LoopSimplify.cpp revision ffa75cdcf82ef2034249a313b9276eaa1bee6c43
1//===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs several transformations to transform natural loops into a
11// simpler form, which makes subsequent analyses and transformations simpler and
12// more effective.
13//
14// Loop pre-header insertion guarantees that there is a single, non-critical
15// entry edge from outside of the loop to the loop header.  This simplifies a
16// number of analyses and transformations, such as LICM.
17//
18// Loop exit-block insertion guarantees that all exit blocks from the loop
19// (blocks which are outside of the loop that have predecessors inside of the
20// loop) only have predecessors from inside of the loop (and are thus dominated
21// by the loop header).  This simplifies transformations such as store-sinking
22// that are built into LICM.
23//
24// This pass also guarantees that loops will have exactly one backedge.
25//
26// Indirectbr instructions introduce several complications. If the loop
27// contains or is entered by an indirectbr instruction, it may not be possible
28// to transform the loop and make these guarantees. Client code should check
29// that these conditions are true before relying on them.
30//
31// Note that the simplifycfg pass will clean up blocks which are split out but
32// end up being unnecessary, so usage of this pass should not pessimize
33// generated code.
34//
35// This pass obviously modifies the CFG, but updates loop information and
36// dominator information.
37//
38//===----------------------------------------------------------------------===//
39
40#define DEBUG_TYPE "loopsimplify"
41#include "llvm/Transforms/Scalar.h"
42#include "llvm/Constants.h"
43#include "llvm/Instructions.h"
44#include "llvm/IntrinsicInst.h"
45#include "llvm/Function.h"
46#include "llvm/LLVMContext.h"
47#include "llvm/Type.h"
48#include "llvm/Analysis/AliasAnalysis.h"
49#include "llvm/Analysis/ScalarEvolution.h"
50#include "llvm/Analysis/Dominators.h"
51#include "llvm/Analysis/LoopPass.h"
52#include "llvm/Transforms/Utils/BasicBlockUtils.h"
53#include "llvm/Transforms/Utils/Local.h"
54#include "llvm/Support/CFG.h"
55#include "llvm/Support/Debug.h"
56#include "llvm/ADT/SetOperations.h"
57#include "llvm/ADT/SetVector.h"
58#include "llvm/ADT/Statistic.h"
59#include "llvm/ADT/DepthFirstIterator.h"
60using namespace llvm;
61
62STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted");
63STATISTIC(NumNested  , "Number of nested loops split out");
64
65namespace {
66  struct LoopSimplify : public LoopPass {
67    static char ID; // Pass identification, replacement for typeid
68    LoopSimplify() : LoopPass(ID) {}
69
70    // AA - If we have an alias analysis object to update, this is it, otherwise
71    // this is null.
72    AliasAnalysis *AA;
73    LoopInfo *LI;
74    DominatorTree *DT;
75    ScalarEvolution *SE;
76    Loop *L;
77    virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
78
79    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
80      // We need loop information to identify the loops...
81      AU.addRequired<DominatorTree>();
82      AU.addPreserved<DominatorTree>();
83
84      AU.addRequired<LoopInfo>();
85      AU.addPreserved<LoopInfo>();
86
87      AU.addPreserved<AliasAnalysis>();
88      AU.addPreserved<ScalarEvolution>();
89      AU.addPreservedID(BreakCriticalEdgesID);  // No critical edges added.
90      AU.addPreserved<DominanceFrontier>();
91      AU.addPreservedID(LCSSAID);
92    }
93
94    /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
95    void verifyAnalysis() const;
96
97  private:
98    bool ProcessLoop(Loop *L, LPPassManager &LPM);
99    BasicBlock *RewriteLoopExitBlock(Loop *L, BasicBlock *Exit);
100    BasicBlock *InsertPreheaderForLoop(Loop *L);
101    Loop *SeparateNestedLoop(Loop *L, LPPassManager &LPM);
102    BasicBlock *InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader);
103    void PlaceSplitBlockCarefully(BasicBlock *NewBB,
104                                  SmallVectorImpl<BasicBlock*> &SplitPreds,
105                                  Loop *L);
106  };
107}
108
109char LoopSimplify::ID = 0;
110INITIALIZE_PASS(LoopSimplify, "loopsimplify",
111                "Canonicalize natural loops", true, false);
112
113// Publically exposed interface to pass...
114char &llvm::LoopSimplifyID = LoopSimplify::ID;
115Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
116
117/// runOnLoop - Run down all loops in the CFG (recursively, but we could do
118/// it in any convenient order) inserting preheaders...
119///
120bool LoopSimplify::runOnLoop(Loop *l, LPPassManager &LPM) {
121  L = l;
122  bool Changed = false;
123  LI = &getAnalysis<LoopInfo>();
124  AA = getAnalysisIfAvailable<AliasAnalysis>();
125  DT = &getAnalysis<DominatorTree>();
126  SE = getAnalysisIfAvailable<ScalarEvolution>();
127
128  Changed |= ProcessLoop(L, LPM);
129
130  return Changed;
131}
132
133/// ProcessLoop - Walk the loop structure in depth first order, ensuring that
134/// all loops have preheaders.
135///
136bool LoopSimplify::ProcessLoop(Loop *L, LPPassManager &LPM) {
137  bool Changed = false;
138ReprocessLoop:
139
140  // Check to see that no blocks (other than the header) in this loop have
141  // predecessors that are not in the loop.  This is not valid for natural
142  // loops, but can occur if the blocks are unreachable.  Since they are
143  // unreachable we can just shamelessly delete those CFG edges!
144  for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
145       BB != E; ++BB) {
146    if (*BB == L->getHeader()) continue;
147
148    SmallPtrSet<BasicBlock*, 4> BadPreds;
149    for (pred_iterator PI = pred_begin(*BB),
150         PE = pred_end(*BB); PI != PE; ++PI) {
151      BasicBlock *P = *PI;
152      if (!L->contains(P))
153        BadPreds.insert(P);
154    }
155
156    // Delete each unique out-of-loop (and thus dead) predecessor.
157    for (SmallPtrSet<BasicBlock*, 4>::iterator I = BadPreds.begin(),
158         E = BadPreds.end(); I != E; ++I) {
159
160      DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor ";
161            WriteAsOperand(dbgs(), *I, false);
162            dbgs() << "\n");
163
164      // Inform each successor of each dead pred.
165      for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI)
166        (*SI)->removePredecessor(*I);
167      // Zap the dead pred's terminator and replace it with unreachable.
168      TerminatorInst *TI = (*I)->getTerminator();
169       TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
170      (*I)->getTerminator()->eraseFromParent();
171      new UnreachableInst((*I)->getContext(), *I);
172      Changed = true;
173    }
174  }
175
176  // If there are exiting blocks with branches on undef, resolve the undef in
177  // the direction which will exit the loop. This will help simplify loop
178  // trip count computations.
179  SmallVector<BasicBlock*, 8> ExitingBlocks;
180  L->getExitingBlocks(ExitingBlocks);
181  for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(),
182       E = ExitingBlocks.end(); I != E; ++I)
183    if (BranchInst *BI = dyn_cast<BranchInst>((*I)->getTerminator()))
184      if (BI->isConditional()) {
185        if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
186
187          DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in ";
188                WriteAsOperand(dbgs(), *I, false);
189                dbgs() << "\n");
190
191          BI->setCondition(ConstantInt::get(Cond->getType(),
192                                            !L->contains(BI->getSuccessor(0))));
193          Changed = true;
194        }
195      }
196
197  // Does the loop already have a preheader?  If so, don't insert one.
198  BasicBlock *Preheader = L->getLoopPreheader();
199  if (!Preheader) {
200    Preheader = InsertPreheaderForLoop(L);
201    if (Preheader) {
202      ++NumInserted;
203      Changed = true;
204    }
205  }
206
207  // Next, check to make sure that all exit nodes of the loop only have
208  // predecessors that are inside of the loop.  This check guarantees that the
209  // loop preheader/header will dominate the exit blocks.  If the exit block has
210  // predecessors from outside of the loop, split the edge now.
211  SmallVector<BasicBlock*, 8> ExitBlocks;
212  L->getExitBlocks(ExitBlocks);
213
214  SmallSetVector<BasicBlock *, 8> ExitBlockSet(ExitBlocks.begin(),
215                                               ExitBlocks.end());
216  for (SmallSetVector<BasicBlock *, 8>::iterator I = ExitBlockSet.begin(),
217         E = ExitBlockSet.end(); I != E; ++I) {
218    BasicBlock *ExitBlock = *I;
219    for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
220         PI != PE; ++PI)
221      // Must be exactly this loop: no subloops, parent loops, or non-loop preds
222      // allowed.
223      if (!L->contains(*PI)) {
224        if (RewriteLoopExitBlock(L, ExitBlock)) {
225          ++NumInserted;
226          Changed = true;
227        }
228        break;
229      }
230  }
231
232  // If the header has more than two predecessors at this point (from the
233  // preheader and from multiple backedges), we must adjust the loop.
234  BasicBlock *LoopLatch = L->getLoopLatch();
235  if (!LoopLatch) {
236    // If this is really a nested loop, rip it out into a child loop.  Don't do
237    // this for loops with a giant number of backedges, just factor them into a
238    // common backedge instead.
239    if (L->getNumBackEdges() < 8) {
240      if (SeparateNestedLoop(L, LPM)) {
241        ++NumNested;
242        // This is a big restructuring change, reprocess the whole loop.
243        Changed = true;
244        // GCC doesn't tail recursion eliminate this.
245        goto ReprocessLoop;
246      }
247    }
248
249    // If we either couldn't, or didn't want to, identify nesting of the loops,
250    // insert a new block that all backedges target, then make it jump to the
251    // loop header.
252    LoopLatch = InsertUniqueBackedgeBlock(L, Preheader);
253    if (LoopLatch) {
254      ++NumInserted;
255      Changed = true;
256    }
257  }
258
259  // Scan over the PHI nodes in the loop header.  Since they now have only two
260  // incoming values (the loop is canonicalized), we may have simplified the PHI
261  // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
262  PHINode *PN;
263  for (BasicBlock::iterator I = L->getHeader()->begin();
264       (PN = dyn_cast<PHINode>(I++)); )
265    if (Value *V = PN->hasConstantValue(DT)) {
266      if (AA) AA->deleteValue(PN);
267      PN->replaceAllUsesWith(V);
268      PN->eraseFromParent();
269    }
270
271  // If this loop has multiple exits and the exits all go to the same
272  // block, attempt to merge the exits. This helps several passes, such
273  // as LoopRotation, which do not support loops with multiple exits.
274  // SimplifyCFG also does this (and this code uses the same utility
275  // function), however this code is loop-aware, where SimplifyCFG is
276  // not. That gives it the advantage of being able to hoist
277  // loop-invariant instructions out of the way to open up more
278  // opportunities, and the disadvantage of having the responsibility
279  // to preserve dominator information.
280  bool UniqueExit = true;
281  if (!ExitBlocks.empty())
282    for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i)
283      if (ExitBlocks[i] != ExitBlocks[0]) {
284        UniqueExit = false;
285        break;
286      }
287  if (UniqueExit) {
288    for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
289      BasicBlock *ExitingBlock = ExitingBlocks[i];
290      if (!ExitingBlock->getSinglePredecessor()) continue;
291      BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
292      if (!BI || !BI->isConditional()) continue;
293      CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
294      if (!CI || CI->getParent() != ExitingBlock) continue;
295
296      // Attempt to hoist out all instructions except for the
297      // comparison and the branch.
298      bool AllInvariant = true;
299      for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) {
300        Instruction *Inst = I++;
301        // Skip debug info intrinsics.
302        if (isa<DbgInfoIntrinsic>(Inst))
303          continue;
304        if (Inst == CI)
305          continue;
306        if (!L->makeLoopInvariant(Inst, Changed,
307                                  Preheader ? Preheader->getTerminator() : 0)) {
308          AllInvariant = false;
309          break;
310        }
311      }
312      if (!AllInvariant) continue;
313
314      // The block has now been cleared of all instructions except for
315      // a comparison and a conditional branch. SimplifyCFG may be able
316      // to fold it now.
317      if (!FoldBranchToCommonDest(BI)) continue;
318
319      // Success. The block is now dead, so remove it from the loop,
320      // update the dominator tree and dominance frontier, and delete it.
321
322      DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block ";
323            WriteAsOperand(dbgs(), ExitingBlock, false);
324            dbgs() << "\n");
325
326      assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock));
327      Changed = true;
328      LI->removeBlock(ExitingBlock);
329
330      DominanceFrontier *DF = getAnalysisIfAvailable<DominanceFrontier>();
331      DomTreeNode *Node = DT->getNode(ExitingBlock);
332      const std::vector<DomTreeNodeBase<BasicBlock> *> &Children =
333        Node->getChildren();
334      while (!Children.empty()) {
335        DomTreeNode *Child = Children.front();
336        DT->changeImmediateDominator(Child, Node->getIDom());
337        if (DF) DF->changeImmediateDominator(Child->getBlock(),
338                                             Node->getIDom()->getBlock(),
339                                             DT);
340      }
341      DT->eraseNode(ExitingBlock);
342      if (DF) DF->removeBlock(ExitingBlock);
343
344      BI->getSuccessor(0)->removePredecessor(ExitingBlock);
345      BI->getSuccessor(1)->removePredecessor(ExitingBlock);
346      ExitingBlock->eraseFromParent();
347    }
348  }
349
350  return Changed;
351}
352
353/// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
354/// preheader, this method is called to insert one.  This method has two phases:
355/// preheader insertion and analysis updating.
356///
357BasicBlock *LoopSimplify::InsertPreheaderForLoop(Loop *L) {
358  BasicBlock *Header = L->getHeader();
359
360  // Compute the set of predecessors of the loop that are not in the loop.
361  SmallVector<BasicBlock*, 8> OutsideBlocks;
362  for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
363       PI != PE; ++PI) {
364    BasicBlock *P = *PI;
365    if (!L->contains(P)) {         // Coming in from outside the loop?
366      // If the loop is branched to from an indirect branch, we won't
367      // be able to fully transform the loop, because it prohibits
368      // edge splitting.
369      if (isa<IndirectBrInst>(P->getTerminator())) return 0;
370
371      // Keep track of it.
372      OutsideBlocks.push_back(P);
373    }
374  }
375
376  // Split out the loop pre-header.
377  BasicBlock *NewBB =
378    SplitBlockPredecessors(Header, &OutsideBlocks[0], OutsideBlocks.size(),
379                           ".preheader", this);
380
381  DEBUG(dbgs() << "LoopSimplify: Creating pre-header ";
382        WriteAsOperand(dbgs(), NewBB, false);
383        dbgs() << "\n");
384
385  // Make sure that NewBB is put someplace intelligent, which doesn't mess up
386  // code layout too horribly.
387  PlaceSplitBlockCarefully(NewBB, OutsideBlocks, L);
388
389  return NewBB;
390}
391
392/// RewriteLoopExitBlock - Ensure that the loop preheader dominates all exit
393/// blocks.  This method is used to split exit blocks that have predecessors
394/// outside of the loop.
395BasicBlock *LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) {
396  SmallVector<BasicBlock*, 8> LoopBlocks;
397  for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) {
398    BasicBlock *P = *I;
399    if (L->contains(P)) {
400      // Don't do this if the loop is exited via an indirect branch.
401      if (isa<IndirectBrInst>(P->getTerminator())) return 0;
402
403      LoopBlocks.push_back(P);
404    }
405  }
406
407  assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?");
408  BasicBlock *NewBB = SplitBlockPredecessors(Exit, &LoopBlocks[0],
409                                             LoopBlocks.size(), ".loopexit",
410                                             this);
411
412  DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block ";
413        WriteAsOperand(dbgs(), NewBB, false);
414        dbgs() << "\n");
415
416  return NewBB;
417}
418
419/// AddBlockAndPredsToSet - Add the specified block, and all of its
420/// predecessors, to the specified set, if it's not already in there.  Stop
421/// predecessor traversal when we reach StopBlock.
422static void AddBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
423                                  std::set<BasicBlock*> &Blocks) {
424  std::vector<BasicBlock *> WorkList;
425  WorkList.push_back(InputBB);
426  do {
427    BasicBlock *BB = WorkList.back(); WorkList.pop_back();
428    if (Blocks.insert(BB).second && BB != StopBlock)
429      // If BB is not already processed and it is not a stop block then
430      // insert its predecessor in the work list
431      for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
432        BasicBlock *WBB = *I;
433        WorkList.push_back(WBB);
434      }
435  } while(!WorkList.empty());
436}
437
438/// FindPHIToPartitionLoops - The first part of loop-nestification is to find a
439/// PHI node that tells us how to partition the loops.
440static PHINode *FindPHIToPartitionLoops(Loop *L, DominatorTree *DT,
441                                        AliasAnalysis *AA) {
442  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
443    PHINode *PN = cast<PHINode>(I);
444    ++I;
445    if (Value *V = PN->hasConstantValue(DT)) {
446      // This is a degenerate PHI already, don't modify it!
447      PN->replaceAllUsesWith(V);
448      if (AA) AA->deleteValue(PN);
449      PN->eraseFromParent();
450      continue;
451    }
452
453    // Scan this PHI node looking for a use of the PHI node by itself.
454    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
455      if (PN->getIncomingValue(i) == PN &&
456          L->contains(PN->getIncomingBlock(i)))
457        // We found something tasty to remove.
458        return PN;
459  }
460  return 0;
461}
462
463// PlaceSplitBlockCarefully - If the block isn't already, move the new block to
464// right after some 'outside block' block.  This prevents the preheader from
465// being placed inside the loop body, e.g. when the loop hasn't been rotated.
466void LoopSimplify::PlaceSplitBlockCarefully(BasicBlock *NewBB,
467                                       SmallVectorImpl<BasicBlock*> &SplitPreds,
468                                            Loop *L) {
469  // Check to see if NewBB is already well placed.
470  Function::iterator BBI = NewBB; --BBI;
471  for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
472    if (&*BBI == SplitPreds[i])
473      return;
474  }
475
476  // If it isn't already after an outside block, move it after one.  This is
477  // always good as it makes the uncond branch from the outside block into a
478  // fall-through.
479
480  // Figure out *which* outside block to put this after.  Prefer an outside
481  // block that neighbors a BB actually in the loop.
482  BasicBlock *FoundBB = 0;
483  for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
484    Function::iterator BBI = SplitPreds[i];
485    if (++BBI != NewBB->getParent()->end() &&
486        L->contains(BBI)) {
487      FoundBB = SplitPreds[i];
488      break;
489    }
490  }
491
492  // If our heuristic for a *good* bb to place this after doesn't find
493  // anything, just pick something.  It's likely better than leaving it within
494  // the loop.
495  if (!FoundBB)
496    FoundBB = SplitPreds[0];
497  NewBB->moveAfter(FoundBB);
498}
499
500
501/// SeparateNestedLoop - If this loop has multiple backedges, try to pull one of
502/// them out into a nested loop.  This is important for code that looks like
503/// this:
504///
505///  Loop:
506///     ...
507///     br cond, Loop, Next
508///     ...
509///     br cond2, Loop, Out
510///
511/// To identify this common case, we look at the PHI nodes in the header of the
512/// loop.  PHI nodes with unchanging values on one backedge correspond to values
513/// that change in the "outer" loop, but not in the "inner" loop.
514///
515/// If we are able to separate out a loop, return the new outer loop that was
516/// created.
517///
518Loop *LoopSimplify::SeparateNestedLoop(Loop *L, LPPassManager &LPM) {
519  PHINode *PN = FindPHIToPartitionLoops(L, DT, AA);
520  if (PN == 0) return 0;  // No known way to partition.
521
522  // Pull out all predecessors that have varying values in the loop.  This
523  // handles the case when a PHI node has multiple instances of itself as
524  // arguments.
525  SmallVector<BasicBlock*, 8> OuterLoopPreds;
526  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
527    if (PN->getIncomingValue(i) != PN ||
528        !L->contains(PN->getIncomingBlock(i))) {
529      // We can't split indirectbr edges.
530      if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator()))
531        return 0;
532
533      OuterLoopPreds.push_back(PN->getIncomingBlock(i));
534    }
535
536  DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
537
538  // If ScalarEvolution is around and knows anything about values in
539  // this loop, tell it to forget them, because we're about to
540  // substantially change it.
541  if (SE)
542    SE->forgetLoop(L);
543
544  BasicBlock *Header = L->getHeader();
545  BasicBlock *NewBB = SplitBlockPredecessors(Header, &OuterLoopPreds[0],
546                                             OuterLoopPreds.size(),
547                                             ".outer", this);
548
549  // Make sure that NewBB is put someplace intelligent, which doesn't mess up
550  // code layout too horribly.
551  PlaceSplitBlockCarefully(NewBB, OuterLoopPreds, L);
552
553  // Create the new outer loop.
554  Loop *NewOuter = new Loop();
555
556  // Change the parent loop to use the outer loop as its child now.
557  if (Loop *Parent = L->getParentLoop())
558    Parent->replaceChildLoopWith(L, NewOuter);
559  else
560    LI->changeTopLevelLoop(L, NewOuter);
561
562  // L is now a subloop of our outer loop.
563  NewOuter->addChildLoop(L);
564
565  // Add the new loop to the pass manager queue.
566  LPM.insertLoopIntoQueue(NewOuter);
567
568  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
569       I != E; ++I)
570    NewOuter->addBlockEntry(*I);
571
572  // Now reset the header in L, which had been moved by
573  // SplitBlockPredecessors for the outer loop.
574  L->moveToHeader(Header);
575
576  // Determine which blocks should stay in L and which should be moved out to
577  // the Outer loop now.
578  std::set<BasicBlock*> BlocksInL;
579  for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) {
580    BasicBlock *P = *PI;
581    if (DT->dominates(Header, P))
582      AddBlockAndPredsToSet(P, Header, BlocksInL);
583  }
584
585  // Scan all of the loop children of L, moving them to OuterLoop if they are
586  // not part of the inner loop.
587  const std::vector<Loop*> &SubLoops = L->getSubLoops();
588  for (size_t I = 0; I != SubLoops.size(); )
589    if (BlocksInL.count(SubLoops[I]->getHeader()))
590      ++I;   // Loop remains in L
591    else
592      NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
593
594  // Now that we know which blocks are in L and which need to be moved to
595  // OuterLoop, move any blocks that need it.
596  for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
597    BasicBlock *BB = L->getBlocks()[i];
598    if (!BlocksInL.count(BB)) {
599      // Move this block to the parent, updating the exit blocks sets
600      L->removeBlockFromLoop(BB);
601      if ((*LI)[BB] == L)
602        LI->changeLoopFor(BB, NewOuter);
603      --i;
604    }
605  }
606
607  return NewOuter;
608}
609
610
611
612/// InsertUniqueBackedgeBlock - This method is called when the specified loop
613/// has more than one backedge in it.  If this occurs, revector all of these
614/// backedges to target a new basic block and have that block branch to the loop
615/// header.  This ensures that loops have exactly one backedge.
616///
617BasicBlock *
618LoopSimplify::InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader) {
619  assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
620
621  // Get information about the loop
622  BasicBlock *Header = L->getHeader();
623  Function *F = Header->getParent();
624
625  // Unique backedge insertion currently depends on having a preheader.
626  if (!Preheader)
627    return 0;
628
629  // Figure out which basic blocks contain back-edges to the loop header.
630  std::vector<BasicBlock*> BackedgeBlocks;
631  for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){
632    BasicBlock *P = *I;
633
634    // Indirectbr edges cannot be split, so we must fail if we find one.
635    if (isa<IndirectBrInst>(P->getTerminator()))
636      return 0;
637
638    if (P != Preheader) BackedgeBlocks.push_back(P);
639  }
640
641  // Create and insert the new backedge block...
642  BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(),
643                                           Header->getName()+".backedge", F);
644  BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
645
646  DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block ";
647        WriteAsOperand(dbgs(), BEBlock, false);
648        dbgs() << "\n");
649
650  // Move the new backedge block to right after the last backedge block.
651  Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos;
652  F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
653
654  // Now that the block has been inserted into the function, create PHI nodes in
655  // the backedge block which correspond to any PHI nodes in the header block.
656  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
657    PHINode *PN = cast<PHINode>(I);
658    PHINode *NewPN = PHINode::Create(PN->getType(), PN->getName()+".be",
659                                     BETerminator);
660    NewPN->reserveOperandSpace(BackedgeBlocks.size());
661    if (AA) AA->copyValue(PN, NewPN);
662
663    // Loop over the PHI node, moving all entries except the one for the
664    // preheader over to the new PHI node.
665    unsigned PreheaderIdx = ~0U;
666    bool HasUniqueIncomingValue = true;
667    Value *UniqueValue = 0;
668    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
669      BasicBlock *IBB = PN->getIncomingBlock(i);
670      Value *IV = PN->getIncomingValue(i);
671      if (IBB == Preheader) {
672        PreheaderIdx = i;
673      } else {
674        NewPN->addIncoming(IV, IBB);
675        if (HasUniqueIncomingValue) {
676          if (UniqueValue == 0)
677            UniqueValue = IV;
678          else if (UniqueValue != IV)
679            HasUniqueIncomingValue = false;
680        }
681      }
682    }
683
684    // Delete all of the incoming values from the old PN except the preheader's
685    assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
686    if (PreheaderIdx != 0) {
687      PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
688      PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
689    }
690    // Nuke all entries except the zero'th.
691    for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
692      PN->removeIncomingValue(e-i, false);
693
694    // Finally, add the newly constructed PHI node as the entry for the BEBlock.
695    PN->addIncoming(NewPN, BEBlock);
696
697    // As an optimization, if all incoming values in the new PhiNode (which is a
698    // subset of the incoming values of the old PHI node) have the same value,
699    // eliminate the PHI Node.
700    if (HasUniqueIncomingValue) {
701      NewPN->replaceAllUsesWith(UniqueValue);
702      if (AA) AA->deleteValue(NewPN);
703      BEBlock->getInstList().erase(NewPN);
704    }
705  }
706
707  // Now that all of the PHI nodes have been inserted and adjusted, modify the
708  // backedge blocks to just to the BEBlock instead of the header.
709  for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
710    TerminatorInst *TI = BackedgeBlocks[i]->getTerminator();
711    for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
712      if (TI->getSuccessor(Op) == Header)
713        TI->setSuccessor(Op, BEBlock);
714  }
715
716  //===--- Update all analyses which we must preserve now -----------------===//
717
718  // Update Loop Information - we know that this block is now in the current
719  // loop and all parent loops.
720  L->addBasicBlockToLoop(BEBlock, LI->getBase());
721
722  // Update dominator information
723  DT->splitBlock(BEBlock);
724  if (DominanceFrontier *DF = getAnalysisIfAvailable<DominanceFrontier>())
725    DF->splitBlock(BEBlock);
726
727  return BEBlock;
728}
729
730void LoopSimplify::verifyAnalysis() const {
731  // It used to be possible to just assert L->isLoopSimplifyForm(), however
732  // with the introduction of indirectbr, there are now cases where it's
733  // not possible to transform a loop as necessary. We can at least check
734  // that there is an indirectbr near any time there's trouble.
735
736  // Indirectbr can interfere with preheader and unique backedge insertion.
737  if (!L->getLoopPreheader() || !L->getLoopLatch()) {
738    bool HasIndBrPred = false;
739    for (pred_iterator PI = pred_begin(L->getHeader()),
740         PE = pred_end(L->getHeader()); PI != PE; ++PI)
741      if (isa<IndirectBrInst>((*PI)->getTerminator())) {
742        HasIndBrPred = true;
743        break;
744      }
745    assert(HasIndBrPred &&
746           "LoopSimplify has no excuse for missing loop header info!");
747  }
748
749  // Indirectbr can interfere with exit block canonicalization.
750  if (!L->hasDedicatedExits()) {
751    bool HasIndBrExiting = false;
752    SmallVector<BasicBlock*, 8> ExitingBlocks;
753    L->getExitingBlocks(ExitingBlocks);
754    for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i)
755      if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) {
756        HasIndBrExiting = true;
757        break;
758      }
759    assert(HasIndBrExiting &&
760           "LoopSimplify has no excuse for missing exit block info!");
761  }
762}
763