1//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Jump Threading pass.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Transforms/Scalar.h"
15#include "llvm/ADT/DenseMap.h"
16#include "llvm/ADT/DenseSet.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/SmallPtrSet.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/ADT/Statistic.h"
21#include "llvm/Analysis/GlobalsModRef.h"
22#include "llvm/Analysis/CFG.h"
23#include "llvm/Analysis/BlockFrequencyInfo.h"
24#include "llvm/Analysis/BlockFrequencyInfoImpl.h"
25#include "llvm/Analysis/BranchProbabilityInfo.h"
26#include "llvm/Analysis/ConstantFolding.h"
27#include "llvm/Analysis/InstructionSimplify.h"
28#include "llvm/Analysis/LazyValueInfo.h"
29#include "llvm/Analysis/Loads.h"
30#include "llvm/Analysis/LoopInfo.h"
31#include "llvm/Analysis/TargetLibraryInfo.h"
32#include "llvm/Analysis/ValueTracking.h"
33#include "llvm/IR/DataLayout.h"
34#include "llvm/IR/IntrinsicInst.h"
35#include "llvm/IR/LLVMContext.h"
36#include "llvm/IR/MDBuilder.h"
37#include "llvm/IR/Metadata.h"
38#include "llvm/IR/ValueHandle.h"
39#include "llvm/Pass.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Support/Debug.h"
42#include "llvm/Support/raw_ostream.h"
43#include "llvm/Transforms/Utils/BasicBlockUtils.h"
44#include "llvm/Transforms/Utils/Local.h"
45#include "llvm/Transforms/Utils/SSAUpdater.h"
46#include <algorithm>
47#include <memory>
48using namespace llvm;
49
50#define DEBUG_TYPE "jump-threading"
51
52STATISTIC(NumThreads, "Number of jumps threaded");
53STATISTIC(NumFolds,   "Number of terminators folded");
54STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
55
56static cl::opt<unsigned>
57BBDuplicateThreshold("jump-threading-threshold",
58          cl::desc("Max block size to duplicate for jump threading"),
59          cl::init(6), cl::Hidden);
60
61static cl::opt<unsigned>
62ImplicationSearchThreshold(
63  "jump-threading-implication-search-threshold",
64  cl::desc("The number of predecessors to search for a stronger "
65           "condition to use to thread over a weaker condition"),
66  cl::init(3), cl::Hidden);
67
68namespace {
69  // These are at global scope so static functions can use them too.
70  typedef SmallVectorImpl<std::pair<Constant*, BasicBlock*> > PredValueInfo;
71  typedef SmallVector<std::pair<Constant*, BasicBlock*>, 8> PredValueInfoTy;
72
73  // This is used to keep track of what kind of constant we're currently hoping
74  // to find.
75  enum ConstantPreference {
76    WantInteger,
77    WantBlockAddress
78  };
79
80  /// This pass performs 'jump threading', which looks at blocks that have
81  /// multiple predecessors and multiple successors.  If one or more of the
82  /// predecessors of the block can be proven to always jump to one of the
83  /// successors, we forward the edge from the predecessor to the successor by
84  /// duplicating the contents of this block.
85  ///
86  /// An example of when this can occur is code like this:
87  ///
88  ///   if () { ...
89  ///     X = 4;
90  ///   }
91  ///   if (X < 3) {
92  ///
93  /// In this case, the unconditional branch at the end of the first if can be
94  /// revectored to the false side of the second if.
95  ///
96  class JumpThreading : public FunctionPass {
97    TargetLibraryInfo *TLI;
98    LazyValueInfo *LVI;
99    std::unique_ptr<BlockFrequencyInfo> BFI;
100    std::unique_ptr<BranchProbabilityInfo> BPI;
101    bool HasProfileData;
102#ifdef NDEBUG
103    SmallPtrSet<BasicBlock*, 16> LoopHeaders;
104#else
105    SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
106#endif
107    DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet;
108
109    unsigned BBDupThreshold;
110
111    // RAII helper for updating the recursion stack.
112    struct RecursionSetRemover {
113      DenseSet<std::pair<Value*, BasicBlock*> > &TheSet;
114      std::pair<Value*, BasicBlock*> ThePair;
115
116      RecursionSetRemover(DenseSet<std::pair<Value*, BasicBlock*> > &S,
117                          std::pair<Value*, BasicBlock*> P)
118        : TheSet(S), ThePair(P) { }
119
120      ~RecursionSetRemover() {
121        TheSet.erase(ThePair);
122      }
123    };
124  public:
125    static char ID; // Pass identification
126    JumpThreading(int T = -1) : FunctionPass(ID) {
127      BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
128      initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
129    }
130
131    bool runOnFunction(Function &F) override;
132
133    void getAnalysisUsage(AnalysisUsage &AU) const override {
134      AU.addRequired<LazyValueInfo>();
135      AU.addPreserved<LazyValueInfo>();
136      AU.addPreserved<GlobalsAAWrapperPass>();
137      AU.addRequired<TargetLibraryInfoWrapperPass>();
138    }
139
140    void releaseMemory() override {
141      BFI.reset();
142      BPI.reset();
143    }
144
145    void FindLoopHeaders(Function &F);
146    bool ProcessBlock(BasicBlock *BB);
147    bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
148                    BasicBlock *SuccBB);
149    bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
150                                  const SmallVectorImpl<BasicBlock *> &PredBBs);
151
152    bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
153                                         PredValueInfo &Result,
154                                         ConstantPreference Preference,
155                                         Instruction *CxtI = nullptr);
156    bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
157                                ConstantPreference Preference,
158                                Instruction *CxtI = nullptr);
159
160    bool ProcessBranchOnPHI(PHINode *PN);
161    bool ProcessBranchOnXOR(BinaryOperator *BO);
162    bool ProcessImpliedCondition(BasicBlock *BB);
163
164    bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
165    bool TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB);
166
167  private:
168    BasicBlock *SplitBlockPreds(BasicBlock *BB, ArrayRef<BasicBlock *> Preds,
169                                const char *Suffix);
170    void UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB, BasicBlock *BB,
171                                      BasicBlock *NewBB, BasicBlock *SuccBB);
172  };
173}
174
175char JumpThreading::ID = 0;
176INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
177                "Jump Threading", false, false)
178INITIALIZE_PASS_DEPENDENCY(LazyValueInfo)
179INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
180INITIALIZE_PASS_END(JumpThreading, "jump-threading",
181                "Jump Threading", false, false)
182
183// Public interface to the Jump Threading pass
184FunctionPass *llvm::createJumpThreadingPass(int Threshold) { return new JumpThreading(Threshold); }
185
186/// runOnFunction - Top level algorithm.
187///
188bool JumpThreading::runOnFunction(Function &F) {
189  if (skipOptnoneFunction(F))
190    return false;
191
192  DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
193  TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
194  LVI = &getAnalysis<LazyValueInfo>();
195  BFI.reset();
196  BPI.reset();
197  // When profile data is available, we need to update edge weights after
198  // successful jump threading, which requires both BPI and BFI being available.
199  HasProfileData = F.getEntryCount().hasValue();
200  if (HasProfileData) {
201    LoopInfo LI{DominatorTree(F)};
202    BPI.reset(new BranchProbabilityInfo(F, LI));
203    BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
204  }
205
206  // Remove unreachable blocks from function as they may result in infinite
207  // loop. We do threading if we found something profitable. Jump threading a
208  // branch can create other opportunities. If these opportunities form a cycle
209  // i.e. if any jump threading is undoing previous threading in the path, then
210  // we will loop forever. We take care of this issue by not jump threading for
211  // back edges. This works for normal cases but not for unreachable blocks as
212  // they may have cycle with no back edge.
213  removeUnreachableBlocks(F);
214
215  FindLoopHeaders(F);
216
217  bool Changed, EverChanged = false;
218  do {
219    Changed = false;
220    for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
221      BasicBlock *BB = &*I;
222      // Thread all of the branches we can over this block.
223      while (ProcessBlock(BB))
224        Changed = true;
225
226      ++I;
227
228      // If the block is trivially dead, zap it.  This eliminates the successor
229      // edges which simplifies the CFG.
230      if (pred_empty(BB) &&
231          BB != &BB->getParent()->getEntryBlock()) {
232        DEBUG(dbgs() << "  JT: Deleting dead block '" << BB->getName()
233              << "' with terminator: " << *BB->getTerminator() << '\n');
234        LoopHeaders.erase(BB);
235        LVI->eraseBlock(BB);
236        DeleteDeadBlock(BB);
237        Changed = true;
238        continue;
239      }
240
241      BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
242
243      // Can't thread an unconditional jump, but if the block is "almost
244      // empty", we can replace uses of it with uses of the successor and make
245      // this dead.
246      if (BI && BI->isUnconditional() &&
247          BB != &BB->getParent()->getEntryBlock() &&
248          // If the terminator is the only non-phi instruction, try to nuke it.
249          BB->getFirstNonPHIOrDbg()->isTerminator()) {
250        // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
251        // block, we have to make sure it isn't in the LoopHeaders set.  We
252        // reinsert afterward if needed.
253        bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
254        BasicBlock *Succ = BI->getSuccessor(0);
255
256        // FIXME: It is always conservatively correct to drop the info
257        // for a block even if it doesn't get erased.  This isn't totally
258        // awesome, but it allows us to use AssertingVH to prevent nasty
259        // dangling pointer issues within LazyValueInfo.
260        LVI->eraseBlock(BB);
261        if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) {
262          Changed = true;
263          // If we deleted BB and BB was the header of a loop, then the
264          // successor is now the header of the loop.
265          BB = Succ;
266        }
267
268        if (ErasedFromLoopHeaders)
269          LoopHeaders.insert(BB);
270      }
271    }
272    EverChanged |= Changed;
273  } while (Changed);
274
275  LoopHeaders.clear();
276  return EverChanged;
277}
278
279/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
280/// thread across it. Stop scanning the block when passing the threshold.
281static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB,
282                                             unsigned Threshold) {
283  /// Ignore PHI nodes, these will be flattened when duplication happens.
284  BasicBlock::const_iterator I(BB->getFirstNonPHI());
285
286  // FIXME: THREADING will delete values that are just used to compute the
287  // branch, so they shouldn't count against the duplication cost.
288
289  // Sum up the cost of each instruction until we get to the terminator.  Don't
290  // include the terminator because the copy won't include it.
291  unsigned Size = 0;
292  for (; !isa<TerminatorInst>(I); ++I) {
293
294    // Stop scanning the block if we've reached the threshold.
295    if (Size > Threshold)
296      return Size;
297
298    // Debugger intrinsics don't incur code size.
299    if (isa<DbgInfoIntrinsic>(I)) continue;
300
301    // If this is a pointer->pointer bitcast, it is free.
302    if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
303      continue;
304
305    // Bail out if this instruction gives back a token type, it is not possible
306    // to duplicate it if it is used outside this BB.
307    if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
308      return ~0U;
309
310    // All other instructions count for at least one unit.
311    ++Size;
312
313    // Calls are more expensive.  If they are non-intrinsic calls, we model them
314    // as having cost of 4.  If they are a non-vector intrinsic, we model them
315    // as having cost of 2 total, and if they are a vector intrinsic, we model
316    // them as having cost 1.
317    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
318      if (CI->cannotDuplicate() || CI->isConvergent())
319        // Blocks with NoDuplicate are modelled as having infinite cost, so they
320        // are never duplicated.
321        return ~0U;
322      else if (!isa<IntrinsicInst>(CI))
323        Size += 3;
324      else if (!CI->getType()->isVectorTy())
325        Size += 1;
326    }
327  }
328
329  // Threading through a switch statement is particularly profitable.  If this
330  // block ends in a switch, decrease its cost to make it more likely to happen.
331  if (isa<SwitchInst>(I))
332    Size = Size > 6 ? Size-6 : 0;
333
334  // The same holds for indirect branches, but slightly more so.
335  if (isa<IndirectBrInst>(I))
336    Size = Size > 8 ? Size-8 : 0;
337
338  return Size;
339}
340
341/// FindLoopHeaders - We do not want jump threading to turn proper loop
342/// structures into irreducible loops.  Doing this breaks up the loop nesting
343/// hierarchy and pessimizes later transformations.  To prevent this from
344/// happening, we first have to find the loop headers.  Here we approximate this
345/// by finding targets of backedges in the CFG.
346///
347/// Note that there definitely are cases when we want to allow threading of
348/// edges across a loop header.  For example, threading a jump from outside the
349/// loop (the preheader) to an exit block of the loop is definitely profitable.
350/// It is also almost always profitable to thread backedges from within the loop
351/// to exit blocks, and is often profitable to thread backedges to other blocks
352/// within the loop (forming a nested loop).  This simple analysis is not rich
353/// enough to track all of these properties and keep it up-to-date as the CFG
354/// mutates, so we don't allow any of these transformations.
355///
356void JumpThreading::FindLoopHeaders(Function &F) {
357  SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
358  FindFunctionBackedges(F, Edges);
359
360  for (unsigned i = 0, e = Edges.size(); i != e; ++i)
361    LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
362}
363
364/// getKnownConstant - Helper method to determine if we can thread over a
365/// terminator with the given value as its condition, and if so what value to
366/// use for that. What kind of value this is depends on whether we want an
367/// integer or a block address, but an undef is always accepted.
368/// Returns null if Val is null or not an appropriate constant.
369static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
370  if (!Val)
371    return nullptr;
372
373  // Undef is "known" enough.
374  if (UndefValue *U = dyn_cast<UndefValue>(Val))
375    return U;
376
377  if (Preference == WantBlockAddress)
378    return dyn_cast<BlockAddress>(Val->stripPointerCasts());
379
380  return dyn_cast<ConstantInt>(Val);
381}
382
383/// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
384/// if we can infer that the value is a known ConstantInt/BlockAddress or undef
385/// in any of our predecessors.  If so, return the known list of value and pred
386/// BB in the result vector.
387///
388/// This returns true if there were any known values.
389///
390bool JumpThreading::
391ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
392                                ConstantPreference Preference,
393                                Instruction *CxtI) {
394  // This method walks up use-def chains recursively.  Because of this, we could
395  // get into an infinite loop going around loops in the use-def chain.  To
396  // prevent this, keep track of what (value, block) pairs we've already visited
397  // and terminate the search if we loop back to them
398  if (!RecursionSet.insert(std::make_pair(V, BB)).second)
399    return false;
400
401  // An RAII help to remove this pair from the recursion set once the recursion
402  // stack pops back out again.
403  RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB));
404
405  // If V is a constant, then it is known in all predecessors.
406  if (Constant *KC = getKnownConstant(V, Preference)) {
407    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
408      Result.push_back(std::make_pair(KC, *PI));
409
410    return true;
411  }
412
413  // If V is a non-instruction value, or an instruction in a different block,
414  // then it can't be derived from a PHI.
415  Instruction *I = dyn_cast<Instruction>(V);
416  if (!I || I->getParent() != BB) {
417
418    // Okay, if this is a live-in value, see if it has a known value at the end
419    // of any of our predecessors.
420    //
421    // FIXME: This should be an edge property, not a block end property.
422    /// TODO: Per PR2563, we could infer value range information about a
423    /// predecessor based on its terminator.
424    //
425    // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
426    // "I" is a non-local compare-with-a-constant instruction.  This would be
427    // able to handle value inequalities better, for example if the compare is
428    // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
429    // Perhaps getConstantOnEdge should be smart enough to do this?
430
431    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
432      BasicBlock *P = *PI;
433      // If the value is known by LazyValueInfo to be a constant in a
434      // predecessor, use that information to try to thread this block.
435      Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
436      if (Constant *KC = getKnownConstant(PredCst, Preference))
437        Result.push_back(std::make_pair(KC, P));
438    }
439
440    return !Result.empty();
441  }
442
443  /// If I is a PHI node, then we know the incoming values for any constants.
444  if (PHINode *PN = dyn_cast<PHINode>(I)) {
445    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
446      Value *InVal = PN->getIncomingValue(i);
447      if (Constant *KC = getKnownConstant(InVal, Preference)) {
448        Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
449      } else {
450        Constant *CI = LVI->getConstantOnEdge(InVal,
451                                              PN->getIncomingBlock(i),
452                                              BB, CxtI);
453        if (Constant *KC = getKnownConstant(CI, Preference))
454          Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
455      }
456    }
457
458    return !Result.empty();
459  }
460
461  PredValueInfoTy LHSVals, RHSVals;
462
463  // Handle some boolean conditions.
464  if (I->getType()->getPrimitiveSizeInBits() == 1) {
465    assert(Preference == WantInteger && "One-bit non-integer type?");
466    // X | true -> true
467    // X & false -> false
468    if (I->getOpcode() == Instruction::Or ||
469        I->getOpcode() == Instruction::And) {
470      ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
471                                      WantInteger, CxtI);
472      ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals,
473                                      WantInteger, CxtI);
474
475      if (LHSVals.empty() && RHSVals.empty())
476        return false;
477
478      ConstantInt *InterestingVal;
479      if (I->getOpcode() == Instruction::Or)
480        InterestingVal = ConstantInt::getTrue(I->getContext());
481      else
482        InterestingVal = ConstantInt::getFalse(I->getContext());
483
484      SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
485
486      // Scan for the sentinel.  If we find an undef, force it to the
487      // interesting value: x|undef -> true and x&undef -> false.
488      for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
489        if (LHSVals[i].first == InterestingVal ||
490            isa<UndefValue>(LHSVals[i].first)) {
491          Result.push_back(LHSVals[i]);
492          Result.back().first = InterestingVal;
493          LHSKnownBBs.insert(LHSVals[i].second);
494        }
495      for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
496        if (RHSVals[i].first == InterestingVal ||
497            isa<UndefValue>(RHSVals[i].first)) {
498          // If we already inferred a value for this block on the LHS, don't
499          // re-add it.
500          if (!LHSKnownBBs.count(RHSVals[i].second)) {
501            Result.push_back(RHSVals[i]);
502            Result.back().first = InterestingVal;
503          }
504        }
505
506      return !Result.empty();
507    }
508
509    // Handle the NOT form of XOR.
510    if (I->getOpcode() == Instruction::Xor &&
511        isa<ConstantInt>(I->getOperand(1)) &&
512        cast<ConstantInt>(I->getOperand(1))->isOne()) {
513      ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result,
514                                      WantInteger, CxtI);
515      if (Result.empty())
516        return false;
517
518      // Invert the known values.
519      for (unsigned i = 0, e = Result.size(); i != e; ++i)
520        Result[i].first = ConstantExpr::getNot(Result[i].first);
521
522      return true;
523    }
524
525  // Try to simplify some other binary operator values.
526  } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
527    assert(Preference != WantBlockAddress
528            && "A binary operator creating a block address?");
529    if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
530      PredValueInfoTy LHSVals;
531      ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals,
532                                      WantInteger, CxtI);
533
534      // Try to use constant folding to simplify the binary operator.
535      for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
536        Constant *V = LHSVals[i].first;
537        Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
538
539        if (Constant *KC = getKnownConstant(Folded, WantInteger))
540          Result.push_back(std::make_pair(KC, LHSVals[i].second));
541      }
542    }
543
544    return !Result.empty();
545  }
546
547  // Handle compare with phi operand, where the PHI is defined in this block.
548  if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
549    assert(Preference == WantInteger && "Compares only produce integers");
550    PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
551    if (PN && PN->getParent() == BB) {
552      const DataLayout &DL = PN->getModule()->getDataLayout();
553      // We can do this simplification if any comparisons fold to true or false.
554      // See if any do.
555      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
556        BasicBlock *PredBB = PN->getIncomingBlock(i);
557        Value *LHS = PN->getIncomingValue(i);
558        Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
559
560        Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, DL);
561        if (!Res) {
562          if (!isa<Constant>(RHS))
563            continue;
564
565          LazyValueInfo::Tristate
566            ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
567                                           cast<Constant>(RHS), PredBB, BB,
568                                           CxtI ? CxtI : Cmp);
569          if (ResT == LazyValueInfo::Unknown)
570            continue;
571          Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
572        }
573
574        if (Constant *KC = getKnownConstant(Res, WantInteger))
575          Result.push_back(std::make_pair(KC, PredBB));
576      }
577
578      return !Result.empty();
579    }
580
581    // If comparing a live-in value against a constant, see if we know the
582    // live-in value on any predecessors.
583    if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) {
584      if (!isa<Instruction>(Cmp->getOperand(0)) ||
585          cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) {
586        Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
587
588        for (pred_iterator PI = pred_begin(BB), E = pred_end(BB);PI != E; ++PI){
589          BasicBlock *P = *PI;
590          // If the value is known by LazyValueInfo to be a constant in a
591          // predecessor, use that information to try to thread this block.
592          LazyValueInfo::Tristate Res =
593            LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
594                                    RHSCst, P, BB, CxtI ? CxtI : Cmp);
595          if (Res == LazyValueInfo::Unknown)
596            continue;
597
598          Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
599          Result.push_back(std::make_pair(ResC, P));
600        }
601
602        return !Result.empty();
603      }
604
605      // Try to find a constant value for the LHS of a comparison,
606      // and evaluate it statically if we can.
607      if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) {
608        PredValueInfoTy LHSVals;
609        ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
610                                        WantInteger, CxtI);
611
612        for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
613          Constant *V = LHSVals[i].first;
614          Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(),
615                                                      V, CmpConst);
616          if (Constant *KC = getKnownConstant(Folded, WantInteger))
617            Result.push_back(std::make_pair(KC, LHSVals[i].second));
618        }
619
620        return !Result.empty();
621      }
622    }
623  }
624
625  if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
626    // Handle select instructions where at least one operand is a known constant
627    // and we can figure out the condition value for any predecessor block.
628    Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
629    Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
630    PredValueInfoTy Conds;
631    if ((TrueVal || FalseVal) &&
632        ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds,
633                                        WantInteger, CxtI)) {
634      for (unsigned i = 0, e = Conds.size(); i != e; ++i) {
635        Constant *Cond = Conds[i].first;
636
637        // Figure out what value to use for the condition.
638        bool KnownCond;
639        if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
640          // A known boolean.
641          KnownCond = CI->isOne();
642        } else {
643          assert(isa<UndefValue>(Cond) && "Unexpected condition value");
644          // Either operand will do, so be sure to pick the one that's a known
645          // constant.
646          // FIXME: Do this more cleverly if both values are known constants?
647          KnownCond = (TrueVal != nullptr);
648        }
649
650        // See if the select has a known constant value for this predecessor.
651        if (Constant *Val = KnownCond ? TrueVal : FalseVal)
652          Result.push_back(std::make_pair(Val, Conds[i].second));
653      }
654
655      return !Result.empty();
656    }
657  }
658
659  // If all else fails, see if LVI can figure out a constant value for us.
660  Constant *CI = LVI->getConstant(V, BB, CxtI);
661  if (Constant *KC = getKnownConstant(CI, Preference)) {
662    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
663      Result.push_back(std::make_pair(KC, *PI));
664  }
665
666  return !Result.empty();
667}
668
669
670
671/// GetBestDestForBranchOnUndef - If we determine that the specified block ends
672/// in an undefined jump, decide which block is best to revector to.
673///
674/// Since we can pick an arbitrary destination, we pick the successor with the
675/// fewest predecessors.  This should reduce the in-degree of the others.
676///
677static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
678  TerminatorInst *BBTerm = BB->getTerminator();
679  unsigned MinSucc = 0;
680  BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
681  // Compute the successor with the minimum number of predecessors.
682  unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
683  for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
684    TestBB = BBTerm->getSuccessor(i);
685    unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
686    if (NumPreds < MinNumPreds) {
687      MinSucc = i;
688      MinNumPreds = NumPreds;
689    }
690  }
691
692  return MinSucc;
693}
694
695static bool hasAddressTakenAndUsed(BasicBlock *BB) {
696  if (!BB->hasAddressTaken()) return false;
697
698  // If the block has its address taken, it may be a tree of dead constants
699  // hanging off of it.  These shouldn't keep the block alive.
700  BlockAddress *BA = BlockAddress::get(BB);
701  BA->removeDeadConstantUsers();
702  return !BA->use_empty();
703}
704
705/// ProcessBlock - If there are any predecessors whose control can be threaded
706/// through to a successor, transform them now.
707bool JumpThreading::ProcessBlock(BasicBlock *BB) {
708  // If the block is trivially dead, just return and let the caller nuke it.
709  // This simplifies other transformations.
710  if (pred_empty(BB) &&
711      BB != &BB->getParent()->getEntryBlock())
712    return false;
713
714  // If this block has a single predecessor, and if that pred has a single
715  // successor, merge the blocks.  This encourages recursive jump threading
716  // because now the condition in this block can be threaded through
717  // predecessors of our predecessor block.
718  if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
719    const TerminatorInst *TI = SinglePred->getTerminator();
720    if (!TI->isExceptional() && TI->getNumSuccessors() == 1 &&
721        SinglePred != BB && !hasAddressTakenAndUsed(BB)) {
722      // If SinglePred was a loop header, BB becomes one.
723      if (LoopHeaders.erase(SinglePred))
724        LoopHeaders.insert(BB);
725
726      LVI->eraseBlock(SinglePred);
727      MergeBasicBlockIntoOnlyPred(BB);
728
729      return true;
730    }
731  }
732
733  // What kind of constant we're looking for.
734  ConstantPreference Preference = WantInteger;
735
736  // Look to see if the terminator is a conditional branch, switch or indirect
737  // branch, if not we can't thread it.
738  Value *Condition;
739  Instruction *Terminator = BB->getTerminator();
740  if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
741    // Can't thread an unconditional jump.
742    if (BI->isUnconditional()) return false;
743    Condition = BI->getCondition();
744  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
745    Condition = SI->getCondition();
746  } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
747    // Can't thread indirect branch with no successors.
748    if (IB->getNumSuccessors() == 0) return false;
749    Condition = IB->getAddress()->stripPointerCasts();
750    Preference = WantBlockAddress;
751  } else {
752    return false; // Must be an invoke.
753  }
754
755  // Run constant folding to see if we can reduce the condition to a simple
756  // constant.
757  if (Instruction *I = dyn_cast<Instruction>(Condition)) {
758    Value *SimpleVal =
759        ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
760    if (SimpleVal) {
761      I->replaceAllUsesWith(SimpleVal);
762      I->eraseFromParent();
763      Condition = SimpleVal;
764    }
765  }
766
767  // If the terminator is branching on an undef, we can pick any of the
768  // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
769  if (isa<UndefValue>(Condition)) {
770    unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
771
772    // Fold the branch/switch.
773    TerminatorInst *BBTerm = BB->getTerminator();
774    for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
775      if (i == BestSucc) continue;
776      BBTerm->getSuccessor(i)->removePredecessor(BB, true);
777    }
778
779    DEBUG(dbgs() << "  In block '" << BB->getName()
780          << "' folding undef terminator: " << *BBTerm << '\n');
781    BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
782    BBTerm->eraseFromParent();
783    return true;
784  }
785
786  // If the terminator of this block is branching on a constant, simplify the
787  // terminator to an unconditional branch.  This can occur due to threading in
788  // other blocks.
789  if (getKnownConstant(Condition, Preference)) {
790    DEBUG(dbgs() << "  In block '" << BB->getName()
791          << "' folding terminator: " << *BB->getTerminator() << '\n');
792    ++NumFolds;
793    ConstantFoldTerminator(BB, true);
794    return true;
795  }
796
797  Instruction *CondInst = dyn_cast<Instruction>(Condition);
798
799  // All the rest of our checks depend on the condition being an instruction.
800  if (!CondInst) {
801    // FIXME: Unify this with code below.
802    if (ProcessThreadableEdges(Condition, BB, Preference, Terminator))
803      return true;
804    return false;
805  }
806
807
808  if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
809    // If we're branching on a conditional, LVI might be able to determine
810    // it's value at the branch instruction.  We only handle comparisons
811    // against a constant at this time.
812    // TODO: This should be extended to handle switches as well.
813    BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
814    Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
815    if (CondBr && CondConst && CondBr->isConditional()) {
816      LazyValueInfo::Tristate Ret =
817        LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
818                            CondConst, CondBr);
819      if (Ret != LazyValueInfo::Unknown) {
820        unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0;
821        unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1;
822        CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true);
823        BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
824        CondBr->eraseFromParent();
825        if (CondCmp->use_empty())
826          CondCmp->eraseFromParent();
827        else if (CondCmp->getParent() == BB) {
828          // If the fact we just learned is true for all uses of the
829          // condition, replace it with a constant value
830          auto *CI = Ret == LazyValueInfo::True ?
831            ConstantInt::getTrue(CondCmp->getType()) :
832            ConstantInt::getFalse(CondCmp->getType());
833          CondCmp->replaceAllUsesWith(CI);
834          CondCmp->eraseFromParent();
835        }
836        return true;
837      }
838    }
839
840    if (CondBr && CondConst && TryToUnfoldSelect(CondCmp, BB))
841      return true;
842  }
843
844  // Check for some cases that are worth simplifying.  Right now we want to look
845  // for loads that are used by a switch or by the condition for the branch.  If
846  // we see one, check to see if it's partially redundant.  If so, insert a PHI
847  // which can then be used to thread the values.
848  //
849  Value *SimplifyValue = CondInst;
850  if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
851    if (isa<Constant>(CondCmp->getOperand(1)))
852      SimplifyValue = CondCmp->getOperand(0);
853
854  // TODO: There are other places where load PRE would be profitable, such as
855  // more complex comparisons.
856  if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
857    if (SimplifyPartiallyRedundantLoad(LI))
858      return true;
859
860
861  // Handle a variety of cases where we are branching on something derived from
862  // a PHI node in the current block.  If we can prove that any predecessors
863  // compute a predictable value based on a PHI node, thread those predecessors.
864  //
865  if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator))
866    return true;
867
868  // If this is an otherwise-unfoldable branch on a phi node in the current
869  // block, see if we can simplify.
870  if (PHINode *PN = dyn_cast<PHINode>(CondInst))
871    if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
872      return ProcessBranchOnPHI(PN);
873
874
875  // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
876  if (CondInst->getOpcode() == Instruction::Xor &&
877      CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
878    return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
879
880  // Search for a stronger dominating condition that can be used to simplify a
881  // conditional branch leaving BB.
882  if (ProcessImpliedCondition(BB))
883    return true;
884
885  return false;
886}
887
888bool JumpThreading::ProcessImpliedCondition(BasicBlock *BB) {
889  auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
890  if (!BI || !BI->isConditional())
891    return false;
892
893  Value *Cond = BI->getCondition();
894  BasicBlock *CurrentBB = BB;
895  BasicBlock *CurrentPred = BB->getSinglePredecessor();
896  unsigned Iter = 0;
897
898  auto &DL = BB->getModule()->getDataLayout();
899
900  while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
901    auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
902    if (!PBI || !PBI->isConditional() || PBI->getSuccessor(0) != CurrentBB)
903      return false;
904
905    if (isImpliedCondition(PBI->getCondition(), Cond, DL)) {
906      BI->getSuccessor(1)->removePredecessor(BB);
907      BranchInst::Create(BI->getSuccessor(0), BI);
908      BI->eraseFromParent();
909      return true;
910    }
911    CurrentBB = CurrentPred;
912    CurrentPred = CurrentBB->getSinglePredecessor();
913  }
914
915  return false;
916}
917
918/// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
919/// load instruction, eliminate it by replacing it with a PHI node.  This is an
920/// important optimization that encourages jump threading, and needs to be run
921/// interlaced with other jump threading tasks.
922bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
923  // Don't hack volatile/atomic loads.
924  if (!LI->isSimple()) return false;
925
926  // If the load is defined in a block with exactly one predecessor, it can't be
927  // partially redundant.
928  BasicBlock *LoadBB = LI->getParent();
929  if (LoadBB->getSinglePredecessor())
930    return false;
931
932  // If the load is defined in an EH pad, it can't be partially redundant,
933  // because the edges between the invoke and the EH pad cannot have other
934  // instructions between them.
935  if (LoadBB->isEHPad())
936    return false;
937
938  Value *LoadedPtr = LI->getOperand(0);
939
940  // If the loaded operand is defined in the LoadBB, it can't be available.
941  // TODO: Could do simple PHI translation, that would be fun :)
942  if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
943    if (PtrOp->getParent() == LoadBB)
944      return false;
945
946  // Scan a few instructions up from the load, to see if it is obviously live at
947  // the entry to its block.
948  BasicBlock::iterator BBIt(LI);
949
950  if (Value *AvailableVal =
951        FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, DefMaxInstsToScan)) {
952    // If the value of the load is locally available within the block, just use
953    // it.  This frequently occurs for reg2mem'd allocas.
954    //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
955
956    // If the returned value is the load itself, replace with an undef. This can
957    // only happen in dead loops.
958    if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
959    if (AvailableVal->getType() != LI->getType())
960      AvailableVal =
961          CastInst::CreateBitOrPointerCast(AvailableVal, LI->getType(), "", LI);
962    LI->replaceAllUsesWith(AvailableVal);
963    LI->eraseFromParent();
964    return true;
965  }
966
967  // Otherwise, if we scanned the whole block and got to the top of the block,
968  // we know the block is locally transparent to the load.  If not, something
969  // might clobber its value.
970  if (BBIt != LoadBB->begin())
971    return false;
972
973  // If all of the loads and stores that feed the value have the same AA tags,
974  // then we can propagate them onto any newly inserted loads.
975  AAMDNodes AATags;
976  LI->getAAMetadata(AATags);
977
978  SmallPtrSet<BasicBlock*, 8> PredsScanned;
979  typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
980  AvailablePredsTy AvailablePreds;
981  BasicBlock *OneUnavailablePred = nullptr;
982
983  // If we got here, the loaded value is transparent through to the start of the
984  // block.  Check to see if it is available in any of the predecessor blocks.
985  for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
986       PI != PE; ++PI) {
987    BasicBlock *PredBB = *PI;
988
989    // If we already scanned this predecessor, skip it.
990    if (!PredsScanned.insert(PredBB).second)
991      continue;
992
993    // Scan the predecessor to see if the value is available in the pred.
994    BBIt = PredBB->end();
995    AAMDNodes ThisAATags;
996    Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt,
997                                                    DefMaxInstsToScan,
998                                                    nullptr, &ThisAATags);
999    if (!PredAvailable) {
1000      OneUnavailablePred = PredBB;
1001      continue;
1002    }
1003
1004    // If AA tags disagree or are not present, forget about them.
1005    if (AATags != ThisAATags) AATags = AAMDNodes();
1006
1007    // If so, this load is partially redundant.  Remember this info so that we
1008    // can create a PHI node.
1009    AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
1010  }
1011
1012  // If the loaded value isn't available in any predecessor, it isn't partially
1013  // redundant.
1014  if (AvailablePreds.empty()) return false;
1015
1016  // Okay, the loaded value is available in at least one (and maybe all!)
1017  // predecessors.  If the value is unavailable in more than one unique
1018  // predecessor, we want to insert a merge block for those common predecessors.
1019  // This ensures that we only have to insert one reload, thus not increasing
1020  // code size.
1021  BasicBlock *UnavailablePred = nullptr;
1022
1023  // If there is exactly one predecessor where the value is unavailable, the
1024  // already computed 'OneUnavailablePred' block is it.  If it ends in an
1025  // unconditional branch, we know that it isn't a critical edge.
1026  if (PredsScanned.size() == AvailablePreds.size()+1 &&
1027      OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1028    UnavailablePred = OneUnavailablePred;
1029  } else if (PredsScanned.size() != AvailablePreds.size()) {
1030    // Otherwise, we had multiple unavailable predecessors or we had a critical
1031    // edge from the one.
1032    SmallVector<BasicBlock*, 8> PredsToSplit;
1033    SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1034
1035    for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
1036      AvailablePredSet.insert(AvailablePreds[i].first);
1037
1038    // Add all the unavailable predecessors to the PredsToSplit list.
1039    for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
1040         PI != PE; ++PI) {
1041      BasicBlock *P = *PI;
1042      // If the predecessor is an indirect goto, we can't split the edge.
1043      if (isa<IndirectBrInst>(P->getTerminator()))
1044        return false;
1045
1046      if (!AvailablePredSet.count(P))
1047        PredsToSplit.push_back(P);
1048    }
1049
1050    // Split them out to their own block.
1051    UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1052  }
1053
1054  // If the value isn't available in all predecessors, then there will be
1055  // exactly one where it isn't available.  Insert a load on that edge and add
1056  // it to the AvailablePreds list.
1057  if (UnavailablePred) {
1058    assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1059           "Can't handle critical edge here!");
1060    LoadInst *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false,
1061                                 LI->getAlignment(),
1062                                 UnavailablePred->getTerminator());
1063    NewVal->setDebugLoc(LI->getDebugLoc());
1064    if (AATags)
1065      NewVal->setAAMetadata(AATags);
1066
1067    AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
1068  }
1069
1070  // Now we know that each predecessor of this block has a value in
1071  // AvailablePreds, sort them for efficient access as we're walking the preds.
1072  array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1073
1074  // Create a PHI node at the start of the block for the PRE'd load value.
1075  pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
1076  PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "",
1077                                &LoadBB->front());
1078  PN->takeName(LI);
1079  PN->setDebugLoc(LI->getDebugLoc());
1080
1081  // Insert new entries into the PHI for each predecessor.  A single block may
1082  // have multiple entries here.
1083  for (pred_iterator PI = PB; PI != PE; ++PI) {
1084    BasicBlock *P = *PI;
1085    AvailablePredsTy::iterator I =
1086      std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
1087                       std::make_pair(P, (Value*)nullptr));
1088
1089    assert(I != AvailablePreds.end() && I->first == P &&
1090           "Didn't find entry for predecessor!");
1091
1092    // If we have an available predecessor but it requires casting, insert the
1093    // cast in the predecessor and use the cast. Note that we have to update the
1094    // AvailablePreds vector as we go so that all of the PHI entries for this
1095    // predecessor use the same bitcast.
1096    Value *&PredV = I->second;
1097    if (PredV->getType() != LI->getType())
1098      PredV = CastInst::CreateBitOrPointerCast(PredV, LI->getType(), "",
1099                                               P->getTerminator());
1100
1101    PN->addIncoming(PredV, I->first);
1102  }
1103
1104  //cerr << "PRE: " << *LI << *PN << "\n";
1105
1106  LI->replaceAllUsesWith(PN);
1107  LI->eraseFromParent();
1108
1109  return true;
1110}
1111
1112/// FindMostPopularDest - The specified list contains multiple possible
1113/// threadable destinations.  Pick the one that occurs the most frequently in
1114/// the list.
1115static BasicBlock *
1116FindMostPopularDest(BasicBlock *BB,
1117                    const SmallVectorImpl<std::pair<BasicBlock*,
1118                                  BasicBlock*> > &PredToDestList) {
1119  assert(!PredToDestList.empty());
1120
1121  // Determine popularity.  If there are multiple possible destinations, we
1122  // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1123  // blocks with known and real destinations to threading undef.  We'll handle
1124  // them later if interesting.
1125  DenseMap<BasicBlock*, unsigned> DestPopularity;
1126  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1127    if (PredToDestList[i].second)
1128      DestPopularity[PredToDestList[i].second]++;
1129
1130  // Find the most popular dest.
1131  DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
1132  BasicBlock *MostPopularDest = DPI->first;
1133  unsigned Popularity = DPI->second;
1134  SmallVector<BasicBlock*, 4> SamePopularity;
1135
1136  for (++DPI; DPI != DestPopularity.end(); ++DPI) {
1137    // If the popularity of this entry isn't higher than the popularity we've
1138    // seen so far, ignore it.
1139    if (DPI->second < Popularity)
1140      ; // ignore.
1141    else if (DPI->second == Popularity) {
1142      // If it is the same as what we've seen so far, keep track of it.
1143      SamePopularity.push_back(DPI->first);
1144    } else {
1145      // If it is more popular, remember it.
1146      SamePopularity.clear();
1147      MostPopularDest = DPI->first;
1148      Popularity = DPI->second;
1149    }
1150  }
1151
1152  // Okay, now we know the most popular destination.  If there is more than one
1153  // destination, we need to determine one.  This is arbitrary, but we need
1154  // to make a deterministic decision.  Pick the first one that appears in the
1155  // successor list.
1156  if (!SamePopularity.empty()) {
1157    SamePopularity.push_back(MostPopularDest);
1158    TerminatorInst *TI = BB->getTerminator();
1159    for (unsigned i = 0; ; ++i) {
1160      assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
1161
1162      if (std::find(SamePopularity.begin(), SamePopularity.end(),
1163                    TI->getSuccessor(i)) == SamePopularity.end())
1164        continue;
1165
1166      MostPopularDest = TI->getSuccessor(i);
1167      break;
1168    }
1169  }
1170
1171  // Okay, we have finally picked the most popular destination.
1172  return MostPopularDest;
1173}
1174
1175bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
1176                                           ConstantPreference Preference,
1177                                           Instruction *CxtI) {
1178  // If threading this would thread across a loop header, don't even try to
1179  // thread the edge.
1180  if (LoopHeaders.count(BB))
1181    return false;
1182
1183  PredValueInfoTy PredValues;
1184  if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI))
1185    return false;
1186
1187  assert(!PredValues.empty() &&
1188         "ComputeValueKnownInPredecessors returned true with no values");
1189
1190  DEBUG(dbgs() << "IN BB: " << *BB;
1191        for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1192          dbgs() << "  BB '" << BB->getName() << "': FOUND condition = "
1193            << *PredValues[i].first
1194            << " for pred '" << PredValues[i].second->getName() << "'.\n";
1195        });
1196
1197  // Decide what we want to thread through.  Convert our list of known values to
1198  // a list of known destinations for each pred.  This also discards duplicate
1199  // predecessors and keeps track of the undefined inputs (which are represented
1200  // as a null dest in the PredToDestList).
1201  SmallPtrSet<BasicBlock*, 16> SeenPreds;
1202  SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1203
1204  BasicBlock *OnlyDest = nullptr;
1205  BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1206
1207  for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1208    BasicBlock *Pred = PredValues[i].second;
1209    if (!SeenPreds.insert(Pred).second)
1210      continue;  // Duplicate predecessor entry.
1211
1212    // If the predecessor ends with an indirect goto, we can't change its
1213    // destination.
1214    if (isa<IndirectBrInst>(Pred->getTerminator()))
1215      continue;
1216
1217    Constant *Val = PredValues[i].first;
1218
1219    BasicBlock *DestBB;
1220    if (isa<UndefValue>(Val))
1221      DestBB = nullptr;
1222    else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
1223      DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1224    else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1225      DestBB = SI->findCaseValue(cast<ConstantInt>(Val)).getCaseSuccessor();
1226    } else {
1227      assert(isa<IndirectBrInst>(BB->getTerminator())
1228              && "Unexpected terminator");
1229      DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1230    }
1231
1232    // If we have exactly one destination, remember it for efficiency below.
1233    if (PredToDestList.empty())
1234      OnlyDest = DestBB;
1235    else if (OnlyDest != DestBB)
1236      OnlyDest = MultipleDestSentinel;
1237
1238    PredToDestList.push_back(std::make_pair(Pred, DestBB));
1239  }
1240
1241  // If all edges were unthreadable, we fail.
1242  if (PredToDestList.empty())
1243    return false;
1244
1245  // Determine which is the most common successor.  If we have many inputs and
1246  // this block is a switch, we want to start by threading the batch that goes
1247  // to the most popular destination first.  If we only know about one
1248  // threadable destination (the common case) we can avoid this.
1249  BasicBlock *MostPopularDest = OnlyDest;
1250
1251  if (MostPopularDest == MultipleDestSentinel)
1252    MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1253
1254  // Now that we know what the most popular destination is, factor all
1255  // predecessors that will jump to it into a single predecessor.
1256  SmallVector<BasicBlock*, 16> PredsToFactor;
1257  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1258    if (PredToDestList[i].second == MostPopularDest) {
1259      BasicBlock *Pred = PredToDestList[i].first;
1260
1261      // This predecessor may be a switch or something else that has multiple
1262      // edges to the block.  Factor each of these edges by listing them
1263      // according to # occurrences in PredsToFactor.
1264      TerminatorInst *PredTI = Pred->getTerminator();
1265      for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
1266        if (PredTI->getSuccessor(i) == BB)
1267          PredsToFactor.push_back(Pred);
1268    }
1269
1270  // If the threadable edges are branching on an undefined value, we get to pick
1271  // the destination that these predecessors should get to.
1272  if (!MostPopularDest)
1273    MostPopularDest = BB->getTerminator()->
1274                            getSuccessor(GetBestDestForJumpOnUndef(BB));
1275
1276  // Ok, try to thread it!
1277  return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1278}
1279
1280/// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1281/// a PHI node in the current block.  See if there are any simplifications we
1282/// can do based on inputs to the phi node.
1283///
1284bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) {
1285  BasicBlock *BB = PN->getParent();
1286
1287  // TODO: We could make use of this to do it once for blocks with common PHI
1288  // values.
1289  SmallVector<BasicBlock*, 1> PredBBs;
1290  PredBBs.resize(1);
1291
1292  // If any of the predecessor blocks end in an unconditional branch, we can
1293  // *duplicate* the conditional branch into that block in order to further
1294  // encourage jump threading and to eliminate cases where we have branch on a
1295  // phi of an icmp (branch on icmp is much better).
1296  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1297    BasicBlock *PredBB = PN->getIncomingBlock(i);
1298    if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1299      if (PredBr->isUnconditional()) {
1300        PredBBs[0] = PredBB;
1301        // Try to duplicate BB into PredBB.
1302        if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1303          return true;
1304      }
1305  }
1306
1307  return false;
1308}
1309
1310/// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1311/// a xor instruction in the current block.  See if there are any
1312/// simplifications we can do based on inputs to the xor.
1313///
1314bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) {
1315  BasicBlock *BB = BO->getParent();
1316
1317  // If either the LHS or RHS of the xor is a constant, don't do this
1318  // optimization.
1319  if (isa<ConstantInt>(BO->getOperand(0)) ||
1320      isa<ConstantInt>(BO->getOperand(1)))
1321    return false;
1322
1323  // If the first instruction in BB isn't a phi, we won't be able to infer
1324  // anything special about any particular predecessor.
1325  if (!isa<PHINode>(BB->front()))
1326    return false;
1327
1328  // If we have a xor as the branch input to this block, and we know that the
1329  // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1330  // the condition into the predecessor and fix that value to true, saving some
1331  // logical ops on that path and encouraging other paths to simplify.
1332  //
1333  // This copies something like this:
1334  //
1335  //  BB:
1336  //    %X = phi i1 [1],  [%X']
1337  //    %Y = icmp eq i32 %A, %B
1338  //    %Z = xor i1 %X, %Y
1339  //    br i1 %Z, ...
1340  //
1341  // Into:
1342  //  BB':
1343  //    %Y = icmp ne i32 %A, %B
1344  //    br i1 %Y, ...
1345
1346  PredValueInfoTy XorOpValues;
1347  bool isLHS = true;
1348  if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1349                                       WantInteger, BO)) {
1350    assert(XorOpValues.empty());
1351    if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1352                                         WantInteger, BO))
1353      return false;
1354    isLHS = false;
1355  }
1356
1357  assert(!XorOpValues.empty() &&
1358         "ComputeValueKnownInPredecessors returned true with no values");
1359
1360  // Scan the information to see which is most popular: true or false.  The
1361  // predecessors can be of the set true, false, or undef.
1362  unsigned NumTrue = 0, NumFalse = 0;
1363  for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1364    if (isa<UndefValue>(XorOpValues[i].first))
1365      // Ignore undefs for the count.
1366      continue;
1367    if (cast<ConstantInt>(XorOpValues[i].first)->isZero())
1368      ++NumFalse;
1369    else
1370      ++NumTrue;
1371  }
1372
1373  // Determine which value to split on, true, false, or undef if neither.
1374  ConstantInt *SplitVal = nullptr;
1375  if (NumTrue > NumFalse)
1376    SplitVal = ConstantInt::getTrue(BB->getContext());
1377  else if (NumTrue != 0 || NumFalse != 0)
1378    SplitVal = ConstantInt::getFalse(BB->getContext());
1379
1380  // Collect all of the blocks that this can be folded into so that we can
1381  // factor this once and clone it once.
1382  SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1383  for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1384    if (XorOpValues[i].first != SplitVal &&
1385        !isa<UndefValue>(XorOpValues[i].first))
1386      continue;
1387
1388    BlocksToFoldInto.push_back(XorOpValues[i].second);
1389  }
1390
1391  // If we inferred a value for all of the predecessors, then duplication won't
1392  // help us.  However, we can just replace the LHS or RHS with the constant.
1393  if (BlocksToFoldInto.size() ==
1394      cast<PHINode>(BB->front()).getNumIncomingValues()) {
1395    if (!SplitVal) {
1396      // If all preds provide undef, just nuke the xor, because it is undef too.
1397      BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1398      BO->eraseFromParent();
1399    } else if (SplitVal->isZero()) {
1400      // If all preds provide 0, replace the xor with the other input.
1401      BO->replaceAllUsesWith(BO->getOperand(isLHS));
1402      BO->eraseFromParent();
1403    } else {
1404      // If all preds provide 1, set the computed value to 1.
1405      BO->setOperand(!isLHS, SplitVal);
1406    }
1407
1408    return true;
1409  }
1410
1411  // Try to duplicate BB into PredBB.
1412  return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1413}
1414
1415
1416/// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1417/// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1418/// NewPred using the entries from OldPred (suitably mapped).
1419static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1420                                            BasicBlock *OldPred,
1421                                            BasicBlock *NewPred,
1422                                     DenseMap<Instruction*, Value*> &ValueMap) {
1423  for (BasicBlock::iterator PNI = PHIBB->begin();
1424       PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1425    // Ok, we have a PHI node.  Figure out what the incoming value was for the
1426    // DestBlock.
1427    Value *IV = PN->getIncomingValueForBlock(OldPred);
1428
1429    // Remap the value if necessary.
1430    if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1431      DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1432      if (I != ValueMap.end())
1433        IV = I->second;
1434    }
1435
1436    PN->addIncoming(IV, NewPred);
1437  }
1438}
1439
1440/// ThreadEdge - We have decided that it is safe and profitable to factor the
1441/// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1442/// across BB.  Transform the IR to reflect this change.
1443bool JumpThreading::ThreadEdge(BasicBlock *BB,
1444                               const SmallVectorImpl<BasicBlock*> &PredBBs,
1445                               BasicBlock *SuccBB) {
1446  // If threading to the same block as we come from, we would infinite loop.
1447  if (SuccBB == BB) {
1448    DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
1449          << "' - would thread to self!\n");
1450    return false;
1451  }
1452
1453  // If threading this would thread across a loop header, don't thread the edge.
1454  // See the comments above FindLoopHeaders for justifications and caveats.
1455  if (LoopHeaders.count(BB)) {
1456    DEBUG(dbgs() << "  Not threading across loop header BB '" << BB->getName()
1457          << "' to dest BB '" << SuccBB->getName()
1458          << "' - it might create an irreducible loop!\n");
1459    return false;
1460  }
1461
1462  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB, BBDupThreshold);
1463  if (JumpThreadCost > BBDupThreshold) {
1464    DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
1465          << "' - Cost is too high: " << JumpThreadCost << "\n");
1466    return false;
1467  }
1468
1469  // And finally, do it!  Start by factoring the predecessors if needed.
1470  BasicBlock *PredBB;
1471  if (PredBBs.size() == 1)
1472    PredBB = PredBBs[0];
1473  else {
1474    DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1475          << " common predecessors.\n");
1476    PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
1477  }
1478
1479  // And finally, do it!
1480  DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName() << "' to '"
1481        << SuccBB->getName() << "' with cost: " << JumpThreadCost
1482        << ", across block:\n    "
1483        << *BB << "\n");
1484
1485  LVI->threadEdge(PredBB, BB, SuccBB);
1486
1487  // We are going to have to map operands from the original BB block to the new
1488  // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1489  // account for entry from PredBB.
1490  DenseMap<Instruction*, Value*> ValueMapping;
1491
1492  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1493                                         BB->getName()+".thread",
1494                                         BB->getParent(), BB);
1495  NewBB->moveAfter(PredBB);
1496
1497  // Set the block frequency of NewBB.
1498  if (HasProfileData) {
1499    auto NewBBFreq =
1500        BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
1501    BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
1502  }
1503
1504  BasicBlock::iterator BI = BB->begin();
1505  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1506    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1507
1508  // Clone the non-phi instructions of BB into NewBB, keeping track of the
1509  // mapping and using it to remap operands in the cloned instructions.
1510  for (; !isa<TerminatorInst>(BI); ++BI) {
1511    Instruction *New = BI->clone();
1512    New->setName(BI->getName());
1513    NewBB->getInstList().push_back(New);
1514    ValueMapping[&*BI] = New;
1515
1516    // Remap operands to patch up intra-block references.
1517    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1518      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1519        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1520        if (I != ValueMapping.end())
1521          New->setOperand(i, I->second);
1522      }
1523  }
1524
1525  // We didn't copy the terminator from BB over to NewBB, because there is now
1526  // an unconditional jump to SuccBB.  Insert the unconditional jump.
1527  BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
1528  NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
1529
1530  // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1531  // PHI nodes for NewBB now.
1532  AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1533
1534  // If there were values defined in BB that are used outside the block, then we
1535  // now have to update all uses of the value to use either the original value,
1536  // the cloned value, or some PHI derived value.  This can require arbitrary
1537  // PHI insertion, of which we are prepared to do, clean these up now.
1538  SSAUpdater SSAUpdate;
1539  SmallVector<Use*, 16> UsesToRename;
1540  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1541    // Scan all uses of this instruction to see if it is used outside of its
1542    // block, and if so, record them in UsesToRename.
1543    for (Use &U : I->uses()) {
1544      Instruction *User = cast<Instruction>(U.getUser());
1545      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1546        if (UserPN->getIncomingBlock(U) == BB)
1547          continue;
1548      } else if (User->getParent() == BB)
1549        continue;
1550
1551      UsesToRename.push_back(&U);
1552    }
1553
1554    // If there are no uses outside the block, we're done with this instruction.
1555    if (UsesToRename.empty())
1556      continue;
1557
1558    DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
1559
1560    // We found a use of I outside of BB.  Rename all uses of I that are outside
1561    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1562    // with the two values we know.
1563    SSAUpdate.Initialize(I->getType(), I->getName());
1564    SSAUpdate.AddAvailableValue(BB, &*I);
1565    SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&*I]);
1566
1567    while (!UsesToRename.empty())
1568      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1569    DEBUG(dbgs() << "\n");
1570  }
1571
1572
1573  // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
1574  // NewBB instead of BB.  This eliminates predecessors from BB, which requires
1575  // us to simplify any PHI nodes in BB.
1576  TerminatorInst *PredTerm = PredBB->getTerminator();
1577  for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1578    if (PredTerm->getSuccessor(i) == BB) {
1579      BB->removePredecessor(PredBB, true);
1580      PredTerm->setSuccessor(i, NewBB);
1581    }
1582
1583  // At this point, the IR is fully up to date and consistent.  Do a quick scan
1584  // over the new instructions and zap any that are constants or dead.  This
1585  // frequently happens because of phi translation.
1586  SimplifyInstructionsInBlock(NewBB, TLI);
1587
1588  // Update the edge weight from BB to SuccBB, which should be less than before.
1589  UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);
1590
1591  // Threaded an edge!
1592  ++NumThreads;
1593  return true;
1594}
1595
1596/// Create a new basic block that will be the predecessor of BB and successor of
1597/// all blocks in Preds. When profile data is availble, update the frequency of
1598/// this new block.
1599BasicBlock *JumpThreading::SplitBlockPreds(BasicBlock *BB,
1600                                           ArrayRef<BasicBlock *> Preds,
1601                                           const char *Suffix) {
1602  // Collect the frequencies of all predecessors of BB, which will be used to
1603  // update the edge weight on BB->SuccBB.
1604  BlockFrequency PredBBFreq(0);
1605  if (HasProfileData)
1606    for (auto Pred : Preds)
1607      PredBBFreq += BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB);
1608
1609  BasicBlock *PredBB = SplitBlockPredecessors(BB, Preds, Suffix);
1610
1611  // Set the block frequency of the newly created PredBB, which is the sum of
1612  // frequencies of Preds.
1613  if (HasProfileData)
1614    BFI->setBlockFreq(PredBB, PredBBFreq.getFrequency());
1615  return PredBB;
1616}
1617
1618/// Update the block frequency of BB and branch weight and the metadata on the
1619/// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
1620/// Freq(PredBB->BB) / Freq(BB->SuccBB).
1621void JumpThreading::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
1622                                                 BasicBlock *BB,
1623                                                 BasicBlock *NewBB,
1624                                                 BasicBlock *SuccBB) {
1625  if (!HasProfileData)
1626    return;
1627
1628  assert(BFI && BPI && "BFI & BPI should have been created here");
1629
1630  // As the edge from PredBB to BB is deleted, we have to update the block
1631  // frequency of BB.
1632  auto BBOrigFreq = BFI->getBlockFreq(BB);
1633  auto NewBBFreq = BFI->getBlockFreq(NewBB);
1634  auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
1635  auto BBNewFreq = BBOrigFreq - NewBBFreq;
1636  BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
1637
1638  // Collect updated outgoing edges' frequencies from BB and use them to update
1639  // edge weights.
1640  SmallVector<uint64_t, 4> BBSuccFreq;
1641  for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
1642    auto SuccFreq = (*I == SuccBB)
1643                        ? BB2SuccBBFreq - NewBBFreq
1644                        : BBOrigFreq * BPI->getEdgeProbability(BB, *I);
1645    BBSuccFreq.push_back(SuccFreq.getFrequency());
1646  }
1647
1648  // Normalize edge weights in Weights64 so that the sum of them can fit in
1649  BranchProbability::normalizeEdgeWeights(BBSuccFreq.begin(), BBSuccFreq.end());
1650
1651  SmallVector<uint32_t, 4> Weights;
1652  for (auto Freq : BBSuccFreq)
1653    Weights.push_back(static_cast<uint32_t>(Freq));
1654
1655  // Update edge weights in BPI.
1656  for (int I = 0, E = Weights.size(); I < E; I++)
1657    BPI->setEdgeWeight(BB, I, Weights[I]);
1658
1659  if (Weights.size() >= 2) {
1660    auto TI = BB->getTerminator();
1661    TI->setMetadata(
1662        LLVMContext::MD_prof,
1663        MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
1664  }
1665}
1666
1667/// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1668/// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1669/// If we can duplicate the contents of BB up into PredBB do so now, this
1670/// improves the odds that the branch will be on an analyzable instruction like
1671/// a compare.
1672bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
1673                                 const SmallVectorImpl<BasicBlock *> &PredBBs) {
1674  assert(!PredBBs.empty() && "Can't handle an empty set");
1675
1676  // If BB is a loop header, then duplicating this block outside the loop would
1677  // cause us to transform this into an irreducible loop, don't do this.
1678  // See the comments above FindLoopHeaders for justifications and caveats.
1679  if (LoopHeaders.count(BB)) {
1680    DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
1681          << "' into predecessor block '" << PredBBs[0]->getName()
1682          << "' - it might create an irreducible loop!\n");
1683    return false;
1684  }
1685
1686  unsigned DuplicationCost = getJumpThreadDuplicationCost(BB, BBDupThreshold);
1687  if (DuplicationCost > BBDupThreshold) {
1688    DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
1689          << "' - Cost is too high: " << DuplicationCost << "\n");
1690    return false;
1691  }
1692
1693  // And finally, do it!  Start by factoring the predecessors if needed.
1694  BasicBlock *PredBB;
1695  if (PredBBs.size() == 1)
1696    PredBB = PredBBs[0];
1697  else {
1698    DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1699          << " common predecessors.\n");
1700    PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
1701  }
1702
1703  // Okay, we decided to do this!  Clone all the instructions in BB onto the end
1704  // of PredBB.
1705  DEBUG(dbgs() << "  Duplicating block '" << BB->getName() << "' into end of '"
1706        << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
1707        << DuplicationCost << " block is:" << *BB << "\n");
1708
1709  // Unless PredBB ends with an unconditional branch, split the edge so that we
1710  // can just clone the bits from BB into the end of the new PredBB.
1711  BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
1712
1713  if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
1714    PredBB = SplitEdge(PredBB, BB);
1715    OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1716  }
1717
1718  // We are going to have to map operands from the original BB block into the
1719  // PredBB block.  Evaluate PHI nodes in BB.
1720  DenseMap<Instruction*, Value*> ValueMapping;
1721
1722  BasicBlock::iterator BI = BB->begin();
1723  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1724    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1725  // Clone the non-phi instructions of BB into PredBB, keeping track of the
1726  // mapping and using it to remap operands in the cloned instructions.
1727  for (; BI != BB->end(); ++BI) {
1728    Instruction *New = BI->clone();
1729
1730    // Remap operands to patch up intra-block references.
1731    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1732      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1733        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1734        if (I != ValueMapping.end())
1735          New->setOperand(i, I->second);
1736      }
1737
1738    // If this instruction can be simplified after the operands are updated,
1739    // just use the simplified value instead.  This frequently happens due to
1740    // phi translation.
1741    if (Value *IV =
1742            SimplifyInstruction(New, BB->getModule()->getDataLayout())) {
1743      delete New;
1744      ValueMapping[&*BI] = IV;
1745    } else {
1746      // Otherwise, insert the new instruction into the block.
1747      New->setName(BI->getName());
1748      PredBB->getInstList().insert(OldPredBranch->getIterator(), New);
1749      ValueMapping[&*BI] = New;
1750    }
1751  }
1752
1753  // Check to see if the targets of the branch had PHI nodes. If so, we need to
1754  // add entries to the PHI nodes for branch from PredBB now.
1755  BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1756  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1757                                  ValueMapping);
1758  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1759                                  ValueMapping);
1760
1761  // If there were values defined in BB that are used outside the block, then we
1762  // now have to update all uses of the value to use either the original value,
1763  // the cloned value, or some PHI derived value.  This can require arbitrary
1764  // PHI insertion, of which we are prepared to do, clean these up now.
1765  SSAUpdater SSAUpdate;
1766  SmallVector<Use*, 16> UsesToRename;
1767  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1768    // Scan all uses of this instruction to see if it is used outside of its
1769    // block, and if so, record them in UsesToRename.
1770    for (Use &U : I->uses()) {
1771      Instruction *User = cast<Instruction>(U.getUser());
1772      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1773        if (UserPN->getIncomingBlock(U) == BB)
1774          continue;
1775      } else if (User->getParent() == BB)
1776        continue;
1777
1778      UsesToRename.push_back(&U);
1779    }
1780
1781    // If there are no uses outside the block, we're done with this instruction.
1782    if (UsesToRename.empty())
1783      continue;
1784
1785    DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
1786
1787    // We found a use of I outside of BB.  Rename all uses of I that are outside
1788    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1789    // with the two values we know.
1790    SSAUpdate.Initialize(I->getType(), I->getName());
1791    SSAUpdate.AddAvailableValue(BB, &*I);
1792    SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&*I]);
1793
1794    while (!UsesToRename.empty())
1795      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1796    DEBUG(dbgs() << "\n");
1797  }
1798
1799  // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1800  // that we nuked.
1801  BB->removePredecessor(PredBB, true);
1802
1803  // Remove the unconditional branch at the end of the PredBB block.
1804  OldPredBranch->eraseFromParent();
1805
1806  ++NumDupes;
1807  return true;
1808}
1809
1810/// TryToUnfoldSelect - Look for blocks of the form
1811/// bb1:
1812///   %a = select
1813///   br bb
1814///
1815/// bb2:
1816///   %p = phi [%a, %bb] ...
1817///   %c = icmp %p
1818///   br i1 %c
1819///
1820/// And expand the select into a branch structure if one of its arms allows %c
1821/// to be folded. This later enables threading from bb1 over bb2.
1822bool JumpThreading::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
1823  BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
1824  PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
1825  Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
1826
1827  if (!CondBr || !CondBr->isConditional() || !CondLHS ||
1828      CondLHS->getParent() != BB)
1829    return false;
1830
1831  for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
1832    BasicBlock *Pred = CondLHS->getIncomingBlock(I);
1833    SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
1834
1835    // Look if one of the incoming values is a select in the corresponding
1836    // predecessor.
1837    if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
1838      continue;
1839
1840    BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
1841    if (!PredTerm || !PredTerm->isUnconditional())
1842      continue;
1843
1844    // Now check if one of the select values would allow us to constant fold the
1845    // terminator in BB. We don't do the transform if both sides fold, those
1846    // cases will be threaded in any case.
1847    LazyValueInfo::Tristate LHSFolds =
1848        LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
1849                                CondRHS, Pred, BB, CondCmp);
1850    LazyValueInfo::Tristate RHSFolds =
1851        LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
1852                                CondRHS, Pred, BB, CondCmp);
1853    if ((LHSFolds != LazyValueInfo::Unknown ||
1854         RHSFolds != LazyValueInfo::Unknown) &&
1855        LHSFolds != RHSFolds) {
1856      // Expand the select.
1857      //
1858      // Pred --
1859      //  |    v
1860      //  |  NewBB
1861      //  |    |
1862      //  |-----
1863      //  v
1864      // BB
1865      BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
1866                                             BB->getParent(), BB);
1867      // Move the unconditional branch to NewBB.
1868      PredTerm->removeFromParent();
1869      NewBB->getInstList().insert(NewBB->end(), PredTerm);
1870      // Create a conditional branch and update PHI nodes.
1871      BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
1872      CondLHS->setIncomingValue(I, SI->getFalseValue());
1873      CondLHS->addIncoming(SI->getTrueValue(), NewBB);
1874      // The select is now dead.
1875      SI->eraseFromParent();
1876
1877      // Update any other PHI nodes in BB.
1878      for (BasicBlock::iterator BI = BB->begin();
1879           PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
1880        if (Phi != CondLHS)
1881          Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
1882      return true;
1883    }
1884  }
1885  return false;
1886}
1887