LoopSimplify.cpp revision 3ecfc861b4365f341c5c969b40e1afccde676e6f
1//===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs several transformations to transform natural loops into a
11// simpler form, which makes subsequent analyses and transformations simpler and
12// more effective.
13//
14// Loop pre-header insertion guarantees that there is a single, non-critical
15// entry edge from outside of the loop to the loop header.  This simplifies a
16// number of analyses and transformations, such as LICM.
17//
18// Loop exit-block insertion guarantees that all exit blocks from the loop
19// (blocks which are outside of the loop that have predecessors inside of the
20// loop) only have predecessors from inside of the loop (and are thus dominated
21// by the loop header).  This simplifies transformations such as store-sinking
22// that are built into LICM.
23//
24// This pass also guarantees that loops will have exactly one backedge.
25//
26// Indirectbr instructions introduce several complications. If the loop
27// contains or is entered by an indirectbr instruction, it may not be possible
28// to transform the loop and make these guarantees. Client code should check
29// that these conditions are true before relying on them.
30//
31// Note that the simplifycfg pass will clean up blocks which are split out but
32// end up being unnecessary, so usage of this pass should not pessimize
33// generated code.
34//
35// This pass obviously modifies the CFG, but updates loop information and
36// dominator information.
37//
38//===----------------------------------------------------------------------===//
39
40#define DEBUG_TYPE "loop-simplify"
41#include "llvm/Transforms/Scalar.h"
42#include "llvm/Constants.h"
43#include "llvm/Instructions.h"
44#include "llvm/IntrinsicInst.h"
45#include "llvm/Function.h"
46#include "llvm/LLVMContext.h"
47#include "llvm/Type.h"
48#include "llvm/Analysis/AliasAnalysis.h"
49#include "llvm/Analysis/Dominators.h"
50#include "llvm/Analysis/InstructionSimplify.h"
51#include "llvm/Analysis/LoopPass.h"
52#include "llvm/Analysis/ScalarEvolution.h"
53#include "llvm/Transforms/Utils/BasicBlockUtils.h"
54#include "llvm/Transforms/Utils/Local.h"
55#include "llvm/Support/CFG.h"
56#include "llvm/Support/Debug.h"
57#include "llvm/ADT/SetOperations.h"
58#include "llvm/ADT/SetVector.h"
59#include "llvm/ADT/Statistic.h"
60#include "llvm/ADT/DepthFirstIterator.h"
61using namespace llvm;
62
63STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted");
64STATISTIC(NumNested  , "Number of nested loops split out");
65
66namespace {
67  struct LoopSimplify : public LoopPass {
68    static char ID; // Pass identification, replacement for typeid
69    LoopSimplify() : LoopPass(ID) {
70      initializeLoopSimplifyPass(*PassRegistry::getPassRegistry());
71    }
72
73    // AA - If we have an alias analysis object to update, this is it, otherwise
74    // this is null.
75    AliasAnalysis *AA;
76    LoopInfo *LI;
77    DominatorTree *DT;
78    ScalarEvolution *SE;
79    Loop *L;
80    virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
81
82    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
83      // We need loop information to identify the loops...
84      AU.addRequired<DominatorTree>();
85      AU.addPreserved<DominatorTree>();
86
87      AU.addRequired<LoopInfo>();
88      AU.addPreserved<LoopInfo>();
89
90      AU.addPreserved<AliasAnalysis>();
91      AU.addPreserved<ScalarEvolution>();
92      AU.addPreservedID(BreakCriticalEdgesID);  // No critical edges added.
93    }
94
95    /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
96    void verifyAnalysis() const;
97
98  private:
99    bool ProcessLoop(Loop *L, LPPassManager &LPM);
100    BasicBlock *RewriteLoopExitBlock(Loop *L, BasicBlock *Exit);
101    BasicBlock *InsertPreheaderForLoop(Loop *L);
102    Loop *SeparateNestedLoop(Loop *L, LPPassManager &LPM);
103    BasicBlock *InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader);
104    void PlaceSplitBlockCarefully(BasicBlock *NewBB,
105                                  SmallVectorImpl<BasicBlock*> &SplitPreds,
106                                  Loop *L);
107  };
108}
109
110char LoopSimplify::ID = 0;
111INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify",
112                "Canonicalize natural loops", true, false)
113INITIALIZE_PASS_DEPENDENCY(DominatorTree)
114INITIALIZE_PASS_DEPENDENCY(LoopInfo)
115INITIALIZE_PASS_END(LoopSimplify, "loop-simplify",
116                "Canonicalize natural loops", true, false)
117
118// Publically exposed interface to pass...
119char &llvm::LoopSimplifyID = LoopSimplify::ID;
120Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
121
122/// runOnLoop - Run down all loops in the CFG (recursively, but we could do
123/// it in any convenient order) inserting preheaders...
124///
125bool LoopSimplify::runOnLoop(Loop *l, LPPassManager &LPM) {
126  L = l;
127  bool Changed = false;
128  LI = &getAnalysis<LoopInfo>();
129  AA = getAnalysisIfAvailable<AliasAnalysis>();
130  DT = &getAnalysis<DominatorTree>();
131  SE = getAnalysisIfAvailable<ScalarEvolution>();
132
133  Changed |= ProcessLoop(L, LPM);
134
135  return Changed;
136}
137
138/// ProcessLoop - Walk the loop structure in depth first order, ensuring that
139/// all loops have preheaders.
140///
141bool LoopSimplify::ProcessLoop(Loop *L, LPPassManager &LPM) {
142  bool Changed = false;
143ReprocessLoop:
144
145  // Check to see that no blocks (other than the header) in this loop have
146  // predecessors that are not in the loop.  This is not valid for natural
147  // loops, but can occur if the blocks are unreachable.  Since they are
148  // unreachable we can just shamelessly delete those CFG edges!
149  for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
150       BB != E; ++BB) {
151    if (*BB == L->getHeader()) continue;
152
153    SmallPtrSet<BasicBlock*, 4> BadPreds;
154    for (pred_iterator PI = pred_begin(*BB),
155         PE = pred_end(*BB); PI != PE; ++PI) {
156      BasicBlock *P = *PI;
157      if (!L->contains(P))
158        BadPreds.insert(P);
159    }
160
161    // Delete each unique out-of-loop (and thus dead) predecessor.
162    for (SmallPtrSet<BasicBlock*, 4>::iterator I = BadPreds.begin(),
163         E = BadPreds.end(); I != E; ++I) {
164
165      DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
166                   << (*I)->getName() << "\n");
167
168      // Inform each successor of each dead pred.
169      for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI)
170        (*SI)->removePredecessor(*I);
171      // Zap the dead pred's terminator and replace it with unreachable.
172      TerminatorInst *TI = (*I)->getTerminator();
173       TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
174      (*I)->getTerminator()->eraseFromParent();
175      new UnreachableInst((*I)->getContext(), *I);
176      Changed = true;
177    }
178  }
179
180  // If there are exiting blocks with branches on undef, resolve the undef in
181  // the direction which will exit the loop. This will help simplify loop
182  // trip count computations.
183  SmallVector<BasicBlock*, 8> ExitingBlocks;
184  L->getExitingBlocks(ExitingBlocks);
185  for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(),
186       E = ExitingBlocks.end(); I != E; ++I)
187    if (BranchInst *BI = dyn_cast<BranchInst>((*I)->getTerminator()))
188      if (BI->isConditional()) {
189        if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
190
191          DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in "
192                       << (*I)->getName() << "\n");
193
194          BI->setCondition(ConstantInt::get(Cond->getType(),
195                                            !L->contains(BI->getSuccessor(0))));
196          Changed = true;
197        }
198      }
199
200  // Does the loop already have a preheader?  If so, don't insert one.
201  BasicBlock *Preheader = L->getLoopPreheader();
202  if (!Preheader) {
203    Preheader = InsertPreheaderForLoop(L);
204    if (Preheader) {
205      ++NumInserted;
206      Changed = true;
207    }
208  }
209
210  // Next, check to make sure that all exit nodes of the loop only have
211  // predecessors that are inside of the loop.  This check guarantees that the
212  // loop preheader/header will dominate the exit blocks.  If the exit block has
213  // predecessors from outside of the loop, split the edge now.
214  SmallVector<BasicBlock*, 8> ExitBlocks;
215  L->getExitBlocks(ExitBlocks);
216
217  SmallSetVector<BasicBlock *, 8> ExitBlockSet(ExitBlocks.begin(),
218                                               ExitBlocks.end());
219  for (SmallSetVector<BasicBlock *, 8>::iterator I = ExitBlockSet.begin(),
220         E = ExitBlockSet.end(); I != E; ++I) {
221    BasicBlock *ExitBlock = *I;
222    for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
223         PI != PE; ++PI)
224      // Must be exactly this loop: no subloops, parent loops, or non-loop preds
225      // allowed.
226      if (!L->contains(*PI)) {
227        if (RewriteLoopExitBlock(L, ExitBlock)) {
228          ++NumInserted;
229          Changed = true;
230        }
231        break;
232      }
233  }
234
235  // If the header has more than two predecessors at this point (from the
236  // preheader and from multiple backedges), we must adjust the loop.
237  BasicBlock *LoopLatch = L->getLoopLatch();
238  if (!LoopLatch) {
239    // If this is really a nested loop, rip it out into a child loop.  Don't do
240    // this for loops with a giant number of backedges, just factor them into a
241    // common backedge instead.
242    if (L->getNumBackEdges() < 8) {
243      if (SeparateNestedLoop(L, LPM)) {
244        ++NumNested;
245        // This is a big restructuring change, reprocess the whole loop.
246        Changed = true;
247        // GCC doesn't tail recursion eliminate this.
248        goto ReprocessLoop;
249      }
250    }
251
252    // If we either couldn't, or didn't want to, identify nesting of the loops,
253    // insert a new block that all backedges target, then make it jump to the
254    // loop header.
255    LoopLatch = InsertUniqueBackedgeBlock(L, Preheader);
256    if (LoopLatch) {
257      ++NumInserted;
258      Changed = true;
259    }
260  }
261
262  // Scan over the PHI nodes in the loop header.  Since they now have only two
263  // incoming values (the loop is canonicalized), we may have simplified the PHI
264  // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
265  PHINode *PN;
266  for (BasicBlock::iterator I = L->getHeader()->begin();
267       (PN = dyn_cast<PHINode>(I++)); )
268    if (Value *V = SimplifyInstruction(PN, 0, DT)) {
269      if (AA) AA->deleteValue(PN);
270      if (SE) SE->forgetValue(PN);
271      PN->replaceAllUsesWith(V);
272      PN->eraseFromParent();
273    }
274
275  // If this loop has multiple exits and the exits all go to the same
276  // block, attempt to merge the exits. This helps several passes, such
277  // as LoopRotation, which do not support loops with multiple exits.
278  // SimplifyCFG also does this (and this code uses the same utility
279  // function), however this code is loop-aware, where SimplifyCFG is
280  // not. That gives it the advantage of being able to hoist
281  // loop-invariant instructions out of the way to open up more
282  // opportunities, and the disadvantage of having the responsibility
283  // to preserve dominator information.
284  bool UniqueExit = true;
285  if (!ExitBlocks.empty())
286    for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i)
287      if (ExitBlocks[i] != ExitBlocks[0]) {
288        UniqueExit = false;
289        break;
290      }
291  if (UniqueExit) {
292    for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
293      BasicBlock *ExitingBlock = ExitingBlocks[i];
294      if (!ExitingBlock->getSinglePredecessor()) continue;
295      BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
296      if (!BI || !BI->isConditional()) continue;
297      CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
298      if (!CI || CI->getParent() != ExitingBlock) continue;
299
300      // Attempt to hoist out all instructions except for the
301      // comparison and the branch.
302      bool AllInvariant = true;
303      for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) {
304        Instruction *Inst = I++;
305        // Skip debug info intrinsics.
306        if (isa<DbgInfoIntrinsic>(Inst))
307          continue;
308        if (Inst == CI)
309          continue;
310        if (!L->makeLoopInvariant(Inst, Changed,
311                                  Preheader ? Preheader->getTerminator() : 0)) {
312          AllInvariant = false;
313          break;
314        }
315      }
316      if (!AllInvariant) continue;
317
318      // The block has now been cleared of all instructions except for
319      // a comparison and a conditional branch. SimplifyCFG may be able
320      // to fold it now.
321      if (!FoldBranchToCommonDest(BI)) continue;
322
323      // Success. The block is now dead, so remove it from the loop,
324      // update the dominator tree and delete it.
325      DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "
326                   << ExitingBlock->getName() << "\n");
327
328      assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock));
329      Changed = true;
330      LI->removeBlock(ExitingBlock);
331
332      DomTreeNode *Node = DT->getNode(ExitingBlock);
333      const std::vector<DomTreeNodeBase<BasicBlock> *> &Children =
334        Node->getChildren();
335      while (!Children.empty()) {
336        DomTreeNode *Child = Children.front();
337        DT->changeImmediateDominator(Child, Node->getIDom());
338      }
339      DT->eraseNode(ExitingBlock);
340
341      BI->getSuccessor(0)->removePredecessor(ExitingBlock);
342      BI->getSuccessor(1)->removePredecessor(ExitingBlock);
343      ExitingBlock->eraseFromParent();
344    }
345  }
346
347  return Changed;
348}
349
350/// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
351/// preheader, this method is called to insert one.  This method has two phases:
352/// preheader insertion and analysis updating.
353///
354BasicBlock *LoopSimplify::InsertPreheaderForLoop(Loop *L) {
355  BasicBlock *Header = L->getHeader();
356
357  // Compute the set of predecessors of the loop that are not in the loop.
358  SmallVector<BasicBlock*, 8> OutsideBlocks;
359  for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
360       PI != PE; ++PI) {
361    BasicBlock *P = *PI;
362    if (!L->contains(P)) {         // Coming in from outside the loop?
363      // If the loop is branched to from an indirect branch, we won't
364      // be able to fully transform the loop, because it prohibits
365      // edge splitting.
366      if (isa<IndirectBrInst>(P->getTerminator())) return 0;
367
368      // Keep track of it.
369      OutsideBlocks.push_back(P);
370    }
371  }
372
373  // Split out the loop pre-header.
374  BasicBlock *NewBB =
375    SplitBlockPredecessors(Header, &OutsideBlocks[0], OutsideBlocks.size(),
376                           ".preheader", this);
377
378  DEBUG(dbgs() << "LoopSimplify: Creating pre-header " << NewBB->getName()
379               << "\n");
380
381  // Make sure that NewBB is put someplace intelligent, which doesn't mess up
382  // code layout too horribly.
383  PlaceSplitBlockCarefully(NewBB, OutsideBlocks, L);
384
385  return NewBB;
386}
387
388/// RewriteLoopExitBlock - Ensure that the loop preheader dominates all exit
389/// blocks.  This method is used to split exit blocks that have predecessors
390/// outside of the loop.
391BasicBlock *LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) {
392  SmallVector<BasicBlock*, 8> LoopBlocks;
393  for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) {
394    BasicBlock *P = *I;
395    if (L->contains(P)) {
396      // Don't do this if the loop is exited via an indirect branch.
397      if (isa<IndirectBrInst>(P->getTerminator())) return 0;
398
399      LoopBlocks.push_back(P);
400    }
401  }
402
403  assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?");
404  BasicBlock *NewBB = SplitBlockPredecessors(Exit, &LoopBlocks[0],
405                                             LoopBlocks.size(), ".loopexit",
406                                             this);
407
408  DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
409               << NewBB->getName() << "\n");
410  return NewBB;
411}
412
413/// AddBlockAndPredsToSet - Add the specified block, and all of its
414/// predecessors, to the specified set, if it's not already in there.  Stop
415/// predecessor traversal when we reach StopBlock.
416static void AddBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
417                                  std::set<BasicBlock*> &Blocks) {
418  std::vector<BasicBlock *> WorkList;
419  WorkList.push_back(InputBB);
420  do {
421    BasicBlock *BB = WorkList.back(); WorkList.pop_back();
422    if (Blocks.insert(BB).second && BB != StopBlock)
423      // If BB is not already processed and it is not a stop block then
424      // insert its predecessor in the work list
425      for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
426        BasicBlock *WBB = *I;
427        WorkList.push_back(WBB);
428      }
429  } while(!WorkList.empty());
430}
431
432/// FindPHIToPartitionLoops - The first part of loop-nestification is to find a
433/// PHI node that tells us how to partition the loops.
434static PHINode *FindPHIToPartitionLoops(Loop *L, DominatorTree *DT,
435                                        AliasAnalysis *AA, LoopInfo *LI) {
436  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
437    PHINode *PN = cast<PHINode>(I);
438    ++I;
439    if (Value *V = SimplifyInstruction(PN, 0, DT)) {
440      // This is a degenerate PHI already, don't modify it!
441      PN->replaceAllUsesWith(V);
442      if (AA) AA->deleteValue(PN);
443      PN->eraseFromParent();
444      continue;
445    }
446
447    // Scan this PHI node looking for a use of the PHI node by itself.
448    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
449      if (PN->getIncomingValue(i) == PN &&
450          L->contains(PN->getIncomingBlock(i)))
451        // We found something tasty to remove.
452        return PN;
453  }
454  return 0;
455}
456
457// PlaceSplitBlockCarefully - If the block isn't already, move the new block to
458// right after some 'outside block' block.  This prevents the preheader from
459// being placed inside the loop body, e.g. when the loop hasn't been rotated.
460void LoopSimplify::PlaceSplitBlockCarefully(BasicBlock *NewBB,
461                                       SmallVectorImpl<BasicBlock*> &SplitPreds,
462                                            Loop *L) {
463  // Check to see if NewBB is already well placed.
464  Function::iterator BBI = NewBB; --BBI;
465  for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
466    if (&*BBI == SplitPreds[i])
467      return;
468  }
469
470  // If it isn't already after an outside block, move it after one.  This is
471  // always good as it makes the uncond branch from the outside block into a
472  // fall-through.
473
474  // Figure out *which* outside block to put this after.  Prefer an outside
475  // block that neighbors a BB actually in the loop.
476  BasicBlock *FoundBB = 0;
477  for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
478    Function::iterator BBI = SplitPreds[i];
479    if (++BBI != NewBB->getParent()->end() &&
480        L->contains(BBI)) {
481      FoundBB = SplitPreds[i];
482      break;
483    }
484  }
485
486  // If our heuristic for a *good* bb to place this after doesn't find
487  // anything, just pick something.  It's likely better than leaving it within
488  // the loop.
489  if (!FoundBB)
490    FoundBB = SplitPreds[0];
491  NewBB->moveAfter(FoundBB);
492}
493
494
495/// SeparateNestedLoop - If this loop has multiple backedges, try to pull one of
496/// them out into a nested loop.  This is important for code that looks like
497/// this:
498///
499///  Loop:
500///     ...
501///     br cond, Loop, Next
502///     ...
503///     br cond2, Loop, Out
504///
505/// To identify this common case, we look at the PHI nodes in the header of the
506/// loop.  PHI nodes with unchanging values on one backedge correspond to values
507/// that change in the "outer" loop, but not in the "inner" loop.
508///
509/// If we are able to separate out a loop, return the new outer loop that was
510/// created.
511///
512Loop *LoopSimplify::SeparateNestedLoop(Loop *L, LPPassManager &LPM) {
513  PHINode *PN = FindPHIToPartitionLoops(L, DT, AA, LI);
514  if (PN == 0) return 0;  // No known way to partition.
515
516  // Pull out all predecessors that have varying values in the loop.  This
517  // handles the case when a PHI node has multiple instances of itself as
518  // arguments.
519  SmallVector<BasicBlock*, 8> OuterLoopPreds;
520  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
521    if (PN->getIncomingValue(i) != PN ||
522        !L->contains(PN->getIncomingBlock(i))) {
523      // We can't split indirectbr edges.
524      if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator()))
525        return 0;
526
527      OuterLoopPreds.push_back(PN->getIncomingBlock(i));
528    }
529
530  DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
531
532  // If ScalarEvolution is around and knows anything about values in
533  // this loop, tell it to forget them, because we're about to
534  // substantially change it.
535  if (SE)
536    SE->forgetLoop(L);
537
538  BasicBlock *Header = L->getHeader();
539  BasicBlock *NewBB = SplitBlockPredecessors(Header, &OuterLoopPreds[0],
540                                             OuterLoopPreds.size(),
541                                             ".outer", this);
542
543  // Make sure that NewBB is put someplace intelligent, which doesn't mess up
544  // code layout too horribly.
545  PlaceSplitBlockCarefully(NewBB, OuterLoopPreds, L);
546
547  // Create the new outer loop.
548  Loop *NewOuter = new Loop();
549
550  // Change the parent loop to use the outer loop as its child now.
551  if (Loop *Parent = L->getParentLoop())
552    Parent->replaceChildLoopWith(L, NewOuter);
553  else
554    LI->changeTopLevelLoop(L, NewOuter);
555
556  // L is now a subloop of our outer loop.
557  NewOuter->addChildLoop(L);
558
559  // Add the new loop to the pass manager queue.
560  LPM.insertLoopIntoQueue(NewOuter);
561
562  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
563       I != E; ++I)
564    NewOuter->addBlockEntry(*I);
565
566  // Now reset the header in L, which had been moved by
567  // SplitBlockPredecessors for the outer loop.
568  L->moveToHeader(Header);
569
570  // Determine which blocks should stay in L and which should be moved out to
571  // the Outer loop now.
572  std::set<BasicBlock*> BlocksInL;
573  for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) {
574    BasicBlock *P = *PI;
575    if (DT->dominates(Header, P))
576      AddBlockAndPredsToSet(P, Header, BlocksInL);
577  }
578
579  // Scan all of the loop children of L, moving them to OuterLoop if they are
580  // not part of the inner loop.
581  const std::vector<Loop*> &SubLoops = L->getSubLoops();
582  for (size_t I = 0; I != SubLoops.size(); )
583    if (BlocksInL.count(SubLoops[I]->getHeader()))
584      ++I;   // Loop remains in L
585    else
586      NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
587
588  // Now that we know which blocks are in L and which need to be moved to
589  // OuterLoop, move any blocks that need it.
590  for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
591    BasicBlock *BB = L->getBlocks()[i];
592    if (!BlocksInL.count(BB)) {
593      // Move this block to the parent, updating the exit blocks sets
594      L->removeBlockFromLoop(BB);
595      if ((*LI)[BB] == L)
596        LI->changeLoopFor(BB, NewOuter);
597      --i;
598    }
599  }
600
601  return NewOuter;
602}
603
604
605
606/// InsertUniqueBackedgeBlock - This method is called when the specified loop
607/// has more than one backedge in it.  If this occurs, revector all of these
608/// backedges to target a new basic block and have that block branch to the loop
609/// header.  This ensures that loops have exactly one backedge.
610///
611BasicBlock *
612LoopSimplify::InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader) {
613  assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
614
615  // Get information about the loop
616  BasicBlock *Header = L->getHeader();
617  Function *F = Header->getParent();
618
619  // Unique backedge insertion currently depends on having a preheader.
620  if (!Preheader)
621    return 0;
622
623  // Figure out which basic blocks contain back-edges to the loop header.
624  std::vector<BasicBlock*> BackedgeBlocks;
625  for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){
626    BasicBlock *P = *I;
627
628    // Indirectbr edges cannot be split, so we must fail if we find one.
629    if (isa<IndirectBrInst>(P->getTerminator()))
630      return 0;
631
632    if (P != Preheader) BackedgeBlocks.push_back(P);
633  }
634
635  // Create and insert the new backedge block...
636  BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(),
637                                           Header->getName()+".backedge", F);
638  BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
639
640  DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "
641               << BEBlock->getName() << "\n");
642
643  // Move the new backedge block to right after the last backedge block.
644  Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos;
645  F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
646
647  // Now that the block has been inserted into the function, create PHI nodes in
648  // the backedge block which correspond to any PHI nodes in the header block.
649  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
650    PHINode *PN = cast<PHINode>(I);
651    PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(),
652                                     PN->getName()+".be", BETerminator);
653    if (AA) AA->copyValue(PN, NewPN);
654
655    // Loop over the PHI node, moving all entries except the one for the
656    // preheader over to the new PHI node.
657    unsigned PreheaderIdx = ~0U;
658    bool HasUniqueIncomingValue = true;
659    Value *UniqueValue = 0;
660    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
661      BasicBlock *IBB = PN->getIncomingBlock(i);
662      Value *IV = PN->getIncomingValue(i);
663      if (IBB == Preheader) {
664        PreheaderIdx = i;
665      } else {
666        NewPN->addIncoming(IV, IBB);
667        if (HasUniqueIncomingValue) {
668          if (UniqueValue == 0)
669            UniqueValue = IV;
670          else if (UniqueValue != IV)
671            HasUniqueIncomingValue = false;
672        }
673      }
674    }
675
676    // Delete all of the incoming values from the old PN except the preheader's
677    assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
678    if (PreheaderIdx != 0) {
679      PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
680      PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
681    }
682    // Nuke all entries except the zero'th.
683    for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
684      PN->removeIncomingValue(e-i, false);
685
686    // Finally, add the newly constructed PHI node as the entry for the BEBlock.
687    PN->addIncoming(NewPN, BEBlock);
688
689    // As an optimization, if all incoming values in the new PhiNode (which is a
690    // subset of the incoming values of the old PHI node) have the same value,
691    // eliminate the PHI Node.
692    if (HasUniqueIncomingValue) {
693      NewPN->replaceAllUsesWith(UniqueValue);
694      if (AA) AA->deleteValue(NewPN);
695      BEBlock->getInstList().erase(NewPN);
696    }
697  }
698
699  // Now that all of the PHI nodes have been inserted and adjusted, modify the
700  // backedge blocks to just to the BEBlock instead of the header.
701  for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
702    TerminatorInst *TI = BackedgeBlocks[i]->getTerminator();
703    for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
704      if (TI->getSuccessor(Op) == Header)
705        TI->setSuccessor(Op, BEBlock);
706  }
707
708  //===--- Update all analyses which we must preserve now -----------------===//
709
710  // Update Loop Information - we know that this block is now in the current
711  // loop and all parent loops.
712  L->addBasicBlockToLoop(BEBlock, LI->getBase());
713
714  // Update dominator information
715  DT->splitBlock(BEBlock);
716
717  return BEBlock;
718}
719
720void LoopSimplify::verifyAnalysis() const {
721  // It used to be possible to just assert L->isLoopSimplifyForm(), however
722  // with the introduction of indirectbr, there are now cases where it's
723  // not possible to transform a loop as necessary. We can at least check
724  // that there is an indirectbr near any time there's trouble.
725
726  // Indirectbr can interfere with preheader and unique backedge insertion.
727  if (!L->getLoopPreheader() || !L->getLoopLatch()) {
728    bool HasIndBrPred = false;
729    for (pred_iterator PI = pred_begin(L->getHeader()),
730         PE = pred_end(L->getHeader()); PI != PE; ++PI)
731      if (isa<IndirectBrInst>((*PI)->getTerminator())) {
732        HasIndBrPred = true;
733        break;
734      }
735    assert(HasIndBrPred &&
736           "LoopSimplify has no excuse for missing loop header info!");
737  }
738
739  // Indirectbr can interfere with exit block canonicalization.
740  if (!L->hasDedicatedExits()) {
741    bool HasIndBrExiting = false;
742    SmallVector<BasicBlock*, 8> ExitingBlocks;
743    L->getExitingBlocks(ExitingBlocks);
744    for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i)
745      if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) {
746        HasIndBrExiting = true;
747        break;
748      }
749    assert(HasIndBrExiting &&
750           "LoopSimplify has no excuse for missing exit block info!");
751  }
752}
753