_fsub_d:
1798    return DAG.getNode(ISD::FSUB, DL, Op->getValueType(0), Op->getOperand(1),
1799                       Op->getOperand(2));
1800  case Intrinsic::mips_ftrunc_u_w:
1801  case Intrinsic::mips_ftrunc_u_d:
1802    return DAG.getNode(ISD::FP_TO_UINT, DL, Op->getValueType(0),
1803                       Op->getOperand(1));
1804  case Intrinsic::mips_ftrunc_s_w:
1805  case Intrinsic::mips_ftrunc_s_d:
1806    return DAG.getNode(ISD::FP_TO_SINT, DL, Op->getValueType(0),
1807                       Op->getOperand(1));
1808  case Intrinsic::mips_ilvev_b:
1809  case Intrinsic::mips_ilvev_h:
1810  case Intrinsic::mips_ilvev_w:
1811  case Intrinsic::mips_ilvev_d:
1812    return DAG.getNode(MipsISD::ILVEV, DL, Op->getValueType(0),
1813                       Op->getOperand(1), Op->getOperand(2));
1814  case Intrinsic::mips_ilvl_b:
1815  case Intrinsic::mips_ilvl_h:
1816  case Intrinsic::mips_ilvl_w:
1817  case Intrinsic::mips_ilvl_d:
1818    return DAG.getNode(MipsISD::ILVL, DL, Op->getValueType(0),
1819                       Op->getOperand(1), Op->getOperand(2));
1820  case Intrinsic::mips_ilvod_b:
1821  case Intrinsic::mips_ilvod_h:
1822  case Intrinsic::mips_ilvod_w:
1823  case Intrinsic::mips_ilvod_d:
1824    return DAG.getNode(MipsISD::ILVOD, DL, Op->getValueType(0),
1825                       Op->getOperand(1), Op->getOperand(2));
1826  case Intrinsic::mips_ilvr_b:
1827  case Intrinsic::mips_ilvr_h:
1828  case Intrinsic::mips_ilvr_w:
1829  case Intrinsic::mips_ilvr_d:
1830    return DAG.getNode(MipsISD::ILVR, DL, Op->getValueType(0),
1831                       Op->getOperand(1), Op->getOperand(2));
1832  case Intrinsic::mips_insert_b:
1833  case Intrinsic::mips_insert_h:
1834  case Intrinsic::mips_insert_w:
1835  case Intrinsic::mips_insert_d:
1836    return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Op), Op->getValueType(0),
1837                       Op->getOperand(1), Op->getOperand(3), Op->getOperand(2));
1838  case Intrinsic::mips_insve_b:
1839  case Intrinsic::mips_insve_h:
1840  case Intrinsic::mips_insve_w:
1841  case Intrinsic::mips_insve_d:
1842    return DAG.getNode(MipsISD::INSVE, DL, Op->getValueType(0),
1843                       Op->getOperand(1), Op->getOperand(2), Op->getOperand(3),
1844                       DAG.getConstant(0, MVT::i32));
1845  case Intrinsic::mips_ldi_b:
1846  case Intrinsic::mips_ldi_h:
1847  case Intrinsic::mips_ldi_w:
1848  case Intrinsic::mips_ldi_d:
1849    return lowerMSASplatImm(Op, 1, DAG);
1850  case Intrinsic::mips_lsa:
1851  case Intrinsic::mips_dlsa: {
1852    EVT ResTy = Op->getValueType(0);
1853    return DAG.getNode(ISD::ADD, SDLoc(Op), ResTy, Op->getOperand(1),
1854                       DAG.getNode(ISD::SHL, SDLoc(Op), ResTy,
1855                                   Op->getOperand(2), Op->getOperand(3)));
1856  }
1857  case Intrinsic::mips_maddv_b:
1858  case Intrinsic::mips_maddv_h:
1859  case Intrinsic::mips_maddv_w:
1860  case Intrinsic::mips_maddv_d: {
1861    EVT ResTy = Op->getValueType(0);
1862    return DAG.getNode(ISD::ADD, SDLoc(Op), ResTy, Op->getOperand(1),
1863                       DAG.getNode(ISD::MUL, SDLoc(Op), ResTy,
1864                                   Op->getOperand(2), Op->getOperand(3)));
1865  }
1866  case Intrinsic::mips_max_s_b:
1867  case Intrinsic::mips_max_s_h:
1868  case Intrinsic::mips_max_s_w:
1869  case Intrinsic::mips_max_s_d:
1870    return DAG.getNode(MipsISD::VSMAX, DL, Op->getValueType(0),
1871                       Op->getOperand(1), Op->getOperand(2));
1872  case Intrinsic::mips_max_u_b:
1873  case Intrinsic::mips_max_u_h:
1874  case Intrinsic::mips_max_u_w:
1875  case Intrinsic::mips_max_u_d:
1876    return DAG.getNode(MipsISD::VUMAX, DL, Op->getValueType(0),
1877                       Op->getOperand(1), Op->getOperand(2));
1878  case Intrinsic::mips_maxi_s_b:
1879  case Intrinsic::mips_maxi_s_h:
1880  case Intrinsic::mips_maxi_s_w:
1881  case Intrinsic::mips_maxi_s_d:
1882    return DAG.getNode(MipsISD::VSMAX, DL, Op->getValueType(0),
1883                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
1884  case Intrinsic::mips_maxi_u_b:
1885  case Intrinsic::mips_maxi_u_h:
1886  case Intrinsic::mips_maxi_u_w:
1887  case Intrinsic::mips_maxi_u_d:
1888    return DAG.getNode(MipsISD::VUMAX, DL, Op->getValueType(0),
1889                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
1890  case Intrinsic::mips_min_s_b:
1891  case Intrinsic::mips_min_s_h:
1892  case Intrinsic::mips_min_s_w:
1893  case Intrinsic::mips_min_s_d:
1894    return DAG.getNode(MipsISD::VSMIN, DL, Op->getValueType(0),
1895                       Op->getOperand(1), Op->getOperand(2));
1896  case Intrinsic::mips_min_u_b:
1897  case Intrinsic::mips_min_u_h:
1898  case Intrinsic::mips_min_u_w:
1899  case Intrinsic::mips_min_u_d:
1900    return DAG.getNode(MipsISD::VUMIN, DL, Op->getValueType(0),
1901                       Op->getOperand(1), Op->getOperand(2));
1902  case Intrinsic::mips_mini_s_b:
1903  case Intrinsic::mips_mini_s_h:
1904  case Intrinsic::mips_mini_s_w:
1905  case Intrinsic::mips_mini_s_d:
1906    return DAG.getNode(MipsISD::VSMIN, DL, Op->getValueType(0),
1907                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
1908  case Intrinsic::mips_mini_u_b:
1909  case Intrinsic::mips_mini_u_h:
1910  case Intrinsic::mips_mini_u_w:
1911  case Intrinsic::mips_mini_u_d:
1912    return DAG.getNode(MipsISD::VUMIN, DL, Op->getValueType(0),
1913                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
1914  case Intrinsic::mips_mod_s_b:
1915  case Intrinsic::mips_mod_s_h:
1916  case Intrinsic::mips_mod_s_w:
1917  case Intrinsic::mips_mod_s_d:
1918    return DAG.getNode(ISD::SREM, DL, Op->getValueType(0), Op->getOperand(1),
1919                       Op->getOperand(2));
1920  case Intrinsic::mips_mod_u_b:
1921  case Intrinsic::mips_mod_u_h:
1922  case Intrinsic::mips_mod_u_w:
1923  case Intrinsic::mips_mod_u_d:
1924    return DAG.getNode(ISD::UREM, DL, Op->getValueType(0), Op->getOperand(1),
1925                       Op->getOperand(2));
1926  case Intrinsic::mips_mulv_b:
1927  case Intrinsic::mips_mulv_h:
1928  case Intrinsic::mips_mulv_w:
1929  case Intrinsic::mips_mulv_d:
1930    return DAG.getNode(ISD::MUL, DL, Op->getValueType(0), Op->getOperand(1),
1931                       Op->getOperand(2));
1932  case Intrinsic::mips_msubv_b:
1933  case Intrinsic::mips_msubv_h:
1934  case Intrinsic::mips_msubv_w:
1935  case Intrinsic::mips_msubv_d: {
1936    EVT ResTy = Op->getValueType(0);
1937    return DAG.getNode(ISD::SUB, SDLoc(Op), ResTy, Op->getOperand(1),
1938                       DAG.getNode(ISD::MUL, SDLoc(Op), ResTy,
1939                                   Op->getOperand(2), Op->getOperand(3)));
1940  }
1941  case Intrinsic::mips_nlzc_b:
1942  case Intrinsic::mips_nlzc_h:
1943  case Intrinsic::mips_nlzc_w:
1944  case Intrinsic::mips_nlzc_d:
1945    return DAG.getNode(ISD::CTLZ, DL, Op->getValueType(0), Op->getOperand(1));
1946  case Intrinsic::mips_nor_v: {
1947    SDValue Res = DAG.getNode(ISD::OR, DL, Op->getValueType(0),
1948                              Op->getOperand(1), Op->getOperand(2));
1949    return DAG.getNOT(DL, Res, Res->getValueType(0));
1950  }
1951  case Intrinsic::mips_nori_b: {
1952    SDValue Res =  DAG.getNode(ISD::OR, DL, Op->getValueType(0),
1953                               Op->getOperand(1),
1954                               lowerMSASplatImm(Op, 2, DAG));
1955    return DAG.getNOT(DL, Res, Res->getValueType(0));
1956  }
1957  case Intrinsic::mips_or_v:
1958    return DAG.getNode(ISD::OR, DL, Op->getValueType(0), Op->getOperand(1),
1959                       Op->getOperand(2));
1960  case Intrinsic::mips_ori_b:
1961    return DAG.getNode(ISD::OR, DL, Op->getValueType(0),
1962                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
1963  case Intrinsic::mips_pckev_b:
1964  case Intrinsic::mips_pckev_h:
1965  case Intrinsic::mips_pckev_w:
1966  case Intrinsic::mips_pckev_d:
1967    return DAG.getNode(MipsISD::PCKEV, DL, Op->getValueType(0),
1968                       Op->getOperand(1), Op->getOperand(2));
1969  case Intrinsic::mips_pckod_b:
1970  case Intrinsic::mips_pckod_h:
1971  case Intrinsic::mips_pckod_w:
1972  case Intrinsic::mips_pckod_d:
1973    return DAG.getNode(MipsISD::PCKOD, DL, Op->getValueType(0),
1974                       Op->getOperand(1), Op->getOperand(2));
1975  case Intrinsic::mips_pcnt_b:
1976  case Intrinsic::mips_pcnt_h:
1977  case Intrinsic::mips_pcnt_w:
1978  case Intrinsic::mips_pcnt_d:
1979    return DAG.getNode(ISD::CTPOP, DL, Op->getValueType(0), Op->getOperand(1));
1980  case Intrinsic::mips_shf_b:
1981  case Intrinsic::mips_shf_h:
1982  case Intrinsic::mips_shf_w:
1983    return DAG.getNode(MipsISD::SHF, DL, Op->getValueType(0),
1984                       Op->getOperand(2), Op->getOperand(1));
1985  case Intrinsic::mips_sll_b:
1986  case Intrinsic::mips_sll_h:
1987  case Intrinsic::mips_sll_w:
1988  case Intrinsic::mips_sll_d:
1989    return DAG.getNode(ISD::SHL, DL, Op->getValueType(0), Op->getOperand(1),
1990                       Op->getOperand(2));
1991  case Intrinsic::mips_slli_b:
1992  case Intrinsic::mips_slli_h:
1993  case Intrinsic::mips_slli_w:
1994  case Intrinsic::mips_slli_d:
1995    return DAG.getNode(ISD::SHL, DL, Op->getValueType(0),
1996                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
1997  case Intrinsic::mips_splat_b:
1998  case Intrinsic::mips_splat_h:
1999  case Intrinsic::mips_splat_w:
2000  case Intrinsic::mips_splat_d:
2001    // We can't lower via VECTOR_SHUFFLE because it requires constant shuffle
2002    // masks, nor can we lower via BUILD_VECTOR & EXTRACT_VECTOR_ELT because
2003    // EXTRACT_VECTOR_ELT can't extract i64's on MIPS32.
2004    // Instead we lower to MipsISD::VSHF and match from there.
2005    return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
2006                       lowerMSASplatZExt(Op, 2, DAG), Op->getOperand(1),
2007                       Op->getOperand(1));
2008  case Intrinsic::mips_splati_b:
2009  case Intrinsic::mips_splati_h:
2010  case Intrinsic::mips_splati_w:
2011  case Intrinsic::mips_splati_d:
2012    return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
2013                       lowerMSASplatImm(Op, 2, DAG), Op->getOperand(1),
2014                       Op->getOperand(1));
2015  case Intrinsic::mips_sra_b:
2016  case Intrinsic::mips_sra_h:
2017  case Intrinsic::mips_sra_w:
2018  case Intrinsic::mips_sra_d:
2019    return DAG.getNode(ISD::SRA, DL, Op->getValueType(0), Op->getOperand(1),
2020                       Op->getOperand(2));
2021  case Intrinsic::mips_srai_b:
2022  case Intrinsic::mips_srai_h:
2023  case Intrinsic::mips_srai_w:
2024  case Intrinsic::mips_srai_d:
2025    return DAG.getNode(ISD::SRA, DL, Op->getValueType(0),
2026                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2027  case Intrinsic::mips_srl_b:
2028  case Intrinsic::mips_srl_h:
2029  case Intrinsic::mips_srl_w:
2030  case Intrinsic::mips_srl_d:
2031    return DAG.getNode(ISD::SRL, DL, Op->getValueType(0), Op->getOperand(1),
2032                       Op->getOperand(2));
2033  case Intrinsic::mips_srli_b:
2034  case Intrinsic::mips_srli_h:
2035  case Intrinsic::mips_srli_w:
2036  case Intrinsic::mips_srli_d:
2037    return DAG.getNode(ISD::SRL, DL, Op->getValueType(0),
2038                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2039  case Intrinsic::mips_subv_b:
2040  case Intrinsic::mips_subv_h:
2041  case Intrinsic::mips_subv_w:
2042  case Intrinsic::mips_subv_d:
2043    return DAG.getNode(ISD::SUB, DL, Op->getValueType(0), Op->getOperand(1),
2044                       Op->getOperand(2));
2045  case Intrinsic::mips_subvi_b:
2046  case Intrinsic::mips_subvi_h:
2047  case Intrinsic::mips_subvi_w:
2048  case Intrinsic::mips_subvi_d:
2049    return DAG.getNode(ISD::SUB, DL, Op->getValueType(0),
2050                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2051  case Intrinsic::mips_vshf_b:
2052  case Intrinsic::mips_vshf_h:
2053  case Intrinsic::mips_vshf_w:
2054  case Intrinsic::mips_vshf_d:
2055    return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
2056                       Op->getOperand(1), Op->getOperand(2), Op->getOperand(3));
2057  case Intrinsic::mips_xor_v:
2058    return DAG.getNode(ISD::XOR, DL, Op->getValueType(0), Op->getOperand(1),
2059                       Op->getOperand(2));
2060  case Intrinsic::mips_xori_b:
2061    return DAG.getNode(ISD::XOR, DL, Op->getValueType(0),
2062                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2063  }
2064}
2065
2066static SDValue lowerMSALoadIntr(SDValue Op, SelectionDAG &DAG, unsigned Intr) {
2067  SDLoc DL(Op);
2068  SDValue ChainIn = Op->getOperand(0);
2069  SDValue Address = Op->getOperand(2);
2070  SDValue Offset  = Op->getOperand(3);
2071  EVT ResTy = Op->getValueType(0);
2072  EVT PtrTy = Address->getValueType(0);
2073
2074  Address = DAG.getNode(ISD::ADD, DL, PtrTy, Address, Offset);
2075
2076  return DAG.getLoad(ResTy, DL, ChainIn, Address, MachinePointerInfo(), false,
2077                     false, false, 16);
2078}
2079
2080SDValue MipsSETargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
2081                                                     SelectionDAG &DAG) const {
2082  unsigned Intr = cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue();
2083  switch (Intr) {
2084  default:
2085    return SDValue();
2086  case Intrinsic::mips_extp:
2087    return lowerDSPIntr(Op, DAG, MipsISD::EXTP);
2088  case Intrinsic::mips_extpdp:
2089    return lowerDSPIntr(Op, DAG, MipsISD::EXTPDP);
2090  case Intrinsic::mips_extr_w:
2091    return lowerDSPIntr(Op, DAG, MipsISD::EXTR_W);
2092  case Intrinsic::mips_extr_r_w:
2093    return lowerDSPIntr(Op, DAG, MipsISD::EXTR_R_W);
2094  case Intrinsic::mips_extr_rs_w:
2095    return lowerDSPIntr(Op, DAG, MipsISD::EXTR_RS_W);
2096  case Intrinsic::mips_extr_s_h:
2097    return lowerDSPIntr(Op, DAG, MipsISD::EXTR_S_H);
2098  case Intrinsic::mips_mthlip:
2099    return lowerDSPIntr(Op, DAG, MipsISD::MTHLIP);
2100  case Intrinsic::mips_mulsaq_s_w_ph:
2101    return lowerDSPIntr(Op, DAG, MipsISD::MULSAQ_S_W_PH);
2102  case Intrinsic::mips_maq_s_w_phl:
2103    return lowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHL);
2104  case Intrinsic::mips_maq_s_w_phr:
2105    return lowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHR);
2106  case Intrinsic::mips_maq_sa_w_phl:
2107    return lowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHL);
2108  case Intrinsic::mips_maq_sa_w_phr:
2109    return lowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHR);
2110  case Intrinsic::mips_dpaq_s_w_ph:
2111    return lowerDSPIntr(Op, DAG, MipsISD::DPAQ_S_W_PH);
2112  case Intrinsic::mips_dpsq_s_w_ph:
2113    return lowerDSPIntr(Op, DAG, MipsISD::DPSQ_S_W_PH);
2114  case Intrinsic::mips_dpaq_sa_l_w:
2115    return lowerDSPIntr(Op, DAG, MipsISD::DPAQ_SA_L_W);
2116  case Intrinsic::mips_dpsq_sa_l_w:
2117    return lowerDSPIntr(Op, DAG, MipsISD::DPSQ_SA_L_W);
2118  case Intrinsic::mips_dpaqx_s_w_ph:
2119    return lowerDSPIntr(Op, DAG, MipsISD::DPAQX_S_W_PH);
2120  case Intrinsic::mips_dpaqx_sa_w_ph:
2121    return lowerDSPIntr(Op, DAG, MipsISD::DPAQX_SA_W_PH);
2122  case Intrinsic::mips_dpsqx_s_w_ph:
2123    return lowerDSPIntr(Op, DAG, MipsISD::DPSQX_S_W_PH);
2124  case Intrinsic::mips_dpsqx_sa_w_ph:
2125    return lowerDSPIntr(Op, DAG, MipsISD::DPSQX_SA_W_PH);
2126  case Intrinsic::mips_ld_b:
2127  case Intrinsic::mips_ld_h:
2128  case Intrinsic::mips_ld_w:
2129  case Intrinsic::mips_ld_d:
2130   return lowerMSALoadIntr(Op, DAG, Intr);
2131  }
2132}
2133
2134static SDValue lowerMSAStoreIntr(SDValue Op, SelectionDAG &DAG, unsigned Intr) {
2135  SDLoc DL(Op);
2136  SDValue ChainIn = Op->getOperand(0);
2137  SDValue Value   = Op->getOperand(2);
2138  SDValue Address = Op->getOperand(3);
2139  SDValue Offset  = Op->getOperand(4);
2140  EVT PtrTy = Address->getValueType(0);
2141
2142  Address = DAG.getNode(ISD::ADD, DL, PtrTy, Address, Offset);
2143
2144  return DAG.getStore(ChainIn, DL, Value, Address, MachinePointerInfo(), false,
2145                      false, 16);
2146}
2147
2148SDValue MipsSETargetLowering::lowerINTRINSIC_VOID(SDValue Op,
2149                                                  SelectionDAG &DAG) const {
2150  unsigned Intr = cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue();
2151  switch (Intr) {
2152  default:
2153    return SDValue();
2154  case Intrinsic::mips_st_b:
2155  case Intrinsic::mips_st_h:
2156  case Intrinsic::mips_st_w:
2157  case Intrinsic::mips_st_d:
2158    return lowerMSAStoreIntr(Op, DAG, Intr);
2159  }
2160}
2161
2162/// \brief Check if the given BuildVectorSDNode is a splat.
2163/// This method currently relies on DAG nodes being reused when equivalent,
2164/// so it's possible for this to return false even when isConstantSplat returns
2165/// true.
2166static bool isSplatVector(const BuildVectorSDNode *N) {
2167  unsigned int nOps = N->getNumOperands();
2168  assert(nOps > 1 && "isSplatVector has 0 or 1 sized build vector");
2169
2170  SDValue Operand0 = N->getOperand(0);
2171
2172  for (unsigned int i = 1; i < nOps; ++i) {
2173    if (N->getOperand(i) != Operand0)
2174      return false;
2175  }
2176
2177  return true;
2178}
2179
2180// Lower ISD::EXTRACT_VECTOR_ELT into MipsISD::VEXTRACT_SEXT_ELT.
2181//
2182// The non-value bits resulting from ISD::EXTRACT_VECTOR_ELT are undefined. We
2183// choose to sign-extend but we could have equally chosen zero-extend. The
2184// DAGCombiner will fold any sign/zero extension of the ISD::EXTRACT_VECTOR_ELT
2185// result into this node later (possibly changing it to a zero-extend in the
2186// process).
2187SDValue MipsSETargetLowering::
2188lowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
2189  SDLoc DL(Op);
2190  EVT ResTy = Op->getValueType(0);
2191  SDValue Op0 = Op->getOperand(0);
2192  EVT VecTy = Op0->getValueType(0);
2193
2194  if (!VecTy.is128BitVector())
2195    return SDValue();
2196
2197  if (ResTy.isInteger()) {
2198    SDValue Op1 = Op->getOperand(1);
2199    EVT EltTy = VecTy.getVectorElementType();
2200    return DAG.getNode(MipsISD::VEXTRACT_SEXT_ELT, DL, ResTy, Op0, Op1,
2201                       DAG.getValueType(EltTy));
2202  }
2203
2204  return Op;
2205}
2206
2207static bool isConstantOrUndef(const SDValue Op) {
2208  if (Op->getOpcode() == ISD::UNDEF)
2209    return true;
2210  if (dyn_cast<ConstantSDNode>(Op))
2211    return true;
2212  if (dyn_cast<ConstantFPSDNode>(Op))
2213    return true;
2214  return false;
2215}
2216
2217static bool isConstantOrUndefBUILD_VECTOR(const BuildVectorSDNode *Op) {
2218  for (unsigned i = 0; i < Op->getNumOperands(); ++i)
2219    if (isConstantOrUndef(Op->getOperand(i)))
2220      return true;
2221  return false;
2222}
2223
2224// Lowers ISD::BUILD_VECTOR into appropriate SelectionDAG nodes for the
2225// backend.
2226//
2227// Lowers according to the following rules:
2228// - Constant splats are legal as-is as long as the SplatBitSize is a power of
2229//   2 less than or equal to 64 and the value fits into a signed 10-bit
2230//   immediate
2231// - Constant splats are lowered to bitconverted BUILD_VECTORs if SplatBitSize
2232//   is a power of 2 less than or equal to 64 and the value does not fit into a
2233//   signed 10-bit immediate
2234// - Non-constant splats are legal as-is.
2235// - Non-constant non-splats are lowered to sequences of INSERT_VECTOR_ELT.
2236// - All others are illegal and must be expanded.
2237SDValue MipsSETargetLowering::lowerBUILD_VECTOR(SDValue Op,
2238                                                SelectionDAG &DAG) const {
2239  BuildVectorSDNode *Node = cast<BuildVectorSDNode>(Op);
2240  EVT ResTy = Op->getValueType(0);
2241  SDLoc DL(Op);
2242  APInt SplatValue, SplatUndef;
2243  unsigned SplatBitSize;
2244  bool HasAnyUndefs;
2245
2246  if (!Subtarget->hasMSA() || !ResTy.is128BitVector())
2247    return SDValue();
2248
2249  if (Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
2250                            HasAnyUndefs, 8,
2251                            !Subtarget->isLittle()) && SplatBitSize <= 64) {
2252    // We can only cope with 8, 16, 32, or 64-bit elements
2253    if (SplatBitSize != 8 && SplatBitSize != 16 && SplatBitSize != 32 &&
2254        SplatBitSize != 64)
2255      return SDValue();
2256
2257    // If the value fits into a simm10 then we can use ldi.[bhwd]
2258    // However, if it isn't an integer type we will have to bitcast from an
2259    // integer type first. Also, if there are any undefs, we must lower them
2260    // to defined values first.
2261    if (ResTy.isInteger() && !HasAnyUndefs && SplatValue.isSignedIntN(10))
2262      return Op;
2263
2264    EVT ViaVecTy;
2265
2266    switch (SplatBitSize) {
2267    default:
2268      return SDValue();
2269    case 8:
2270      ViaVecTy = MVT::v16i8;
2271      break;
2272    case 16:
2273      ViaVecTy = MVT::v8i16;
2274      break;
2275    case 32:
2276      ViaVecTy = MVT::v4i32;
2277      break;
2278    case 64:
2279      // There's no fill.d to fall back on for 64-bit values
2280      return SDValue();
2281    }
2282
2283    // SelectionDAG::getConstant will promote SplatValue appropriately.
2284    SDValue Result = DAG.getConstant(SplatValue, ViaVecTy);
2285
2286    // Bitcast to the type we originally wanted
2287    if (ViaVecTy != ResTy)
2288      Result = DAG.getNode(ISD::BITCAST, SDLoc(Node), ResTy, Result);
2289
2290    return Result;
2291  } else if (isSplatVector(Node))
2292    return Op;
2293  else if (!isConstantOrUndefBUILD_VECTOR(Node)) {
2294    // Use INSERT_VECTOR_ELT operations rather than expand to stores.
2295    // The resulting code is the same length as the expansion, but it doesn't
2296    // use memory operations
2297    EVT ResTy = Node->getValueType(0);
2298
2299    assert(ResTy.isVector());
2300
2301    unsigned NumElts = ResTy.getVectorNumElements();
2302    SDValue Vector = DAG.getUNDEF(ResTy);
2303    for (unsigned i = 0; i < NumElts; ++i) {
2304      Vector = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, ResTy, Vector,
2305                           Node->getOperand(i),
2306                           DAG.getConstant(i, MVT::i32));
2307    }
2308    return Vector;
2309  }
2310
2311  return SDValue();
2312}
2313
2314// Lower VECTOR_SHUFFLE into SHF (if possible).
2315//
2316// SHF splits the vector into blocks of four elements, then shuffles these
2317// elements according to a <4 x i2> constant (encoded as an integer immediate).
2318//
2319// It is therefore possible to lower into SHF when the mask takes the form:
2320//   <a, b, c, d, a+4, b+4, c+4, d+4, a+8, b+8, c+8, d+8, ...>
2321// When undef's appear they are treated as if they were whatever value is
2322// necessary in order to fit the above form.
2323//
2324// For example:
2325//   %2 = shufflevector <8 x i16> %0, <8 x i16> undef,
2326//                      <8 x i32> <i32 3, i32 2, i32 1, i32 0,
2327//                                 i32 7, i32 6, i32 5, i32 4>
2328// is lowered to:
2329//   (SHF_H $w0, $w1, 27)
2330// where the 27 comes from:
2331//   3 + (2 << 2) + (1 << 4) + (0 << 6)
2332static SDValue lowerVECTOR_SHUFFLE_SHF(SDValue Op, EVT ResTy,
2333                                       SmallVector<int, 16> Indices,
2334                                       SelectionDAG &DAG) {
2335  int SHFIndices[4] = { -1, -1, -1, -1 };
2336
2337  if (Indices.size() < 4)
2338    return SDValue();
2339
2340  for (unsigned i = 0; i < 4; ++i) {
2341    for (unsigned j = i; j < Indices.size(); j += 4) {
2342      int Idx = Indices[j];
2343
2344      // Convert from vector index to 4-element subvector index
2345      // If an index refers to an element outside of the subvector then give up
2346      if (Idx != -1) {
2347        Idx -= 4 * (j / 4);
2348        if (Idx < 0 || Idx >= 4)
2349          return SDValue();
2350      }
2351
2352      // If the mask has an undef, replace it with the current index.
2353      // Note that it might still be undef if the current index is also undef
2354      if (SHFIndices[i] == -1)
2355        SHFIndices[i] = Idx;
2356
2357      // Check that non-undef values are the same as in the mask. If they
2358      // aren't then give up
2359      if (!(Idx == -1 || Idx == SHFIndices[i]))
2360        return SDValue();
2361    }
2362  }
2363
2364  // Calculate the immediate. Replace any remaining undefs with zero
2365  APInt Imm(32, 0);
2366  for (int i = 3; i >= 0; --i) {
2367    int Idx = SHFIndices[i];
2368
2369    if (Idx == -1)
2370      Idx = 0;
2371
2372    Imm <<= 2;
2373    Imm |= Idx & 0x3;
2374  }
2375
2376  return DAG.getNode(MipsISD::SHF, SDLoc(Op), ResTy,
2377                     DAG.getConstant(Imm, MVT::i32), Op->getOperand(0));
2378}
2379
2380// Lower VECTOR_SHUFFLE into ILVEV (if possible).
2381//
2382// ILVEV interleaves the even elements from each vector.
2383//
2384// It is possible to lower into ILVEV when the mask takes the form:
2385//   <0, n, 2, n+2, 4, n+4, ...>
2386// where n is the number of elements in the vector.
2387//
2388// When undef's appear in the mask they are treated as if they were whatever
2389// value is necessary in order to fit the above form.
2390static SDValue lowerVECTOR_SHUFFLE_ILVEV(SDValue Op, EVT ResTy,
2391                                         SmallVector<int, 16> Indices,
2392                                         SelectionDAG &DAG) {
2393  assert ((Indices.size() % 2) == 0);
2394  int WsIdx = 0;
2395  int WtIdx = ResTy.getVectorNumElements();
2396
2397  for (unsigned i = 0; i < Indices.size(); i += 2) {
2398    if (Indices[i] != -1 && Indices[i] != WsIdx)
2399      return SDValue();
2400    if (Indices[i+1] != -1 && Indices[i+1] != WtIdx)
2401      return SDValue();
2402    WsIdx += 2;
2403    WtIdx += 2;
2404  }
2405
2406  return DAG.getNode(MipsISD::ILVEV, SDLoc(Op), ResTy, Op->getOperand(0),
2407                     Op->getOperand(1));
2408}
2409
2410// Lower VECTOR_SHUFFLE into ILVOD (if possible).
2411//
2412// ILVOD interleaves the odd elements from each vector.
2413//
2414// It is possible to lower into ILVOD when the mask takes the form:
2415//   <1, n+1, 3, n+3, 5, n+5, ...>
2416// where n is the number of elements in the vector.
2417//
2418// When undef's appear in the mask they are treated as if they were whatever
2419// value is necessary in order to fit the above form.
2420static SDValue lowerVECTOR_SHUFFLE_ILVOD(SDValue Op, EVT ResTy,
2421                                         SmallVector<int, 16> Indices,
2422                                         SelectionDAG &DAG) {
2423  assert ((Indices.size() % 2) == 0);
2424  int WsIdx = 1;
2425  int WtIdx = ResTy.getVectorNumElements() + 1;
2426
2427  for (unsigned i = 0; i < Indices.size(); i += 2) {
2428    if (Indices[i] != -1 && Indices[i] != WsIdx)
2429      return SDValue();
2430    if (Indices[i+1] != -1 && Indices[i+1] != WtIdx)
2431      return SDValue();
2432    WsIdx += 2;
2433    WtIdx += 2;
2434  }
2435
2436  return DAG.getNode(MipsISD::ILVOD, SDLoc(Op), ResTy, Op->getOperand(0),
2437                     Op->getOperand(1));
2438}
2439
2440// Lower VECTOR_SHUFFLE into ILVL (if possible).
2441//
2442// ILVL interleaves consecutive elements from the left half of each vector.
2443//
2444// It is possible to lower into ILVL when the mask takes the form:
2445//   <0, n, 1, n+1, 2, n+2, ...>
2446// where n is the number of elements in the vector.
2447//
2448// When undef's appear in the mask they are treated as if they were whatever
2449// value is necessary in order to fit the above form.
2450static SDValue lowerVECTOR_SHUFFLE_ILVL(SDValue Op, EVT ResTy,
2451                                        SmallVector<int, 16> Indices,
2452                                        SelectionDAG &DAG) {
2453  assert ((Indices.size() % 2) == 0);
2454  int WsIdx = 0;
2455  int WtIdx = ResTy.getVectorNumElements();
2456
2457  for (unsigned i = 0; i < Indices.size(); i += 2) {
2458    if (Indices[i] != -1 && Indices[i] != WsIdx)
2459      return SDValue();
2460    if (Indices[i+1] != -1 && Indices[i+1] != WtIdx)
2461      return SDValue();
2462    WsIdx ++;
2463    WtIdx ++;
2464  }
2465
2466  return DAG.getNode(MipsISD::ILVL, SDLoc(Op), ResTy, Op->getOperand(0),
2467                     Op->getOperand(1));
2468}
2469
2470// Lower VECTOR_SHUFFLE into ILVR (if possible).
2471//
2472// ILVR interleaves consecutive elements from the right half of each vector.
2473//
2474// It is possible to lower into ILVR when the mask takes the form:
2475//   <x, n+x, x+1, n+x+1, x+2, n+x+2, ...>
2476// where n is the number of elements in the vector and x is half n.
2477//
2478// When undef's appear in the mask they are treated as if they were whatever
2479// value is necessary in order to fit the above form.
2480static SDValue lowerVECTOR_SHUFFLE_ILVR(SDValue Op, EVT ResTy,
2481                                        SmallVector<int, 16> Indices,
2482                                        SelectionDAG &DAG) {
2483  assert ((Indices.size() % 2) == 0);
2484  unsigned NumElts = ResTy.getVectorNumElements();
2485  int WsIdx = NumElts / 2;
2486  int WtIdx = NumElts + NumElts / 2;
2487
2488  for (unsigned i = 0; i < Indices.size(); i += 2) {
2489    if (Indices[i] != -1 && Indices[i] != WsIdx)
2490      return SDValue();
2491    if (Indices[i+1] != -1 && Indices[i+1] != WtIdx)
2492      return SDValue();
2493    WsIdx ++;
2494    WtIdx ++;
2495  }
2496
2497  return DAG.getNode(MipsISD::ILVR, SDLoc(Op), ResTy, Op->getOperand(0),
2498                     Op->getOperand(1));
2499}
2500
2501// Lower VECTOR_SHUFFLE into PCKEV (if possible).
2502//
2503// PCKEV copies the even elements of each vector into the result vector.
2504//
2505// It is possible to lower into PCKEV when the mask takes the form:
2506//   <0, 2, 4, ..., n, n+2, n+4, ...>
2507// where n is the number of elements in the vector.
2508//
2509// When undef's appear in the mask they are treated as if they were whatever
2510// value is necessary in order to fit the above form.
2511static SDValue lowerVECTOR_SHUFFLE_PCKEV(SDValue Op, EVT ResTy,
2512                                         SmallVector<int, 16> Indices,
2513                                         SelectionDAG &DAG) {
2514  assert ((Indices.size() % 2) == 0);
2515  int Idx = 0;
2516
2517  for (unsigned i = 0; i < Indices.size(); ++i) {
2518    if (Indices[i] != -1 && Indices[i] != Idx)
2519      return SDValue();
2520    Idx += 2;
2521  }
2522
2523  return DAG.getNode(MipsISD::PCKEV, SDLoc(Op), ResTy, Op->getOperand(0),
2524                     Op->getOperand(1));
2525}
2526
2527// Lower VECTOR_SHUFFLE into PCKOD (if possible).
2528//
2529// PCKOD copies the odd elements of each vector into the result vector.
2530//
2531// It is possible to lower into PCKOD when the mask takes the form:
2532//   <1, 3, 5, ..., n+1, n+3, n+5, ...>
2533// where n is the number of elements in the vector.
2534//
2535// When undef's appear in the mask they are treated as if they were whatever
2536// value is necessary in order to fit the above form.
2537static SDValue lowerVECTOR_SHUFFLE_PCKOD(SDValue Op, EVT ResTy,
2538                                         SmallVector<int, 16> Indices,
2539                                         SelectionDAG &DAG) {
2540  assert ((Indices.size() % 2) == 0);
2541  int Idx = 1;
2542
2543  for (unsigned i = 0; i < Indices.size(); ++i) {
2544    if (Indices[i] != -1 && Indices[i] != Idx)
2545      return SDValue();
2546    Idx += 2;
2547  }
2548
2549  return DAG.getNode(MipsISD::PCKOD, SDLoc(Op), ResTy, Op->getOperand(0),
2550                     Op->getOperand(1));
2551}
2552
2553// Lower VECTOR_SHUFFLE into VSHF.
2554//
2555// This mostly consists of converting the shuffle indices in Indices into a
2556// BUILD_VECTOR and adding it as an operand to the resulting VSHF. There is
2557// also code to eliminate unused operands of the VECTOR_SHUFFLE. For example,
2558// if the type is v8i16 and all the indices are less than 8 then the second
2559// operand is unused and can be replaced with anything. We choose to replace it
2560// with the used operand since this reduces the number of instructions overall.
2561static SDValue lowerVECTOR_SHUFFLE_VSHF(SDValue Op, EVT ResTy,
2562                                        SmallVector<int, 16> Indices,
2563                                        SelectionDAG &DAG) {
2564  SmallVector<SDValue, 16> Ops;
2565  SDValue Op0;
2566  SDValue Op1;
2567  EVT MaskVecTy = ResTy.changeVectorElementTypeToInteger();
2568  EVT MaskEltTy = MaskVecTy.getVectorElementType();
2569  bool Using1stVec = false;
2570  bool Using2ndVec = false;
2571  SDLoc DL(Op);
2572  int ResTyNumElts = ResTy.getVectorNumElements();
2573
2574  for (int i = 0; i < ResTyNumElts; ++i) {
2575    // Idx == -1 means UNDEF
2576    int Idx = Indices[i];
2577
2578    if (0 <= Idx && Idx < ResTyNumElts)
2579      Using1stVec = true;
2580    if (ResTyNumElts <= Idx && Idx < ResTyNumElts * 2)
2581      Using2ndVec = true;
2582  }
2583
2584  for (SmallVector<int, 16>::iterator I = Indices.begin(); I != Indices.end();
2585       ++I)
2586    Ops.push_back(DAG.getTargetConstant(*I, MaskEltTy));
2587
2588  SDValue MaskVec = DAG.getNode(ISD::BUILD_VECTOR, DL, MaskVecTy, Ops);
2589
2590  if (Using1stVec && Using2ndVec) {
2591    Op0 = Op->getOperand(0);
2592    Op1 = Op->getOperand(1);
2593  } else if (Using1stVec)
2594    Op0 = Op1 = Op->getOperand(0);
2595  else if (Using2ndVec)
2596    Op0 = Op1 = Op->getOperand(1);
2597  else
2598    llvm_unreachable("shuffle vector mask references neither vector operand?");
2599
2600  // VECTOR_SHUFFLE concatenates the vectors in an vectorwise fashion.
2601  // <0b00, 0b01> + <0b10, 0b11> -> <0b00, 0b01, 0b10, 0b11>
2602  // VSHF concatenates the vectors in a bitwise fashion:
2603  // <0b00, 0b01> + <0b10, 0b11> ->
2604  // 0b0100       + 0b1110       -> 0b01001110
2605  //                                <0b10, 0b11, 0b00, 0b01>
2606  // We must therefore swap the operands to get the correct result.
2607  return DAG.getNode(MipsISD::VSHF, DL, ResTy, MaskVec, Op1, Op0);
2608}
2609
2610// Lower VECTOR_SHUFFLE into one of a number of instructions depending on the
2611// indices in the shuffle.
2612SDValue MipsSETargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
2613                                                  SelectionDAG &DAG) const {
2614  ShuffleVectorSDNode *Node = cast<ShuffleVectorSDNode>(Op);
2615  EVT ResTy = Op->getValueType(0);
2616
2617  if (!ResTy.is128BitVector())
2618    return SDValue();
2619
2620  int ResTyNumElts = ResTy.getVectorNumElements();
2621  SmallVector<int, 16> Indices;
2622
2623  for (int i = 0; i < ResTyNumElts; ++i)
2624    Indices.push_back(Node->getMaskElt(i));
2625
2626  SDValue Result = lowerVECTOR_SHUFFLE_SHF(Op, ResTy, Indices, DAG);
2627  if (Result.getNode())
2628    return Result;
2629  Result = lowerVECTOR_SHUFFLE_ILVEV(Op, ResTy, Indices, DAG);
2630  if (Result.getNode())
2631    return Result;
2632  Result = lowerVECTOR_SHUFFLE_ILVOD(Op, ResTy, Indices, DAG);
2633  if (Result.getNode())
2634    return Result;
2635  Result = lowerVECTOR_SHUFFLE_ILVL(Op, ResTy, Indices, DAG);
2636  if (Result.getNode())
2637    return Result;
2638  Result = lowerVECTOR_SHUFFLE_ILVR(Op, ResTy, Indices, DAG);
2639  if (Result.getNode())
2640    return Result;
2641  Result = lowerVECTOR_SHUFFLE_PCKEV(Op, ResTy, Indices, DAG);
2642  if (Result.getNode())
2643    return Result;
2644  Result = lowerVECTOR_SHUFFLE_PCKOD(Op, ResTy, Indices, DAG);
2645  if (Result.getNode())
2646    return Result;
2647  return lowerVECTOR_SHUFFLE_VSHF(Op, ResTy, Indices, DAG);
2648}
2649
2650MachineBasicBlock * MipsSETargetLowering::
2651emitBPOSGE32(MachineInstr *MI, MachineBasicBlock *BB) const{
2652  // $bb:
2653  //  bposge32_pseudo $vr0
2654  //  =>
2655  // $bb:
2656  //  bposge32 $tbb
2657  // $fbb:
2658  //  li $vr2, 0
2659  //  b $sink
2660  // $tbb:
2661  //  li $vr1, 1
2662  // $sink:
2663  //  $vr0 = phi($vr2, $fbb, $vr1, $tbb)
2664
2665  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
2666  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
2667  const TargetRegisterClass *RC = &Mips::GPR32RegClass;
2668  DebugLoc DL = MI->getDebugLoc();
2669  const BasicBlock *LLVM_BB = BB->getBasicBlock();
2670  MachineFunction::iterator It = std::next(MachineFunction::iterator(BB));
2671  MachineFunction *F = BB->getParent();
2672  MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB);
2673  MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB);
2674  MachineBasicBlock *Sink  = F->CreateMachineBasicBlock(LLVM_BB);
2675  F->insert(It, FBB);
2676  F->insert(It, TBB);
2677  F->insert(It, Sink);
2678
2679  // Transfer the remainder of BB and its successor edges to Sink.
2680  Sink->splice(Sink->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
2681               BB->end());
2682  Sink->transferSuccessorsAndUpdatePHIs(BB);
2683
2684  // Add successors.
2685  BB->addSuccessor(FBB);
2686  BB->addSuccessor(TBB);
2687  FBB->addSuccessor(Sink);
2688  TBB->addSuccessor(Sink);
2689
2690  // Insert the real bposge32 instruction to $BB.
2691  BuildMI(BB, DL, TII->get(Mips::BPOSGE32)).addMBB(TBB);
2692
2693  // Fill $FBB.
2694  unsigned VR2 = RegInfo.createVirtualRegister(RC);
2695  BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), VR2)
2696    .addReg(Mips::ZERO).addImm(0);
2697  BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink);
2698
2699  // Fill $TBB.
2700  unsigned VR1 = RegInfo.createVirtualRegister(RC);
2701  BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), VR1)
2702    .addReg(Mips::ZERO).addImm(1);
2703
2704  // Insert phi function to $Sink.
2705  BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI),
2706          MI->getOperand(0).getReg())
2707    .addReg(VR2).addMBB(FBB).addReg(VR1).addMBB(TBB);
2708
2709  MI->eraseFromParent();   // The pseudo instruction is gone now.
2710  return Sink;
2711}
2712
2713MachineBasicBlock * MipsSETargetLowering::
2714emitMSACBranchPseudo(MachineInstr *MI, MachineBasicBlock *BB,
2715                     unsigned BranchOp) const{
2716  // $bb:
2717  //  vany_nonzero $rd, $ws
2718  //  =>
2719  // $bb:
2720  //  bnz.b $ws, $tbb
2721  //  b $fbb
2722  // $fbb:
2723  //  li $rd1, 0
2724  //  b $sink
2725  // $tbb:
2726  //  li $rd2, 1
2727  // $sink:
2728  //  $rd = phi($rd1, $fbb, $rd2, $tbb)
2729
2730  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
2731  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
2732  const TargetRegisterClass *RC = &Mips::GPR32RegClass;
2733  DebugLoc DL = MI->getDebugLoc();
2734  const BasicBlock *LLVM_BB = BB->getBasicBlock();
2735  MachineFunction::iterator It = std::next(MachineFunction::iterator(BB));
2736  MachineFunction *F = BB->getParent();
2737  MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB);
2738  MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB);
2739  MachineBasicBlock *Sink  = F->CreateMachineBasicBlock(LLVM_BB);
2740  F->insert(It, FBB);
2741  F->insert(It, TBB);
2742  F->insert(It, Sink);
2743
2744  // Transfer the remainder of BB and its successor edges to Sink.
2745  Sink->splice(Sink->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
2746               BB->end());
2747  Sink->transferSuccessorsAndUpdatePHIs(BB);
2748
2749  // Add successors.
2750  BB->addSuccessor(FBB);
2751  BB->addSuccessor(TBB);
2752  FBB->addSuccessor(Sink);
2753  TBB->addSuccessor(Sink);
2754
2755  // Insert the real bnz.b instruction to $BB.
2756  BuildMI(BB, DL, TII->get(BranchOp))
2757    .addReg(MI->getOperand(1).getReg())
2758    .addMBB(TBB);
2759
2760  // Fill $FBB.
2761  unsigned RD1 = RegInfo.createVirtualRegister(RC);
2762  BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), RD1)
2763    .addReg(Mips::ZERO).addImm(0);
2764  BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink);
2765
2766  // Fill $TBB.
2767  unsigned RD2 = RegInfo.createVirtualRegister(RC);
2768  BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), RD2)
2769    .addReg(Mips::ZERO).addImm(1);
2770
2771  // Insert phi function to $Sink.
2772  BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI),
2773          MI->getOperand(0).getReg())
2774    .addReg(RD1).addMBB(FBB).addReg(RD2).addMBB(TBB);
2775
2776  MI->eraseFromParent();   // The pseudo instruction is gone now.
2777  return Sink;
2778}
2779
2780// Emit the COPY_FW pseudo instruction.
2781//
2782// copy_fw_pseudo $fd, $ws, n
2783// =>
2784// copy_u_w $rt, $ws, $n
2785// mtc1     $rt, $fd
2786//
2787// When n is zero, the equivalent operation can be performed with (potentially)
2788// zero instructions due to register overlaps. This optimization is never valid
2789// for lane 1 because it would require FR=0 mode which isn't supported by MSA.
2790MachineBasicBlock * MipsSETargetLowering::
2791emitCOPY_FW(MachineInstr *MI, MachineBasicBlock *BB) const{
2792  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
2793  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
2794  DebugLoc DL = MI->getDebugLoc();
2795  unsigned Fd = MI->getOperand(0).getReg();
2796  unsigned Ws = MI->getOperand(1).getReg();
2797  unsigned Lane = MI->getOperand(2).getImm();
2798
2799  if (Lane == 0)
2800    BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Ws, 0, Mips::sub_lo);
2801  else {
2802    unsigned Wt = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
2803
2804    BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_W), Wt).addReg(Ws).addImm(Lane);
2805    BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_lo);
2806  }
2807
2808  MI->eraseFromParent();   // The pseudo instruction is gone now.
2809  return BB;
2810}
2811
2812// Emit the COPY_FD pseudo instruction.
2813//
2814// copy_fd_pseudo $fd, $ws, n
2815// =>
2816// splati.d $wt, $ws, $n
2817// copy $fd, $wt:sub_64
2818//
2819// When n is zero, the equivalent operation can be performed with (potentially)
2820// zero instructions due to register overlaps. This optimization is always
2821// valid because FR=1 mode which is the only supported mode in MSA.
2822MachineBasicBlock * MipsSETargetLowering::
2823emitCOPY_FD(MachineInstr *MI, MachineBasicBlock *BB) const{
2824  assert(Subtarget->isFP64bit());
2825
2826  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
2827  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
2828  unsigned Fd  = MI->getOperand(0).getReg();
2829  unsigned Ws  = MI->getOperand(1).getReg();
2830  unsigned Lane = MI->getOperand(2).getImm() * 2;
2831  DebugLoc DL = MI->getDebugLoc();
2832
2833  if (Lane == 0)
2834    BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Ws, 0, Mips::sub_64);
2835  else {
2836    unsigned Wt = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
2837
2838    BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_D), Wt).addReg(Ws).addImm(1);
2839    BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_64);
2840  }
2841
2842  MI->eraseFromParent();   // The pseudo instruction is gone now.
2843  return BB;
2844}
2845
2846// Emit the INSERT_FW pseudo instruction.
2847//
2848// insert_fw_pseudo $wd, $wd_in, $n, $fs
2849// =>
2850// subreg_to_reg $wt:sub_lo, $fs
2851// insve_w $wd[$n], $wd_in, $wt[0]
2852MachineBasicBlock *
2853MipsSETargetLowering::emitINSERT_FW(MachineInstr *MI,
2854                                    MachineBasicBlock *BB) const {
2855  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
2856  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
2857  DebugLoc DL = MI->getDebugLoc();
2858  unsigned Wd = MI->getOperand(0).getReg();
2859  unsigned Wd_in = MI->getOperand(1).getReg();
2860  unsigned Lane = MI->getOperand(2).getImm();
2861  unsigned Fs = MI->getOperand(3).getReg();
2862  unsigned Wt = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
2863
2864  BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
2865      .addImm(0)
2866      .addReg(Fs)
2867      .addImm(Mips::sub_lo);
2868  BuildMI(*BB, MI, DL, TII->get(Mips::INSVE_W), Wd)
2869      .addReg(Wd_in)
2870      .addImm(Lane)
2871      .addReg(Wt)
2872      .addImm(0);
2873
2874  MI->eraseFromParent(); // The pseudo instruction is gone now.
2875  return BB;
2876}
2877
2878// Emit the INSERT_FD pseudo instruction.
2879//
2880// insert_fd_pseudo $wd, $fs, n
2881// =>
2882// subreg_to_reg $wt:sub_64, $fs
2883// insve_d $wd[$n], $wd_in, $wt[0]
2884MachineBasicBlock *
2885MipsSETargetLowering::emitINSERT_FD(MachineInstr *MI,
2886                                    MachineBasicBlock *BB) const {
2887  assert(Subtarget->isFP64bit());
2888
2889  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
2890  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
2891  DebugLoc DL = MI->getDebugLoc();
2892  unsigned Wd = MI->getOperand(0).getReg();
2893  unsigned Wd_in = MI->getOperand(1).getReg();
2894  unsigned Lane = MI->getOperand(2).getImm();
2895  unsigned Fs = MI->getOperand(3).getReg();
2896  unsigned Wt = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
2897
2898  BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
2899      .addImm(0)
2900      .addReg(Fs)
2901      .addImm(Mips::sub_64);
2902  BuildMI(*BB, MI, DL, TII->get(Mips::INSVE_D), Wd)
2903      .addReg(Wd_in)
2904      .addImm(Lane)
2905      .addReg(Wt)
2906      .addImm(0);
2907
2908  MI->eraseFromParent(); // The pseudo instruction is gone now.
2909  return BB;
2910}
2911
2912// Emit the INSERT_([BHWD]|F[WD])_VIDX pseudo instruction.
2913//
2914// For integer:
2915// (INSERT_([BHWD]|F[WD])_PSEUDO $wd, $wd_in, $n, $rs)
2916// =>
2917// (SLL $lanetmp1, $lane, <log2size)
2918// (SLD_B $wdtmp1, $wd_in, $wd_in, $lanetmp1)
2919// (INSERT_[BHWD], $wdtmp2, $wdtmp1, 0, $rs)
2920// (NEG $lanetmp2, $lanetmp1)
2921// (SLD_B $wd, $wdtmp2, $wdtmp2,  $lanetmp2)
2922//
2923// For floating point:
2924// (INSERT_([BHWD]|F[WD])_PSEUDO $wd, $wd_in, $n, $fs)
2925// =>
2926// (SUBREG_TO_REG $wt, $fs, <subreg>)
2927// (SLL $lanetmp1, $lane, <log2size)
2928// (SLD_B $wdtmp1, $wd_in, $wd_in, $lanetmp1)
2929// (INSVE_[WD], $wdtmp2, 0, $wdtmp1, 0)
2930// (NEG $lanetmp2, $lanetmp1)
2931// (SLD_B $wd, $wdtmp2, $wdtmp2,  $lanetmp2)
2932MachineBasicBlock *
2933MipsSETargetLowering::emitINSERT_DF_VIDX(MachineInstr *MI,
2934                                         MachineBasicBlock *BB,
2935                                         unsigned EltSizeInBytes,
2936                                         bool IsFP) const {
2937  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
2938  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
2939  DebugLoc DL = MI->getDebugLoc();
2940  unsigned Wd = MI->getOperand(0).getReg();
2941  unsigned SrcVecReg = MI->getOperand(1).getReg();
2942  unsigned LaneReg = MI->getOperand(2).getReg();
2943  unsigned SrcValReg = MI->getOperand(3).getReg();
2944
2945  const TargetRegisterClass *VecRC = nullptr;
2946  const TargetRegisterClass *GPRRC = isGP64bit() ? &Mips::GPR64RegClass
2947                                                 : &Mips::GPR32RegClass;
2948  unsigned EltLog2Size;
2949  unsigned InsertOp = 0;
2950  unsigned InsveOp = 0;
2951  switch (EltSizeInBytes) {
2952  default:
2953    llvm_unreachable("Unexpected size");
2954  case 1:
2955    EltLog2Size = 0;
2956    InsertOp = Mips::INSERT_B;
2957    InsveOp = Mips::INSVE_B;
2958    VecRC = &Mips::MSA128BRegClass;
2959    break;
2960  case 2:
2961    EltLog2Size = 1;
2962    InsertOp = Mips::INSERT_H;
2963    InsveOp = Mips::INSVE_H;
2964    VecRC = &Mips::MSA128HRegClass;
2965    break;
2966  case 4:
2967    EltLog2Size = 2;
2968    InsertOp = Mips::INSERT_W;
2969    InsveOp = Mips::INSVE_W;
2970    VecRC = &Mips::MSA128WRegClass;
2971    break;
2972  case 8:
2973    EltLog2Size = 3;
2974    InsertOp = Mips::INSERT_D;
2975    InsveOp = Mips::INSVE_D;
2976    VecRC = &Mips::MSA128DRegClass;
2977    break;
2978  }
2979
2980  if (IsFP) {
2981    unsigned Wt = RegInfo.createVirtualRegister(VecRC);
2982    BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
2983        .addImm(0)
2984        .addReg(SrcValReg)
2985        .addImm(EltSizeInBytes == 8 ? Mips::sub_64 : Mips::sub_lo);
2986    SrcValReg = Wt;
2987  }
2988
2989  // Convert the lane index into a byte index
2990  if (EltSizeInBytes != 1) {
2991    unsigned LaneTmp1 = RegInfo.createVirtualRegister(GPRRC);
2992    BuildMI(*BB, MI, DL, TII->get(Mips::SLL), LaneTmp1)
2993        .addReg(LaneReg)
2994        .addImm(EltLog2Size);
2995    LaneReg = LaneTmp1;
2996  }
2997
2998  // Rotate bytes around so that the desired lane is element zero
2999  unsigned WdTmp1 = RegInfo.createVirtualRegister(VecRC);
3000  BuildMI(*BB, MI, DL, TII->get(Mips::SLD_B), WdTmp1)
3001      .addReg(SrcVecReg)
3002      .addReg(SrcVecReg)
3003      .addReg(LaneReg);
3004
3005  unsigned WdTmp2 = RegInfo.createVirtualRegister(VecRC);
3006  if (IsFP) {
3007    // Use insve.df to insert to element zero
3008    BuildMI(*BB, MI, DL, TII->get(InsveOp), WdTmp2)
3009        .addReg(WdTmp1)
3010        .addImm(0)
3011        .addReg(SrcValReg)
3012        .addImm(0);
3013  } else {
3014    // Use insert.df to insert to element zero
3015    BuildMI(*BB, MI, DL, TII->get(InsertOp), WdTmp2)
3016        .addReg(WdTmp1)
3017        .addReg(SrcValReg)
3018        .addImm(0);
3019  }
3020
3021  // Rotate elements the rest of the way for a full rotation.
3022  // sld.df inteprets $rt modulo the number of columns so we only need to negate
3023  // the lane index to do this.
3024  unsigned LaneTmp2 = RegInfo.createVirtualRegister(GPRRC);
3025  BuildMI(*BB, MI, DL, TII->get(Mips::SUB), LaneTmp2)
3026      .addReg(Mips::ZERO)
3027      .addReg(LaneReg);
3028  BuildMI(*BB, MI, DL, TII->get(Mips::SLD_B), Wd)
3029      .addReg(WdTmp2)
3030      .addReg(WdTmp2)
3031      .addReg(LaneTmp2);
3032
3033  MI->eraseFromParent(); // The pseudo instruction is gone now.
3034  return BB;
3035}
3036
3037// Emit the FILL_FW pseudo instruction.
3038//
3039// fill_fw_pseudo $wd, $fs
3040// =>
3041// implicit_def $wt1
3042// insert_subreg $wt2:subreg_lo, $wt1, $fs
3043// splati.w $wd, $wt2[0]
3044MachineBasicBlock *
3045MipsSETargetLowering::emitFILL_FW(MachineInstr *MI,
3046                                  MachineBasicBlock *BB) const {
3047  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3048  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3049  DebugLoc DL = MI->getDebugLoc();
3050  unsigned Wd = MI->getOperand(0).getReg();
3051  unsigned Fs = MI->getOperand(1).getReg();
3052  unsigned Wt1 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
3053  unsigned Wt2 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
3054
3055  BuildMI(*BB, MI, DL, TII->get(Mips::IMPLICIT_DEF), Wt1);
3056  BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_SUBREG), Wt2)
3057      .addReg(Wt1)
3058      .addReg(Fs)
3059      .addImm(Mips::sub_lo);
3060  BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_W), Wd).addReg(Wt2).addImm(0);
3061
3062  MI->eraseFromParent(); // The pseudo instruction is gone now.
3063  return BB;
3064}
3065
3066// Emit the FILL_FD pseudo instruction.
3067//
3068// fill_fd_pseudo $wd, $fs
3069// =>
3070// implicit_def $wt1
3071// insert_subreg $wt2:subreg_64, $wt1, $fs
3072// splati.d $wd, $wt2[0]
3073MachineBasicBlock *
3074MipsSETargetLowering::emitFILL_FD(MachineInstr *MI,
3075                                  MachineBasicBlock *BB) const {
3076  assert(Subtarget->isFP64bit());
3077
3078  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3079  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3080  DebugLoc DL = MI->getDebugLoc();
3081  unsigned Wd = MI->getOperand(0).getReg();
3082  unsigned Fs = MI->getOperand(1).getReg();
3083  unsigned Wt1 = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
3084  unsigned Wt2 = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
3085
3086  BuildMI(*BB, MI, DL, TII->get(Mips::IMPLICIT_DEF), Wt1);
3087  BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_SUBREG), Wt2)
3088      .addReg(Wt1)
3089      .addReg(Fs)
3090      .addImm(Mips::sub_64);
3091  BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_D), Wd).addReg(Wt2).addImm(0);
3092
3093  MI->eraseFromParent();   // The pseudo instruction is gone now.
3094  return BB;
3095}
3096
3097// Emit the FEXP2_W_1 pseudo instructions.
3098//
3099// fexp2_w_1_pseudo $wd, $wt
3100// =>
3101// ldi.w $ws, 1
3102// fexp2.w $wd, $ws, $wt
3103MachineBasicBlock *
3104MipsSETargetLowering::emitFEXP2_W_1(MachineInstr *MI,
3105                                    MachineBasicBlock *BB) const {
3106  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3107  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3108  const TargetRegisterClass *RC = &Mips::MSA128WRegClass;
3109  unsigned Ws1 = RegInfo.createVirtualRegister(RC);
3110  unsigned Ws2 = RegInfo.createVirtualRegister(RC);
3111  DebugLoc DL = MI->getDebugLoc();
3112
3113  // Splat 1.0 into a vector
3114  BuildMI(*BB, MI, DL, TII->get(Mips::LDI_W), Ws1).addImm(1);
3115  BuildMI(*BB, MI, DL, TII->get(Mips::FFINT_U_W), Ws2).addReg(Ws1);
3116
3117  // Emit 1.0 * fexp2(Wt)
3118  BuildMI(*BB, MI, DL, TII->get(Mips::FEXP2_W), MI->getOperand(0).getReg())
3119      .addReg(Ws2)
3120      .addReg(MI->getOperand(1).getReg());
3121
3122  MI->eraseFromParent(); // The pseudo instruction is gone now.
3123  return BB;
3124}
3125
3126// Emit the FEXP2_D_1 pseudo instructions.
3127//
3128// fexp2_d_1_pseudo $wd, $wt
3129// =>
3130// ldi.d $ws, 1
3131// fexp2.d $wd, $ws, $wt
3132MachineBasicBlock *
3133MipsSETargetLowering::emitFEXP2_D_1(MachineInstr *MI,
3134                                    MachineBasicBlock *BB) const {
3135  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3136  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3137  const TargetRegisterClass *RC = &Mips::MSA128DRegClass;
3138  unsigned Ws1 = RegInfo.createVirtualRegister(RC);
3139  unsigned Ws2 = RegInfo.createVirtualRegister(RC);
3140  DebugLoc DL = MI->getDebugLoc();
3141
3142  // Splat 1.0 into a vector
3143  BuildMI(*BB, MI, DL, TII->get(Mips::LDI_D), Ws1).addImm(1);
3144  BuildMI(*BB, MI, DL, TII->get(Mips::FFINT_U_D), Ws2).addReg(Ws1);
3145
3146  // Emit 1.0 * fexp2(Wt)
3147  BuildMI(*BB, MI, DL, TII->get(Mips::FEXP2_D), MI->getOperand(0).getReg())
3148      .addReg(Ws2)
3149      .addReg(MI->getOperand(1).getReg());
3150
3151  MI->eraseFromParent(); // The pseudo instruction is gone now.
3152  return BB;
3153}
3154