LoopSimplify.cpp revision c2f40066bbceb15e73e5c4df97d2d115f8a36e58
1//===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs several transformations to transform natural loops into a
11// simpler form, which makes subsequent analyses and transformations simpler and
12// more effective.
13//
14// Loop pre-header insertion guarantees that there is a single, non-critical
15// entry edge from outside of the loop to the loop header.  This simplifies a
16// number of analyses and transformations, such as LICM.
17//
18// Loop exit-block insertion guarantees that all exit blocks from the loop
19// (blocks which are outside of the loop that have predecessors inside of the
20// loop) only have predecessors from inside of the loop (and are thus dominated
21// by the loop header).  This simplifies transformations such as store-sinking
22// that are built into LICM.
23//
24// This pass also guarantees that loops will have exactly one backedge.
25//
26// Indirectbr instructions introduce several complications. If the loop
27// contains or is entered by an indirectbr instruction, it may not be possible
28// to transform the loop and make these guarantees. Client code should check
29// that these conditions are true before relying on them.
30//
31// Note that the simplifycfg pass will clean up blocks which are split out but
32// end up being unnecessary, so usage of this pass should not pessimize
33// generated code.
34//
35// This pass obviously modifies the CFG, but updates loop information and
36// dominator information.
37//
38//===----------------------------------------------------------------------===//
39
40#define DEBUG_TYPE "loopsimplify"
41#include "llvm/Transforms/Scalar.h"
42#include "llvm/Constants.h"
43#include "llvm/Instructions.h"
44#include "llvm/IntrinsicInst.h"
45#include "llvm/Function.h"
46#include "llvm/LLVMContext.h"
47#include "llvm/Type.h"
48#include "llvm/Analysis/AliasAnalysis.h"
49#include "llvm/Analysis/Dominators.h"
50#include "llvm/Analysis/LoopPass.h"
51#include "llvm/Analysis/ScalarEvolution.h"
52#include "llvm/Transforms/Utils/BasicBlockUtils.h"
53#include "llvm/Transforms/Utils/Local.h"
54#include "llvm/Support/CFG.h"
55#include "llvm/Support/Debug.h"
56#include "llvm/ADT/SetOperations.h"
57#include "llvm/ADT/SetVector.h"
58#include "llvm/ADT/Statistic.h"
59#include "llvm/ADT/DepthFirstIterator.h"
60using namespace llvm;
61
62STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted");
63STATISTIC(NumNested  , "Number of nested loops split out");
64
65namespace {
66  struct LoopSimplify : public LoopPass {
67    static char ID; // Pass identification, replacement for typeid
68    LoopSimplify() : LoopPass(ID) {}
69
70    // AA - If we have an alias analysis object to update, this is it, otherwise
71    // this is null.
72    AliasAnalysis *AA;
73    LoopInfo *LI;
74    DominatorTree *DT;
75    Loop *L;
76    virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
77
78    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
79      // We need loop information to identify the loops...
80      AU.addRequired<DominatorTree>();
81      AU.addPreserved<DominatorTree>();
82
83      AU.addRequired<LoopInfo>();
84      AU.addPreserved<LoopInfo>();
85
86      AU.addPreserved<AliasAnalysis>();
87      AU.addPreserved<ScalarEvolution>();
88      AU.addPreservedID(BreakCriticalEdgesID);  // No critical edges added.
89      AU.addPreserved<DominanceFrontier>();
90      AU.addPreservedID(LCSSAID);
91    }
92
93    /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
94    void verifyAnalysis() const;
95
96  private:
97    bool ProcessLoop(Loop *L, LPPassManager &LPM);
98    BasicBlock *RewriteLoopExitBlock(Loop *L, BasicBlock *Exit);
99    BasicBlock *InsertPreheaderForLoop(Loop *L);
100    Loop *SeparateNestedLoop(Loop *L, LPPassManager &LPM);
101    BasicBlock *InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader);
102    void PlaceSplitBlockCarefully(BasicBlock *NewBB,
103                                  SmallVectorImpl<BasicBlock*> &SplitPreds,
104                                  Loop *L);
105  };
106}
107
108char LoopSimplify::ID = 0;
109static RegisterPass<LoopSimplify>
110X("loopsimplify", "Canonicalize natural loops", true);
111
112// Publically exposed interface to pass...
113char &llvm::LoopSimplifyID = LoopSimplify::ID;
114Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
115
116/// runOnLoop - Run down all loops in the CFG (recursively, but we could do
117/// it in any convenient order) inserting preheaders...
118///
119bool LoopSimplify::runOnLoop(Loop *l, LPPassManager &LPM) {
120  L = l;
121  bool Changed = false;
122  LI = &getAnalysis<LoopInfo>();
123  AA = getAnalysisIfAvailable<AliasAnalysis>();
124  DT = &getAnalysis<DominatorTree>();
125
126  Changed |= ProcessLoop(L, LPM);
127
128  return Changed;
129}
130
131/// ProcessLoop - Walk the loop structure in depth first order, ensuring that
132/// all loops have preheaders.
133///
134bool LoopSimplify::ProcessLoop(Loop *L, LPPassManager &LPM) {
135  bool Changed = false;
136ReprocessLoop:
137
138  // Check to see that no blocks (other than the header) in this loop have
139  // predecessors that are not in the loop.  This is not valid for natural
140  // loops, but can occur if the blocks are unreachable.  Since they are
141  // unreachable we can just shamelessly delete those CFG edges!
142  for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
143       BB != E; ++BB) {
144    if (*BB == L->getHeader()) continue;
145
146    SmallPtrSet<BasicBlock*, 4> BadPreds;
147    for (pred_iterator PI = pred_begin(*BB),
148         PE = pred_end(*BB); PI != PE; ++PI) {
149      BasicBlock *P = *PI;
150      if (!L->contains(P))
151        BadPreds.insert(P);
152    }
153
154    // Delete each unique out-of-loop (and thus dead) predecessor.
155    for (SmallPtrSet<BasicBlock*, 4>::iterator I = BadPreds.begin(),
156         E = BadPreds.end(); I != E; ++I) {
157
158      DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor ";
159            WriteAsOperand(dbgs(), *I, false);
160            dbgs() << "\n");
161
162      // Inform each successor of each dead pred.
163      for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI)
164        (*SI)->removePredecessor(*I);
165      // Zap the dead pred's terminator and replace it with unreachable.
166      TerminatorInst *TI = (*I)->getTerminator();
167       TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
168      (*I)->getTerminator()->eraseFromParent();
169      new UnreachableInst((*I)->getContext(), *I);
170      Changed = true;
171    }
172  }
173
174  // If there are exiting blocks with branches on undef, resolve the undef in
175  // the direction which will exit the loop. This will help simplify loop
176  // trip count computations.
177  SmallVector<BasicBlock*, 8> ExitingBlocks;
178  L->getExitingBlocks(ExitingBlocks);
179  for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(),
180       E = ExitingBlocks.end(); I != E; ++I)
181    if (BranchInst *BI = dyn_cast<BranchInst>((*I)->getTerminator()))
182      if (BI->isConditional()) {
183        if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
184
185          DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in ";
186                WriteAsOperand(dbgs(), *I, false);
187                dbgs() << "\n");
188
189          BI->setCondition(ConstantInt::get(Cond->getType(),
190                                            !L->contains(BI->getSuccessor(0))));
191          Changed = true;
192        }
193      }
194
195  // Does the loop already have a preheader?  If so, don't insert one.
196  BasicBlock *Preheader = L->getLoopPreheader();
197  if (!Preheader) {
198    Preheader = InsertPreheaderForLoop(L);
199    if (Preheader) {
200      ++NumInserted;
201      Changed = true;
202    }
203  }
204
205  // Next, check to make sure that all exit nodes of the loop only have
206  // predecessors that are inside of the loop.  This check guarantees that the
207  // loop preheader/header will dominate the exit blocks.  If the exit block has
208  // predecessors from outside of the loop, split the edge now.
209  SmallVector<BasicBlock*, 8> ExitBlocks;
210  L->getExitBlocks(ExitBlocks);
211
212  SmallSetVector<BasicBlock *, 8> ExitBlockSet(ExitBlocks.begin(),
213                                               ExitBlocks.end());
214  for (SmallSetVector<BasicBlock *, 8>::iterator I = ExitBlockSet.begin(),
215         E = ExitBlockSet.end(); I != E; ++I) {
216    BasicBlock *ExitBlock = *I;
217    for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
218         PI != PE; ++PI)
219      // Must be exactly this loop: no subloops, parent loops, or non-loop preds
220      // allowed.
221      if (!L->contains(*PI)) {
222        if (RewriteLoopExitBlock(L, ExitBlock)) {
223          ++NumInserted;
224          Changed = true;
225        }
226        break;
227      }
228  }
229
230  // If the header has more than two predecessors at this point (from the
231  // preheader and from multiple backedges), we must adjust the loop.
232  BasicBlock *LoopLatch = L->getLoopLatch();
233  if (!LoopLatch) {
234    // If this is really a nested loop, rip it out into a child loop.  Don't do
235    // this for loops with a giant number of backedges, just factor them into a
236    // common backedge instead.
237    if (L->getNumBackEdges() < 8) {
238      if (SeparateNestedLoop(L, LPM)) {
239        ++NumNested;
240        // This is a big restructuring change, reprocess the whole loop.
241        Changed = true;
242        // GCC doesn't tail recursion eliminate this.
243        goto ReprocessLoop;
244      }
245    }
246
247    // If we either couldn't, or didn't want to, identify nesting of the loops,
248    // insert a new block that all backedges target, then make it jump to the
249    // loop header.
250    LoopLatch = InsertUniqueBackedgeBlock(L, Preheader);
251    if (LoopLatch) {
252      ++NumInserted;
253      Changed = true;
254    }
255  }
256
257  // Scan over the PHI nodes in the loop header.  Since they now have only two
258  // incoming values (the loop is canonicalized), we may have simplified the PHI
259  // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
260  PHINode *PN;
261  for (BasicBlock::iterator I = L->getHeader()->begin();
262       (PN = dyn_cast<PHINode>(I++)); )
263    if (Value *V = PN->hasConstantValue(DT)) {
264      if (AA) AA->deleteValue(PN);
265      PN->replaceAllUsesWith(V);
266      PN->eraseFromParent();
267    }
268
269  // If this loop has multiple exits and the exits all go to the same
270  // block, attempt to merge the exits. This helps several passes, such
271  // as LoopRotation, which do not support loops with multiple exits.
272  // SimplifyCFG also does this (and this code uses the same utility
273  // function), however this code is loop-aware, where SimplifyCFG is
274  // not. That gives it the advantage of being able to hoist
275  // loop-invariant instructions out of the way to open up more
276  // opportunities, and the disadvantage of having the responsibility
277  // to preserve dominator information.
278  bool UniqueExit = true;
279  if (!ExitBlocks.empty())
280    for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i)
281      if (ExitBlocks[i] != ExitBlocks[0]) {
282        UniqueExit = false;
283        break;
284      }
285  if (UniqueExit) {
286    for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
287      BasicBlock *ExitingBlock = ExitingBlocks[i];
288      if (!ExitingBlock->getSinglePredecessor()) continue;
289      BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
290      if (!BI || !BI->isConditional()) continue;
291      CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
292      if (!CI || CI->getParent() != ExitingBlock) continue;
293
294      // Attempt to hoist out all instructions except for the
295      // comparison and the branch.
296      bool AllInvariant = true;
297      for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) {
298        Instruction *Inst = I++;
299        // Skip debug info intrinsics.
300        if (isa<DbgInfoIntrinsic>(Inst))
301          continue;
302        if (Inst == CI)
303          continue;
304        if (!L->makeLoopInvariant(Inst, Changed,
305                                  Preheader ? Preheader->getTerminator() : 0)) {
306          AllInvariant = false;
307          break;
308        }
309      }
310      if (!AllInvariant) continue;
311
312      // The block has now been cleared of all instructions except for
313      // a comparison and a conditional branch. SimplifyCFG may be able
314      // to fold it now.
315      if (!FoldBranchToCommonDest(BI)) continue;
316
317      // Success. The block is now dead, so remove it from the loop,
318      // update the dominator tree and dominance frontier, and delete it.
319
320      DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block ";
321            WriteAsOperand(dbgs(), ExitingBlock, false);
322            dbgs() << "\n");
323
324      assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock));
325      Changed = true;
326      LI->removeBlock(ExitingBlock);
327
328      DominanceFrontier *DF = getAnalysisIfAvailable<DominanceFrontier>();
329      DomTreeNode *Node = DT->getNode(ExitingBlock);
330      const std::vector<DomTreeNodeBase<BasicBlock> *> &Children =
331        Node->getChildren();
332      while (!Children.empty()) {
333        DomTreeNode *Child = Children.front();
334        DT->changeImmediateDominator(Child, Node->getIDom());
335        if (DF) DF->changeImmediateDominator(Child->getBlock(),
336                                             Node->getIDom()->getBlock(),
337                                             DT);
338      }
339      DT->eraseNode(ExitingBlock);
340      if (DF) DF->removeBlock(ExitingBlock);
341
342      BI->getSuccessor(0)->removePredecessor(ExitingBlock);
343      BI->getSuccessor(1)->removePredecessor(ExitingBlock);
344      ExitingBlock->eraseFromParent();
345    }
346  }
347
348  return Changed;
349}
350
351/// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
352/// preheader, this method is called to insert one.  This method has two phases:
353/// preheader insertion and analysis updating.
354///
355BasicBlock *LoopSimplify::InsertPreheaderForLoop(Loop *L) {
356  BasicBlock *Header = L->getHeader();
357
358  // Compute the set of predecessors of the loop that are not in the loop.
359  SmallVector<BasicBlock*, 8> OutsideBlocks;
360  for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
361       PI != PE; ++PI) {
362    BasicBlock *P = *PI;
363    if (!L->contains(P)) {         // Coming in from outside the loop?
364      // If the loop is branched to from an indirect branch, we won't
365      // be able to fully transform the loop, because it prohibits
366      // edge splitting.
367      if (isa<IndirectBrInst>(P->getTerminator())) return 0;
368
369      // Keep track of it.
370      OutsideBlocks.push_back(P);
371    }
372  }
373
374  // Split out the loop pre-header.
375  BasicBlock *NewBB =
376    SplitBlockPredecessors(Header, &OutsideBlocks[0], OutsideBlocks.size(),
377                           ".preheader", this);
378
379  DEBUG(dbgs() << "LoopSimplify: Creating pre-header ";
380        WriteAsOperand(dbgs(), NewBB, false);
381        dbgs() << "\n");
382
383  // Make sure that NewBB is put someplace intelligent, which doesn't mess up
384  // code layout too horribly.
385  PlaceSplitBlockCarefully(NewBB, OutsideBlocks, L);
386
387  return NewBB;
388}
389
390/// RewriteLoopExitBlock - Ensure that the loop preheader dominates all exit
391/// blocks.  This method is used to split exit blocks that have predecessors
392/// outside of the loop.
393BasicBlock *LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) {
394  SmallVector<BasicBlock*, 8> LoopBlocks;
395  for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) {
396    BasicBlock *P = *I;
397    if (L->contains(P)) {
398      // Don't do this if the loop is exited via an indirect branch.
399      if (isa<IndirectBrInst>(P->getTerminator())) return 0;
400
401      LoopBlocks.push_back(P);
402    }
403  }
404
405  assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?");
406  BasicBlock *NewBB = SplitBlockPredecessors(Exit, &LoopBlocks[0],
407                                             LoopBlocks.size(), ".loopexit",
408                                             this);
409
410  DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block ";
411        WriteAsOperand(dbgs(), NewBB, false);
412        dbgs() << "\n");
413
414  return NewBB;
415}
416
417/// AddBlockAndPredsToSet - Add the specified block, and all of its
418/// predecessors, to the specified set, if it's not already in there.  Stop
419/// predecessor traversal when we reach StopBlock.
420static void AddBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
421                                  std::set<BasicBlock*> &Blocks) {
422  std::vector<BasicBlock *> WorkList;
423  WorkList.push_back(InputBB);
424  do {
425    BasicBlock *BB = WorkList.back(); WorkList.pop_back();
426    if (Blocks.insert(BB).second && BB != StopBlock)
427      // If BB is not already processed and it is not a stop block then
428      // insert its predecessor in the work list
429      for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
430        BasicBlock *WBB = *I;
431        WorkList.push_back(WBB);
432      }
433  } while(!WorkList.empty());
434}
435
436/// FindPHIToPartitionLoops - The first part of loop-nestification is to find a
437/// PHI node that tells us how to partition the loops.
438static PHINode *FindPHIToPartitionLoops(Loop *L, DominatorTree *DT,
439                                        AliasAnalysis *AA) {
440  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
441    PHINode *PN = cast<PHINode>(I);
442    ++I;
443    if (Value *V = PN->hasConstantValue(DT)) {
444      // This is a degenerate PHI already, don't modify it!
445      PN->replaceAllUsesWith(V);
446      if (AA) AA->deleteValue(PN);
447      PN->eraseFromParent();
448      continue;
449    }
450
451    // Scan this PHI node looking for a use of the PHI node by itself.
452    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
453      if (PN->getIncomingValue(i) == PN &&
454          L->contains(PN->getIncomingBlock(i)))
455        // We found something tasty to remove.
456        return PN;
457  }
458  return 0;
459}
460
461// PlaceSplitBlockCarefully - If the block isn't already, move the new block to
462// right after some 'outside block' block.  This prevents the preheader from
463// being placed inside the loop body, e.g. when the loop hasn't been rotated.
464void LoopSimplify::PlaceSplitBlockCarefully(BasicBlock *NewBB,
465                                       SmallVectorImpl<BasicBlock*> &SplitPreds,
466                                            Loop *L) {
467  // Check to see if NewBB is already well placed.
468  Function::iterator BBI = NewBB; --BBI;
469  for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
470    if (&*BBI == SplitPreds[i])
471      return;
472  }
473
474  // If it isn't already after an outside block, move it after one.  This is
475  // always good as it makes the uncond branch from the outside block into a
476  // fall-through.
477
478  // Figure out *which* outside block to put this after.  Prefer an outside
479  // block that neighbors a BB actually in the loop.
480  BasicBlock *FoundBB = 0;
481  for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
482    Function::iterator BBI = SplitPreds[i];
483    if (++BBI != NewBB->getParent()->end() &&
484        L->contains(BBI)) {
485      FoundBB = SplitPreds[i];
486      break;
487    }
488  }
489
490  // If our heuristic for a *good* bb to place this after doesn't find
491  // anything, just pick something.  It's likely better than leaving it within
492  // the loop.
493  if (!FoundBB)
494    FoundBB = SplitPreds[0];
495  NewBB->moveAfter(FoundBB);
496}
497
498
499/// SeparateNestedLoop - If this loop has multiple backedges, try to pull one of
500/// them out into a nested loop.  This is important for code that looks like
501/// this:
502///
503///  Loop:
504///     ...
505///     br cond, Loop, Next
506///     ...
507///     br cond2, Loop, Out
508///
509/// To identify this common case, we look at the PHI nodes in the header of the
510/// loop.  PHI nodes with unchanging values on one backedge correspond to values
511/// that change in the "outer" loop, but not in the "inner" loop.
512///
513/// If we are able to separate out a loop, return the new outer loop that was
514/// created.
515///
516Loop *LoopSimplify::SeparateNestedLoop(Loop *L, LPPassManager &LPM) {
517  PHINode *PN = FindPHIToPartitionLoops(L, DT, AA);
518  if (PN == 0) return 0;  // No known way to partition.
519
520  // Pull out all predecessors that have varying values in the loop.  This
521  // handles the case when a PHI node has multiple instances of itself as
522  // arguments.
523  SmallVector<BasicBlock*, 8> OuterLoopPreds;
524  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
525    if (PN->getIncomingValue(i) != PN ||
526        !L->contains(PN->getIncomingBlock(i))) {
527      // We can't split indirectbr edges.
528      if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator()))
529        return 0;
530
531      OuterLoopPreds.push_back(PN->getIncomingBlock(i));
532    }
533
534  DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
535
536  BasicBlock *Header = L->getHeader();
537  BasicBlock *NewBB = SplitBlockPredecessors(Header, &OuterLoopPreds[0],
538                                             OuterLoopPreds.size(),
539                                             ".outer", this);
540
541  // Make sure that NewBB is put someplace intelligent, which doesn't mess up
542  // code layout too horribly.
543  PlaceSplitBlockCarefully(NewBB, OuterLoopPreds, L);
544
545  // Create the new outer loop.
546  Loop *NewOuter = new Loop();
547
548  // Change the parent loop to use the outer loop as its child now.
549  if (Loop *Parent = L->getParentLoop())
550    Parent->replaceChildLoopWith(L, NewOuter);
551  else
552    LI->changeTopLevelLoop(L, NewOuter);
553
554  // L is now a subloop of our outer loop.
555  NewOuter->addChildLoop(L);
556
557  // Add the new loop to the pass manager queue.
558  LPM.insertLoopIntoQueue(NewOuter);
559
560  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
561       I != E; ++I)
562    NewOuter->addBlockEntry(*I);
563
564  // Now reset the header in L, which had been moved by
565  // SplitBlockPredecessors for the outer loop.
566  L->moveToHeader(Header);
567
568  // Determine which blocks should stay in L and which should be moved out to
569  // the Outer loop now.
570  std::set<BasicBlock*> BlocksInL;
571  for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) {
572    BasicBlock *P = *PI;
573    if (DT->dominates(Header, P))
574      AddBlockAndPredsToSet(P, Header, BlocksInL);
575  }
576
577  // Scan all of the loop children of L, moving them to OuterLoop if they are
578  // not part of the inner loop.
579  const std::vector<Loop*> &SubLoops = L->getSubLoops();
580  for (size_t I = 0; I != SubLoops.size(); )
581    if (BlocksInL.count(SubLoops[I]->getHeader()))
582      ++I;   // Loop remains in L
583    else
584      NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
585
586  // Now that we know which blocks are in L and which need to be moved to
587  // OuterLoop, move any blocks that need it.
588  for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
589    BasicBlock *BB = L->getBlocks()[i];
590    if (!BlocksInL.count(BB)) {
591      // Move this block to the parent, updating the exit blocks sets
592      L->removeBlockFromLoop(BB);
593      if ((*LI)[BB] == L)
594        LI->changeLoopFor(BB, NewOuter);
595      --i;
596    }
597  }
598
599  return NewOuter;
600}
601
602
603
604/// InsertUniqueBackedgeBlock - This method is called when the specified loop
605/// has more than one backedge in it.  If this occurs, revector all of these
606/// backedges to target a new basic block and have that block branch to the loop
607/// header.  This ensures that loops have exactly one backedge.
608///
609BasicBlock *
610LoopSimplify::InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader) {
611  assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
612
613  // Get information about the loop
614  BasicBlock *Header = L->getHeader();
615  Function *F = Header->getParent();
616
617  // Unique backedge insertion currently depends on having a preheader.
618  if (!Preheader)
619    return 0;
620
621  // Figure out which basic blocks contain back-edges to the loop header.
622  std::vector<BasicBlock*> BackedgeBlocks;
623  for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){
624    BasicBlock *P = *I;
625
626    // Indirectbr edges cannot be split, so we must fail if we find one.
627    if (isa<IndirectBrInst>(P->getTerminator()))
628      return 0;
629
630    if (P != Preheader) BackedgeBlocks.push_back(P);
631  }
632
633  // Create and insert the new backedge block...
634  BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(),
635                                           Header->getName()+".backedge", F);
636  BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
637
638  DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block ";
639        WriteAsOperand(dbgs(), BEBlock, false);
640        dbgs() << "\n");
641
642  // Move the new backedge block to right after the last backedge block.
643  Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos;
644  F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
645
646  // Now that the block has been inserted into the function, create PHI nodes in
647  // the backedge block which correspond to any PHI nodes in the header block.
648  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
649    PHINode *PN = cast<PHINode>(I);
650    PHINode *NewPN = PHINode::Create(PN->getType(), PN->getName()+".be",
651                                     BETerminator);
652    NewPN->reserveOperandSpace(BackedgeBlocks.size());
653    if (AA) AA->copyValue(PN, NewPN);
654
655    // Loop over the PHI node, moving all entries except the one for the
656    // preheader over to the new PHI node.
657    unsigned PreheaderIdx = ~0U;
658    bool HasUniqueIncomingValue = true;
659    Value *UniqueValue = 0;
660    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
661      BasicBlock *IBB = PN->getIncomingBlock(i);
662      Value *IV = PN->getIncomingValue(i);
663      if (IBB == Preheader) {
664        PreheaderIdx = i;
665      } else {
666        NewPN->addIncoming(IV, IBB);
667        if (HasUniqueIncomingValue) {
668          if (UniqueValue == 0)
669            UniqueValue = IV;
670          else if (UniqueValue != IV)
671            HasUniqueIncomingValue = false;
672        }
673      }
674    }
675
676    // Delete all of the incoming values from the old PN except the preheader's
677    assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
678    if (PreheaderIdx != 0) {
679      PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
680      PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
681    }
682    // Nuke all entries except the zero'th.
683    for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
684      PN->removeIncomingValue(e-i, false);
685
686    // Finally, add the newly constructed PHI node as the entry for the BEBlock.
687    PN->addIncoming(NewPN, BEBlock);
688
689    // As an optimization, if all incoming values in the new PhiNode (which is a
690    // subset of the incoming values of the old PHI node) have the same value,
691    // eliminate the PHI Node.
692    if (HasUniqueIncomingValue) {
693      NewPN->replaceAllUsesWith(UniqueValue);
694      if (AA) AA->deleteValue(NewPN);
695      BEBlock->getInstList().erase(NewPN);
696    }
697  }
698
699  // Now that all of the PHI nodes have been inserted and adjusted, modify the
700  // backedge blocks to just to the BEBlock instead of the header.
701  for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
702    TerminatorInst *TI = BackedgeBlocks[i]->getTerminator();
703    for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
704      if (TI->getSuccessor(Op) == Header)
705        TI->setSuccessor(Op, BEBlock);
706  }
707
708  //===--- Update all analyses which we must preserve now -----------------===//
709
710  // Update Loop Information - we know that this block is now in the current
711  // loop and all parent loops.
712  L->addBasicBlockToLoop(BEBlock, LI->getBase());
713
714  // Update dominator information
715  DT->splitBlock(BEBlock);
716  if (DominanceFrontier *DF = getAnalysisIfAvailable<DominanceFrontier>())
717    DF->splitBlock(BEBlock);
718
719  return BEBlock;
720}
721
722void LoopSimplify::verifyAnalysis() const {
723  // It used to be possible to just assert L->isLoopSimplifyForm(), however
724  // with the introduction of indirectbr, there are now cases where it's
725  // not possible to transform a loop as necessary. We can at least check
726  // that there is an indirectbr near any time there's trouble.
727
728  // Indirectbr can interfere with preheader and unique backedge insertion.
729  if (!L->getLoopPreheader() || !L->getLoopLatch()) {
730    bool HasIndBrPred = false;
731    for (pred_iterator PI = pred_begin(L->getHeader()),
732         PE = pred_end(L->getHeader()); PI != PE; ++PI)
733      if (isa<IndirectBrInst>((*PI)->getTerminator())) {
734        HasIndBrPred = true;
735        break;
736      }
737    assert(HasIndBrPred &&
738           "LoopSimplify has no excuse for missing loop header info!");
739  }
740
741  // Indirectbr can interfere with exit block canonicalization.
742  if (!L->hasDedicatedExits()) {
743    bool HasIndBrExiting = false;
744    SmallVector<BasicBlock*, 8> ExitingBlocks;
745    L->getExitingBlocks(ExitingBlocks);
746    for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i)
747      if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) {
748        HasIndBrExiting = true;
749        break;
750      }
751    assert(HasIndBrExiting &&
752           "LoopSimplify has no excuse for missing exit block info!");
753  }
754}
755