Local.cpp revision a2067fbe22930be8413584ae58c5ef78bd032190
1//===-- Local.cpp - Functions to perform local transformations ------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This family of functions perform various local transformations to the 11// program. 12// 13//===----------------------------------------------------------------------===// 14 15#include "llvm/Transforms/Utils/Local.h" 16#include "llvm/Constants.h" 17#include "llvm/GlobalAlias.h" 18#include "llvm/GlobalVariable.h" 19#include "llvm/DerivedTypes.h" 20#include "llvm/Instructions.h" 21#include "llvm/Intrinsics.h" 22#include "llvm/IntrinsicInst.h" 23#include "llvm/Metadata.h" 24#include "llvm/Operator.h" 25#include "llvm/ADT/DenseMap.h" 26#include "llvm/ADT/SmallPtrSet.h" 27#include "llvm/Analysis/DebugInfo.h" 28#include "llvm/Analysis/DIBuilder.h" 29#include "llvm/Analysis/Dominators.h" 30#include "llvm/Analysis/InstructionSimplify.h" 31#include "llvm/Analysis/MemoryBuiltins.h" 32#include "llvm/Analysis/ProfileInfo.h" 33#include "llvm/Analysis/ValueTracking.h" 34#include "llvm/Target/TargetData.h" 35#include "llvm/Support/CFG.h" 36#include "llvm/Support/Debug.h" 37#include "llvm/Support/GetElementPtrTypeIterator.h" 38#include "llvm/Support/IRBuilder.h" 39#include "llvm/Support/MathExtras.h" 40#include "llvm/Support/ValueHandle.h" 41#include "llvm/Support/raw_ostream.h" 42using namespace llvm; 43 44//===----------------------------------------------------------------------===// 45// Local constant propagation. 46// 47 48/// ConstantFoldTerminator - If a terminator instruction is predicated on a 49/// constant value, convert it into an unconditional branch to the constant 50/// destination. This is a nontrivial operation because the successors of this 51/// basic block must have their PHI nodes updated. 52/// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 53/// conditions and indirectbr addresses this might make dead if 54/// DeleteDeadConditions is true. 55bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions) { 56 TerminatorInst *T = BB->getTerminator(); 57 IRBuilder<> Builder(T); 58 59 // Branch - See if we are conditional jumping on constant 60 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 61 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 62 BasicBlock *Dest1 = BI->getSuccessor(0); 63 BasicBlock *Dest2 = BI->getSuccessor(1); 64 65 if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 66 // Are we branching on constant? 67 // YES. Change to unconditional branch... 68 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 69 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 70 71 //cerr << "Function: " << T->getParent()->getParent() 72 // << "\nRemoving branch from " << T->getParent() 73 // << "\n\nTo: " << OldDest << endl; 74 75 // Let the basic block know that we are letting go of it. Based on this, 76 // it will adjust it's PHI nodes. 77 OldDest->removePredecessor(BB); 78 79 // Replace the conditional branch with an unconditional one. 80 Builder.CreateBr(Destination); 81 BI->eraseFromParent(); 82 return true; 83 } 84 85 if (Dest2 == Dest1) { // Conditional branch to same location? 86 // This branch matches something like this: 87 // br bool %cond, label %Dest, label %Dest 88 // and changes it into: br label %Dest 89 90 // Let the basic block know that we are letting go of one copy of it. 91 assert(BI->getParent() && "Terminator not inserted in block!"); 92 Dest1->removePredecessor(BI->getParent()); 93 94 // Replace the conditional branch with an unconditional one. 95 Builder.CreateBr(Dest1); 96 Value *Cond = BI->getCondition(); 97 BI->eraseFromParent(); 98 if (DeleteDeadConditions) 99 RecursivelyDeleteTriviallyDeadInstructions(Cond); 100 return true; 101 } 102 return false; 103 } 104 105 if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) { 106 // If we are switching on a constant, we can convert the switch into a 107 // single branch instruction! 108 ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition()); 109 BasicBlock *TheOnlyDest = SI->getDefaultDest(); 110 BasicBlock *DefaultDest = TheOnlyDest; 111 112 // Figure out which case it goes to. 113 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 114 i != e; ++i) { 115 // Found case matching a constant operand? 116 if (i.getCaseValue() == CI) { 117 TheOnlyDest = i.getCaseSuccessor(); 118 break; 119 } 120 121 // Check to see if this branch is going to the same place as the default 122 // dest. If so, eliminate it as an explicit compare. 123 if (i.getCaseSuccessor() == DefaultDest) { 124 // Remove this entry. 125 DefaultDest->removePredecessor(SI->getParent()); 126 SI->removeCase(i); 127 --i; --e; 128 continue; 129 } 130 131 // Otherwise, check to see if the switch only branches to one destination. 132 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 133 // destinations. 134 if (i.getCaseSuccessor() != TheOnlyDest) TheOnlyDest = 0; 135 } 136 137 if (CI && !TheOnlyDest) { 138 // Branching on a constant, but not any of the cases, go to the default 139 // successor. 140 TheOnlyDest = SI->getDefaultDest(); 141 } 142 143 // If we found a single destination that we can fold the switch into, do so 144 // now. 145 if (TheOnlyDest) { 146 // Insert the new branch. 147 Builder.CreateBr(TheOnlyDest); 148 BasicBlock *BB = SI->getParent(); 149 150 // Remove entries from PHI nodes which we no longer branch to... 151 for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) { 152 // Found case matching a constant operand? 153 BasicBlock *Succ = SI->getSuccessor(i); 154 if (Succ == TheOnlyDest) 155 TheOnlyDest = 0; // Don't modify the first branch to TheOnlyDest 156 else 157 Succ->removePredecessor(BB); 158 } 159 160 // Delete the old switch. 161 Value *Cond = SI->getCondition(); 162 SI->eraseFromParent(); 163 if (DeleteDeadConditions) 164 RecursivelyDeleteTriviallyDeadInstructions(Cond); 165 return true; 166 } 167 168 if (SI->getNumCases() == 1) { 169 // Otherwise, we can fold this switch into a conditional branch 170 // instruction if it has only one non-default destination. 171 SwitchInst::CaseIt FirstCase = SI->case_begin(); 172 ConstantRangesSet CRS = FirstCase.getCaseValueEx(); 173 if (CRS.getNumItems() == 1 && CRS.isSingleNumber(0)) { 174 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 175 CRS.getItem(0).Low, "cond"); 176 177 // Insert the new branch. 178 Builder.CreateCondBr(Cond, FirstCase.getCaseSuccessor(), 179 SI->getDefaultDest()); 180 181 // Delete the old switch. 182 SI->eraseFromParent(); 183 return true; 184 185 } 186 } 187 return false; 188 } 189 190 if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) { 191 // indirectbr blockaddress(@F, @BB) -> br label @BB 192 if (BlockAddress *BA = 193 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 194 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 195 // Insert the new branch. 196 Builder.CreateBr(TheOnlyDest); 197 198 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 199 if (IBI->getDestination(i) == TheOnlyDest) 200 TheOnlyDest = 0; 201 else 202 IBI->getDestination(i)->removePredecessor(IBI->getParent()); 203 } 204 Value *Address = IBI->getAddress(); 205 IBI->eraseFromParent(); 206 if (DeleteDeadConditions) 207 RecursivelyDeleteTriviallyDeadInstructions(Address); 208 209 // If we didn't find our destination in the IBI successor list, then we 210 // have undefined behavior. Replace the unconditional branch with an 211 // 'unreachable' instruction. 212 if (TheOnlyDest) { 213 BB->getTerminator()->eraseFromParent(); 214 new UnreachableInst(BB->getContext(), BB); 215 } 216 217 return true; 218 } 219 } 220 221 return false; 222} 223 224 225//===----------------------------------------------------------------------===// 226// Local dead code elimination. 227// 228 229/// isInstructionTriviallyDead - Return true if the result produced by the 230/// instruction is not used, and the instruction has no side effects. 231/// 232bool llvm::isInstructionTriviallyDead(Instruction *I) { 233 if (!I->use_empty() || isa<TerminatorInst>(I)) return false; 234 235 // We don't want the landingpad instruction removed by anything this general. 236 if (isa<LandingPadInst>(I)) 237 return false; 238 239 // We don't want debug info removed by anything this general, unless 240 // debug info is empty. 241 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 242 if (DDI->getAddress()) 243 return false; 244 return true; 245 } 246 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 247 if (DVI->getValue()) 248 return false; 249 return true; 250 } 251 252 if (!I->mayHaveSideEffects()) return true; 253 254 // Special case intrinsics that "may have side effects" but can be deleted 255 // when dead. 256 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 257 // Safe to delete llvm.stacksave if dead. 258 if (II->getIntrinsicID() == Intrinsic::stacksave) 259 return true; 260 261 // Lifetime intrinsics are dead when their right-hand is undef. 262 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 263 II->getIntrinsicID() == Intrinsic::lifetime_end) 264 return isa<UndefValue>(II->getArgOperand(1)); 265 } 266 267 if (extractMallocCall(I) || extractCallocCall(I)) return true; 268 269 if (CallInst *CI = isFreeCall(I)) 270 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 271 return C->isNullValue() || isa<UndefValue>(C); 272 273 return false; 274} 275 276/// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 277/// trivially dead instruction, delete it. If that makes any of its operands 278/// trivially dead, delete them too, recursively. Return true if any 279/// instructions were deleted. 280bool llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V) { 281 Instruction *I = dyn_cast<Instruction>(V); 282 if (!I || !I->use_empty() || !isInstructionTriviallyDead(I)) 283 return false; 284 285 SmallVector<Instruction*, 16> DeadInsts; 286 DeadInsts.push_back(I); 287 288 do { 289 I = DeadInsts.pop_back_val(); 290 291 // Null out all of the instruction's operands to see if any operand becomes 292 // dead as we go. 293 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 294 Value *OpV = I->getOperand(i); 295 I->setOperand(i, 0); 296 297 if (!OpV->use_empty()) continue; 298 299 // If the operand is an instruction that became dead as we nulled out the 300 // operand, and if it is 'trivially' dead, delete it in a future loop 301 // iteration. 302 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 303 if (isInstructionTriviallyDead(OpI)) 304 DeadInsts.push_back(OpI); 305 } 306 307 I->eraseFromParent(); 308 } while (!DeadInsts.empty()); 309 310 return true; 311} 312 313/// areAllUsesEqual - Check whether the uses of a value are all the same. 314/// This is similar to Instruction::hasOneUse() except this will also return 315/// true when there are no uses or multiple uses that all refer to the same 316/// value. 317static bool areAllUsesEqual(Instruction *I) { 318 Value::use_iterator UI = I->use_begin(); 319 Value::use_iterator UE = I->use_end(); 320 if (UI == UE) 321 return true; 322 323 User *TheUse = *UI; 324 for (++UI; UI != UE; ++UI) { 325 if (*UI != TheUse) 326 return false; 327 } 328 return true; 329} 330 331/// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 332/// dead PHI node, due to being a def-use chain of single-use nodes that 333/// either forms a cycle or is terminated by a trivially dead instruction, 334/// delete it. If that makes any of its operands trivially dead, delete them 335/// too, recursively. Return true if a change was made. 336bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN) { 337 SmallPtrSet<Instruction*, 4> Visited; 338 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 339 I = cast<Instruction>(*I->use_begin())) { 340 if (I->use_empty()) 341 return RecursivelyDeleteTriviallyDeadInstructions(I); 342 343 // If we find an instruction more than once, we're on a cycle that 344 // won't prove fruitful. 345 if (!Visited.insert(I)) { 346 // Break the cycle and delete the instruction and its operands. 347 I->replaceAllUsesWith(UndefValue::get(I->getType())); 348 (void)RecursivelyDeleteTriviallyDeadInstructions(I); 349 return true; 350 } 351 } 352 return false; 353} 354 355/// SimplifyInstructionsInBlock - Scan the specified basic block and try to 356/// simplify any instructions in it and recursively delete dead instructions. 357/// 358/// This returns true if it changed the code, note that it can delete 359/// instructions in other blocks as well in this block. 360bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, const TargetData *TD) { 361 bool MadeChange = false; 362 363#ifndef NDEBUG 364 // In debug builds, ensure that the terminator of the block is never replaced 365 // or deleted by these simplifications. The idea of simplification is that it 366 // cannot introduce new instructions, and there is no way to replace the 367 // terminator of a block without introducing a new instruction. 368 AssertingVH<Instruction> TerminatorVH(--BB->end()); 369#endif 370 371 for (BasicBlock::iterator BI = BB->begin(), E = --BB->end(); BI != E; ) { 372 assert(!BI->isTerminator()); 373 Instruction *Inst = BI++; 374 375 WeakVH BIHandle(BI); 376 if (recursivelySimplifyInstruction(Inst, TD)) { 377 MadeChange = true; 378 if (BIHandle != BI) 379 BI = BB->begin(); 380 continue; 381 } 382 383 MadeChange |= RecursivelyDeleteTriviallyDeadInstructions(Inst); 384 if (BIHandle != BI) 385 BI = BB->begin(); 386 } 387 return MadeChange; 388} 389 390//===----------------------------------------------------------------------===// 391// Control Flow Graph Restructuring. 392// 393 394 395/// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this 396/// method is called when we're about to delete Pred as a predecessor of BB. If 397/// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred. 398/// 399/// Unlike the removePredecessor method, this attempts to simplify uses of PHI 400/// nodes that collapse into identity values. For example, if we have: 401/// x = phi(1, 0, 0, 0) 402/// y = and x, z 403/// 404/// .. and delete the predecessor corresponding to the '1', this will attempt to 405/// recursively fold the and to 0. 406void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred, 407 TargetData *TD) { 408 // This only adjusts blocks with PHI nodes. 409 if (!isa<PHINode>(BB->begin())) 410 return; 411 412 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify 413 // them down. This will leave us with single entry phi nodes and other phis 414 // that can be removed. 415 BB->removePredecessor(Pred, true); 416 417 WeakVH PhiIt = &BB->front(); 418 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) { 419 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt)); 420 Value *OldPhiIt = PhiIt; 421 422 if (!recursivelySimplifyInstruction(PN, TD)) 423 continue; 424 425 // If recursive simplification ended up deleting the next PHI node we would 426 // iterate to, then our iterator is invalid, restart scanning from the top 427 // of the block. 428 if (PhiIt != OldPhiIt) PhiIt = &BB->front(); 429 } 430} 431 432 433/// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its 434/// predecessor is known to have one successor (DestBB!). Eliminate the edge 435/// between them, moving the instructions in the predecessor into DestBB and 436/// deleting the predecessor block. 437/// 438void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) { 439 // If BB has single-entry PHI nodes, fold them. 440 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 441 Value *NewVal = PN->getIncomingValue(0); 442 // Replace self referencing PHI with undef, it must be dead. 443 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 444 PN->replaceAllUsesWith(NewVal); 445 PN->eraseFromParent(); 446 } 447 448 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 449 assert(PredBB && "Block doesn't have a single predecessor!"); 450 451 // Zap anything that took the address of DestBB. Not doing this will give the 452 // address an invalid value. 453 if (DestBB->hasAddressTaken()) { 454 BlockAddress *BA = BlockAddress::get(DestBB); 455 Constant *Replacement = 456 ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1); 457 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 458 BA->getType())); 459 BA->destroyConstant(); 460 } 461 462 // Anything that branched to PredBB now branches to DestBB. 463 PredBB->replaceAllUsesWith(DestBB); 464 465 // Splice all the instructions from PredBB to DestBB. 466 PredBB->getTerminator()->eraseFromParent(); 467 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 468 469 if (P) { 470 DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>(); 471 if (DT) { 472 BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock(); 473 DT->changeImmediateDominator(DestBB, PredBBIDom); 474 DT->eraseNode(PredBB); 475 } 476 ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>(); 477 if (PI) { 478 PI->replaceAllUses(PredBB, DestBB); 479 PI->removeEdge(ProfileInfo::getEdge(PredBB, DestBB)); 480 } 481 } 482 // Nuke BB. 483 PredBB->eraseFromParent(); 484} 485 486/// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an 487/// almost-empty BB ending in an unconditional branch to Succ, into succ. 488/// 489/// Assumption: Succ is the single successor for BB. 490/// 491static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 492 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 493 494 DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 495 << Succ->getName() << "\n"); 496 // Shortcut, if there is only a single predecessor it must be BB and merging 497 // is always safe 498 if (Succ->getSinglePredecessor()) return true; 499 500 // Make a list of the predecessors of BB 501 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 502 503 // Look at all the phi nodes in Succ, to see if they present a conflict when 504 // merging these blocks 505 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 506 PHINode *PN = cast<PHINode>(I); 507 508 // If the incoming value from BB is again a PHINode in 509 // BB which has the same incoming value for *PI as PN does, we can 510 // merge the phi nodes and then the blocks can still be merged 511 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 512 if (BBPN && BBPN->getParent() == BB) { 513 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 514 BasicBlock *IBB = PN->getIncomingBlock(PI); 515 if (BBPreds.count(IBB) && 516 BBPN->getIncomingValueForBlock(IBB) != PN->getIncomingValue(PI)) { 517 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 518 << Succ->getName() << " is conflicting with " 519 << BBPN->getName() << " with regard to common predecessor " 520 << IBB->getName() << "\n"); 521 return false; 522 } 523 } 524 } else { 525 Value* Val = PN->getIncomingValueForBlock(BB); 526 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 527 // See if the incoming value for the common predecessor is equal to the 528 // one for BB, in which case this phi node will not prevent the merging 529 // of the block. 530 BasicBlock *IBB = PN->getIncomingBlock(PI); 531 if (BBPreds.count(IBB) && Val != PN->getIncomingValue(PI)) { 532 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 533 << Succ->getName() << " is conflicting with regard to common " 534 << "predecessor " << IBB->getName() << "\n"); 535 return false; 536 } 537 } 538 } 539 } 540 541 return true; 542} 543 544/// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an 545/// unconditional branch, and contains no instructions other than PHI nodes, 546/// potential side-effect free intrinsics and the branch. If possible, 547/// eliminate BB by rewriting all the predecessors to branch to the successor 548/// block and return true. If we can't transform, return false. 549bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) { 550 assert(BB != &BB->getParent()->getEntryBlock() && 551 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 552 553 // We can't eliminate infinite loops. 554 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 555 if (BB == Succ) return false; 556 557 // Check to see if merging these blocks would cause conflicts for any of the 558 // phi nodes in BB or Succ. If not, we can safely merge. 559 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 560 561 // Check for cases where Succ has multiple predecessors and a PHI node in BB 562 // has uses which will not disappear when the PHI nodes are merged. It is 563 // possible to handle such cases, but difficult: it requires checking whether 564 // BB dominates Succ, which is non-trivial to calculate in the case where 565 // Succ has multiple predecessors. Also, it requires checking whether 566 // constructing the necessary self-referential PHI node doesn't intoduce any 567 // conflicts; this isn't too difficult, but the previous code for doing this 568 // was incorrect. 569 // 570 // Note that if this check finds a live use, BB dominates Succ, so BB is 571 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 572 // folding the branch isn't profitable in that case anyway. 573 if (!Succ->getSinglePredecessor()) { 574 BasicBlock::iterator BBI = BB->begin(); 575 while (isa<PHINode>(*BBI)) { 576 for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end(); 577 UI != E; ++UI) { 578 if (PHINode* PN = dyn_cast<PHINode>(*UI)) { 579 if (PN->getIncomingBlock(UI) != BB) 580 return false; 581 } else { 582 return false; 583 } 584 } 585 ++BBI; 586 } 587 } 588 589 DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 590 591 if (isa<PHINode>(Succ->begin())) { 592 // If there is more than one pred of succ, and there are PHI nodes in 593 // the successor, then we need to add incoming edges for the PHI nodes 594 // 595 const SmallVector<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 596 597 // Loop over all of the PHI nodes in the successor of BB. 598 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 599 PHINode *PN = cast<PHINode>(I); 600 Value *OldVal = PN->removeIncomingValue(BB, false); 601 assert(OldVal && "No entry in PHI for Pred BB!"); 602 603 // If this incoming value is one of the PHI nodes in BB, the new entries 604 // in the PHI node are the entries from the old PHI. 605 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 606 PHINode *OldValPN = cast<PHINode>(OldVal); 607 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) 608 // Note that, since we are merging phi nodes and BB and Succ might 609 // have common predecessors, we could end up with a phi node with 610 // identical incoming branches. This will be cleaned up later (and 611 // will trigger asserts if we try to clean it up now, without also 612 // simplifying the corresponding conditional branch). 613 PN->addIncoming(OldValPN->getIncomingValue(i), 614 OldValPN->getIncomingBlock(i)); 615 } else { 616 // Add an incoming value for each of the new incoming values. 617 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) 618 PN->addIncoming(OldVal, BBPreds[i]); 619 } 620 } 621 } 622 623 if (Succ->getSinglePredecessor()) { 624 // BB is the only predecessor of Succ, so Succ will end up with exactly 625 // the same predecessors BB had. 626 627 // Copy over any phi, debug or lifetime instruction. 628 BB->getTerminator()->eraseFromParent(); 629 Succ->getInstList().splice(Succ->getFirstNonPHI(), BB->getInstList()); 630 } else { 631 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 632 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 633 assert(PN->use_empty() && "There shouldn't be any uses here!"); 634 PN->eraseFromParent(); 635 } 636 } 637 638 // Everything that jumped to BB now goes to Succ. 639 BB->replaceAllUsesWith(Succ); 640 if (!Succ->hasName()) Succ->takeName(BB); 641 BB->eraseFromParent(); // Delete the old basic block. 642 return true; 643} 644 645/// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI 646/// nodes in this block. This doesn't try to be clever about PHI nodes 647/// which differ only in the order of the incoming values, but instcombine 648/// orders them so it usually won't matter. 649/// 650bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 651 bool Changed = false; 652 653 // This implementation doesn't currently consider undef operands 654 // specially. Theoretically, two phis which are identical except for 655 // one having an undef where the other doesn't could be collapsed. 656 657 // Map from PHI hash values to PHI nodes. If multiple PHIs have 658 // the same hash value, the element is the first PHI in the 659 // linked list in CollisionMap. 660 DenseMap<uintptr_t, PHINode *> HashMap; 661 662 // Maintain linked lists of PHI nodes with common hash values. 663 DenseMap<PHINode *, PHINode *> CollisionMap; 664 665 // Examine each PHI. 666 for (BasicBlock::iterator I = BB->begin(); 667 PHINode *PN = dyn_cast<PHINode>(I++); ) { 668 // Compute a hash value on the operands. Instcombine will likely have sorted 669 // them, which helps expose duplicates, but we have to check all the 670 // operands to be safe in case instcombine hasn't run. 671 uintptr_t Hash = 0; 672 // This hash algorithm is quite weak as hash functions go, but it seems 673 // to do a good enough job for this particular purpose, and is very quick. 674 for (User::op_iterator I = PN->op_begin(), E = PN->op_end(); I != E; ++I) { 675 Hash ^= reinterpret_cast<uintptr_t>(static_cast<Value *>(*I)); 676 Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7)); 677 } 678 for (PHINode::block_iterator I = PN->block_begin(), E = PN->block_end(); 679 I != E; ++I) { 680 Hash ^= reinterpret_cast<uintptr_t>(static_cast<BasicBlock *>(*I)); 681 Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7)); 682 } 683 // Avoid colliding with the DenseMap sentinels ~0 and ~0-1. 684 Hash >>= 1; 685 // If we've never seen this hash value before, it's a unique PHI. 686 std::pair<DenseMap<uintptr_t, PHINode *>::iterator, bool> Pair = 687 HashMap.insert(std::make_pair(Hash, PN)); 688 if (Pair.second) continue; 689 // Otherwise it's either a duplicate or a hash collision. 690 for (PHINode *OtherPN = Pair.first->second; ; ) { 691 if (OtherPN->isIdenticalTo(PN)) { 692 // A duplicate. Replace this PHI with its duplicate. 693 PN->replaceAllUsesWith(OtherPN); 694 PN->eraseFromParent(); 695 Changed = true; 696 break; 697 } 698 // A non-duplicate hash collision. 699 DenseMap<PHINode *, PHINode *>::iterator I = CollisionMap.find(OtherPN); 700 if (I == CollisionMap.end()) { 701 // Set this PHI to be the head of the linked list of colliding PHIs. 702 PHINode *Old = Pair.first->second; 703 Pair.first->second = PN; 704 CollisionMap[PN] = Old; 705 break; 706 } 707 // Procede to the next PHI in the list. 708 OtherPN = I->second; 709 } 710 } 711 712 return Changed; 713} 714 715/// enforceKnownAlignment - If the specified pointer points to an object that 716/// we control, modify the object's alignment to PrefAlign. This isn't 717/// often possible though. If alignment is important, a more reliable approach 718/// is to simply align all global variables and allocation instructions to 719/// their preferred alignment from the beginning. 720/// 721static unsigned enforceKnownAlignment(Value *V, unsigned Align, 722 unsigned PrefAlign, const TargetData *TD) { 723 V = V->stripPointerCasts(); 724 725 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 726 // If the preferred alignment is greater than the natural stack alignment 727 // then don't round up. This avoids dynamic stack realignment. 728 if (TD && TD->exceedsNaturalStackAlignment(PrefAlign)) 729 return Align; 730 // If there is a requested alignment and if this is an alloca, round up. 731 if (AI->getAlignment() >= PrefAlign) 732 return AI->getAlignment(); 733 AI->setAlignment(PrefAlign); 734 return PrefAlign; 735 } 736 737 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 738 // If there is a large requested alignment and we can, bump up the alignment 739 // of the global. 740 if (GV->isDeclaration()) return Align; 741 // If the memory we set aside for the global may not be the memory used by 742 // the final program then it is impossible for us to reliably enforce the 743 // preferred alignment. 744 if (GV->isWeakForLinker()) return Align; 745 746 if (GV->getAlignment() >= PrefAlign) 747 return GV->getAlignment(); 748 // We can only increase the alignment of the global if it has no alignment 749 // specified or if it is not assigned a section. If it is assigned a 750 // section, the global could be densely packed with other objects in the 751 // section, increasing the alignment could cause padding issues. 752 if (!GV->hasSection() || GV->getAlignment() == 0) 753 GV->setAlignment(PrefAlign); 754 return GV->getAlignment(); 755 } 756 757 return Align; 758} 759 760/// getOrEnforceKnownAlignment - If the specified pointer has an alignment that 761/// we can determine, return it, otherwise return 0. If PrefAlign is specified, 762/// and it is more than the alignment of the ultimate object, see if we can 763/// increase the alignment of the ultimate object, making this check succeed. 764unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign, 765 const TargetData *TD) { 766 assert(V->getType()->isPointerTy() && 767 "getOrEnforceKnownAlignment expects a pointer!"); 768 unsigned BitWidth = TD ? TD->getPointerSizeInBits() : 64; 769 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 770 ComputeMaskedBits(V, KnownZero, KnownOne, TD); 771 unsigned TrailZ = KnownZero.countTrailingOnes(); 772 773 // Avoid trouble with rediculously large TrailZ values, such as 774 // those computed from a null pointer. 775 TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1)); 776 777 unsigned Align = 1u << std::min(BitWidth - 1, TrailZ); 778 779 // LLVM doesn't support alignments larger than this currently. 780 Align = std::min(Align, +Value::MaximumAlignment); 781 782 if (PrefAlign > Align) 783 Align = enforceKnownAlignment(V, Align, PrefAlign, TD); 784 785 // We don't need to make any adjustment. 786 return Align; 787} 788 789///===---------------------------------------------------------------------===// 790/// Dbg Intrinsic utilities 791/// 792 793/// Inserts a llvm.dbg.value instrinsic before the stores to an alloca'd value 794/// that has an associated llvm.dbg.decl intrinsic. 795bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, 796 StoreInst *SI, DIBuilder &Builder) { 797 DIVariable DIVar(DDI->getVariable()); 798 if (!DIVar.Verify()) 799 return false; 800 801 Instruction *DbgVal = NULL; 802 // If an argument is zero extended then use argument directly. The ZExt 803 // may be zapped by an optimization pass in future. 804 Argument *ExtendedArg = NULL; 805 if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0))) 806 ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0)); 807 if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0))) 808 ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0)); 809 if (ExtendedArg) 810 DbgVal = Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, SI); 811 else 812 DbgVal = Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, SI); 813 814 // Propagate any debug metadata from the store onto the dbg.value. 815 DebugLoc SIDL = SI->getDebugLoc(); 816 if (!SIDL.isUnknown()) 817 DbgVal->setDebugLoc(SIDL); 818 // Otherwise propagate debug metadata from dbg.declare. 819 else 820 DbgVal->setDebugLoc(DDI->getDebugLoc()); 821 return true; 822} 823 824/// Inserts a llvm.dbg.value instrinsic before the stores to an alloca'd value 825/// that has an associated llvm.dbg.decl intrinsic. 826bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, 827 LoadInst *LI, DIBuilder &Builder) { 828 DIVariable DIVar(DDI->getVariable()); 829 if (!DIVar.Verify()) 830 return false; 831 832 Instruction *DbgVal = 833 Builder.insertDbgValueIntrinsic(LI->getOperand(0), 0, 834 DIVar, LI); 835 836 // Propagate any debug metadata from the store onto the dbg.value. 837 DebugLoc LIDL = LI->getDebugLoc(); 838 if (!LIDL.isUnknown()) 839 DbgVal->setDebugLoc(LIDL); 840 // Otherwise propagate debug metadata from dbg.declare. 841 else 842 DbgVal->setDebugLoc(DDI->getDebugLoc()); 843 return true; 844} 845 846/// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 847/// of llvm.dbg.value intrinsics. 848bool llvm::LowerDbgDeclare(Function &F) { 849 DIBuilder DIB(*F.getParent()); 850 SmallVector<DbgDeclareInst *, 4> Dbgs; 851 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) 852 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) { 853 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(BI)) 854 Dbgs.push_back(DDI); 855 } 856 if (Dbgs.empty()) 857 return false; 858 859 for (SmallVector<DbgDeclareInst *, 4>::iterator I = Dbgs.begin(), 860 E = Dbgs.end(); I != E; ++I) { 861 DbgDeclareInst *DDI = *I; 862 if (AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress())) { 863 bool RemoveDDI = true; 864 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); 865 UI != E; ++UI) 866 if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) 867 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 868 else if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) 869 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 870 else 871 RemoveDDI = false; 872 if (RemoveDDI) 873 DDI->eraseFromParent(); 874 } 875 } 876 return true; 877} 878 879/// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the 880/// alloca 'V', if any. 881DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) { 882 if (MDNode *DebugNode = MDNode::getIfExists(V->getContext(), V)) 883 for (Value::use_iterator UI = DebugNode->use_begin(), 884 E = DebugNode->use_end(); UI != E; ++UI) 885 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI)) 886 return DDI; 887 888 return 0; 889} 890