LoopSimplify.cpp revision 98599ba6c6b12a01718b08f57ceb7aa3397c5b2d
1//===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs several transformations to transform natural loops into a
11// simpler form, which makes subsequent analyses and transformations simpler and
12// more effective.
13//
14// Loop pre-header insertion guarantees that there is a single, non-critical
15// entry edge from outside of the loop to the loop header.  This simplifies a
16// number of analyses and transformations, such as LICM.
17//
18// Loop exit-block insertion guarantees that all exit blocks from the loop
19// (blocks which are outside of the loop that have predecessors inside of the
20// loop) only have predecessors from inside of the loop (and are thus dominated
21// by the loop header).  This simplifies transformations such as store-sinking
22// that are built into LICM.
23//
24// This pass also guarantees that loops will have exactly one backedge.
25//
26// Note that the simplifycfg pass will clean up blocks which are split out but
27// end up being unnecessary, so usage of this pass should not pessimize
28// generated code.
29//
30// This pass obviously modifies the CFG, but updates loop information and
31// dominator information.
32//
33//===----------------------------------------------------------------------===//
34
35#include "llvm/Transforms/Scalar.h"
36#include "llvm/Constant.h"
37#include "llvm/Instructions.h"
38#include "llvm/Function.h"
39#include "llvm/Type.h"
40#include "llvm/Analysis/AliasAnalysis.h"
41#include "llvm/Analysis/Dominators.h"
42#include "llvm/Analysis/LoopInfo.h"
43#include "llvm/Support/CFG.h"
44#include "llvm/ADT/SetOperations.h"
45#include "llvm/ADT/SetVector.h"
46#include "llvm/ADT/Statistic.h"
47#include "llvm/ADT/DepthFirstIterator.h"
48using namespace llvm;
49
50namespace {
51  Statistic<>
52  NumInserted("loopsimplify", "Number of pre-header or exit blocks inserted");
53  Statistic<>
54  NumNested("loopsimplify", "Number of nested loops split out");
55
56  struct LoopSimplify : public FunctionPass {
57    // AA - If we have an alias analysis object to update, this is it, otherwise
58    // this is null.
59    AliasAnalysis *AA;
60
61    virtual bool runOnFunction(Function &F);
62
63    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
64      // We need loop information to identify the loops...
65      AU.addRequired<LoopInfo>();
66      AU.addRequired<DominatorSet>();
67      AU.addRequired<DominatorTree>();
68
69      AU.addPreserved<LoopInfo>();
70      AU.addPreserved<DominatorSet>();
71      AU.addPreserved<ImmediateDominators>();
72      AU.addPreserved<DominatorTree>();
73      AU.addPreserved<DominanceFrontier>();
74      AU.addPreservedID(BreakCriticalEdgesID);  // No critical edges added.
75    }
76  private:
77    bool ProcessLoop(Loop *L);
78    BasicBlock *SplitBlockPredecessors(BasicBlock *BB, const char *Suffix,
79                                       const std::vector<BasicBlock*> &Preds);
80    BasicBlock *RewriteLoopExitBlock(Loop *L, BasicBlock *Exit);
81    void InsertPreheaderForLoop(Loop *L);
82    Loop *SeparateNestedLoop(Loop *L);
83    void InsertUniqueBackedgeBlock(Loop *L);
84
85    void UpdateDomInfoForRevectoredPreds(BasicBlock *NewBB,
86                                         std::vector<BasicBlock*> &PredBlocks);
87  };
88
89  RegisterOpt<LoopSimplify>
90  X("loopsimplify", "Canonicalize natural loops", true);
91}
92
93// Publically exposed interface to pass...
94const PassInfo *llvm::LoopSimplifyID = X.getPassInfo();
95FunctionPass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
96
97/// runOnFunction - Run down all loops in the CFG (recursively, but we could do
98/// it in any convenient order) inserting preheaders...
99///
100bool LoopSimplify::runOnFunction(Function &F) {
101  bool Changed = false;
102  LoopInfo &LI = getAnalysis<LoopInfo>();
103  AA = getAnalysisToUpdate<AliasAnalysis>();
104
105  for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
106    Changed |= ProcessLoop(*I);
107
108  return Changed;
109}
110
111
112/// ProcessLoop - Walk the loop structure in depth first order, ensuring that
113/// all loops have preheaders.
114///
115bool LoopSimplify::ProcessLoop(Loop *L) {
116  bool Changed = false;
117
118  // Check to see that no blocks (other than the header) in the loop have
119  // predecessors that are not in the loop.  This is not valid for natural
120  // loops, but can occur if the blocks are unreachable.  Since they are
121  // unreachable we can just shamelessly destroy their terminators to make them
122  // not branch into the loop!
123  assert(L->getBlocks()[0] == L->getHeader() &&
124         "Header isn't first block in loop?");
125  for (unsigned i = 1, e = L->getBlocks().size(); i != e; ++i) {
126    BasicBlock *LoopBB = L->getBlocks()[i];
127  Retry:
128    for (pred_iterator PI = pred_begin(LoopBB), E = pred_end(LoopBB);
129         PI != E; ++PI)
130      if (!L->contains(*PI)) {
131        // This predecessor is not in the loop.  Kill its terminator!
132        BasicBlock *DeadBlock = *PI;
133        for (succ_iterator SI = succ_begin(DeadBlock), E = succ_end(DeadBlock);
134             SI != E; ++SI)
135          (*SI)->removePredecessor(DeadBlock);  // Remove PHI node entries
136
137        // Delete the dead terminator.
138        if (AA) AA->deleteValue(&DeadBlock->back());
139        DeadBlock->getInstList().pop_back();
140
141        Value *RetVal = 0;
142        if (LoopBB->getParent()->getReturnType() != Type::VoidTy)
143          RetVal = Constant::getNullValue(LoopBB->getParent()->getReturnType());
144        new ReturnInst(RetVal, DeadBlock);
145        goto Retry;  // We just invalidated the pred_iterator.  Retry.
146      }
147  }
148
149  // Does the loop already have a preheader?  If so, don't modify the loop...
150  if (L->getLoopPreheader() == 0) {
151    InsertPreheaderForLoop(L);
152    NumInserted++;
153    Changed = true;
154  }
155
156  // Next, check to make sure that all exit nodes of the loop only have
157  // predecessors that are inside of the loop.  This check guarantees that the
158  // loop preheader/header will dominate the exit blocks.  If the exit block has
159  // predecessors from outside of the loop, split the edge now.
160  std::vector<BasicBlock*> ExitBlocks;
161  L->getExitBlocks(ExitBlocks);
162
163  SetVector<BasicBlock*> ExitBlockSet(ExitBlocks.begin(), ExitBlocks.end());
164  for (SetVector<BasicBlock*>::iterator I = ExitBlockSet.begin(),
165         E = ExitBlockSet.end(); I != E; ++I) {
166    BasicBlock *ExitBlock = *I;
167    for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
168         PI != PE; ++PI)
169      if (!L->contains(*PI)) {
170        RewriteLoopExitBlock(L, ExitBlock);
171        NumInserted++;
172        Changed = true;
173        break;
174      }
175  }
176
177  // If the header has more than two predecessors at this point (from the
178  // preheader and from multiple backedges), we must adjust the loop.
179  if (L->getNumBackEdges() != 1) {
180    // If this is really a nested loop, rip it out into a child loop.
181    if (Loop *NL = SeparateNestedLoop(L)) {
182      ++NumNested;
183      // This is a big restructuring change, reprocess the whole loop.
184      ProcessLoop(NL);
185      return true;
186    }
187
188    InsertUniqueBackedgeBlock(L);
189    NumInserted++;
190    Changed = true;
191  }
192
193  // Scan over the PHI nodes in the loop header.  Since they now have only two
194  // incoming values (the loop is canonicalized), we may have simplified the PHI
195  // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
196  PHINode *PN;
197  DominatorSet &DS = getAnalysis<DominatorSet>();
198  for (BasicBlock::iterator I = L->getHeader()->begin();
199       (PN = dyn_cast<PHINode>(I++)); )
200    if (Value *V = PN->hasConstantValue()) {
201        PN->replaceAllUsesWith(V);
202        PN->eraseFromParent();
203      }
204
205  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
206    Changed |= ProcessLoop(*I);
207
208  return Changed;
209}
210
211/// SplitBlockPredecessors - Split the specified block into two blocks.  We want
212/// to move the predecessors specified in the Preds list to point to the new
213/// block, leaving the remaining predecessors pointing to BB.  This method
214/// updates the SSA PHINode's, but no other analyses.
215///
216BasicBlock *LoopSimplify::SplitBlockPredecessors(BasicBlock *BB,
217                                                 const char *Suffix,
218                                       const std::vector<BasicBlock*> &Preds) {
219
220  // Create new basic block, insert right before the original block...
221  BasicBlock *NewBB = new BasicBlock(BB->getName()+Suffix, BB->getParent(), BB);
222
223  // The preheader first gets an unconditional branch to the loop header...
224  BranchInst *BI = new BranchInst(BB, NewBB);
225
226  // For every PHI node in the block, insert a PHI node into NewBB where the
227  // incoming values from the out of loop edges are moved to NewBB.  We have two
228  // possible cases here.  If the loop is dead, we just insert dummy entries
229  // into the PHI nodes for the new edge.  If the loop is not dead, we move the
230  // incoming edges in BB into new PHI nodes in NewBB.
231  //
232  if (!Preds.empty()) {  // Is the loop not obviously dead?
233    // Check to see if the values being merged into the new block need PHI
234    // nodes.  If so, insert them.
235    for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ) {
236      PHINode *PN = cast<PHINode>(I);
237      ++I;
238
239      // Check to see if all of the values coming in are the same.  If so, we
240      // don't need to create a new PHI node.
241      Value *InVal = PN->getIncomingValueForBlock(Preds[0]);
242      for (unsigned i = 1, e = Preds.size(); i != e; ++i)
243        if (InVal != PN->getIncomingValueForBlock(Preds[i])) {
244          InVal = 0;
245          break;
246        }
247
248      // If the values coming into the block are not the same, we need a PHI.
249      if (InVal == 0) {
250        // Create the new PHI node, insert it into NewBB at the end of the block
251        PHINode *NewPHI = new PHINode(PN->getType(), PN->getName()+".ph", BI);
252        if (AA) AA->copyValue(PN, NewPHI);
253
254        // Move all of the edges from blocks outside the loop to the new PHI
255        for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
256          Value *V = PN->removeIncomingValue(Preds[i], false);
257          NewPHI->addIncoming(V, Preds[i]);
258        }
259        InVal = NewPHI;
260      } else {
261        // Remove all of the edges coming into the PHI nodes from outside of the
262        // block.
263        for (unsigned i = 0, e = Preds.size(); i != e; ++i)
264          PN->removeIncomingValue(Preds[i], false);
265      }
266
267      // Add an incoming value to the PHI node in the loop for the preheader
268      // edge.
269      PN->addIncoming(InVal, NewBB);
270
271      // Can we eliminate this phi node now?
272      if (Value *V = PN->hasConstantValue(true)) {
273        if (!isa<Instruction>(V) ||
274            getAnalysis<DominatorSet>().dominates(cast<Instruction>(V), PN)) {
275          PN->replaceAllUsesWith(V);
276          if (AA) AA->deleteValue(PN);
277          BB->getInstList().erase(PN);
278        }
279      }
280    }
281
282    // Now that the PHI nodes are updated, actually move the edges from
283    // Preds to point to NewBB instead of BB.
284    //
285    for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
286      TerminatorInst *TI = Preds[i]->getTerminator();
287      for (unsigned s = 0, e = TI->getNumSuccessors(); s != e; ++s)
288        if (TI->getSuccessor(s) == BB)
289          TI->setSuccessor(s, NewBB);
290    }
291
292  } else {                       // Otherwise the loop is dead...
293    for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I) {
294      PHINode *PN = cast<PHINode>(I);
295      // Insert dummy values as the incoming value...
296      PN->addIncoming(Constant::getNullValue(PN->getType()), NewBB);
297    }
298  }
299  return NewBB;
300}
301
302/// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
303/// preheader, this method is called to insert one.  This method has two phases:
304/// preheader insertion and analysis updating.
305///
306void LoopSimplify::InsertPreheaderForLoop(Loop *L) {
307  BasicBlock *Header = L->getHeader();
308
309  // Compute the set of predecessors of the loop that are not in the loop.
310  std::vector<BasicBlock*> OutsideBlocks;
311  for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
312       PI != PE; ++PI)
313      if (!L->contains(*PI))           // Coming in from outside the loop?
314        OutsideBlocks.push_back(*PI);  // Keep track of it...
315
316  // Split out the loop pre-header
317  BasicBlock *NewBB =
318    SplitBlockPredecessors(Header, ".preheader", OutsideBlocks);
319
320  //===--------------------------------------------------------------------===//
321  //  Update analysis results now that we have performed the transformation
322  //
323
324  // We know that we have loop information to update... update it now.
325  if (Loop *Parent = L->getParentLoop())
326    Parent->addBasicBlockToLoop(NewBB, getAnalysis<LoopInfo>());
327
328  // If the header for the loop used to be an exit node for another loop, then
329  // we need to update this to know that the loop-preheader is now the exit
330  // node.  Note that the only loop that could have our header as an exit node
331  // is a sibling loop, ie, one with the same parent loop, or one if it's
332  // children.
333  //
334  LoopInfo::iterator ParentLoops, ParentLoopsE;
335  if (Loop *Parent = L->getParentLoop()) {
336    ParentLoops = Parent->begin();
337    ParentLoopsE = Parent->end();
338  } else {      // Must check top-level loops...
339    ParentLoops = getAnalysis<LoopInfo>().begin();
340    ParentLoopsE = getAnalysis<LoopInfo>().end();
341  }
342
343  DominatorSet &DS = getAnalysis<DominatorSet>();  // Update dominator info
344  DominatorTree &DT = getAnalysis<DominatorTree>();
345
346
347  // Update the dominator tree information.
348  // The immediate dominator of the preheader is the immediate dominator of
349  // the old header.
350  DominatorTree::Node *PHDomTreeNode =
351    DT.createNewNode(NewBB, DT.getNode(Header)->getIDom());
352
353  // Change the header node so that PNHode is the new immediate dominator
354  DT.changeImmediateDominator(DT.getNode(Header), PHDomTreeNode);
355
356  {
357    // The blocks that dominate NewBB are the blocks that dominate Header,
358    // minus Header, plus NewBB.
359    DominatorSet::DomSetType DomSet = DS.getDominators(Header);
360    DomSet.erase(Header);  // Header does not dominate us...
361    DS.addBasicBlock(NewBB, DomSet);
362
363    // The newly created basic block dominates all nodes dominated by Header.
364    for (df_iterator<DominatorTree::Node*> DFI = df_begin(PHDomTreeNode),
365           E = df_end(PHDomTreeNode); DFI != E; ++DFI)
366      DS.addDominator((*DFI)->getBlock(), NewBB);
367  }
368
369  // Update immediate dominator information if we have it...
370  if (ImmediateDominators *ID = getAnalysisToUpdate<ImmediateDominators>()) {
371    // Whatever i-dominated the header node now immediately dominates NewBB
372    ID->addNewBlock(NewBB, ID->get(Header));
373
374    // The preheader now is the immediate dominator for the header node...
375    ID->setImmediateDominator(Header, NewBB);
376  }
377
378  // Update dominance frontier information...
379  if (DominanceFrontier *DF = getAnalysisToUpdate<DominanceFrontier>()) {
380    // The DF(NewBB) is just (DF(Header)-Header), because NewBB dominates
381    // everything that Header does, and it strictly dominates Header in
382    // addition.
383    assert(DF->find(Header) != DF->end() && "Header node doesn't have DF set?");
384    DominanceFrontier::DomSetType NewDFSet = DF->find(Header)->second;
385    NewDFSet.erase(Header);
386    DF->addBasicBlock(NewBB, NewDFSet);
387
388    // Now we must loop over all of the dominance frontiers in the function,
389    // replacing occurrences of Header with NewBB in some cases.  If a block
390    // dominates a (now) predecessor of NewBB, but did not strictly dominate
391    // Header, it will have Header in it's DF set, but should now have NewBB in
392    // its set.
393    for (unsigned i = 0, e = OutsideBlocks.size(); i != e; ++i) {
394      // Get all of the dominators of the predecessor...
395      const DominatorSet::DomSetType &PredDoms =
396        DS.getDominators(OutsideBlocks[i]);
397      for (DominatorSet::DomSetType::const_iterator PDI = PredDoms.begin(),
398             PDE = PredDoms.end(); PDI != PDE; ++PDI) {
399        BasicBlock *PredDom = *PDI;
400        // If the loop header is in DF(PredDom), then PredDom didn't dominate
401        // the header but did dominate a predecessor outside of the loop.  Now
402        // we change this entry to include the preheader in the DF instead of
403        // the header.
404        DominanceFrontier::iterator DFI = DF->find(PredDom);
405        assert(DFI != DF->end() && "No dominance frontier for node?");
406        if (DFI->second.count(Header)) {
407          DF->removeFromFrontier(DFI, Header);
408          DF->addToFrontier(DFI, NewBB);
409        }
410      }
411    }
412  }
413}
414
415/// RewriteLoopExitBlock - Ensure that the loop preheader dominates all exit
416/// blocks.  This method is used to split exit blocks that have predecessors
417/// outside of the loop.
418BasicBlock *LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) {
419  DominatorSet &DS = getAnalysis<DominatorSet>();
420
421  std::vector<BasicBlock*> LoopBlocks;
422  for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I)
423    if (L->contains(*I))
424      LoopBlocks.push_back(*I);
425
426  assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?");
427  BasicBlock *NewBB = SplitBlockPredecessors(Exit, ".loopexit", LoopBlocks);
428
429  // Update Loop Information - we know that the new block will be in the parent
430  // loop of L.
431  if (Loop *Parent = L->getParentLoop())
432    Parent->addBasicBlockToLoop(NewBB, getAnalysis<LoopInfo>());
433
434  // Update dominator information (set, immdom, domtree, and domfrontier)
435  UpdateDomInfoForRevectoredPreds(NewBB, LoopBlocks);
436  return NewBB;
437}
438
439/// AddBlockAndPredsToSet - Add the specified block, and all of its
440/// predecessors, to the specified set, if it's not already in there.  Stop
441/// predecessor traversal when we reach StopBlock.
442static void AddBlockAndPredsToSet(BasicBlock *BB, BasicBlock *StopBlock,
443                                  std::set<BasicBlock*> &Blocks) {
444  if (!Blocks.insert(BB).second) return;  // already processed.
445  if (BB == StopBlock) return;  // Stop here!
446
447  for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I)
448    AddBlockAndPredsToSet(*I, StopBlock, Blocks);
449}
450
451/// FindPHIToPartitionLoops - The first part of loop-nestification is to find a
452/// PHI node that tells us how to partition the loops.
453static PHINode *FindPHIToPartitionLoops(Loop *L, DominatorSet &DS,
454                                        AliasAnalysis *AA) {
455  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
456    PHINode *PN = cast<PHINode>(I);
457    ++I;
458    if (Value *V = PN->hasConstantValue())
459      if (!isa<Instruction>(V) || DS.dominates(cast<Instruction>(V), PN)) {
460        // This is a degenerate PHI already, don't modify it!
461        PN->replaceAllUsesWith(V);
462        if (AA) AA->deleteValue(PN);
463        PN->eraseFromParent();
464        continue;
465      }
466
467    // Scan this PHI node looking for a use of the PHI node by itself.
468    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
469      if (PN->getIncomingValue(i) == PN &&
470          L->contains(PN->getIncomingBlock(i)))
471        // We found something tasty to remove.
472        return PN;
473  }
474  return 0;
475}
476
477/// SeparateNestedLoop - If this loop has multiple backedges, try to pull one of
478/// them out into a nested loop.  This is important for code that looks like
479/// this:
480///
481///  Loop:
482///     ...
483///     br cond, Loop, Next
484///     ...
485///     br cond2, Loop, Out
486///
487/// To identify this common case, we look at the PHI nodes in the header of the
488/// loop.  PHI nodes with unchanging values on one backedge correspond to values
489/// that change in the "outer" loop, but not in the "inner" loop.
490///
491/// If we are able to separate out a loop, return the new outer loop that was
492/// created.
493///
494Loop *LoopSimplify::SeparateNestedLoop(Loop *L) {
495  PHINode *PN = FindPHIToPartitionLoops(L, getAnalysis<DominatorSet>(), AA);
496  if (PN == 0) return 0;  // No known way to partition.
497
498  // Pull out all predecessors that have varying values in the loop.  This
499  // handles the case when a PHI node has multiple instances of itself as
500  // arguments.
501  std::vector<BasicBlock*> OuterLoopPreds;
502  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
503    if (PN->getIncomingValue(i) != PN ||
504        !L->contains(PN->getIncomingBlock(i)))
505      OuterLoopPreds.push_back(PN->getIncomingBlock(i));
506
507  BasicBlock *Header = L->getHeader();
508  BasicBlock *NewBB = SplitBlockPredecessors(Header, ".outer", OuterLoopPreds);
509
510  // Update dominator information (set, immdom, domtree, and domfrontier)
511  UpdateDomInfoForRevectoredPreds(NewBB, OuterLoopPreds);
512
513  // Create the new outer loop.
514  Loop *NewOuter = new Loop();
515
516  LoopInfo &LI = getAnalysis<LoopInfo>();
517
518  // Change the parent loop to use the outer loop as its child now.
519  if (Loop *Parent = L->getParentLoop())
520    Parent->replaceChildLoopWith(L, NewOuter);
521  else
522    LI.changeTopLevelLoop(L, NewOuter);
523
524  // This block is going to be our new header block: add it to this loop and all
525  // parent loops.
526  NewOuter->addBasicBlockToLoop(NewBB, getAnalysis<LoopInfo>());
527
528  // L is now a subloop of our outer loop.
529  NewOuter->addChildLoop(L);
530
531  for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i)
532    NewOuter->addBlockEntry(L->getBlocks()[i]);
533
534  // Determine which blocks should stay in L and which should be moved out to
535  // the Outer loop now.
536  DominatorSet &DS = getAnalysis<DominatorSet>();
537  std::set<BasicBlock*> BlocksInL;
538  for (pred_iterator PI = pred_begin(Header), E = pred_end(Header); PI!=E; ++PI)
539    if (DS.dominates(Header, *PI))
540      AddBlockAndPredsToSet(*PI, Header, BlocksInL);
541
542
543  // Scan all of the loop children of L, moving them to OuterLoop if they are
544  // not part of the inner loop.
545  for (Loop::iterator I = L->begin(); I != L->end(); )
546    if (BlocksInL.count((*I)->getHeader()))
547      ++I;   // Loop remains in L
548    else
549      NewOuter->addChildLoop(L->removeChildLoop(I));
550
551  // Now that we know which blocks are in L and which need to be moved to
552  // OuterLoop, move any blocks that need it.
553  for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
554    BasicBlock *BB = L->getBlocks()[i];
555    if (!BlocksInL.count(BB)) {
556      // Move this block to the parent, updating the exit blocks sets
557      L->removeBlockFromLoop(BB);
558      if (LI[BB] == L)
559        LI.changeLoopFor(BB, NewOuter);
560      --i;
561    }
562  }
563
564  return NewOuter;
565}
566
567
568
569/// InsertUniqueBackedgeBlock - This method is called when the specified loop
570/// has more than one backedge in it.  If this occurs, revector all of these
571/// backedges to target a new basic block and have that block branch to the loop
572/// header.  This ensures that loops have exactly one backedge.
573///
574void LoopSimplify::InsertUniqueBackedgeBlock(Loop *L) {
575  assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
576
577  // Get information about the loop
578  BasicBlock *Preheader = L->getLoopPreheader();
579  BasicBlock *Header = L->getHeader();
580  Function *F = Header->getParent();
581
582  // Figure out which basic blocks contain back-edges to the loop header.
583  std::vector<BasicBlock*> BackedgeBlocks;
584  for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I)
585    if (*I != Preheader) BackedgeBlocks.push_back(*I);
586
587  // Create and insert the new backedge block...
588  BasicBlock *BEBlock = new BasicBlock(Header->getName()+".backedge", F);
589  BranchInst *BETerminator = new BranchInst(Header, BEBlock);
590
591  // Move the new backedge block to right after the last backedge block.
592  Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos;
593  F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
594
595  // Now that the block has been inserted into the function, create PHI nodes in
596  // the backedge block which correspond to any PHI nodes in the header block.
597  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
598    PHINode *PN = cast<PHINode>(I);
599    PHINode *NewPN = new PHINode(PN->getType(), PN->getName()+".be",
600                                 BETerminator);
601    NewPN->reserveOperandSpace(BackedgeBlocks.size());
602    if (AA) AA->copyValue(PN, NewPN);
603
604    // Loop over the PHI node, moving all entries except the one for the
605    // preheader over to the new PHI node.
606    unsigned PreheaderIdx = ~0U;
607    bool HasUniqueIncomingValue = true;
608    Value *UniqueValue = 0;
609    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
610      BasicBlock *IBB = PN->getIncomingBlock(i);
611      Value *IV = PN->getIncomingValue(i);
612      if (IBB == Preheader) {
613        PreheaderIdx = i;
614      } else {
615        NewPN->addIncoming(IV, IBB);
616        if (HasUniqueIncomingValue) {
617          if (UniqueValue == 0)
618            UniqueValue = IV;
619          else if (UniqueValue != IV)
620            HasUniqueIncomingValue = false;
621        }
622      }
623    }
624
625    // Delete all of the incoming values from the old PN except the preheader's
626    assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
627    if (PreheaderIdx != 0) {
628      PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
629      PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
630    }
631    // Nuke all entries except the zero'th.
632    for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
633      PN->removeIncomingValue(e-i, false);
634
635    // Finally, add the newly constructed PHI node as the entry for the BEBlock.
636    PN->addIncoming(NewPN, BEBlock);
637
638    // As an optimization, if all incoming values in the new PhiNode (which is a
639    // subset of the incoming values of the old PHI node) have the same value,
640    // eliminate the PHI Node.
641    if (HasUniqueIncomingValue) {
642      NewPN->replaceAllUsesWith(UniqueValue);
643      if (AA) AA->deleteValue(NewPN);
644      BEBlock->getInstList().erase(NewPN);
645    }
646  }
647
648  // Now that all of the PHI nodes have been inserted and adjusted, modify the
649  // backedge blocks to just to the BEBlock instead of the header.
650  for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
651    TerminatorInst *TI = BackedgeBlocks[i]->getTerminator();
652    for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
653      if (TI->getSuccessor(Op) == Header)
654        TI->setSuccessor(Op, BEBlock);
655  }
656
657  //===--- Update all analyses which we must preserve now -----------------===//
658
659  // Update Loop Information - we know that this block is now in the current
660  // loop and all parent loops.
661  L->addBasicBlockToLoop(BEBlock, getAnalysis<LoopInfo>());
662
663  // Update dominator information (set, immdom, domtree, and domfrontier)
664  UpdateDomInfoForRevectoredPreds(BEBlock, BackedgeBlocks);
665}
666
667/// UpdateDomInfoForRevectoredPreds - This method is used to update the four
668/// different kinds of dominator information (dominator sets, immediate
669/// dominators, dominator trees, and dominance frontiers) after a new block has
670/// been added to the CFG.
671///
672/// This only supports the case when an existing block (known as "NewBBSucc"),
673/// had some of its predecessors factored into a new basic block.  This
674/// transformation inserts a new basic block ("NewBB"), with a single
675/// unconditional branch to NewBBSucc, and moves some predecessors of
676/// "NewBBSucc" to now branch to NewBB.  These predecessors are listed in
677/// PredBlocks, even though they are the same as
678/// pred_begin(NewBB)/pred_end(NewBB).
679///
680void LoopSimplify::UpdateDomInfoForRevectoredPreds(BasicBlock *NewBB,
681                                         std::vector<BasicBlock*> &PredBlocks) {
682  assert(!PredBlocks.empty() && "No predblocks??");
683  assert(succ_begin(NewBB) != succ_end(NewBB) &&
684         ++succ_begin(NewBB) == succ_end(NewBB) &&
685         "NewBB should have a single successor!");
686  BasicBlock *NewBBSucc = *succ_begin(NewBB);
687  DominatorSet &DS = getAnalysis<DominatorSet>();
688
689  // Update dominator information...  The blocks that dominate NewBB are the
690  // intersection of the dominators of predecessors, plus the block itself.
691  //
692  DominatorSet::DomSetType NewBBDomSet = DS.getDominators(PredBlocks[0]);
693  for (unsigned i = 1, e = PredBlocks.size(); i != e; ++i)
694    set_intersect(NewBBDomSet, DS.getDominators(PredBlocks[i]));
695  NewBBDomSet.insert(NewBB);  // All blocks dominate themselves...
696  DS.addBasicBlock(NewBB, NewBBDomSet);
697
698  // The newly inserted basic block will dominate existing basic blocks iff the
699  // PredBlocks dominate all of the non-pred blocks.  If all predblocks dominate
700  // the non-pred blocks, then they all must be the same block!
701  //
702  bool NewBBDominatesNewBBSucc = true;
703  {
704    BasicBlock *OnePred = PredBlocks[0];
705    for (unsigned i = 1, e = PredBlocks.size(); i != e; ++i)
706      if (PredBlocks[i] != OnePred) {
707        NewBBDominatesNewBBSucc = false;
708        break;
709      }
710
711    if (NewBBDominatesNewBBSucc)
712      for (pred_iterator PI = pred_begin(NewBBSucc), E = pred_end(NewBBSucc);
713           PI != E; ++PI)
714        if (*PI != NewBB && !DS.dominates(NewBBSucc, *PI)) {
715          NewBBDominatesNewBBSucc = false;
716          break;
717        }
718  }
719
720  // The other scenario where the new block can dominate its successors are when
721  // all predecessors of NewBBSucc that are not NewBB are dominated by NewBBSucc
722  // already.
723  if (!NewBBDominatesNewBBSucc) {
724    NewBBDominatesNewBBSucc = true;
725    for (pred_iterator PI = pred_begin(NewBBSucc), E = pred_end(NewBBSucc);
726         PI != E; ++PI)
727      if (*PI != NewBB && !DS.dominates(NewBBSucc, *PI)) {
728        NewBBDominatesNewBBSucc = false;
729        break;
730      }
731  }
732
733  // If NewBB dominates some blocks, then it will dominate all blocks that
734  // NewBBSucc does.
735  if (NewBBDominatesNewBBSucc) {
736    BasicBlock *PredBlock = PredBlocks[0];
737    Function *F = NewBB->getParent();
738    for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I)
739      if (DS.dominates(NewBBSucc, I))
740        DS.addDominator(I, NewBB);
741  }
742
743  // Update immediate dominator information if we have it...
744  BasicBlock *NewBBIDom = 0;
745  if (ImmediateDominators *ID = getAnalysisToUpdate<ImmediateDominators>()) {
746    // To find the immediate dominator of the new exit node, we trace up the
747    // immediate dominators of a predecessor until we find a basic block that
748    // dominates the exit block.
749    //
750    BasicBlock *Dom = PredBlocks[0];  // Some random predecessor...
751    while (!NewBBDomSet.count(Dom)) {  // Loop until we find a dominator...
752      assert(Dom != 0 && "No shared dominator found???");
753      Dom = ID->get(Dom);
754    }
755
756    // Set the immediate dominator now...
757    ID->addNewBlock(NewBB, Dom);
758    NewBBIDom = Dom;   // Reuse this if calculating DominatorTree info...
759
760    // If NewBB strictly dominates other blocks, we need to update their idom's
761    // now.  The only block that need adjustment is the NewBBSucc block, whose
762    // idom should currently be set to PredBlocks[0].
763    if (NewBBDominatesNewBBSucc)
764      ID->setImmediateDominator(NewBBSucc, NewBB);
765  }
766
767  // Update DominatorTree information if it is active.
768  if (DominatorTree *DT = getAnalysisToUpdate<DominatorTree>()) {
769    // If we don't have ImmediateDominator info around, calculate the idom as
770    // above.
771    DominatorTree::Node *NewBBIDomNode;
772    if (NewBBIDom) {
773      NewBBIDomNode = DT->getNode(NewBBIDom);
774    } else {
775      NewBBIDomNode = DT->getNode(PredBlocks[0]); // Random pred
776      while (!NewBBDomSet.count(NewBBIDomNode->getBlock())) {
777        NewBBIDomNode = NewBBIDomNode->getIDom();
778        assert(NewBBIDomNode && "No shared dominator found??");
779      }
780    }
781
782    // Create the new dominator tree node... and set the idom of NewBB.
783    DominatorTree::Node *NewBBNode = DT->createNewNode(NewBB, NewBBIDomNode);
784
785    // If NewBB strictly dominates other blocks, then it is now the immediate
786    // dominator of NewBBSucc.  Update the dominator tree as appropriate.
787    if (NewBBDominatesNewBBSucc) {
788      DominatorTree::Node *NewBBSuccNode = DT->getNode(NewBBSucc);
789      DT->changeImmediateDominator(NewBBSuccNode, NewBBNode);
790    }
791  }
792
793  // Update dominance frontier information...
794  if (DominanceFrontier *DF = getAnalysisToUpdate<DominanceFrontier>()) {
795    // If NewBB dominates NewBBSucc, then DF(NewBB) is now going to be the
796    // DF(PredBlocks[0]) without the stuff that the new block does not dominate
797    // a predecessor of.
798    if (NewBBDominatesNewBBSucc) {
799      DominanceFrontier::iterator DFI = DF->find(PredBlocks[0]);
800      if (DFI != DF->end()) {
801        DominanceFrontier::DomSetType Set = DFI->second;
802        // Filter out stuff in Set that we do not dominate a predecessor of.
803        for (DominanceFrontier::DomSetType::iterator SetI = Set.begin(),
804               E = Set.end(); SetI != E;) {
805          bool DominatesPred = false;
806          for (pred_iterator PI = pred_begin(*SetI), E = pred_end(*SetI);
807               PI != E; ++PI)
808            if (DS.dominates(NewBB, *PI))
809              DominatesPred = true;
810          if (!DominatesPred)
811            Set.erase(SetI++);
812          else
813            ++SetI;
814        }
815
816        DF->addBasicBlock(NewBB, Set);
817      }
818
819    } else {
820      // DF(NewBB) is {NewBBSucc} because NewBB does not strictly dominate
821      // NewBBSucc, but it does dominate itself (and there is an edge (NewBB ->
822      // NewBBSucc)).  NewBBSucc is the single successor of NewBB.
823      DominanceFrontier::DomSetType NewDFSet;
824      NewDFSet.insert(NewBBSucc);
825      DF->addBasicBlock(NewBB, NewDFSet);
826    }
827
828    // Now we must loop over all of the dominance frontiers in the function,
829    // replacing occurrences of NewBBSucc with NewBB in some cases.  All
830    // blocks that dominate a block in PredBlocks and contained NewBBSucc in
831    // their dominance frontier must be updated to contain NewBB instead.
832    //
833    for (unsigned i = 0, e = PredBlocks.size(); i != e; ++i) {
834      BasicBlock *Pred = PredBlocks[i];
835      // Get all of the dominators of the predecessor...
836      const DominatorSet::DomSetType &PredDoms = DS.getDominators(Pred);
837      for (DominatorSet::DomSetType::const_iterator PDI = PredDoms.begin(),
838             PDE = PredDoms.end(); PDI != PDE; ++PDI) {
839        BasicBlock *PredDom = *PDI;
840
841        // If the NewBBSucc node is in DF(PredDom), then PredDom didn't
842        // dominate NewBBSucc but did dominate a predecessor of it.  Now we
843        // change this entry to include NewBB in the DF instead of NewBBSucc.
844        DominanceFrontier::iterator DFI = DF->find(PredDom);
845        assert(DFI != DF->end() && "No dominance frontier for node?");
846        if (DFI->second.count(NewBBSucc)) {
847          // If NewBBSucc should not stay in our dominator frontier, remove it.
848          // We remove it unless there is a predecessor of NewBBSucc that we
849          // dominate, but we don't strictly dominate NewBBSucc.
850          bool ShouldRemove = true;
851          if (PredDom == NewBBSucc || !DS.dominates(PredDom, NewBBSucc)) {
852            // Okay, we know that PredDom does not strictly dominate NewBBSucc.
853            // Check to see if it dominates any predecessors of NewBBSucc.
854            for (pred_iterator PI = pred_begin(NewBBSucc),
855                   E = pred_end(NewBBSucc); PI != E; ++PI)
856              if (DS.dominates(PredDom, *PI)) {
857                ShouldRemove = false;
858                break;
859              }
860          }
861
862          if (ShouldRemove)
863            DF->removeFromFrontier(DFI, NewBBSucc);
864          DF->addToFrontier(DFI, NewBB);
865        }
866      }
867    }
868  }
869}
870
871