LoopSimplify.cpp revision 7b714321df4d286018d594c9c9f132f343dbabdc
1//===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs several transformations to transform natural loops into a
11// simpler form, which makes subsequent analyses and transformations simpler and
12// more effective.
13//
14// Loop pre-header insertion guarantees that there is a single, non-critical
15// entry edge from outside of the loop to the loop header.  This simplifies a
16// number of analyses and transformations, such as LICM.
17//
18// Loop exit-block insertion guarantees that all exit blocks from the loop
19// (blocks which are outside of the loop that have predecessors inside of the
20// loop) only have predecessors from inside of the loop (and are thus dominated
21// by the loop header).  This simplifies transformations such as store-sinking
22// that are built into LICM.
23//
24// This pass also guarantees that loops will have exactly one backedge.
25//
26// Note that the simplifycfg pass will clean up blocks which are split out but
27// end up being unnecessary, so usage of this pass should not pessimize
28// generated code.
29//
30// This pass obviously modifies the CFG, but updates loop information and
31// dominator information.
32//
33//===----------------------------------------------------------------------===//
34
35#define DEBUG_TYPE "loopsimplify"
36#include "llvm/Transforms/Scalar.h"
37#include "llvm/Constant.h"
38#include "llvm/Instructions.h"
39#include "llvm/Function.h"
40#include "llvm/Type.h"
41#include "llvm/Analysis/AliasAnalysis.h"
42#include "llvm/Analysis/Dominators.h"
43#include "llvm/Analysis/LoopInfo.h"
44#include "llvm/Support/CFG.h"
45#include "llvm/Support/Compiler.h"
46#include "llvm/ADT/SetOperations.h"
47#include "llvm/ADT/SetVector.h"
48#include "llvm/ADT/Statistic.h"
49#include "llvm/ADT/DepthFirstIterator.h"
50using namespace llvm;
51
52STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted");
53STATISTIC(NumNested  , "Number of nested loops split out");
54
55namespace {
56  struct VISIBILITY_HIDDEN LoopSimplify : public FunctionPass {
57    static char ID; // Pass identification, replacement for typeid
58    LoopSimplify() : FunctionPass((intptr_t)&ID) {}
59
60    // AA - If we have an alias analysis object to update, this is it, otherwise
61    // this is null.
62    AliasAnalysis *AA;
63    LoopInfo *LI;
64    DominatorTree *DT;
65    virtual bool runOnFunction(Function &F);
66
67    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
68      // We need loop information to identify the loops...
69      AU.addRequired<LoopInfo>();
70      AU.addRequired<DominatorTree>();
71
72      AU.addPreserved<LoopInfo>();
73      AU.addPreserved<DominatorTree>();
74      AU.addPreserved<DominanceFrontier>();
75      AU.addPreservedID(BreakCriticalEdgesID);  // No critical edges added.
76    }
77
78    /// verifyAnalysis() - Verify loop nest.
79    void verifyAnalysis() const {
80#ifndef NDEBUG
81      LoopInfo *NLI = &getAnalysis<LoopInfo>();
82      for (LoopInfo::iterator I = NLI->begin(), E = NLI->end(); I != E; ++I)
83        (*I)->verifyLoop();
84#endif
85    }
86
87  private:
88    bool ProcessLoop(Loop *L);
89    BasicBlock *SplitBlockPredecessors(BasicBlock *BB, const char *Suffix,
90                                       const std::vector<BasicBlock*> &Preds);
91    BasicBlock *RewriteLoopExitBlock(Loop *L, BasicBlock *Exit);
92    void InsertPreheaderForLoop(Loop *L);
93    Loop *SeparateNestedLoop(Loop *L);
94    void InsertUniqueBackedgeBlock(Loop *L);
95    void PlaceSplitBlockCarefully(BasicBlock *NewBB,
96                                  std::vector<BasicBlock*> &SplitPreds,
97                                  Loop *L);
98  };
99
100  char LoopSimplify::ID = 0;
101  RegisterPass<LoopSimplify>
102  X("loopsimplify", "Canonicalize natural loops", true);
103}
104
105// Publically exposed interface to pass...
106const PassInfo *llvm::LoopSimplifyID = X.getPassInfo();
107FunctionPass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
108
109/// runOnFunction - Run down all loops in the CFG (recursively, but we could do
110/// it in any convenient order) inserting preheaders...
111///
112bool LoopSimplify::runOnFunction(Function &F) {
113  bool Changed = false;
114  LI = &getAnalysis<LoopInfo>();
115  AA = getAnalysisToUpdate<AliasAnalysis>();
116  DT = &getAnalysis<DominatorTree>();
117
118  // Check to see that no blocks (other than the header) in loops have
119  // predecessors that are not in loops.  This is not valid for natural loops,
120  // but can occur if the blocks are unreachable.  Since they are unreachable we
121  // can just shamelessly destroy their terminators to make them not branch into
122  // the loop!
123  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
124    // This case can only occur for unreachable blocks.  Blocks that are
125    // unreachable can't be in loops, so filter those blocks out.
126    if (LI->getLoopFor(BB)) continue;
127
128    bool BlockUnreachable = false;
129    TerminatorInst *TI = BB->getTerminator();
130
131    // Check to see if any successors of this block are non-loop-header loops
132    // that are not the header.
133    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
134      // If this successor is not in a loop, BB is clearly ok.
135      Loop *L = LI->getLoopFor(TI->getSuccessor(i));
136      if (!L) continue;
137
138      // If the succ is the loop header, and if L is a top-level loop, then this
139      // is an entrance into a loop through the header, which is also ok.
140      if (L->getHeader() == TI->getSuccessor(i) && L->getParentLoop() == 0)
141        continue;
142
143      // Otherwise, this is an entrance into a loop from some place invalid.
144      // Either the loop structure is invalid and this is not a natural loop (in
145      // which case the compiler is buggy somewhere else) or BB is unreachable.
146      BlockUnreachable = true;
147      break;
148    }
149
150    // If this block is ok, check the next one.
151    if (!BlockUnreachable) continue;
152
153    // Otherwise, this block is dead.  To clean up the CFG and to allow later
154    // loop transformations to ignore this case, we delete the edges into the
155    // loop by replacing the terminator.
156
157    // Remove PHI entries from the successors.
158    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
159      TI->getSuccessor(i)->removePredecessor(BB);
160
161    // Add a new unreachable instruction.
162    new UnreachableInst(TI);
163
164    // Delete the dead terminator.
165    if (AA) AA->deleteValue(&BB->back());
166    BB->getInstList().pop_back();
167    Changed |= true;
168  }
169
170  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
171    Changed |= ProcessLoop(*I);
172
173  return Changed;
174}
175
176/// ProcessLoop - Walk the loop structure in depth first order, ensuring that
177/// all loops have preheaders.
178///
179bool LoopSimplify::ProcessLoop(Loop *L) {
180  bool Changed = false;
181ReprocessLoop:
182
183  // Canonicalize inner loops before outer loops.  Inner loop canonicalization
184  // can provide work for the outer loop to canonicalize.
185  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
186    Changed |= ProcessLoop(*I);
187
188  assert(L->getBlocks()[0] == L->getHeader() &&
189         "Header isn't first block in loop?");
190
191  // Does the loop already have a preheader?  If so, don't insert one.
192  if (L->getLoopPreheader() == 0) {
193    InsertPreheaderForLoop(L);
194    NumInserted++;
195    Changed = true;
196  }
197
198  // Next, check to make sure that all exit nodes of the loop only have
199  // predecessors that are inside of the loop.  This check guarantees that the
200  // loop preheader/header will dominate the exit blocks.  If the exit block has
201  // predecessors from outside of the loop, split the edge now.
202  SmallVector<BasicBlock*, 8> ExitBlocks;
203  L->getExitBlocks(ExitBlocks);
204
205  SetVector<BasicBlock*> ExitBlockSet(ExitBlocks.begin(), ExitBlocks.end());
206  for (SetVector<BasicBlock*>::iterator I = ExitBlockSet.begin(),
207         E = ExitBlockSet.end(); I != E; ++I) {
208    BasicBlock *ExitBlock = *I;
209    for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
210         PI != PE; ++PI)
211      // Must be exactly this loop: no subloops, parent loops, or non-loop preds
212      // allowed.
213      if (!L->contains(*PI)) {
214        RewriteLoopExitBlock(L, ExitBlock);
215        NumInserted++;
216        Changed = true;
217        break;
218      }
219  }
220
221  // If the header has more than two predecessors at this point (from the
222  // preheader and from multiple backedges), we must adjust the loop.
223  unsigned NumBackedges = L->getNumBackEdges();
224  if (NumBackedges != 1) {
225    // If this is really a nested loop, rip it out into a child loop.  Don't do
226    // this for loops with a giant number of backedges, just factor them into a
227    // common backedge instead.
228    if (NumBackedges < 8) {
229      if (Loop *NL = SeparateNestedLoop(L)) {
230        ++NumNested;
231        // This is a big restructuring change, reprocess the whole loop.
232        ProcessLoop(NL);
233        Changed = true;
234        // GCC doesn't tail recursion eliminate this.
235        goto ReprocessLoop;
236      }
237    }
238
239    // If we either couldn't, or didn't want to, identify nesting of the loops,
240    // insert a new block that all backedges target, then make it jump to the
241    // loop header.
242    InsertUniqueBackedgeBlock(L);
243    NumInserted++;
244    Changed = true;
245  }
246
247  // Scan over the PHI nodes in the loop header.  Since they now have only two
248  // incoming values (the loop is canonicalized), we may have simplified the PHI
249  // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
250  PHINode *PN;
251  for (BasicBlock::iterator I = L->getHeader()->begin();
252       (PN = dyn_cast<PHINode>(I++)); )
253    if (Value *V = PN->hasConstantValue()) {
254        PN->replaceAllUsesWith(V);
255        PN->eraseFromParent();
256      }
257
258  return Changed;
259}
260
261/// SplitBlockPredecessors - Split the specified block into two blocks.  We want
262/// to move the predecessors specified in the Preds list to point to the new
263/// block, leaving the remaining predecessors pointing to BB.  This method
264/// updates the SSA PHINode's, but no other analyses.
265///
266BasicBlock *LoopSimplify::SplitBlockPredecessors(BasicBlock *BB,
267                                                 const char *Suffix,
268                                       const std::vector<BasicBlock*> &Preds) {
269
270  // Create new basic block, insert right before the original block...
271  BasicBlock *NewBB = new BasicBlock(BB->getName()+Suffix, BB->getParent(), BB);
272
273  // The preheader first gets an unconditional branch to the loop header...
274  BranchInst *BI = new BranchInst(BB, NewBB);
275
276  // For every PHI node in the block, insert a PHI node into NewBB where the
277  // incoming values from the out of loop edges are moved to NewBB.  We have two
278  // possible cases here.  If the loop is dead, we just insert dummy entries
279  // into the PHI nodes for the new edge.  If the loop is not dead, we move the
280  // incoming edges in BB into new PHI nodes in NewBB.
281  //
282  if (!Preds.empty()) {  // Is the loop not obviously dead?
283    // Check to see if the values being merged into the new block need PHI
284    // nodes.  If so, insert them.
285    for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ) {
286      PHINode *PN = cast<PHINode>(I);
287      ++I;
288
289      // Check to see if all of the values coming in are the same.  If so, we
290      // don't need to create a new PHI node.
291      Value *InVal = PN->getIncomingValueForBlock(Preds[0]);
292      for (unsigned i = 1, e = Preds.size(); i != e; ++i)
293        if (InVal != PN->getIncomingValueForBlock(Preds[i])) {
294          InVal = 0;
295          break;
296        }
297
298      // If the values coming into the block are not the same, we need a PHI.
299      if (InVal == 0) {
300        // Create the new PHI node, insert it into NewBB at the end of the block
301        PHINode *NewPHI = new PHINode(PN->getType(), PN->getName()+".ph", BI);
302        if (AA) AA->copyValue(PN, NewPHI);
303
304        // Move all of the edges from blocks outside the loop to the new PHI
305        for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
306          Value *V = PN->removeIncomingValue(Preds[i], false);
307          NewPHI->addIncoming(V, Preds[i]);
308        }
309        InVal = NewPHI;
310      } else {
311        // Remove all of the edges coming into the PHI nodes from outside of the
312        // block.
313        for (unsigned i = 0, e = Preds.size(); i != e; ++i)
314          PN->removeIncomingValue(Preds[i], false);
315      }
316
317      // Add an incoming value to the PHI node in the loop for the preheader
318      // edge.
319      PN->addIncoming(InVal, NewBB);
320
321      // Can we eliminate this phi node now?
322      if (Value *V = PN->hasConstantValue(true)) {
323        Instruction *I = dyn_cast<Instruction>(V);
324        // If I is in NewBB, the Dominator call will fail, because NewBB isn't
325        // registered in DominatorTree yet.  Handle this case explicitly.
326        if (!I || (I->getParent() != NewBB &&
327                   getAnalysis<DominatorTree>().dominates(I, PN))) {
328          PN->replaceAllUsesWith(V);
329          if (AA) AA->deleteValue(PN);
330          BB->getInstList().erase(PN);
331        }
332      }
333    }
334
335    // Now that the PHI nodes are updated, actually move the edges from
336    // Preds to point to NewBB instead of BB.
337    //
338    for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
339      TerminatorInst *TI = Preds[i]->getTerminator();
340      for (unsigned s = 0, e = TI->getNumSuccessors(); s != e; ++s)
341        if (TI->getSuccessor(s) == BB)
342          TI->setSuccessor(s, NewBB);
343    }
344
345  } else {                       // Otherwise the loop is dead...
346    for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I) {
347      PHINode *PN = cast<PHINode>(I);
348      // Insert dummy values as the incoming value...
349      PN->addIncoming(Constant::getNullValue(PN->getType()), NewBB);
350    }
351  }
352
353  return NewBB;
354}
355
356/// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
357/// preheader, this method is called to insert one.  This method has two phases:
358/// preheader insertion and analysis updating.
359///
360void LoopSimplify::InsertPreheaderForLoop(Loop *L) {
361  BasicBlock *Header = L->getHeader();
362
363  // Compute the set of predecessors of the loop that are not in the loop.
364  std::vector<BasicBlock*> OutsideBlocks;
365  for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
366       PI != PE; ++PI)
367    if (!L->contains(*PI))           // Coming in from outside the loop?
368      OutsideBlocks.push_back(*PI);  // Keep track of it...
369
370  // Split out the loop pre-header.
371  BasicBlock *NewBB =
372    SplitBlockPredecessors(Header, ".preheader", OutsideBlocks);
373
374
375  //===--------------------------------------------------------------------===//
376  //  Update analysis results now that we have performed the transformation
377  //
378
379  // We know that we have loop information to update... update it now.
380  if (Loop *Parent = L->getParentLoop())
381    Parent->addBasicBlockToLoop(NewBB, *LI);
382
383  DT->splitBlock(NewBB);
384  if (DominanceFrontier *DF = getAnalysisToUpdate<DominanceFrontier>())
385    DF->splitBlock(NewBB);
386
387  // Make sure that NewBB is put someplace intelligent, which doesn't mess up
388  // code layout too horribly.
389  PlaceSplitBlockCarefully(NewBB, OutsideBlocks, L);
390}
391
392/// RewriteLoopExitBlock - Ensure that the loop preheader dominates all exit
393/// blocks.  This method is used to split exit blocks that have predecessors
394/// outside of the loop.
395BasicBlock *LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) {
396  std::vector<BasicBlock*> LoopBlocks;
397  for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I)
398    if (L->contains(*I))
399      LoopBlocks.push_back(*I);
400
401  assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?");
402  BasicBlock *NewBB = SplitBlockPredecessors(Exit, ".loopexit", LoopBlocks);
403
404  // Update Loop Information - we know that the new block will be in whichever
405  // loop the Exit block is in.  Note that it may not be in that immediate loop,
406  // if the successor is some other loop header.  In that case, we continue
407  // walking up the loop tree to find a loop that contains both the successor
408  // block and the predecessor block.
409  Loop *SuccLoop = LI->getLoopFor(Exit);
410  while (SuccLoop && !SuccLoop->contains(L->getHeader()))
411    SuccLoop = SuccLoop->getParentLoop();
412  if (SuccLoop)
413    SuccLoop->addBasicBlockToLoop(NewBB, *LI);
414
415  // Update Dominator Information
416  DT->splitBlock(NewBB);
417  if (DominanceFrontier *DF = getAnalysisToUpdate<DominanceFrontier>())
418    DF->splitBlock(NewBB);
419
420  return NewBB;
421}
422
423/// AddBlockAndPredsToSet - Add the specified block, and all of its
424/// predecessors, to the specified set, if it's not already in there.  Stop
425/// predecessor traversal when we reach StopBlock.
426static void AddBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
427                                  std::set<BasicBlock*> &Blocks) {
428  std::vector<BasicBlock *> WorkList;
429  WorkList.push_back(InputBB);
430  do {
431    BasicBlock *BB = WorkList.back(); WorkList.pop_back();
432    if (Blocks.insert(BB).second && BB != StopBlock)
433      // If BB is not already processed and it is not a stop block then
434      // insert its predecessor in the work list
435      for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
436        BasicBlock *WBB = *I;
437        WorkList.push_back(WBB);
438      }
439  } while(!WorkList.empty());
440}
441
442/// FindPHIToPartitionLoops - The first part of loop-nestification is to find a
443/// PHI node that tells us how to partition the loops.
444static PHINode *FindPHIToPartitionLoops(Loop *L, DominatorTree *DT,
445                                        AliasAnalysis *AA) {
446  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
447    PHINode *PN = cast<PHINode>(I);
448    ++I;
449    if (Value *V = PN->hasConstantValue())
450      if (!isa<Instruction>(V) || DT->dominates(cast<Instruction>(V), PN)) {
451        // This is a degenerate PHI already, don't modify it!
452        PN->replaceAllUsesWith(V);
453        if (AA) AA->deleteValue(PN);
454        PN->eraseFromParent();
455        continue;
456      }
457
458    // Scan this PHI node looking for a use of the PHI node by itself.
459    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
460      if (PN->getIncomingValue(i) == PN &&
461          L->contains(PN->getIncomingBlock(i)))
462        // We found something tasty to remove.
463        return PN;
464  }
465  return 0;
466}
467
468// PlaceSplitBlockCarefully - If the block isn't already, move the new block to
469// right after some 'outside block' block.  This prevents the preheader from
470// being placed inside the loop body, e.g. when the loop hasn't been rotated.
471void LoopSimplify::PlaceSplitBlockCarefully(BasicBlock *NewBB,
472                                            std::vector<BasicBlock*>&SplitPreds,
473                                            Loop *L) {
474  // Check to see if NewBB is already well placed.
475  Function::iterator BBI = NewBB; --BBI;
476  for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
477    if (&*BBI == SplitPreds[i])
478      return;
479  }
480
481  // If it isn't already after an outside block, move it after one.  This is
482  // always good as it makes the uncond branch from the outside block into a
483  // fall-through.
484
485  // Figure out *which* outside block to put this after.  Prefer an outside
486  // block that neighbors a BB actually in the loop.
487  BasicBlock *FoundBB = 0;
488  for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
489    Function::iterator BBI = SplitPreds[i];
490    if (++BBI != NewBB->getParent()->end() &&
491        L->contains(BBI)) {
492      FoundBB = SplitPreds[i];
493      break;
494    }
495  }
496
497  // If our heuristic for a *good* bb to place this after doesn't find
498  // anything, just pick something.  It's likely better than leaving it within
499  // the loop.
500  if (!FoundBB)
501    FoundBB = SplitPreds[0];
502  NewBB->moveAfter(FoundBB);
503}
504
505
506/// SeparateNestedLoop - If this loop has multiple backedges, try to pull one of
507/// them out into a nested loop.  This is important for code that looks like
508/// this:
509///
510///  Loop:
511///     ...
512///     br cond, Loop, Next
513///     ...
514///     br cond2, Loop, Out
515///
516/// To identify this common case, we look at the PHI nodes in the header of the
517/// loop.  PHI nodes with unchanging values on one backedge correspond to values
518/// that change in the "outer" loop, but not in the "inner" loop.
519///
520/// If we are able to separate out a loop, return the new outer loop that was
521/// created.
522///
523Loop *LoopSimplify::SeparateNestedLoop(Loop *L) {
524  PHINode *PN = FindPHIToPartitionLoops(L, DT, AA);
525  if (PN == 0) return 0;  // No known way to partition.
526
527  // Pull out all predecessors that have varying values in the loop.  This
528  // handles the case when a PHI node has multiple instances of itself as
529  // arguments.
530  std::vector<BasicBlock*> OuterLoopPreds;
531  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
532    if (PN->getIncomingValue(i) != PN ||
533        !L->contains(PN->getIncomingBlock(i)))
534      OuterLoopPreds.push_back(PN->getIncomingBlock(i));
535
536  BasicBlock *Header = L->getHeader();
537  BasicBlock *NewBB = SplitBlockPredecessors(Header, ".outer", OuterLoopPreds);
538
539  // Update dominator information
540  DT->splitBlock(NewBB);
541  if (DominanceFrontier *DF = getAnalysisToUpdate<DominanceFrontier>())
542    DF->splitBlock(NewBB);
543
544  // Make sure that NewBB is put someplace intelligent, which doesn't mess up
545  // code layout too horribly.
546  PlaceSplitBlockCarefully(NewBB, OuterLoopPreds, L);
547
548  // Create the new outer loop.
549  Loop *NewOuter = new Loop();
550
551  // Change the parent loop to use the outer loop as its child now.
552  if (Loop *Parent = L->getParentLoop())
553    Parent->replaceChildLoopWith(L, NewOuter);
554  else
555    LI->changeTopLevelLoop(L, NewOuter);
556
557  // This block is going to be our new header block: add it to this loop and all
558  // parent loops.
559  NewOuter->addBasicBlockToLoop(NewBB, *LI);
560
561  // L is now a subloop of our outer loop.
562  NewOuter->addChildLoop(L);
563
564  for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i)
565    NewOuter->addBlockEntry(L->getBlocks()[i]);
566
567  // Determine which blocks should stay in L and which should be moved out to
568  // the Outer loop now.
569  std::set<BasicBlock*> BlocksInL;
570  for (pred_iterator PI = pred_begin(Header), E = pred_end(Header); PI!=E; ++PI)
571    if (DT->dominates(Header, *PI))
572      AddBlockAndPredsToSet(*PI, Header, BlocksInL);
573
574
575  // Scan all of the loop children of L, moving them to OuterLoop if they are
576  // not part of the inner loop.
577  const std::vector<Loop*> &SubLoops = L->getSubLoops();
578  for (size_t I = 0; I != SubLoops.size(); )
579    if (BlocksInL.count(SubLoops[I]->getHeader()))
580      ++I;   // Loop remains in L
581    else
582      NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
583
584  // Now that we know which blocks are in L and which need to be moved to
585  // OuterLoop, move any blocks that need it.
586  for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
587    BasicBlock *BB = L->getBlocks()[i];
588    if (!BlocksInL.count(BB)) {
589      // Move this block to the parent, updating the exit blocks sets
590      L->removeBlockFromLoop(BB);
591      if ((*LI)[BB] == L)
592        LI->changeLoopFor(BB, NewOuter);
593      --i;
594    }
595  }
596
597  return NewOuter;
598}
599
600
601
602/// InsertUniqueBackedgeBlock - This method is called when the specified loop
603/// has more than one backedge in it.  If this occurs, revector all of these
604/// backedges to target a new basic block and have that block branch to the loop
605/// header.  This ensures that loops have exactly one backedge.
606///
607void LoopSimplify::InsertUniqueBackedgeBlock(Loop *L) {
608  assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
609
610  // Get information about the loop
611  BasicBlock *Preheader = L->getLoopPreheader();
612  BasicBlock *Header = L->getHeader();
613  Function *F = Header->getParent();
614
615  // Figure out which basic blocks contain back-edges to the loop header.
616  std::vector<BasicBlock*> BackedgeBlocks;
617  for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I)
618    if (*I != Preheader) BackedgeBlocks.push_back(*I);
619
620  // Create and insert the new backedge block...
621  BasicBlock *BEBlock = new BasicBlock(Header->getName()+".backedge", F);
622  BranchInst *BETerminator = new BranchInst(Header, BEBlock);
623
624  // Move the new backedge block to right after the last backedge block.
625  Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos;
626  F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
627
628  // Now that the block has been inserted into the function, create PHI nodes in
629  // the backedge block which correspond to any PHI nodes in the header block.
630  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
631    PHINode *PN = cast<PHINode>(I);
632    PHINode *NewPN = new PHINode(PN->getType(), PN->getName()+".be",
633                                 BETerminator);
634    NewPN->reserveOperandSpace(BackedgeBlocks.size());
635    if (AA) AA->copyValue(PN, NewPN);
636
637    // Loop over the PHI node, moving all entries except the one for the
638    // preheader over to the new PHI node.
639    unsigned PreheaderIdx = ~0U;
640    bool HasUniqueIncomingValue = true;
641    Value *UniqueValue = 0;
642    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
643      BasicBlock *IBB = PN->getIncomingBlock(i);
644      Value *IV = PN->getIncomingValue(i);
645      if (IBB == Preheader) {
646        PreheaderIdx = i;
647      } else {
648        NewPN->addIncoming(IV, IBB);
649        if (HasUniqueIncomingValue) {
650          if (UniqueValue == 0)
651            UniqueValue = IV;
652          else if (UniqueValue != IV)
653            HasUniqueIncomingValue = false;
654        }
655      }
656    }
657
658    // Delete all of the incoming values from the old PN except the preheader's
659    assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
660    if (PreheaderIdx != 0) {
661      PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
662      PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
663    }
664    // Nuke all entries except the zero'th.
665    for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
666      PN->removeIncomingValue(e-i, false);
667
668    // Finally, add the newly constructed PHI node as the entry for the BEBlock.
669    PN->addIncoming(NewPN, BEBlock);
670
671    // As an optimization, if all incoming values in the new PhiNode (which is a
672    // subset of the incoming values of the old PHI node) have the same value,
673    // eliminate the PHI Node.
674    if (HasUniqueIncomingValue) {
675      NewPN->replaceAllUsesWith(UniqueValue);
676      if (AA) AA->deleteValue(NewPN);
677      BEBlock->getInstList().erase(NewPN);
678    }
679  }
680
681  // Now that all of the PHI nodes have been inserted and adjusted, modify the
682  // backedge blocks to just to the BEBlock instead of the header.
683  for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
684    TerminatorInst *TI = BackedgeBlocks[i]->getTerminator();
685    for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
686      if (TI->getSuccessor(Op) == Header)
687        TI->setSuccessor(Op, BEBlock);
688  }
689
690  //===--- Update all analyses which we must preserve now -----------------===//
691
692  // Update Loop Information - we know that this block is now in the current
693  // loop and all parent loops.
694  L->addBasicBlockToLoop(BEBlock, *LI);
695
696  // Update dominator information
697  DT->splitBlock(BEBlock);
698  if (DominanceFrontier *DF = getAnalysisToUpdate<DominanceFrontier>())
699    DF->splitBlock(BEBlock);
700}
701