LoopSimplify.cpp revision 2ab36d350293c77fc8941ce1023e4899df7e3a82
1//===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs several transformations to transform natural loops into a
11// simpler form, which makes subsequent analyses and transformations simpler and
12// more effective.
13//
14// Loop pre-header insertion guarantees that there is a single, non-critical
15// entry edge from outside of the loop to the loop header.  This simplifies a
16// number of analyses and transformations, such as LICM.
17//
18// Loop exit-block insertion guarantees that all exit blocks from the loop
19// (blocks which are outside of the loop that have predecessors inside of the
20// loop) only have predecessors from inside of the loop (and are thus dominated
21// by the loop header).  This simplifies transformations such as store-sinking
22// that are built into LICM.
23//
24// This pass also guarantees that loops will have exactly one backedge.
25//
26// Indirectbr instructions introduce several complications. If the loop
27// contains or is entered by an indirectbr instruction, it may not be possible
28// to transform the loop and make these guarantees. Client code should check
29// that these conditions are true before relying on them.
30//
31// Note that the simplifycfg pass will clean up blocks which are split out but
32// end up being unnecessary, so usage of this pass should not pessimize
33// generated code.
34//
35// This pass obviously modifies the CFG, but updates loop information and
36// dominator information.
37//
38//===----------------------------------------------------------------------===//
39
40#define DEBUG_TYPE "loopsimplify"
41#include "llvm/Transforms/Scalar.h"
42#include "llvm/Constants.h"
43#include "llvm/Instructions.h"
44#include "llvm/IntrinsicInst.h"
45#include "llvm/Function.h"
46#include "llvm/LLVMContext.h"
47#include "llvm/Type.h"
48#include "llvm/Analysis/AliasAnalysis.h"
49#include "llvm/Analysis/ScalarEvolution.h"
50#include "llvm/Analysis/Dominators.h"
51#include "llvm/Analysis/LoopPass.h"
52#include "llvm/Transforms/Utils/BasicBlockUtils.h"
53#include "llvm/Transforms/Utils/Local.h"
54#include "llvm/Support/CFG.h"
55#include "llvm/Support/Debug.h"
56#include "llvm/ADT/SetOperations.h"
57#include "llvm/ADT/SetVector.h"
58#include "llvm/ADT/Statistic.h"
59#include "llvm/ADT/DepthFirstIterator.h"
60using namespace llvm;
61
62STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted");
63STATISTIC(NumNested  , "Number of nested loops split out");
64
65namespace {
66  struct LoopSimplify : public LoopPass {
67    static char ID; // Pass identification, replacement for typeid
68    LoopSimplify() : LoopPass(ID) {}
69
70    // AA - If we have an alias analysis object to update, this is it, otherwise
71    // this is null.
72    AliasAnalysis *AA;
73    LoopInfo *LI;
74    DominatorTree *DT;
75    ScalarEvolution *SE;
76    Loop *L;
77    virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
78
79    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
80      // We need loop information to identify the loops...
81      AU.addRequired<DominatorTree>();
82      AU.addPreserved<DominatorTree>();
83
84      AU.addRequired<LoopInfo>();
85      AU.addPreserved<LoopInfo>();
86
87      AU.addPreserved<AliasAnalysis>();
88      AU.addPreserved<ScalarEvolution>();
89      AU.addPreservedID(BreakCriticalEdgesID);  // No critical edges added.
90      AU.addPreserved<DominanceFrontier>();
91      AU.addPreservedID(LCSSAID);
92    }
93
94    /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
95    void verifyAnalysis() const;
96
97  private:
98    bool ProcessLoop(Loop *L, LPPassManager &LPM);
99    BasicBlock *RewriteLoopExitBlock(Loop *L, BasicBlock *Exit);
100    BasicBlock *InsertPreheaderForLoop(Loop *L);
101    Loop *SeparateNestedLoop(Loop *L, LPPassManager &LPM);
102    BasicBlock *InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader);
103    void PlaceSplitBlockCarefully(BasicBlock *NewBB,
104                                  SmallVectorImpl<BasicBlock*> &SplitPreds,
105                                  Loop *L);
106  };
107}
108
109char LoopSimplify::ID = 0;
110INITIALIZE_PASS_BEGIN(LoopSimplify, "loopsimplify",
111                "Canonicalize natural loops", true, false)
112INITIALIZE_PASS_DEPENDENCY(DominatorTree)
113INITIALIZE_PASS_DEPENDENCY(LoopInfo)
114INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
115INITIALIZE_PASS_DEPENDENCY(BreakCriticalEdges)
116INITIALIZE_PASS_DEPENDENCY(DominanceFrontier)
117INITIALIZE_PASS_DEPENDENCY(LCSSA)
118INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
119INITIALIZE_PASS_END(LoopSimplify, "loopsimplify",
120                "Canonicalize natural loops", true, false)
121
122// Publically exposed interface to pass...
123char &llvm::LoopSimplifyID = LoopSimplify::ID;
124Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
125
126/// runOnLoop - Run down all loops in the CFG (recursively, but we could do
127/// it in any convenient order) inserting preheaders...
128///
129bool LoopSimplify::runOnLoop(Loop *l, LPPassManager &LPM) {
130  L = l;
131  bool Changed = false;
132  LI = &getAnalysis<LoopInfo>();
133  AA = getAnalysisIfAvailable<AliasAnalysis>();
134  DT = &getAnalysis<DominatorTree>();
135  SE = getAnalysisIfAvailable<ScalarEvolution>();
136
137  Changed |= ProcessLoop(L, LPM);
138
139  return Changed;
140}
141
142/// ProcessLoop - Walk the loop structure in depth first order, ensuring that
143/// all loops have preheaders.
144///
145bool LoopSimplify::ProcessLoop(Loop *L, LPPassManager &LPM) {
146  bool Changed = false;
147ReprocessLoop:
148
149  // Check to see that no blocks (other than the header) in this loop have
150  // predecessors that are not in the loop.  This is not valid for natural
151  // loops, but can occur if the blocks are unreachable.  Since they are
152  // unreachable we can just shamelessly delete those CFG edges!
153  for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
154       BB != E; ++BB) {
155    if (*BB == L->getHeader()) continue;
156
157    SmallPtrSet<BasicBlock*, 4> BadPreds;
158    for (pred_iterator PI = pred_begin(*BB),
159         PE = pred_end(*BB); PI != PE; ++PI) {
160      BasicBlock *P = *PI;
161      if (!L->contains(P))
162        BadPreds.insert(P);
163    }
164
165    // Delete each unique out-of-loop (and thus dead) predecessor.
166    for (SmallPtrSet<BasicBlock*, 4>::iterator I = BadPreds.begin(),
167         E = BadPreds.end(); I != E; ++I) {
168
169      DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor ";
170            WriteAsOperand(dbgs(), *I, false);
171            dbgs() << "\n");
172
173      // Inform each successor of each dead pred.
174      for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI)
175        (*SI)->removePredecessor(*I);
176      // Zap the dead pred's terminator and replace it with unreachable.
177      TerminatorInst *TI = (*I)->getTerminator();
178       TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
179      (*I)->getTerminator()->eraseFromParent();
180      new UnreachableInst((*I)->getContext(), *I);
181      Changed = true;
182    }
183  }
184
185  // If there are exiting blocks with branches on undef, resolve the undef in
186  // the direction which will exit the loop. This will help simplify loop
187  // trip count computations.
188  SmallVector<BasicBlock*, 8> ExitingBlocks;
189  L->getExitingBlocks(ExitingBlocks);
190  for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(),
191       E = ExitingBlocks.end(); I != E; ++I)
192    if (BranchInst *BI = dyn_cast<BranchInst>((*I)->getTerminator()))
193      if (BI->isConditional()) {
194        if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
195
196          DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in ";
197                WriteAsOperand(dbgs(), *I, false);
198                dbgs() << "\n");
199
200          BI->setCondition(ConstantInt::get(Cond->getType(),
201                                            !L->contains(BI->getSuccessor(0))));
202          Changed = true;
203        }
204      }
205
206  // Does the loop already have a preheader?  If so, don't insert one.
207  BasicBlock *Preheader = L->getLoopPreheader();
208  if (!Preheader) {
209    Preheader = InsertPreheaderForLoop(L);
210    if (Preheader) {
211      ++NumInserted;
212      Changed = true;
213    }
214  }
215
216  // Next, check to make sure that all exit nodes of the loop only have
217  // predecessors that are inside of the loop.  This check guarantees that the
218  // loop preheader/header will dominate the exit blocks.  If the exit block has
219  // predecessors from outside of the loop, split the edge now.
220  SmallVector<BasicBlock*, 8> ExitBlocks;
221  L->getExitBlocks(ExitBlocks);
222
223  SmallSetVector<BasicBlock *, 8> ExitBlockSet(ExitBlocks.begin(),
224                                               ExitBlocks.end());
225  for (SmallSetVector<BasicBlock *, 8>::iterator I = ExitBlockSet.begin(),
226         E = ExitBlockSet.end(); I != E; ++I) {
227    BasicBlock *ExitBlock = *I;
228    for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
229         PI != PE; ++PI)
230      // Must be exactly this loop: no subloops, parent loops, or non-loop preds
231      // allowed.
232      if (!L->contains(*PI)) {
233        if (RewriteLoopExitBlock(L, ExitBlock)) {
234          ++NumInserted;
235          Changed = true;
236        }
237        break;
238      }
239  }
240
241  // If the header has more than two predecessors at this point (from the
242  // preheader and from multiple backedges), we must adjust the loop.
243  BasicBlock *LoopLatch = L->getLoopLatch();
244  if (!LoopLatch) {
245    // If this is really a nested loop, rip it out into a child loop.  Don't do
246    // this for loops with a giant number of backedges, just factor them into a
247    // common backedge instead.
248    if (L->getNumBackEdges() < 8) {
249      if (SeparateNestedLoop(L, LPM)) {
250        ++NumNested;
251        // This is a big restructuring change, reprocess the whole loop.
252        Changed = true;
253        // GCC doesn't tail recursion eliminate this.
254        goto ReprocessLoop;
255      }
256    }
257
258    // If we either couldn't, or didn't want to, identify nesting of the loops,
259    // insert a new block that all backedges target, then make it jump to the
260    // loop header.
261    LoopLatch = InsertUniqueBackedgeBlock(L, Preheader);
262    if (LoopLatch) {
263      ++NumInserted;
264      Changed = true;
265    }
266  }
267
268  // Scan over the PHI nodes in the loop header.  Since they now have only two
269  // incoming values (the loop is canonicalized), we may have simplified the PHI
270  // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
271  PHINode *PN;
272  for (BasicBlock::iterator I = L->getHeader()->begin();
273       (PN = dyn_cast<PHINode>(I++)); )
274    if (Value *V = PN->hasConstantValue(DT)) {
275      if (AA) AA->deleteValue(PN);
276      PN->replaceAllUsesWith(V);
277      PN->eraseFromParent();
278    }
279
280  // If this loop has multiple exits and the exits all go to the same
281  // block, attempt to merge the exits. This helps several passes, such
282  // as LoopRotation, which do not support loops with multiple exits.
283  // SimplifyCFG also does this (and this code uses the same utility
284  // function), however this code is loop-aware, where SimplifyCFG is
285  // not. That gives it the advantage of being able to hoist
286  // loop-invariant instructions out of the way to open up more
287  // opportunities, and the disadvantage of having the responsibility
288  // to preserve dominator information.
289  bool UniqueExit = true;
290  if (!ExitBlocks.empty())
291    for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i)
292      if (ExitBlocks[i] != ExitBlocks[0]) {
293        UniqueExit = false;
294        break;
295      }
296  if (UniqueExit) {
297    for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
298      BasicBlock *ExitingBlock = ExitingBlocks[i];
299      if (!ExitingBlock->getSinglePredecessor()) continue;
300      BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
301      if (!BI || !BI->isConditional()) continue;
302      CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
303      if (!CI || CI->getParent() != ExitingBlock) continue;
304
305      // Attempt to hoist out all instructions except for the
306      // comparison and the branch.
307      bool AllInvariant = true;
308      for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) {
309        Instruction *Inst = I++;
310        // Skip debug info intrinsics.
311        if (isa<DbgInfoIntrinsic>(Inst))
312          continue;
313        if (Inst == CI)
314          continue;
315        if (!L->makeLoopInvariant(Inst, Changed,
316                                  Preheader ? Preheader->getTerminator() : 0)) {
317          AllInvariant = false;
318          break;
319        }
320      }
321      if (!AllInvariant) continue;
322
323      // The block has now been cleared of all instructions except for
324      // a comparison and a conditional branch. SimplifyCFG may be able
325      // to fold it now.
326      if (!FoldBranchToCommonDest(BI)) continue;
327
328      // Success. The block is now dead, so remove it from the loop,
329      // update the dominator tree and dominance frontier, and delete it.
330
331      DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block ";
332            WriteAsOperand(dbgs(), ExitingBlock, false);
333            dbgs() << "\n");
334
335      assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock));
336      Changed = true;
337      LI->removeBlock(ExitingBlock);
338
339      DominanceFrontier *DF = getAnalysisIfAvailable<DominanceFrontier>();
340      DomTreeNode *Node = DT->getNode(ExitingBlock);
341      const std::vector<DomTreeNodeBase<BasicBlock> *> &Children =
342        Node->getChildren();
343      while (!Children.empty()) {
344        DomTreeNode *Child = Children.front();
345        DT->changeImmediateDominator(Child, Node->getIDom());
346        if (DF) DF->changeImmediateDominator(Child->getBlock(),
347                                             Node->getIDom()->getBlock(),
348                                             DT);
349      }
350      DT->eraseNode(ExitingBlock);
351      if (DF) DF->removeBlock(ExitingBlock);
352
353      BI->getSuccessor(0)->removePredecessor(ExitingBlock);
354      BI->getSuccessor(1)->removePredecessor(ExitingBlock);
355      ExitingBlock->eraseFromParent();
356    }
357  }
358
359  return Changed;
360}
361
362/// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
363/// preheader, this method is called to insert one.  This method has two phases:
364/// preheader insertion and analysis updating.
365///
366BasicBlock *LoopSimplify::InsertPreheaderForLoop(Loop *L) {
367  BasicBlock *Header = L->getHeader();
368
369  // Compute the set of predecessors of the loop that are not in the loop.
370  SmallVector<BasicBlock*, 8> OutsideBlocks;
371  for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
372       PI != PE; ++PI) {
373    BasicBlock *P = *PI;
374    if (!L->contains(P)) {         // Coming in from outside the loop?
375      // If the loop is branched to from an indirect branch, we won't
376      // be able to fully transform the loop, because it prohibits
377      // edge splitting.
378      if (isa<IndirectBrInst>(P->getTerminator())) return 0;
379
380      // Keep track of it.
381      OutsideBlocks.push_back(P);
382    }
383  }
384
385  // Split out the loop pre-header.
386  BasicBlock *NewBB =
387    SplitBlockPredecessors(Header, &OutsideBlocks[0], OutsideBlocks.size(),
388                           ".preheader", this);
389
390  DEBUG(dbgs() << "LoopSimplify: Creating pre-header ";
391        WriteAsOperand(dbgs(), NewBB, false);
392        dbgs() << "\n");
393
394  // Make sure that NewBB is put someplace intelligent, which doesn't mess up
395  // code layout too horribly.
396  PlaceSplitBlockCarefully(NewBB, OutsideBlocks, L);
397
398  return NewBB;
399}
400
401/// RewriteLoopExitBlock - Ensure that the loop preheader dominates all exit
402/// blocks.  This method is used to split exit blocks that have predecessors
403/// outside of the loop.
404BasicBlock *LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) {
405  SmallVector<BasicBlock*, 8> LoopBlocks;
406  for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) {
407    BasicBlock *P = *I;
408    if (L->contains(P)) {
409      // Don't do this if the loop is exited via an indirect branch.
410      if (isa<IndirectBrInst>(P->getTerminator())) return 0;
411
412      LoopBlocks.push_back(P);
413    }
414  }
415
416  assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?");
417  BasicBlock *NewBB = SplitBlockPredecessors(Exit, &LoopBlocks[0],
418                                             LoopBlocks.size(), ".loopexit",
419                                             this);
420
421  DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block ";
422        WriteAsOperand(dbgs(), NewBB, false);
423        dbgs() << "\n");
424
425  return NewBB;
426}
427
428/// AddBlockAndPredsToSet - Add the specified block, and all of its
429/// predecessors, to the specified set, if it's not already in there.  Stop
430/// predecessor traversal when we reach StopBlock.
431static void AddBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
432                                  std::set<BasicBlock*> &Blocks) {
433  std::vector<BasicBlock *> WorkList;
434  WorkList.push_back(InputBB);
435  do {
436    BasicBlock *BB = WorkList.back(); WorkList.pop_back();
437    if (Blocks.insert(BB).second && BB != StopBlock)
438      // If BB is not already processed and it is not a stop block then
439      // insert its predecessor in the work list
440      for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
441        BasicBlock *WBB = *I;
442        WorkList.push_back(WBB);
443      }
444  } while(!WorkList.empty());
445}
446
447/// FindPHIToPartitionLoops - The first part of loop-nestification is to find a
448/// PHI node that tells us how to partition the loops.
449static PHINode *FindPHIToPartitionLoops(Loop *L, DominatorTree *DT,
450                                        AliasAnalysis *AA) {
451  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
452    PHINode *PN = cast<PHINode>(I);
453    ++I;
454    if (Value *V = PN->hasConstantValue(DT)) {
455      // This is a degenerate PHI already, don't modify it!
456      PN->replaceAllUsesWith(V);
457      if (AA) AA->deleteValue(PN);
458      PN->eraseFromParent();
459      continue;
460    }
461
462    // Scan this PHI node looking for a use of the PHI node by itself.
463    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
464      if (PN->getIncomingValue(i) == PN &&
465          L->contains(PN->getIncomingBlock(i)))
466        // We found something tasty to remove.
467        return PN;
468  }
469  return 0;
470}
471
472// PlaceSplitBlockCarefully - If the block isn't already, move the new block to
473// right after some 'outside block' block.  This prevents the preheader from
474// being placed inside the loop body, e.g. when the loop hasn't been rotated.
475void LoopSimplify::PlaceSplitBlockCarefully(BasicBlock *NewBB,
476                                       SmallVectorImpl<BasicBlock*> &SplitPreds,
477                                            Loop *L) {
478  // Check to see if NewBB is already well placed.
479  Function::iterator BBI = NewBB; --BBI;
480  for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
481    if (&*BBI == SplitPreds[i])
482      return;
483  }
484
485  // If it isn't already after an outside block, move it after one.  This is
486  // always good as it makes the uncond branch from the outside block into a
487  // fall-through.
488
489  // Figure out *which* outside block to put this after.  Prefer an outside
490  // block that neighbors a BB actually in the loop.
491  BasicBlock *FoundBB = 0;
492  for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
493    Function::iterator BBI = SplitPreds[i];
494    if (++BBI != NewBB->getParent()->end() &&
495        L->contains(BBI)) {
496      FoundBB = SplitPreds[i];
497      break;
498    }
499  }
500
501  // If our heuristic for a *good* bb to place this after doesn't find
502  // anything, just pick something.  It's likely better than leaving it within
503  // the loop.
504  if (!FoundBB)
505    FoundBB = SplitPreds[0];
506  NewBB->moveAfter(FoundBB);
507}
508
509
510/// SeparateNestedLoop - If this loop has multiple backedges, try to pull one of
511/// them out into a nested loop.  This is important for code that looks like
512/// this:
513///
514///  Loop:
515///     ...
516///     br cond, Loop, Next
517///     ...
518///     br cond2, Loop, Out
519///
520/// To identify this common case, we look at the PHI nodes in the header of the
521/// loop.  PHI nodes with unchanging values on one backedge correspond to values
522/// that change in the "outer" loop, but not in the "inner" loop.
523///
524/// If we are able to separate out a loop, return the new outer loop that was
525/// created.
526///
527Loop *LoopSimplify::SeparateNestedLoop(Loop *L, LPPassManager &LPM) {
528  PHINode *PN = FindPHIToPartitionLoops(L, DT, AA);
529  if (PN == 0) return 0;  // No known way to partition.
530
531  // Pull out all predecessors that have varying values in the loop.  This
532  // handles the case when a PHI node has multiple instances of itself as
533  // arguments.
534  SmallVector<BasicBlock*, 8> OuterLoopPreds;
535  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
536    if (PN->getIncomingValue(i) != PN ||
537        !L->contains(PN->getIncomingBlock(i))) {
538      // We can't split indirectbr edges.
539      if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator()))
540        return 0;
541
542      OuterLoopPreds.push_back(PN->getIncomingBlock(i));
543    }
544
545  DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
546
547  // If ScalarEvolution is around and knows anything about values in
548  // this loop, tell it to forget them, because we're about to
549  // substantially change it.
550  if (SE)
551    SE->forgetLoop(L);
552
553  BasicBlock *Header = L->getHeader();
554  BasicBlock *NewBB = SplitBlockPredecessors(Header, &OuterLoopPreds[0],
555                                             OuterLoopPreds.size(),
556                                             ".outer", this);
557
558  // Make sure that NewBB is put someplace intelligent, which doesn't mess up
559  // code layout too horribly.
560  PlaceSplitBlockCarefully(NewBB, OuterLoopPreds, L);
561
562  // Create the new outer loop.
563  Loop *NewOuter = new Loop();
564
565  // Change the parent loop to use the outer loop as its child now.
566  if (Loop *Parent = L->getParentLoop())
567    Parent->replaceChildLoopWith(L, NewOuter);
568  else
569    LI->changeTopLevelLoop(L, NewOuter);
570
571  // L is now a subloop of our outer loop.
572  NewOuter->addChildLoop(L);
573
574  // Add the new loop to the pass manager queue.
575  LPM.insertLoopIntoQueue(NewOuter);
576
577  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
578       I != E; ++I)
579    NewOuter->addBlockEntry(*I);
580
581  // Now reset the header in L, which had been moved by
582  // SplitBlockPredecessors for the outer loop.
583  L->moveToHeader(Header);
584
585  // Determine which blocks should stay in L and which should be moved out to
586  // the Outer loop now.
587  std::set<BasicBlock*> BlocksInL;
588  for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) {
589    BasicBlock *P = *PI;
590    if (DT->dominates(Header, P))
591      AddBlockAndPredsToSet(P, Header, BlocksInL);
592  }
593
594  // Scan all of the loop children of L, moving them to OuterLoop if they are
595  // not part of the inner loop.
596  const std::vector<Loop*> &SubLoops = L->getSubLoops();
597  for (size_t I = 0; I != SubLoops.size(); )
598    if (BlocksInL.count(SubLoops[I]->getHeader()))
599      ++I;   // Loop remains in L
600    else
601      NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
602
603  // Now that we know which blocks are in L and which need to be moved to
604  // OuterLoop, move any blocks that need it.
605  for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
606    BasicBlock *BB = L->getBlocks()[i];
607    if (!BlocksInL.count(BB)) {
608      // Move this block to the parent, updating the exit blocks sets
609      L->removeBlockFromLoop(BB);
610      if ((*LI)[BB] == L)
611        LI->changeLoopFor(BB, NewOuter);
612      --i;
613    }
614  }
615
616  return NewOuter;
617}
618
619
620
621/// InsertUniqueBackedgeBlock - This method is called when the specified loop
622/// has more than one backedge in it.  If this occurs, revector all of these
623/// backedges to target a new basic block and have that block branch to the loop
624/// header.  This ensures that loops have exactly one backedge.
625///
626BasicBlock *
627LoopSimplify::InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader) {
628  assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
629
630  // Get information about the loop
631  BasicBlock *Header = L->getHeader();
632  Function *F = Header->getParent();
633
634  // Unique backedge insertion currently depends on having a preheader.
635  if (!Preheader)
636    return 0;
637
638  // Figure out which basic blocks contain back-edges to the loop header.
639  std::vector<BasicBlock*> BackedgeBlocks;
640  for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){
641    BasicBlock *P = *I;
642
643    // Indirectbr edges cannot be split, so we must fail if we find one.
644    if (isa<IndirectBrInst>(P->getTerminator()))
645      return 0;
646
647    if (P != Preheader) BackedgeBlocks.push_back(P);
648  }
649
650  // Create and insert the new backedge block...
651  BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(),
652                                           Header->getName()+".backedge", F);
653  BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
654
655  DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block ";
656        WriteAsOperand(dbgs(), BEBlock, false);
657        dbgs() << "\n");
658
659  // Move the new backedge block to right after the last backedge block.
660  Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos;
661  F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
662
663  // Now that the block has been inserted into the function, create PHI nodes in
664  // the backedge block which correspond to any PHI nodes in the header block.
665  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
666    PHINode *PN = cast<PHINode>(I);
667    PHINode *NewPN = PHINode::Create(PN->getType(), PN->getName()+".be",
668                                     BETerminator);
669    NewPN->reserveOperandSpace(BackedgeBlocks.size());
670    if (AA) AA->copyValue(PN, NewPN);
671
672    // Loop over the PHI node, moving all entries except the one for the
673    // preheader over to the new PHI node.
674    unsigned PreheaderIdx = ~0U;
675    bool HasUniqueIncomingValue = true;
676    Value *UniqueValue = 0;
677    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
678      BasicBlock *IBB = PN->getIncomingBlock(i);
679      Value *IV = PN->getIncomingValue(i);
680      if (IBB == Preheader) {
681        PreheaderIdx = i;
682      } else {
683        NewPN->addIncoming(IV, IBB);
684        if (HasUniqueIncomingValue) {
685          if (UniqueValue == 0)
686            UniqueValue = IV;
687          else if (UniqueValue != IV)
688            HasUniqueIncomingValue = false;
689        }
690      }
691    }
692
693    // Delete all of the incoming values from the old PN except the preheader's
694    assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
695    if (PreheaderIdx != 0) {
696      PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
697      PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
698    }
699    // Nuke all entries except the zero'th.
700    for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
701      PN->removeIncomingValue(e-i, false);
702
703    // Finally, add the newly constructed PHI node as the entry for the BEBlock.
704    PN->addIncoming(NewPN, BEBlock);
705
706    // As an optimization, if all incoming values in the new PhiNode (which is a
707    // subset of the incoming values of the old PHI node) have the same value,
708    // eliminate the PHI Node.
709    if (HasUniqueIncomingValue) {
710      NewPN->replaceAllUsesWith(UniqueValue);
711      if (AA) AA->deleteValue(NewPN);
712      BEBlock->getInstList().erase(NewPN);
713    }
714  }
715
716  // Now that all of the PHI nodes have been inserted and adjusted, modify the
717  // backedge blocks to just to the BEBlock instead of the header.
718  for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
719    TerminatorInst *TI = BackedgeBlocks[i]->getTerminator();
720    for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
721      if (TI->getSuccessor(Op) == Header)
722        TI->setSuccessor(Op, BEBlock);
723  }
724
725  //===--- Update all analyses which we must preserve now -----------------===//
726
727  // Update Loop Information - we know that this block is now in the current
728  // loop and all parent loops.
729  L->addBasicBlockToLoop(BEBlock, LI->getBase());
730
731  // Update dominator information
732  DT->splitBlock(BEBlock);
733  if (DominanceFrontier *DF = getAnalysisIfAvailable<DominanceFrontier>())
734    DF->splitBlock(BEBlock);
735
736  return BEBlock;
737}
738
739void LoopSimplify::verifyAnalysis() const {
740  // It used to be possible to just assert L->isLoopSimplifyForm(), however
741  // with the introduction of indirectbr, there are now cases where it's
742  // not possible to transform a loop as necessary. We can at least check
743  // that there is an indirectbr near any time there's trouble.
744
745  // Indirectbr can interfere with preheader and unique backedge insertion.
746  if (!L->getLoopPreheader() || !L->getLoopLatch()) {
747    bool HasIndBrPred = false;
748    for (pred_iterator PI = pred_begin(L->getHeader()),
749         PE = pred_end(L->getHeader()); PI != PE; ++PI)
750      if (isa<IndirectBrInst>((*PI)->getTerminator())) {
751        HasIndBrPred = true;
752        break;
753      }
754    assert(HasIndBrPred &&
755           "LoopSimplify has no excuse for missing loop header info!");
756  }
757
758  // Indirectbr can interfere with exit block canonicalization.
759  if (!L->hasDedicatedExits()) {
760    bool HasIndBrExiting = false;
761    SmallVector<BasicBlock*, 8> ExitingBlocks;
762    L->getExitingBlocks(ExitingBlocks);
763    for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i)
764      if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) {
765        HasIndBrExiting = true;
766        break;
767      }
768    assert(HasIndBrExiting &&
769           "LoopSimplify has no excuse for missing exit block info!");
770  }
771}
772