LoopSimplify.cpp revision 9f879cfb0a93bf34818fb68e1dc209d47a7d24f3
1//===- LoopPreheaders.cpp - Loop Preheader Insertion Pass -----------------===//
2//
3// Insert Loop pre-headers and exit blocks into the CFG for each function in the
4// module.  This pass updates loop information and dominator information.
5//
6// Loop pre-header insertion guarantees that there is a single, non-critical
7// entry edge from outside of the loop to the loop header.  This simplifies a
8// number of analyses and transformations, such as LICM.
9//
10// Loop exit-block insertion guarantees that all exit blocks from the loop
11// (blocks which are outside of the loop that have predecessors inside of the
12// loop) are dominated by the loop header.  This simplifies transformations such
13// as store-sinking that is built into LICM.
14//
15// Note that the simplifycfg pass will clean up blocks which are split out but
16// end up being unneccesary, so usage of this pass does not neccesarily
17// pessimize generated code.
18//
19//===----------------------------------------------------------------------===//
20
21#include "llvm/Transforms/Scalar.h"
22#include "llvm/Analysis/Dominators.h"
23#include "llvm/Analysis/LoopInfo.h"
24#include "llvm/Function.h"
25#include "llvm/iTerminators.h"
26#include "llvm/iPHINode.h"
27#include "llvm/Constant.h"
28#include "llvm/Support/CFG.h"
29#include "Support/SetOperations.h"
30#include "Support/Statistic.h"
31
32namespace {
33  Statistic<> NumInserted("preheaders", "Number of pre-header nodes inserted");
34
35  struct Preheaders : public FunctionPass {
36    virtual bool runOnFunction(Function &F);
37
38    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
39      // We need loop information to identify the loops...
40      AU.addRequired<LoopInfo>();
41      AU.addRequired<DominatorSet>();
42
43      AU.addPreserved<LoopInfo>();
44      AU.addPreserved<DominatorSet>();
45      AU.addPreserved<ImmediateDominators>();
46      AU.addPreserved<DominatorTree>();
47      AU.addPreserved<DominanceFrontier>();
48      AU.addPreservedID(BreakCriticalEdgesID);  // No crit edges added....
49    }
50  private:
51    bool ProcessLoop(Loop *L);
52    BasicBlock *SplitBlockPredecessors(BasicBlock *BB, const char *Suffix,
53                                       const std::vector<BasicBlock*> &Preds);
54    void RewriteLoopExitBlock(Loop *L, BasicBlock *Exit);
55    void InsertPreheaderForLoop(Loop *L);
56  };
57
58  RegisterOpt<Preheaders> X("preheaders", "Natural loop pre-header insertion");
59}
60
61// Publically exposed interface to pass...
62const PassInfo *LoopPreheadersID = X.getPassInfo();
63Pass *createLoopPreheaderInsertionPass() { return new Preheaders(); }
64
65
66/// runOnFunction - Run down all loops in the CFG (recursively, but we could do
67/// it in any convenient order) inserting preheaders...
68///
69bool Preheaders::runOnFunction(Function &F) {
70  bool Changed = false;
71  LoopInfo &LI = getAnalysis<LoopInfo>();
72
73  for (unsigned i = 0, e = LI.getTopLevelLoops().size(); i != e; ++i)
74    Changed |= ProcessLoop(LI.getTopLevelLoops()[i]);
75
76  return Changed;
77}
78
79
80/// ProcessLoop - Walk the loop structure in depth first order, ensuring that
81/// all loops have preheaders.
82///
83bool Preheaders::ProcessLoop(Loop *L) {
84  bool Changed = false;
85
86  // Does the loop already have a preheader?  If so, don't modify the loop...
87  if (L->getLoopPreheader() == 0) {
88    InsertPreheaderForLoop(L);
89    NumInserted++;
90    Changed = true;
91  }
92
93  DominatorSet &DS = getAnalysis<DominatorSet>();
94  BasicBlock *Header = L->getHeader();
95  for (unsigned i = 0, e = L->getExitBlocks().size(); i != e; ++i)
96    if (!DS.dominates(Header, L->getExitBlocks()[i])) {
97      RewriteLoopExitBlock(L, L->getExitBlocks()[i]);
98      assert(DS.dominates(Header, L->getExitBlocks()[i]) &&
99             "RewriteLoopExitBlock failed?");
100      NumInserted++;
101      Changed = true;
102    }
103
104  const std::vector<Loop*> &SubLoops = L->getSubLoops();
105  for (unsigned i = 0, e = SubLoops.size(); i != e; ++i)
106    Changed |= ProcessLoop(SubLoops[i]);
107  return Changed;
108}
109
110/// SplitBlockPredecessors - Split the specified block into two blocks.  We want
111/// to move the predecessors specified in the Preds list to point to the new
112/// block, leaving the remaining predecessors pointing to BB.  This method
113/// updates the SSA PHINode's, but no other analyses.
114///
115BasicBlock *Preheaders::SplitBlockPredecessors(BasicBlock *BB,
116                                               const char *Suffix,
117                                       const std::vector<BasicBlock*> &Preds) {
118
119  // Create new basic block, insert right before the original block...
120  BasicBlock *NewBB = new BasicBlock(BB->getName()+Suffix, BB);
121
122  // The preheader first gets an unconditional branch to the loop header...
123  BranchInst *BI = new BranchInst(BB);
124  NewBB->getInstList().push_back(BI);
125
126  // For every PHI node in the block, insert a PHI node into NewBB where the
127  // incoming values from the out of loop edges are moved to NewBB.  We have two
128  // possible cases here.  If the loop is dead, we just insert dummy entries
129  // into the PHI nodes for the new edge.  If the loop is not dead, we move the
130  // incoming edges in BB into new PHI nodes in NewBB.
131  //
132  if (!Preds.empty()) {  // Is the loop not obviously dead?
133    for (BasicBlock::iterator I = BB->begin();
134         PHINode *PN = dyn_cast<PHINode>(&*I); ++I) {
135
136      // Create the new PHI node, insert it into NewBB at the end of the block
137      PHINode *NewPHI = new PHINode(PN->getType(), PN->getName()+".ph", BI);
138
139      // Move all of the edges from blocks outside the loop to the new PHI
140      for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
141        Value *V = PN->removeIncomingValue(Preds[i]);
142        NewPHI->addIncoming(V, Preds[i]);
143      }
144
145      // Add an incoming value to the PHI node in the loop for the preheader
146      // edge
147      PN->addIncoming(NewPHI, NewBB);
148    }
149
150    // Now that the PHI nodes are updated, actually move the edges from
151    // Preds to point to NewBB instead of BB.
152    //
153    for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
154      TerminatorInst *TI = Preds[i]->getTerminator();
155      for (unsigned s = 0, e = TI->getNumSuccessors(); s != e; ++s)
156        if (TI->getSuccessor(s) == BB)
157          TI->setSuccessor(s, NewBB);
158    }
159
160  } else {                       // Otherwise the loop is dead...
161    for (BasicBlock::iterator I = BB->begin();
162         PHINode *PN = dyn_cast<PHINode>(&*I); ++I)
163      // Insert dummy values as the incoming value...
164      PN->addIncoming(Constant::getNullValue(PN->getType()), NewBB);
165  }
166  return NewBB;
167}
168
169
170/// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
171/// preheader, this method is called to insert one.  This method has two phases:
172/// preheader insertion and analysis updating.
173///
174void Preheaders::InsertPreheaderForLoop(Loop *L) {
175  BasicBlock *Header = L->getHeader();
176
177  // Compute the set of predecessors of the loop that are not in the loop.
178  std::vector<BasicBlock*> OutsideBlocks;
179  for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
180       PI != PE; ++PI)
181      if (!L->contains(*PI))           // Coming in from outside the loop?
182        OutsideBlocks.push_back(*PI);  // Keep track of it...
183
184  // Split out the loop pre-header
185  BasicBlock *NewBB =
186    SplitBlockPredecessors(Header, ".preheader", OutsideBlocks);
187
188  //===--------------------------------------------------------------------===//
189  //  Update analysis results now that we have preformed the transformation
190  //
191
192  // We know that we have loop information to update... update it now.
193  if (Loop *Parent = L->getParentLoop())
194    Parent->addBasicBlockToLoop(NewBB, getAnalysis<LoopInfo>());
195
196  // If the header for the loop used to be an exit node for another loop, then
197  // we need to update this to know that the loop-preheader is now the exit
198  // node.  Note that the only loop that could have our header as an exit node
199  // is a sibling loop, ie, one with the same parent loop.
200  const std::vector<Loop*> *ParentSubLoops;
201  if (Loop *Parent = L->getParentLoop())
202    ParentSubLoops = &Parent->getSubLoops();
203  else       // Must check top-level loops...
204    ParentSubLoops = &getAnalysis<LoopInfo>().getTopLevelLoops();
205
206  // Loop over all sibling loops, performing the substitution...
207  for (unsigned i = 0, e = ParentSubLoops->size(); i != e; ++i)
208    if ((*ParentSubLoops)[i]->hasExitBlock(Header))
209      (*ParentSubLoops)[i]->changeExitBlock(Header, NewBB);
210
211
212  DominatorSet &DS = getAnalysis<DominatorSet>();  // Update dominator info
213  {
214    // The blocks that dominate NewBB are the blocks that dominate Header,
215    // minus Header, plus NewBB.
216    DominatorSet::DomSetType DomSet = DS.getDominators(Header);
217    DomSet.insert(NewBB);  // We dominate ourself
218    DomSet.erase(Header);  // Header does not dominate us...
219    DS.addBasicBlock(NewBB, DomSet);
220
221    // The newly created basic block dominates all nodes dominated by Header.
222    for (Function::iterator I = Header->getParent()->begin(),
223           E = Header->getParent()->end(); I != E; ++I)
224      if (DS.dominates(Header, I))
225        DS.addDominator(I, NewBB);
226  }
227
228  // Update immediate dominator information if we have it...
229  if (ImmediateDominators *ID = getAnalysisToUpdate<ImmediateDominators>()) {
230    // Whatever i-dominated the header node now immediately dominates NewBB
231    ID->addNewBlock(NewBB, ID->get(Header));
232
233    // The preheader now is the immediate dominator for the header node...
234    ID->setImmediateDominator(Header, NewBB);
235  }
236
237  // Update DominatorTree information if it is active.
238  if (DominatorTree *DT = getAnalysisToUpdate<DominatorTree>()) {
239    // The immediate dominator of the preheader is the immediate dominator of
240    // the old header.
241    //
242    DominatorTree::Node *HeaderNode = DT->getNode(Header);
243    DominatorTree::Node *PHNode = DT->createNewNode(NewBB,
244                                                    HeaderNode->getIDom());
245
246    // Change the header node so that PNHode is the new immediate dominator
247    DT->changeImmediateDominator(HeaderNode, PHNode);
248  }
249
250  // Update dominance frontier information...
251  if (DominanceFrontier *DF = getAnalysisToUpdate<DominanceFrontier>()) {
252    // The DF(NewBB) is just (DF(Header)-Header), because NewBB dominates
253    // everything that Header does, and it strictly dominates Header in
254    // addition.
255    assert(DF->find(Header) != DF->end() && "Header node doesn't have DF set?");
256    DominanceFrontier::DomSetType NewDFSet = DF->find(Header)->second;
257    NewDFSet.erase(Header);
258    DF->addBasicBlock(NewBB, NewDFSet);
259
260    // Now we must loop over all of the dominance frontiers in the function,
261    // replacing occurances of Header with NewBB in some cases.  If a block
262    // dominates a (now) predecessor of NewBB, but did not strictly dominate
263    // Header, it will have Header in it's DF set, but should now have NewBB in
264    // its set.
265    for (unsigned i = 0, e = OutsideBlocks.size(); i != e; ++i) {
266      // Get all of the dominators of the predecessor...
267      const DominatorSet::DomSetType &PredDoms =
268        DS.getDominators(OutsideBlocks[i]);
269      for (DominatorSet::DomSetType::const_iterator PDI = PredDoms.begin(),
270             PDE = PredDoms.end(); PDI != PDE; ++PDI) {
271        BasicBlock *PredDom = *PDI;
272        // If the loop header is in DF(PredDom), then PredDom didn't dominate
273        // the header but did dominate a predecessor outside of the loop.  Now
274        // we change this entry to include the preheader in the DF instead of
275        // the header.
276        DominanceFrontier::iterator DFI = DF->find(PredDom);
277        assert(DFI != DF->end() && "No dominance frontier for node?");
278        if (DFI->second.count(Header)) {
279          DF->removeFromFrontier(DFI, Header);
280          DF->addToFrontier(DFI, NewBB);
281        }
282      }
283    }
284  }
285}
286
287void Preheaders::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) {
288  DominatorSet &DS = getAnalysis<DominatorSet>();
289  assert(!DS.dominates(L->getHeader(), Exit) &&
290         "Loop already dominates exit block??");
291  assert(std::find(L->getExitBlocks().begin(), L->getExitBlocks().end(), Exit)
292         != L->getExitBlocks().end() && "Not a current exit block!");
293
294  std::vector<BasicBlock*> LoopBlocks;
295  for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I)
296    if (L->contains(*I))
297      LoopBlocks.push_back(*I);
298
299  assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?");
300  BasicBlock *NewBB = SplitBlockPredecessors(Exit, ".loopexit", LoopBlocks);
301
302  // Update Loop Information - we know that the new block will be in the parent
303  // loop of L.
304  if (Loop *Parent = L->getParentLoop())
305    Parent->addBasicBlockToLoop(NewBB, getAnalysis<LoopInfo>());
306  L->changeExitBlock(Exit, NewBB);   // Update exit block information
307
308  // Update dominator information...  The blocks that dominate NewBB are the
309  // intersection of the dominators of predecessors, plus the block itself.
310  // The newly created basic block does not dominate anything except itself.
311  //
312  DominatorSet::DomSetType NewBBDomSet = DS.getDominators(LoopBlocks[0]);
313  for (unsigned i = 1, e = LoopBlocks.size(); i != e; ++i)
314    set_intersect(NewBBDomSet, DS.getDominators(LoopBlocks[i]));
315  NewBBDomSet.insert(NewBB);  // All blocks dominate themselves...
316  DS.addBasicBlock(NewBB, NewBBDomSet);
317
318  // Update immediate dominator information if we have it...
319  BasicBlock *NewBBIDom = 0;
320  if (ImmediateDominators *ID = getAnalysisToUpdate<ImmediateDominators>()) {
321    // This block does not strictly dominate anything, so it is not an immediate
322    // dominator.  To find the immediate dominator of the new exit node, we
323    // trace up the immediate dominators of a predecessor until we find a basic
324    // block that dominates the exit block.
325    //
326    BasicBlock *Dom = LoopBlocks[0];  // Some random predecessor...
327    while (!NewBBDomSet.count(Dom)) {  // Loop until we find a dominator...
328      assert(Dom != 0 && "No shared dominator found???");
329      Dom = ID->get(Dom);
330    }
331
332    // Set the immediate dominator now...
333    ID->addNewBlock(NewBB, Dom);
334    NewBBIDom = Dom;   // Reuse this if calculating DominatorTree info...
335  }
336
337  // Update DominatorTree information if it is active.
338  if (DominatorTree *DT = getAnalysisToUpdate<DominatorTree>()) {
339    // NewBB doesn't dominate anything, so just create a node and link it into
340    // its immediate dominator.  If we don't have ImmediateDominator info
341    // around, calculate the idom as above.
342    DominatorTree::Node *NewBBIDomNode;
343    if (NewBBIDom) {
344      NewBBIDomNode = DT->getNode(NewBBIDom);
345    } else {
346      NewBBIDomNode = DT->getNode(LoopBlocks[0]); // Random pred
347      while (!NewBBDomSet.count(NewBBIDomNode->getNode())) {
348        NewBBIDomNode = NewBBIDomNode->getIDom();
349        assert(NewBBIDomNode && "No shared dominator found??");
350      }
351    }
352
353    // Create the new dominator tree node...
354    DT->createNewNode(NewBB, NewBBIDomNode);
355  }
356
357  // Update dominance frontier information...
358  if (DominanceFrontier *DF = getAnalysisToUpdate<DominanceFrontier>()) {
359    // DF(NewBB) is {Exit} because NewBB does not strictly dominate Exit, but it
360    // does dominate itself (and there is an edge (NewBB -> Exit)).
361    DominanceFrontier::DomSetType NewDFSet;
362    NewDFSet.insert(Exit);
363    DF->addBasicBlock(NewBB, NewDFSet);
364
365    // Now we must loop over all of the dominance frontiers in the function,
366    // replacing occurances of Exit with NewBB in some cases.  If a block
367    // dominates a (now) predecessor of NewBB, but did not strictly dominate
368    // Exit, it will have Exit in it's DF set, but should now have NewBB in its
369    // set.
370    for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
371      // Get all of the dominators of the predecessor...
372      const DominatorSet::DomSetType &PredDoms =DS.getDominators(LoopBlocks[i]);
373      for (DominatorSet::DomSetType::const_iterator PDI = PredDoms.begin(),
374             PDE = PredDoms.end(); PDI != PDE; ++PDI) {
375        BasicBlock *PredDom = *PDI;
376        // Make sure to only rewrite blocks that are part of the loop...
377        if (L->contains(PredDom)) {
378          // If the exit node is in DF(PredDom), then PredDom didn't dominate
379          // Exit but did dominate a predecessor inside of the loop.  Now we
380          // change this entry to include NewBB in the DF instead of Exit.
381          DominanceFrontier::iterator DFI = DF->find(PredDom);
382          assert(DFI != DF->end() && "No dominance frontier for node?");
383          if (DFI->second.count(Exit)) {
384            DF->removeFromFrontier(DFI, Exit);
385            DF->addToFrontier(DFI, NewBB);
386          }
387        }
388      }
389    }
390  }
391}
392