Local.cpp revision c827939046670a9800659b83e2048f1d3a79a531
1c779e96158cbac4c62df8e2053ab6a933eba5868Chandler Carruth//===-- Local.cpp - Functions to perform local transformations ------------===// 25a7069a80fee26490b201cb3d88eb124585bd6c8Gabor Greif// 35a7069a80fee26490b201cb3d88eb124585bd6c8Gabor Greif// The LLVM Compiler Infrastructure 45a7069a80fee26490b201cb3d88eb124585bd6c8Gabor Greif// 55a7069a80fee26490b201cb3d88eb124585bd6c8Gabor Greif// This file is distributed under the University of Illinois Open Source 65a7069a80fee26490b201cb3d88eb124585bd6c8Gabor Greif// License. See LICENSE.TXT for details. 75a7069a80fee26490b201cb3d88eb124585bd6c8Gabor Greif// 85a7069a80fee26490b201cb3d88eb124585bd6c8Gabor Greif//===----------------------------------------------------------------------===// 95a7069a80fee26490b201cb3d88eb124585bd6c8Gabor Greif// 100b8c9a80f20772c3793201ab5b251d3520b9cea3Chandler Carruth// This family of functions perform various local transformations to the 115a88dda4be791426ab4d20a6a6c9c65d66614a27Chandler Carruth// program. 125a88dda4be791426ab4d20a6a6c9c65d66614a27Chandler Carruth// 130b8c9a80f20772c3793201ab5b251d3520b9cea3Chandler Carruth//===----------------------------------------------------------------------===// 140b8c9a80f20772c3793201ab5b251d3520b9cea3Chandler Carruth 150b8c9a80f20772c3793201ab5b251d3520b9cea3Chandler Carruth#include "llvm/Transforms/Utils/Local.h" 160b8c9a80f20772c3793201ab5b251d3520b9cea3Chandler Carruth#include "llvm/Constants.h" 1736b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines#include "llvm/GlobalAlias.h" 180b8c9a80f20772c3793201ab5b251d3520b9cea3Chandler Carruth#include "llvm/GlobalVariable.h" 190b8c9a80f20772c3793201ab5b251d3520b9cea3Chandler Carruth#include "llvm/DerivedTypes.h" 200b8c9a80f20772c3793201ab5b251d3520b9cea3Chandler Carruth#include "llvm/Instructions.h" 2136b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines#include "llvm/Intrinsics.h" 220b8c9a80f20772c3793201ab5b251d3520b9cea3Chandler Carruth#include "llvm/IntrinsicInst.h" 235a7069a80fee26490b201cb3d88eb124585bd6c8Gabor Greif#include "llvm/Metadata.h" 2436b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines#include "llvm/Operator.h" 255a7069a80fee26490b201cb3d88eb124585bd6c8Gabor Greif#include "llvm/ADT/DenseMap.h" 265a7069a80fee26490b201cb3d88eb124585bd6c8Gabor Greif#include "llvm/ADT/SmallPtrSet.h" 275a7069a80fee26490b201cb3d88eb124585bd6c8Gabor Greif#include "llvm/Analysis/DebugInfo.h" 285a7069a80fee26490b201cb3d88eb124585bd6c8Gabor Greif#include "llvm/Analysis/DIBuilder.h" 29138acfe353ed8b895de093a4c118b01093b6fbfbGabor Greif#include "llvm/Analysis/Dominators.h" 305a7069a80fee26490b201cb3d88eb124585bd6c8Gabor Greif#include "llvm/Analysis/ConstantFolding.h" 315a7069a80fee26490b201cb3d88eb124585bd6c8Gabor Greif#include "llvm/Analysis/InstructionSimplify.h" 32138acfe353ed8b895de093a4c118b01093b6fbfbGabor Greif#include "llvm/Analysis/ProfileInfo.h" 335a7069a80fee26490b201cb3d88eb124585bd6c8Gabor Greif#include "llvm/Analysis/ValueTracking.h" 34d165e1a71193ebff49ede9663d1ed70050f04699Gabor Greif#include "llvm/Target/TargetData.h" 35138acfe353ed8b895de093a4c118b01093b6fbfbGabor Greif#include "llvm/Support/CFG.h" 3622385eb8527f6bf8083ee85f85dc51e4d4928aaaGabor Greif#include "llvm/Support/Debug.h" 37db125cfaf57cc83e7dd7453de2d509bc8efd0e5eChris Lattner#include "llvm/Support/GetElementPtrTypeIterator.h" 3822385eb8527f6bf8083ee85f85dc51e4d4928aaaGabor Greif#include "llvm/Support/IRBuilder.h" 3922385eb8527f6bf8083ee85f85dc51e4d4928aaaGabor Greif#include "llvm/Support/MathExtras.h" 40f5ec9b55e871d326b8917f203711529273e7fa54John McCall#include "llvm/Support/ValueHandle.h" 4122385eb8527f6bf8083ee85f85dc51e4d4928aaaGabor Greif#include "llvm/Support/raw_ostream.h" 42f5ec9b55e871d326b8917f203711529273e7fa54John McCallusing namespace llvm; 43f5ec9b55e871d326b8917f203711529273e7fa54John McCall 44f5ec9b55e871d326b8917f203711529273e7fa54John McCall//===----------------------------------------------------------------------===// 4522385eb8527f6bf8083ee85f85dc51e4d4928aaaGabor Greif// Local constant propagation. 46f5ec9b55e871d326b8917f203711529273e7fa54John McCall// 47642c066906488715220dd87c5b976c67bb8a303dGabor Greif 48642c066906488715220dd87c5b976c67bb8a303dGabor Greif/// ConstantFoldTerminator - If a terminator instruction is predicated on a 49642c066906488715220dd87c5b976c67bb8a303dGabor Greif/// constant value, convert it into an unconditional branch to the constant 50642c066906488715220dd87c5b976c67bb8a303dGabor Greif/// destination. This is a nontrivial operation because the successors of this 515a7069a80fee26490b201cb3d88eb124585bd6c8Gabor Greif/// basic block must have their PHI nodes updated. 525a7069a80fee26490b201cb3d88eb124585bd6c8Gabor Greif/// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 5336b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines/// conditions and indirectbr addresses this might make dead if 5436b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines/// DeleteDeadConditions is true. 5536b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hinesbool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions) { 5636b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines TerminatorInst *T = BB->getTerminator(); 5736b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines IRBuilder<> Builder(T); 5836b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines 5936b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines // Branch - See if we are conditional jumping on constant 6036b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 6136b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines if (BI->isUnconditional()) return false; // Can't optimize uncond branch 6236b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines BasicBlock *Dest1 = BI->getSuccessor(0); 6336b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines BasicBlock *Dest2 = BI->getSuccessor(1); 6436b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines 6536b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 6636b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines // Are we branching on constant? 6736b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines // YES. Change to unconditional branch... 6836b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 6936b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 7036b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines 7136b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines //cerr << "Function: " << T->getParent()->getParent() 7236b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines // << "\nRemoving branch from " << T->getParent() 7336b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines // << "\n\nTo: " << OldDest << endl; 7436b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines 7536b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines // Let the basic block know that we are letting go of it. Based on this, 7636b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines // it will adjust it's PHI nodes. 7736b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines OldDest->removePredecessor(BB); 7836b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines 7936b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines // Replace the conditional branch with an unconditional one. 8036b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines Builder.CreateBr(Destination); 8136b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines BI->eraseFromParent(); 8236b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines return true; 8336b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines } 8436b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines 8536b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines if (Dest2 == Dest1) { // Conditional branch to same location? 8636b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines // This branch matches something like this: 8736b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines // br bool %cond, label %Dest, label %Dest 8836b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines // and changes it into: br label %Dest 8936b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines 9036b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines // Let the basic block know that we are letting go of one copy of it. 9136b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines assert(BI->getParent() && "Terminator not inserted in block!"); 9236b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines Dest1->removePredecessor(BI->getParent()); 9336b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines 9436b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines // Replace the conditional branch with an unconditional one. 9536b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines Builder.CreateBr(Dest1); 9636b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines Value *Cond = BI->getCondition(); 9736b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines BI->eraseFromParent(); 9836b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines if (DeleteDeadConditions) 9936b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines RecursivelyDeleteTriviallyDeadInstructions(Cond); 10036b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines return true; 10136b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines } 10236b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines return false; 10336b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines } 10436b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines 105d165e1a71193ebff49ede9663d1ed70050f04699Gabor Greif if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) { 106d165e1a71193ebff49ede9663d1ed70050f04699Gabor Greif // If we are switching on a constant, we can convert the switch into a 107d165e1a71193ebff49ede9663d1ed70050f04699Gabor Greif // single branch instruction! 108d165e1a71193ebff49ede9663d1ed70050f04699Gabor Greif ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition()); 109d165e1a71193ebff49ede9663d1ed70050f04699Gabor Greif BasicBlock *TheOnlyDest = SI->getSuccessor(0); // The default dest 110d165e1a71193ebff49ede9663d1ed70050f04699Gabor Greif BasicBlock *DefaultDest = TheOnlyDest; 111d165e1a71193ebff49ede9663d1ed70050f04699Gabor Greif assert(TheOnlyDest == SI->getDefaultDest() && 112d165e1a71193ebff49ede9663d1ed70050f04699Gabor Greif "Default destination is not successor #0?"); 113d165e1a71193ebff49ede9663d1ed70050f04699Gabor Greif 114d165e1a71193ebff49ede9663d1ed70050f04699Gabor Greif // Figure out which case it goes to. 115abf657f7e6dbce1bf8e02fce2d602f33d5fc5c2aGabor Greif for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) { 116abf657f7e6dbce1bf8e02fce2d602f33d5fc5c2aGabor Greif // Found case matching a constant operand? 117f5ec9b55e871d326b8917f203711529273e7fa54John McCall if (SI->getSuccessorValue(i) == CI) { 118abf657f7e6dbce1bf8e02fce2d602f33d5fc5c2aGabor Greif TheOnlyDest = SI->getSuccessor(i); 119d165e1a71193ebff49ede9663d1ed70050f04699Gabor Greif break; 120f5ec9b55e871d326b8917f203711529273e7fa54John McCall } 121d165e1a71193ebff49ede9663d1ed70050f04699Gabor Greif 122d165e1a71193ebff49ede9663d1ed70050f04699Gabor Greif // Check to see if this branch is going to the same place as the default 12336b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines // dest. If so, eliminate it as an explicit compare. 124abf657f7e6dbce1bf8e02fce2d602f33d5fc5c2aGabor Greif if (SI->getSuccessor(i) == DefaultDest) { 12536b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines // Remove this entry. 126d165e1a71193ebff49ede9663d1ed70050f04699Gabor Greif DefaultDest->removePredecessor(SI->getParent()); 127db125cfaf57cc83e7dd7453de2d509bc8efd0e5eChris Lattner SI->removeCase(i); 128d165e1a71193ebff49ede9663d1ed70050f04699Gabor Greif --i; --e; // Don't skip an entry... 129d165e1a71193ebff49ede9663d1ed70050f04699Gabor Greif continue; 130d165e1a71193ebff49ede9663d1ed70050f04699Gabor Greif } 131d165e1a71193ebff49ede9663d1ed70050f04699Gabor Greif 132d165e1a71193ebff49ede9663d1ed70050f04699Gabor Greif // Otherwise, check to see if the switch only branches to one destination. 133abf657f7e6dbce1bf8e02fce2d602f33d5fc5c2aGabor Greif // We do this by reseting "TheOnlyDest" to null when we find two non-equal 134abf657f7e6dbce1bf8e02fce2d602f33d5fc5c2aGabor Greif // destinations. 135f5ec9b55e871d326b8917f203711529273e7fa54John McCall if (SI->getSuccessor(i) != TheOnlyDest) TheOnlyDest = 0; 136abf657f7e6dbce1bf8e02fce2d602f33d5fc5c2aGabor Greif } 137d165e1a71193ebff49ede9663d1ed70050f04699Gabor Greif 138f5ec9b55e871d326b8917f203711529273e7fa54John McCall if (CI && !TheOnlyDest) { 139d165e1a71193ebff49ede9663d1ed70050f04699Gabor Greif // Branching on a constant, but not any of the cases, go to the default 140d165e1a71193ebff49ede9663d1ed70050f04699Gabor Greif // successor. 141d165e1a71193ebff49ede9663d1ed70050f04699Gabor Greif TheOnlyDest = SI->getDefaultDest(); 142d165e1a71193ebff49ede9663d1ed70050f04699Gabor Greif } 143d165e1a71193ebff49ede9663d1ed70050f04699Gabor Greif 144f5ec9b55e871d326b8917f203711529273e7fa54John McCall // If we found a single destination that we can fold the switch into, do so 145f5ec9b55e871d326b8917f203711529273e7fa54John McCall // now. 146f5ec9b55e871d326b8917f203711529273e7fa54John McCall if (TheOnlyDest) { 147d165e1a71193ebff49ede9663d1ed70050f04699Gabor Greif // Insert the new branch. 148d165e1a71193ebff49ede9663d1ed70050f04699Gabor Greif Builder.CreateBr(TheOnlyDest); 149d165e1a71193ebff49ede9663d1ed70050f04699Gabor Greif BasicBlock *BB = SI->getParent(); 150f5ec9b55e871d326b8917f203711529273e7fa54John McCall 151f5ec9b55e871d326b8917f203711529273e7fa54John McCall // Remove entries from PHI nodes which we no longer branch to... 152f5ec9b55e871d326b8917f203711529273e7fa54John McCall for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) { 153d165e1a71193ebff49ede9663d1ed70050f04699Gabor Greif // Found case matching a constant operand? 154d165e1a71193ebff49ede9663d1ed70050f04699Gabor Greif BasicBlock *Succ = SI->getSuccessor(i); 155d165e1a71193ebff49ede9663d1ed70050f04699Gabor Greif if (Succ == TheOnlyDest) 156f5ec9b55e871d326b8917f203711529273e7fa54John McCall TheOnlyDest = 0; // Don't modify the first branch to TheOnlyDest 157f5ec9b55e871d326b8917f203711529273e7fa54John McCall else 158f5ec9b55e871d326b8917f203711529273e7fa54John McCall Succ->removePredecessor(BB); 159d165e1a71193ebff49ede9663d1ed70050f04699Gabor Greif } 160d165e1a71193ebff49ede9663d1ed70050f04699Gabor Greif 161f5ec9b55e871d326b8917f203711529273e7fa54John McCall // Delete the old switch. 162d165e1a71193ebff49ede9663d1ed70050f04699Gabor Greif Value *Cond = SI->getCondition(); 163d165e1a71193ebff49ede9663d1ed70050f04699Gabor Greif SI->eraseFromParent(); 164d165e1a71193ebff49ede9663d1ed70050f04699Gabor Greif if (DeleteDeadConditions) 165d165e1a71193ebff49ede9663d1ed70050f04699Gabor Greif RecursivelyDeleteTriviallyDeadInstructions(Cond); 166d165e1a71193ebff49ede9663d1ed70050f04699Gabor Greif return true; 167d165e1a71193ebff49ede9663d1ed70050f04699Gabor Greif } 168d165e1a71193ebff49ede9663d1ed70050f04699Gabor Greif 169d165e1a71193ebff49ede9663d1ed70050f04699Gabor Greif if (SI->getNumSuccessors() == 2) { 170d165e1a71193ebff49ede9663d1ed70050f04699Gabor Greif // Otherwise, we can fold this switch into a conditional branch 171607946533d4eb781713b363605c4a241503dbe0eDuncan Sands // instruction if it has only one non-default destination. 172607946533d4eb781713b363605c4a241503dbe0eDuncan Sands Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 173607946533d4eb781713b363605c4a241503dbe0eDuncan Sands SI->getSuccessorValue(1), "cond"); 174f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault 175f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault // Insert the new branch. 176f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault Builder.CreateCondBr(Cond, SI->getSuccessor(1), SI->getSuccessor(0)); 177f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault 178f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault // Delete the old switch. 179f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault SI->eraseFromParent(); 180f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault return true; 181f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault } 182f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault return false; 183f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault } 184f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault 185f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) { 186f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault // indirectbr blockaddress(@F, @BB) -> br label @BB 187f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault if (BlockAddress *BA = 188f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 189f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault BasicBlock *TheOnlyDest = BA->getBasicBlock(); 190f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault // Insert the new branch. 191f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault Builder.CreateBr(TheOnlyDest); 192f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault 193f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 194f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault if (IBI->getDestination(i) == TheOnlyDest) 195f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault TheOnlyDest = 0; 196f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault else 197f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault IBI->getDestination(i)->removePredecessor(IBI->getParent()); 198f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault } 199f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault Value *Address = IBI->getAddress(); 200f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault IBI->eraseFromParent(); 201f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault if (DeleteDeadConditions) 202f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault RecursivelyDeleteTriviallyDeadInstructions(Address); 20336b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines 204607946533d4eb781713b363605c4a241503dbe0eDuncan Sands // If we didn't find our destination in the IBI successor list, then we 205117feba971a020653fef3d6d61a16345355b83fdDuncan Sands // have undefined behavior. Replace the unconditional branch with an 206117feba971a020653fef3d6d61a16345355b83fdDuncan Sands // 'unreachable' instruction. 207117feba971a020653fef3d6d61a16345355b83fdDuncan Sands if (TheOnlyDest) { 20859d3ae6cdc4316ad338cd848251f33a236ccb36cMatt Arsenault BB->getTerminator()->eraseFromParent(); 20959d3ae6cdc4316ad338cd848251f33a236ccb36cMatt Arsenault new UnreachableInst(BB->getContext(), BB); 210485c7fd76b32a69c46782a715682ed8831b0873bMatt Arsenault } 211485c7fd76b32a69c46782a715682ed8831b0873bMatt Arsenault 212485c7fd76b32a69c46782a715682ed8831b0873bMatt Arsenault return true; 213485c7fd76b32a69c46782a715682ed8831b0873bMatt Arsenault } 214485c7fd76b32a69c46782a715682ed8831b0873bMatt Arsenault } 215f5ec9b55e871d326b8917f203711529273e7fa54John McCall 216f5ec9b55e871d326b8917f203711529273e7fa54John McCall return false; 2171608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem} 218f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault 219f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault 220f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault//===----------------------------------------------------------------------===// 221f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault// Local dead code elimination. 222f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault// 223f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault 224f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault/// isInstructionTriviallyDead - Return true if the result produced by the 225f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault/// instruction is not used, and the instruction has no side effects. 226f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault/// 227f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenaultbool llvm::isInstructionTriviallyDead(Instruction *I) { 228f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault if (!I->use_empty() || isa<TerminatorInst>(I)) return false; 229f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault 23059d3ae6cdc4316ad338cd848251f33a236ccb36cMatt Arsenault // We don't want debug info removed by anything this general, unless 23159d3ae6cdc4316ad338cd848251f33a236ccb36cMatt Arsenault // debug info is empty. 23259d3ae6cdc4316ad338cd848251f33a236ccb36cMatt Arsenault if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 23359d3ae6cdc4316ad338cd848251f33a236ccb36cMatt Arsenault if (DDI->getAddress()) 234f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault return false; 235f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault return true; 236f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault } 237f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 238f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault if (DVI->getValue()) 239f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault return false; 240f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault return true; 241f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault } 242f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault 243f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault if (!I->mayHaveSideEffects()) return true; 244f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault 245f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault // Special case intrinsics that "may have side effects" but can be deleted 246f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault // when dead. 247f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 248f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault // Safe to delete llvm.stacksave if dead. 249f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault if (II->getIntrinsicID() == Intrinsic::stacksave) 250f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault return true; 251f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault return false; 252f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault} 253f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault 254f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault/// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 255f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault/// trivially dead instruction, delete it. If that makes any of its operands 256f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault/// trivially dead, delete them too, recursively. Return true if any 257f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault/// instructions were deleted. 258f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenaultbool llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V) { 259f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault Instruction *I = dyn_cast<Instruction>(V); 260f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault if (!I || !I->use_empty() || !isInstructionTriviallyDead(I)) 261f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault return false; 2621bf0ec4e1642a532c0121de8ccc0878d6403c9d3Matt Arsenault 2631bf0ec4e1642a532c0121de8ccc0878d6403c9d3Matt Arsenault SmallVector<Instruction*, 16> DeadInsts; 26436b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines DeadInsts.push_back(I); 26536b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines 26636b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines do { 26736b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines I = DeadInsts.pop_back_val(); 26836b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines 26936b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines // Null out all of the instruction's operands to see if any operand becomes 27036b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines // dead as we go. 27136b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 27236b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines Value *OpV = I->getOperand(i); 27336b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines I->setOperand(i, 0); 27436b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines 27536b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines if (!OpV->use_empty()) continue; 27636b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines 27736b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines // If the operand is an instruction that became dead as we nulled out the 27836b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines // operand, and if it is 'trivially' dead, delete it in a future loop 2791bf0ec4e1642a532c0121de8ccc0878d6403c9d3Matt Arsenault // iteration. 2801bf0ec4e1642a532c0121de8ccc0878d6403c9d3Matt Arsenault if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 2811bf0ec4e1642a532c0121de8ccc0878d6403c9d3Matt Arsenault if (isInstructionTriviallyDead(OpI)) 2821bf0ec4e1642a532c0121de8ccc0878d6403c9d3Matt Arsenault DeadInsts.push_back(OpI); 2831bf0ec4e1642a532c0121de8ccc0878d6403c9d3Matt Arsenault } 2841bf0ec4e1642a532c0121de8ccc0878d6403c9d3Matt Arsenault 2851bf0ec4e1642a532c0121de8ccc0878d6403c9d3Matt Arsenault I->eraseFromParent(); 2861bf0ec4e1642a532c0121de8ccc0878d6403c9d3Matt Arsenault } while (!DeadInsts.empty()); 2871bf0ec4e1642a532c0121de8ccc0878d6403c9d3Matt Arsenault 288f34dc428fa577d6d5d71ab3a1f9765b4e5da5a4fMatt Arsenault return true; 2891608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem} 2901608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem 2911608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem/// areAllUsesEqual - Check whether the uses of a value are all the same. 2921608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem/// This is similar to Instruction::hasOneUse() except this will also return 2931608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem/// true when there are no uses or multiple uses that all refer to the same 2941608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem/// value. 29576bf61fe0754500c5c9d01fc440ff36c76ff61f5Matt Arsenaultstatic bool areAllUsesEqual(Instruction *I) { 2961608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem Value::use_iterator UI = I->use_begin(); 2971608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem Value::use_iterator UE = I->use_end(); 2981608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem if (UI == UE) 2991608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem return true; 3001608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem 3011608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem User *TheUse = *UI; 3021608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem for (++UI; UI != UE; ++UI) { 3031608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem if (*UI != TheUse) 3041608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem return false; 3051608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem } 3061608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem return true; 3071608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem} 3081608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem 3091608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem/// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 3101608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem/// dead PHI node, due to being a def-use chain of single-use nodes that 3111608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem/// either forms a cycle or is terminated by a trivially dead instruction, 3121608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem/// delete it. If that makes any of its operands trivially dead, delete them 3131608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem/// too, recursively. Return true if a change was made. 3141608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotembool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN) { 3151608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem SmallPtrSet<Instruction*, 4> Visited; 3164802b9d6dc7443985066f0381c0a2468f72f9b81Evgeniy Stepanov for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 3174802b9d6dc7443985066f0381c0a2468f72f9b81Evgeniy Stepanov I = cast<Instruction>(*I->use_begin())) { 3184802b9d6dc7443985066f0381c0a2468f72f9b81Evgeniy Stepanov if (I->use_empty()) 3194802b9d6dc7443985066f0381c0a2468f72f9b81Evgeniy Stepanov return RecursivelyDeleteTriviallyDeadInstructions(I); 3204802b9d6dc7443985066f0381c0a2468f72f9b81Evgeniy Stepanov 3211608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem // If we find an instruction more than once, we're on a cycle that 3221608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem // won't prove fruitful. 3231608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem if (!Visited.insert(I)) { 3241608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem // Break the cycle and delete the instruction and its operands. 3251608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem I->replaceAllUsesWith(UndefValue::get(I->getType())); 3261608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem (void)RecursivelyDeleteTriviallyDeadInstructions(I); 3271608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem return true; 3281608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem } 3291608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem } 3301608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem return false; 3311608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem} 3321608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem 3331608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem/// SimplifyInstructionsInBlock - Scan the specified basic block and try to 3341608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem/// simplify any instructions in it and recursively delete dead instructions. 3351608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem/// 3361608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem/// This returns true if it changed the code, note that it can delete 3371608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem/// instructions in other blocks as well in this block. 3381608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotembool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, const TargetData *TD) { 3391608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem bool MadeChange = false; 3401608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { 3411608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem Instruction *Inst = BI++; 342791cfc211a9801002bfda6b3eb4de7e041f04f53Micah Villmow 34336b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines if (Value *V = SimplifyInstruction(Inst, TD)) { 3441608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem WeakVH BIHandle(BI); 3451608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem ReplaceAndSimplifyAllUses(Inst, V, TD); 346a070d2a0355c4993240b5206ebc1d517c151331dDan Gohman MadeChange = true; 347a070d2a0355c4993240b5206ebc1d517c151331dDan Gohman if (BIHandle != BI) 348a070d2a0355c4993240b5206ebc1d517c151331dDan Gohman BI = BB->begin(); 349a070d2a0355c4993240b5206ebc1d517c151331dDan Gohman continue; 3501608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem } 3511608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem 3521608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem if (Inst->isTerminator()) 3531608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem break; 3541608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem 3551608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem WeakVH BIHandle(BI); 3561608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem MadeChange |= RecursivelyDeleteTriviallyDeadInstructions(Inst); 3571608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem if (BIHandle != BI) 3581608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem BI = BB->begin(); 3591608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem } 3601608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem return MadeChange; 3611608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem} 3621608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem 3631608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem//===----------------------------------------------------------------------===// 3641608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem// Control Flow Graph Restructuring. 3651608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem// 3661608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem 3671608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem 3681608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem/// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this 3691608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem/// method is called when we're about to delete Pred as a predecessor of BB. If 3701608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem/// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred. 3711608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem/// 3721608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem/// Unlike the removePredecessor method, this attempts to simplify uses of PHI 3731608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem/// nodes that collapse into identity values. For example, if we have: 3741608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem/// x = phi(1, 0, 0, 0) 3751608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem/// y = and x, z 3761608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem/// 3771608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem/// .. and delete the predecessor corresponding to the '1', this will attempt to 3781608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem/// recursively fold the and to 0. 3791608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotemvoid llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred, 3801608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem TargetData *TD) { 3811608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem // This only adjusts blocks with PHI nodes. 3824802b9d6dc7443985066f0381c0a2468f72f9b81Evgeniy Stepanov if (!isa<PHINode>(BB->begin())) 3834802b9d6dc7443985066f0381c0a2468f72f9b81Evgeniy Stepanov return; 3844802b9d6dc7443985066f0381c0a2468f72f9b81Evgeniy Stepanov 3851608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem // Remove the entries for Pred from the PHI nodes in BB, but do not simplify 3861608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem // them down. This will leave us with single entry phi nodes and other phis 3871608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem // that can be removed. 3881608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem BB->removePredecessor(Pred, true); 3891608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem 3901608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem WeakVH PhiIt = &BB->front(); 3918883c43ddc13e5f92ba8dfe00f2116a153a570d5Duncan Sands while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) { 3928883c43ddc13e5f92ba8dfe00f2116a153a570d5Duncan Sands PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt)); 3938883c43ddc13e5f92ba8dfe00f2116a153a570d5Duncan Sands 3948883c43ddc13e5f92ba8dfe00f2116a153a570d5Duncan Sands Value *PNV = SimplifyInstruction(PN, TD); 3958883c43ddc13e5f92ba8dfe00f2116a153a570d5Duncan Sands if (PNV == 0) continue; 3968883c43ddc13e5f92ba8dfe00f2116a153a570d5Duncan Sands 3978883c43ddc13e5f92ba8dfe00f2116a153a570d5Duncan Sands // If we're able to simplify the phi to a single value, substitute the new 3988883c43ddc13e5f92ba8dfe00f2116a153a570d5Duncan Sands // value into all of its uses. 3998883c43ddc13e5f92ba8dfe00f2116a153a570d5Duncan Sands assert(PNV != PN && "SimplifyInstruction broken!"); 4008883c43ddc13e5f92ba8dfe00f2116a153a570d5Duncan Sands 4018883c43ddc13e5f92ba8dfe00f2116a153a570d5Duncan Sands Value *OldPhiIt = PhiIt; 4028883c43ddc13e5f92ba8dfe00f2116a153a570d5Duncan Sands ReplaceAndSimplifyAllUses(PN, PNV, TD); 4038883c43ddc13e5f92ba8dfe00f2116a153a570d5Duncan Sands 4048883c43ddc13e5f92ba8dfe00f2116a153a570d5Duncan Sands // If recursive simplification ended up deleting the next PHI node we would 405446cf94cdbbc1f8e22452fc46664ac73d810c6a2Duncan Sands // iterate to, then our iterator is invalid, restart scanning from the top 406446cf94cdbbc1f8e22452fc46664ac73d810c6a2Duncan Sands // of the block. 407446cf94cdbbc1f8e22452fc46664ac73d810c6a2Duncan Sands if (PhiIt != OldPhiIt) PhiIt = &BB->front(); 408446cf94cdbbc1f8e22452fc46664ac73d810c6a2Duncan Sands } 4093181f5900ff5d9800c38284c7d3427cb6e306c9aMatt Arsenault} 410446cf94cdbbc1f8e22452fc46664ac73d810c6a2Duncan Sands 411446cf94cdbbc1f8e22452fc46664ac73d810c6a2Duncan Sands 412446cf94cdbbc1f8e22452fc46664ac73d810c6a2Duncan Sands/// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its 413446cf94cdbbc1f8e22452fc46664ac73d810c6a2Duncan Sands/// predecessor is known to have one successor (DestBB!). Eliminate the edge 414446cf94cdbbc1f8e22452fc46664ac73d810c6a2Duncan Sands/// between them, moving the instructions in the predecessor into DestBB and 415446cf94cdbbc1f8e22452fc46664ac73d810c6a2Duncan Sands/// deleting the predecessor block. 416446cf94cdbbc1f8e22452fc46664ac73d810c6a2Duncan Sands/// 417446cf94cdbbc1f8e22452fc46664ac73d810c6a2Duncan Sandsvoid llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) { 418c6a4f5e819217e1e12c458aed8e7b122e23a3a58Stephen Hines // If BB has single-entry PHI nodes, fold them. 419446cf94cdbbc1f8e22452fc46664ac73d810c6a2Duncan Sands while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 420446cf94cdbbc1f8e22452fc46664ac73d810c6a2Duncan Sands Value *NewVal = PN->getIncomingValue(0); 4213181f5900ff5d9800c38284c7d3427cb6e306c9aMatt Arsenault // Replace self referencing PHI with undef, it must be dead. 4223181f5900ff5d9800c38284c7d3427cb6e306c9aMatt Arsenault if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 423446cf94cdbbc1f8e22452fc46664ac73d810c6a2Duncan Sands PN->replaceAllUsesWith(NewVal); 424446cf94cdbbc1f8e22452fc46664ac73d810c6a2Duncan Sands PN->eraseFromParent(); 425446cf94cdbbc1f8e22452fc46664ac73d810c6a2Duncan Sands } 426c6a4f5e819217e1e12c458aed8e7b122e23a3a58Stephen Hines 4273181f5900ff5d9800c38284c7d3427cb6e306c9aMatt Arsenault BasicBlock *PredBB = DestBB->getSinglePredecessor(); 4283181f5900ff5d9800c38284c7d3427cb6e306c9aMatt Arsenault assert(PredBB && "Block doesn't have a single predecessor!"); 4293181f5900ff5d9800c38284c7d3427cb6e306c9aMatt Arsenault 4303181f5900ff5d9800c38284c7d3427cb6e306c9aMatt Arsenault // Splice all the instructions from PredBB to DestBB. 4313181f5900ff5d9800c38284c7d3427cb6e306c9aMatt Arsenault PredBB->getTerminator()->eraseFromParent(); 4323181f5900ff5d9800c38284c7d3427cb6e306c9aMatt Arsenault DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 4333181f5900ff5d9800c38284c7d3427cb6e306c9aMatt Arsenault 434c6a4f5e819217e1e12c458aed8e7b122e23a3a58Stephen Hines // Zap anything that took the address of DestBB. Not doing this will give the 435446cf94cdbbc1f8e22452fc46664ac73d810c6a2Duncan Sands // address an invalid value. 436446cf94cdbbc1f8e22452fc46664ac73d810c6a2Duncan Sands if (DestBB->hasAddressTaken()) { 437446cf94cdbbc1f8e22452fc46664ac73d810c6a2Duncan Sands BlockAddress *BA = BlockAddress::get(DestBB); 438446cf94cdbbc1f8e22452fc46664ac73d810c6a2Duncan Sands Constant *Replacement = 439446cf94cdbbc1f8e22452fc46664ac73d810c6a2Duncan Sands ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1); 440446cf94cdbbc1f8e22452fc46664ac73d810c6a2Duncan Sands BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 441c6a4f5e819217e1e12c458aed8e7b122e23a3a58Stephen Hines BA->getType())); 442446cf94cdbbc1f8e22452fc46664ac73d810c6a2Duncan Sands BA->destroyConstant(); 443446cf94cdbbc1f8e22452fc46664ac73d810c6a2Duncan Sands } 444446cf94cdbbc1f8e22452fc46664ac73d810c6a2Duncan Sands 445446cf94cdbbc1f8e22452fc46664ac73d810c6a2Duncan Sands // Anything that branched to PredBB now branches to DestBB. 446446cf94cdbbc1f8e22452fc46664ac73d810c6a2Duncan Sands PredBB->replaceAllUsesWith(DestBB); 447446cf94cdbbc1f8e22452fc46664ac73d810c6a2Duncan Sands 448c6a4f5e819217e1e12c458aed8e7b122e23a3a58Stephen Hines if (P) { 449446cf94cdbbc1f8e22452fc46664ac73d810c6a2Duncan Sands DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>(); 4503181f5900ff5d9800c38284c7d3427cb6e306c9aMatt Arsenault if (DT) { 4513181f5900ff5d9800c38284c7d3427cb6e306c9aMatt Arsenault BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock(); 4523181f5900ff5d9800c38284c7d3427cb6e306c9aMatt Arsenault DT->changeImmediateDominator(DestBB, PredBBIDom); 4533181f5900ff5d9800c38284c7d3427cb6e306c9aMatt Arsenault DT->eraseNode(PredBB); 4543181f5900ff5d9800c38284c7d3427cb6e306c9aMatt Arsenault } 45536b56886974eae4f9c5ebc96befd3e7bfe5de338Stephen Hines ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>(); 4563181f5900ff5d9800c38284c7d3427cb6e306c9aMatt Arsenault if (PI) { 4573181f5900ff5d9800c38284c7d3427cb6e306c9aMatt Arsenault PI->replaceAllUses(PredBB, DestBB); 4583181f5900ff5d9800c38284c7d3427cb6e306c9aMatt Arsenault PI->removeEdge(ProfileInfo::getEdge(PredBB, DestBB)); 4593181f5900ff5d9800c38284c7d3427cb6e306c9aMatt Arsenault } 4603181f5900ff5d9800c38284c7d3427cb6e306c9aMatt Arsenault } 4613181f5900ff5d9800c38284c7d3427cb6e306c9aMatt Arsenault // Nuke BB. 4623181f5900ff5d9800c38284c7d3427cb6e306c9aMatt Arsenault PredBB->eraseFromParent(); 46359d3ae6cdc4316ad338cd848251f33a236ccb36cMatt Arsenault} 4643181f5900ff5d9800c38284c7d3427cb6e306c9aMatt Arsenault 46559d3ae6cdc4316ad338cd848251f33a236ccb36cMatt Arsenault/// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an 4663181f5900ff5d9800c38284c7d3427cb6e306c9aMatt Arsenault/// almost-empty BB ending in an unconditional branch to Succ, into succ. 467c6a4f5e819217e1e12c458aed8e7b122e23a3a58Stephen Hines/// 4683181f5900ff5d9800c38284c7d3427cb6e306c9aMatt Arsenault/// Assumption: Succ is the single successor for BB. 4693181f5900ff5d9800c38284c7d3427cb6e306c9aMatt Arsenault/// 47059d3ae6cdc4316ad338cd848251f33a236ccb36cMatt Arsenaultstatic bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 47159d3ae6cdc4316ad338cd848251f33a236ccb36cMatt Arsenault assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 47259d3ae6cdc4316ad338cd848251f33a236ccb36cMatt Arsenault 47359d3ae6cdc4316ad338cd848251f33a236ccb36cMatt Arsenault DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 474c6a4f5e819217e1e12c458aed8e7b122e23a3a58Stephen Hines << Succ->getName() << "\n"); 4753181f5900ff5d9800c38284c7d3427cb6e306c9aMatt Arsenault // Shortcut, if there is only a single predecessor it must be BB and merging 4763181f5900ff5d9800c38284c7d3427cb6e306c9aMatt Arsenault // is always safe 4773181f5900ff5d9800c38284c7d3427cb6e306c9aMatt Arsenault if (Succ->getSinglePredecessor()) return true; 4783181f5900ff5d9800c38284c7d3427cb6e306c9aMatt Arsenault 4793181f5900ff5d9800c38284c7d3427cb6e306c9aMatt Arsenault // Make a list of the predecessors of BB 4803181f5900ff5d9800c38284c7d3427cb6e306c9aMatt Arsenault typedef SmallPtrSet<BasicBlock*, 16> BlockSet; 481c6a4f5e819217e1e12c458aed8e7b122e23a3a58Stephen Hines BlockSet BBPreds(pred_begin(BB), pred_end(BB)); 4823181f5900ff5d9800c38284c7d3427cb6e306c9aMatt Arsenault 4833181f5900ff5d9800c38284c7d3427cb6e306c9aMatt Arsenault // Use that list to make another list of common predecessors of BB and Succ 484446cf94cdbbc1f8e22452fc46664ac73d810c6a2Duncan Sands BlockSet CommonPreds; 485446cf94cdbbc1f8e22452fc46664ac73d810c6a2Duncan Sands for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ); 486dce4a407a24b04eebc6a376f8e62b41aaa7b071fStephen Hines PI != PE; ++PI) { 487dce4a407a24b04eebc6a376f8e62b41aaa7b071fStephen Hines BasicBlock *P = *PI; 488dce4a407a24b04eebc6a376f8e62b41aaa7b071fStephen Hines if (BBPreds.count(P)) 489dce4a407a24b04eebc6a376f8e62b41aaa7b071fStephen Hines CommonPreds.insert(P); 490dce4a407a24b04eebc6a376f8e62b41aaa7b071fStephen Hines } 491dce4a407a24b04eebc6a376f8e62b41aaa7b071fStephen Hines 492dce4a407a24b04eebc6a376f8e62b41aaa7b071fStephen Hines // Shortcut, if there are no common predecessors, merging is always safe 493dce4a407a24b04eebc6a376f8e62b41aaa7b071fStephen Hines if (CommonPreds.empty()) 494dce4a407a24b04eebc6a376f8e62b41aaa7b071fStephen Hines return true; 495dce4a407a24b04eebc6a376f8e62b41aaa7b071fStephen Hines 496dce4a407a24b04eebc6a376f8e62b41aaa7b071fStephen Hines // Look at all the phi nodes in Succ, to see if they present a conflict when 497dce4a407a24b04eebc6a376f8e62b41aaa7b071fStephen Hines // merging these blocks 498dce4a407a24b04eebc6a376f8e62b41aaa7b071fStephen Hines for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 499dce4a407a24b04eebc6a376f8e62b41aaa7b071fStephen Hines PHINode *PN = cast<PHINode>(I); 500dce4a407a24b04eebc6a376f8e62b41aaa7b071fStephen Hines 501dce4a407a24b04eebc6a376f8e62b41aaa7b071fStephen Hines // If the incoming value from BB is again a PHINode in 502dce4a407a24b04eebc6a376f8e62b41aaa7b071fStephen Hines // BB which has the same incoming value for *PI as PN does, we can 503dce4a407a24b04eebc6a376f8e62b41aaa7b071fStephen Hines // merge the phi nodes and then the blocks can still be merged 504dce4a407a24b04eebc6a376f8e62b41aaa7b071fStephen Hines PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 505dce4a407a24b04eebc6a376f8e62b41aaa7b071fStephen Hines if (BBPN && BBPN->getParent() == BB) { 506dce4a407a24b04eebc6a376f8e62b41aaa7b071fStephen Hines for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end(); 507dce4a407a24b04eebc6a376f8e62b41aaa7b071fStephen Hines PI != PE; PI++) { 508dce4a407a24b04eebc6a376f8e62b41aaa7b071fStephen Hines if (BBPN->getIncomingValueForBlock(*PI) 509dce4a407a24b04eebc6a376f8e62b41aaa7b071fStephen Hines != PN->getIncomingValueForBlock(*PI)) { 510dce4a407a24b04eebc6a376f8e62b41aaa7b071fStephen Hines DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 511dce4a407a24b04eebc6a376f8e62b41aaa7b071fStephen Hines << Succ->getName() << " is conflicting with " 512dce4a407a24b04eebc6a376f8e62b41aaa7b071fStephen Hines << BBPN->getName() << " with regard to common predecessor " 513dce4a407a24b04eebc6a376f8e62b41aaa7b071fStephen Hines << (*PI)->getName() << "\n"); 514dce4a407a24b04eebc6a376f8e62b41aaa7b071fStephen Hines return false; 515dce4a407a24b04eebc6a376f8e62b41aaa7b071fStephen Hines } 516dce4a407a24b04eebc6a376f8e62b41aaa7b071fStephen Hines } 517dce4a407a24b04eebc6a376f8e62b41aaa7b071fStephen Hines } else { 518dce4a407a24b04eebc6a376f8e62b41aaa7b071fStephen Hines Value* Val = PN->getIncomingValueForBlock(BB); 5195a7069a80fee26490b201cb3d88eb124585bd6c8Gabor Greif for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end(); 5205a7069a80fee26490b201cb3d88eb124585bd6c8Gabor Greif PI != PE; PI++) { 5213181f5900ff5d9800c38284c7d3427cb6e306c9aMatt Arsenault // See if the incoming value for the common predecessor is equal to the 5223181f5900ff5d9800c38284c7d3427cb6e306c9aMatt Arsenault // one for BB, in which case this phi node will not prevent the merging 523 // of the block. 524 if (Val != PN->getIncomingValueForBlock(*PI)) { 525 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 526 << Succ->getName() << " is conflicting with regard to common " 527 << "predecessor " << (*PI)->getName() << "\n"); 528 return false; 529 } 530 } 531 } 532 } 533 534 return true; 535} 536 537/// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an 538/// unconditional branch, and contains no instructions other than PHI nodes, 539/// potential debug intrinsics and the branch. If possible, eliminate BB by 540/// rewriting all the predecessors to branch to the successor block and return 541/// true. If we can't transform, return false. 542bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) { 543 assert(BB != &BB->getParent()->getEntryBlock() && 544 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 545 546 // We can't eliminate infinite loops. 547 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 548 if (BB == Succ) return false; 549 550 // Check to see if merging these blocks would cause conflicts for any of the 551 // phi nodes in BB or Succ. If not, we can safely merge. 552 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 553 554 // Check for cases where Succ has multiple predecessors and a PHI node in BB 555 // has uses which will not disappear when the PHI nodes are merged. It is 556 // possible to handle such cases, but difficult: it requires checking whether 557 // BB dominates Succ, which is non-trivial to calculate in the case where 558 // Succ has multiple predecessors. Also, it requires checking whether 559 // constructing the necessary self-referential PHI node doesn't intoduce any 560 // conflicts; this isn't too difficult, but the previous code for doing this 561 // was incorrect. 562 // 563 // Note that if this check finds a live use, BB dominates Succ, so BB is 564 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 565 // folding the branch isn't profitable in that case anyway. 566 if (!Succ->getSinglePredecessor()) { 567 BasicBlock::iterator BBI = BB->begin(); 568 while (isa<PHINode>(*BBI)) { 569 for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end(); 570 UI != E; ++UI) { 571 if (PHINode* PN = dyn_cast<PHINode>(*UI)) { 572 if (PN->getIncomingBlock(UI) != BB) 573 return false; 574 } else { 575 return false; 576 } 577 } 578 ++BBI; 579 } 580 } 581 582 DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 583 584 if (isa<PHINode>(Succ->begin())) { 585 // If there is more than one pred of succ, and there are PHI nodes in 586 // the successor, then we need to add incoming edges for the PHI nodes 587 // 588 const SmallVector<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 589 590 // Loop over all of the PHI nodes in the successor of BB. 591 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 592 PHINode *PN = cast<PHINode>(I); 593 Value *OldVal = PN->removeIncomingValue(BB, false); 594 assert(OldVal && "No entry in PHI for Pred BB!"); 595 596 // If this incoming value is one of the PHI nodes in BB, the new entries 597 // in the PHI node are the entries from the old PHI. 598 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 599 PHINode *OldValPN = cast<PHINode>(OldVal); 600 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) 601 // Note that, since we are merging phi nodes and BB and Succ might 602 // have common predecessors, we could end up with a phi node with 603 // identical incoming branches. This will be cleaned up later (and 604 // will trigger asserts if we try to clean it up now, without also 605 // simplifying the corresponding conditional branch). 606 PN->addIncoming(OldValPN->getIncomingValue(i), 607 OldValPN->getIncomingBlock(i)); 608 } else { 609 // Add an incoming value for each of the new incoming values. 610 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) 611 PN->addIncoming(OldVal, BBPreds[i]); 612 } 613 } 614 } 615 616 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 617 if (Succ->getSinglePredecessor()) { 618 // BB is the only predecessor of Succ, so Succ will end up with exactly 619 // the same predecessors BB had. 620 Succ->getInstList().splice(Succ->begin(), 621 BB->getInstList(), BB->begin()); 622 } else { 623 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 624 assert(PN->use_empty() && "There shouldn't be any uses here!"); 625 PN->eraseFromParent(); 626 } 627 } 628 629 // Everything that jumped to BB now goes to Succ. 630 BB->replaceAllUsesWith(Succ); 631 if (!Succ->hasName()) Succ->takeName(BB); 632 BB->eraseFromParent(); // Delete the old basic block. 633 return true; 634} 635 636/// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI 637/// nodes in this block. This doesn't try to be clever about PHI nodes 638/// which differ only in the order of the incoming values, but instcombine 639/// orders them so it usually won't matter. 640/// 641bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 642 bool Changed = false; 643 644 // This implementation doesn't currently consider undef operands 645 // specially. Theroetically, two phis which are identical except for 646 // one having an undef where the other doesn't could be collapsed. 647 648 // Map from PHI hash values to PHI nodes. If multiple PHIs have 649 // the same hash value, the element is the first PHI in the 650 // linked list in CollisionMap. 651 DenseMap<uintptr_t, PHINode *> HashMap; 652 653 // Maintain linked lists of PHI nodes with common hash values. 654 DenseMap<PHINode *, PHINode *> CollisionMap; 655 656 // Examine each PHI. 657 for (BasicBlock::iterator I = BB->begin(); 658 PHINode *PN = dyn_cast<PHINode>(I++); ) { 659 // Compute a hash value on the operands. Instcombine will likely have sorted 660 // them, which helps expose duplicates, but we have to check all the 661 // operands to be safe in case instcombine hasn't run. 662 uintptr_t Hash = 0; 663 for (User::op_iterator I = PN->op_begin(), E = PN->op_end(); I != E; ++I) { 664 // This hash algorithm is quite weak as hash functions go, but it seems 665 // to do a good enough job for this particular purpose, and is very quick. 666 Hash ^= reinterpret_cast<uintptr_t>(static_cast<Value *>(*I)); 667 Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7)); 668 } 669 // Avoid colliding with the DenseMap sentinels ~0 and ~0-1. 670 Hash >>= 1; 671 // If we've never seen this hash value before, it's a unique PHI. 672 std::pair<DenseMap<uintptr_t, PHINode *>::iterator, bool> Pair = 673 HashMap.insert(std::make_pair(Hash, PN)); 674 if (Pair.second) continue; 675 // Otherwise it's either a duplicate or a hash collision. 676 for (PHINode *OtherPN = Pair.first->second; ; ) { 677 if (OtherPN->isIdenticalTo(PN)) { 678 // A duplicate. Replace this PHI with its duplicate. 679 PN->replaceAllUsesWith(OtherPN); 680 PN->eraseFromParent(); 681 Changed = true; 682 break; 683 } 684 // A non-duplicate hash collision. 685 DenseMap<PHINode *, PHINode *>::iterator I = CollisionMap.find(OtherPN); 686 if (I == CollisionMap.end()) { 687 // Set this PHI to be the head of the linked list of colliding PHIs. 688 PHINode *Old = Pair.first->second; 689 Pair.first->second = PN; 690 CollisionMap[PN] = Old; 691 break; 692 } 693 // Procede to the next PHI in the list. 694 OtherPN = I->second; 695 } 696 } 697 698 return Changed; 699} 700 701/// enforceKnownAlignment - If the specified pointer points to an object that 702/// we control, modify the object's alignment to PrefAlign. This isn't 703/// often possible though. If alignment is important, a more reliable approach 704/// is to simply align all global variables and allocation instructions to 705/// their preferred alignment from the beginning. 706/// 707static unsigned enforceKnownAlignment(Value *V, unsigned Align, 708 unsigned PrefAlign) { 709 710 User *U = dyn_cast<User>(V); 711 if (!U) return Align; 712 713 switch (Operator::getOpcode(U)) { 714 default: break; 715 case Instruction::BitCast: 716 return enforceKnownAlignment(U->getOperand(0), Align, PrefAlign); 717 case Instruction::GetElementPtr: { 718 // If all indexes are zero, it is just the alignment of the base pointer. 719 bool AllZeroOperands = true; 720 for (User::op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; ++i) 721 if (!isa<Constant>(*i) || 722 !cast<Constant>(*i)->isNullValue()) { 723 AllZeroOperands = false; 724 break; 725 } 726 727 if (AllZeroOperands) { 728 // Treat this like a bitcast. 729 return enforceKnownAlignment(U->getOperand(0), Align, PrefAlign); 730 } 731 return Align; 732 } 733 case Instruction::Alloca: { 734 AllocaInst *AI = cast<AllocaInst>(V); 735 // If there is a requested alignment and if this is an alloca, round up. 736 if (AI->getAlignment() >= PrefAlign) 737 return AI->getAlignment(); 738 AI->setAlignment(PrefAlign); 739 return PrefAlign; 740 } 741 } 742 743 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 744 // If there is a large requested alignment and we can, bump up the alignment 745 // of the global. 746 if (GV->isDeclaration()) return Align; 747 748 if (GV->getAlignment() >= PrefAlign) 749 return GV->getAlignment(); 750 // We can only increase the alignment of the global if it has no alignment 751 // specified or if it is not assigned a section. If it is assigned a 752 // section, the global could be densely packed with other objects in the 753 // section, increasing the alignment could cause padding issues. 754 if (!GV->hasSection() || GV->getAlignment() == 0) 755 GV->setAlignment(PrefAlign); 756 return GV->getAlignment(); 757 } 758 759 return Align; 760} 761 762/// getOrEnforceKnownAlignment - If the specified pointer has an alignment that 763/// we can determine, return it, otherwise return 0. If PrefAlign is specified, 764/// and it is more than the alignment of the ultimate object, see if we can 765/// increase the alignment of the ultimate object, making this check succeed. 766unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign, 767 const TargetData *TD) { 768 assert(V->getType()->isPointerTy() && 769 "getOrEnforceKnownAlignment expects a pointer!"); 770 unsigned BitWidth = TD ? TD->getPointerSizeInBits() : 64; 771 APInt Mask = APInt::getAllOnesValue(BitWidth); 772 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 773 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD); 774 unsigned TrailZ = KnownZero.countTrailingOnes(); 775 776 // Avoid trouble with rediculously large TrailZ values, such as 777 // those computed from a null pointer. 778 TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1)); 779 780 unsigned Align = 1u << std::min(BitWidth - 1, TrailZ); 781 782 // LLVM doesn't support alignments larger than this currently. 783 Align = std::min(Align, +Value::MaximumAlignment); 784 785 if (PrefAlign > Align) 786 Align = enforceKnownAlignment(V, Align, PrefAlign); 787 788 // We don't need to make any adjustment. 789 return Align; 790} 791 792///===---------------------------------------------------------------------===// 793/// Dbg Intrinsic utilities 794/// 795 796/// Inserts a llvm.dbg.value instrinsic before the stores to an alloca'd value 797/// that has an associated llvm.dbg.decl intrinsic. 798bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, 799 StoreInst *SI, DIBuilder &Builder) { 800 DIVariable DIVar(DDI->getVariable()); 801 if (!DIVar.Verify()) 802 return false; 803 804 Instruction *DbgVal = NULL; 805 // If an argument is zero extended then use argument directly. The ZExt 806 // may be zapped by an optimization pass in future. 807 Argument *ExtendedArg = NULL; 808 if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0))) 809 ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0)); 810 if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0))) 811 ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0)); 812 if (ExtendedArg) 813 DbgVal = Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, SI); 814 else 815 DbgVal = Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, SI); 816 817 // Propagate any debug metadata from the store onto the dbg.value. 818 DebugLoc SIDL = SI->getDebugLoc(); 819 if (!SIDL.isUnknown()) 820 DbgVal->setDebugLoc(SIDL); 821 // Otherwise propagate debug metadata from dbg.declare. 822 else 823 DbgVal->setDebugLoc(DDI->getDebugLoc()); 824 return true; 825} 826 827/// Inserts a llvm.dbg.value instrinsic before the stores to an alloca'd value 828/// that has an associated llvm.dbg.decl intrinsic. 829bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, 830 LoadInst *LI, DIBuilder &Builder) { 831 DIVariable DIVar(DDI->getVariable()); 832 if (!DIVar.Verify()) 833 return false; 834 835 Instruction *DbgVal = 836 Builder.insertDbgValueIntrinsic(LI->getOperand(0), 0, 837 DIVar, LI); 838 839 // Propagate any debug metadata from the store onto the dbg.value. 840 DebugLoc LIDL = LI->getDebugLoc(); 841 if (!LIDL.isUnknown()) 842 DbgVal->setDebugLoc(LIDL); 843 // Otherwise propagate debug metadata from dbg.declare. 844 else 845 DbgVal->setDebugLoc(DDI->getDebugLoc()); 846 return true; 847} 848 849/// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 850/// of llvm.dbg.value intrinsics. 851bool llvm::LowerDbgDeclare(Function &F) { 852 DIBuilder DIB(*F.getParent()); 853 SmallVector<DbgDeclareInst *, 4> Dbgs; 854 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) 855 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) { 856 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(BI)) 857 Dbgs.push_back(DDI); 858 } 859 if (Dbgs.empty()) 860 return false; 861 862 for (SmallVector<DbgDeclareInst *, 4>::iterator I = Dbgs.begin(), 863 E = Dbgs.end(); I != E; ++I) { 864 DbgDeclareInst *DDI = *I; 865 if (AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress())) { 866 bool RemoveDDI = true; 867 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); 868 UI != E; ++UI) 869 if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) 870 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 871 else if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) 872 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 873 else 874 RemoveDDI = false; 875 if (RemoveDDI) 876 DDI->eraseFromParent(); 877 } 878 } 879 return true; 880} 881 882/// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the 883/// alloca 'V', if any. 884DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) { 885 if (MDNode *DebugNode = MDNode::getIfExists(V->getContext(), V)) 886 for (Value::use_iterator UI = DebugNode->use_begin(), 887 E = DebugNode->use_end(); UI != E; ++UI) 888 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI)) 889 return DDI; 890 891 return 0; 892} 893