LoopSimplify.cpp revision 0f98e75adff9024dcfe1d2afbfa83625d60ebaa8
1//===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs several transformations to transform natural loops into a
11// simpler form, which makes subsequent analyses and transformations simpler and
12// more effective.
13//
14// Loop pre-header insertion guarantees that there is a single, non-critical
15// entry edge from outside of the loop to the loop header.  This simplifies a
16// number of analyses and transformations, such as LICM.
17//
18// Loop exit-block insertion guarantees that all exit blocks from the loop
19// (blocks which are outside of the loop that have predecessors inside of the
20// loop) only have predecessors from inside of the loop (and are thus dominated
21// by the loop header).  This simplifies transformations such as store-sinking
22// that are built into LICM.
23//
24// This pass also guarantees that loops will have exactly one backedge.
25//
26// Note that the simplifycfg pass will clean up blocks which are split out but
27// end up being unnecessary, so usage of this pass should not pessimize
28// generated code.
29//
30// This pass obviously modifies the CFG, but updates loop information and
31// dominator information.
32//
33//===----------------------------------------------------------------------===//
34
35#include "llvm/Transforms/Scalar.h"
36#include "llvm/Function.h"
37#include "llvm/iTerminators.h"
38#include "llvm/iPHINode.h"
39#include "llvm/Constant.h"
40#include "llvm/Analysis/Dominators.h"
41#include "llvm/Analysis/LoopInfo.h"
42#include "llvm/Support/CFG.h"
43#include "Support/SetOperations.h"
44#include "Support/Statistic.h"
45#include "Support/DepthFirstIterator.h"
46using namespace llvm;
47
48namespace {
49  Statistic<>
50  NumInserted("loopsimplify", "Number of pre-header or exit blocks inserted");
51
52  struct LoopSimplify : public FunctionPass {
53    virtual bool runOnFunction(Function &F);
54
55    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
56      // We need loop information to identify the loops...
57      AU.addRequired<LoopInfo>();
58      AU.addRequired<DominatorSet>();
59
60      AU.addPreserved<LoopInfo>();
61      AU.addPreserved<DominatorSet>();
62      AU.addPreserved<ImmediateDominators>();
63      AU.addPreserved<DominatorTree>();
64      AU.addPreserved<DominanceFrontier>();
65      AU.addPreservedID(BreakCriticalEdgesID);  // No crit edges added....
66    }
67  private:
68    bool ProcessLoop(Loop *L);
69    BasicBlock *SplitBlockPredecessors(BasicBlock *BB, const char *Suffix,
70                                       const std::vector<BasicBlock*> &Preds);
71    void RewriteLoopExitBlock(Loop *L, BasicBlock *Exit);
72    void InsertPreheaderForLoop(Loop *L);
73    void InsertUniqueBackedgeBlock(Loop *L);
74
75    void UpdateDomInfoForRevectoredPreds(BasicBlock *NewBB,
76                                         std::vector<BasicBlock*> &PredBlocks);
77  };
78
79  RegisterOpt<LoopSimplify>
80  X("loopsimplify", "Canonicalize natural loops", true);
81}
82
83// Publically exposed interface to pass...
84const PassInfo *llvm::LoopSimplifyID = X.getPassInfo();
85Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
86
87/// runOnFunction - Run down all loops in the CFG (recursively, but we could do
88/// it in any convenient order) inserting preheaders...
89///
90bool LoopSimplify::runOnFunction(Function &F) {
91  bool Changed = false;
92  LoopInfo &LI = getAnalysis<LoopInfo>();
93
94  for (unsigned i = 0, e = LI.getTopLevelLoops().size(); i != e; ++i)
95    Changed |= ProcessLoop(LI.getTopLevelLoops()[i]);
96
97  return Changed;
98}
99
100
101/// ProcessLoop - Walk the loop structure in depth first order, ensuring that
102/// all loops have preheaders.
103///
104bool LoopSimplify::ProcessLoop(Loop *L) {
105  bool Changed = false;
106
107  // Does the loop already have a preheader?  If so, don't modify the loop...
108  if (L->getLoopPreheader() == 0) {
109    InsertPreheaderForLoop(L);
110    NumInserted++;
111    Changed = true;
112  }
113
114  // Next, check to make sure that all exit nodes of the loop only have
115  // predecessors that are inside of the loop.  This check guarantees that the
116  // loop preheader/header will dominate the exit blocks.  If the exit block has
117  // predecessors from outside of the loop, split the edge now.
118  for (unsigned i = 0, e = L->getExitBlocks().size(); i != e; ++i) {
119    BasicBlock *ExitBlock = L->getExitBlocks()[i];
120    for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
121         PI != PE; ++PI)
122      if (!L->contains(*PI)) {
123        RewriteLoopExitBlock(L, ExitBlock);
124        NumInserted++;
125        Changed = true;
126        break;
127      }
128    }
129
130  // The preheader may have more than two predecessors at this point (from the
131  // preheader and from the backedges).  To simplify the loop more, insert an
132  // extra back-edge block in the loop so that there is exactly one backedge.
133  if (L->getNumBackEdges() != 1) {
134    InsertUniqueBackedgeBlock(L);
135    NumInserted++;
136    Changed = true;
137  }
138
139  const std::vector<Loop*> &SubLoops = L->getSubLoops();
140  for (unsigned i = 0, e = SubLoops.size(); i != e; ++i)
141    Changed |= ProcessLoop(SubLoops[i]);
142  return Changed;
143}
144
145/// SplitBlockPredecessors - Split the specified block into two blocks.  We want
146/// to move the predecessors specified in the Preds list to point to the new
147/// block, leaving the remaining predecessors pointing to BB.  This method
148/// updates the SSA PHINode's, but no other analyses.
149///
150BasicBlock *LoopSimplify::SplitBlockPredecessors(BasicBlock *BB,
151                                                 const char *Suffix,
152                                       const std::vector<BasicBlock*> &Preds) {
153
154  // Create new basic block, insert right before the original block...
155  BasicBlock *NewBB = new BasicBlock(BB->getName()+Suffix, BB);
156
157  // The preheader first gets an unconditional branch to the loop header...
158  BranchInst *BI = new BranchInst(BB, NewBB);
159
160  // For every PHI node in the block, insert a PHI node into NewBB where the
161  // incoming values from the out of loop edges are moved to NewBB.  We have two
162  // possible cases here.  If the loop is dead, we just insert dummy entries
163  // into the PHI nodes for the new edge.  If the loop is not dead, we move the
164  // incoming edges in BB into new PHI nodes in NewBB.
165  //
166  if (!Preds.empty()) {  // Is the loop not obviously dead?
167    // Check to see if the values being merged into the new block need PHI
168    // nodes.  If so, insert them.
169    for (BasicBlock::iterator I = BB->begin();
170         PHINode *PN = dyn_cast<PHINode>(I); ++I) {
171
172      // Check to see if all of the values coming in are the same.  If so, we
173      // don't need to create a new PHI node.
174      Value *InVal = PN->getIncomingValueForBlock(Preds[0]);
175      for (unsigned i = 1, e = Preds.size(); i != e; ++i)
176        if (InVal != PN->getIncomingValueForBlock(Preds[i])) {
177          InVal = 0;
178          break;
179        }
180
181      // If the values coming into the block are not the same, we need a PHI.
182      if (InVal == 0) {
183        // Create the new PHI node, insert it into NewBB at the end of the block
184        PHINode *NewPHI = new PHINode(PN->getType(), PN->getName()+".ph", BI);
185
186        // Move all of the edges from blocks outside the loop to the new PHI
187        for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
188          Value *V = PN->removeIncomingValue(Preds[i]);
189          NewPHI->addIncoming(V, Preds[i]);
190        }
191        InVal = NewPHI;
192      } else {
193        // Remove all of the edges coming into the PHI nodes from outside of the
194        // block.
195        for (unsigned i = 0, e = Preds.size(); i != e; ++i)
196          PN->removeIncomingValue(Preds[i], false);
197      }
198
199      // Add an incoming value to the PHI node in the loop for the preheader
200      // edge.
201      PN->addIncoming(InVal, NewBB);
202    }
203
204    // Now that the PHI nodes are updated, actually move the edges from
205    // Preds to point to NewBB instead of BB.
206    //
207    for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
208      TerminatorInst *TI = Preds[i]->getTerminator();
209      for (unsigned s = 0, e = TI->getNumSuccessors(); s != e; ++s)
210        if (TI->getSuccessor(s) == BB)
211          TI->setSuccessor(s, NewBB);
212    }
213
214  } else {                       // Otherwise the loop is dead...
215    for (BasicBlock::iterator I = BB->begin();
216         PHINode *PN = dyn_cast<PHINode>(I); ++I)
217      // Insert dummy values as the incoming value...
218      PN->addIncoming(Constant::getNullValue(PN->getType()), NewBB);
219  }
220  return NewBB;
221}
222
223// ChangeExitBlock - This recursive function is used to change any exit blocks
224// that use OldExit to use NewExit instead.  This is recursive because children
225// may need to be processed as well.
226//
227static void ChangeExitBlock(Loop *L, BasicBlock *OldExit, BasicBlock *NewExit) {
228  if (L->hasExitBlock(OldExit)) {
229    L->changeExitBlock(OldExit, NewExit);
230    const std::vector<Loop*> &SubLoops = L->getSubLoops();
231    for (unsigned i = 0, e = SubLoops.size(); i != e; ++i)
232      ChangeExitBlock(SubLoops[i], OldExit, NewExit);
233  }
234}
235
236
237/// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
238/// preheader, this method is called to insert one.  This method has two phases:
239/// preheader insertion and analysis updating.
240///
241void LoopSimplify::InsertPreheaderForLoop(Loop *L) {
242  BasicBlock *Header = L->getHeader();
243
244  // Compute the set of predecessors of the loop that are not in the loop.
245  std::vector<BasicBlock*> OutsideBlocks;
246  for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
247       PI != PE; ++PI)
248      if (!L->contains(*PI))           // Coming in from outside the loop?
249        OutsideBlocks.push_back(*PI);  // Keep track of it...
250
251  // Split out the loop pre-header
252  BasicBlock *NewBB =
253    SplitBlockPredecessors(Header, ".preheader", OutsideBlocks);
254
255  //===--------------------------------------------------------------------===//
256  //  Update analysis results now that we have performed the transformation
257  //
258
259  // We know that we have loop information to update... update it now.
260  if (Loop *Parent = L->getParentLoop())
261    Parent->addBasicBlockToLoop(NewBB, getAnalysis<LoopInfo>());
262
263  // If the header for the loop used to be an exit node for another loop, then
264  // we need to update this to know that the loop-preheader is now the exit
265  // node.  Note that the only loop that could have our header as an exit node
266  // is a sibling loop, ie, one with the same parent loop, or one if it's
267  // children.
268  //
269  const std::vector<Loop*> *ParentSubLoops;
270  if (Loop *Parent = L->getParentLoop())
271    ParentSubLoops = &Parent->getSubLoops();
272  else       // Must check top-level loops...
273    ParentSubLoops = &getAnalysis<LoopInfo>().getTopLevelLoops();
274
275  // Loop over all sibling loops, performing the substitution (recursively to
276  // include child loops)...
277  for (unsigned i = 0, e = ParentSubLoops->size(); i != e; ++i)
278    ChangeExitBlock((*ParentSubLoops)[i], Header, NewBB);
279
280  DominatorSet &DS = getAnalysis<DominatorSet>();  // Update dominator info
281  {
282    // The blocks that dominate NewBB are the blocks that dominate Header,
283    // minus Header, plus NewBB.
284    DominatorSet::DomSetType DomSet = DS.getDominators(Header);
285    DomSet.insert(NewBB);  // We dominate ourself
286    DomSet.erase(Header);  // Header does not dominate us...
287    DS.addBasicBlock(NewBB, DomSet);
288
289    // The newly created basic block dominates all nodes dominated by Header.
290    for (Function::iterator I = Header->getParent()->begin(),
291           E = Header->getParent()->end(); I != E; ++I)
292      if (DS.dominates(Header, I))
293        DS.addDominator(I, NewBB);
294  }
295
296  // Update immediate dominator information if we have it...
297  if (ImmediateDominators *ID = getAnalysisToUpdate<ImmediateDominators>()) {
298    // Whatever i-dominated the header node now immediately dominates NewBB
299    ID->addNewBlock(NewBB, ID->get(Header));
300
301    // The preheader now is the immediate dominator for the header node...
302    ID->setImmediateDominator(Header, NewBB);
303  }
304
305  // Update DominatorTree information if it is active.
306  if (DominatorTree *DT = getAnalysisToUpdate<DominatorTree>()) {
307    // The immediate dominator of the preheader is the immediate dominator of
308    // the old header.
309    //
310    DominatorTree::Node *HeaderNode = DT->getNode(Header);
311    DominatorTree::Node *PHNode = DT->createNewNode(NewBB,
312                                                    HeaderNode->getIDom());
313
314    // Change the header node so that PNHode is the new immediate dominator
315    DT->changeImmediateDominator(HeaderNode, PHNode);
316  }
317
318  // Update dominance frontier information...
319  if (DominanceFrontier *DF = getAnalysisToUpdate<DominanceFrontier>()) {
320    // The DF(NewBB) is just (DF(Header)-Header), because NewBB dominates
321    // everything that Header does, and it strictly dominates Header in
322    // addition.
323    assert(DF->find(Header) != DF->end() && "Header node doesn't have DF set?");
324    DominanceFrontier::DomSetType NewDFSet = DF->find(Header)->second;
325    NewDFSet.erase(Header);
326    DF->addBasicBlock(NewBB, NewDFSet);
327
328    // Now we must loop over all of the dominance frontiers in the function,
329    // replacing occurrences of Header with NewBB in some cases.  If a block
330    // dominates a (now) predecessor of NewBB, but did not strictly dominate
331    // Header, it will have Header in it's DF set, but should now have NewBB in
332    // its set.
333    for (unsigned i = 0, e = OutsideBlocks.size(); i != e; ++i) {
334      // Get all of the dominators of the predecessor...
335      const DominatorSet::DomSetType &PredDoms =
336        DS.getDominators(OutsideBlocks[i]);
337      for (DominatorSet::DomSetType::const_iterator PDI = PredDoms.begin(),
338             PDE = PredDoms.end(); PDI != PDE; ++PDI) {
339        BasicBlock *PredDom = *PDI;
340        // If the loop header is in DF(PredDom), then PredDom didn't dominate
341        // the header but did dominate a predecessor outside of the loop.  Now
342        // we change this entry to include the preheader in the DF instead of
343        // the header.
344        DominanceFrontier::iterator DFI = DF->find(PredDom);
345        assert(DFI != DF->end() && "No dominance frontier for node?");
346        if (DFI->second.count(Header)) {
347          DF->removeFromFrontier(DFI, Header);
348          DF->addToFrontier(DFI, NewBB);
349        }
350      }
351    }
352  }
353}
354
355void LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) {
356  DominatorSet &DS = getAnalysis<DominatorSet>();
357  assert(std::find(L->getExitBlocks().begin(), L->getExitBlocks().end(), Exit)
358         != L->getExitBlocks().end() && "Not a current exit block!");
359
360  std::vector<BasicBlock*> LoopBlocks;
361  for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I)
362    if (L->contains(*I))
363      LoopBlocks.push_back(*I);
364
365  assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?");
366  BasicBlock *NewBB = SplitBlockPredecessors(Exit, ".loopexit", LoopBlocks);
367
368  // Update Loop Information - we know that the new block will be in the parent
369  // loop of L.
370  if (Loop *Parent = L->getParentLoop())
371    Parent->addBasicBlockToLoop(NewBB, getAnalysis<LoopInfo>());
372
373  // Replace any instances of Exit with NewBB in this and any nested loops...
374  for (df_iterator<Loop*> I = df_begin(L), E = df_end(L); I != E; ++I)
375    if (I->hasExitBlock(Exit))
376      I->changeExitBlock(Exit, NewBB);   // Update exit block information
377
378  // Update dominator information (set, immdom, domtree, and domfrontier)
379  UpdateDomInfoForRevectoredPreds(NewBB, LoopBlocks);
380}
381
382/// InsertUniqueBackedgeBlock - This method is called when the specified loop
383/// has more than one backedge in it.  If this occurs, revector all of these
384/// backedges to target a new basic block and have that block branch to the loop
385/// header.  This ensures that loops have exactly one backedge.
386///
387void LoopSimplify::InsertUniqueBackedgeBlock(Loop *L) {
388  assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
389
390  // Get information about the loop
391  BasicBlock *Preheader = L->getLoopPreheader();
392  BasicBlock *Header = L->getHeader();
393  Function *F = Header->getParent();
394
395  // Figure out which basic blocks contain back-edges to the loop header.
396  std::vector<BasicBlock*> BackedgeBlocks;
397  for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I)
398    if (*I != Preheader) BackedgeBlocks.push_back(*I);
399
400  // Create and insert the new backedge block...
401  BasicBlock *BEBlock = new BasicBlock(Header->getName()+".backedge", F);
402  BranchInst *BETerminator = new BranchInst(Header, BEBlock);
403
404  // Move the new backedge block to right after the last backedge block.
405  Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos;
406  F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
407
408  // Now that the block has been inserted into the function, create PHI nodes in
409  // the backedge block which correspond to any PHI nodes in the header block.
410  for (BasicBlock::iterator I = Header->begin();
411       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
412    PHINode *NewPN = new PHINode(PN->getType(), PN->getName()+".be",
413                                 BETerminator);
414    NewPN->op_reserve(2*BackedgeBlocks.size());
415
416    // Loop over the PHI node, moving all entries except the one for the
417    // preheader over to the new PHI node.
418    unsigned PreheaderIdx = ~0U;
419    bool HasUniqueIncomingValue = true;
420    Value *UniqueValue = 0;
421    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
422      BasicBlock *IBB = PN->getIncomingBlock(i);
423      Value *IV = PN->getIncomingValue(i);
424      if (IBB == Preheader) {
425        PreheaderIdx = i;
426      } else {
427        NewPN->addIncoming(IV, IBB);
428        if (HasUniqueIncomingValue) {
429          if (UniqueValue == 0)
430            UniqueValue = IV;
431          else if (UniqueValue != IV)
432            HasUniqueIncomingValue = false;
433        }
434      }
435    }
436
437    // Delete all of the incoming values from the old PN except the preheader's
438    assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
439    if (PreheaderIdx != 0) {
440      PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
441      PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
442    }
443    PN->op_erase(PN->op_begin()+2, PN->op_end());
444
445    // Finally, add the newly constructed PHI node as the entry for the BEBlock.
446    PN->addIncoming(NewPN, BEBlock);
447
448    // As an optimization, if all incoming values in the new PhiNode (which is a
449    // subset of the incoming values of the old PHI node) have the same value,
450    // eliminate the PHI Node.
451    if (HasUniqueIncomingValue) {
452      NewPN->replaceAllUsesWith(UniqueValue);
453      BEBlock->getInstList().erase(NewPN);
454    }
455  }
456
457  // Now that all of the PHI nodes have been inserted and adjusted, modify the
458  // backedge blocks to just to the BEBlock instead of the header.
459  for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
460    TerminatorInst *TI = BackedgeBlocks[i]->getTerminator();
461    for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
462      if (TI->getSuccessor(Op) == Header)
463        TI->setSuccessor(Op, BEBlock);
464  }
465
466  //===--- Update all analyses which we must preserve now -----------------===//
467
468  // Update Loop Information - we know that this block is now in the current
469  // loop and all parent loops.
470  L->addBasicBlockToLoop(BEBlock, getAnalysis<LoopInfo>());
471
472  // Replace any instances of Exit with NewBB in this and any nested loops...
473  for (df_iterator<Loop*> I = df_begin(L), E = df_end(L); I != E; ++I)
474    if (I->hasExitBlock(Header))
475      I->changeExitBlock(Header, BEBlock);   // Update exit block information
476
477  // Update dominator information (set, immdom, domtree, and domfrontier)
478  UpdateDomInfoForRevectoredPreds(BEBlock, BackedgeBlocks);
479}
480
481/// UpdateDomInfoForRevectoredPreds - This method is used to update the four
482/// different kinds of dominator information (dominator sets, immediate
483/// dominators, dominator trees, and dominance frontiers) after a new block has
484/// been added to the CFG.
485///
486/// This only supports the case when an existing block (known as "Exit"), had
487/// some of its predecessors factored into a new basic block.  This
488/// transformation inserts a new basic block ("NewBB"), with a single
489/// unconditional branch to Exit, and moves some predecessors of "Exit" to now
490/// branch to NewBB.  These predecessors are listed in PredBlocks, even though
491/// they are the same as pred_begin(NewBB)/pred_end(NewBB).
492///
493void LoopSimplify::UpdateDomInfoForRevectoredPreds(BasicBlock *NewBB,
494                                         std::vector<BasicBlock*> &PredBlocks) {
495  assert(succ_begin(NewBB) != succ_end(NewBB) &&
496         ++succ_begin(NewBB) == succ_end(NewBB) &&
497         "NewBB should have a single successor!");
498  DominatorSet &DS = getAnalysis<DominatorSet>();
499
500  // Update dominator information...  The blocks that dominate NewBB are the
501  // intersection of the dominators of predecessors, plus the block itself.
502  // The newly created basic block does not dominate anything except itself.
503  //
504  DominatorSet::DomSetType NewBBDomSet = DS.getDominators(PredBlocks[0]);
505  for (unsigned i = 1, e = PredBlocks.size(); i != e; ++i)
506    set_intersect(NewBBDomSet, DS.getDominators(PredBlocks[i]));
507  NewBBDomSet.insert(NewBB);  // All blocks dominate themselves...
508  DS.addBasicBlock(NewBB, NewBBDomSet);
509
510  // Update immediate dominator information if we have it...
511  BasicBlock *NewBBIDom = 0;
512  if (ImmediateDominators *ID = getAnalysisToUpdate<ImmediateDominators>()) {
513    // This block does not strictly dominate anything, so it is not an immediate
514    // dominator.  To find the immediate dominator of the new exit node, we
515    // trace up the immediate dominators of a predecessor until we find a basic
516    // block that dominates the exit block.
517    //
518    BasicBlock *Dom = PredBlocks[0];  // Some random predecessor...
519    while (!NewBBDomSet.count(Dom)) {  // Loop until we find a dominator...
520      assert(Dom != 0 && "No shared dominator found???");
521      Dom = ID->get(Dom);
522    }
523
524    // Set the immediate dominator now...
525    ID->addNewBlock(NewBB, Dom);
526    NewBBIDom = Dom;   // Reuse this if calculating DominatorTree info...
527  }
528
529  // Update DominatorTree information if it is active.
530  if (DominatorTree *DT = getAnalysisToUpdate<DominatorTree>()) {
531    // NewBB doesn't dominate anything, so just create a node and link it into
532    // its immediate dominator.  If we don't have ImmediateDominator info
533    // around, calculate the idom as above.
534    DominatorTree::Node *NewBBIDomNode;
535    if (NewBBIDom) {
536      NewBBIDomNode = DT->getNode(NewBBIDom);
537    } else {
538      NewBBIDomNode = DT->getNode(PredBlocks[0]); // Random pred
539      while (!NewBBDomSet.count(NewBBIDomNode->getBlock())) {
540        NewBBIDomNode = NewBBIDomNode->getIDom();
541        assert(NewBBIDomNode && "No shared dominator found??");
542      }
543    }
544
545    // Create the new dominator tree node...
546    DT->createNewNode(NewBB, NewBBIDomNode);
547  }
548
549  // Update dominance frontier information...
550  if (DominanceFrontier *DF = getAnalysisToUpdate<DominanceFrontier>()) {
551    // DF(NewBB) is {Exit} because NewBB does not strictly dominate Exit, but it
552    // does dominate itself (and there is an edge (NewBB -> Exit)).  Exit is the
553    // single successor of NewBB.
554    DominanceFrontier::DomSetType NewDFSet;
555    BasicBlock *Exit = *succ_begin(NewBB);
556    NewDFSet.insert(Exit);
557    DF->addBasicBlock(NewBB, NewDFSet);
558
559    // Now we must loop over all of the dominance frontiers in the function,
560    // replacing occurrences of Exit with NewBB in some cases.  All blocks that
561    // dominate a block in PredBlocks and contained Exit in their dominance
562    // frontier must be updated to contain NewBB instead.  This only occurs if
563    // there is more than one block in PredBlocks.
564    //
565    if (PredBlocks.size() > 1) {
566      for (unsigned i = 0, e = PredBlocks.size(); i != e; ++i) {
567        BasicBlock *Pred = PredBlocks[i];
568        // Get all of the dominators of the predecessor...
569        const DominatorSet::DomSetType &PredDoms = DS.getDominators(Pred);
570        for (DominatorSet::DomSetType::const_iterator PDI = PredDoms.begin(),
571               PDE = PredDoms.end(); PDI != PDE; ++PDI) {
572          BasicBlock *PredDom = *PDI;
573
574          // If the Exit node is in DF(PredDom), then PredDom didn't dominate
575          // Exit but did dominate a predecessor of it.  Now we change this
576          // entry to include NewBB in the DF instead of Exit.
577          DominanceFrontier::iterator DFI = DF->find(PredDom);
578          assert(DFI != DF->end() && "No dominance frontier for node?");
579          if (DFI->second.count(Exit)) {
580            DF->removeFromFrontier(DFI, Exit);
581            DF->addToFrontier(DFI, NewBB);
582          }
583        }
584      }
585    }
586  }
587}
588
589