LoopSimplify.cpp revision ecd94c804a563f2a86572dcf1d2e81f397e19daa
1//===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs several transformations to transform natural loops into a
11// simpler form, which makes subsequent analyses and transformations simpler and
12// more effective.
13//
14// Loop pre-header insertion guarantees that there is a single, non-critical
15// entry edge from outside of the loop to the loop header.  This simplifies a
16// number of analyses and transformations, such as LICM.
17//
18// Loop exit-block insertion guarantees that all exit blocks from the loop
19// (blocks which are outside of the loop that have predecessors inside of the
20// loop) only have predecessors from inside of the loop (and are thus dominated
21// by the loop header).  This simplifies transformations such as store-sinking
22// that are built into LICM.
23//
24// This pass also guarantees that loops will have exactly one backedge.
25//
26// Note that the simplifycfg pass will clean up blocks which are split out but
27// end up being unnecessary, so usage of this pass should not pessimize
28// generated code.
29//
30// This pass obviously modifies the CFG, but updates loop information and
31// dominator information.
32//
33//===----------------------------------------------------------------------===//
34
35#define DEBUG_TYPE "loopsimplify"
36#include "llvm/Transforms/Scalar.h"
37#include "llvm/Constant.h"
38#include "llvm/Instructions.h"
39#include "llvm/Function.h"
40#include "llvm/Type.h"
41#include "llvm/Analysis/AliasAnalysis.h"
42#include "llvm/Analysis/Dominators.h"
43#include "llvm/Analysis/LoopInfo.h"
44#include "llvm/Support/CFG.h"
45#include "llvm/Support/Compiler.h"
46#include "llvm/ADT/SetOperations.h"
47#include "llvm/ADT/SetVector.h"
48#include "llvm/ADT/Statistic.h"
49#include "llvm/ADT/DepthFirstIterator.h"
50using namespace llvm;
51
52STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted");
53STATISTIC(NumNested  , "Number of nested loops split out");
54
55namespace {
56  struct VISIBILITY_HIDDEN LoopSimplify : public FunctionPass {
57    static char ID; // Pass identification, replacement for typeid
58    LoopSimplify() : FunctionPass((intptr_t)&ID) {}
59
60    // AA - If we have an alias analysis object to update, this is it, otherwise
61    // this is null.
62    AliasAnalysis *AA;
63    LoopInfo *LI;
64
65    virtual bool runOnFunction(Function &F);
66
67    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
68      // We need loop information to identify the loops...
69      AU.addRequired<LoopInfo>();
70      AU.addRequired<DominatorTree>();
71      AU.addRequired<ETForest>();
72
73      AU.addPreserved<LoopInfo>();
74      AU.addPreserved<ETForest>();
75      AU.addPreserved<DominatorTree>();
76      AU.addPreserved<DominanceFrontier>();
77      AU.addPreservedID(BreakCriticalEdgesID);  // No critical edges added.
78    }
79  private:
80    bool ProcessLoop(Loop *L);
81    BasicBlock *SplitBlockPredecessors(BasicBlock *BB, const char *Suffix,
82                                       const std::vector<BasicBlock*> &Preds);
83    BasicBlock *RewriteLoopExitBlock(Loop *L, BasicBlock *Exit);
84    void InsertPreheaderForLoop(Loop *L);
85    Loop *SeparateNestedLoop(Loop *L);
86    void InsertUniqueBackedgeBlock(Loop *L);
87    void PlaceSplitBlockCarefully(BasicBlock *NewBB,
88                                  std::vector<BasicBlock*> &SplitPreds,
89                                  Loop *L);
90
91    void UpdateDomInfoForRevectoredPreds(BasicBlock *NewBB,
92                                         std::vector<BasicBlock*> &PredBlocks);
93  };
94
95  char LoopSimplify::ID = 0;
96  RegisterPass<LoopSimplify>
97  X("loopsimplify", "Canonicalize natural loops", true);
98}
99
100// Publically exposed interface to pass...
101const PassInfo *llvm::LoopSimplifyID = X.getPassInfo();
102FunctionPass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
103
104/// runOnFunction - Run down all loops in the CFG (recursively, but we could do
105/// it in any convenient order) inserting preheaders...
106///
107bool LoopSimplify::runOnFunction(Function &F) {
108  bool Changed = false;
109  LI = &getAnalysis<LoopInfo>();
110  AA = getAnalysisToUpdate<AliasAnalysis>();
111
112  // Check to see that no blocks (other than the header) in loops have
113  // predecessors that are not in loops.  This is not valid for natural loops,
114  // but can occur if the blocks are unreachable.  Since they are unreachable we
115  // can just shamelessly destroy their terminators to make them not branch into
116  // the loop!
117  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
118    // This case can only occur for unreachable blocks.  Blocks that are
119    // unreachable can't be in loops, so filter those blocks out.
120    if (LI->getLoopFor(BB)) continue;
121
122    bool BlockUnreachable = false;
123    TerminatorInst *TI = BB->getTerminator();
124
125    // Check to see if any successors of this block are non-loop-header loops
126    // that are not the header.
127    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
128      // If this successor is not in a loop, BB is clearly ok.
129      Loop *L = LI->getLoopFor(TI->getSuccessor(i));
130      if (!L) continue;
131
132      // If the succ is the loop header, and if L is a top-level loop, then this
133      // is an entrance into a loop through the header, which is also ok.
134      if (L->getHeader() == TI->getSuccessor(i) && L->getParentLoop() == 0)
135        continue;
136
137      // Otherwise, this is an entrance into a loop from some place invalid.
138      // Either the loop structure is invalid and this is not a natural loop (in
139      // which case the compiler is buggy somewhere else) or BB is unreachable.
140      BlockUnreachable = true;
141      break;
142    }
143
144    // If this block is ok, check the next one.
145    if (!BlockUnreachable) continue;
146
147    // Otherwise, this block is dead.  To clean up the CFG and to allow later
148    // loop transformations to ignore this case, we delete the edges into the
149    // loop by replacing the terminator.
150
151    // Remove PHI entries from the successors.
152    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
153      TI->getSuccessor(i)->removePredecessor(BB);
154
155    // Add a new unreachable instruction.
156    new UnreachableInst(TI);
157
158    // Delete the dead terminator.
159    if (AA) AA->deleteValue(&BB->back());
160    BB->getInstList().pop_back();
161    Changed |= true;
162  }
163
164  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
165    Changed |= ProcessLoop(*I);
166
167  return Changed;
168}
169
170/// ProcessLoop - Walk the loop structure in depth first order, ensuring that
171/// all loops have preheaders.
172///
173bool LoopSimplify::ProcessLoop(Loop *L) {
174  bool Changed = false;
175ReprocessLoop:
176
177  // Canonicalize inner loops before outer loops.  Inner loop canonicalization
178  // can provide work for the outer loop to canonicalize.
179  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
180    Changed |= ProcessLoop(*I);
181
182  assert(L->getBlocks()[0] == L->getHeader() &&
183         "Header isn't first block in loop?");
184
185  // Does the loop already have a preheader?  If so, don't insert one.
186  if (L->getLoopPreheader() == 0) {
187    InsertPreheaderForLoop(L);
188    NumInserted++;
189    Changed = true;
190  }
191
192  // Next, check to make sure that all exit nodes of the loop only have
193  // predecessors that are inside of the loop.  This check guarantees that the
194  // loop preheader/header will dominate the exit blocks.  If the exit block has
195  // predecessors from outside of the loop, split the edge now.
196  std::vector<BasicBlock*> ExitBlocks;
197  L->getExitBlocks(ExitBlocks);
198
199  SetVector<BasicBlock*> ExitBlockSet(ExitBlocks.begin(), ExitBlocks.end());
200  for (SetVector<BasicBlock*>::iterator I = ExitBlockSet.begin(),
201         E = ExitBlockSet.end(); I != E; ++I) {
202    BasicBlock *ExitBlock = *I;
203    for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
204         PI != PE; ++PI)
205      // Must be exactly this loop: no subloops, parent loops, or non-loop preds
206      // allowed.
207      if (!L->contains(*PI)) {
208        RewriteLoopExitBlock(L, ExitBlock);
209        NumInserted++;
210        Changed = true;
211        break;
212      }
213  }
214
215  // If the header has more than two predecessors at this point (from the
216  // preheader and from multiple backedges), we must adjust the loop.
217  unsigned NumBackedges = L->getNumBackEdges();
218  if (NumBackedges != 1) {
219    // If this is really a nested loop, rip it out into a child loop.  Don't do
220    // this for loops with a giant number of backedges, just factor them into a
221    // common backedge instead.
222    if (NumBackedges < 8) {
223      if (Loop *NL = SeparateNestedLoop(L)) {
224        ++NumNested;
225        // This is a big restructuring change, reprocess the whole loop.
226        ProcessLoop(NL);
227        Changed = true;
228        // GCC doesn't tail recursion eliminate this.
229        goto ReprocessLoop;
230      }
231    }
232
233    // If we either couldn't, or didn't want to, identify nesting of the loops,
234    // insert a new block that all backedges target, then make it jump to the
235    // loop header.
236    InsertUniqueBackedgeBlock(L);
237    NumInserted++;
238    Changed = true;
239  }
240
241  // Scan over the PHI nodes in the loop header.  Since they now have only two
242  // incoming values (the loop is canonicalized), we may have simplified the PHI
243  // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
244  PHINode *PN;
245  for (BasicBlock::iterator I = L->getHeader()->begin();
246       (PN = dyn_cast<PHINode>(I++)); )
247    if (Value *V = PN->hasConstantValue()) {
248        PN->replaceAllUsesWith(V);
249        PN->eraseFromParent();
250      }
251
252  return Changed;
253}
254
255/// SplitBlockPredecessors - Split the specified block into two blocks.  We want
256/// to move the predecessors specified in the Preds list to point to the new
257/// block, leaving the remaining predecessors pointing to BB.  This method
258/// updates the SSA PHINode's, but no other analyses.
259///
260BasicBlock *LoopSimplify::SplitBlockPredecessors(BasicBlock *BB,
261                                                 const char *Suffix,
262                                       const std::vector<BasicBlock*> &Preds) {
263
264  // Create new basic block, insert right before the original block...
265  BasicBlock *NewBB = new BasicBlock(BB->getName()+Suffix, BB->getParent(), BB);
266
267  // The preheader first gets an unconditional branch to the loop header...
268  BranchInst *BI = new BranchInst(BB, NewBB);
269
270  // For every PHI node in the block, insert a PHI node into NewBB where the
271  // incoming values from the out of loop edges are moved to NewBB.  We have two
272  // possible cases here.  If the loop is dead, we just insert dummy entries
273  // into the PHI nodes for the new edge.  If the loop is not dead, we move the
274  // incoming edges in BB into new PHI nodes in NewBB.
275  //
276  if (!Preds.empty()) {  // Is the loop not obviously dead?
277    // Check to see if the values being merged into the new block need PHI
278    // nodes.  If so, insert them.
279    for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ) {
280      PHINode *PN = cast<PHINode>(I);
281      ++I;
282
283      // Check to see if all of the values coming in are the same.  If so, we
284      // don't need to create a new PHI node.
285      Value *InVal = PN->getIncomingValueForBlock(Preds[0]);
286      for (unsigned i = 1, e = Preds.size(); i != e; ++i)
287        if (InVal != PN->getIncomingValueForBlock(Preds[i])) {
288          InVal = 0;
289          break;
290        }
291
292      // If the values coming into the block are not the same, we need a PHI.
293      if (InVal == 0) {
294        // Create the new PHI node, insert it into NewBB at the end of the block
295        PHINode *NewPHI = new PHINode(PN->getType(), PN->getName()+".ph", BI);
296        if (AA) AA->copyValue(PN, NewPHI);
297
298        // Move all of the edges from blocks outside the loop to the new PHI
299        for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
300          Value *V = PN->removeIncomingValue(Preds[i], false);
301          NewPHI->addIncoming(V, Preds[i]);
302        }
303        InVal = NewPHI;
304      } else {
305        // Remove all of the edges coming into the PHI nodes from outside of the
306        // block.
307        for (unsigned i = 0, e = Preds.size(); i != e; ++i)
308          PN->removeIncomingValue(Preds[i], false);
309      }
310
311      // Add an incoming value to the PHI node in the loop for the preheader
312      // edge.
313      PN->addIncoming(InVal, NewBB);
314
315      // Can we eliminate this phi node now?
316      if (Value *V = PN->hasConstantValue(true)) {
317        Instruction *I = dyn_cast<Instruction>(V);
318        // If I is in NewBB, the ETForest call will fail, because NewBB isn't
319        // registered in ETForest yet.  Handle this case explicitly.
320        if (!I || (I->getParent() != NewBB &&
321                   getAnalysis<ETForest>().dominates(I, PN))) {
322          PN->replaceAllUsesWith(V);
323          if (AA) AA->deleteValue(PN);
324          BB->getInstList().erase(PN);
325        }
326      }
327    }
328
329    // Now that the PHI nodes are updated, actually move the edges from
330    // Preds to point to NewBB instead of BB.
331    //
332    for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
333      TerminatorInst *TI = Preds[i]->getTerminator();
334      for (unsigned s = 0, e = TI->getNumSuccessors(); s != e; ++s)
335        if (TI->getSuccessor(s) == BB)
336          TI->setSuccessor(s, NewBB);
337    }
338
339  } else {                       // Otherwise the loop is dead...
340    for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I) {
341      PHINode *PN = cast<PHINode>(I);
342      // Insert dummy values as the incoming value...
343      PN->addIncoming(Constant::getNullValue(PN->getType()), NewBB);
344    }
345  }
346  return NewBB;
347}
348
349/// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
350/// preheader, this method is called to insert one.  This method has two phases:
351/// preheader insertion and analysis updating.
352///
353void LoopSimplify::InsertPreheaderForLoop(Loop *L) {
354  BasicBlock *Header = L->getHeader();
355
356  // Compute the set of predecessors of the loop that are not in the loop.
357  std::vector<BasicBlock*> OutsideBlocks;
358  for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
359       PI != PE; ++PI)
360    if (!L->contains(*PI))           // Coming in from outside the loop?
361      OutsideBlocks.push_back(*PI);  // Keep track of it...
362
363  // Split out the loop pre-header.
364  BasicBlock *NewBB =
365    SplitBlockPredecessors(Header, ".preheader", OutsideBlocks);
366
367
368  //===--------------------------------------------------------------------===//
369  //  Update analysis results now that we have performed the transformation
370  //
371
372  // We know that we have loop information to update... update it now.
373  if (Loop *Parent = L->getParentLoop())
374    Parent->addBasicBlockToLoop(NewBB, *LI);
375
376  UpdateDomInfoForRevectoredPreds(NewBB, OutsideBlocks);
377
378  // Make sure that NewBB is put someplace intelligent, which doesn't mess up
379  // code layout too horribly.
380  PlaceSplitBlockCarefully(NewBB, OutsideBlocks, L);
381}
382
383/// RewriteLoopExitBlock - Ensure that the loop preheader dominates all exit
384/// blocks.  This method is used to split exit blocks that have predecessors
385/// outside of the loop.
386BasicBlock *LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) {
387  std::vector<BasicBlock*> LoopBlocks;
388  for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I)
389    if (L->contains(*I))
390      LoopBlocks.push_back(*I);
391
392  assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?");
393  BasicBlock *NewBB = SplitBlockPredecessors(Exit, ".loopexit", LoopBlocks);
394
395  // Update Loop Information - we know that the new block will be in whichever
396  // loop the Exit block is in.  Note that it may not be in that immediate loop,
397  // if the successor is some other loop header.  In that case, we continue
398  // walking up the loop tree to find a loop that contains both the successor
399  // block and the predecessor block.
400  Loop *SuccLoop = LI->getLoopFor(Exit);
401  while (SuccLoop && !SuccLoop->contains(L->getHeader()))
402    SuccLoop = SuccLoop->getParentLoop();
403  if (SuccLoop)
404    SuccLoop->addBasicBlockToLoop(NewBB, *LI);
405
406  // Update dominator information (set, immdom, domtree, and domfrontier)
407  UpdateDomInfoForRevectoredPreds(NewBB, LoopBlocks);
408  return NewBB;
409}
410
411/// AddBlockAndPredsToSet - Add the specified block, and all of its
412/// predecessors, to the specified set, if it's not already in there.  Stop
413/// predecessor traversal when we reach StopBlock.
414static void AddBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
415                                  std::set<BasicBlock*> &Blocks) {
416  std::vector<BasicBlock *> WorkList;
417  WorkList.push_back(InputBB);
418  do {
419    BasicBlock *BB = WorkList.back(); WorkList.pop_back();
420    if (Blocks.insert(BB).second && BB != StopBlock)
421      // If BB is not already processed and it is not a stop block then
422      // insert its predecessor in the work list
423      for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
424        BasicBlock *WBB = *I;
425        WorkList.push_back(WBB);
426      }
427  } while(!WorkList.empty());
428}
429
430/// FindPHIToPartitionLoops - The first part of loop-nestification is to find a
431/// PHI node that tells us how to partition the loops.
432static PHINode *FindPHIToPartitionLoops(Loop *L, ETForest *EF,
433                                        AliasAnalysis *AA) {
434  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
435    PHINode *PN = cast<PHINode>(I);
436    ++I;
437    if (Value *V = PN->hasConstantValue())
438      if (!isa<Instruction>(V) || EF->dominates(cast<Instruction>(V), PN)) {
439        // This is a degenerate PHI already, don't modify it!
440        PN->replaceAllUsesWith(V);
441        if (AA) AA->deleteValue(PN);
442        PN->eraseFromParent();
443        continue;
444      }
445
446    // Scan this PHI node looking for a use of the PHI node by itself.
447    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
448      if (PN->getIncomingValue(i) == PN &&
449          L->contains(PN->getIncomingBlock(i)))
450        // We found something tasty to remove.
451        return PN;
452  }
453  return 0;
454}
455
456// PlaceSplitBlockCarefully - If the block isn't already, move the new block to
457// right after some 'outside block' block.  This prevents the preheader from
458// being placed inside the loop body, e.g. when the loop hasn't been rotated.
459void LoopSimplify::PlaceSplitBlockCarefully(BasicBlock *NewBB,
460                                            std::vector<BasicBlock*>&SplitPreds,
461                                            Loop *L) {
462  // Check to see if NewBB is already well placed.
463  Function::iterator BBI = NewBB; --BBI;
464  for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
465    if (&*BBI == SplitPreds[i])
466      return;
467  }
468
469  // If it isn't already after an outside block, move it after one.  This is
470  // always good as it makes the uncond branch from the outside block into a
471  // fall-through.
472
473  // Figure out *which* outside block to put this after.  Prefer an outside
474  // block that neighbors a BB actually in the loop.
475  BasicBlock *FoundBB = 0;
476  for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
477    Function::iterator BBI = SplitPreds[i];
478    if (++BBI != NewBB->getParent()->end() &&
479        L->contains(BBI)) {
480      FoundBB = SplitPreds[i];
481      break;
482    }
483  }
484
485  // If our heuristic for a *good* bb to place this after doesn't find
486  // anything, just pick something.  It's likely better than leaving it within
487  // the loop.
488  if (!FoundBB)
489    FoundBB = SplitPreds[0];
490  NewBB->moveAfter(FoundBB);
491}
492
493
494/// SeparateNestedLoop - If this loop has multiple backedges, try to pull one of
495/// them out into a nested loop.  This is important for code that looks like
496/// this:
497///
498///  Loop:
499///     ...
500///     br cond, Loop, Next
501///     ...
502///     br cond2, Loop, Out
503///
504/// To identify this common case, we look at the PHI nodes in the header of the
505/// loop.  PHI nodes with unchanging values on one backedge correspond to values
506/// that change in the "outer" loop, but not in the "inner" loop.
507///
508/// If we are able to separate out a loop, return the new outer loop that was
509/// created.
510///
511Loop *LoopSimplify::SeparateNestedLoop(Loop *L) {
512  ETForest *EF = getAnalysisToUpdate<ETForest>();
513  PHINode *PN = FindPHIToPartitionLoops(L, EF, AA);
514  if (PN == 0) return 0;  // No known way to partition.
515
516  // Pull out all predecessors that have varying values in the loop.  This
517  // handles the case when a PHI node has multiple instances of itself as
518  // arguments.
519  std::vector<BasicBlock*> OuterLoopPreds;
520  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
521    if (PN->getIncomingValue(i) != PN ||
522        !L->contains(PN->getIncomingBlock(i)))
523      OuterLoopPreds.push_back(PN->getIncomingBlock(i));
524
525  BasicBlock *Header = L->getHeader();
526  BasicBlock *NewBB = SplitBlockPredecessors(Header, ".outer", OuterLoopPreds);
527
528  // Update dominator information (set, immdom, domtree, and domfrontier)
529  UpdateDomInfoForRevectoredPreds(NewBB, OuterLoopPreds);
530
531  // Make sure that NewBB is put someplace intelligent, which doesn't mess up
532  // code layout too horribly.
533  PlaceSplitBlockCarefully(NewBB, OuterLoopPreds, L);
534
535  // Create the new outer loop.
536  Loop *NewOuter = new Loop();
537
538  // Change the parent loop to use the outer loop as its child now.
539  if (Loop *Parent = L->getParentLoop())
540    Parent->replaceChildLoopWith(L, NewOuter);
541  else
542    LI->changeTopLevelLoop(L, NewOuter);
543
544  // This block is going to be our new header block: add it to this loop and all
545  // parent loops.
546  NewOuter->addBasicBlockToLoop(NewBB, *LI);
547
548  // L is now a subloop of our outer loop.
549  NewOuter->addChildLoop(L);
550
551  for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i)
552    NewOuter->addBlockEntry(L->getBlocks()[i]);
553
554  // Determine which blocks should stay in L and which should be moved out to
555  // the Outer loop now.
556  std::set<BasicBlock*> BlocksInL;
557  for (pred_iterator PI = pred_begin(Header), E = pred_end(Header); PI!=E; ++PI)
558    if (EF->dominates(Header, *PI))
559      AddBlockAndPredsToSet(*PI, Header, BlocksInL);
560
561
562  // Scan all of the loop children of L, moving them to OuterLoop if they are
563  // not part of the inner loop.
564  for (Loop::iterator I = L->begin(); I != L->end(); )
565    if (BlocksInL.count((*I)->getHeader()))
566      ++I;   // Loop remains in L
567    else
568      NewOuter->addChildLoop(L->removeChildLoop(I));
569
570  // Now that we know which blocks are in L and which need to be moved to
571  // OuterLoop, move any blocks that need it.
572  for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
573    BasicBlock *BB = L->getBlocks()[i];
574    if (!BlocksInL.count(BB)) {
575      // Move this block to the parent, updating the exit blocks sets
576      L->removeBlockFromLoop(BB);
577      if ((*LI)[BB] == L)
578        LI->changeLoopFor(BB, NewOuter);
579      --i;
580    }
581  }
582
583  return NewOuter;
584}
585
586
587
588/// InsertUniqueBackedgeBlock - This method is called when the specified loop
589/// has more than one backedge in it.  If this occurs, revector all of these
590/// backedges to target a new basic block and have that block branch to the loop
591/// header.  This ensures that loops have exactly one backedge.
592///
593void LoopSimplify::InsertUniqueBackedgeBlock(Loop *L) {
594  assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
595
596  // Get information about the loop
597  BasicBlock *Preheader = L->getLoopPreheader();
598  BasicBlock *Header = L->getHeader();
599  Function *F = Header->getParent();
600
601  // Figure out which basic blocks contain back-edges to the loop header.
602  std::vector<BasicBlock*> BackedgeBlocks;
603  for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I)
604    if (*I != Preheader) BackedgeBlocks.push_back(*I);
605
606  // Create and insert the new backedge block...
607  BasicBlock *BEBlock = new BasicBlock(Header->getName()+".backedge", F);
608  BranchInst *BETerminator = new BranchInst(Header, BEBlock);
609
610  // Move the new backedge block to right after the last backedge block.
611  Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos;
612  F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
613
614  // Now that the block has been inserted into the function, create PHI nodes in
615  // the backedge block which correspond to any PHI nodes in the header block.
616  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
617    PHINode *PN = cast<PHINode>(I);
618    PHINode *NewPN = new PHINode(PN->getType(), PN->getName()+".be",
619                                 BETerminator);
620    NewPN->reserveOperandSpace(BackedgeBlocks.size());
621    if (AA) AA->copyValue(PN, NewPN);
622
623    // Loop over the PHI node, moving all entries except the one for the
624    // preheader over to the new PHI node.
625    unsigned PreheaderIdx = ~0U;
626    bool HasUniqueIncomingValue = true;
627    Value *UniqueValue = 0;
628    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
629      BasicBlock *IBB = PN->getIncomingBlock(i);
630      Value *IV = PN->getIncomingValue(i);
631      if (IBB == Preheader) {
632        PreheaderIdx = i;
633      } else {
634        NewPN->addIncoming(IV, IBB);
635        if (HasUniqueIncomingValue) {
636          if (UniqueValue == 0)
637            UniqueValue = IV;
638          else if (UniqueValue != IV)
639            HasUniqueIncomingValue = false;
640        }
641      }
642    }
643
644    // Delete all of the incoming values from the old PN except the preheader's
645    assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
646    if (PreheaderIdx != 0) {
647      PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
648      PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
649    }
650    // Nuke all entries except the zero'th.
651    for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
652      PN->removeIncomingValue(e-i, false);
653
654    // Finally, add the newly constructed PHI node as the entry for the BEBlock.
655    PN->addIncoming(NewPN, BEBlock);
656
657    // As an optimization, if all incoming values in the new PhiNode (which is a
658    // subset of the incoming values of the old PHI node) have the same value,
659    // eliminate the PHI Node.
660    if (HasUniqueIncomingValue) {
661      NewPN->replaceAllUsesWith(UniqueValue);
662      if (AA) AA->deleteValue(NewPN);
663      BEBlock->getInstList().erase(NewPN);
664    }
665  }
666
667  // Now that all of the PHI nodes have been inserted and adjusted, modify the
668  // backedge blocks to just to the BEBlock instead of the header.
669  for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
670    TerminatorInst *TI = BackedgeBlocks[i]->getTerminator();
671    for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
672      if (TI->getSuccessor(Op) == Header)
673        TI->setSuccessor(Op, BEBlock);
674  }
675
676  //===--- Update all analyses which we must preserve now -----------------===//
677
678  // Update Loop Information - we know that this block is now in the current
679  // loop and all parent loops.
680  L->addBasicBlockToLoop(BEBlock, *LI);
681
682  // Update dominator information (set, immdom, domtree, and domfrontier)
683  UpdateDomInfoForRevectoredPreds(BEBlock, BackedgeBlocks);
684}
685
686// Returns true if BasicBlock A dominates at least one block in vector B
687// Helper function for UpdateDomInfoForRevectoredPreds
688static bool BlockDominatesAny(BasicBlock* A, const std::vector<BasicBlock*>& B,
689                              ETForest& ETF) {
690  for (std::vector<BasicBlock*>::const_iterator BI = B.begin(), BE = B.end();
691       BI != BE; ++BI) {
692    if (ETF.dominates(A, *BI))
693      return true;
694  }
695  return false;
696}
697
698/// UpdateDomInfoForRevectoredPreds - This method is used to update the four
699/// different kinds of dominator information (immediate dominators,
700/// dominator trees, et-forest and dominance frontiers) after a new block has
701/// been added to the CFG.
702///
703/// This only supports the case when an existing block (known as "NewBBSucc"),
704/// had some of its predecessors factored into a new basic block.  This
705/// transformation inserts a new basic block ("NewBB"), with a single
706/// unconditional branch to NewBBSucc, and moves some predecessors of
707/// "NewBBSucc" to now branch to NewBB.  These predecessors are listed in
708/// PredBlocks, even though they are the same as
709/// pred_begin(NewBB)/pred_end(NewBB).
710///
711void LoopSimplify::UpdateDomInfoForRevectoredPreds(BasicBlock *NewBB,
712                                         std::vector<BasicBlock*> &PredBlocks) {
713  assert(!PredBlocks.empty() && "No predblocks??");
714  assert(succ_begin(NewBB) != succ_end(NewBB) &&
715         ++succ_begin(NewBB) == succ_end(NewBB) &&
716         "NewBB should have a single successor!");
717  BasicBlock *NewBBSucc = *succ_begin(NewBB);
718  ETForest& ETF = getAnalysis<ETForest>();
719
720  // The newly inserted basic block will dominate existing basic blocks iff the
721  // PredBlocks dominate all of the non-pred blocks.  If all predblocks dominate
722  // the non-pred blocks, then they all must be the same block!
723  //
724  bool NewBBDominatesNewBBSucc = true;
725  {
726    BasicBlock *OnePred = PredBlocks[0];
727    unsigned i = 1, e = PredBlocks.size();
728    for (i = 1; !ETF.isReachableFromEntry(OnePred); ++i) {
729      assert(i != e && "Didn't find reachable pred?");
730      OnePred = PredBlocks[i];
731    }
732
733    for (; i != e; ++i)
734      if (PredBlocks[i] != OnePred && ETF.isReachableFromEntry(OnePred)){
735        NewBBDominatesNewBBSucc = false;
736        break;
737      }
738
739    if (NewBBDominatesNewBBSucc)
740      for (pred_iterator PI = pred_begin(NewBBSucc), E = pred_end(NewBBSucc);
741           PI != E; ++PI)
742        if (*PI != NewBB && !ETF.dominates(NewBBSucc, *PI)) {
743          NewBBDominatesNewBBSucc = false;
744          break;
745        }
746  }
747
748  // The other scenario where the new block can dominate its successors are when
749  // all predecessors of NewBBSucc that are not NewBB are dominated by NewBBSucc
750  // already.
751  if (!NewBBDominatesNewBBSucc) {
752    NewBBDominatesNewBBSucc = true;
753    for (pred_iterator PI = pred_begin(NewBBSucc), E = pred_end(NewBBSucc);
754         PI != E; ++PI)
755      if (*PI != NewBB && !ETF.dominates(NewBBSucc, *PI)) {
756        NewBBDominatesNewBBSucc = false;
757        break;
758      }
759  }
760
761  BasicBlock *NewBBIDom = 0;
762
763  // Update DominatorTree information if it is active.
764  if (DominatorTree *DT = getAnalysisToUpdate<DominatorTree>()) {
765    // If we don't have ImmediateDominator info around, calculate the idom as
766    // above.
767    if (!NewBBIDom) {
768      unsigned i = 0;
769      for (i = 0; i < PredBlocks.size(); ++i)
770        if (ETF.dominates(&PredBlocks[i]->getParent()->getEntryBlock(), PredBlocks[i])) {
771          NewBBIDom = PredBlocks[i];
772          break;
773        }
774      assert(i != PredBlocks.size() && "No reachable preds?");
775      for (i = i + 1; i < PredBlocks.size(); ++i) {
776        if (ETF.dominates(&PredBlocks[i]->getParent()->getEntryBlock(), PredBlocks[i]))
777          NewBBIDom = ETF.nearestCommonDominator(NewBBIDom, PredBlocks[i]);
778      }
779      assert(NewBBIDom && "No immediate dominator found??");
780    }
781    DominatorTree::Node *NewBBIDomNode = DT->getNode(NewBBIDom);
782
783    // Create the new dominator tree node... and set the idom of NewBB.
784    DominatorTree::Node *NewBBNode = DT->createNewNode(NewBB, NewBBIDomNode);
785
786    // If NewBB strictly dominates other blocks, then it is now the immediate
787    // dominator of NewBBSucc.  Update the dominator tree as appropriate.
788    if (NewBBDominatesNewBBSucc) {
789      DominatorTree::Node *NewBBSuccNode = DT->getNode(NewBBSucc);
790      DT->changeImmediateDominator(NewBBSuccNode, NewBBNode);
791    }
792  }
793
794  // Update ET-Forest information if it is active.
795  if (ETForest *EF = getAnalysisToUpdate<ETForest>()) {
796    EF->addNewBlock(NewBB, NewBBIDom);
797    if (NewBBDominatesNewBBSucc)
798      EF->setImmediateDominator(NewBBSucc, NewBB);
799  }
800
801  // Update dominance frontier information...
802  if (DominanceFrontier *DF = getAnalysisToUpdate<DominanceFrontier>()) {
803    // If NewBB dominates NewBBSucc, then DF(NewBB) is now going to be the
804    // DF(PredBlocks[0]) without the stuff that the new block does not dominate
805    // a predecessor of.
806    if (NewBBDominatesNewBBSucc) {
807      DominanceFrontier::iterator DFI = DF->find(PredBlocks[0]);
808      if (DFI != DF->end()) {
809        DominanceFrontier::DomSetType Set = DFI->second;
810        // Filter out stuff in Set that we do not dominate a predecessor of.
811        for (DominanceFrontier::DomSetType::iterator SetI = Set.begin(),
812               E = Set.end(); SetI != E;) {
813          bool DominatesPred = false;
814          for (pred_iterator PI = pred_begin(*SetI), E = pred_end(*SetI);
815               PI != E; ++PI)
816            if (ETF.dominates(NewBB, *PI))
817              DominatesPred = true;
818          if (!DominatesPred)
819            Set.erase(SetI++);
820          else
821            ++SetI;
822        }
823
824        DF->addBasicBlock(NewBB, Set);
825      }
826
827    } else {
828      // DF(NewBB) is {NewBBSucc} because NewBB does not strictly dominate
829      // NewBBSucc, but it does dominate itself (and there is an edge (NewBB ->
830      // NewBBSucc)).  NewBBSucc is the single successor of NewBB.
831      DominanceFrontier::DomSetType NewDFSet;
832      NewDFSet.insert(NewBBSucc);
833      DF->addBasicBlock(NewBB, NewDFSet);
834    }
835
836    // Now we must loop over all of the dominance frontiers in the function,
837    // replacing occurrences of NewBBSucc with NewBB in some cases.  All
838    // blocks that dominate a block in PredBlocks and contained NewBBSucc in
839    // their dominance frontier must be updated to contain NewBB instead.
840    //
841    for (Function::iterator FI = NewBB->getParent()->begin(),
842         FE = NewBB->getParent()->end(); FI != FE; ++FI) {
843      DominanceFrontier::iterator DFI = DF->find(FI);
844      if (DFI == DF->end()) continue;  // unreachable block.
845
846      // Only consider dominators of NewBBSucc
847      if (!DFI->second.count(NewBBSucc)) continue;
848
849      if (BlockDominatesAny(FI, PredBlocks, ETF)) {
850        // If NewBBSucc should not stay in our dominator frontier, remove it.
851        // We remove it unless there is a predecessor of NewBBSucc that we
852        // dominate, but we don't strictly dominate NewBBSucc.
853        bool ShouldRemove = true;
854        if ((BasicBlock*)FI == NewBBSucc || !ETF.dominates(FI, NewBBSucc)) {
855          // Okay, we know that PredDom does not strictly dominate NewBBSucc.
856          // Check to see if it dominates any predecessors of NewBBSucc.
857          for (pred_iterator PI = pred_begin(NewBBSucc),
858               E = pred_end(NewBBSucc); PI != E; ++PI)
859            if (ETF.dominates(FI, *PI)) {
860              ShouldRemove = false;
861              break;
862            }
863
864          if (ShouldRemove)
865            DF->removeFromFrontier(DFI, NewBBSucc);
866          DF->addToFrontier(DFI, NewBB);
867
868          break;
869        }
870      }
871    }
872  }
873}
874
875
876