1//===-- Local.cpp - Functions to perform local transformations ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This family of functions perform various local transformations to the
11// program.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/Local.h"
16#include "llvm/ADT/DenseMap.h"
17#include "llvm/ADT/DenseSet.h"
18#include "llvm/ADT/Hashing.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/SetVector.h"
21#include "llvm/ADT/SmallPtrSet.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/Analysis/EHPersonalities.h"
24#include "llvm/Analysis/InstructionSimplify.h"
25#include "llvm/Analysis/MemoryBuiltins.h"
26#include "llvm/Analysis/ValueTracking.h"
27#include "llvm/IR/CFG.h"
28#include "llvm/IR/Constants.h"
29#include "llvm/IR/DIBuilder.h"
30#include "llvm/IR/DataLayout.h"
31#include "llvm/IR/DebugInfo.h"
32#include "llvm/IR/DerivedTypes.h"
33#include "llvm/IR/Dominators.h"
34#include "llvm/IR/GetElementPtrTypeIterator.h"
35#include "llvm/IR/GlobalAlias.h"
36#include "llvm/IR/GlobalVariable.h"
37#include "llvm/IR/IRBuilder.h"
38#include "llvm/IR/Instructions.h"
39#include "llvm/IR/IntrinsicInst.h"
40#include "llvm/IR/Intrinsics.h"
41#include "llvm/IR/MDBuilder.h"
42#include "llvm/IR/Metadata.h"
43#include "llvm/IR/Operator.h"
44#include "llvm/IR/ValueHandle.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/MathExtras.h"
47#include "llvm/Support/raw_ostream.h"
48using namespace llvm;
49
50#define DEBUG_TYPE "local"
51
52STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
53
54//===----------------------------------------------------------------------===//
55//  Local constant propagation.
56//
57
58/// ConstantFoldTerminator - If a terminator instruction is predicated on a
59/// constant value, convert it into an unconditional branch to the constant
60/// destination.  This is a nontrivial operation because the successors of this
61/// basic block must have their PHI nodes updated.
62/// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
63/// conditions and indirectbr addresses this might make dead if
64/// DeleteDeadConditions is true.
65bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
66                                  const TargetLibraryInfo *TLI) {
67  TerminatorInst *T = BB->getTerminator();
68  IRBuilder<> Builder(T);
69
70  // Branch - See if we are conditional jumping on constant
71  if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
72    if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
73    BasicBlock *Dest1 = BI->getSuccessor(0);
74    BasicBlock *Dest2 = BI->getSuccessor(1);
75
76    if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
77      // Are we branching on constant?
78      // YES.  Change to unconditional branch...
79      BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
80      BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
81
82      //cerr << "Function: " << T->getParent()->getParent()
83      //     << "\nRemoving branch from " << T->getParent()
84      //     << "\n\nTo: " << OldDest << endl;
85
86      // Let the basic block know that we are letting go of it.  Based on this,
87      // it will adjust it's PHI nodes.
88      OldDest->removePredecessor(BB);
89
90      // Replace the conditional branch with an unconditional one.
91      Builder.CreateBr(Destination);
92      BI->eraseFromParent();
93      return true;
94    }
95
96    if (Dest2 == Dest1) {       // Conditional branch to same location?
97      // This branch matches something like this:
98      //     br bool %cond, label %Dest, label %Dest
99      // and changes it into:  br label %Dest
100
101      // Let the basic block know that we are letting go of one copy of it.
102      assert(BI->getParent() && "Terminator not inserted in block!");
103      Dest1->removePredecessor(BI->getParent());
104
105      // Replace the conditional branch with an unconditional one.
106      Builder.CreateBr(Dest1);
107      Value *Cond = BI->getCondition();
108      BI->eraseFromParent();
109      if (DeleteDeadConditions)
110        RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
111      return true;
112    }
113    return false;
114  }
115
116  if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
117    // If we are switching on a constant, we can convert the switch to an
118    // unconditional branch.
119    ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
120    BasicBlock *DefaultDest = SI->getDefaultDest();
121    BasicBlock *TheOnlyDest = DefaultDest;
122
123    // If the default is unreachable, ignore it when searching for TheOnlyDest.
124    if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
125        SI->getNumCases() > 0) {
126      TheOnlyDest = SI->case_begin().getCaseSuccessor();
127    }
128
129    // Figure out which case it goes to.
130    for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
131         i != e; ++i) {
132      // Found case matching a constant operand?
133      if (i.getCaseValue() == CI) {
134        TheOnlyDest = i.getCaseSuccessor();
135        break;
136      }
137
138      // Check to see if this branch is going to the same place as the default
139      // dest.  If so, eliminate it as an explicit compare.
140      if (i.getCaseSuccessor() == DefaultDest) {
141        MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
142        unsigned NCases = SI->getNumCases();
143        // Fold the case metadata into the default if there will be any branches
144        // left, unless the metadata doesn't match the switch.
145        if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
146          // Collect branch weights into a vector.
147          SmallVector<uint32_t, 8> Weights;
148          for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
149               ++MD_i) {
150            ConstantInt *CI =
151                mdconst::dyn_extract<ConstantInt>(MD->getOperand(MD_i));
152            assert(CI);
153            Weights.push_back(CI->getValue().getZExtValue());
154          }
155          // Merge weight of this case to the default weight.
156          unsigned idx = i.getCaseIndex();
157          Weights[0] += Weights[idx+1];
158          // Remove weight for this case.
159          std::swap(Weights[idx+1], Weights.back());
160          Weights.pop_back();
161          SI->setMetadata(LLVMContext::MD_prof,
162                          MDBuilder(BB->getContext()).
163                          createBranchWeights(Weights));
164        }
165        // Remove this entry.
166        DefaultDest->removePredecessor(SI->getParent());
167        SI->removeCase(i);
168        --i; --e;
169        continue;
170      }
171
172      // Otherwise, check to see if the switch only branches to one destination.
173      // We do this by reseting "TheOnlyDest" to null when we find two non-equal
174      // destinations.
175      if (i.getCaseSuccessor() != TheOnlyDest) TheOnlyDest = nullptr;
176    }
177
178    if (CI && !TheOnlyDest) {
179      // Branching on a constant, but not any of the cases, go to the default
180      // successor.
181      TheOnlyDest = SI->getDefaultDest();
182    }
183
184    // If we found a single destination that we can fold the switch into, do so
185    // now.
186    if (TheOnlyDest) {
187      // Insert the new branch.
188      Builder.CreateBr(TheOnlyDest);
189      BasicBlock *BB = SI->getParent();
190
191      // Remove entries from PHI nodes which we no longer branch to...
192      for (BasicBlock *Succ : SI->successors()) {
193        // Found case matching a constant operand?
194        if (Succ == TheOnlyDest)
195          TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest
196        else
197          Succ->removePredecessor(BB);
198      }
199
200      // Delete the old switch.
201      Value *Cond = SI->getCondition();
202      SI->eraseFromParent();
203      if (DeleteDeadConditions)
204        RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
205      return true;
206    }
207
208    if (SI->getNumCases() == 1) {
209      // Otherwise, we can fold this switch into a conditional branch
210      // instruction if it has only one non-default destination.
211      SwitchInst::CaseIt FirstCase = SI->case_begin();
212      Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
213          FirstCase.getCaseValue(), "cond");
214
215      // Insert the new branch.
216      BranchInst *NewBr = Builder.CreateCondBr(Cond,
217                                               FirstCase.getCaseSuccessor(),
218                                               SI->getDefaultDest());
219      MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
220      if (MD && MD->getNumOperands() == 3) {
221        ConstantInt *SICase =
222            mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
223        ConstantInt *SIDef =
224            mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
225        assert(SICase && SIDef);
226        // The TrueWeight should be the weight for the single case of SI.
227        NewBr->setMetadata(LLVMContext::MD_prof,
228                        MDBuilder(BB->getContext()).
229                        createBranchWeights(SICase->getValue().getZExtValue(),
230                                            SIDef->getValue().getZExtValue()));
231      }
232
233      // Update make.implicit metadata to the newly-created conditional branch.
234      MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
235      if (MakeImplicitMD)
236        NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
237
238      // Delete the old switch.
239      SI->eraseFromParent();
240      return true;
241    }
242    return false;
243  }
244
245  if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) {
246    // indirectbr blockaddress(@F, @BB) -> br label @BB
247    if (BlockAddress *BA =
248          dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
249      BasicBlock *TheOnlyDest = BA->getBasicBlock();
250      // Insert the new branch.
251      Builder.CreateBr(TheOnlyDest);
252
253      for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
254        if (IBI->getDestination(i) == TheOnlyDest)
255          TheOnlyDest = nullptr;
256        else
257          IBI->getDestination(i)->removePredecessor(IBI->getParent());
258      }
259      Value *Address = IBI->getAddress();
260      IBI->eraseFromParent();
261      if (DeleteDeadConditions)
262        RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
263
264      // If we didn't find our destination in the IBI successor list, then we
265      // have undefined behavior.  Replace the unconditional branch with an
266      // 'unreachable' instruction.
267      if (TheOnlyDest) {
268        BB->getTerminator()->eraseFromParent();
269        new UnreachableInst(BB->getContext(), BB);
270      }
271
272      return true;
273    }
274  }
275
276  return false;
277}
278
279
280//===----------------------------------------------------------------------===//
281//  Local dead code elimination.
282//
283
284/// isInstructionTriviallyDead - Return true if the result produced by the
285/// instruction is not used, and the instruction has no side effects.
286///
287bool llvm::isInstructionTriviallyDead(Instruction *I,
288                                      const TargetLibraryInfo *TLI) {
289  if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
290
291  // We don't want the landingpad-like instructions removed by anything this
292  // general.
293  if (I->isEHPad())
294    return false;
295
296  // We don't want debug info removed by anything this general, unless
297  // debug info is empty.
298  if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
299    if (DDI->getAddress())
300      return false;
301    return true;
302  }
303  if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
304    if (DVI->getValue())
305      return false;
306    return true;
307  }
308
309  if (!I->mayHaveSideEffects()) return true;
310
311  // Special case intrinsics that "may have side effects" but can be deleted
312  // when dead.
313  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
314    // Safe to delete llvm.stacksave if dead.
315    if (II->getIntrinsicID() == Intrinsic::stacksave)
316      return true;
317
318    // Lifetime intrinsics are dead when their right-hand is undef.
319    if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
320        II->getIntrinsicID() == Intrinsic::lifetime_end)
321      return isa<UndefValue>(II->getArgOperand(1));
322
323    // Assumptions are dead if their condition is trivially true.
324    if (II->getIntrinsicID() == Intrinsic::assume) {
325      if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
326        return !Cond->isZero();
327
328      return false;
329    }
330  }
331
332  if (isAllocLikeFn(I, TLI)) return true;
333
334  if (CallInst *CI = isFreeCall(I, TLI))
335    if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
336      return C->isNullValue() || isa<UndefValue>(C);
337
338  return false;
339}
340
341/// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
342/// trivially dead instruction, delete it.  If that makes any of its operands
343/// trivially dead, delete them too, recursively.  Return true if any
344/// instructions were deleted.
345bool
346llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V,
347                                                 const TargetLibraryInfo *TLI) {
348  Instruction *I = dyn_cast<Instruction>(V);
349  if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI))
350    return false;
351
352  SmallVector<Instruction*, 16> DeadInsts;
353  DeadInsts.push_back(I);
354
355  do {
356    I = DeadInsts.pop_back_val();
357
358    // Null out all of the instruction's operands to see if any operand becomes
359    // dead as we go.
360    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
361      Value *OpV = I->getOperand(i);
362      I->setOperand(i, nullptr);
363
364      if (!OpV->use_empty()) continue;
365
366      // If the operand is an instruction that became dead as we nulled out the
367      // operand, and if it is 'trivially' dead, delete it in a future loop
368      // iteration.
369      if (Instruction *OpI = dyn_cast<Instruction>(OpV))
370        if (isInstructionTriviallyDead(OpI, TLI))
371          DeadInsts.push_back(OpI);
372    }
373
374    I->eraseFromParent();
375  } while (!DeadInsts.empty());
376
377  return true;
378}
379
380/// areAllUsesEqual - Check whether the uses of a value are all the same.
381/// This is similar to Instruction::hasOneUse() except this will also return
382/// true when there are no uses or multiple uses that all refer to the same
383/// value.
384static bool areAllUsesEqual(Instruction *I) {
385  Value::user_iterator UI = I->user_begin();
386  Value::user_iterator UE = I->user_end();
387  if (UI == UE)
388    return true;
389
390  User *TheUse = *UI;
391  for (++UI; UI != UE; ++UI) {
392    if (*UI != TheUse)
393      return false;
394  }
395  return true;
396}
397
398/// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
399/// dead PHI node, due to being a def-use chain of single-use nodes that
400/// either forms a cycle or is terminated by a trivially dead instruction,
401/// delete it.  If that makes any of its operands trivially dead, delete them
402/// too, recursively.  Return true if a change was made.
403bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
404                                        const TargetLibraryInfo *TLI) {
405  SmallPtrSet<Instruction*, 4> Visited;
406  for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
407       I = cast<Instruction>(*I->user_begin())) {
408    if (I->use_empty())
409      return RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
410
411    // If we find an instruction more than once, we're on a cycle that
412    // won't prove fruitful.
413    if (!Visited.insert(I).second) {
414      // Break the cycle and delete the instruction and its operands.
415      I->replaceAllUsesWith(UndefValue::get(I->getType()));
416      (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
417      return true;
418    }
419  }
420  return false;
421}
422
423static bool
424simplifyAndDCEInstruction(Instruction *I,
425                          SmallSetVector<Instruction *, 16> &WorkList,
426                          const DataLayout &DL,
427                          const TargetLibraryInfo *TLI) {
428  if (isInstructionTriviallyDead(I, TLI)) {
429    // Null out all of the instruction's operands to see if any operand becomes
430    // dead as we go.
431    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
432      Value *OpV = I->getOperand(i);
433      I->setOperand(i, nullptr);
434
435      if (!OpV->use_empty() || I == OpV)
436        continue;
437
438      // If the operand is an instruction that became dead as we nulled out the
439      // operand, and if it is 'trivially' dead, delete it in a future loop
440      // iteration.
441      if (Instruction *OpI = dyn_cast<Instruction>(OpV))
442        if (isInstructionTriviallyDead(OpI, TLI))
443          WorkList.insert(OpI);
444    }
445
446    I->eraseFromParent();
447
448    return true;
449  }
450
451  if (Value *SimpleV = SimplifyInstruction(I, DL)) {
452    // Add the users to the worklist. CAREFUL: an instruction can use itself,
453    // in the case of a phi node.
454    for (User *U : I->users())
455      if (U != I)
456        WorkList.insert(cast<Instruction>(U));
457
458    // Replace the instruction with its simplified value.
459    I->replaceAllUsesWith(SimpleV);
460    I->eraseFromParent();
461    return true;
462  }
463  return false;
464}
465
466/// SimplifyInstructionsInBlock - Scan the specified basic block and try to
467/// simplify any instructions in it and recursively delete dead instructions.
468///
469/// This returns true if it changed the code, note that it can delete
470/// instructions in other blocks as well in this block.
471bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
472                                       const TargetLibraryInfo *TLI) {
473  bool MadeChange = false;
474  const DataLayout &DL = BB->getModule()->getDataLayout();
475
476#ifndef NDEBUG
477  // In debug builds, ensure that the terminator of the block is never replaced
478  // or deleted by these simplifications. The idea of simplification is that it
479  // cannot introduce new instructions, and there is no way to replace the
480  // terminator of a block without introducing a new instruction.
481  AssertingVH<Instruction> TerminatorVH(&BB->back());
482#endif
483
484  SmallSetVector<Instruction *, 16> WorkList;
485  // Iterate over the original function, only adding insts to the worklist
486  // if they actually need to be revisited. This avoids having to pre-init
487  // the worklist with the entire function's worth of instructions.
488  for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); BI != E;) {
489    assert(!BI->isTerminator());
490    Instruction *I = &*BI;
491    ++BI;
492
493    // We're visiting this instruction now, so make sure it's not in the
494    // worklist from an earlier visit.
495    if (!WorkList.count(I))
496      MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
497  }
498
499  while (!WorkList.empty()) {
500    Instruction *I = WorkList.pop_back_val();
501    MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
502  }
503  return MadeChange;
504}
505
506//===----------------------------------------------------------------------===//
507//  Control Flow Graph Restructuring.
508//
509
510
511/// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
512/// method is called when we're about to delete Pred as a predecessor of BB.  If
513/// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
514///
515/// Unlike the removePredecessor method, this attempts to simplify uses of PHI
516/// nodes that collapse into identity values.  For example, if we have:
517///   x = phi(1, 0, 0, 0)
518///   y = and x, z
519///
520/// .. and delete the predecessor corresponding to the '1', this will attempt to
521/// recursively fold the and to 0.
522void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred) {
523  // This only adjusts blocks with PHI nodes.
524  if (!isa<PHINode>(BB->begin()))
525    return;
526
527  // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
528  // them down.  This will leave us with single entry phi nodes and other phis
529  // that can be removed.
530  BB->removePredecessor(Pred, true);
531
532  WeakVH PhiIt = &BB->front();
533  while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
534    PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
535    Value *OldPhiIt = PhiIt;
536
537    if (!recursivelySimplifyInstruction(PN))
538      continue;
539
540    // If recursive simplification ended up deleting the next PHI node we would
541    // iterate to, then our iterator is invalid, restart scanning from the top
542    // of the block.
543    if (PhiIt != OldPhiIt) PhiIt = &BB->front();
544  }
545}
546
547
548/// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
549/// predecessor is known to have one successor (DestBB!).  Eliminate the edge
550/// between them, moving the instructions in the predecessor into DestBB and
551/// deleting the predecessor block.
552///
553void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, DominatorTree *DT) {
554  // If BB has single-entry PHI nodes, fold them.
555  while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
556    Value *NewVal = PN->getIncomingValue(0);
557    // Replace self referencing PHI with undef, it must be dead.
558    if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
559    PN->replaceAllUsesWith(NewVal);
560    PN->eraseFromParent();
561  }
562
563  BasicBlock *PredBB = DestBB->getSinglePredecessor();
564  assert(PredBB && "Block doesn't have a single predecessor!");
565
566  // Zap anything that took the address of DestBB.  Not doing this will give the
567  // address an invalid value.
568  if (DestBB->hasAddressTaken()) {
569    BlockAddress *BA = BlockAddress::get(DestBB);
570    Constant *Replacement =
571      ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1);
572    BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
573                                                     BA->getType()));
574    BA->destroyConstant();
575  }
576
577  // Anything that branched to PredBB now branches to DestBB.
578  PredBB->replaceAllUsesWith(DestBB);
579
580  // Splice all the instructions from PredBB to DestBB.
581  PredBB->getTerminator()->eraseFromParent();
582  DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
583
584  // If the PredBB is the entry block of the function, move DestBB up to
585  // become the entry block after we erase PredBB.
586  if (PredBB == &DestBB->getParent()->getEntryBlock())
587    DestBB->moveAfter(PredBB);
588
589  if (DT) {
590    BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock();
591    DT->changeImmediateDominator(DestBB, PredBBIDom);
592    DT->eraseNode(PredBB);
593  }
594  // Nuke BB.
595  PredBB->eraseFromParent();
596}
597
598/// CanMergeValues - Return true if we can choose one of these values to use
599/// in place of the other. Note that we will always choose the non-undef
600/// value to keep.
601static bool CanMergeValues(Value *First, Value *Second) {
602  return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
603}
604
605/// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
606/// almost-empty BB ending in an unconditional branch to Succ, into Succ.
607///
608/// Assumption: Succ is the single successor for BB.
609///
610static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
611  assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
612
613  DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
614        << Succ->getName() << "\n");
615  // Shortcut, if there is only a single predecessor it must be BB and merging
616  // is always safe
617  if (Succ->getSinglePredecessor()) return true;
618
619  // Make a list of the predecessors of BB
620  SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
621
622  // Look at all the phi nodes in Succ, to see if they present a conflict when
623  // merging these blocks
624  for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
625    PHINode *PN = cast<PHINode>(I);
626
627    // If the incoming value from BB is again a PHINode in
628    // BB which has the same incoming value for *PI as PN does, we can
629    // merge the phi nodes and then the blocks can still be merged
630    PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
631    if (BBPN && BBPN->getParent() == BB) {
632      for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
633        BasicBlock *IBB = PN->getIncomingBlock(PI);
634        if (BBPreds.count(IBB) &&
635            !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
636                            PN->getIncomingValue(PI))) {
637          DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
638                << Succ->getName() << " is conflicting with "
639                << BBPN->getName() << " with regard to common predecessor "
640                << IBB->getName() << "\n");
641          return false;
642        }
643      }
644    } else {
645      Value* Val = PN->getIncomingValueForBlock(BB);
646      for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
647        // See if the incoming value for the common predecessor is equal to the
648        // one for BB, in which case this phi node will not prevent the merging
649        // of the block.
650        BasicBlock *IBB = PN->getIncomingBlock(PI);
651        if (BBPreds.count(IBB) &&
652            !CanMergeValues(Val, PN->getIncomingValue(PI))) {
653          DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
654                << Succ->getName() << " is conflicting with regard to common "
655                << "predecessor " << IBB->getName() << "\n");
656          return false;
657        }
658      }
659    }
660  }
661
662  return true;
663}
664
665typedef SmallVector<BasicBlock *, 16> PredBlockVector;
666typedef DenseMap<BasicBlock *, Value *> IncomingValueMap;
667
668/// \brief Determines the value to use as the phi node input for a block.
669///
670/// Select between \p OldVal any value that we know flows from \p BB
671/// to a particular phi on the basis of which one (if either) is not
672/// undef. Update IncomingValues based on the selected value.
673///
674/// \param OldVal The value we are considering selecting.
675/// \param BB The block that the value flows in from.
676/// \param IncomingValues A map from block-to-value for other phi inputs
677/// that we have examined.
678///
679/// \returns the selected value.
680static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
681                                          IncomingValueMap &IncomingValues) {
682  if (!isa<UndefValue>(OldVal)) {
683    assert((!IncomingValues.count(BB) ||
684            IncomingValues.find(BB)->second == OldVal) &&
685           "Expected OldVal to match incoming value from BB!");
686
687    IncomingValues.insert(std::make_pair(BB, OldVal));
688    return OldVal;
689  }
690
691  IncomingValueMap::const_iterator It = IncomingValues.find(BB);
692  if (It != IncomingValues.end()) return It->second;
693
694  return OldVal;
695}
696
697/// \brief Create a map from block to value for the operands of a
698/// given phi.
699///
700/// Create a map from block to value for each non-undef value flowing
701/// into \p PN.
702///
703/// \param PN The phi we are collecting the map for.
704/// \param IncomingValues [out] The map from block to value for this phi.
705static void gatherIncomingValuesToPhi(PHINode *PN,
706                                      IncomingValueMap &IncomingValues) {
707  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
708    BasicBlock *BB = PN->getIncomingBlock(i);
709    Value *V = PN->getIncomingValue(i);
710
711    if (!isa<UndefValue>(V))
712      IncomingValues.insert(std::make_pair(BB, V));
713  }
714}
715
716/// \brief Replace the incoming undef values to a phi with the values
717/// from a block-to-value map.
718///
719/// \param PN The phi we are replacing the undefs in.
720/// \param IncomingValues A map from block to value.
721static void replaceUndefValuesInPhi(PHINode *PN,
722                                    const IncomingValueMap &IncomingValues) {
723  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
724    Value *V = PN->getIncomingValue(i);
725
726    if (!isa<UndefValue>(V)) continue;
727
728    BasicBlock *BB = PN->getIncomingBlock(i);
729    IncomingValueMap::const_iterator It = IncomingValues.find(BB);
730    if (It == IncomingValues.end()) continue;
731
732    PN->setIncomingValue(i, It->second);
733  }
734}
735
736/// \brief Replace a value flowing from a block to a phi with
737/// potentially multiple instances of that value flowing from the
738/// block's predecessors to the phi.
739///
740/// \param BB The block with the value flowing into the phi.
741/// \param BBPreds The predecessors of BB.
742/// \param PN The phi that we are updating.
743static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
744                                                const PredBlockVector &BBPreds,
745                                                PHINode *PN) {
746  Value *OldVal = PN->removeIncomingValue(BB, false);
747  assert(OldVal && "No entry in PHI for Pred BB!");
748
749  IncomingValueMap IncomingValues;
750
751  // We are merging two blocks - BB, and the block containing PN - and
752  // as a result we need to redirect edges from the predecessors of BB
753  // to go to the block containing PN, and update PN
754  // accordingly. Since we allow merging blocks in the case where the
755  // predecessor and successor blocks both share some predecessors,
756  // and where some of those common predecessors might have undef
757  // values flowing into PN, we want to rewrite those values to be
758  // consistent with the non-undef values.
759
760  gatherIncomingValuesToPhi(PN, IncomingValues);
761
762  // If this incoming value is one of the PHI nodes in BB, the new entries
763  // in the PHI node are the entries from the old PHI.
764  if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
765    PHINode *OldValPN = cast<PHINode>(OldVal);
766    for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
767      // Note that, since we are merging phi nodes and BB and Succ might
768      // have common predecessors, we could end up with a phi node with
769      // identical incoming branches. This will be cleaned up later (and
770      // will trigger asserts if we try to clean it up now, without also
771      // simplifying the corresponding conditional branch).
772      BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
773      Value *PredVal = OldValPN->getIncomingValue(i);
774      Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
775                                                    IncomingValues);
776
777      // And add a new incoming value for this predecessor for the
778      // newly retargeted branch.
779      PN->addIncoming(Selected, PredBB);
780    }
781  } else {
782    for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
783      // Update existing incoming values in PN for this
784      // predecessor of BB.
785      BasicBlock *PredBB = BBPreds[i];
786      Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
787                                                    IncomingValues);
788
789      // And add a new incoming value for this predecessor for the
790      // newly retargeted branch.
791      PN->addIncoming(Selected, PredBB);
792    }
793  }
794
795  replaceUndefValuesInPhi(PN, IncomingValues);
796}
797
798/// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
799/// unconditional branch, and contains no instructions other than PHI nodes,
800/// potential side-effect free intrinsics and the branch.  If possible,
801/// eliminate BB by rewriting all the predecessors to branch to the successor
802/// block and return true.  If we can't transform, return false.
803bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
804  assert(BB != &BB->getParent()->getEntryBlock() &&
805         "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
806
807  // We can't eliminate infinite loops.
808  BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
809  if (BB == Succ) return false;
810
811  // Check to see if merging these blocks would cause conflicts for any of the
812  // phi nodes in BB or Succ. If not, we can safely merge.
813  if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
814
815  // Check for cases where Succ has multiple predecessors and a PHI node in BB
816  // has uses which will not disappear when the PHI nodes are merged.  It is
817  // possible to handle such cases, but difficult: it requires checking whether
818  // BB dominates Succ, which is non-trivial to calculate in the case where
819  // Succ has multiple predecessors.  Also, it requires checking whether
820  // constructing the necessary self-referential PHI node doesn't introduce any
821  // conflicts; this isn't too difficult, but the previous code for doing this
822  // was incorrect.
823  //
824  // Note that if this check finds a live use, BB dominates Succ, so BB is
825  // something like a loop pre-header (or rarely, a part of an irreducible CFG);
826  // folding the branch isn't profitable in that case anyway.
827  if (!Succ->getSinglePredecessor()) {
828    BasicBlock::iterator BBI = BB->begin();
829    while (isa<PHINode>(*BBI)) {
830      for (Use &U : BBI->uses()) {
831        if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
832          if (PN->getIncomingBlock(U) != BB)
833            return false;
834        } else {
835          return false;
836        }
837      }
838      ++BBI;
839    }
840  }
841
842  DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
843
844  if (isa<PHINode>(Succ->begin())) {
845    // If there is more than one pred of succ, and there are PHI nodes in
846    // the successor, then we need to add incoming edges for the PHI nodes
847    //
848    const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
849
850    // Loop over all of the PHI nodes in the successor of BB.
851    for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
852      PHINode *PN = cast<PHINode>(I);
853
854      redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
855    }
856  }
857
858  if (Succ->getSinglePredecessor()) {
859    // BB is the only predecessor of Succ, so Succ will end up with exactly
860    // the same predecessors BB had.
861
862    // Copy over any phi, debug or lifetime instruction.
863    BB->getTerminator()->eraseFromParent();
864    Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
865                               BB->getInstList());
866  } else {
867    while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
868      // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
869      assert(PN->use_empty() && "There shouldn't be any uses here!");
870      PN->eraseFromParent();
871    }
872  }
873
874  // Everything that jumped to BB now goes to Succ.
875  BB->replaceAllUsesWith(Succ);
876  if (!Succ->hasName()) Succ->takeName(BB);
877  BB->eraseFromParent();              // Delete the old basic block.
878  return true;
879}
880
881/// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
882/// nodes in this block. This doesn't try to be clever about PHI nodes
883/// which differ only in the order of the incoming values, but instcombine
884/// orders them so it usually won't matter.
885///
886bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
887  // This implementation doesn't currently consider undef operands
888  // specially. Theoretically, two phis which are identical except for
889  // one having an undef where the other doesn't could be collapsed.
890
891  struct PHIDenseMapInfo {
892    static PHINode *getEmptyKey() {
893      return DenseMapInfo<PHINode *>::getEmptyKey();
894    }
895    static PHINode *getTombstoneKey() {
896      return DenseMapInfo<PHINode *>::getTombstoneKey();
897    }
898    static unsigned getHashValue(PHINode *PN) {
899      // Compute a hash value on the operands. Instcombine will likely have
900      // sorted them, which helps expose duplicates, but we have to check all
901      // the operands to be safe in case instcombine hasn't run.
902      return static_cast<unsigned>(hash_combine(
903          hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
904          hash_combine_range(PN->block_begin(), PN->block_end())));
905    }
906    static bool isEqual(PHINode *LHS, PHINode *RHS) {
907      if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
908          RHS == getEmptyKey() || RHS == getTombstoneKey())
909        return LHS == RHS;
910      return LHS->isIdenticalTo(RHS);
911    }
912  };
913
914  // Set of unique PHINodes.
915  DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
916
917  // Examine each PHI.
918  bool Changed = false;
919  for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
920    auto Inserted = PHISet.insert(PN);
921    if (!Inserted.second) {
922      // A duplicate. Replace this PHI with its duplicate.
923      PN->replaceAllUsesWith(*Inserted.first);
924      PN->eraseFromParent();
925      Changed = true;
926
927      // The RAUW can change PHIs that we already visited. Start over from the
928      // beginning.
929      PHISet.clear();
930      I = BB->begin();
931    }
932  }
933
934  return Changed;
935}
936
937/// enforceKnownAlignment - If the specified pointer points to an object that
938/// we control, modify the object's alignment to PrefAlign. This isn't
939/// often possible though. If alignment is important, a more reliable approach
940/// is to simply align all global variables and allocation instructions to
941/// their preferred alignment from the beginning.
942///
943static unsigned enforceKnownAlignment(Value *V, unsigned Align,
944                                      unsigned PrefAlign,
945                                      const DataLayout &DL) {
946  V = V->stripPointerCasts();
947
948  if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
949    // If the preferred alignment is greater than the natural stack alignment
950    // then don't round up. This avoids dynamic stack realignment.
951    if (DL.exceedsNaturalStackAlignment(PrefAlign))
952      return Align;
953    // If there is a requested alignment and if this is an alloca, round up.
954    if (AI->getAlignment() >= PrefAlign)
955      return AI->getAlignment();
956    AI->setAlignment(PrefAlign);
957    return PrefAlign;
958  }
959
960  if (auto *GO = dyn_cast<GlobalObject>(V)) {
961    // If there is a large requested alignment and we can, bump up the alignment
962    // of the global.  If the memory we set aside for the global may not be the
963    // memory used by the final program then it is impossible for us to reliably
964    // enforce the preferred alignment.
965    if (!GO->isStrongDefinitionForLinker())
966      return Align;
967
968    if (GO->getAlignment() >= PrefAlign)
969      return GO->getAlignment();
970    // We can only increase the alignment of the global if it has no alignment
971    // specified or if it is not assigned a section.  If it is assigned a
972    // section, the global could be densely packed with other objects in the
973    // section, increasing the alignment could cause padding issues.
974    if (!GO->hasSection() || GO->getAlignment() == 0)
975      GO->setAlignment(PrefAlign);
976    return GO->getAlignment();
977  }
978
979  return Align;
980}
981
982/// getOrEnforceKnownAlignment - If the specified pointer has an alignment that
983/// we can determine, return it, otherwise return 0.  If PrefAlign is specified,
984/// and it is more than the alignment of the ultimate object, see if we can
985/// increase the alignment of the ultimate object, making this check succeed.
986unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
987                                          const DataLayout &DL,
988                                          const Instruction *CxtI,
989                                          AssumptionCache *AC,
990                                          const DominatorTree *DT) {
991  assert(V->getType()->isPointerTy() &&
992         "getOrEnforceKnownAlignment expects a pointer!");
993  unsigned BitWidth = DL.getPointerTypeSizeInBits(V->getType());
994
995  APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
996  computeKnownBits(V, KnownZero, KnownOne, DL, 0, AC, CxtI, DT);
997  unsigned TrailZ = KnownZero.countTrailingOnes();
998
999  // Avoid trouble with ridiculously large TrailZ values, such as
1000  // those computed from a null pointer.
1001  TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
1002
1003  unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
1004
1005  // LLVM doesn't support alignments larger than this currently.
1006  Align = std::min(Align, +Value::MaximumAlignment);
1007
1008  if (PrefAlign > Align)
1009    Align = enforceKnownAlignment(V, Align, PrefAlign, DL);
1010
1011  // We don't need to make any adjustment.
1012  return Align;
1013}
1014
1015///===---------------------------------------------------------------------===//
1016///  Dbg Intrinsic utilities
1017///
1018
1019/// See if there is a dbg.value intrinsic for DIVar before I.
1020static bool LdStHasDebugValue(const DILocalVariable *DIVar, Instruction *I) {
1021  // Since we can't guarantee that the original dbg.declare instrinsic
1022  // is removed by LowerDbgDeclare(), we need to make sure that we are
1023  // not inserting the same dbg.value intrinsic over and over.
1024  llvm::BasicBlock::InstListType::iterator PrevI(I);
1025  if (PrevI != I->getParent()->getInstList().begin()) {
1026    --PrevI;
1027    if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI))
1028      if (DVI->getValue() == I->getOperand(0) &&
1029          DVI->getOffset() == 0 &&
1030          DVI->getVariable() == DIVar)
1031        return true;
1032  }
1033  return false;
1034}
1035
1036/// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
1037/// that has an associated llvm.dbg.decl intrinsic.
1038bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
1039                                           StoreInst *SI, DIBuilder &Builder) {
1040  auto *DIVar = DDI->getVariable();
1041  auto *DIExpr = DDI->getExpression();
1042  assert(DIVar && "Missing variable");
1043
1044  if (LdStHasDebugValue(DIVar, SI))
1045    return true;
1046
1047  // If an argument is zero extended then use argument directly. The ZExt
1048  // may be zapped by an optimization pass in future.
1049  Argument *ExtendedArg = nullptr;
1050  if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
1051    ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
1052  if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
1053    ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
1054  if (ExtendedArg)
1055    Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, DIExpr,
1056                                    DDI->getDebugLoc(), SI);
1057  else
1058    Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, DIExpr,
1059                                    DDI->getDebugLoc(), SI);
1060  return true;
1061}
1062
1063/// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1064/// that has an associated llvm.dbg.decl intrinsic.
1065bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
1066                                           LoadInst *LI, DIBuilder &Builder) {
1067  auto *DIVar = DDI->getVariable();
1068  auto *DIExpr = DDI->getExpression();
1069  assert(DIVar && "Missing variable");
1070
1071  if (LdStHasDebugValue(DIVar, LI))
1072    return true;
1073
1074  // We are now tracking the loaded value instead of the address. In the
1075  // future if multi-location support is added to the IR, it might be
1076  // preferable to keep tracking both the loaded value and the original
1077  // address in case the alloca can not be elided.
1078  Instruction *DbgValue = Builder.insertDbgValueIntrinsic(
1079      LI, 0, DIVar, DIExpr, DDI->getDebugLoc(), (Instruction *)nullptr);
1080  DbgValue->insertAfter(LI);
1081  return true;
1082}
1083
1084/// Determine whether this alloca is either a VLA or an array.
1085static bool isArray(AllocaInst *AI) {
1086  return AI->isArrayAllocation() ||
1087    AI->getType()->getElementType()->isArrayTy();
1088}
1089
1090/// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1091/// of llvm.dbg.value intrinsics.
1092bool llvm::LowerDbgDeclare(Function &F) {
1093  DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
1094  SmallVector<DbgDeclareInst *, 4> Dbgs;
1095  for (auto &FI : F)
1096    for (Instruction &BI : FI)
1097      if (auto DDI = dyn_cast<DbgDeclareInst>(&BI))
1098        Dbgs.push_back(DDI);
1099
1100  if (Dbgs.empty())
1101    return false;
1102
1103  for (auto &I : Dbgs) {
1104    DbgDeclareInst *DDI = I;
1105    AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
1106    // If this is an alloca for a scalar variable, insert a dbg.value
1107    // at each load and store to the alloca and erase the dbg.declare.
1108    // The dbg.values allow tracking a variable even if it is not
1109    // stored on the stack, while the dbg.declare can only describe
1110    // the stack slot (and at a lexical-scope granularity). Later
1111    // passes will attempt to elide the stack slot.
1112    if (AI && !isArray(AI)) {
1113      for (User *U : AI->users())
1114        if (StoreInst *SI = dyn_cast<StoreInst>(U))
1115          ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1116        else if (LoadInst *LI = dyn_cast<LoadInst>(U))
1117          ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1118        else if (CallInst *CI = dyn_cast<CallInst>(U)) {
1119          // This is a call by-value or some other instruction that
1120          // takes a pointer to the variable. Insert a *value*
1121          // intrinsic that describes the alloca.
1122          SmallVector<uint64_t, 1> NewDIExpr;
1123          auto *DIExpr = DDI->getExpression();
1124          NewDIExpr.push_back(dwarf::DW_OP_deref);
1125          NewDIExpr.append(DIExpr->elements_begin(), DIExpr->elements_end());
1126          DIB.insertDbgValueIntrinsic(AI, 0, DDI->getVariable(),
1127                                      DIB.createExpression(NewDIExpr),
1128                                      DDI->getDebugLoc(), CI);
1129        }
1130      DDI->eraseFromParent();
1131    }
1132  }
1133  return true;
1134}
1135
1136/// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the
1137/// alloca 'V', if any.
1138DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) {
1139  if (auto *L = LocalAsMetadata::getIfExists(V))
1140    if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1141      for (User *U : MDV->users())
1142        if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U))
1143          return DDI;
1144
1145  return nullptr;
1146}
1147
1148bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
1149                             Instruction *InsertBefore, DIBuilder &Builder,
1150                             bool Deref, int Offset) {
1151  DbgDeclareInst *DDI = FindAllocaDbgDeclare(Address);
1152  if (!DDI)
1153    return false;
1154  DebugLoc Loc = DDI->getDebugLoc();
1155  auto *DIVar = DDI->getVariable();
1156  auto *DIExpr = DDI->getExpression();
1157  assert(DIVar && "Missing variable");
1158
1159  if (Deref || Offset) {
1160    // Create a copy of the original DIDescriptor for user variable, prepending
1161    // "deref" operation to a list of address elements, as new llvm.dbg.declare
1162    // will take a value storing address of the memory for variable, not
1163    // alloca itself.
1164    SmallVector<uint64_t, 4> NewDIExpr;
1165    if (Deref)
1166      NewDIExpr.push_back(dwarf::DW_OP_deref);
1167    if (Offset > 0) {
1168      NewDIExpr.push_back(dwarf::DW_OP_plus);
1169      NewDIExpr.push_back(Offset);
1170    } else if (Offset < 0) {
1171      NewDIExpr.push_back(dwarf::DW_OP_minus);
1172      NewDIExpr.push_back(-Offset);
1173    }
1174    if (DIExpr)
1175      NewDIExpr.append(DIExpr->elements_begin(), DIExpr->elements_end());
1176    DIExpr = Builder.createExpression(NewDIExpr);
1177  }
1178
1179  // Insert llvm.dbg.declare immediately after the original alloca, and remove
1180  // old llvm.dbg.declare.
1181  Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore);
1182  DDI->eraseFromParent();
1183  return true;
1184}
1185
1186bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1187                                      DIBuilder &Builder, bool Deref, int Offset) {
1188  return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder,
1189                           Deref, Offset);
1190}
1191
1192void llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap) {
1193  BasicBlock *BB = I->getParent();
1194  // Loop over all of the successors, removing BB's entry from any PHI
1195  // nodes.
1196  for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
1197    (*SI)->removePredecessor(BB);
1198
1199  // Insert a call to llvm.trap right before this.  This turns the undefined
1200  // behavior into a hard fail instead of falling through into random code.
1201  if (UseLLVMTrap) {
1202    Function *TrapFn =
1203      Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
1204    CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
1205    CallTrap->setDebugLoc(I->getDebugLoc());
1206  }
1207  new UnreachableInst(I->getContext(), I);
1208
1209  // All instructions after this are dead.
1210  BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
1211  while (BBI != BBE) {
1212    if (!BBI->use_empty())
1213      BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
1214    BB->getInstList().erase(BBI++);
1215  }
1216}
1217
1218/// changeToCall - Convert the specified invoke into a normal call.
1219static void changeToCall(InvokeInst *II) {
1220  SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end());
1221  SmallVector<OperandBundleDef, 1> OpBundles;
1222  II->getOperandBundlesAsDefs(OpBundles);
1223  CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, OpBundles,
1224                                       "", II);
1225  NewCall->takeName(II);
1226  NewCall->setCallingConv(II->getCallingConv());
1227  NewCall->setAttributes(II->getAttributes());
1228  NewCall->setDebugLoc(II->getDebugLoc());
1229  II->replaceAllUsesWith(NewCall);
1230
1231  // Follow the call by a branch to the normal destination.
1232  BranchInst::Create(II->getNormalDest(), II);
1233
1234  // Update PHI nodes in the unwind destination
1235  II->getUnwindDest()->removePredecessor(II->getParent());
1236  II->eraseFromParent();
1237}
1238
1239static bool markAliveBlocks(Function &F,
1240                            SmallPtrSetImpl<BasicBlock*> &Reachable) {
1241
1242  SmallVector<BasicBlock*, 128> Worklist;
1243  BasicBlock *BB = &F.front();
1244  Worklist.push_back(BB);
1245  Reachable.insert(BB);
1246  bool Changed = false;
1247  do {
1248    BB = Worklist.pop_back_val();
1249
1250    // Do a quick scan of the basic block, turning any obviously unreachable
1251    // instructions into LLVM unreachable insts.  The instruction combining pass
1252    // canonicalizes unreachable insts into stores to null or undef.
1253    for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;++BBI){
1254      // Assumptions that are known to be false are equivalent to unreachable.
1255      // Also, if the condition is undefined, then we make the choice most
1256      // beneficial to the optimizer, and choose that to also be unreachable.
1257      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BBI))
1258        if (II->getIntrinsicID() == Intrinsic::assume) {
1259          bool MakeUnreachable = false;
1260          if (isa<UndefValue>(II->getArgOperand(0)))
1261            MakeUnreachable = true;
1262          else if (ConstantInt *Cond =
1263                   dyn_cast<ConstantInt>(II->getArgOperand(0)))
1264            MakeUnreachable = Cond->isZero();
1265
1266          if (MakeUnreachable) {
1267            // Don't insert a call to llvm.trap right before the unreachable.
1268            changeToUnreachable(&*BBI, false);
1269            Changed = true;
1270            break;
1271          }
1272        }
1273
1274      if (CallInst *CI = dyn_cast<CallInst>(BBI)) {
1275        if (CI->doesNotReturn()) {
1276          // If we found a call to a no-return function, insert an unreachable
1277          // instruction after it.  Make sure there isn't *already* one there
1278          // though.
1279          ++BBI;
1280          if (!isa<UnreachableInst>(BBI)) {
1281            // Don't insert a call to llvm.trap right before the unreachable.
1282            changeToUnreachable(&*BBI, false);
1283            Changed = true;
1284          }
1285          break;
1286        }
1287      }
1288
1289      // Store to undef and store to null are undefined and used to signal that
1290      // they should be changed to unreachable by passes that can't modify the
1291      // CFG.
1292      if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
1293        // Don't touch volatile stores.
1294        if (SI->isVolatile()) continue;
1295
1296        Value *Ptr = SI->getOperand(1);
1297
1298        if (isa<UndefValue>(Ptr) ||
1299            (isa<ConstantPointerNull>(Ptr) &&
1300             SI->getPointerAddressSpace() == 0)) {
1301          changeToUnreachable(SI, true);
1302          Changed = true;
1303          break;
1304        }
1305      }
1306    }
1307
1308    // Turn invokes that call 'nounwind' functions into ordinary calls.
1309    if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
1310      Value *Callee = II->getCalledValue();
1311      if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
1312        changeToUnreachable(II, true);
1313        Changed = true;
1314      } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
1315        if (II->use_empty() && II->onlyReadsMemory()) {
1316          // jump to the normal destination branch.
1317          BranchInst::Create(II->getNormalDest(), II);
1318          II->getUnwindDest()->removePredecessor(II->getParent());
1319          II->eraseFromParent();
1320        } else
1321          changeToCall(II);
1322        Changed = true;
1323      }
1324    }
1325
1326    Changed |= ConstantFoldTerminator(BB, true);
1327    for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
1328      if (Reachable.insert(*SI).second)
1329        Worklist.push_back(*SI);
1330  } while (!Worklist.empty());
1331  return Changed;
1332}
1333
1334void llvm::removeUnwindEdge(BasicBlock *BB) {
1335  TerminatorInst *TI = BB->getTerminator();
1336
1337  if (auto *II = dyn_cast<InvokeInst>(TI)) {
1338    changeToCall(II);
1339    return;
1340  }
1341
1342  TerminatorInst *NewTI;
1343  BasicBlock *UnwindDest;
1344
1345  if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
1346    NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
1347    UnwindDest = CRI->getUnwindDest();
1348  } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
1349    auto *NewCatchSwitch = CatchSwitchInst::Create(
1350        CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
1351        CatchSwitch->getName(), CatchSwitch);
1352    for (BasicBlock *PadBB : CatchSwitch->handlers())
1353      NewCatchSwitch->addHandler(PadBB);
1354
1355    NewTI = NewCatchSwitch;
1356    UnwindDest = CatchSwitch->getUnwindDest();
1357  } else {
1358    llvm_unreachable("Could not find unwind successor");
1359  }
1360
1361  NewTI->takeName(TI);
1362  NewTI->setDebugLoc(TI->getDebugLoc());
1363  UnwindDest->removePredecessor(BB);
1364  TI->replaceAllUsesWith(NewTI);
1365  TI->eraseFromParent();
1366}
1367
1368/// removeUnreachableBlocksFromFn - Remove blocks that are not reachable, even
1369/// if they are in a dead cycle.  Return true if a change was made, false
1370/// otherwise.
1371bool llvm::removeUnreachableBlocks(Function &F) {
1372  SmallPtrSet<BasicBlock*, 128> Reachable;
1373  bool Changed = markAliveBlocks(F, Reachable);
1374
1375  // If there are unreachable blocks in the CFG...
1376  if (Reachable.size() == F.size())
1377    return Changed;
1378
1379  assert(Reachable.size() < F.size());
1380  NumRemoved += F.size()-Reachable.size();
1381
1382  // Loop over all of the basic blocks that are not reachable, dropping all of
1383  // their internal references...
1384  for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) {
1385    if (Reachable.count(&*BB))
1386      continue;
1387
1388    for (succ_iterator SI = succ_begin(&*BB), SE = succ_end(&*BB); SI != SE;
1389         ++SI)
1390      if (Reachable.count(*SI))
1391        (*SI)->removePredecessor(&*BB);
1392    BB->dropAllReferences();
1393  }
1394
1395  for (Function::iterator I = ++F.begin(); I != F.end();)
1396    if (!Reachable.count(&*I))
1397      I = F.getBasicBlockList().erase(I);
1398    else
1399      ++I;
1400
1401  return true;
1402}
1403
1404void llvm::combineMetadata(Instruction *K, const Instruction *J,
1405                           ArrayRef<unsigned> KnownIDs) {
1406  SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
1407  K->dropUnknownNonDebugMetadata(KnownIDs);
1408  K->getAllMetadataOtherThanDebugLoc(Metadata);
1409  for (unsigned i = 0, n = Metadata.size(); i < n; ++i) {
1410    unsigned Kind = Metadata[i].first;
1411    MDNode *JMD = J->getMetadata(Kind);
1412    MDNode *KMD = Metadata[i].second;
1413
1414    switch (Kind) {
1415      default:
1416        K->setMetadata(Kind, nullptr); // Remove unknown metadata
1417        break;
1418      case LLVMContext::MD_dbg:
1419        llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
1420      case LLVMContext::MD_tbaa:
1421        K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
1422        break;
1423      case LLVMContext::MD_alias_scope:
1424        K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
1425        break;
1426      case LLVMContext::MD_noalias:
1427        K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
1428        break;
1429      case LLVMContext::MD_range:
1430        K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
1431        break;
1432      case LLVMContext::MD_fpmath:
1433        K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
1434        break;
1435      case LLVMContext::MD_invariant_load:
1436        // Only set the !invariant.load if it is present in both instructions.
1437        K->setMetadata(Kind, JMD);
1438        break;
1439      case LLVMContext::MD_nonnull:
1440        // Only set the !nonnull if it is present in both instructions.
1441        K->setMetadata(Kind, JMD);
1442        break;
1443      case LLVMContext::MD_invariant_group:
1444        // Preserve !invariant.group in K.
1445        break;
1446      case LLVMContext::MD_align:
1447        K->setMetadata(Kind,
1448          MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
1449        break;
1450      case LLVMContext::MD_dereferenceable:
1451      case LLVMContext::MD_dereferenceable_or_null:
1452        K->setMetadata(Kind,
1453          MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
1454        break;
1455    }
1456  }
1457  // Set !invariant.group from J if J has it. If both instructions have it
1458  // then we will just pick it from J - even when they are different.
1459  // Also make sure that K is load or store - f.e. combining bitcast with load
1460  // could produce bitcast with invariant.group metadata, which is invalid.
1461  // FIXME: we should try to preserve both invariant.group md if they are
1462  // different, but right now instruction can only have one invariant.group.
1463  if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
1464    if (isa<LoadInst>(K) || isa<StoreInst>(K))
1465      K->setMetadata(LLVMContext::MD_invariant_group, JMD);
1466}
1467
1468unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
1469                                        DominatorTree &DT,
1470                                        const BasicBlockEdge &Root) {
1471  assert(From->getType() == To->getType());
1472
1473  unsigned Count = 0;
1474  for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
1475       UI != UE; ) {
1476    Use &U = *UI++;
1477    if (DT.dominates(Root, U)) {
1478      U.set(To);
1479      DEBUG(dbgs() << "Replace dominated use of '"
1480            << From->getName() << "' as "
1481            << *To << " in " << *U << "\n");
1482      ++Count;
1483    }
1484  }
1485  return Count;
1486}
1487
1488unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
1489                                        DominatorTree &DT,
1490                                        const BasicBlock *BB) {
1491  assert(From->getType() == To->getType());
1492
1493  unsigned Count = 0;
1494  for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
1495       UI != UE;) {
1496    Use &U = *UI++;
1497    auto *I = cast<Instruction>(U.getUser());
1498    if (DT.dominates(BB, I->getParent())) {
1499      U.set(To);
1500      DEBUG(dbgs() << "Replace dominated use of '" << From->getName() << "' as "
1501                   << *To << " in " << *U << "\n");
1502      ++Count;
1503    }
1504  }
1505  return Count;
1506}
1507
1508bool llvm::callsGCLeafFunction(ImmutableCallSite CS) {
1509  if (isa<IntrinsicInst>(CS.getInstruction()))
1510    // Most LLVM intrinsics are things which can never take a safepoint.
1511    // As a result, we don't need to have the stack parsable at the
1512    // callsite.  This is a highly useful optimization since intrinsic
1513    // calls are fairly prevalent, particularly in debug builds.
1514    return true;
1515
1516  // Check if the function is specifically marked as a gc leaf function.
1517  //
1518  // TODO: we should be checking the attributes on the call site as well.
1519  if (const Function *F = CS.getCalledFunction())
1520    return F->hasFnAttribute("gc-leaf-function");
1521
1522  return false;
1523}
1524