SimplifyCFG.cpp revision 0d45a096cff7de5b487f7f7aac17684945dd0b93
1//===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Peephole optimize the CFG.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "simplifycfg"
15#include "llvm/Transforms/Utils/Local.h"
16#include "llvm/Constants.h"
17#include "llvm/Instructions.h"
18#include "llvm/Type.h"
19#include "llvm/Support/CFG.h"
20#include "llvm/Support/Debug.h"
21#include "llvm/Transforms/Utils/BasicBlockUtils.h"
22#include <algorithm>
23#include <functional>
24#include <set>
25#include <map>
26using namespace llvm;
27
28/// SafeToMergeTerminators - Return true if it is safe to merge these two
29/// terminator instructions together.
30///
31static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
32  if (SI1 == SI2) return false;  // Can't merge with self!
33
34  // It is not safe to merge these two switch instructions if they have a common
35  // successor, and if that successor has a PHI node, and if *that* PHI node has
36  // conflicting incoming values from the two switch blocks.
37  BasicBlock *SI1BB = SI1->getParent();
38  BasicBlock *SI2BB = SI2->getParent();
39  std::set<BasicBlock*> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
40
41  for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
42    if (SI1Succs.count(*I))
43      for (BasicBlock::iterator BBI = (*I)->begin();
44           isa<PHINode>(BBI); ++BBI) {
45        PHINode *PN = cast<PHINode>(BBI);
46        if (PN->getIncomingValueForBlock(SI1BB) !=
47            PN->getIncomingValueForBlock(SI2BB))
48          return false;
49      }
50
51  return true;
52}
53
54/// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
55/// now be entries in it from the 'NewPred' block.  The values that will be
56/// flowing into the PHI nodes will be the same as those coming in from
57/// ExistPred, an existing predecessor of Succ.
58static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
59                                  BasicBlock *ExistPred) {
60  assert(std::find(succ_begin(ExistPred), succ_end(ExistPred), Succ) !=
61         succ_end(ExistPred) && "ExistPred is not a predecessor of Succ!");
62  if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
63
64  for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
65    PHINode *PN = cast<PHINode>(I);
66    Value *V = PN->getIncomingValueForBlock(ExistPred);
67    PN->addIncoming(V, NewPred);
68  }
69}
70
71// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
72// almost-empty BB ending in an unconditional branch to Succ, into succ.
73//
74// Assumption: Succ is the single successor for BB.
75//
76static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
77  assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
78
79  // Check to see if one of the predecessors of BB is already a predecessor of
80  // Succ.  If so, we cannot do the transformation if there are any PHI nodes
81  // with incompatible values coming in from the two edges!
82  //
83  if (isa<PHINode>(Succ->front())) {
84    std::set<BasicBlock*> BBPreds(pred_begin(BB), pred_end(BB));
85    for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
86         PI != PE; ++PI)
87      if (std::find(BBPreds.begin(), BBPreds.end(), *PI) != BBPreds.end()) {
88        // Loop over all of the PHI nodes checking to see if there are
89        // incompatible values coming in.
90        for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
91          PHINode *PN = cast<PHINode>(I);
92          // Loop up the entries in the PHI node for BB and for *PI if the
93          // values coming in are non-equal, we cannot merge these two blocks
94          // (instead we should insert a conditional move or something, then
95          // merge the blocks).
96          if (PN->getIncomingValueForBlock(BB) !=
97              PN->getIncomingValueForBlock(*PI))
98            return false;  // Values are not equal...
99        }
100      }
101  }
102
103  // Finally, if BB has PHI nodes that are used by things other than the PHIs in
104  // Succ and Succ has predecessors that are not Succ and not Pred, we cannot
105  // fold these blocks, as we don't know whether BB dominates Succ or not to
106  // update the PHI nodes correctly.
107  if (!isa<PHINode>(BB->begin()) || Succ->getSinglePredecessor()) return true;
108
109  // If the predecessors of Succ are only BB and Succ itself, we can handle this.
110  bool IsSafe = true;
111  for (pred_iterator PI = pred_begin(Succ), E = pred_end(Succ); PI != E; ++PI)
112    if (*PI != Succ && *PI != BB) {
113      IsSafe = false;
114      break;
115    }
116  if (IsSafe) return true;
117
118  // If the PHI nodes in BB are only used by instructions in Succ, we are ok if
119  // BB and Succ have no common predecessors.
120  for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I) {
121    PHINode *PN = cast<PHINode>(I);
122    for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); UI != E;
123         ++UI)
124      if (cast<Instruction>(*UI)->getParent() != Succ)
125        return false;
126  }
127
128  // Scan the predecessor sets of BB and Succ, making sure there are no common
129  // predecessors.  Common predecessors would cause us to build a phi node with
130  // differing incoming values, which is not legal.
131  std::set<BasicBlock*> BBPreds(pred_begin(BB), pred_end(BB));
132  for (pred_iterator PI = pred_begin(Succ), E = pred_end(Succ); PI != E; ++PI)
133    if (BBPreds.count(*PI))
134      return false;
135
136  return true;
137}
138
139/// TryToSimplifyUncondBranchFromEmptyBlock - BB contains an unconditional
140/// branch to Succ, and contains no instructions other than PHI nodes and the
141/// branch.  If possible, eliminate BB.
142static bool TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
143                                                    BasicBlock *Succ) {
144  // If our successor has PHI nodes, then we need to update them to include
145  // entries for BB's predecessors, not for BB itself.  Be careful though,
146  // if this transformation fails (returns true) then we cannot do this
147  // transformation!
148  //
149  if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
150
151  DOUT << "Killing Trivial BB: \n" << *BB;
152
153  if (isa<PHINode>(Succ->begin())) {
154    // If there is more than one pred of succ, and there are PHI nodes in
155    // the successor, then we need to add incoming edges for the PHI nodes
156    //
157    const std::vector<BasicBlock*> BBPreds(pred_begin(BB), pred_end(BB));
158
159    // Loop over all of the PHI nodes in the successor of BB.
160    for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
161      PHINode *PN = cast<PHINode>(I);
162      Value *OldVal = PN->removeIncomingValue(BB, false);
163      assert(OldVal && "No entry in PHI for Pred BB!");
164
165      // If this incoming value is one of the PHI nodes in BB, the new entries
166      // in the PHI node are the entries from the old PHI.
167      if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
168        PHINode *OldValPN = cast<PHINode>(OldVal);
169        for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i)
170          PN->addIncoming(OldValPN->getIncomingValue(i),
171                          OldValPN->getIncomingBlock(i));
172      } else {
173        for (std::vector<BasicBlock*>::const_iterator PredI = BBPreds.begin(),
174             End = BBPreds.end(); PredI != End; ++PredI) {
175          // Add an incoming value for each of the new incoming values...
176          PN->addIncoming(OldVal, *PredI);
177        }
178      }
179    }
180  }
181
182  if (isa<PHINode>(&BB->front())) {
183    std::vector<BasicBlock*>
184    OldSuccPreds(pred_begin(Succ), pred_end(Succ));
185
186    // Move all PHI nodes in BB to Succ if they are alive, otherwise
187    // delete them.
188    while (PHINode *PN = dyn_cast<PHINode>(&BB->front()))
189      if (PN->use_empty()) {
190        // Just remove the dead phi.  This happens if Succ's PHIs were the only
191        // users of the PHI nodes.
192        PN->eraseFromParent();
193      } else {
194        // The instruction is alive, so this means that Succ must have
195        // *ONLY* had BB as a predecessor, and the PHI node is still valid
196        // now.  Simply move it into Succ, because we know that BB
197        // strictly dominated Succ.
198        Succ->getInstList().splice(Succ->begin(),
199                                   BB->getInstList(), BB->begin());
200
201        // We need to add new entries for the PHI node to account for
202        // predecessors of Succ that the PHI node does not take into
203        // account.  At this point, since we know that BB dominated succ,
204        // this means that we should any newly added incoming edges should
205        // use the PHI node as the value for these edges, because they are
206        // loop back edges.
207        for (unsigned i = 0, e = OldSuccPreds.size(); i != e; ++i)
208          if (OldSuccPreds[i] != BB)
209            PN->addIncoming(PN, OldSuccPreds[i]);
210      }
211  }
212
213  // Everything that jumped to BB now goes to Succ.
214  std::string OldName = BB->getName();
215  BB->replaceAllUsesWith(Succ);
216  BB->eraseFromParent();              // Delete the old basic block.
217
218  if (!OldName.empty() && !Succ->hasName())  // Transfer name if we can
219    Succ->setName(OldName);
220  return true;
221}
222
223/// GetIfCondition - Given a basic block (BB) with two predecessors (and
224/// presumably PHI nodes in it), check to see if the merge at this block is due
225/// to an "if condition".  If so, return the boolean condition that determines
226/// which entry into BB will be taken.  Also, return by references the block
227/// that will be entered from if the condition is true, and the block that will
228/// be entered if the condition is false.
229///
230///
231static Value *GetIfCondition(BasicBlock *BB,
232                             BasicBlock *&IfTrue, BasicBlock *&IfFalse) {
233  assert(std::distance(pred_begin(BB), pred_end(BB)) == 2 &&
234         "Function can only handle blocks with 2 predecessors!");
235  BasicBlock *Pred1 = *pred_begin(BB);
236  BasicBlock *Pred2 = *++pred_begin(BB);
237
238  // We can only handle branches.  Other control flow will be lowered to
239  // branches if possible anyway.
240  if (!isa<BranchInst>(Pred1->getTerminator()) ||
241      !isa<BranchInst>(Pred2->getTerminator()))
242    return 0;
243  BranchInst *Pred1Br = cast<BranchInst>(Pred1->getTerminator());
244  BranchInst *Pred2Br = cast<BranchInst>(Pred2->getTerminator());
245
246  // Eliminate code duplication by ensuring that Pred1Br is conditional if
247  // either are.
248  if (Pred2Br->isConditional()) {
249    // If both branches are conditional, we don't have an "if statement".  In
250    // reality, we could transform this case, but since the condition will be
251    // required anyway, we stand no chance of eliminating it, so the xform is
252    // probably not profitable.
253    if (Pred1Br->isConditional())
254      return 0;
255
256    std::swap(Pred1, Pred2);
257    std::swap(Pred1Br, Pred2Br);
258  }
259
260  if (Pred1Br->isConditional()) {
261    // If we found a conditional branch predecessor, make sure that it branches
262    // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
263    if (Pred1Br->getSuccessor(0) == BB &&
264        Pred1Br->getSuccessor(1) == Pred2) {
265      IfTrue = Pred1;
266      IfFalse = Pred2;
267    } else if (Pred1Br->getSuccessor(0) == Pred2 &&
268               Pred1Br->getSuccessor(1) == BB) {
269      IfTrue = Pred2;
270      IfFalse = Pred1;
271    } else {
272      // We know that one arm of the conditional goes to BB, so the other must
273      // go somewhere unrelated, and this must not be an "if statement".
274      return 0;
275    }
276
277    // The only thing we have to watch out for here is to make sure that Pred2
278    // doesn't have incoming edges from other blocks.  If it does, the condition
279    // doesn't dominate BB.
280    if (++pred_begin(Pred2) != pred_end(Pred2))
281      return 0;
282
283    return Pred1Br->getCondition();
284  }
285
286  // Ok, if we got here, both predecessors end with an unconditional branch to
287  // BB.  Don't panic!  If both blocks only have a single (identical)
288  // predecessor, and THAT is a conditional branch, then we're all ok!
289  if (pred_begin(Pred1) == pred_end(Pred1) ||
290      ++pred_begin(Pred1) != pred_end(Pred1) ||
291      pred_begin(Pred2) == pred_end(Pred2) ||
292      ++pred_begin(Pred2) != pred_end(Pred2) ||
293      *pred_begin(Pred1) != *pred_begin(Pred2))
294    return 0;
295
296  // Otherwise, if this is a conditional branch, then we can use it!
297  BasicBlock *CommonPred = *pred_begin(Pred1);
298  if (BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator())) {
299    assert(BI->isConditional() && "Two successors but not conditional?");
300    if (BI->getSuccessor(0) == Pred1) {
301      IfTrue = Pred1;
302      IfFalse = Pred2;
303    } else {
304      IfTrue = Pred2;
305      IfFalse = Pred1;
306    }
307    return BI->getCondition();
308  }
309  return 0;
310}
311
312
313// If we have a merge point of an "if condition" as accepted above, return true
314// if the specified value dominates the block.  We don't handle the true
315// generality of domination here, just a special case which works well enough
316// for us.
317//
318// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
319// see if V (which must be an instruction) is cheap to compute and is
320// non-trapping.  If both are true, the instruction is inserted into the set and
321// true is returned.
322static bool DominatesMergePoint(Value *V, BasicBlock *BB,
323                                std::set<Instruction*> *AggressiveInsts) {
324  Instruction *I = dyn_cast<Instruction>(V);
325  if (!I) {
326    // Non-instructions all dominate instructions, but not all constantexprs
327    // can be executed unconditionally.
328    if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
329      if (C->canTrap())
330        return false;
331    return true;
332  }
333  BasicBlock *PBB = I->getParent();
334
335  // We don't want to allow weird loops that might have the "if condition" in
336  // the bottom of this block.
337  if (PBB == BB) return false;
338
339  // If this instruction is defined in a block that contains an unconditional
340  // branch to BB, then it must be in the 'conditional' part of the "if
341  // statement".
342  if (BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()))
343    if (BI->isUnconditional() && BI->getSuccessor(0) == BB) {
344      if (!AggressiveInsts) return false;
345      // Okay, it looks like the instruction IS in the "condition".  Check to
346      // see if its a cheap instruction to unconditionally compute, and if it
347      // only uses stuff defined outside of the condition.  If so, hoist it out.
348      switch (I->getOpcode()) {
349      default: return false;  // Cannot hoist this out safely.
350      case Instruction::Load:
351        // We can hoist loads that are non-volatile and obviously cannot trap.
352        if (cast<LoadInst>(I)->isVolatile())
353          return false;
354        if (!isa<AllocaInst>(I->getOperand(0)) &&
355            !isa<Constant>(I->getOperand(0)))
356          return false;
357
358        // Finally, we have to check to make sure there are no instructions
359        // before the load in its basic block, as we are going to hoist the loop
360        // out to its predecessor.
361        if (PBB->begin() != BasicBlock::iterator(I))
362          return false;
363        break;
364      case Instruction::Add:
365      case Instruction::Sub:
366      case Instruction::And:
367      case Instruction::Or:
368      case Instruction::Xor:
369      case Instruction::Shl:
370      case Instruction::LShr:
371      case Instruction::AShr:
372      case Instruction::SetEQ:
373      case Instruction::SetNE:
374      case Instruction::SetLT:
375      case Instruction::SetGT:
376      case Instruction::SetLE:
377      case Instruction::SetGE:
378        break;   // These are all cheap and non-trapping instructions.
379      }
380
381      // Okay, we can only really hoist these out if their operands are not
382      // defined in the conditional region.
383      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
384        if (!DominatesMergePoint(I->getOperand(i), BB, 0))
385          return false;
386      // Okay, it's safe to do this!  Remember this instruction.
387      AggressiveInsts->insert(I);
388    }
389
390  return true;
391}
392
393// GatherConstantSetEQs - Given a potentially 'or'd together collection of seteq
394// instructions that compare a value against a constant, return the value being
395// compared, and stick the constant into the Values vector.
396static Value *GatherConstantSetEQs(Value *V, std::vector<ConstantInt*> &Values){
397  if (Instruction *Inst = dyn_cast<Instruction>(V))
398    if (Inst->getOpcode() == Instruction::SetEQ) {
399      if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(1))) {
400        Values.push_back(C);
401        return Inst->getOperand(0);
402      } else if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(0))) {
403        Values.push_back(C);
404        return Inst->getOperand(1);
405      }
406    } else if (Inst->getOpcode() == Instruction::Or) {
407      if (Value *LHS = GatherConstantSetEQs(Inst->getOperand(0), Values))
408        if (Value *RHS = GatherConstantSetEQs(Inst->getOperand(1), Values))
409          if (LHS == RHS)
410            return LHS;
411    }
412  return 0;
413}
414
415// GatherConstantSetNEs - Given a potentially 'and'd together collection of
416// setne instructions that compare a value against a constant, return the value
417// being compared, and stick the constant into the Values vector.
418static Value *GatherConstantSetNEs(Value *V, std::vector<ConstantInt*> &Values){
419  if (Instruction *Inst = dyn_cast<Instruction>(V))
420    if (Inst->getOpcode() == Instruction::SetNE) {
421      if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(1))) {
422        Values.push_back(C);
423        return Inst->getOperand(0);
424      } else if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(0))) {
425        Values.push_back(C);
426        return Inst->getOperand(1);
427      }
428    } else if (Inst->getOpcode() == Instruction::Cast) {
429      // Cast of X to bool is really a comparison against zero.
430      assert(Inst->getType() == Type::BoolTy && "Can only handle bool values!");
431      Values.push_back(ConstantInt::get(Inst->getOperand(0)->getType(), 0));
432      return Inst->getOperand(0);
433    } else if (Inst->getOpcode() == Instruction::And) {
434      if (Value *LHS = GatherConstantSetNEs(Inst->getOperand(0), Values))
435        if (Value *RHS = GatherConstantSetNEs(Inst->getOperand(1), Values))
436          if (LHS == RHS)
437            return LHS;
438    }
439  return 0;
440}
441
442
443
444/// GatherValueComparisons - If the specified Cond is an 'and' or 'or' of a
445/// bunch of comparisons of one value against constants, return the value and
446/// the constants being compared.
447static bool GatherValueComparisons(Instruction *Cond, Value *&CompVal,
448                                   std::vector<ConstantInt*> &Values) {
449  if (Cond->getOpcode() == Instruction::Or) {
450    CompVal = GatherConstantSetEQs(Cond, Values);
451
452    // Return true to indicate that the condition is true if the CompVal is
453    // equal to one of the constants.
454    return true;
455  } else if (Cond->getOpcode() == Instruction::And) {
456    CompVal = GatherConstantSetNEs(Cond, Values);
457
458    // Return false to indicate that the condition is false if the CompVal is
459    // equal to one of the constants.
460    return false;
461  }
462  return false;
463}
464
465/// ErasePossiblyDeadInstructionTree - If the specified instruction is dead and
466/// has no side effects, nuke it.  If it uses any instructions that become dead
467/// because the instruction is now gone, nuke them too.
468static void ErasePossiblyDeadInstructionTree(Instruction *I) {
469  if (!isInstructionTriviallyDead(I)) return;
470
471  std::vector<Instruction*> InstrsToInspect;
472  InstrsToInspect.push_back(I);
473
474  while (!InstrsToInspect.empty()) {
475    I = InstrsToInspect.back();
476    InstrsToInspect.pop_back();
477
478    if (!isInstructionTriviallyDead(I)) continue;
479
480    // If I is in the work list multiple times, remove previous instances.
481    for (unsigned i = 0, e = InstrsToInspect.size(); i != e; ++i)
482      if (InstrsToInspect[i] == I) {
483        InstrsToInspect.erase(InstrsToInspect.begin()+i);
484        --i, --e;
485      }
486
487    // Add operands of dead instruction to worklist.
488    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
489      if (Instruction *OpI = dyn_cast<Instruction>(I->getOperand(i)))
490        InstrsToInspect.push_back(OpI);
491
492    // Remove dead instruction.
493    I->eraseFromParent();
494  }
495}
496
497// isValueEqualityComparison - Return true if the specified terminator checks to
498// see if a value is equal to constant integer value.
499static Value *isValueEqualityComparison(TerminatorInst *TI) {
500  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
501    // Do not permit merging of large switch instructions into their
502    // predecessors unless there is only one predecessor.
503    if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()),
504                                               pred_end(SI->getParent())) > 128)
505      return 0;
506
507    return SI->getCondition();
508  }
509  if (BranchInst *BI = dyn_cast<BranchInst>(TI))
510    if (BI->isConditional() && BI->getCondition()->hasOneUse())
511      if (SetCondInst *SCI = dyn_cast<SetCondInst>(BI->getCondition()))
512        if ((SCI->getOpcode() == Instruction::SetEQ ||
513             SCI->getOpcode() == Instruction::SetNE) &&
514            isa<ConstantInt>(SCI->getOperand(1)))
515          return SCI->getOperand(0);
516  return 0;
517}
518
519// Given a value comparison instruction, decode all of the 'cases' that it
520// represents and return the 'default' block.
521static BasicBlock *
522GetValueEqualityComparisonCases(TerminatorInst *TI,
523                                std::vector<std::pair<ConstantInt*,
524                                                      BasicBlock*> > &Cases) {
525  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
526    Cases.reserve(SI->getNumCases());
527    for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
528      Cases.push_back(std::make_pair(SI->getCaseValue(i), SI->getSuccessor(i)));
529    return SI->getDefaultDest();
530  }
531
532  BranchInst *BI = cast<BranchInst>(TI);
533  SetCondInst *SCI = cast<SetCondInst>(BI->getCondition());
534  Cases.push_back(std::make_pair(cast<ConstantInt>(SCI->getOperand(1)),
535                                 BI->getSuccessor(SCI->getOpcode() ==
536                                                        Instruction::SetNE)));
537  return BI->getSuccessor(SCI->getOpcode() == Instruction::SetEQ);
538}
539
540
541// EliminateBlockCases - Given an vector of bb/value pairs, remove any entries
542// in the list that match the specified block.
543static void EliminateBlockCases(BasicBlock *BB,
544               std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases) {
545  for (unsigned i = 0, e = Cases.size(); i != e; ++i)
546    if (Cases[i].second == BB) {
547      Cases.erase(Cases.begin()+i);
548      --i; --e;
549    }
550}
551
552// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
553// well.
554static bool
555ValuesOverlap(std::vector<std::pair<ConstantInt*, BasicBlock*> > &C1,
556              std::vector<std::pair<ConstantInt*, BasicBlock*> > &C2) {
557  std::vector<std::pair<ConstantInt*, BasicBlock*> > *V1 = &C1, *V2 = &C2;
558
559  // Make V1 be smaller than V2.
560  if (V1->size() > V2->size())
561    std::swap(V1, V2);
562
563  if (V1->size() == 0) return false;
564  if (V1->size() == 1) {
565    // Just scan V2.
566    ConstantInt *TheVal = (*V1)[0].first;
567    for (unsigned i = 0, e = V2->size(); i != e; ++i)
568      if (TheVal == (*V2)[i].first)
569        return true;
570  }
571
572  // Otherwise, just sort both lists and compare element by element.
573  std::sort(V1->begin(), V1->end());
574  std::sort(V2->begin(), V2->end());
575  unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
576  while (i1 != e1 && i2 != e2) {
577    if ((*V1)[i1].first == (*V2)[i2].first)
578      return true;
579    if ((*V1)[i1].first < (*V2)[i2].first)
580      ++i1;
581    else
582      ++i2;
583  }
584  return false;
585}
586
587// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
588// terminator instruction and its block is known to only have a single
589// predecessor block, check to see if that predecessor is also a value
590// comparison with the same value, and if that comparison determines the outcome
591// of this comparison.  If so, simplify TI.  This does a very limited form of
592// jump threading.
593static bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
594                                                          BasicBlock *Pred) {
595  Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
596  if (!PredVal) return false;  // Not a value comparison in predecessor.
597
598  Value *ThisVal = isValueEqualityComparison(TI);
599  assert(ThisVal && "This isn't a value comparison!!");
600  if (ThisVal != PredVal) return false;  // Different predicates.
601
602  // Find out information about when control will move from Pred to TI's block.
603  std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
604  BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
605                                                        PredCases);
606  EliminateBlockCases(PredDef, PredCases);  // Remove default from cases.
607
608  // Find information about how control leaves this block.
609  std::vector<std::pair<ConstantInt*, BasicBlock*> > ThisCases;
610  BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
611  EliminateBlockCases(ThisDef, ThisCases);  // Remove default from cases.
612
613  // If TI's block is the default block from Pred's comparison, potentially
614  // simplify TI based on this knowledge.
615  if (PredDef == TI->getParent()) {
616    // If we are here, we know that the value is none of those cases listed in
617    // PredCases.  If there are any cases in ThisCases that are in PredCases, we
618    // can simplify TI.
619    if (ValuesOverlap(PredCases, ThisCases)) {
620      if (BranchInst *BTI = dyn_cast<BranchInst>(TI)) {
621        // Okay, one of the successors of this condbr is dead.  Convert it to a
622        // uncond br.
623        assert(ThisCases.size() == 1 && "Branch can only have one case!");
624        Value *Cond = BTI->getCondition();
625        // Insert the new branch.
626        Instruction *NI = new BranchInst(ThisDef, TI);
627
628        // Remove PHI node entries for the dead edge.
629        ThisCases[0].second->removePredecessor(TI->getParent());
630
631        DOUT << "Threading pred instr: " << *Pred->getTerminator()
632             << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n";
633
634        TI->eraseFromParent();   // Nuke the old one.
635        // If condition is now dead, nuke it.
636        if (Instruction *CondI = dyn_cast<Instruction>(Cond))
637          ErasePossiblyDeadInstructionTree(CondI);
638        return true;
639
640      } else {
641        SwitchInst *SI = cast<SwitchInst>(TI);
642        // Okay, TI has cases that are statically dead, prune them away.
643        std::set<Constant*> DeadCases;
644        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
645          DeadCases.insert(PredCases[i].first);
646
647        DOUT << "Threading pred instr: " << *Pred->getTerminator()
648             << "Through successor TI: " << *TI;
649
650        for (unsigned i = SI->getNumCases()-1; i != 0; --i)
651          if (DeadCases.count(SI->getCaseValue(i))) {
652            SI->getSuccessor(i)->removePredecessor(TI->getParent());
653            SI->removeCase(i);
654          }
655
656        DOUT << "Leaving: " << *TI << "\n";
657        return true;
658      }
659    }
660
661  } else {
662    // Otherwise, TI's block must correspond to some matched value.  Find out
663    // which value (or set of values) this is.
664    ConstantInt *TIV = 0;
665    BasicBlock *TIBB = TI->getParent();
666    for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
667      if (PredCases[i].second == TIBB)
668        if (TIV == 0)
669          TIV = PredCases[i].first;
670        else
671          return false;  // Cannot handle multiple values coming to this block.
672    assert(TIV && "No edge from pred to succ?");
673
674    // Okay, we found the one constant that our value can be if we get into TI's
675    // BB.  Find out which successor will unconditionally be branched to.
676    BasicBlock *TheRealDest = 0;
677    for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
678      if (ThisCases[i].first == TIV) {
679        TheRealDest = ThisCases[i].second;
680        break;
681      }
682
683    // If not handled by any explicit cases, it is handled by the default case.
684    if (TheRealDest == 0) TheRealDest = ThisDef;
685
686    // Remove PHI node entries for dead edges.
687    BasicBlock *CheckEdge = TheRealDest;
688    for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
689      if (*SI != CheckEdge)
690        (*SI)->removePredecessor(TIBB);
691      else
692        CheckEdge = 0;
693
694    // Insert the new branch.
695    Instruction *NI = new BranchInst(TheRealDest, TI);
696
697    DOUT << "Threading pred instr: " << *Pred->getTerminator()
698         << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n";
699    Instruction *Cond = 0;
700    if (BranchInst *BI = dyn_cast<BranchInst>(TI))
701      Cond = dyn_cast<Instruction>(BI->getCondition());
702    TI->eraseFromParent();   // Nuke the old one.
703
704    if (Cond) ErasePossiblyDeadInstructionTree(Cond);
705    return true;
706  }
707  return false;
708}
709
710// FoldValueComparisonIntoPredecessors - The specified terminator is a value
711// equality comparison instruction (either a switch or a branch on "X == c").
712// See if any of the predecessors of the terminator block are value comparisons
713// on the same value.  If so, and if safe to do so, fold them together.
714static bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI) {
715  BasicBlock *BB = TI->getParent();
716  Value *CV = isValueEqualityComparison(TI);  // CondVal
717  assert(CV && "Not a comparison?");
718  bool Changed = false;
719
720  std::vector<BasicBlock*> Preds(pred_begin(BB), pred_end(BB));
721  while (!Preds.empty()) {
722    BasicBlock *Pred = Preds.back();
723    Preds.pop_back();
724
725    // See if the predecessor is a comparison with the same value.
726    TerminatorInst *PTI = Pred->getTerminator();
727    Value *PCV = isValueEqualityComparison(PTI);  // PredCondVal
728
729    if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
730      // Figure out which 'cases' to copy from SI to PSI.
731      std::vector<std::pair<ConstantInt*, BasicBlock*> > BBCases;
732      BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
733
734      std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
735      BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
736
737      // Based on whether the default edge from PTI goes to BB or not, fill in
738      // PredCases and PredDefault with the new switch cases we would like to
739      // build.
740      std::vector<BasicBlock*> NewSuccessors;
741
742      if (PredDefault == BB) {
743        // If this is the default destination from PTI, only the edges in TI
744        // that don't occur in PTI, or that branch to BB will be activated.
745        std::set<ConstantInt*> PTIHandled;
746        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
747          if (PredCases[i].second != BB)
748            PTIHandled.insert(PredCases[i].first);
749          else {
750            // The default destination is BB, we don't need explicit targets.
751            std::swap(PredCases[i], PredCases.back());
752            PredCases.pop_back();
753            --i; --e;
754          }
755
756        // Reconstruct the new switch statement we will be building.
757        if (PredDefault != BBDefault) {
758          PredDefault->removePredecessor(Pred);
759          PredDefault = BBDefault;
760          NewSuccessors.push_back(BBDefault);
761        }
762        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
763          if (!PTIHandled.count(BBCases[i].first) &&
764              BBCases[i].second != BBDefault) {
765            PredCases.push_back(BBCases[i]);
766            NewSuccessors.push_back(BBCases[i].second);
767          }
768
769      } else {
770        // If this is not the default destination from PSI, only the edges
771        // in SI that occur in PSI with a destination of BB will be
772        // activated.
773        std::set<ConstantInt*> PTIHandled;
774        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
775          if (PredCases[i].second == BB) {
776            PTIHandled.insert(PredCases[i].first);
777            std::swap(PredCases[i], PredCases.back());
778            PredCases.pop_back();
779            --i; --e;
780          }
781
782        // Okay, now we know which constants were sent to BB from the
783        // predecessor.  Figure out where they will all go now.
784        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
785          if (PTIHandled.count(BBCases[i].first)) {
786            // If this is one we are capable of getting...
787            PredCases.push_back(BBCases[i]);
788            NewSuccessors.push_back(BBCases[i].second);
789            PTIHandled.erase(BBCases[i].first);// This constant is taken care of
790          }
791
792        // If there are any constants vectored to BB that TI doesn't handle,
793        // they must go to the default destination of TI.
794        for (std::set<ConstantInt*>::iterator I = PTIHandled.begin(),
795               E = PTIHandled.end(); I != E; ++I) {
796          PredCases.push_back(std::make_pair(*I, BBDefault));
797          NewSuccessors.push_back(BBDefault);
798        }
799      }
800
801      // Okay, at this point, we know which new successor Pred will get.  Make
802      // sure we update the number of entries in the PHI nodes for these
803      // successors.
804      for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
805        AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
806
807      // Now that the successors are updated, create the new Switch instruction.
808      SwitchInst *NewSI = new SwitchInst(CV, PredDefault, PredCases.size(),PTI);
809      for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
810        NewSI->addCase(PredCases[i].first, PredCases[i].second);
811
812      Instruction *DeadCond = 0;
813      if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
814        // If PTI is a branch, remember the condition.
815        DeadCond = dyn_cast<Instruction>(BI->getCondition());
816      Pred->getInstList().erase(PTI);
817
818      // If the condition is dead now, remove the instruction tree.
819      if (DeadCond) ErasePossiblyDeadInstructionTree(DeadCond);
820
821      // Okay, last check.  If BB is still a successor of PSI, then we must
822      // have an infinite loop case.  If so, add an infinitely looping block
823      // to handle the case to preserve the behavior of the code.
824      BasicBlock *InfLoopBlock = 0;
825      for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
826        if (NewSI->getSuccessor(i) == BB) {
827          if (InfLoopBlock == 0) {
828            // Insert it at the end of the loop, because it's either code,
829            // or it won't matter if it's hot. :)
830            InfLoopBlock = new BasicBlock("infloop", BB->getParent());
831            new BranchInst(InfLoopBlock, InfLoopBlock);
832          }
833          NewSI->setSuccessor(i, InfLoopBlock);
834        }
835
836      Changed = true;
837    }
838  }
839  return Changed;
840}
841
842/// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
843/// BB2, hoist any common code in the two blocks up into the branch block.  The
844/// caller of this function guarantees that BI's block dominates BB1 and BB2.
845static bool HoistThenElseCodeToIf(BranchInst *BI) {
846  // This does very trivial matching, with limited scanning, to find identical
847  // instructions in the two blocks.  In particular, we don't want to get into
848  // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
849  // such, we currently just scan for obviously identical instructions in an
850  // identical order.
851  BasicBlock *BB1 = BI->getSuccessor(0);  // The true destination.
852  BasicBlock *BB2 = BI->getSuccessor(1);  // The false destination
853
854  Instruction *I1 = BB1->begin(), *I2 = BB2->begin();
855  if (I1->getOpcode() != I2->getOpcode() || !I1->isIdenticalTo(I2) ||
856      isa<PHINode>(I1) || isa<InvokeInst>(I1))
857    return false;
858
859  // If we get here, we can hoist at least one instruction.
860  BasicBlock *BIParent = BI->getParent();
861
862  do {
863    // If we are hoisting the terminator instruction, don't move one (making a
864    // broken BB), instead clone it, and remove BI.
865    if (isa<TerminatorInst>(I1))
866      goto HoistTerminator;
867
868    // For a normal instruction, we just move one to right before the branch,
869    // then replace all uses of the other with the first.  Finally, we remove
870    // the now redundant second instruction.
871    BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
872    if (!I2->use_empty())
873      I2->replaceAllUsesWith(I1);
874    BB2->getInstList().erase(I2);
875
876    I1 = BB1->begin();
877    I2 = BB2->begin();
878  } while (I1->getOpcode() == I2->getOpcode() && I1->isIdenticalTo(I2));
879
880  return true;
881
882HoistTerminator:
883  // Okay, it is safe to hoist the terminator.
884  Instruction *NT = I1->clone();
885  BIParent->getInstList().insert(BI, NT);
886  if (NT->getType() != Type::VoidTy) {
887    I1->replaceAllUsesWith(NT);
888    I2->replaceAllUsesWith(NT);
889    NT->setName(I1->getName());
890  }
891
892  // Hoisting one of the terminators from our successor is a great thing.
893  // Unfortunately, the successors of the if/else blocks may have PHI nodes in
894  // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
895  // nodes, so we insert select instruction to compute the final result.
896  std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
897  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
898    PHINode *PN;
899    for (BasicBlock::iterator BBI = SI->begin();
900         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
901      Value *BB1V = PN->getIncomingValueForBlock(BB1);
902      Value *BB2V = PN->getIncomingValueForBlock(BB2);
903      if (BB1V != BB2V) {
904        // These values do not agree.  Insert a select instruction before NT
905        // that determines the right value.
906        SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
907        if (SI == 0)
908          SI = new SelectInst(BI->getCondition(), BB1V, BB2V,
909                              BB1V->getName()+"."+BB2V->getName(), NT);
910        // Make the PHI node use the select for all incoming values for BB1/BB2
911        for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
912          if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
913            PN->setIncomingValue(i, SI);
914      }
915    }
916  }
917
918  // Update any PHI nodes in our new successors.
919  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
920    AddPredecessorToBlock(*SI, BIParent, BB1);
921
922  BI->eraseFromParent();
923  return true;
924}
925
926/// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
927/// across this block.
928static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
929  BranchInst *BI = cast<BranchInst>(BB->getTerminator());
930  unsigned Size = 0;
931
932  // If this basic block contains anything other than a PHI (which controls the
933  // branch) and branch itself, bail out.  FIXME: improve this in the future.
934  for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI, ++Size) {
935    if (Size > 10) return false;  // Don't clone large BB's.
936
937    // We can only support instructions that are do not define values that are
938    // live outside of the current basic block.
939    for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
940         UI != E; ++UI) {
941      Instruction *U = cast<Instruction>(*UI);
942      if (U->getParent() != BB || isa<PHINode>(U)) return false;
943    }
944
945    // Looks ok, continue checking.
946  }
947
948  return true;
949}
950
951/// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
952/// that is defined in the same block as the branch and if any PHI entries are
953/// constants, thread edges corresponding to that entry to be branches to their
954/// ultimate destination.
955static bool FoldCondBranchOnPHI(BranchInst *BI) {
956  BasicBlock *BB = BI->getParent();
957  PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
958  // NOTE: we currently cannot transform this case if the PHI node is used
959  // outside of the block.
960  if (!PN || PN->getParent() != BB || !PN->hasOneUse())
961    return false;
962
963  // Degenerate case of a single entry PHI.
964  if (PN->getNumIncomingValues() == 1) {
965    if (PN->getIncomingValue(0) != PN)
966      PN->replaceAllUsesWith(PN->getIncomingValue(0));
967    else
968      PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
969    PN->eraseFromParent();
970    return true;
971  }
972
973  // Now we know that this block has multiple preds and two succs.
974  if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
975
976  // Okay, this is a simple enough basic block.  See if any phi values are
977  // constants.
978  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
979    if (ConstantBool *CB = dyn_cast<ConstantBool>(PN->getIncomingValue(i))) {
980      // Okay, we now know that all edges from PredBB should be revectored to
981      // branch to RealDest.
982      BasicBlock *PredBB = PN->getIncomingBlock(i);
983      BasicBlock *RealDest = BI->getSuccessor(!CB->getValue());
984
985      if (RealDest == BB) continue;  // Skip self loops.
986
987      // The dest block might have PHI nodes, other predecessors and other
988      // difficult cases.  Instead of being smart about this, just insert a new
989      // block that jumps to the destination block, effectively splitting
990      // the edge we are about to create.
991      BasicBlock *EdgeBB = new BasicBlock(RealDest->getName()+".critedge",
992                                          RealDest->getParent(), RealDest);
993      new BranchInst(RealDest, EdgeBB);
994      PHINode *PN;
995      for (BasicBlock::iterator BBI = RealDest->begin();
996           (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
997        Value *V = PN->getIncomingValueForBlock(BB);
998        PN->addIncoming(V, EdgeBB);
999      }
1000
1001      // BB may have instructions that are being threaded over.  Clone these
1002      // instructions into EdgeBB.  We know that there will be no uses of the
1003      // cloned instructions outside of EdgeBB.
1004      BasicBlock::iterator InsertPt = EdgeBB->begin();
1005      std::map<Value*, Value*> TranslateMap;  // Track translated values.
1006      for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1007        if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
1008          TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
1009        } else {
1010          // Clone the instruction.
1011          Instruction *N = BBI->clone();
1012          if (BBI->hasName()) N->setName(BBI->getName()+".c");
1013
1014          // Update operands due to translation.
1015          for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1016            std::map<Value*, Value*>::iterator PI =
1017              TranslateMap.find(N->getOperand(i));
1018            if (PI != TranslateMap.end())
1019              N->setOperand(i, PI->second);
1020          }
1021
1022          // Check for trivial simplification.
1023          if (Constant *C = ConstantFoldInstruction(N)) {
1024            TranslateMap[BBI] = C;
1025            delete N;   // Constant folded away, don't need actual inst
1026          } else {
1027            // Insert the new instruction into its new home.
1028            EdgeBB->getInstList().insert(InsertPt, N);
1029            if (!BBI->use_empty())
1030              TranslateMap[BBI] = N;
1031          }
1032        }
1033      }
1034
1035      // Loop over all of the edges from PredBB to BB, changing them to branch
1036      // to EdgeBB instead.
1037      TerminatorInst *PredBBTI = PredBB->getTerminator();
1038      for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
1039        if (PredBBTI->getSuccessor(i) == BB) {
1040          BB->removePredecessor(PredBB);
1041          PredBBTI->setSuccessor(i, EdgeBB);
1042        }
1043
1044      // Recurse, simplifying any other constants.
1045      return FoldCondBranchOnPHI(BI) | true;
1046    }
1047
1048  return false;
1049}
1050
1051/// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
1052/// PHI node, see if we can eliminate it.
1053static bool FoldTwoEntryPHINode(PHINode *PN) {
1054  // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
1055  // statement", which has a very simple dominance structure.  Basically, we
1056  // are trying to find the condition that is being branched on, which
1057  // subsequently causes this merge to happen.  We really want control
1058  // dependence information for this check, but simplifycfg can't keep it up
1059  // to date, and this catches most of the cases we care about anyway.
1060  //
1061  BasicBlock *BB = PN->getParent();
1062  BasicBlock *IfTrue, *IfFalse;
1063  Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
1064  if (!IfCond) return false;
1065
1066  // Okay, we found that we can merge this two-entry phi node into a select.
1067  // Doing so would require us to fold *all* two entry phi nodes in this block.
1068  // At some point this becomes non-profitable (particularly if the target
1069  // doesn't support cmov's).  Only do this transformation if there are two or
1070  // fewer PHI nodes in this block.
1071  unsigned NumPhis = 0;
1072  for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
1073    if (NumPhis > 2)
1074      return false;
1075
1076  DOUT << "FOUND IF CONDITION!  " << *IfCond << "  T: "
1077       << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n";
1078
1079  // Loop over the PHI's seeing if we can promote them all to select
1080  // instructions.  While we are at it, keep track of the instructions
1081  // that need to be moved to the dominating block.
1082  std::set<Instruction*> AggressiveInsts;
1083
1084  BasicBlock::iterator AfterPHIIt = BB->begin();
1085  while (isa<PHINode>(AfterPHIIt)) {
1086    PHINode *PN = cast<PHINode>(AfterPHIIt++);
1087    if (PN->getIncomingValue(0) == PN->getIncomingValue(1)) {
1088      if (PN->getIncomingValue(0) != PN)
1089        PN->replaceAllUsesWith(PN->getIncomingValue(0));
1090      else
1091        PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
1092    } else if (!DominatesMergePoint(PN->getIncomingValue(0), BB,
1093                                    &AggressiveInsts) ||
1094               !DominatesMergePoint(PN->getIncomingValue(1), BB,
1095                                    &AggressiveInsts)) {
1096      return false;
1097    }
1098  }
1099
1100  // If we all PHI nodes are promotable, check to make sure that all
1101  // instructions in the predecessor blocks can be promoted as well.  If
1102  // not, we won't be able to get rid of the control flow, so it's not
1103  // worth promoting to select instructions.
1104  BasicBlock *DomBlock = 0, *IfBlock1 = 0, *IfBlock2 = 0;
1105  PN = cast<PHINode>(BB->begin());
1106  BasicBlock *Pred = PN->getIncomingBlock(0);
1107  if (cast<BranchInst>(Pred->getTerminator())->isUnconditional()) {
1108    IfBlock1 = Pred;
1109    DomBlock = *pred_begin(Pred);
1110    for (BasicBlock::iterator I = Pred->begin();
1111         !isa<TerminatorInst>(I); ++I)
1112      if (!AggressiveInsts.count(I)) {
1113        // This is not an aggressive instruction that we can promote.
1114        // Because of this, we won't be able to get rid of the control
1115        // flow, so the xform is not worth it.
1116        return false;
1117      }
1118  }
1119
1120  Pred = PN->getIncomingBlock(1);
1121  if (cast<BranchInst>(Pred->getTerminator())->isUnconditional()) {
1122    IfBlock2 = Pred;
1123    DomBlock = *pred_begin(Pred);
1124    for (BasicBlock::iterator I = Pred->begin();
1125         !isa<TerminatorInst>(I); ++I)
1126      if (!AggressiveInsts.count(I)) {
1127        // This is not an aggressive instruction that we can promote.
1128        // Because of this, we won't be able to get rid of the control
1129        // flow, so the xform is not worth it.
1130        return false;
1131      }
1132  }
1133
1134  // If we can still promote the PHI nodes after this gauntlet of tests,
1135  // do all of the PHI's now.
1136
1137  // Move all 'aggressive' instructions, which are defined in the
1138  // conditional parts of the if's up to the dominating block.
1139  if (IfBlock1) {
1140    DomBlock->getInstList().splice(DomBlock->getTerminator(),
1141                                   IfBlock1->getInstList(),
1142                                   IfBlock1->begin(),
1143                                   IfBlock1->getTerminator());
1144  }
1145  if (IfBlock2) {
1146    DomBlock->getInstList().splice(DomBlock->getTerminator(),
1147                                   IfBlock2->getInstList(),
1148                                   IfBlock2->begin(),
1149                                   IfBlock2->getTerminator());
1150  }
1151
1152  while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
1153    // Change the PHI node into a select instruction.
1154    Value *TrueVal =
1155      PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
1156    Value *FalseVal =
1157      PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
1158
1159    std::string Name = PN->getName(); PN->setName("");
1160    PN->replaceAllUsesWith(new SelectInst(IfCond, TrueVal, FalseVal,
1161                                          Name, AfterPHIIt));
1162    BB->getInstList().erase(PN);
1163  }
1164  return true;
1165}
1166
1167namespace {
1168  /// ConstantIntOrdering - This class implements a stable ordering of constant
1169  /// integers that does not depend on their address.  This is important for
1170  /// applications that sort ConstantInt's to ensure uniqueness.
1171  struct ConstantIntOrdering {
1172    bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
1173      return LHS->getZExtValue() < RHS->getZExtValue();
1174    }
1175  };
1176}
1177
1178// SimplifyCFG - This function is used to do simplification of a CFG.  For
1179// example, it adjusts branches to branches to eliminate the extra hop, it
1180// eliminates unreachable basic blocks, and does other "peephole" optimization
1181// of the CFG.  It returns true if a modification was made.
1182//
1183// WARNING:  The entry node of a function may not be simplified.
1184//
1185bool llvm::SimplifyCFG(BasicBlock *BB) {
1186  bool Changed = false;
1187  Function *M = BB->getParent();
1188
1189  assert(BB && BB->getParent() && "Block not embedded in function!");
1190  assert(BB->getTerminator() && "Degenerate basic block encountered!");
1191  assert(&BB->getParent()->front() != BB && "Can't Simplify entry block!");
1192
1193  // Remove basic blocks that have no predecessors... which are unreachable.
1194  if (pred_begin(BB) == pred_end(BB) ||
1195      *pred_begin(BB) == BB && ++pred_begin(BB) == pred_end(BB)) {
1196    DOUT << "Removing BB: \n" << *BB;
1197
1198    // Loop through all of our successors and make sure they know that one
1199    // of their predecessors is going away.
1200    for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
1201      SI->removePredecessor(BB);
1202
1203    while (!BB->empty()) {
1204      Instruction &I = BB->back();
1205      // If this instruction is used, replace uses with an arbitrary
1206      // value.  Because control flow can't get here, we don't care
1207      // what we replace the value with.  Note that since this block is
1208      // unreachable, and all values contained within it must dominate their
1209      // uses, that all uses will eventually be removed.
1210      if (!I.use_empty())
1211        // Make all users of this instruction use undef instead
1212        I.replaceAllUsesWith(UndefValue::get(I.getType()));
1213
1214      // Remove the instruction from the basic block
1215      BB->getInstList().pop_back();
1216    }
1217    M->getBasicBlockList().erase(BB);
1218    return true;
1219  }
1220
1221  // Check to see if we can constant propagate this terminator instruction
1222  // away...
1223  Changed |= ConstantFoldTerminator(BB);
1224
1225  // If this is a returning block with only PHI nodes in it, fold the return
1226  // instruction into any unconditional branch predecessors.
1227  //
1228  // If any predecessor is a conditional branch that just selects among
1229  // different return values, fold the replace the branch/return with a select
1230  // and return.
1231  if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
1232    BasicBlock::iterator BBI = BB->getTerminator();
1233    if (BBI == BB->begin() || isa<PHINode>(--BBI)) {
1234      // Find predecessors that end with branches.
1235      std::vector<BasicBlock*> UncondBranchPreds;
1236      std::vector<BranchInst*> CondBranchPreds;
1237      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1238        TerminatorInst *PTI = (*PI)->getTerminator();
1239        if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
1240          if (BI->isUnconditional())
1241            UncondBranchPreds.push_back(*PI);
1242          else
1243            CondBranchPreds.push_back(BI);
1244      }
1245
1246      // If we found some, do the transformation!
1247      if (!UncondBranchPreds.empty()) {
1248        while (!UncondBranchPreds.empty()) {
1249          BasicBlock *Pred = UncondBranchPreds.back();
1250          DOUT << "FOLDING: " << *BB
1251               << "INTO UNCOND BRANCH PRED: " << *Pred;
1252          UncondBranchPreds.pop_back();
1253          Instruction *UncondBranch = Pred->getTerminator();
1254          // Clone the return and add it to the end of the predecessor.
1255          Instruction *NewRet = RI->clone();
1256          Pred->getInstList().push_back(NewRet);
1257
1258          // If the return instruction returns a value, and if the value was a
1259          // PHI node in "BB", propagate the right value into the return.
1260          if (NewRet->getNumOperands() == 1)
1261            if (PHINode *PN = dyn_cast<PHINode>(NewRet->getOperand(0)))
1262              if (PN->getParent() == BB)
1263                NewRet->setOperand(0, PN->getIncomingValueForBlock(Pred));
1264          // Update any PHI nodes in the returning block to realize that we no
1265          // longer branch to them.
1266          BB->removePredecessor(Pred);
1267          Pred->getInstList().erase(UncondBranch);
1268        }
1269
1270        // If we eliminated all predecessors of the block, delete the block now.
1271        if (pred_begin(BB) == pred_end(BB))
1272          // We know there are no successors, so just nuke the block.
1273          M->getBasicBlockList().erase(BB);
1274
1275        return true;
1276      }
1277
1278      // Check out all of the conditional branches going to this return
1279      // instruction.  If any of them just select between returns, change the
1280      // branch itself into a select/return pair.
1281      while (!CondBranchPreds.empty()) {
1282        BranchInst *BI = CondBranchPreds.back();
1283        CondBranchPreds.pop_back();
1284        BasicBlock *TrueSucc = BI->getSuccessor(0);
1285        BasicBlock *FalseSucc = BI->getSuccessor(1);
1286        BasicBlock *OtherSucc = TrueSucc == BB ? FalseSucc : TrueSucc;
1287
1288        // Check to see if the non-BB successor is also a return block.
1289        if (isa<ReturnInst>(OtherSucc->getTerminator())) {
1290          // Check to see if there are only PHI instructions in this block.
1291          BasicBlock::iterator OSI = OtherSucc->getTerminator();
1292          if (OSI == OtherSucc->begin() || isa<PHINode>(--OSI)) {
1293            // Okay, we found a branch that is going to two return nodes.  If
1294            // there is no return value for this function, just change the
1295            // branch into a return.
1296            if (RI->getNumOperands() == 0) {
1297              TrueSucc->removePredecessor(BI->getParent());
1298              FalseSucc->removePredecessor(BI->getParent());
1299              new ReturnInst(0, BI);
1300              BI->getParent()->getInstList().erase(BI);
1301              return true;
1302            }
1303
1304            // Otherwise, figure out what the true and false return values are
1305            // so we can insert a new select instruction.
1306            Value *TrueValue = TrueSucc->getTerminator()->getOperand(0);
1307            Value *FalseValue = FalseSucc->getTerminator()->getOperand(0);
1308
1309            // Unwrap any PHI nodes in the return blocks.
1310            if (PHINode *TVPN = dyn_cast<PHINode>(TrueValue))
1311              if (TVPN->getParent() == TrueSucc)
1312                TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
1313            if (PHINode *FVPN = dyn_cast<PHINode>(FalseValue))
1314              if (FVPN->getParent() == FalseSucc)
1315                FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
1316
1317            // In order for this transformation to be safe, we must be able to
1318            // unconditionally execute both operands to the return.  This is
1319            // normally the case, but we could have a potentially-trapping
1320            // constant expression that prevents this transformation from being
1321            // safe.
1322            if ((!isa<ConstantExpr>(TrueValue) ||
1323                 !cast<ConstantExpr>(TrueValue)->canTrap()) &&
1324                (!isa<ConstantExpr>(TrueValue) ||
1325                 !cast<ConstantExpr>(TrueValue)->canTrap())) {
1326              TrueSucc->removePredecessor(BI->getParent());
1327              FalseSucc->removePredecessor(BI->getParent());
1328
1329              // Insert a new select instruction.
1330              Value *NewRetVal;
1331              Value *BrCond = BI->getCondition();
1332              if (TrueValue != FalseValue)
1333                NewRetVal = new SelectInst(BrCond, TrueValue,
1334                                           FalseValue, "retval", BI);
1335              else
1336                NewRetVal = TrueValue;
1337
1338              DOUT << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
1339                   << "\n  " << *BI << "Select = " << *NewRetVal
1340                   << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc;
1341
1342              new ReturnInst(NewRetVal, BI);
1343              BI->eraseFromParent();
1344              if (Instruction *BrCondI = dyn_cast<Instruction>(BrCond))
1345                if (isInstructionTriviallyDead(BrCondI))
1346                  BrCondI->eraseFromParent();
1347              return true;
1348            }
1349          }
1350        }
1351      }
1352    }
1353  } else if (isa<UnwindInst>(BB->begin())) {
1354    // Check to see if the first instruction in this block is just an unwind.
1355    // If so, replace any invoke instructions which use this as an exception
1356    // destination with call instructions, and any unconditional branch
1357    // predecessor with an unwind.
1358    //
1359    std::vector<BasicBlock*> Preds(pred_begin(BB), pred_end(BB));
1360    while (!Preds.empty()) {
1361      BasicBlock *Pred = Preds.back();
1362      if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator())) {
1363        if (BI->isUnconditional()) {
1364          Pred->getInstList().pop_back();  // nuke uncond branch
1365          new UnwindInst(Pred);            // Use unwind.
1366          Changed = true;
1367        }
1368      } else if (InvokeInst *II = dyn_cast<InvokeInst>(Pred->getTerminator()))
1369        if (II->getUnwindDest() == BB) {
1370          // Insert a new branch instruction before the invoke, because this
1371          // is now a fall through...
1372          BranchInst *BI = new BranchInst(II->getNormalDest(), II);
1373          Pred->getInstList().remove(II);   // Take out of symbol table
1374
1375          // Insert the call now...
1376          std::vector<Value*> Args(II->op_begin()+3, II->op_end());
1377          CallInst *CI = new CallInst(II->getCalledValue(), Args,
1378                                      II->getName(), BI);
1379          CI->setCallingConv(II->getCallingConv());
1380          // If the invoke produced a value, the Call now does instead
1381          II->replaceAllUsesWith(CI);
1382          delete II;
1383          Changed = true;
1384        }
1385
1386      Preds.pop_back();
1387    }
1388
1389    // If this block is now dead, remove it.
1390    if (pred_begin(BB) == pred_end(BB)) {
1391      // We know there are no successors, so just nuke the block.
1392      M->getBasicBlockList().erase(BB);
1393      return true;
1394    }
1395
1396  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1397    if (isValueEqualityComparison(SI)) {
1398      // If we only have one predecessor, and if it is a branch on this value,
1399      // see if that predecessor totally determines the outcome of this switch.
1400      if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
1401        if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred))
1402          return SimplifyCFG(BB) || 1;
1403
1404      // If the block only contains the switch, see if we can fold the block
1405      // away into any preds.
1406      if (SI == &BB->front())
1407        if (FoldValueComparisonIntoPredecessors(SI))
1408          return SimplifyCFG(BB) || 1;
1409    }
1410  } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1411    if (BI->isUnconditional()) {
1412      BasicBlock::iterator BBI = BB->begin();  // Skip over phi nodes...
1413      while (isa<PHINode>(*BBI)) ++BBI;
1414
1415      BasicBlock *Succ = BI->getSuccessor(0);
1416      if (BBI->isTerminator() &&  // Terminator is the only non-phi instruction!
1417          Succ != BB)             // Don't hurt infinite loops!
1418        if (TryToSimplifyUncondBranchFromEmptyBlock(BB, Succ))
1419          return 1;
1420
1421    } else {  // Conditional branch
1422      if (isValueEqualityComparison(BI)) {
1423        // If we only have one predecessor, and if it is a branch on this value,
1424        // see if that predecessor totally determines the outcome of this
1425        // switch.
1426        if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
1427          if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred))
1428            return SimplifyCFG(BB) || 1;
1429
1430        // This block must be empty, except for the setcond inst, if it exists.
1431        BasicBlock::iterator I = BB->begin();
1432        if (&*I == BI ||
1433            (&*I == cast<Instruction>(BI->getCondition()) &&
1434             &*++I == BI))
1435          if (FoldValueComparisonIntoPredecessors(BI))
1436            return SimplifyCFG(BB) | true;
1437      }
1438
1439      // If this is a branch on a phi node in the current block, thread control
1440      // through this block if any PHI node entries are constants.
1441      if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
1442        if (PN->getParent() == BI->getParent())
1443          if (FoldCondBranchOnPHI(BI))
1444            return SimplifyCFG(BB) | true;
1445
1446      // If this basic block is ONLY a setcc and a branch, and if a predecessor
1447      // branches to us and one of our successors, fold the setcc into the
1448      // predecessor and use logical operations to pick the right destination.
1449      BasicBlock *TrueDest  = BI->getSuccessor(0);
1450      BasicBlock *FalseDest = BI->getSuccessor(1);
1451      if (BinaryOperator *Cond = dyn_cast<BinaryOperator>(BI->getCondition()))
1452        if (Cond->getParent() == BB && &BB->front() == Cond &&
1453            Cond->getNext() == BI && Cond->hasOneUse() &&
1454            TrueDest != BB && FalseDest != BB)
1455          for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI!=E; ++PI)
1456            if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
1457              if (PBI->isConditional() && SafeToMergeTerminators(BI, PBI)) {
1458                BasicBlock *PredBlock = *PI;
1459                if (PBI->getSuccessor(0) == FalseDest ||
1460                    PBI->getSuccessor(1) == TrueDest) {
1461                  // Invert the predecessors condition test (xor it with true),
1462                  // which allows us to write this code once.
1463                  Value *NewCond =
1464                    BinaryOperator::createNot(PBI->getCondition(),
1465                                    PBI->getCondition()->getName()+".not", PBI);
1466                  PBI->setCondition(NewCond);
1467                  BasicBlock *OldTrue = PBI->getSuccessor(0);
1468                  BasicBlock *OldFalse = PBI->getSuccessor(1);
1469                  PBI->setSuccessor(0, OldFalse);
1470                  PBI->setSuccessor(1, OldTrue);
1471                }
1472
1473                if ((PBI->getSuccessor(0) == TrueDest && FalseDest != BB) ||
1474                    (PBI->getSuccessor(1) == FalseDest && TrueDest != BB)) {
1475                  // Clone Cond into the predecessor basic block, and or/and the
1476                  // two conditions together.
1477                  Instruction *New = Cond->clone();
1478                  New->setName(Cond->getName());
1479                  Cond->setName(Cond->getName()+".old");
1480                  PredBlock->getInstList().insert(PBI, New);
1481                  Instruction::BinaryOps Opcode =
1482                    PBI->getSuccessor(0) == TrueDest ?
1483                    Instruction::Or : Instruction::And;
1484                  Value *NewCond =
1485                    BinaryOperator::create(Opcode, PBI->getCondition(),
1486                                           New, "bothcond", PBI);
1487                  PBI->setCondition(NewCond);
1488                  if (PBI->getSuccessor(0) == BB) {
1489                    AddPredecessorToBlock(TrueDest, PredBlock, BB);
1490                    PBI->setSuccessor(0, TrueDest);
1491                  }
1492                  if (PBI->getSuccessor(1) == BB) {
1493                    AddPredecessorToBlock(FalseDest, PredBlock, BB);
1494                    PBI->setSuccessor(1, FalseDest);
1495                  }
1496                  return SimplifyCFG(BB) | 1;
1497                }
1498              }
1499
1500      // Scan predessor blocks for conditional branchs.
1501      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
1502        if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
1503          if (PBI != BI && PBI->isConditional()) {
1504
1505            // If this block ends with a branch instruction, and if there is a
1506            // predecessor that ends on a branch of the same condition, make this
1507            // conditional branch redundant.
1508            if (PBI->getCondition() == BI->getCondition() &&
1509                PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
1510              // Okay, the outcome of this conditional branch is statically
1511              // knowable.  If this block had a single pred, handle specially.
1512              if (BB->getSinglePredecessor()) {
1513                // Turn this into a branch on constant.
1514                bool CondIsTrue = PBI->getSuccessor(0) == BB;
1515                BI->setCondition(ConstantBool::get(CondIsTrue));
1516                return SimplifyCFG(BB);  // Nuke the branch on constant.
1517              }
1518
1519              // Otherwise, if there are multiple predecessors, insert a PHI that
1520              // merges in the constant and simplify the block result.
1521              if (BlockIsSimpleEnoughToThreadThrough(BB)) {
1522                PHINode *NewPN = new PHINode(Type::BoolTy,
1523                                             BI->getCondition()->getName()+".pr",
1524                                             BB->begin());
1525                for (PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
1526                  if ((PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) &&
1527                      PBI != BI && PBI->isConditional() &&
1528                      PBI->getCondition() == BI->getCondition() &&
1529                      PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
1530                    bool CondIsTrue = PBI->getSuccessor(0) == BB;
1531                    NewPN->addIncoming(ConstantBool::get(CondIsTrue), *PI);
1532                  } else {
1533                    NewPN->addIncoming(BI->getCondition(), *PI);
1534                  }
1535
1536                BI->setCondition(NewPN);
1537                // This will thread the branch.
1538                return SimplifyCFG(BB) | true;
1539              }
1540            }
1541
1542            // If this is a conditional branch in an empty block, and if any
1543            // predecessors is a conditional branch to one of our destinations,
1544            // fold the conditions into logical ops and one cond br.
1545            if (&BB->front() == BI) {
1546              int PBIOp, BIOp;
1547              if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
1548                PBIOp = BIOp = 0;
1549              } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
1550                PBIOp = 0; BIOp = 1;
1551              } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
1552                PBIOp = 1; BIOp = 0;
1553              } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
1554                PBIOp = BIOp = 1;
1555              } else {
1556                PBIOp = BIOp = -1;
1557              }
1558
1559              // Check to make sure that the other destination of this branch
1560              // isn't BB itself.  If so, this is an infinite loop that will
1561              // keep getting unwound.
1562              if (PBIOp != -1 && PBI->getSuccessor(PBIOp) == BB)
1563                PBIOp = BIOp = -1;
1564
1565              // Do not perform this transformation if it would require
1566              // insertion of a large number of select instructions. For targets
1567              // without predication/cmovs, this is a big pessimization.
1568              if (PBIOp != -1) {
1569                BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
1570
1571                unsigned NumPhis = 0;
1572                for (BasicBlock::iterator II = CommonDest->begin();
1573                     isa<PHINode>(II); ++II, ++NumPhis) {
1574                  if (NumPhis > 2) {
1575                    // Disable this xform.
1576                    PBIOp = -1;
1577                    break;
1578                  }
1579                }
1580              }
1581
1582              // Finally, if everything is ok, fold the branches to logical ops.
1583              if (PBIOp != -1) {
1584                BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
1585                BasicBlock *OtherDest  = BI->getSuccessor(BIOp ^ 1);
1586
1587                // If OtherDest *is* BB, then this is a basic block with just
1588                // a conditional branch in it, where one edge (OtherDesg) goes
1589                // back to the block.  We know that the program doesn't get
1590                // stuck in the infinite loop, so the condition must be such
1591                // that OtherDest isn't branched through. Forward to CommonDest,
1592                // and avoid an infinite loop at optimizer time.
1593                if (OtherDest == BB)
1594                  OtherDest = CommonDest;
1595
1596                DOUT << "FOLDING BRs:" << *PBI->getParent()
1597                     << "AND: " << *BI->getParent();
1598
1599                // BI may have other predecessors.  Because of this, we leave
1600                // it alone, but modify PBI.
1601
1602                // Make sure we get to CommonDest on True&True directions.
1603                Value *PBICond = PBI->getCondition();
1604                if (PBIOp)
1605                  PBICond = BinaryOperator::createNot(PBICond,
1606                                                      PBICond->getName()+".not",
1607                                                      PBI);
1608                Value *BICond = BI->getCondition();
1609                if (BIOp)
1610                  BICond = BinaryOperator::createNot(BICond,
1611                                                     BICond->getName()+".not",
1612                                                     PBI);
1613                // Merge the conditions.
1614                Value *Cond =
1615                  BinaryOperator::createOr(PBICond, BICond, "brmerge", PBI);
1616
1617                // Modify PBI to branch on the new condition to the new dests.
1618                PBI->setCondition(Cond);
1619                PBI->setSuccessor(0, CommonDest);
1620                PBI->setSuccessor(1, OtherDest);
1621
1622                // OtherDest may have phi nodes.  If so, add an entry from PBI's
1623                // block that are identical to the entries for BI's block.
1624                PHINode *PN;
1625                for (BasicBlock::iterator II = OtherDest->begin();
1626                     (PN = dyn_cast<PHINode>(II)); ++II) {
1627                  Value *V = PN->getIncomingValueForBlock(BB);
1628                  PN->addIncoming(V, PBI->getParent());
1629                }
1630
1631                // We know that the CommonDest already had an edge from PBI to
1632                // it.  If it has PHIs though, the PHIs may have different
1633                // entries for BB and PBI's BB.  If so, insert a select to make
1634                // them agree.
1635                for (BasicBlock::iterator II = CommonDest->begin();
1636                     (PN = dyn_cast<PHINode>(II)); ++II) {
1637                  Value * BIV = PN->getIncomingValueForBlock(BB);
1638                  unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
1639                  Value *PBIV = PN->getIncomingValue(PBBIdx);
1640                  if (BIV != PBIV) {
1641                    // Insert a select in PBI to pick the right value.
1642                    Value *NV = new SelectInst(PBICond, PBIV, BIV,
1643                                               PBIV->getName()+".mux", PBI);
1644                    PN->setIncomingValue(PBBIdx, NV);
1645                  }
1646                }
1647
1648                DOUT << "INTO: " << *PBI->getParent();
1649
1650                // This basic block is probably dead.  We know it has at least
1651                // one fewer predecessor.
1652                return SimplifyCFG(BB) | true;
1653              }
1654            }
1655          }
1656    }
1657  } else if (isa<UnreachableInst>(BB->getTerminator())) {
1658    // If there are any instructions immediately before the unreachable that can
1659    // be removed, do so.
1660    Instruction *Unreachable = BB->getTerminator();
1661    while (Unreachable != BB->begin()) {
1662      BasicBlock::iterator BBI = Unreachable;
1663      --BBI;
1664      if (isa<CallInst>(BBI)) break;
1665      // Delete this instruction
1666      BB->getInstList().erase(BBI);
1667      Changed = true;
1668    }
1669
1670    // If the unreachable instruction is the first in the block, take a gander
1671    // at all of the predecessors of this instruction, and simplify them.
1672    if (&BB->front() == Unreachable) {
1673      std::vector<BasicBlock*> Preds(pred_begin(BB), pred_end(BB));
1674      for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
1675        TerminatorInst *TI = Preds[i]->getTerminator();
1676
1677        if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1678          if (BI->isUnconditional()) {
1679            if (BI->getSuccessor(0) == BB) {
1680              new UnreachableInst(TI);
1681              TI->eraseFromParent();
1682              Changed = true;
1683            }
1684          } else {
1685            if (BI->getSuccessor(0) == BB) {
1686              new BranchInst(BI->getSuccessor(1), BI);
1687              BI->eraseFromParent();
1688            } else if (BI->getSuccessor(1) == BB) {
1689              new BranchInst(BI->getSuccessor(0), BI);
1690              BI->eraseFromParent();
1691              Changed = true;
1692            }
1693          }
1694        } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1695          for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
1696            if (SI->getSuccessor(i) == BB) {
1697              BB->removePredecessor(SI->getParent());
1698              SI->removeCase(i);
1699              --i; --e;
1700              Changed = true;
1701            }
1702          // If the default value is unreachable, figure out the most popular
1703          // destination and make it the default.
1704          if (SI->getSuccessor(0) == BB) {
1705            std::map<BasicBlock*, unsigned> Popularity;
1706            for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
1707              Popularity[SI->getSuccessor(i)]++;
1708
1709            // Find the most popular block.
1710            unsigned MaxPop = 0;
1711            BasicBlock *MaxBlock = 0;
1712            for (std::map<BasicBlock*, unsigned>::iterator
1713                   I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
1714              if (I->second > MaxPop) {
1715                MaxPop = I->second;
1716                MaxBlock = I->first;
1717              }
1718            }
1719            if (MaxBlock) {
1720              // Make this the new default, allowing us to delete any explicit
1721              // edges to it.
1722              SI->setSuccessor(0, MaxBlock);
1723              Changed = true;
1724
1725              // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
1726              // it.
1727              if (isa<PHINode>(MaxBlock->begin()))
1728                for (unsigned i = 0; i != MaxPop-1; ++i)
1729                  MaxBlock->removePredecessor(SI->getParent());
1730
1731              for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
1732                if (SI->getSuccessor(i) == MaxBlock) {
1733                  SI->removeCase(i);
1734                  --i; --e;
1735                }
1736            }
1737          }
1738        } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
1739          if (II->getUnwindDest() == BB) {
1740            // Convert the invoke to a call instruction.  This would be a good
1741            // place to note that the call does not throw though.
1742            BranchInst *BI = new BranchInst(II->getNormalDest(), II);
1743            II->removeFromParent();   // Take out of symbol table
1744
1745            // Insert the call now...
1746            std::vector<Value*> Args(II->op_begin()+3, II->op_end());
1747            CallInst *CI = new CallInst(II->getCalledValue(), Args,
1748                                        II->getName(), BI);
1749            CI->setCallingConv(II->getCallingConv());
1750            // If the invoke produced a value, the Call does now instead.
1751            II->replaceAllUsesWith(CI);
1752            delete II;
1753            Changed = true;
1754          }
1755        }
1756      }
1757
1758      // If this block is now dead, remove it.
1759      if (pred_begin(BB) == pred_end(BB)) {
1760        // We know there are no successors, so just nuke the block.
1761        M->getBasicBlockList().erase(BB);
1762        return true;
1763      }
1764    }
1765  }
1766
1767  // Merge basic blocks into their predecessor if there is only one distinct
1768  // pred, and if there is only one distinct successor of the predecessor, and
1769  // if there are no PHI nodes.
1770  //
1771  pred_iterator PI(pred_begin(BB)), PE(pred_end(BB));
1772  BasicBlock *OnlyPred = *PI++;
1773  for (; PI != PE; ++PI)  // Search all predecessors, see if they are all same
1774    if (*PI != OnlyPred) {
1775      OnlyPred = 0;       // There are multiple different predecessors...
1776      break;
1777    }
1778
1779  BasicBlock *OnlySucc = 0;
1780  if (OnlyPred && OnlyPred != BB &&    // Don't break self loops
1781      OnlyPred->getTerminator()->getOpcode() != Instruction::Invoke) {
1782    // Check to see if there is only one distinct successor...
1783    succ_iterator SI(succ_begin(OnlyPred)), SE(succ_end(OnlyPred));
1784    OnlySucc = BB;
1785    for (; SI != SE; ++SI)
1786      if (*SI != OnlySucc) {
1787        OnlySucc = 0;     // There are multiple distinct successors!
1788        break;
1789      }
1790  }
1791
1792  if (OnlySucc) {
1793    DOUT << "Merging: " << *BB << "into: " << *OnlyPred;
1794
1795    // Resolve any PHI nodes at the start of the block.  They are all
1796    // guaranteed to have exactly one entry if they exist, unless there are
1797    // multiple duplicate (but guaranteed to be equal) entries for the
1798    // incoming edges.  This occurs when there are multiple edges from
1799    // OnlyPred to OnlySucc.
1800    //
1801    while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
1802      PN->replaceAllUsesWith(PN->getIncomingValue(0));
1803      BB->getInstList().pop_front();  // Delete the phi node...
1804    }
1805
1806    // Delete the unconditional branch from the predecessor...
1807    OnlyPred->getInstList().pop_back();
1808
1809    // Move all definitions in the successor to the predecessor...
1810    OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
1811
1812    // Make all PHI nodes that referred to BB now refer to Pred as their
1813    // source...
1814    BB->replaceAllUsesWith(OnlyPred);
1815
1816    std::string OldName = BB->getName();
1817
1818    // Erase basic block from the function...
1819    M->getBasicBlockList().erase(BB);
1820
1821    // Inherit predecessors name if it exists...
1822    if (!OldName.empty() && !OnlyPred->hasName())
1823      OnlyPred->setName(OldName);
1824
1825    return true;
1826  }
1827
1828  // Otherwise, if this block only has a single predecessor, and if that block
1829  // is a conditional branch, see if we can hoist any code from this block up
1830  // into our predecessor.
1831  if (OnlyPred)
1832    if (BranchInst *BI = dyn_cast<BranchInst>(OnlyPred->getTerminator()))
1833      if (BI->isConditional()) {
1834        // Get the other block.
1835        BasicBlock *OtherBB = BI->getSuccessor(BI->getSuccessor(0) == BB);
1836        PI = pred_begin(OtherBB);
1837        ++PI;
1838        if (PI == pred_end(OtherBB)) {
1839          // We have a conditional branch to two blocks that are only reachable
1840          // from the condbr.  We know that the condbr dominates the two blocks,
1841          // so see if there is any identical code in the "then" and "else"
1842          // blocks.  If so, we can hoist it up to the branching block.
1843          Changed |= HoistThenElseCodeToIf(BI);
1844        }
1845      }
1846
1847  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
1848    if (BranchInst *BI = dyn_cast<BranchInst>((*PI)->getTerminator()))
1849      // Change br (X == 0 | X == 1), T, F into a switch instruction.
1850      if (BI->isConditional() && isa<Instruction>(BI->getCondition())) {
1851        Instruction *Cond = cast<Instruction>(BI->getCondition());
1852        // If this is a bunch of seteq's or'd together, or if it's a bunch of
1853        // 'setne's and'ed together, collect them.
1854        Value *CompVal = 0;
1855        std::vector<ConstantInt*> Values;
1856        bool TrueWhenEqual = GatherValueComparisons(Cond, CompVal, Values);
1857        if (CompVal && CompVal->getType()->isInteger()) {
1858          // There might be duplicate constants in the list, which the switch
1859          // instruction can't handle, remove them now.
1860          std::sort(Values.begin(), Values.end(), ConstantIntOrdering());
1861          Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
1862
1863          // Figure out which block is which destination.
1864          BasicBlock *DefaultBB = BI->getSuccessor(1);
1865          BasicBlock *EdgeBB    = BI->getSuccessor(0);
1866          if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
1867
1868          // Create the new switch instruction now.
1869          SwitchInst *New = new SwitchInst(CompVal, DefaultBB,Values.size(),BI);
1870
1871          // Add all of the 'cases' to the switch instruction.
1872          for (unsigned i = 0, e = Values.size(); i != e; ++i)
1873            New->addCase(Values[i], EdgeBB);
1874
1875          // We added edges from PI to the EdgeBB.  As such, if there were any
1876          // PHI nodes in EdgeBB, they need entries to be added corresponding to
1877          // the number of edges added.
1878          for (BasicBlock::iterator BBI = EdgeBB->begin();
1879               isa<PHINode>(BBI); ++BBI) {
1880            PHINode *PN = cast<PHINode>(BBI);
1881            Value *InVal = PN->getIncomingValueForBlock(*PI);
1882            for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
1883              PN->addIncoming(InVal, *PI);
1884          }
1885
1886          // Erase the old branch instruction.
1887          (*PI)->getInstList().erase(BI);
1888
1889          // Erase the potentially condition tree that was used to computed the
1890          // branch condition.
1891          ErasePossiblyDeadInstructionTree(Cond);
1892          return true;
1893        }
1894      }
1895
1896  // If there is a trivial two-entry PHI node in this basic block, and we can
1897  // eliminate it, do so now.
1898  if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
1899    if (PN->getNumIncomingValues() == 2)
1900      Changed |= FoldTwoEntryPHINode(PN);
1901
1902  return Changed;
1903}
1904