SimplifyCFG.cpp revision 280a6e607d8eb7401749a92db624a82de47da777
1//===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Peephole optimize the CFG.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "simplifycfg"
15#include "llvm/Transforms/Utils/Local.h"
16#include "llvm/Constants.h"
17#include "llvm/Instructions.h"
18#include "llvm/Type.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Support/CFG.h"
21#include "llvm/Support/Debug.h"
22#include "llvm/Analysis/ConstantFolding.h"
23#include "llvm/Transforms/Utils/BasicBlockUtils.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/ADT/SmallPtrSet.h"
26#include <algorithm>
27#include <functional>
28#include <set>
29#include <map>
30using namespace llvm;
31
32/// SafeToMergeTerminators - Return true if it is safe to merge these two
33/// terminator instructions together.
34///
35static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
36  if (SI1 == SI2) return false;  // Can't merge with self!
37
38  // It is not safe to merge these two switch instructions if they have a common
39  // successor, and if that successor has a PHI node, and if *that* PHI node has
40  // conflicting incoming values from the two switch blocks.
41  BasicBlock *SI1BB = SI1->getParent();
42  BasicBlock *SI2BB = SI2->getParent();
43  SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
44
45  for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
46    if (SI1Succs.count(*I))
47      for (BasicBlock::iterator BBI = (*I)->begin();
48           isa<PHINode>(BBI); ++BBI) {
49        PHINode *PN = cast<PHINode>(BBI);
50        if (PN->getIncomingValueForBlock(SI1BB) !=
51            PN->getIncomingValueForBlock(SI2BB))
52          return false;
53      }
54
55  return true;
56}
57
58/// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
59/// now be entries in it from the 'NewPred' block.  The values that will be
60/// flowing into the PHI nodes will be the same as those coming in from
61/// ExistPred, an existing predecessor of Succ.
62static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
63                                  BasicBlock *ExistPred) {
64  assert(std::find(succ_begin(ExistPred), succ_end(ExistPred), Succ) !=
65         succ_end(ExistPred) && "ExistPred is not a predecessor of Succ!");
66  if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
67
68  for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
69    PHINode *PN = cast<PHINode>(I);
70    Value *V = PN->getIncomingValueForBlock(ExistPred);
71    PN->addIncoming(V, NewPred);
72  }
73}
74
75// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
76// almost-empty BB ending in an unconditional branch to Succ, into succ.
77//
78// Assumption: Succ is the single successor for BB.
79//
80static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
81  assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
82
83  // Check to see if one of the predecessors of BB is already a predecessor of
84  // Succ.  If so, we cannot do the transformation if there are any PHI nodes
85  // with incompatible values coming in from the two edges!
86  //
87  if (isa<PHINode>(Succ->front())) {
88    SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
89    for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
90         PI != PE; ++PI)
91      if (BBPreds.count(*PI)) {
92        // Loop over all of the PHI nodes checking to see if there are
93        // incompatible values coming in.
94        for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
95          PHINode *PN = cast<PHINode>(I);
96          // Loop up the entries in the PHI node for BB and for *PI if the
97          // values coming in are non-equal, we cannot merge these two blocks
98          // (instead we should insert a conditional move or something, then
99          // merge the blocks).
100          if (PN->getIncomingValueForBlock(BB) !=
101              PN->getIncomingValueForBlock(*PI))
102            return false;  // Values are not equal...
103        }
104      }
105  }
106
107  // Finally, if BB has PHI nodes that are used by things other than the PHIs in
108  // Succ and Succ has predecessors that are not Succ and not Pred, we cannot
109  // fold these blocks, as we don't know whether BB dominates Succ or not to
110  // update the PHI nodes correctly.
111  if (!isa<PHINode>(BB->begin()) || Succ->getSinglePredecessor()) return true;
112
113  // If the predecessors of Succ are only BB, handle it.
114  bool IsSafe = true;
115  for (pred_iterator PI = pred_begin(Succ), E = pred_end(Succ); PI != E; ++PI)
116    if (*PI != BB) {
117      IsSafe = false;
118      break;
119    }
120  if (IsSafe) return true;
121
122  // If the PHI nodes in BB are only used by instructions in Succ, we are ok if
123  // BB and Succ have no common predecessors.
124  for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I) {
125    PHINode *PN = cast<PHINode>(I);
126    for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); UI != E;
127         ++UI)
128      if (cast<Instruction>(*UI)->getParent() != Succ)
129        return false;
130  }
131
132  // Scan the predecessor sets of BB and Succ, making sure there are no common
133  // predecessors.  Common predecessors would cause us to build a phi node with
134  // differing incoming values, which is not legal.
135  SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
136  for (pred_iterator PI = pred_begin(Succ), E = pred_end(Succ); PI != E; ++PI)
137    if (BBPreds.count(*PI))
138      return false;
139
140  return true;
141}
142
143/// TryToSimplifyUncondBranchFromEmptyBlock - BB contains an unconditional
144/// branch to Succ, and contains no instructions other than PHI nodes and the
145/// branch.  If possible, eliminate BB.
146static bool TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
147                                                    BasicBlock *Succ) {
148  // If our successor has PHI nodes, then we need to update them to include
149  // entries for BB's predecessors, not for BB itself.  Be careful though,
150  // if this transformation fails (returns true) then we cannot do this
151  // transformation!
152  //
153  if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
154
155  DOUT << "Killing Trivial BB: \n" << *BB;
156
157  if (isa<PHINode>(Succ->begin())) {
158    // If there is more than one pred of succ, and there are PHI nodes in
159    // the successor, then we need to add incoming edges for the PHI nodes
160    //
161    const SmallVector<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
162
163    // Loop over all of the PHI nodes in the successor of BB.
164    for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
165      PHINode *PN = cast<PHINode>(I);
166      Value *OldVal = PN->removeIncomingValue(BB, false);
167      assert(OldVal && "No entry in PHI for Pred BB!");
168
169      // If this incoming value is one of the PHI nodes in BB, the new entries
170      // in the PHI node are the entries from the old PHI.
171      if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
172        PHINode *OldValPN = cast<PHINode>(OldVal);
173        for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i)
174          PN->addIncoming(OldValPN->getIncomingValue(i),
175                          OldValPN->getIncomingBlock(i));
176      } else {
177        // Add an incoming value for each of the new incoming values.
178        for (unsigned i = 0, e = BBPreds.size(); i != e; ++i)
179          PN->addIncoming(OldVal, BBPreds[i]);
180      }
181    }
182  }
183
184  if (isa<PHINode>(&BB->front())) {
185    SmallVector<BasicBlock*, 16>
186    OldSuccPreds(pred_begin(Succ), pred_end(Succ));
187
188    // Move all PHI nodes in BB to Succ if they are alive, otherwise
189    // delete them.
190    while (PHINode *PN = dyn_cast<PHINode>(&BB->front()))
191      if (PN->use_empty()) {
192        // Just remove the dead phi.  This happens if Succ's PHIs were the only
193        // users of the PHI nodes.
194        PN->eraseFromParent();
195      } else {
196        // The instruction is alive, so this means that Succ must have
197        // *ONLY* had BB as a predecessor, and the PHI node is still valid
198        // now.  Simply move it into Succ, because we know that BB
199        // strictly dominated Succ.
200        Succ->getInstList().splice(Succ->begin(),
201                                   BB->getInstList(), BB->begin());
202
203        // We need to add new entries for the PHI node to account for
204        // predecessors of Succ that the PHI node does not take into
205        // account.  At this point, since we know that BB dominated succ,
206        // this means that we should any newly added incoming edges should
207        // use the PHI node as the value for these edges, because they are
208        // loop back edges.
209        for (unsigned i = 0, e = OldSuccPreds.size(); i != e; ++i)
210          if (OldSuccPreds[i] != BB)
211            PN->addIncoming(PN, OldSuccPreds[i]);
212      }
213  }
214
215  // Everything that jumped to BB now goes to Succ.
216  BB->replaceAllUsesWith(Succ);
217  if (!Succ->hasName()) Succ->takeName(BB);
218  BB->eraseFromParent();              // Delete the old basic block.
219  return true;
220}
221
222/// GetIfCondition - Given a basic block (BB) with two predecessors (and
223/// presumably PHI nodes in it), check to see if the merge at this block is due
224/// to an "if condition".  If so, return the boolean condition that determines
225/// which entry into BB will be taken.  Also, return by references the block
226/// that will be entered from if the condition is true, and the block that will
227/// be entered if the condition is false.
228///
229///
230static Value *GetIfCondition(BasicBlock *BB,
231                             BasicBlock *&IfTrue, BasicBlock *&IfFalse) {
232  assert(std::distance(pred_begin(BB), pred_end(BB)) == 2 &&
233         "Function can only handle blocks with 2 predecessors!");
234  BasicBlock *Pred1 = *pred_begin(BB);
235  BasicBlock *Pred2 = *++pred_begin(BB);
236
237  // We can only handle branches.  Other control flow will be lowered to
238  // branches if possible anyway.
239  if (!isa<BranchInst>(Pred1->getTerminator()) ||
240      !isa<BranchInst>(Pred2->getTerminator()))
241    return 0;
242  BranchInst *Pred1Br = cast<BranchInst>(Pred1->getTerminator());
243  BranchInst *Pred2Br = cast<BranchInst>(Pred2->getTerminator());
244
245  // Eliminate code duplication by ensuring that Pred1Br is conditional if
246  // either are.
247  if (Pred2Br->isConditional()) {
248    // If both branches are conditional, we don't have an "if statement".  In
249    // reality, we could transform this case, but since the condition will be
250    // required anyway, we stand no chance of eliminating it, so the xform is
251    // probably not profitable.
252    if (Pred1Br->isConditional())
253      return 0;
254
255    std::swap(Pred1, Pred2);
256    std::swap(Pred1Br, Pred2Br);
257  }
258
259  if (Pred1Br->isConditional()) {
260    // If we found a conditional branch predecessor, make sure that it branches
261    // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
262    if (Pred1Br->getSuccessor(0) == BB &&
263        Pred1Br->getSuccessor(1) == Pred2) {
264      IfTrue = Pred1;
265      IfFalse = Pred2;
266    } else if (Pred1Br->getSuccessor(0) == Pred2 &&
267               Pred1Br->getSuccessor(1) == BB) {
268      IfTrue = Pred2;
269      IfFalse = Pred1;
270    } else {
271      // We know that one arm of the conditional goes to BB, so the other must
272      // go somewhere unrelated, and this must not be an "if statement".
273      return 0;
274    }
275
276    // The only thing we have to watch out for here is to make sure that Pred2
277    // doesn't have incoming edges from other blocks.  If it does, the condition
278    // doesn't dominate BB.
279    if (++pred_begin(Pred2) != pred_end(Pred2))
280      return 0;
281
282    return Pred1Br->getCondition();
283  }
284
285  // Ok, if we got here, both predecessors end with an unconditional branch to
286  // BB.  Don't panic!  If both blocks only have a single (identical)
287  // predecessor, and THAT is a conditional branch, then we're all ok!
288  if (pred_begin(Pred1) == pred_end(Pred1) ||
289      ++pred_begin(Pred1) != pred_end(Pred1) ||
290      pred_begin(Pred2) == pred_end(Pred2) ||
291      ++pred_begin(Pred2) != pred_end(Pred2) ||
292      *pred_begin(Pred1) != *pred_begin(Pred2))
293    return 0;
294
295  // Otherwise, if this is a conditional branch, then we can use it!
296  BasicBlock *CommonPred = *pred_begin(Pred1);
297  if (BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator())) {
298    assert(BI->isConditional() && "Two successors but not conditional?");
299    if (BI->getSuccessor(0) == Pred1) {
300      IfTrue = Pred1;
301      IfFalse = Pred2;
302    } else {
303      IfTrue = Pred2;
304      IfFalse = Pred1;
305    }
306    return BI->getCondition();
307  }
308  return 0;
309}
310
311
312// If we have a merge point of an "if condition" as accepted above, return true
313// if the specified value dominates the block.  We don't handle the true
314// generality of domination here, just a special case which works well enough
315// for us.
316//
317// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
318// see if V (which must be an instruction) is cheap to compute and is
319// non-trapping.  If both are true, the instruction is inserted into the set and
320// true is returned.
321static bool DominatesMergePoint(Value *V, BasicBlock *BB,
322                                std::set<Instruction*> *AggressiveInsts) {
323  Instruction *I = dyn_cast<Instruction>(V);
324  if (!I) {
325    // Non-instructions all dominate instructions, but not all constantexprs
326    // can be executed unconditionally.
327    if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
328      if (C->canTrap())
329        return false;
330    return true;
331  }
332  BasicBlock *PBB = I->getParent();
333
334  // We don't want to allow weird loops that might have the "if condition" in
335  // the bottom of this block.
336  if (PBB == BB) return false;
337
338  // If this instruction is defined in a block that contains an unconditional
339  // branch to BB, then it must be in the 'conditional' part of the "if
340  // statement".
341  if (BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()))
342    if (BI->isUnconditional() && BI->getSuccessor(0) == BB) {
343      if (!AggressiveInsts) return false;
344      // Okay, it looks like the instruction IS in the "condition".  Check to
345      // see if its a cheap instruction to unconditionally compute, and if it
346      // only uses stuff defined outside of the condition.  If so, hoist it out.
347      switch (I->getOpcode()) {
348      default: return false;  // Cannot hoist this out safely.
349      case Instruction::Load:
350        // We can hoist loads that are non-volatile and obviously cannot trap.
351        if (cast<LoadInst>(I)->isVolatile())
352          return false;
353        if (!isa<AllocaInst>(I->getOperand(0)) &&
354            !isa<Constant>(I->getOperand(0)))
355          return false;
356
357        // Finally, we have to check to make sure there are no instructions
358        // before the load in its basic block, as we are going to hoist the loop
359        // out to its predecessor.
360        if (PBB->begin() != BasicBlock::iterator(I))
361          return false;
362        break;
363      case Instruction::Add:
364      case Instruction::Sub:
365      case Instruction::And:
366      case Instruction::Or:
367      case Instruction::Xor:
368      case Instruction::Shl:
369      case Instruction::LShr:
370      case Instruction::AShr:
371      case Instruction::ICmp:
372      case Instruction::FCmp:
373        if (I->getOperand(0)->getType()->isFPOrFPVector())
374          return false;  // FP arithmetic might trap.
375        break;   // These are all cheap and non-trapping instructions.
376      }
377
378      // Okay, we can only really hoist these out if their operands are not
379      // defined in the conditional region.
380      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
381        if (!DominatesMergePoint(I->getOperand(i), BB, 0))
382          return false;
383      // Okay, it's safe to do this!  Remember this instruction.
384      AggressiveInsts->insert(I);
385    }
386
387  return true;
388}
389
390// GatherConstantSetEQs - Given a potentially 'or'd together collection of
391// icmp_eq instructions that compare a value against a constant, return the
392// value being compared, and stick the constant into the Values vector.
393static Value *GatherConstantSetEQs(Value *V, std::vector<ConstantInt*> &Values){
394  if (Instruction *Inst = dyn_cast<Instruction>(V)) {
395    if (Inst->getOpcode() == Instruction::ICmp &&
396        cast<ICmpInst>(Inst)->getPredicate() == ICmpInst::ICMP_EQ) {
397      if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(1))) {
398        Values.push_back(C);
399        return Inst->getOperand(0);
400      } else if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(0))) {
401        Values.push_back(C);
402        return Inst->getOperand(1);
403      }
404    } else if (Inst->getOpcode() == Instruction::Or) {
405      if (Value *LHS = GatherConstantSetEQs(Inst->getOperand(0), Values))
406        if (Value *RHS = GatherConstantSetEQs(Inst->getOperand(1), Values))
407          if (LHS == RHS)
408            return LHS;
409    }
410  }
411  return 0;
412}
413
414// GatherConstantSetNEs - Given a potentially 'and'd together collection of
415// setne instructions that compare a value against a constant, return the value
416// being compared, and stick the constant into the Values vector.
417static Value *GatherConstantSetNEs(Value *V, std::vector<ConstantInt*> &Values){
418  if (Instruction *Inst = dyn_cast<Instruction>(V)) {
419    if (Inst->getOpcode() == Instruction::ICmp &&
420               cast<ICmpInst>(Inst)->getPredicate() == ICmpInst::ICMP_NE) {
421      if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(1))) {
422        Values.push_back(C);
423        return Inst->getOperand(0);
424      } else if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(0))) {
425        Values.push_back(C);
426        return Inst->getOperand(1);
427      }
428    } else if (Inst->getOpcode() == Instruction::And) {
429      if (Value *LHS = GatherConstantSetNEs(Inst->getOperand(0), Values))
430        if (Value *RHS = GatherConstantSetNEs(Inst->getOperand(1), Values))
431          if (LHS == RHS)
432            return LHS;
433    }
434  }
435  return 0;
436}
437
438
439
440/// GatherValueComparisons - If the specified Cond is an 'and' or 'or' of a
441/// bunch of comparisons of one value against constants, return the value and
442/// the constants being compared.
443static bool GatherValueComparisons(Instruction *Cond, Value *&CompVal,
444                                   std::vector<ConstantInt*> &Values) {
445  if (Cond->getOpcode() == Instruction::Or) {
446    CompVal = GatherConstantSetEQs(Cond, Values);
447
448    // Return true to indicate that the condition is true if the CompVal is
449    // equal to one of the constants.
450    return true;
451  } else if (Cond->getOpcode() == Instruction::And) {
452    CompVal = GatherConstantSetNEs(Cond, Values);
453
454    // Return false to indicate that the condition is false if the CompVal is
455    // equal to one of the constants.
456    return false;
457  }
458  return false;
459}
460
461/// ErasePossiblyDeadInstructionTree - If the specified instruction is dead and
462/// has no side effects, nuke it.  If it uses any instructions that become dead
463/// because the instruction is now gone, nuke them too.
464static void ErasePossiblyDeadInstructionTree(Instruction *I) {
465  if (!isInstructionTriviallyDead(I)) return;
466
467  SmallVector<Instruction*, 16> InstrsToInspect;
468  InstrsToInspect.push_back(I);
469
470  while (!InstrsToInspect.empty()) {
471    I = InstrsToInspect.back();
472    InstrsToInspect.pop_back();
473
474    if (!isInstructionTriviallyDead(I)) continue;
475
476    // If I is in the work list multiple times, remove previous instances.
477    for (unsigned i = 0, e = InstrsToInspect.size(); i != e; ++i)
478      if (InstrsToInspect[i] == I) {
479        InstrsToInspect.erase(InstrsToInspect.begin()+i);
480        --i, --e;
481      }
482
483    // Add operands of dead instruction to worklist.
484    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
485      if (Instruction *OpI = dyn_cast<Instruction>(I->getOperand(i)))
486        InstrsToInspect.push_back(OpI);
487
488    // Remove dead instruction.
489    I->eraseFromParent();
490  }
491}
492
493// isValueEqualityComparison - Return true if the specified terminator checks to
494// see if a value is equal to constant integer value.
495static Value *isValueEqualityComparison(TerminatorInst *TI) {
496  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
497    // Do not permit merging of large switch instructions into their
498    // predecessors unless there is only one predecessor.
499    if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()),
500                                               pred_end(SI->getParent())) > 128)
501      return 0;
502
503    return SI->getCondition();
504  }
505  if (BranchInst *BI = dyn_cast<BranchInst>(TI))
506    if (BI->isConditional() && BI->getCondition()->hasOneUse())
507      if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
508        if ((ICI->getPredicate() == ICmpInst::ICMP_EQ ||
509             ICI->getPredicate() == ICmpInst::ICMP_NE) &&
510            isa<ConstantInt>(ICI->getOperand(1)))
511          return ICI->getOperand(0);
512  return 0;
513}
514
515// Given a value comparison instruction, decode all of the 'cases' that it
516// represents and return the 'default' block.
517static BasicBlock *
518GetValueEqualityComparisonCases(TerminatorInst *TI,
519                                std::vector<std::pair<ConstantInt*,
520                                                      BasicBlock*> > &Cases) {
521  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
522    Cases.reserve(SI->getNumCases());
523    for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
524      Cases.push_back(std::make_pair(SI->getCaseValue(i), SI->getSuccessor(i)));
525    return SI->getDefaultDest();
526  }
527
528  BranchInst *BI = cast<BranchInst>(TI);
529  ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
530  Cases.push_back(std::make_pair(cast<ConstantInt>(ICI->getOperand(1)),
531                                 BI->getSuccessor(ICI->getPredicate() ==
532                                                  ICmpInst::ICMP_NE)));
533  return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
534}
535
536
537// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
538// in the list that match the specified block.
539static void EliminateBlockCases(BasicBlock *BB,
540               std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases) {
541  for (unsigned i = 0, e = Cases.size(); i != e; ++i)
542    if (Cases[i].second == BB) {
543      Cases.erase(Cases.begin()+i);
544      --i; --e;
545    }
546}
547
548// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
549// well.
550static bool
551ValuesOverlap(std::vector<std::pair<ConstantInt*, BasicBlock*> > &C1,
552              std::vector<std::pair<ConstantInt*, BasicBlock*> > &C2) {
553  std::vector<std::pair<ConstantInt*, BasicBlock*> > *V1 = &C1, *V2 = &C2;
554
555  // Make V1 be smaller than V2.
556  if (V1->size() > V2->size())
557    std::swap(V1, V2);
558
559  if (V1->size() == 0) return false;
560  if (V1->size() == 1) {
561    // Just scan V2.
562    ConstantInt *TheVal = (*V1)[0].first;
563    for (unsigned i = 0, e = V2->size(); i != e; ++i)
564      if (TheVal == (*V2)[i].first)
565        return true;
566  }
567
568  // Otherwise, just sort both lists and compare element by element.
569  std::sort(V1->begin(), V1->end());
570  std::sort(V2->begin(), V2->end());
571  unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
572  while (i1 != e1 && i2 != e2) {
573    if ((*V1)[i1].first == (*V2)[i2].first)
574      return true;
575    if ((*V1)[i1].first < (*V2)[i2].first)
576      ++i1;
577    else
578      ++i2;
579  }
580  return false;
581}
582
583// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
584// terminator instruction and its block is known to only have a single
585// predecessor block, check to see if that predecessor is also a value
586// comparison with the same value, and if that comparison determines the outcome
587// of this comparison.  If so, simplify TI.  This does a very limited form of
588// jump threading.
589static bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
590                                                          BasicBlock *Pred) {
591  Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
592  if (!PredVal) return false;  // Not a value comparison in predecessor.
593
594  Value *ThisVal = isValueEqualityComparison(TI);
595  assert(ThisVal && "This isn't a value comparison!!");
596  if (ThisVal != PredVal) return false;  // Different predicates.
597
598  // Find out information about when control will move from Pred to TI's block.
599  std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
600  BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
601                                                        PredCases);
602  EliminateBlockCases(PredDef, PredCases);  // Remove default from cases.
603
604  // Find information about how control leaves this block.
605  std::vector<std::pair<ConstantInt*, BasicBlock*> > ThisCases;
606  BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
607  EliminateBlockCases(ThisDef, ThisCases);  // Remove default from cases.
608
609  // If TI's block is the default block from Pred's comparison, potentially
610  // simplify TI based on this knowledge.
611  if (PredDef == TI->getParent()) {
612    // If we are here, we know that the value is none of those cases listed in
613    // PredCases.  If there are any cases in ThisCases that are in PredCases, we
614    // can simplify TI.
615    if (ValuesOverlap(PredCases, ThisCases)) {
616      if (BranchInst *BTI = dyn_cast<BranchInst>(TI)) {
617        // Okay, one of the successors of this condbr is dead.  Convert it to a
618        // uncond br.
619        assert(ThisCases.size() == 1 && "Branch can only have one case!");
620        Value *Cond = BTI->getCondition();
621        // Insert the new branch.
622        Instruction *NI = BranchInst::Create(ThisDef, TI);
623
624        // Remove PHI node entries for the dead edge.
625        ThisCases[0].second->removePredecessor(TI->getParent());
626
627        DOUT << "Threading pred instr: " << *Pred->getTerminator()
628             << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n";
629
630        TI->eraseFromParent();   // Nuke the old one.
631        // If condition is now dead, nuke it.
632        if (Instruction *CondI = dyn_cast<Instruction>(Cond))
633          ErasePossiblyDeadInstructionTree(CondI);
634        return true;
635
636      } else {
637        SwitchInst *SI = cast<SwitchInst>(TI);
638        // Okay, TI has cases that are statically dead, prune them away.
639        SmallPtrSet<Constant*, 16> DeadCases;
640        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
641          DeadCases.insert(PredCases[i].first);
642
643        DOUT << "Threading pred instr: " << *Pred->getTerminator()
644             << "Through successor TI: " << *TI;
645
646        for (unsigned i = SI->getNumCases()-1; i != 0; --i)
647          if (DeadCases.count(SI->getCaseValue(i))) {
648            SI->getSuccessor(i)->removePredecessor(TI->getParent());
649            SI->removeCase(i);
650          }
651
652        DOUT << "Leaving: " << *TI << "\n";
653        return true;
654      }
655    }
656
657  } else {
658    // Otherwise, TI's block must correspond to some matched value.  Find out
659    // which value (or set of values) this is.
660    ConstantInt *TIV = 0;
661    BasicBlock *TIBB = TI->getParent();
662    for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
663      if (PredCases[i].second == TIBB) {
664        if (TIV == 0)
665          TIV = PredCases[i].first;
666        else
667          return false;  // Cannot handle multiple values coming to this block.
668      }
669    assert(TIV && "No edge from pred to succ?");
670
671    // Okay, we found the one constant that our value can be if we get into TI's
672    // BB.  Find out which successor will unconditionally be branched to.
673    BasicBlock *TheRealDest = 0;
674    for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
675      if (ThisCases[i].first == TIV) {
676        TheRealDest = ThisCases[i].second;
677        break;
678      }
679
680    // If not handled by any explicit cases, it is handled by the default case.
681    if (TheRealDest == 0) TheRealDest = ThisDef;
682
683    // Remove PHI node entries for dead edges.
684    BasicBlock *CheckEdge = TheRealDest;
685    for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
686      if (*SI != CheckEdge)
687        (*SI)->removePredecessor(TIBB);
688      else
689        CheckEdge = 0;
690
691    // Insert the new branch.
692    Instruction *NI = BranchInst::Create(TheRealDest, TI);
693
694    DOUT << "Threading pred instr: " << *Pred->getTerminator()
695         << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n";
696    Instruction *Cond = 0;
697    if (BranchInst *BI = dyn_cast<BranchInst>(TI))
698      Cond = dyn_cast<Instruction>(BI->getCondition());
699    TI->eraseFromParent();   // Nuke the old one.
700
701    if (Cond) ErasePossiblyDeadInstructionTree(Cond);
702    return true;
703  }
704  return false;
705}
706
707// FoldValueComparisonIntoPredecessors - The specified terminator is a value
708// equality comparison instruction (either a switch or a branch on "X == c").
709// See if any of the predecessors of the terminator block are value comparisons
710// on the same value.  If so, and if safe to do so, fold them together.
711static bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI) {
712  BasicBlock *BB = TI->getParent();
713  Value *CV = isValueEqualityComparison(TI);  // CondVal
714  assert(CV && "Not a comparison?");
715  bool Changed = false;
716
717  SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
718  while (!Preds.empty()) {
719    BasicBlock *Pred = Preds.back();
720    Preds.pop_back();
721
722    // See if the predecessor is a comparison with the same value.
723    TerminatorInst *PTI = Pred->getTerminator();
724    Value *PCV = isValueEqualityComparison(PTI);  // PredCondVal
725
726    if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
727      // Figure out which 'cases' to copy from SI to PSI.
728      std::vector<std::pair<ConstantInt*, BasicBlock*> > BBCases;
729      BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
730
731      std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
732      BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
733
734      // Based on whether the default edge from PTI goes to BB or not, fill in
735      // PredCases and PredDefault with the new switch cases we would like to
736      // build.
737      SmallVector<BasicBlock*, 8> NewSuccessors;
738
739      if (PredDefault == BB) {
740        // If this is the default destination from PTI, only the edges in TI
741        // that don't occur in PTI, or that branch to BB will be activated.
742        std::set<ConstantInt*> PTIHandled;
743        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
744          if (PredCases[i].second != BB)
745            PTIHandled.insert(PredCases[i].first);
746          else {
747            // The default destination is BB, we don't need explicit targets.
748            std::swap(PredCases[i], PredCases.back());
749            PredCases.pop_back();
750            --i; --e;
751          }
752
753        // Reconstruct the new switch statement we will be building.
754        if (PredDefault != BBDefault) {
755          PredDefault->removePredecessor(Pred);
756          PredDefault = BBDefault;
757          NewSuccessors.push_back(BBDefault);
758        }
759        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
760          if (!PTIHandled.count(BBCases[i].first) &&
761              BBCases[i].second != BBDefault) {
762            PredCases.push_back(BBCases[i]);
763            NewSuccessors.push_back(BBCases[i].second);
764          }
765
766      } else {
767        // If this is not the default destination from PSI, only the edges
768        // in SI that occur in PSI with a destination of BB will be
769        // activated.
770        std::set<ConstantInt*> PTIHandled;
771        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
772          if (PredCases[i].second == BB) {
773            PTIHandled.insert(PredCases[i].first);
774            std::swap(PredCases[i], PredCases.back());
775            PredCases.pop_back();
776            --i; --e;
777          }
778
779        // Okay, now we know which constants were sent to BB from the
780        // predecessor.  Figure out where they will all go now.
781        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
782          if (PTIHandled.count(BBCases[i].first)) {
783            // If this is one we are capable of getting...
784            PredCases.push_back(BBCases[i]);
785            NewSuccessors.push_back(BBCases[i].second);
786            PTIHandled.erase(BBCases[i].first);// This constant is taken care of
787          }
788
789        // If there are any constants vectored to BB that TI doesn't handle,
790        // they must go to the default destination of TI.
791        for (std::set<ConstantInt*>::iterator I = PTIHandled.begin(),
792               E = PTIHandled.end(); I != E; ++I) {
793          PredCases.push_back(std::make_pair(*I, BBDefault));
794          NewSuccessors.push_back(BBDefault);
795        }
796      }
797
798      // Okay, at this point, we know which new successor Pred will get.  Make
799      // sure we update the number of entries in the PHI nodes for these
800      // successors.
801      for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
802        AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
803
804      // Now that the successors are updated, create the new Switch instruction.
805      SwitchInst *NewSI = SwitchInst::Create(CV, PredDefault, PredCases.size(), PTI);
806      for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
807        NewSI->addCase(PredCases[i].first, PredCases[i].second);
808
809      Instruction *DeadCond = 0;
810      if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
811        // If PTI is a branch, remember the condition.
812        DeadCond = dyn_cast<Instruction>(BI->getCondition());
813      Pred->getInstList().erase(PTI);
814
815      // If the condition is dead now, remove the instruction tree.
816      if (DeadCond) ErasePossiblyDeadInstructionTree(DeadCond);
817
818      // Okay, last check.  If BB is still a successor of PSI, then we must
819      // have an infinite loop case.  If so, add an infinitely looping block
820      // to handle the case to preserve the behavior of the code.
821      BasicBlock *InfLoopBlock = 0;
822      for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
823        if (NewSI->getSuccessor(i) == BB) {
824          if (InfLoopBlock == 0) {
825            // Insert it at the end of the loop, because it's either code,
826            // or it won't matter if it's hot. :)
827            InfLoopBlock = BasicBlock::Create("infloop", BB->getParent());
828            BranchInst::Create(InfLoopBlock, InfLoopBlock);
829          }
830          NewSI->setSuccessor(i, InfLoopBlock);
831        }
832
833      Changed = true;
834    }
835  }
836  return Changed;
837}
838
839/// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
840/// BB2, hoist any common code in the two blocks up into the branch block.  The
841/// caller of this function guarantees that BI's block dominates BB1 and BB2.
842static bool HoistThenElseCodeToIf(BranchInst *BI) {
843  // This does very trivial matching, with limited scanning, to find identical
844  // instructions in the two blocks.  In particular, we don't want to get into
845  // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
846  // such, we currently just scan for obviously identical instructions in an
847  // identical order.
848  BasicBlock *BB1 = BI->getSuccessor(0);  // The true destination.
849  BasicBlock *BB2 = BI->getSuccessor(1);  // The false destination
850
851  Instruction *I1 = BB1->begin(), *I2 = BB2->begin();
852  if (I1->getOpcode() != I2->getOpcode() || isa<PHINode>(I1) ||
853      isa<InvokeInst>(I1) || !I1->isIdenticalTo(I2))
854    return false;
855
856  // If we get here, we can hoist at least one instruction.
857  BasicBlock *BIParent = BI->getParent();
858
859  do {
860    // If we are hoisting the terminator instruction, don't move one (making a
861    // broken BB), instead clone it, and remove BI.
862    if (isa<TerminatorInst>(I1))
863      goto HoistTerminator;
864
865    // For a normal instruction, we just move one to right before the branch,
866    // then replace all uses of the other with the first.  Finally, we remove
867    // the now redundant second instruction.
868    BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
869    if (!I2->use_empty())
870      I2->replaceAllUsesWith(I1);
871    BB2->getInstList().erase(I2);
872
873    I1 = BB1->begin();
874    I2 = BB2->begin();
875  } while (I1->getOpcode() == I2->getOpcode() && I1->isIdenticalTo(I2));
876
877  return true;
878
879HoistTerminator:
880  // Okay, it is safe to hoist the terminator.
881  Instruction *NT = I1->clone();
882  BIParent->getInstList().insert(BI, NT);
883  if (NT->getType() != Type::VoidTy) {
884    I1->replaceAllUsesWith(NT);
885    I2->replaceAllUsesWith(NT);
886    NT->takeName(I1);
887  }
888
889  // Hoisting one of the terminators from our successor is a great thing.
890  // Unfortunately, the successors of the if/else blocks may have PHI nodes in
891  // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
892  // nodes, so we insert select instruction to compute the final result.
893  std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
894  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
895    PHINode *PN;
896    for (BasicBlock::iterator BBI = SI->begin();
897         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
898      Value *BB1V = PN->getIncomingValueForBlock(BB1);
899      Value *BB2V = PN->getIncomingValueForBlock(BB2);
900      if (BB1V != BB2V) {
901        // These values do not agree.  Insert a select instruction before NT
902        // that determines the right value.
903        SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
904        if (SI == 0)
905          SI = SelectInst::Create(BI->getCondition(), BB1V, BB2V,
906                                  BB1V->getName()+"."+BB2V->getName(), NT);
907        // Make the PHI node use the select for all incoming values for BB1/BB2
908        for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
909          if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
910            PN->setIncomingValue(i, SI);
911      }
912    }
913  }
914
915  // Update any PHI nodes in our new successors.
916  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
917    AddPredecessorToBlock(*SI, BIParent, BB1);
918
919  BI->eraseFromParent();
920  return true;
921}
922
923/// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
924/// across this block.
925static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
926  BranchInst *BI = cast<BranchInst>(BB->getTerminator());
927  unsigned Size = 0;
928
929  // If this basic block contains anything other than a PHI (which controls the
930  // branch) and branch itself, bail out.  FIXME: improve this in the future.
931  for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI, ++Size) {
932    if (Size > 10) return false;  // Don't clone large BB's.
933
934    // We can only support instructions that are do not define values that are
935    // live outside of the current basic block.
936    for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
937         UI != E; ++UI) {
938      Instruction *U = cast<Instruction>(*UI);
939      if (U->getParent() != BB || isa<PHINode>(U)) return false;
940    }
941
942    // Looks ok, continue checking.
943  }
944
945  return true;
946}
947
948/// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
949/// that is defined in the same block as the branch and if any PHI entries are
950/// constants, thread edges corresponding to that entry to be branches to their
951/// ultimate destination.
952static bool FoldCondBranchOnPHI(BranchInst *BI) {
953  BasicBlock *BB = BI->getParent();
954  PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
955  // NOTE: we currently cannot transform this case if the PHI node is used
956  // outside of the block.
957  if (!PN || PN->getParent() != BB || !PN->hasOneUse())
958    return false;
959
960  // Degenerate case of a single entry PHI.
961  if (PN->getNumIncomingValues() == 1) {
962    if (PN->getIncomingValue(0) != PN)
963      PN->replaceAllUsesWith(PN->getIncomingValue(0));
964    else
965      PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
966    PN->eraseFromParent();
967    return true;
968  }
969
970  // Now we know that this block has multiple preds and two succs.
971  if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
972
973  // Okay, this is a simple enough basic block.  See if any phi values are
974  // constants.
975  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
976    ConstantInt *CB;
977    if ((CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i))) &&
978        CB->getType() == Type::Int1Ty) {
979      // Okay, we now know that all edges from PredBB should be revectored to
980      // branch to RealDest.
981      BasicBlock *PredBB = PN->getIncomingBlock(i);
982      BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
983
984      if (RealDest == BB) continue;  // Skip self loops.
985
986      // The dest block might have PHI nodes, other predecessors and other
987      // difficult cases.  Instead of being smart about this, just insert a new
988      // block that jumps to the destination block, effectively splitting
989      // the edge we are about to create.
990      BasicBlock *EdgeBB = BasicBlock::Create(RealDest->getName()+".critedge",
991                                              RealDest->getParent(), RealDest);
992      BranchInst::Create(RealDest, EdgeBB);
993      PHINode *PN;
994      for (BasicBlock::iterator BBI = RealDest->begin();
995           (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
996        Value *V = PN->getIncomingValueForBlock(BB);
997        PN->addIncoming(V, EdgeBB);
998      }
999
1000      // BB may have instructions that are being threaded over.  Clone these
1001      // instructions into EdgeBB.  We know that there will be no uses of the
1002      // cloned instructions outside of EdgeBB.
1003      BasicBlock::iterator InsertPt = EdgeBB->begin();
1004      std::map<Value*, Value*> TranslateMap;  // Track translated values.
1005      for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1006        if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
1007          TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
1008        } else {
1009          // Clone the instruction.
1010          Instruction *N = BBI->clone();
1011          if (BBI->hasName()) N->setName(BBI->getName()+".c");
1012
1013          // Update operands due to translation.
1014          for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1015            std::map<Value*, Value*>::iterator PI =
1016              TranslateMap.find(N->getOperand(i));
1017            if (PI != TranslateMap.end())
1018              N->setOperand(i, PI->second);
1019          }
1020
1021          // Check for trivial simplification.
1022          if (Constant *C = ConstantFoldInstruction(N)) {
1023            TranslateMap[BBI] = C;
1024            delete N;   // Constant folded away, don't need actual inst
1025          } else {
1026            // Insert the new instruction into its new home.
1027            EdgeBB->getInstList().insert(InsertPt, N);
1028            if (!BBI->use_empty())
1029              TranslateMap[BBI] = N;
1030          }
1031        }
1032      }
1033
1034      // Loop over all of the edges from PredBB to BB, changing them to branch
1035      // to EdgeBB instead.
1036      TerminatorInst *PredBBTI = PredBB->getTerminator();
1037      for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
1038        if (PredBBTI->getSuccessor(i) == BB) {
1039          BB->removePredecessor(PredBB);
1040          PredBBTI->setSuccessor(i, EdgeBB);
1041        }
1042
1043      // Recurse, simplifying any other constants.
1044      return FoldCondBranchOnPHI(BI) | true;
1045    }
1046  }
1047
1048  return false;
1049}
1050
1051/// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
1052/// PHI node, see if we can eliminate it.
1053static bool FoldTwoEntryPHINode(PHINode *PN) {
1054  // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
1055  // statement", which has a very simple dominance structure.  Basically, we
1056  // are trying to find the condition that is being branched on, which
1057  // subsequently causes this merge to happen.  We really want control
1058  // dependence information for this check, but simplifycfg can't keep it up
1059  // to date, and this catches most of the cases we care about anyway.
1060  //
1061  BasicBlock *BB = PN->getParent();
1062  BasicBlock *IfTrue, *IfFalse;
1063  Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
1064  if (!IfCond) return false;
1065
1066  // Okay, we found that we can merge this two-entry phi node into a select.
1067  // Doing so would require us to fold *all* two entry phi nodes in this block.
1068  // At some point this becomes non-profitable (particularly if the target
1069  // doesn't support cmov's).  Only do this transformation if there are two or
1070  // fewer PHI nodes in this block.
1071  unsigned NumPhis = 0;
1072  for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
1073    if (NumPhis > 2)
1074      return false;
1075
1076  DOUT << "FOUND IF CONDITION!  " << *IfCond << "  T: "
1077       << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n";
1078
1079  // Loop over the PHI's seeing if we can promote them all to select
1080  // instructions.  While we are at it, keep track of the instructions
1081  // that need to be moved to the dominating block.
1082  std::set<Instruction*> AggressiveInsts;
1083
1084  BasicBlock::iterator AfterPHIIt = BB->begin();
1085  while (isa<PHINode>(AfterPHIIt)) {
1086    PHINode *PN = cast<PHINode>(AfterPHIIt++);
1087    if (PN->getIncomingValue(0) == PN->getIncomingValue(1)) {
1088      if (PN->getIncomingValue(0) != PN)
1089        PN->replaceAllUsesWith(PN->getIncomingValue(0));
1090      else
1091        PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
1092    } else if (!DominatesMergePoint(PN->getIncomingValue(0), BB,
1093                                    &AggressiveInsts) ||
1094               !DominatesMergePoint(PN->getIncomingValue(1), BB,
1095                                    &AggressiveInsts)) {
1096      return false;
1097    }
1098  }
1099
1100  // If we all PHI nodes are promotable, check to make sure that all
1101  // instructions in the predecessor blocks can be promoted as well.  If
1102  // not, we won't be able to get rid of the control flow, so it's not
1103  // worth promoting to select instructions.
1104  BasicBlock *DomBlock = 0, *IfBlock1 = 0, *IfBlock2 = 0;
1105  PN = cast<PHINode>(BB->begin());
1106  BasicBlock *Pred = PN->getIncomingBlock(0);
1107  if (cast<BranchInst>(Pred->getTerminator())->isUnconditional()) {
1108    IfBlock1 = Pred;
1109    DomBlock = *pred_begin(Pred);
1110    for (BasicBlock::iterator I = Pred->begin();
1111         !isa<TerminatorInst>(I); ++I)
1112      if (!AggressiveInsts.count(I)) {
1113        // This is not an aggressive instruction that we can promote.
1114        // Because of this, we won't be able to get rid of the control
1115        // flow, so the xform is not worth it.
1116        return false;
1117      }
1118  }
1119
1120  Pred = PN->getIncomingBlock(1);
1121  if (cast<BranchInst>(Pred->getTerminator())->isUnconditional()) {
1122    IfBlock2 = Pred;
1123    DomBlock = *pred_begin(Pred);
1124    for (BasicBlock::iterator I = Pred->begin();
1125         !isa<TerminatorInst>(I); ++I)
1126      if (!AggressiveInsts.count(I)) {
1127        // This is not an aggressive instruction that we can promote.
1128        // Because of this, we won't be able to get rid of the control
1129        // flow, so the xform is not worth it.
1130        return false;
1131      }
1132  }
1133
1134  // If we can still promote the PHI nodes after this gauntlet of tests,
1135  // do all of the PHI's now.
1136
1137  // Move all 'aggressive' instructions, which are defined in the
1138  // conditional parts of the if's up to the dominating block.
1139  if (IfBlock1) {
1140    DomBlock->getInstList().splice(DomBlock->getTerminator(),
1141                                   IfBlock1->getInstList(),
1142                                   IfBlock1->begin(),
1143                                   IfBlock1->getTerminator());
1144  }
1145  if (IfBlock2) {
1146    DomBlock->getInstList().splice(DomBlock->getTerminator(),
1147                                   IfBlock2->getInstList(),
1148                                   IfBlock2->begin(),
1149                                   IfBlock2->getTerminator());
1150  }
1151
1152  while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
1153    // Change the PHI node into a select instruction.
1154    Value *TrueVal =
1155      PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
1156    Value *FalseVal =
1157      PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
1158
1159    Value *NV = SelectInst::Create(IfCond, TrueVal, FalseVal, "", AfterPHIIt);
1160    PN->replaceAllUsesWith(NV);
1161    NV->takeName(PN);
1162
1163    BB->getInstList().erase(PN);
1164  }
1165  return true;
1166}
1167
1168/// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes
1169/// to two returning blocks, try to merge them together into one return,
1170/// introducing a select if the return values disagree.
1171static bool SimplifyCondBranchToTwoReturns(BranchInst *BI) {
1172  assert(BI->isConditional() && "Must be a conditional branch");
1173  BasicBlock *TrueSucc = BI->getSuccessor(0);
1174  BasicBlock *FalseSucc = BI->getSuccessor(1);
1175  ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
1176  ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
1177
1178  // Check to ensure both blocks are empty (just a return) or optionally empty
1179  // with PHI nodes.  If there are other instructions, merging would cause extra
1180  // computation on one path or the other.
1181  BasicBlock::iterator BBI = TrueRet;
1182  if (BBI != TrueSucc->begin() && !isa<PHINode>(--BBI))
1183    return false;  // Not empty with optional phi nodes.
1184  BBI = FalseRet;
1185  if (BBI != FalseSucc->begin() && !isa<PHINode>(--BBI))
1186    return false;  // Not empty with optional phi nodes.
1187
1188  // Okay, we found a branch that is going to two return nodes.  If
1189  // there is no return value for this function, just change the
1190  // branch into a return.
1191  if (FalseRet->getNumOperands() == 0) {
1192    TrueSucc->removePredecessor(BI->getParent());
1193    FalseSucc->removePredecessor(BI->getParent());
1194    ReturnInst::Create(0, BI);
1195    BI->eraseFromParent();
1196    return true;
1197  }
1198
1199  // Otherwise, build up the result values for the new return.
1200  SmallVector<Value*, 4> TrueResult;
1201  SmallVector<Value*, 4> FalseResult;
1202
1203  for (unsigned i = 0, e = TrueRet->getNumOperands(); i != e; ++i) {
1204    // Otherwise, figure out what the true and false return values are
1205    // so we can insert a new select instruction.
1206    Value *TrueValue = TrueRet->getOperand(i);
1207    Value *FalseValue = FalseRet->getOperand(i);
1208
1209    // Unwrap any PHI nodes in the return blocks.
1210    if (PHINode *TVPN = dyn_cast<PHINode>(TrueValue))
1211      if (TVPN->getParent() == TrueSucc)
1212        TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
1213    if (PHINode *FVPN = dyn_cast<PHINode>(FalseValue))
1214      if (FVPN->getParent() == FalseSucc)
1215        FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
1216
1217    // In order for this transformation to be safe, we must be able to
1218    // unconditionally execute both operands to the return.  This is
1219    // normally the case, but we could have a potentially-trapping
1220    // constant expression that prevents this transformation from being
1221    // safe.
1222    if (ConstantExpr *TCV = dyn_cast<ConstantExpr>(TrueValue))
1223      if (TCV->canTrap())
1224        return false;
1225    if (ConstantExpr *FCV = dyn_cast<ConstantExpr>(FalseValue))
1226      if (FCV->canTrap())
1227        return false;
1228
1229    TrueResult.push_back(TrueValue);
1230    FalseResult.push_back(FalseValue);
1231  }
1232
1233  // Okay, we collected all the mapped values and checked them for sanity, and
1234  // defined to really do this transformation.  First, update the CFG.
1235  TrueSucc->removePredecessor(BI->getParent());
1236  FalseSucc->removePredecessor(BI->getParent());
1237
1238  // Insert select instructions where needed.
1239  Value *BrCond = BI->getCondition();
1240  for (unsigned i = 0, e = TrueRet->getNumOperands(); i != e; ++i) {
1241    // Insert a select if the results differ.
1242    if (TrueResult[i] == FalseResult[i] || isa<UndefValue>(FalseResult[i]))
1243      continue;
1244    if (isa<UndefValue>(TrueResult[i])) {
1245      TrueResult[i] = FalseResult[i];
1246      continue;
1247    }
1248
1249    TrueResult[i] = SelectInst::Create(BrCond, TrueResult[i],
1250                                       FalseResult[i], "retval", BI);
1251  }
1252
1253  Value *RI = ReturnInst::Create(&TrueResult[0], TrueResult.size(), BI);
1254
1255  DOUT << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
1256       << "\n  " << *BI << "NewRet = " << *RI
1257       << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc;
1258
1259  BI->eraseFromParent();
1260
1261  if (Instruction *BrCondI = dyn_cast<Instruction>(BrCond))
1262    ErasePossiblyDeadInstructionTree(BrCondI);
1263  return true;
1264}
1265
1266
1267namespace {
1268  /// ConstantIntOrdering - This class implements a stable ordering of constant
1269  /// integers that does not depend on their address.  This is important for
1270  /// applications that sort ConstantInt's to ensure uniqueness.
1271  struct ConstantIntOrdering {
1272    bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
1273      return LHS->getValue().ult(RHS->getValue());
1274    }
1275  };
1276}
1277
1278// SimplifyCFG - This function is used to do simplification of a CFG.  For
1279// example, it adjusts branches to branches to eliminate the extra hop, it
1280// eliminates unreachable basic blocks, and does other "peephole" optimization
1281// of the CFG.  It returns true if a modification was made.
1282//
1283// WARNING:  The entry node of a function may not be simplified.
1284//
1285bool llvm::SimplifyCFG(BasicBlock *BB) {
1286  bool Changed = false;
1287  Function *M = BB->getParent();
1288
1289  assert(BB && BB->getParent() && "Block not embedded in function!");
1290  assert(BB->getTerminator() && "Degenerate basic block encountered!");
1291  assert(&BB->getParent()->getEntryBlock() != BB &&
1292         "Can't Simplify entry block!");
1293
1294  // Remove basic blocks that have no predecessors... which are unreachable.
1295  if ((pred_begin(BB) == pred_end(BB)) ||
1296      (*pred_begin(BB) == BB && ++pred_begin(BB) == pred_end(BB))) {
1297    DOUT << "Removing BB: \n" << *BB;
1298
1299    // Loop through all of our successors and make sure they know that one
1300    // of their predecessors is going away.
1301    for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
1302      SI->removePredecessor(BB);
1303
1304    while (!BB->empty()) {
1305      Instruction &I = BB->back();
1306      // If this instruction is used, replace uses with an arbitrary
1307      // value.  Because control flow can't get here, we don't care
1308      // what we replace the value with.  Note that since this block is
1309      // unreachable, and all values contained within it must dominate their
1310      // uses, that all uses will eventually be removed.
1311      if (!I.use_empty())
1312        // Make all users of this instruction use undef instead
1313        I.replaceAllUsesWith(UndefValue::get(I.getType()));
1314
1315      // Remove the instruction from the basic block
1316      BB->getInstList().pop_back();
1317    }
1318    M->getBasicBlockList().erase(BB);
1319    return true;
1320  }
1321
1322  // Check to see if we can constant propagate this terminator instruction
1323  // away...
1324  Changed |= ConstantFoldTerminator(BB);
1325
1326  // If there is a trivial two-entry PHI node in this basic block, and we can
1327  // eliminate it, do so now.
1328  if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
1329    if (PN->getNumIncomingValues() == 2)
1330      Changed |= FoldTwoEntryPHINode(PN);
1331
1332  // If this is a returning block with only PHI nodes in it, fold the return
1333  // instruction into any unconditional branch predecessors.
1334  //
1335  // If any predecessor is a conditional branch that just selects among
1336  // different return values, fold the replace the branch/return with a select
1337  // and return.
1338  if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
1339    BasicBlock::iterator BBI = BB->getTerminator();
1340    if (BBI == BB->begin() || isa<PHINode>(--BBI)) {
1341      // Find predecessors that end with branches.
1342      SmallVector<BasicBlock*, 8> UncondBranchPreds;
1343      SmallVector<BranchInst*, 8> CondBranchPreds;
1344      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1345        TerminatorInst *PTI = (*PI)->getTerminator();
1346        if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
1347          if (BI->isUnconditional())
1348            UncondBranchPreds.push_back(*PI);
1349          else
1350            CondBranchPreds.push_back(BI);
1351        }
1352      }
1353
1354      // If we found some, do the transformation!
1355      if (!UncondBranchPreds.empty()) {
1356        while (!UncondBranchPreds.empty()) {
1357          BasicBlock *Pred = UncondBranchPreds.back();
1358          DOUT << "FOLDING: " << *BB
1359               << "INTO UNCOND BRANCH PRED: " << *Pred;
1360          UncondBranchPreds.pop_back();
1361          Instruction *UncondBranch = Pred->getTerminator();
1362          // Clone the return and add it to the end of the predecessor.
1363          Instruction *NewRet = RI->clone();
1364          Pred->getInstList().push_back(NewRet);
1365
1366          // If the return instruction returns a value, and if the value was a
1367          // PHI node in "BB", propagate the right value into the return.
1368          if (NewRet->getNumOperands() == 1)
1369            if (PHINode *PN = dyn_cast<PHINode>(NewRet->getOperand(0)))
1370              if (PN->getParent() == BB)
1371                NewRet->setOperand(0, PN->getIncomingValueForBlock(Pred));
1372          // Update any PHI nodes in the returning block to realize that we no
1373          // longer branch to them.
1374          BB->removePredecessor(Pred);
1375          Pred->getInstList().erase(UncondBranch);
1376        }
1377
1378        // If we eliminated all predecessors of the block, delete the block now.
1379        if (pred_begin(BB) == pred_end(BB))
1380          // We know there are no successors, so just nuke the block.
1381          M->getBasicBlockList().erase(BB);
1382
1383        return true;
1384      }
1385
1386      // Check out all of the conditional branches going to this return
1387      // instruction.  If any of them just select between returns, change the
1388      // branch itself into a select/return pair.
1389      while (!CondBranchPreds.empty()) {
1390        BranchInst *BI = CondBranchPreds.back();
1391        CondBranchPreds.pop_back();
1392
1393        // Check to see if the non-BB successor is also a return block.
1394        if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
1395            isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
1396            SimplifyCondBranchToTwoReturns(BI))
1397          return true;
1398      }
1399    }
1400  } else if (isa<UnwindInst>(BB->begin())) {
1401    // Check to see if the first instruction in this block is just an unwind.
1402    // If so, replace any invoke instructions which use this as an exception
1403    // destination with call instructions, and any unconditional branch
1404    // predecessor with an unwind.
1405    //
1406    SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
1407    while (!Preds.empty()) {
1408      BasicBlock *Pred = Preds.back();
1409      if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator())) {
1410        if (BI->isUnconditional()) {
1411          Pred->getInstList().pop_back();  // nuke uncond branch
1412          new UnwindInst(Pred);            // Use unwind.
1413          Changed = true;
1414        }
1415      } else if (InvokeInst *II = dyn_cast<InvokeInst>(Pred->getTerminator()))
1416        if (II->getUnwindDest() == BB) {
1417          // Insert a new branch instruction before the invoke, because this
1418          // is now a fall through...
1419          BranchInst *BI = BranchInst::Create(II->getNormalDest(), II);
1420          Pred->getInstList().remove(II);   // Take out of symbol table
1421
1422          // Insert the call now...
1423          SmallVector<Value*,8> Args(II->op_begin()+3, II->op_end());
1424          CallInst *CI = CallInst::Create(II->getCalledValue(),
1425                                          Args.begin(), Args.end(), II->getName(), BI);
1426          CI->setCallingConv(II->getCallingConv());
1427          CI->setParamAttrs(II->getParamAttrs());
1428          // If the invoke produced a value, the Call now does instead
1429          II->replaceAllUsesWith(CI);
1430          delete II;
1431          Changed = true;
1432        }
1433
1434      Preds.pop_back();
1435    }
1436
1437    // If this block is now dead, remove it.
1438    if (pred_begin(BB) == pred_end(BB)) {
1439      // We know there are no successors, so just nuke the block.
1440      M->getBasicBlockList().erase(BB);
1441      return true;
1442    }
1443
1444  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1445    if (isValueEqualityComparison(SI)) {
1446      // If we only have one predecessor, and if it is a branch on this value,
1447      // see if that predecessor totally determines the outcome of this switch.
1448      if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
1449        if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred))
1450          return SimplifyCFG(BB) || 1;
1451
1452      // If the block only contains the switch, see if we can fold the block
1453      // away into any preds.
1454      if (SI == &BB->front())
1455        if (FoldValueComparisonIntoPredecessors(SI))
1456          return SimplifyCFG(BB) || 1;
1457    }
1458  } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1459    if (BI->isUnconditional()) {
1460      BasicBlock::iterator BBI = BB->begin();  // Skip over phi nodes...
1461      while (isa<PHINode>(*BBI)) ++BBI;
1462
1463      BasicBlock *Succ = BI->getSuccessor(0);
1464      if (BBI->isTerminator() &&  // Terminator is the only non-phi instruction!
1465          Succ != BB)             // Don't hurt infinite loops!
1466        if (TryToSimplifyUncondBranchFromEmptyBlock(BB, Succ))
1467          return 1;
1468
1469    } else {  // Conditional branch
1470      if (isValueEqualityComparison(BI)) {
1471        // If we only have one predecessor, and if it is a branch on this value,
1472        // see if that predecessor totally determines the outcome of this
1473        // switch.
1474        if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
1475          if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred))
1476            return SimplifyCFG(BB) || 1;
1477
1478        // This block must be empty, except for the setcond inst, if it exists.
1479        BasicBlock::iterator I = BB->begin();
1480        if (&*I == BI ||
1481            (&*I == cast<Instruction>(BI->getCondition()) &&
1482             &*++I == BI))
1483          if (FoldValueComparisonIntoPredecessors(BI))
1484            return SimplifyCFG(BB) | true;
1485      }
1486
1487      // If this is a branch on a phi node in the current block, thread control
1488      // through this block if any PHI node entries are constants.
1489      if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
1490        if (PN->getParent() == BI->getParent())
1491          if (FoldCondBranchOnPHI(BI))
1492            return SimplifyCFG(BB) | true;
1493
1494      // If this basic block is ONLY a setcc and a branch, and if a predecessor
1495      // branches to us and one of our successors, fold the setcc into the
1496      // predecessor and use logical operations to pick the right destination.
1497      BasicBlock *TrueDest  = BI->getSuccessor(0);
1498      BasicBlock *FalseDest = BI->getSuccessor(1);
1499      if (Instruction *Cond = dyn_cast<Instruction>(BI->getCondition())) {
1500        BasicBlock::iterator CondIt = Cond;
1501        if ((isa<CmpInst>(Cond) || isa<BinaryOperator>(Cond)) &&
1502            Cond->getParent() == BB && &BB->front() == Cond &&
1503            &*++CondIt == BI && Cond->hasOneUse() &&
1504            TrueDest != BB && FalseDest != BB)
1505          for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI!=E; ++PI)
1506            if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
1507              if (PBI->isConditional() && SafeToMergeTerminators(BI, PBI)) {
1508                BasicBlock *PredBlock = *PI;
1509                if (PBI->getSuccessor(0) == FalseDest ||
1510                    PBI->getSuccessor(1) == TrueDest) {
1511                  // Invert the predecessors condition test (xor it with true),
1512                  // which allows us to write this code once.
1513                  Value *NewCond =
1514                    BinaryOperator::createNot(PBI->getCondition(),
1515                                    PBI->getCondition()->getName()+".not", PBI);
1516                  PBI->setCondition(NewCond);
1517                  BasicBlock *OldTrue = PBI->getSuccessor(0);
1518                  BasicBlock *OldFalse = PBI->getSuccessor(1);
1519                  PBI->setSuccessor(0, OldFalse);
1520                  PBI->setSuccessor(1, OldTrue);
1521                }
1522
1523                if ((PBI->getSuccessor(0) == TrueDest && FalseDest != BB) ||
1524                    (PBI->getSuccessor(1) == FalseDest && TrueDest != BB)) {
1525                  // Clone Cond into the predecessor basic block, and or/and the
1526                  // two conditions together.
1527                  Instruction *New = Cond->clone();
1528                  PredBlock->getInstList().insert(PBI, New);
1529                  New->takeName(Cond);
1530                  Cond->setName(New->getName()+".old");
1531                  Instruction::BinaryOps Opcode =
1532                    PBI->getSuccessor(0) == TrueDest ?
1533                    Instruction::Or : Instruction::And;
1534                  Value *NewCond =
1535                    BinaryOperator::create(Opcode, PBI->getCondition(),
1536                                           New, "bothcond", PBI);
1537                  PBI->setCondition(NewCond);
1538                  if (PBI->getSuccessor(0) == BB) {
1539                    AddPredecessorToBlock(TrueDest, PredBlock, BB);
1540                    PBI->setSuccessor(0, TrueDest);
1541                  }
1542                  if (PBI->getSuccessor(1) == BB) {
1543                    AddPredecessorToBlock(FalseDest, PredBlock, BB);
1544                    PBI->setSuccessor(1, FalseDest);
1545                  }
1546                  return SimplifyCFG(BB) | 1;
1547                }
1548              }
1549      }
1550
1551      // Scan predessor blocks for conditional branches.
1552      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
1553        if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
1554          if (PBI != BI && PBI->isConditional()) {
1555
1556            // If this block ends with a branch instruction, and if there is a
1557            // predecessor that ends on a branch of the same condition, make
1558            // this conditional branch redundant.
1559            if (PBI->getCondition() == BI->getCondition() &&
1560                PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
1561              // Okay, the outcome of this conditional branch is statically
1562              // knowable.  If this block had a single pred, handle specially.
1563              if (BB->getSinglePredecessor()) {
1564                // Turn this into a branch on constant.
1565                bool CondIsTrue = PBI->getSuccessor(0) == BB;
1566                BI->setCondition(ConstantInt::get(Type::Int1Ty, CondIsTrue));
1567                return SimplifyCFG(BB);  // Nuke the branch on constant.
1568              }
1569
1570              // Otherwise, if there are multiple predecessors, insert a PHI
1571              // that merges in the constant and simplify the block result.
1572              if (BlockIsSimpleEnoughToThreadThrough(BB)) {
1573                PHINode *NewPN = PHINode::Create(Type::Int1Ty,
1574                                                 BI->getCondition()->getName()+".pr",
1575                                                 BB->begin());
1576                for (PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
1577                  if ((PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) &&
1578                      PBI != BI && PBI->isConditional() &&
1579                      PBI->getCondition() == BI->getCondition() &&
1580                      PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
1581                    bool CondIsTrue = PBI->getSuccessor(0) == BB;
1582                    NewPN->addIncoming(ConstantInt::get(Type::Int1Ty,
1583                                                        CondIsTrue), *PI);
1584                  } else {
1585                    NewPN->addIncoming(BI->getCondition(), *PI);
1586                  }
1587
1588                BI->setCondition(NewPN);
1589                // This will thread the branch.
1590                return SimplifyCFG(BB) | true;
1591              }
1592            }
1593
1594            // If this is a conditional branch in an empty block, and if any
1595            // predecessors is a conditional branch to one of our destinations,
1596            // fold the conditions into logical ops and one cond br.
1597            if (&BB->front() == BI) {
1598              int PBIOp, BIOp;
1599              if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
1600                PBIOp = BIOp = 0;
1601              } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
1602                PBIOp = 0; BIOp = 1;
1603              } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
1604                PBIOp = 1; BIOp = 0;
1605              } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
1606                PBIOp = BIOp = 1;
1607              } else {
1608                PBIOp = BIOp = -1;
1609              }
1610
1611              // Check to make sure that the other destination of this branch
1612              // isn't BB itself.  If so, this is an infinite loop that will
1613              // keep getting unwound.
1614              if (PBIOp != -1 && PBI->getSuccessor(PBIOp) == BB)
1615                PBIOp = BIOp = -1;
1616
1617              // Do not perform this transformation if it would require
1618              // insertion of a large number of select instructions. For targets
1619              // without predication/cmovs, this is a big pessimization.
1620              if (PBIOp != -1) {
1621                BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
1622
1623                unsigned NumPhis = 0;
1624                for (BasicBlock::iterator II = CommonDest->begin();
1625                     isa<PHINode>(II); ++II, ++NumPhis) {
1626                  if (NumPhis > 2) {
1627                    // Disable this xform.
1628                    PBIOp = -1;
1629                    break;
1630                  }
1631                }
1632              }
1633
1634              // Finally, if everything is ok, fold the branches to logical ops.
1635              if (PBIOp != -1) {
1636                BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
1637                BasicBlock *OtherDest  = BI->getSuccessor(BIOp ^ 1);
1638
1639                // If OtherDest *is* BB, then this is a basic block with just
1640                // a conditional branch in it, where one edge (OtherDesg) goes
1641                // back to the block.  We know that the program doesn't get
1642                // stuck in the infinite loop, so the condition must be such
1643                // that OtherDest isn't branched through. Forward to CommonDest,
1644                // and avoid an infinite loop at optimizer time.
1645                if (OtherDest == BB)
1646                  OtherDest = CommonDest;
1647
1648                DOUT << "FOLDING BRs:" << *PBI->getParent()
1649                     << "AND: " << *BI->getParent();
1650
1651                // BI may have other predecessors.  Because of this, we leave
1652                // it alone, but modify PBI.
1653
1654                // Make sure we get to CommonDest on True&True directions.
1655                Value *PBICond = PBI->getCondition();
1656                if (PBIOp)
1657                  PBICond = BinaryOperator::createNot(PBICond,
1658                                                      PBICond->getName()+".not",
1659                                                      PBI);
1660                Value *BICond = BI->getCondition();
1661                if (BIOp)
1662                  BICond = BinaryOperator::createNot(BICond,
1663                                                     BICond->getName()+".not",
1664                                                     PBI);
1665                // Merge the conditions.
1666                Value *Cond =
1667                  BinaryOperator::createOr(PBICond, BICond, "brmerge", PBI);
1668
1669                // Modify PBI to branch on the new condition to the new dests.
1670                PBI->setCondition(Cond);
1671                PBI->setSuccessor(0, CommonDest);
1672                PBI->setSuccessor(1, OtherDest);
1673
1674                // OtherDest may have phi nodes.  If so, add an entry from PBI's
1675                // block that are identical to the entries for BI's block.
1676                PHINode *PN;
1677                for (BasicBlock::iterator II = OtherDest->begin();
1678                     (PN = dyn_cast<PHINode>(II)); ++II) {
1679                  Value *V = PN->getIncomingValueForBlock(BB);
1680                  PN->addIncoming(V, PBI->getParent());
1681                }
1682
1683                // We know that the CommonDest already had an edge from PBI to
1684                // it.  If it has PHIs though, the PHIs may have different
1685                // entries for BB and PBI's BB.  If so, insert a select to make
1686                // them agree.
1687                for (BasicBlock::iterator II = CommonDest->begin();
1688                     (PN = dyn_cast<PHINode>(II)); ++II) {
1689                  Value * BIV = PN->getIncomingValueForBlock(BB);
1690                  unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
1691                  Value *PBIV = PN->getIncomingValue(PBBIdx);
1692                  if (BIV != PBIV) {
1693                    // Insert a select in PBI to pick the right value.
1694                    Value *NV = SelectInst::Create(PBICond, PBIV, BIV,
1695                                                   PBIV->getName()+".mux", PBI);
1696                    PN->setIncomingValue(PBBIdx, NV);
1697                  }
1698                }
1699
1700                DOUT << "INTO: " << *PBI->getParent();
1701
1702                // This basic block is probably dead.  We know it has at least
1703                // one fewer predecessor.
1704                return SimplifyCFG(BB) | true;
1705              }
1706            }
1707          }
1708    }
1709  } else if (isa<UnreachableInst>(BB->getTerminator())) {
1710    // If there are any instructions immediately before the unreachable that can
1711    // be removed, do so.
1712    Instruction *Unreachable = BB->getTerminator();
1713    while (Unreachable != BB->begin()) {
1714      BasicBlock::iterator BBI = Unreachable;
1715      --BBI;
1716      if (isa<CallInst>(BBI)) break;
1717      // Delete this instruction
1718      BB->getInstList().erase(BBI);
1719      Changed = true;
1720    }
1721
1722    // If the unreachable instruction is the first in the block, take a gander
1723    // at all of the predecessors of this instruction, and simplify them.
1724    if (&BB->front() == Unreachable) {
1725      SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
1726      for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
1727        TerminatorInst *TI = Preds[i]->getTerminator();
1728
1729        if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1730          if (BI->isUnconditional()) {
1731            if (BI->getSuccessor(0) == BB) {
1732              new UnreachableInst(TI);
1733              TI->eraseFromParent();
1734              Changed = true;
1735            }
1736          } else {
1737            if (BI->getSuccessor(0) == BB) {
1738              BranchInst::Create(BI->getSuccessor(1), BI);
1739              BI->eraseFromParent();
1740            } else if (BI->getSuccessor(1) == BB) {
1741              BranchInst::Create(BI->getSuccessor(0), BI);
1742              BI->eraseFromParent();
1743              Changed = true;
1744            }
1745          }
1746        } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1747          for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
1748            if (SI->getSuccessor(i) == BB) {
1749              BB->removePredecessor(SI->getParent());
1750              SI->removeCase(i);
1751              --i; --e;
1752              Changed = true;
1753            }
1754          // If the default value is unreachable, figure out the most popular
1755          // destination and make it the default.
1756          if (SI->getSuccessor(0) == BB) {
1757            std::map<BasicBlock*, unsigned> Popularity;
1758            for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
1759              Popularity[SI->getSuccessor(i)]++;
1760
1761            // Find the most popular block.
1762            unsigned MaxPop = 0;
1763            BasicBlock *MaxBlock = 0;
1764            for (std::map<BasicBlock*, unsigned>::iterator
1765                   I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
1766              if (I->second > MaxPop) {
1767                MaxPop = I->second;
1768                MaxBlock = I->first;
1769              }
1770            }
1771            if (MaxBlock) {
1772              // Make this the new default, allowing us to delete any explicit
1773              // edges to it.
1774              SI->setSuccessor(0, MaxBlock);
1775              Changed = true;
1776
1777              // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
1778              // it.
1779              if (isa<PHINode>(MaxBlock->begin()))
1780                for (unsigned i = 0; i != MaxPop-1; ++i)
1781                  MaxBlock->removePredecessor(SI->getParent());
1782
1783              for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
1784                if (SI->getSuccessor(i) == MaxBlock) {
1785                  SI->removeCase(i);
1786                  --i; --e;
1787                }
1788            }
1789          }
1790        } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
1791          if (II->getUnwindDest() == BB) {
1792            // Convert the invoke to a call instruction.  This would be a good
1793            // place to note that the call does not throw though.
1794            BranchInst *BI = BranchInst::Create(II->getNormalDest(), II);
1795            II->removeFromParent();   // Take out of symbol table
1796
1797            // Insert the call now...
1798            SmallVector<Value*, 8> Args(II->op_begin()+3, II->op_end());
1799            CallInst *CI = CallInst::Create(II->getCalledValue(),
1800                                            Args.begin(), Args.end(),
1801                                            II->getName(), BI);
1802            CI->setCallingConv(II->getCallingConv());
1803            CI->setParamAttrs(II->getParamAttrs());
1804            // If the invoke produced a value, the Call does now instead.
1805            II->replaceAllUsesWith(CI);
1806            delete II;
1807            Changed = true;
1808          }
1809        }
1810      }
1811
1812      // If this block is now dead, remove it.
1813      if (pred_begin(BB) == pred_end(BB)) {
1814        // We know there are no successors, so just nuke the block.
1815        M->getBasicBlockList().erase(BB);
1816        return true;
1817      }
1818    }
1819  }
1820
1821  // Merge basic blocks into their predecessor if there is only one distinct
1822  // pred, and if there is only one distinct successor of the predecessor, and
1823  // if there are no PHI nodes.
1824  //
1825  pred_iterator PI(pred_begin(BB)), PE(pred_end(BB));
1826  BasicBlock *OnlyPred = *PI++;
1827  for (; PI != PE; ++PI)  // Search all predecessors, see if they are all same
1828    if (*PI != OnlyPred) {
1829      OnlyPred = 0;       // There are multiple different predecessors...
1830      break;
1831    }
1832
1833  BasicBlock *OnlySucc = 0;
1834  if (OnlyPred && OnlyPred != BB &&    // Don't break self loops
1835      OnlyPred->getTerminator()->getOpcode() != Instruction::Invoke) {
1836    // Check to see if there is only one distinct successor...
1837    succ_iterator SI(succ_begin(OnlyPred)), SE(succ_end(OnlyPred));
1838    OnlySucc = BB;
1839    for (; SI != SE; ++SI)
1840      if (*SI != OnlySucc) {
1841        OnlySucc = 0;     // There are multiple distinct successors!
1842        break;
1843      }
1844  }
1845
1846  if (OnlySucc) {
1847    DOUT << "Merging: " << *BB << "into: " << *OnlyPred;
1848
1849    // Resolve any PHI nodes at the start of the block.  They are all
1850    // guaranteed to have exactly one entry if they exist, unless there are
1851    // multiple duplicate (but guaranteed to be equal) entries for the
1852    // incoming edges.  This occurs when there are multiple edges from
1853    // OnlyPred to OnlySucc.
1854    //
1855    while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
1856      PN->replaceAllUsesWith(PN->getIncomingValue(0));
1857      BB->getInstList().pop_front();  // Delete the phi node.
1858    }
1859
1860    // Delete the unconditional branch from the predecessor.
1861    OnlyPred->getInstList().pop_back();
1862
1863    // Move all definitions in the successor to the predecessor.
1864    OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
1865
1866    // Make all PHI nodes that referred to BB now refer to Pred as their
1867    // source.
1868    BB->replaceAllUsesWith(OnlyPred);
1869
1870    // Inherit predecessors name if it exists.
1871    if (!OnlyPred->hasName())
1872      OnlyPred->takeName(BB);
1873
1874    // Erase basic block from the function.
1875    M->getBasicBlockList().erase(BB);
1876
1877    return true;
1878  }
1879
1880  // Otherwise, if this block only has a single predecessor, and if that block
1881  // is a conditional branch, see if we can hoist any code from this block up
1882  // into our predecessor.
1883  if (OnlyPred)
1884    if (BranchInst *BI = dyn_cast<BranchInst>(OnlyPred->getTerminator()))
1885      if (BI->isConditional()) {
1886        // Get the other block.
1887        BasicBlock *OtherBB = BI->getSuccessor(BI->getSuccessor(0) == BB);
1888        PI = pred_begin(OtherBB);
1889        ++PI;
1890        if (PI == pred_end(OtherBB)) {
1891          // We have a conditional branch to two blocks that are only reachable
1892          // from the condbr.  We know that the condbr dominates the two blocks,
1893          // so see if there is any identical code in the "then" and "else"
1894          // blocks.  If so, we can hoist it up to the branching block.
1895          Changed |= HoistThenElseCodeToIf(BI);
1896        }
1897      }
1898
1899  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
1900    if (BranchInst *BI = dyn_cast<BranchInst>((*PI)->getTerminator()))
1901      // Change br (X == 0 | X == 1), T, F into a switch instruction.
1902      if (BI->isConditional() && isa<Instruction>(BI->getCondition())) {
1903        Instruction *Cond = cast<Instruction>(BI->getCondition());
1904        // If this is a bunch of seteq's or'd together, or if it's a bunch of
1905        // 'setne's and'ed together, collect them.
1906        Value *CompVal = 0;
1907        std::vector<ConstantInt*> Values;
1908        bool TrueWhenEqual = GatherValueComparisons(Cond, CompVal, Values);
1909        if (CompVal && CompVal->getType()->isInteger()) {
1910          // There might be duplicate constants in the list, which the switch
1911          // instruction can't handle, remove them now.
1912          std::sort(Values.begin(), Values.end(), ConstantIntOrdering());
1913          Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
1914
1915          // Figure out which block is which destination.
1916          BasicBlock *DefaultBB = BI->getSuccessor(1);
1917          BasicBlock *EdgeBB    = BI->getSuccessor(0);
1918          if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
1919
1920          // Create the new switch instruction now.
1921          SwitchInst *New = SwitchInst::Create(CompVal, DefaultBB,Values.size(),BI);
1922
1923          // Add all of the 'cases' to the switch instruction.
1924          for (unsigned i = 0, e = Values.size(); i != e; ++i)
1925            New->addCase(Values[i], EdgeBB);
1926
1927          // We added edges from PI to the EdgeBB.  As such, if there were any
1928          // PHI nodes in EdgeBB, they need entries to be added corresponding to
1929          // the number of edges added.
1930          for (BasicBlock::iterator BBI = EdgeBB->begin();
1931               isa<PHINode>(BBI); ++BBI) {
1932            PHINode *PN = cast<PHINode>(BBI);
1933            Value *InVal = PN->getIncomingValueForBlock(*PI);
1934            for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
1935              PN->addIncoming(InVal, *PI);
1936          }
1937
1938          // Erase the old branch instruction.
1939          (*PI)->getInstList().erase(BI);
1940
1941          // Erase the potentially condition tree that was used to computed the
1942          // branch condition.
1943          ErasePossiblyDeadInstructionTree(Cond);
1944          return true;
1945        }
1946      }
1947
1948  return Changed;
1949}
1950