LoopSimplify.cpp revision b576c94c15af9a440f69d9d03c2afead7971118c
1//===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs several transformations to transform natural loops into a
11// simpler form, which makes subsequent analyses and transformations simpler and
12// more effective.
13//
14// Loop pre-header insertion guarantees that there is a single, non-critical
15// entry edge from outside of the loop to the loop header.  This simplifies a
16// number of analyses and transformations, such as LICM.
17//
18// Loop exit-block insertion guarantees that all exit blocks from the loop
19// (blocks which are outside of the loop that have predecessors inside of the
20// loop) are dominated by the loop header.  This simplifies transformations such
21// as store-sinking that are built into LICM.
22//
23// This pass also guarantees that loops will have exactly one backedge.
24//
25// Note that the simplifycfg pass will clean up blocks which are split out but
26// end up being unnecessary, so usage of this pass should not pessimize
27// generated code.
28//
29// This pass obviously modifies the CFG, but updates loop information and
30// dominator information.
31//
32//===----------------------------------------------------------------------===//
33
34#include "llvm/Transforms/Scalar.h"
35#include "llvm/Analysis/Dominators.h"
36#include "llvm/Analysis/LoopInfo.h"
37#include "llvm/Function.h"
38#include "llvm/iTerminators.h"
39#include "llvm/iPHINode.h"
40#include "llvm/Constant.h"
41#include "llvm/Support/CFG.h"
42#include "Support/SetOperations.h"
43#include "Support/Statistic.h"
44#include "Support/DepthFirstIterator.h"
45
46namespace {
47  Statistic<>
48  NumInserted("loopsimplify", "Number of pre-header blocks inserted");
49
50  struct LoopSimplify : public FunctionPass {
51    virtual bool runOnFunction(Function &F);
52
53    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
54      // We need loop information to identify the loops...
55      AU.addRequired<LoopInfo>();
56      AU.addRequired<DominatorSet>();
57
58      AU.addPreserved<LoopInfo>();
59      AU.addPreserved<DominatorSet>();
60      AU.addPreserved<ImmediateDominators>();
61      AU.addPreserved<DominatorTree>();
62      AU.addPreserved<DominanceFrontier>();
63      AU.addPreservedID(BreakCriticalEdgesID);  // No crit edges added....
64    }
65  private:
66    bool ProcessLoop(Loop *L);
67    BasicBlock *SplitBlockPredecessors(BasicBlock *BB, const char *Suffix,
68                                       const std::vector<BasicBlock*> &Preds);
69    void RewriteLoopExitBlock(Loop *L, BasicBlock *Exit);
70    void InsertPreheaderForLoop(Loop *L);
71    void InsertUniqueBackedgeBlock(Loop *L);
72
73    void UpdateDomInfoForRevectoredPreds(BasicBlock *NewBB,
74                                         std::vector<BasicBlock*> &PredBlocks);
75  };
76
77  RegisterOpt<LoopSimplify>
78  X("loopsimplify", "Canonicalize natural loops", true);
79}
80
81// Publically exposed interface to pass...
82const PassInfo *LoopSimplifyID = X.getPassInfo();
83Pass *createLoopSimplifyPass() { return new LoopSimplify(); }
84
85
86/// runOnFunction - Run down all loops in the CFG (recursively, but we could do
87/// it in any convenient order) inserting preheaders...
88///
89bool LoopSimplify::runOnFunction(Function &F) {
90  bool Changed = false;
91  LoopInfo &LI = getAnalysis<LoopInfo>();
92
93  for (unsigned i = 0, e = LI.getTopLevelLoops().size(); i != e; ++i)
94    Changed |= ProcessLoop(LI.getTopLevelLoops()[i]);
95
96  return Changed;
97}
98
99
100/// ProcessLoop - Walk the loop structure in depth first order, ensuring that
101/// all loops have preheaders.
102///
103bool LoopSimplify::ProcessLoop(Loop *L) {
104  bool Changed = false;
105
106  // Does the loop already have a preheader?  If so, don't modify the loop...
107  if (L->getLoopPreheader() == 0) {
108    InsertPreheaderForLoop(L);
109    NumInserted++;
110    Changed = true;
111  }
112
113  // Regardless of whether or not we added a preheader to the loop we must
114  // guarantee that the preheader dominates all exit nodes.  If there are any
115  // exit nodes not dominated, split them now.
116  DominatorSet &DS = getAnalysis<DominatorSet>();
117  BasicBlock *Header = L->getHeader();
118  for (unsigned i = 0, e = L->getExitBlocks().size(); i != e; ++i)
119    if (!DS.dominates(Header, L->getExitBlocks()[i])) {
120      RewriteLoopExitBlock(L, L->getExitBlocks()[i]);
121      assert(DS.dominates(Header, L->getExitBlocks()[i]) &&
122             "RewriteLoopExitBlock failed?");
123      NumInserted++;
124      Changed = true;
125    }
126
127  // The preheader may have more than two predecessors at this point (from the
128  // preheader and from the backedges).  To simplify the loop more, insert an
129  // extra back-edge block in the loop so that there is exactly one backedge.
130  if (L->getNumBackEdges() != 1) {
131    InsertUniqueBackedgeBlock(L);
132    NumInserted++;
133    Changed = true;
134  }
135
136  const std::vector<Loop*> &SubLoops = L->getSubLoops();
137  for (unsigned i = 0, e = SubLoops.size(); i != e; ++i)
138    Changed |= ProcessLoop(SubLoops[i]);
139  return Changed;
140}
141
142/// SplitBlockPredecessors - Split the specified block into two blocks.  We want
143/// to move the predecessors specified in the Preds list to point to the new
144/// block, leaving the remaining predecessors pointing to BB.  This method
145/// updates the SSA PHINode's, but no other analyses.
146///
147BasicBlock *LoopSimplify::SplitBlockPredecessors(BasicBlock *BB,
148                                                 const char *Suffix,
149                                       const std::vector<BasicBlock*> &Preds) {
150
151  // Create new basic block, insert right before the original block...
152  BasicBlock *NewBB = new BasicBlock(BB->getName()+Suffix, BB);
153
154  // The preheader first gets an unconditional branch to the loop header...
155  BranchInst *BI = new BranchInst(BB);
156  NewBB->getInstList().push_back(BI);
157
158  // For every PHI node in the block, insert a PHI node into NewBB where the
159  // incoming values from the out of loop edges are moved to NewBB.  We have two
160  // possible cases here.  If the loop is dead, we just insert dummy entries
161  // into the PHI nodes for the new edge.  If the loop is not dead, we move the
162  // incoming edges in BB into new PHI nodes in NewBB.
163  //
164  if (!Preds.empty()) {  // Is the loop not obviously dead?
165    for (BasicBlock::iterator I = BB->begin();
166         PHINode *PN = dyn_cast<PHINode>(I); ++I) {
167
168      // Create the new PHI node, insert it into NewBB at the end of the block
169      PHINode *NewPHI = new PHINode(PN->getType(), PN->getName()+".ph", BI);
170
171      // Move all of the edges from blocks outside the loop to the new PHI
172      for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
173        Value *V = PN->removeIncomingValue(Preds[i]);
174        NewPHI->addIncoming(V, Preds[i]);
175      }
176
177      // Add an incoming value to the PHI node in the loop for the preheader
178      // edge
179      PN->addIncoming(NewPHI, NewBB);
180    }
181
182    // Now that the PHI nodes are updated, actually move the edges from
183    // Preds to point to NewBB instead of BB.
184    //
185    for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
186      TerminatorInst *TI = Preds[i]->getTerminator();
187      for (unsigned s = 0, e = TI->getNumSuccessors(); s != e; ++s)
188        if (TI->getSuccessor(s) == BB)
189          TI->setSuccessor(s, NewBB);
190    }
191
192  } else {                       // Otherwise the loop is dead...
193    for (BasicBlock::iterator I = BB->begin();
194         PHINode *PN = dyn_cast<PHINode>(I); ++I)
195      // Insert dummy values as the incoming value...
196      PN->addIncoming(Constant::getNullValue(PN->getType()), NewBB);
197  }
198  return NewBB;
199}
200
201// ChangeExitBlock - This recursive function is used to change any exit blocks
202// that use OldExit to use NewExit instead.  This is recursive because children
203// may need to be processed as well.
204//
205static void ChangeExitBlock(Loop *L, BasicBlock *OldExit, BasicBlock *NewExit) {
206  if (L->hasExitBlock(OldExit)) {
207    L->changeExitBlock(OldExit, NewExit);
208    const std::vector<Loop*> &SubLoops = L->getSubLoops();
209    for (unsigned i = 0, e = SubLoops.size(); i != e; ++i)
210      ChangeExitBlock(SubLoops[i], OldExit, NewExit);
211  }
212}
213
214
215/// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
216/// preheader, this method is called to insert one.  This method has two phases:
217/// preheader insertion and analysis updating.
218///
219void LoopSimplify::InsertPreheaderForLoop(Loop *L) {
220  BasicBlock *Header = L->getHeader();
221
222  // Compute the set of predecessors of the loop that are not in the loop.
223  std::vector<BasicBlock*> OutsideBlocks;
224  for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
225       PI != PE; ++PI)
226      if (!L->contains(*PI))           // Coming in from outside the loop?
227        OutsideBlocks.push_back(*PI);  // Keep track of it...
228
229  // Split out the loop pre-header
230  BasicBlock *NewBB =
231    SplitBlockPredecessors(Header, ".preheader", OutsideBlocks);
232
233  //===--------------------------------------------------------------------===//
234  //  Update analysis results now that we have performed the transformation
235  //
236
237  // We know that we have loop information to update... update it now.
238  if (Loop *Parent = L->getParentLoop())
239    Parent->addBasicBlockToLoop(NewBB, getAnalysis<LoopInfo>());
240
241  // If the header for the loop used to be an exit node for another loop, then
242  // we need to update this to know that the loop-preheader is now the exit
243  // node.  Note that the only loop that could have our header as an exit node
244  // is a sibling loop, ie, one with the same parent loop, or one if it's
245  // children.
246  //
247  const std::vector<Loop*> *ParentSubLoops;
248  if (Loop *Parent = L->getParentLoop())
249    ParentSubLoops = &Parent->getSubLoops();
250  else       // Must check top-level loops...
251    ParentSubLoops = &getAnalysis<LoopInfo>().getTopLevelLoops();
252
253  // Loop over all sibling loops, performing the substitution (recursively to
254  // include child loops)...
255  for (unsigned i = 0, e = ParentSubLoops->size(); i != e; ++i)
256    ChangeExitBlock((*ParentSubLoops)[i], Header, NewBB);
257
258  DominatorSet &DS = getAnalysis<DominatorSet>();  // Update dominator info
259  {
260    // The blocks that dominate NewBB are the blocks that dominate Header,
261    // minus Header, plus NewBB.
262    DominatorSet::DomSetType DomSet = DS.getDominators(Header);
263    DomSet.insert(NewBB);  // We dominate ourself
264    DomSet.erase(Header);  // Header does not dominate us...
265    DS.addBasicBlock(NewBB, DomSet);
266
267    // The newly created basic block dominates all nodes dominated by Header.
268    for (Function::iterator I = Header->getParent()->begin(),
269           E = Header->getParent()->end(); I != E; ++I)
270      if (DS.dominates(Header, I))
271        DS.addDominator(I, NewBB);
272  }
273
274  // Update immediate dominator information if we have it...
275  if (ImmediateDominators *ID = getAnalysisToUpdate<ImmediateDominators>()) {
276    // Whatever i-dominated the header node now immediately dominates NewBB
277    ID->addNewBlock(NewBB, ID->get(Header));
278
279    // The preheader now is the immediate dominator for the header node...
280    ID->setImmediateDominator(Header, NewBB);
281  }
282
283  // Update DominatorTree information if it is active.
284  if (DominatorTree *DT = getAnalysisToUpdate<DominatorTree>()) {
285    // The immediate dominator of the preheader is the immediate dominator of
286    // the old header.
287    //
288    DominatorTree::Node *HeaderNode = DT->getNode(Header);
289    DominatorTree::Node *PHNode = DT->createNewNode(NewBB,
290                                                    HeaderNode->getIDom());
291
292    // Change the header node so that PNHode is the new immediate dominator
293    DT->changeImmediateDominator(HeaderNode, PHNode);
294  }
295
296  // Update dominance frontier information...
297  if (DominanceFrontier *DF = getAnalysisToUpdate<DominanceFrontier>()) {
298    // The DF(NewBB) is just (DF(Header)-Header), because NewBB dominates
299    // everything that Header does, and it strictly dominates Header in
300    // addition.
301    assert(DF->find(Header) != DF->end() && "Header node doesn't have DF set?");
302    DominanceFrontier::DomSetType NewDFSet = DF->find(Header)->second;
303    NewDFSet.erase(Header);
304    DF->addBasicBlock(NewBB, NewDFSet);
305
306    // Now we must loop over all of the dominance frontiers in the function,
307    // replacing occurrences of Header with NewBB in some cases.  If a block
308    // dominates a (now) predecessor of NewBB, but did not strictly dominate
309    // Header, it will have Header in it's DF set, but should now have NewBB in
310    // its set.
311    for (unsigned i = 0, e = OutsideBlocks.size(); i != e; ++i) {
312      // Get all of the dominators of the predecessor...
313      const DominatorSet::DomSetType &PredDoms =
314        DS.getDominators(OutsideBlocks[i]);
315      for (DominatorSet::DomSetType::const_iterator PDI = PredDoms.begin(),
316             PDE = PredDoms.end(); PDI != PDE; ++PDI) {
317        BasicBlock *PredDom = *PDI;
318        // If the loop header is in DF(PredDom), then PredDom didn't dominate
319        // the header but did dominate a predecessor outside of the loop.  Now
320        // we change this entry to include the preheader in the DF instead of
321        // the header.
322        DominanceFrontier::iterator DFI = DF->find(PredDom);
323        assert(DFI != DF->end() && "No dominance frontier for node?");
324        if (DFI->second.count(Header)) {
325          DF->removeFromFrontier(DFI, Header);
326          DF->addToFrontier(DFI, NewBB);
327        }
328      }
329    }
330  }
331}
332
333void LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) {
334  DominatorSet &DS = getAnalysis<DominatorSet>();
335  assert(!DS.dominates(L->getHeader(), Exit) &&
336         "Loop already dominates exit block??");
337  assert(std::find(L->getExitBlocks().begin(), L->getExitBlocks().end(), Exit)
338         != L->getExitBlocks().end() && "Not a current exit block!");
339
340  std::vector<BasicBlock*> LoopBlocks;
341  for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I)
342    if (L->contains(*I))
343      LoopBlocks.push_back(*I);
344
345  assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?");
346  BasicBlock *NewBB = SplitBlockPredecessors(Exit, ".loopexit", LoopBlocks);
347
348  // Update Loop Information - we know that the new block will be in the parent
349  // loop of L.
350  if (Loop *Parent = L->getParentLoop())
351    Parent->addBasicBlockToLoop(NewBB, getAnalysis<LoopInfo>());
352
353  // Replace any instances of Exit with NewBB in this and any nested loops...
354  for (df_iterator<Loop*> I = df_begin(L), E = df_end(L); I != E; ++I)
355    if (I->hasExitBlock(Exit))
356      I->changeExitBlock(Exit, NewBB);   // Update exit block information
357
358  // Update dominator information (set, immdom, domtree, and domfrontier)
359  UpdateDomInfoForRevectoredPreds(NewBB, LoopBlocks);
360}
361
362/// InsertUniqueBackedgeBlock - This method is called when the specified loop
363/// has more than one backedge in it.  If this occurs, revector all of these
364/// backedges to target a new basic block and have that block branch to the loop
365/// header.  This ensures that loops have exactly one backedge.
366///
367void LoopSimplify::InsertUniqueBackedgeBlock(Loop *L) {
368  assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
369
370  // Get information about the loop
371  BasicBlock *Preheader = L->getLoopPreheader();
372  BasicBlock *Header = L->getHeader();
373  Function *F = Header->getParent();
374
375  // Figure out which basic blocks contain back-edges to the loop header.
376  std::vector<BasicBlock*> BackedgeBlocks;
377  for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I)
378    if (*I != Preheader) BackedgeBlocks.push_back(*I);
379
380  // Create and insert the new backedge block...
381  BasicBlock *BEBlock = new BasicBlock(Header->getName()+".backedge", F);
382  Instruction *BETerminator = new BranchInst(Header);
383  BEBlock->getInstList().push_back(BETerminator);
384
385  // Move the new backedge block to right after the last backedge block.
386  Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos;
387  F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
388
389  // Now that the block has been inserted into the function, create PHI nodes in
390  // the backedge block which correspond to any PHI nodes in the header block.
391  for (BasicBlock::iterator I = Header->begin();
392       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
393    PHINode *NewPN = new PHINode(PN->getType(), PN->getName()+".be",
394                                 BETerminator);
395    NewPN->op_reserve(2*BackedgeBlocks.size());
396
397    // Loop over the PHI node, moving all entries except the one for the
398    // preheader over to the new PHI node.
399    unsigned PreheaderIdx = ~0U;
400    bool HasUniqueIncomingValue = true;
401    Value *UniqueValue = 0;
402    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
403      BasicBlock *IBB = PN->getIncomingBlock(i);
404      Value *IV = PN->getIncomingValue(i);
405      if (IBB == Preheader) {
406        PreheaderIdx = i;
407      } else {
408        NewPN->addIncoming(IV, IBB);
409        if (HasUniqueIncomingValue) {
410          if (UniqueValue == 0)
411            UniqueValue = IV;
412          else if (UniqueValue != IV)
413            HasUniqueIncomingValue = false;
414        }
415      }
416    }
417
418    // Delete all of the incoming values from the old PN except the preheader's
419    assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
420    if (PreheaderIdx != 0) {
421      PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
422      PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
423    }
424    PN->op_erase(PN->op_begin()+2, PN->op_end());
425
426    // Finally, add the newly constructed PHI node as the entry for the BEBlock.
427    PN->addIncoming(NewPN, BEBlock);
428
429    // As an optimization, if all incoming values in the new PhiNode (which is a
430    // subset of the incoming values of the old PHI node) have the same value,
431    // eliminate the PHI Node.
432    if (HasUniqueIncomingValue) {
433      NewPN->replaceAllUsesWith(UniqueValue);
434      BEBlock->getInstList().erase(NewPN);
435    }
436  }
437
438  // Now that all of the PHI nodes have been inserted and adjusted, modify the
439  // backedge blocks to just to the BEBlock instead of the header.
440  for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
441    TerminatorInst *TI = BackedgeBlocks[i]->getTerminator();
442    for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
443      if (TI->getSuccessor(Op) == Header)
444        TI->setSuccessor(Op, BEBlock);
445  }
446
447  //===--- Update all analyses which we must preserve now -----------------===//
448
449  // Update Loop Information - we know that this block is now in the current
450  // loop and all parent loops.
451  L->addBasicBlockToLoop(BEBlock, getAnalysis<LoopInfo>());
452
453  // Replace any instances of Exit with NewBB in this and any nested loops...
454  for (df_iterator<Loop*> I = df_begin(L), E = df_end(L); I != E; ++I)
455    if (I->hasExitBlock(Header))
456      I->changeExitBlock(Header, BEBlock);   // Update exit block information
457
458  // Update dominator information (set, immdom, domtree, and domfrontier)
459  UpdateDomInfoForRevectoredPreds(BEBlock, BackedgeBlocks);
460}
461
462/// UpdateDomInfoForRevectoredPreds - This method is used to update the four
463/// different kinds of dominator information (dominator sets, immediate
464/// dominators, dominator trees, and dominance frontiers) after a new block has
465/// been added to the CFG.
466///
467/// This only supports the case when an existing block (known as "Exit"), had
468/// some of its predecessors factored into a new basic block.  This
469/// transformation inserts a new basic block ("NewBB"), with a single
470/// unconditional branch to Exit, and moves some predecessors of "Exit" to now
471/// branch to NewBB.  These predecessors are listed in PredBlocks, even though
472/// they are the same as pred_begin(NewBB)/pred_end(NewBB).
473///
474void LoopSimplify::UpdateDomInfoForRevectoredPreds(BasicBlock *NewBB,
475                                         std::vector<BasicBlock*> &PredBlocks) {
476  assert(succ_begin(NewBB) != succ_end(NewBB) &&
477         ++succ_begin(NewBB) == succ_end(NewBB) &&
478         "NewBB should have a single successor!");
479  DominatorSet &DS = getAnalysis<DominatorSet>();
480
481  // Update dominator information...  The blocks that dominate NewBB are the
482  // intersection of the dominators of predecessors, plus the block itself.
483  // The newly created basic block does not dominate anything except itself.
484  //
485  DominatorSet::DomSetType NewBBDomSet = DS.getDominators(PredBlocks[0]);
486  for (unsigned i = 1, e = PredBlocks.size(); i != e; ++i)
487    set_intersect(NewBBDomSet, DS.getDominators(PredBlocks[i]));
488  NewBBDomSet.insert(NewBB);  // All blocks dominate themselves...
489  DS.addBasicBlock(NewBB, NewBBDomSet);
490
491  // Update immediate dominator information if we have it...
492  BasicBlock *NewBBIDom = 0;
493  if (ImmediateDominators *ID = getAnalysisToUpdate<ImmediateDominators>()) {
494    // This block does not strictly dominate anything, so it is not an immediate
495    // dominator.  To find the immediate dominator of the new exit node, we
496    // trace up the immediate dominators of a predecessor until we find a basic
497    // block that dominates the exit block.
498    //
499    BasicBlock *Dom = PredBlocks[0];  // Some random predecessor...
500    while (!NewBBDomSet.count(Dom)) {  // Loop until we find a dominator...
501      assert(Dom != 0 && "No shared dominator found???");
502      Dom = ID->get(Dom);
503    }
504
505    // Set the immediate dominator now...
506    ID->addNewBlock(NewBB, Dom);
507    NewBBIDom = Dom;   // Reuse this if calculating DominatorTree info...
508  }
509
510  // Update DominatorTree information if it is active.
511  if (DominatorTree *DT = getAnalysisToUpdate<DominatorTree>()) {
512    // NewBB doesn't dominate anything, so just create a node and link it into
513    // its immediate dominator.  If we don't have ImmediateDominator info
514    // around, calculate the idom as above.
515    DominatorTree::Node *NewBBIDomNode;
516    if (NewBBIDom) {
517      NewBBIDomNode = DT->getNode(NewBBIDom);
518    } else {
519      NewBBIDomNode = DT->getNode(PredBlocks[0]); // Random pred
520      while (!NewBBDomSet.count(NewBBIDomNode->getBlock())) {
521        NewBBIDomNode = NewBBIDomNode->getIDom();
522        assert(NewBBIDomNode && "No shared dominator found??");
523      }
524    }
525
526    // Create the new dominator tree node...
527    DT->createNewNode(NewBB, NewBBIDomNode);
528  }
529
530  // Update dominance frontier information...
531  if (DominanceFrontier *DF = getAnalysisToUpdate<DominanceFrontier>()) {
532    // DF(NewBB) is {Exit} because NewBB does not strictly dominate Exit, but it
533    // does dominate itself (and there is an edge (NewBB -> Exit)).  Exit is the
534    // single successor of NewBB.
535    DominanceFrontier::DomSetType NewDFSet;
536    BasicBlock *Exit = *succ_begin(NewBB);
537    NewDFSet.insert(Exit);
538    DF->addBasicBlock(NewBB, NewDFSet);
539
540    // Now we must loop over all of the dominance frontiers in the function,
541    // replacing occurrences of Exit with NewBB in some cases.  All blocks that
542    // dominate a block in PredBlocks and contained Exit in their dominance
543    // frontier must be updated to contain NewBB instead.  This only occurs if
544    // there is more than one block in PredBlocks.
545    //
546    if (PredBlocks.size() > 1) {
547      for (unsigned i = 0, e = PredBlocks.size(); i != e; ++i) {
548        BasicBlock *Pred = PredBlocks[i];
549        // Get all of the dominators of the predecessor...
550        const DominatorSet::DomSetType &PredDoms = DS.getDominators(Pred);
551        for (DominatorSet::DomSetType::const_iterator PDI = PredDoms.begin(),
552               PDE = PredDoms.end(); PDI != PDE; ++PDI) {
553          BasicBlock *PredDom = *PDI;
554
555          // If the Exit node is in DF(PredDom), then PredDom didn't dominate
556          // Exit but did dominate a predecessor of it.  Now we change this
557          // entry to include NewBB in the DF instead of Exit.
558          DominanceFrontier::iterator DFI = DF->find(PredDom);
559          assert(DFI != DF->end() && "No dominance frontier for node?");
560          if (DFI->second.count(Exit)) {
561            DF->removeFromFrontier(DFI, Exit);
562            DF->addToFrontier(DFI, NewBB);
563          }
564        }
565      }
566    }
567  }
568}
569