LoopSimplify.cpp revision 02dd53e1c5b941ca5f60fca1b95ebcaf9ccd1dfc
1//===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs several transformations to transform natural loops into a
11// simpler form, which makes subsequent analyses and transformations simpler and
12// more effective.
13//
14// Loop pre-header insertion guarantees that there is a single, non-critical
15// entry edge from outside of the loop to the loop header.  This simplifies a
16// number of analyses and transformations, such as LICM.
17//
18// Loop exit-block insertion guarantees that all exit blocks from the loop
19// (blocks which are outside of the loop that have predecessors inside of the
20// loop) only have predecessors from inside of the loop (and are thus dominated
21// by the loop header).  This simplifies transformations such as store-sinking
22// that are built into LICM.
23//
24// This pass also guarantees that loops will have exactly one backedge.
25//
26// Indirectbr instructions introduce several complications. If the loop
27// contains or is entered by an indirectbr instruction, it may not be possible
28// to transform the loop and make these guarantees. Client code should check
29// that these conditions are true before relying on them.
30//
31// Note that the simplifycfg pass will clean up blocks which are split out but
32// end up being unnecessary, so usage of this pass should not pessimize
33// generated code.
34//
35// This pass obviously modifies the CFG, but updates loop information and
36// dominator information.
37//
38//===----------------------------------------------------------------------===//
39
40#define DEBUG_TYPE "loopsimplify"
41#include "llvm/Transforms/Scalar.h"
42#include "llvm/Constants.h"
43#include "llvm/Instructions.h"
44#include "llvm/IntrinsicInst.h"
45#include "llvm/Function.h"
46#include "llvm/LLVMContext.h"
47#include "llvm/Type.h"
48#include "llvm/Analysis/AliasAnalysis.h"
49#include "llvm/Analysis/Dominators.h"
50#include "llvm/Analysis/LoopPass.h"
51#include "llvm/Transforms/Utils/BasicBlockUtils.h"
52#include "llvm/Transforms/Utils/Local.h"
53#include "llvm/Support/CFG.h"
54#include "llvm/Support/Debug.h"
55#include "llvm/ADT/SetOperations.h"
56#include "llvm/ADT/SetVector.h"
57#include "llvm/ADT/Statistic.h"
58#include "llvm/ADT/DepthFirstIterator.h"
59using namespace llvm;
60
61STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted");
62STATISTIC(NumNested  , "Number of nested loops split out");
63
64namespace {
65  struct LoopSimplify : public LoopPass {
66    static char ID; // Pass identification, replacement for typeid
67    LoopSimplify() : LoopPass(ID) {}
68
69    // AA - If we have an alias analysis object to update, this is it, otherwise
70    // this is null.
71    AliasAnalysis *AA;
72    LoopInfo *LI;
73    DominatorTree *DT;
74    Loop *L;
75    virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
76
77    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
78      // We need loop information to identify the loops...
79      AU.addRequired<DominatorTree>();
80      AU.addPreserved<DominatorTree>();
81
82      AU.addRequired<LoopInfo>();
83      AU.addPreserved<LoopInfo>();
84
85      AU.addPreserved<AliasAnalysis>();
86      AU.addPreserved("scalar-evolution");
87      AU.addPreservedID(BreakCriticalEdgesID);  // No critical edges added.
88      AU.addPreserved<DominanceFrontier>();
89      AU.addPreservedID(LCSSAID);
90    }
91
92    /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
93    void verifyAnalysis() const;
94
95  private:
96    bool ProcessLoop(Loop *L, LPPassManager &LPM);
97    BasicBlock *RewriteLoopExitBlock(Loop *L, BasicBlock *Exit);
98    BasicBlock *InsertPreheaderForLoop(Loop *L);
99    Loop *SeparateNestedLoop(Loop *L, LPPassManager &LPM);
100    BasicBlock *InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader);
101    void PlaceSplitBlockCarefully(BasicBlock *NewBB,
102                                  SmallVectorImpl<BasicBlock*> &SplitPreds,
103                                  Loop *L);
104  };
105}
106
107char LoopSimplify::ID = 0;
108INITIALIZE_PASS(LoopSimplify, "loopsimplify",
109                "Canonicalize natural loops", true, false);
110
111// Publically exposed interface to pass...
112char &llvm::LoopSimplifyID = LoopSimplify::ID;
113Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
114
115/// runOnLoop - Run down all loops in the CFG (recursively, but we could do
116/// it in any convenient order) inserting preheaders...
117///
118bool LoopSimplify::runOnLoop(Loop *l, LPPassManager &LPM) {
119  L = l;
120  bool Changed = false;
121  LI = &getAnalysis<LoopInfo>();
122  AA = getAnalysisIfAvailable<AliasAnalysis>();
123  DT = &getAnalysis<DominatorTree>();
124
125  Changed |= ProcessLoop(L, LPM);
126
127  return Changed;
128}
129
130/// ProcessLoop - Walk the loop structure in depth first order, ensuring that
131/// all loops have preheaders.
132///
133bool LoopSimplify::ProcessLoop(Loop *L, LPPassManager &LPM) {
134  bool Changed = false;
135ReprocessLoop:
136
137  // Check to see that no blocks (other than the header) in this loop have
138  // predecessors that are not in the loop.  This is not valid for natural
139  // loops, but can occur if the blocks are unreachable.  Since they are
140  // unreachable we can just shamelessly delete those CFG edges!
141  for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
142       BB != E; ++BB) {
143    if (*BB == L->getHeader()) continue;
144
145    SmallPtrSet<BasicBlock*, 4> BadPreds;
146    for (pred_iterator PI = pred_begin(*BB),
147         PE = pred_end(*BB); PI != PE; ++PI) {
148      BasicBlock *P = *PI;
149      if (!L->contains(P))
150        BadPreds.insert(P);
151    }
152
153    // Delete each unique out-of-loop (and thus dead) predecessor.
154    for (SmallPtrSet<BasicBlock*, 4>::iterator I = BadPreds.begin(),
155         E = BadPreds.end(); I != E; ++I) {
156
157      DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor ";
158            WriteAsOperand(dbgs(), *I, false);
159            dbgs() << "\n");
160
161      // Inform each successor of each dead pred.
162      for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI)
163        (*SI)->removePredecessor(*I);
164      // Zap the dead pred's terminator and replace it with unreachable.
165      TerminatorInst *TI = (*I)->getTerminator();
166       TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
167      (*I)->getTerminator()->eraseFromParent();
168      new UnreachableInst((*I)->getContext(), *I);
169      Changed = true;
170    }
171  }
172
173  // If there are exiting blocks with branches on undef, resolve the undef in
174  // the direction which will exit the loop. This will help simplify loop
175  // trip count computations.
176  SmallVector<BasicBlock*, 8> ExitingBlocks;
177  L->getExitingBlocks(ExitingBlocks);
178  for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(),
179       E = ExitingBlocks.end(); I != E; ++I)
180    if (BranchInst *BI = dyn_cast<BranchInst>((*I)->getTerminator()))
181      if (BI->isConditional()) {
182        if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
183
184          DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in ";
185                WriteAsOperand(dbgs(), *I, false);
186                dbgs() << "\n");
187
188          BI->setCondition(ConstantInt::get(Cond->getType(),
189                                            !L->contains(BI->getSuccessor(0))));
190          Changed = true;
191        }
192      }
193
194  // Does the loop already have a preheader?  If so, don't insert one.
195  BasicBlock *Preheader = L->getLoopPreheader();
196  if (!Preheader) {
197    Preheader = InsertPreheaderForLoop(L);
198    if (Preheader) {
199      ++NumInserted;
200      Changed = true;
201    }
202  }
203
204  // Next, check to make sure that all exit nodes of the loop only have
205  // predecessors that are inside of the loop.  This check guarantees that the
206  // loop preheader/header will dominate the exit blocks.  If the exit block has
207  // predecessors from outside of the loop, split the edge now.
208  SmallVector<BasicBlock*, 8> ExitBlocks;
209  L->getExitBlocks(ExitBlocks);
210
211  SmallSetVector<BasicBlock *, 8> ExitBlockSet(ExitBlocks.begin(),
212                                               ExitBlocks.end());
213  for (SmallSetVector<BasicBlock *, 8>::iterator I = ExitBlockSet.begin(),
214         E = ExitBlockSet.end(); I != E; ++I) {
215    BasicBlock *ExitBlock = *I;
216    for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
217         PI != PE; ++PI)
218      // Must be exactly this loop: no subloops, parent loops, or non-loop preds
219      // allowed.
220      if (!L->contains(*PI)) {
221        if (RewriteLoopExitBlock(L, ExitBlock)) {
222          ++NumInserted;
223          Changed = true;
224        }
225        break;
226      }
227  }
228
229  // If the header has more than two predecessors at this point (from the
230  // preheader and from multiple backedges), we must adjust the loop.
231  BasicBlock *LoopLatch = L->getLoopLatch();
232  if (!LoopLatch) {
233    // If this is really a nested loop, rip it out into a child loop.  Don't do
234    // this for loops with a giant number of backedges, just factor them into a
235    // common backedge instead.
236    if (L->getNumBackEdges() < 8) {
237      if (SeparateNestedLoop(L, LPM)) {
238        ++NumNested;
239        // This is a big restructuring change, reprocess the whole loop.
240        Changed = true;
241        // GCC doesn't tail recursion eliminate this.
242        goto ReprocessLoop;
243      }
244    }
245
246    // If we either couldn't, or didn't want to, identify nesting of the loops,
247    // insert a new block that all backedges target, then make it jump to the
248    // loop header.
249    LoopLatch = InsertUniqueBackedgeBlock(L, Preheader);
250    if (LoopLatch) {
251      ++NumInserted;
252      Changed = true;
253    }
254  }
255
256  // Scan over the PHI nodes in the loop header.  Since they now have only two
257  // incoming values (the loop is canonicalized), we may have simplified the PHI
258  // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
259  PHINode *PN;
260  for (BasicBlock::iterator I = L->getHeader()->begin();
261       (PN = dyn_cast<PHINode>(I++)); )
262    if (Value *V = PN->hasConstantValue(DT)) {
263      if (AA) AA->deleteValue(PN);
264      PN->replaceAllUsesWith(V);
265      PN->eraseFromParent();
266    }
267
268  // If this loop has multiple exits and the exits all go to the same
269  // block, attempt to merge the exits. This helps several passes, such
270  // as LoopRotation, which do not support loops with multiple exits.
271  // SimplifyCFG also does this (and this code uses the same utility
272  // function), however this code is loop-aware, where SimplifyCFG is
273  // not. That gives it the advantage of being able to hoist
274  // loop-invariant instructions out of the way to open up more
275  // opportunities, and the disadvantage of having the responsibility
276  // to preserve dominator information.
277  bool UniqueExit = true;
278  if (!ExitBlocks.empty())
279    for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i)
280      if (ExitBlocks[i] != ExitBlocks[0]) {
281        UniqueExit = false;
282        break;
283      }
284  if (UniqueExit) {
285    for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
286      BasicBlock *ExitingBlock = ExitingBlocks[i];
287      if (!ExitingBlock->getSinglePredecessor()) continue;
288      BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
289      if (!BI || !BI->isConditional()) continue;
290      CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
291      if (!CI || CI->getParent() != ExitingBlock) continue;
292
293      // Attempt to hoist out all instructions except for the
294      // comparison and the branch.
295      bool AllInvariant = true;
296      for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) {
297        Instruction *Inst = I++;
298        // Skip debug info intrinsics.
299        if (isa<DbgInfoIntrinsic>(Inst))
300          continue;
301        if (Inst == CI)
302          continue;
303        if (!L->makeLoopInvariant(Inst, Changed,
304                                  Preheader ? Preheader->getTerminator() : 0)) {
305          AllInvariant = false;
306          break;
307        }
308      }
309      if (!AllInvariant) continue;
310
311      // The block has now been cleared of all instructions except for
312      // a comparison and a conditional branch. SimplifyCFG may be able
313      // to fold it now.
314      if (!FoldBranchToCommonDest(BI)) continue;
315
316      // Success. The block is now dead, so remove it from the loop,
317      // update the dominator tree and dominance frontier, and delete it.
318
319      DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block ";
320            WriteAsOperand(dbgs(), ExitingBlock, false);
321            dbgs() << "\n");
322
323      assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock));
324      Changed = true;
325      LI->removeBlock(ExitingBlock);
326
327      DominanceFrontier *DF = getAnalysisIfAvailable<DominanceFrontier>();
328      DomTreeNode *Node = DT->getNode(ExitingBlock);
329      const std::vector<DomTreeNodeBase<BasicBlock> *> &Children =
330        Node->getChildren();
331      while (!Children.empty()) {
332        DomTreeNode *Child = Children.front();
333        DT->changeImmediateDominator(Child, Node->getIDom());
334        if (DF) DF->changeImmediateDominator(Child->getBlock(),
335                                             Node->getIDom()->getBlock(),
336                                             DT);
337      }
338      DT->eraseNode(ExitingBlock);
339      if (DF) DF->removeBlock(ExitingBlock);
340
341      BI->getSuccessor(0)->removePredecessor(ExitingBlock);
342      BI->getSuccessor(1)->removePredecessor(ExitingBlock);
343      ExitingBlock->eraseFromParent();
344    }
345  }
346
347  return Changed;
348}
349
350/// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
351/// preheader, this method is called to insert one.  This method has two phases:
352/// preheader insertion and analysis updating.
353///
354BasicBlock *LoopSimplify::InsertPreheaderForLoop(Loop *L) {
355  BasicBlock *Header = L->getHeader();
356
357  // Compute the set of predecessors of the loop that are not in the loop.
358  SmallVector<BasicBlock*, 8> OutsideBlocks;
359  for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
360       PI != PE; ++PI) {
361    BasicBlock *P = *PI;
362    if (!L->contains(P)) {         // Coming in from outside the loop?
363      // If the loop is branched to from an indirect branch, we won't
364      // be able to fully transform the loop, because it prohibits
365      // edge splitting.
366      if (isa<IndirectBrInst>(P->getTerminator())) return 0;
367
368      // Keep track of it.
369      OutsideBlocks.push_back(P);
370    }
371  }
372
373  // Split out the loop pre-header.
374  BasicBlock *NewBB =
375    SplitBlockPredecessors(Header, &OutsideBlocks[0], OutsideBlocks.size(),
376                           ".preheader", this);
377
378  DEBUG(dbgs() << "LoopSimplify: Creating pre-header ";
379        WriteAsOperand(dbgs(), NewBB, false);
380        dbgs() << "\n");
381
382  // Make sure that NewBB is put someplace intelligent, which doesn't mess up
383  // code layout too horribly.
384  PlaceSplitBlockCarefully(NewBB, OutsideBlocks, L);
385
386  return NewBB;
387}
388
389/// RewriteLoopExitBlock - Ensure that the loop preheader dominates all exit
390/// blocks.  This method is used to split exit blocks that have predecessors
391/// outside of the loop.
392BasicBlock *LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) {
393  SmallVector<BasicBlock*, 8> LoopBlocks;
394  for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) {
395    BasicBlock *P = *I;
396    if (L->contains(P)) {
397      // Don't do this if the loop is exited via an indirect branch.
398      if (isa<IndirectBrInst>(P->getTerminator())) return 0;
399
400      LoopBlocks.push_back(P);
401    }
402  }
403
404  assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?");
405  BasicBlock *NewBB = SplitBlockPredecessors(Exit, &LoopBlocks[0],
406                                             LoopBlocks.size(), ".loopexit",
407                                             this);
408
409  DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block ";
410        WriteAsOperand(dbgs(), NewBB, false);
411        dbgs() << "\n");
412
413  return NewBB;
414}
415
416/// AddBlockAndPredsToSet - Add the specified block, and all of its
417/// predecessors, to the specified set, if it's not already in there.  Stop
418/// predecessor traversal when we reach StopBlock.
419static void AddBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
420                                  std::set<BasicBlock*> &Blocks) {
421  std::vector<BasicBlock *> WorkList;
422  WorkList.push_back(InputBB);
423  do {
424    BasicBlock *BB = WorkList.back(); WorkList.pop_back();
425    if (Blocks.insert(BB).second && BB != StopBlock)
426      // If BB is not already processed and it is not a stop block then
427      // insert its predecessor in the work list
428      for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
429        BasicBlock *WBB = *I;
430        WorkList.push_back(WBB);
431      }
432  } while(!WorkList.empty());
433}
434
435/// FindPHIToPartitionLoops - The first part of loop-nestification is to find a
436/// PHI node that tells us how to partition the loops.
437static PHINode *FindPHIToPartitionLoops(Loop *L, DominatorTree *DT,
438                                        AliasAnalysis *AA) {
439  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
440    PHINode *PN = cast<PHINode>(I);
441    ++I;
442    if (Value *V = PN->hasConstantValue(DT)) {
443      // This is a degenerate PHI already, don't modify it!
444      PN->replaceAllUsesWith(V);
445      if (AA) AA->deleteValue(PN);
446      PN->eraseFromParent();
447      continue;
448    }
449
450    // Scan this PHI node looking for a use of the PHI node by itself.
451    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
452      if (PN->getIncomingValue(i) == PN &&
453          L->contains(PN->getIncomingBlock(i)))
454        // We found something tasty to remove.
455        return PN;
456  }
457  return 0;
458}
459
460// PlaceSplitBlockCarefully - If the block isn't already, move the new block to
461// right after some 'outside block' block.  This prevents the preheader from
462// being placed inside the loop body, e.g. when the loop hasn't been rotated.
463void LoopSimplify::PlaceSplitBlockCarefully(BasicBlock *NewBB,
464                                       SmallVectorImpl<BasicBlock*> &SplitPreds,
465                                            Loop *L) {
466  // Check to see if NewBB is already well placed.
467  Function::iterator BBI = NewBB; --BBI;
468  for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
469    if (&*BBI == SplitPreds[i])
470      return;
471  }
472
473  // If it isn't already after an outside block, move it after one.  This is
474  // always good as it makes the uncond branch from the outside block into a
475  // fall-through.
476
477  // Figure out *which* outside block to put this after.  Prefer an outside
478  // block that neighbors a BB actually in the loop.
479  BasicBlock *FoundBB = 0;
480  for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
481    Function::iterator BBI = SplitPreds[i];
482    if (++BBI != NewBB->getParent()->end() &&
483        L->contains(BBI)) {
484      FoundBB = SplitPreds[i];
485      break;
486    }
487  }
488
489  // If our heuristic for a *good* bb to place this after doesn't find
490  // anything, just pick something.  It's likely better than leaving it within
491  // the loop.
492  if (!FoundBB)
493    FoundBB = SplitPreds[0];
494  NewBB->moveAfter(FoundBB);
495}
496
497
498/// SeparateNestedLoop - If this loop has multiple backedges, try to pull one of
499/// them out into a nested loop.  This is important for code that looks like
500/// this:
501///
502///  Loop:
503///     ...
504///     br cond, Loop, Next
505///     ...
506///     br cond2, Loop, Out
507///
508/// To identify this common case, we look at the PHI nodes in the header of the
509/// loop.  PHI nodes with unchanging values on one backedge correspond to values
510/// that change in the "outer" loop, but not in the "inner" loop.
511///
512/// If we are able to separate out a loop, return the new outer loop that was
513/// created.
514///
515Loop *LoopSimplify::SeparateNestedLoop(Loop *L, LPPassManager &LPM) {
516  PHINode *PN = FindPHIToPartitionLoops(L, DT, AA);
517  if (PN == 0) return 0;  // No known way to partition.
518
519  // Pull out all predecessors that have varying values in the loop.  This
520  // handles the case when a PHI node has multiple instances of itself as
521  // arguments.
522  SmallVector<BasicBlock*, 8> OuterLoopPreds;
523  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
524    if (PN->getIncomingValue(i) != PN ||
525        !L->contains(PN->getIncomingBlock(i))) {
526      // We can't split indirectbr edges.
527      if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator()))
528        return 0;
529
530      OuterLoopPreds.push_back(PN->getIncomingBlock(i));
531    }
532
533  DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
534
535  BasicBlock *Header = L->getHeader();
536  BasicBlock *NewBB = SplitBlockPredecessors(Header, &OuterLoopPreds[0],
537                                             OuterLoopPreds.size(),
538                                             ".outer", this);
539
540  // Make sure that NewBB is put someplace intelligent, which doesn't mess up
541  // code layout too horribly.
542  PlaceSplitBlockCarefully(NewBB, OuterLoopPreds, L);
543
544  // Create the new outer loop.
545  Loop *NewOuter = new Loop();
546
547  // Change the parent loop to use the outer loop as its child now.
548  if (Loop *Parent = L->getParentLoop())
549    Parent->replaceChildLoopWith(L, NewOuter);
550  else
551    LI->changeTopLevelLoop(L, NewOuter);
552
553  // L is now a subloop of our outer loop.
554  NewOuter->addChildLoop(L);
555
556  // Add the new loop to the pass manager queue.
557  LPM.insertLoopIntoQueue(NewOuter);
558
559  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
560       I != E; ++I)
561    NewOuter->addBlockEntry(*I);
562
563  // Now reset the header in L, which had been moved by
564  // SplitBlockPredecessors for the outer loop.
565  L->moveToHeader(Header);
566
567  // Determine which blocks should stay in L and which should be moved out to
568  // the Outer loop now.
569  std::set<BasicBlock*> BlocksInL;
570  for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) {
571    BasicBlock *P = *PI;
572    if (DT->dominates(Header, P))
573      AddBlockAndPredsToSet(P, Header, BlocksInL);
574  }
575
576  // Scan all of the loop children of L, moving them to OuterLoop if they are
577  // not part of the inner loop.
578  const std::vector<Loop*> &SubLoops = L->getSubLoops();
579  for (size_t I = 0; I != SubLoops.size(); )
580    if (BlocksInL.count(SubLoops[I]->getHeader()))
581      ++I;   // Loop remains in L
582    else
583      NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
584
585  // Now that we know which blocks are in L and which need to be moved to
586  // OuterLoop, move any blocks that need it.
587  for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
588    BasicBlock *BB = L->getBlocks()[i];
589    if (!BlocksInL.count(BB)) {
590      // Move this block to the parent, updating the exit blocks sets
591      L->removeBlockFromLoop(BB);
592      if ((*LI)[BB] == L)
593        LI->changeLoopFor(BB, NewOuter);
594      --i;
595    }
596  }
597
598  return NewOuter;
599}
600
601
602
603/// InsertUniqueBackedgeBlock - This method is called when the specified loop
604/// has more than one backedge in it.  If this occurs, revector all of these
605/// backedges to target a new basic block and have that block branch to the loop
606/// header.  This ensures that loops have exactly one backedge.
607///
608BasicBlock *
609LoopSimplify::InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader) {
610  assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
611
612  // Get information about the loop
613  BasicBlock *Header = L->getHeader();
614  Function *F = Header->getParent();
615
616  // Unique backedge insertion currently depends on having a preheader.
617  if (!Preheader)
618    return 0;
619
620  // Figure out which basic blocks contain back-edges to the loop header.
621  std::vector<BasicBlock*> BackedgeBlocks;
622  for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){
623    BasicBlock *P = *I;
624
625    // Indirectbr edges cannot be split, so we must fail if we find one.
626    if (isa<IndirectBrInst>(P->getTerminator()))
627      return 0;
628
629    if (P != Preheader) BackedgeBlocks.push_back(P);
630  }
631
632  // Create and insert the new backedge block...
633  BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(),
634                                           Header->getName()+".backedge", F);
635  BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
636
637  DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block ";
638        WriteAsOperand(dbgs(), BEBlock, false);
639        dbgs() << "\n");
640
641  // Move the new backedge block to right after the last backedge block.
642  Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos;
643  F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
644
645  // Now that the block has been inserted into the function, create PHI nodes in
646  // the backedge block which correspond to any PHI nodes in the header block.
647  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
648    PHINode *PN = cast<PHINode>(I);
649    PHINode *NewPN = PHINode::Create(PN->getType(), PN->getName()+".be",
650                                     BETerminator);
651    NewPN->reserveOperandSpace(BackedgeBlocks.size());
652    if (AA) AA->copyValue(PN, NewPN);
653
654    // Loop over the PHI node, moving all entries except the one for the
655    // preheader over to the new PHI node.
656    unsigned PreheaderIdx = ~0U;
657    bool HasUniqueIncomingValue = true;
658    Value *UniqueValue = 0;
659    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
660      BasicBlock *IBB = PN->getIncomingBlock(i);
661      Value *IV = PN->getIncomingValue(i);
662      if (IBB == Preheader) {
663        PreheaderIdx = i;
664      } else {
665        NewPN->addIncoming(IV, IBB);
666        if (HasUniqueIncomingValue) {
667          if (UniqueValue == 0)
668            UniqueValue = IV;
669          else if (UniqueValue != IV)
670            HasUniqueIncomingValue = false;
671        }
672      }
673    }
674
675    // Delete all of the incoming values from the old PN except the preheader's
676    assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
677    if (PreheaderIdx != 0) {
678      PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
679      PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
680    }
681    // Nuke all entries except the zero'th.
682    for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
683      PN->removeIncomingValue(e-i, false);
684
685    // Finally, add the newly constructed PHI node as the entry for the BEBlock.
686    PN->addIncoming(NewPN, BEBlock);
687
688    // As an optimization, if all incoming values in the new PhiNode (which is a
689    // subset of the incoming values of the old PHI node) have the same value,
690    // eliminate the PHI Node.
691    if (HasUniqueIncomingValue) {
692      NewPN->replaceAllUsesWith(UniqueValue);
693      if (AA) AA->deleteValue(NewPN);
694      BEBlock->getInstList().erase(NewPN);
695    }
696  }
697
698  // Now that all of the PHI nodes have been inserted and adjusted, modify the
699  // backedge blocks to just to the BEBlock instead of the header.
700  for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
701    TerminatorInst *TI = BackedgeBlocks[i]->getTerminator();
702    for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
703      if (TI->getSuccessor(Op) == Header)
704        TI->setSuccessor(Op, BEBlock);
705  }
706
707  //===--- Update all analyses which we must preserve now -----------------===//
708
709  // Update Loop Information - we know that this block is now in the current
710  // loop and all parent loops.
711  L->addBasicBlockToLoop(BEBlock, LI->getBase());
712
713  // Update dominator information
714  DT->splitBlock(BEBlock);
715  if (DominanceFrontier *DF = getAnalysisIfAvailable<DominanceFrontier>())
716    DF->splitBlock(BEBlock);
717
718  return BEBlock;
719}
720
721void LoopSimplify::verifyAnalysis() const {
722  // It used to be possible to just assert L->isLoopSimplifyForm(), however
723  // with the introduction of indirectbr, there are now cases where it's
724  // not possible to transform a loop as necessary. We can at least check
725  // that there is an indirectbr near any time there's trouble.
726
727  // Indirectbr can interfere with preheader and unique backedge insertion.
728  if (!L->getLoopPreheader() || !L->getLoopLatch()) {
729    bool HasIndBrPred = false;
730    for (pred_iterator PI = pred_begin(L->getHeader()),
731         PE = pred_end(L->getHeader()); PI != PE; ++PI)
732      if (isa<IndirectBrInst>((*PI)->getTerminator())) {
733        HasIndBrPred = true;
734        break;
735      }
736    assert(HasIndBrPred &&
737           "LoopSimplify has no excuse for missing loop header info!");
738  }
739
740  // Indirectbr can interfere with exit block canonicalization.
741  if (!L->hasDedicatedExits()) {
742    bool HasIndBrExiting = false;
743    SmallVector<BasicBlock*, 8> ExitingBlocks;
744    L->getExitingBlocks(ExitingBlocks);
745    for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i)
746      if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) {
747        HasIndBrExiting = true;
748        break;
749      }
750    assert(HasIndBrExiting &&
751           "LoopSimplify has no excuse for missing exit block info!");
752  }
753}
754